1 /* 2 * QEMU System Emulator block driver 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "config-host.h" 25 #include "qemu-common.h" 26 #include "trace.h" 27 #include "monitor.h" 28 #include "block_int.h" 29 #include "blockjob.h" 30 #include "module.h" 31 #include "qjson.h" 32 #include "sysemu.h" 33 #include "qemu-coroutine.h" 34 #include "qmp-commands.h" 35 #include "qemu-timer.h" 36 37 #ifdef CONFIG_BSD 38 #include <sys/types.h> 39 #include <sys/stat.h> 40 #include <sys/ioctl.h> 41 #include <sys/queue.h> 42 #ifndef __DragonFly__ 43 #include <sys/disk.h> 44 #endif 45 #endif 46 47 #ifdef _WIN32 48 #include <windows.h> 49 #endif 50 51 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ 52 53 typedef enum { 54 BDRV_REQ_COPY_ON_READ = 0x1, 55 BDRV_REQ_ZERO_WRITE = 0x2, 56 } BdrvRequestFlags; 57 58 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load); 59 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 60 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 61 BlockDriverCompletionFunc *cb, void *opaque); 62 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 63 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 64 BlockDriverCompletionFunc *cb, void *opaque); 65 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 66 int64_t sector_num, int nb_sectors, 67 QEMUIOVector *iov); 68 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 69 int64_t sector_num, int nb_sectors, 70 QEMUIOVector *iov); 71 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 72 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 73 BdrvRequestFlags flags); 74 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 75 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 76 BdrvRequestFlags flags); 77 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 78 int64_t sector_num, 79 QEMUIOVector *qiov, 80 int nb_sectors, 81 BlockDriverCompletionFunc *cb, 82 void *opaque, 83 bool is_write); 84 static void coroutine_fn bdrv_co_do_rw(void *opaque); 85 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 86 int64_t sector_num, int nb_sectors); 87 88 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 89 bool is_write, double elapsed_time, uint64_t *wait); 90 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 91 double elapsed_time, uint64_t *wait); 92 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 93 bool is_write, int64_t *wait); 94 95 static QTAILQ_HEAD(, BlockDriverState) bdrv_states = 96 QTAILQ_HEAD_INITIALIZER(bdrv_states); 97 98 static QLIST_HEAD(, BlockDriver) bdrv_drivers = 99 QLIST_HEAD_INITIALIZER(bdrv_drivers); 100 101 /* The device to use for VM snapshots */ 102 static BlockDriverState *bs_snapshots; 103 104 /* If non-zero, use only whitelisted block drivers */ 105 static int use_bdrv_whitelist; 106 107 #ifdef _WIN32 108 static int is_windows_drive_prefix(const char *filename) 109 { 110 return (((filename[0] >= 'a' && filename[0] <= 'z') || 111 (filename[0] >= 'A' && filename[0] <= 'Z')) && 112 filename[1] == ':'); 113 } 114 115 int is_windows_drive(const char *filename) 116 { 117 if (is_windows_drive_prefix(filename) && 118 filename[2] == '\0') 119 return 1; 120 if (strstart(filename, "\\\\.\\", NULL) || 121 strstart(filename, "//./", NULL)) 122 return 1; 123 return 0; 124 } 125 #endif 126 127 /* throttling disk I/O limits */ 128 void bdrv_io_limits_disable(BlockDriverState *bs) 129 { 130 bs->io_limits_enabled = false; 131 132 while (qemu_co_queue_next(&bs->throttled_reqs)); 133 134 if (bs->block_timer) { 135 qemu_del_timer(bs->block_timer); 136 qemu_free_timer(bs->block_timer); 137 bs->block_timer = NULL; 138 } 139 140 bs->slice_start = 0; 141 bs->slice_end = 0; 142 bs->slice_time = 0; 143 memset(&bs->io_base, 0, sizeof(bs->io_base)); 144 } 145 146 static void bdrv_block_timer(void *opaque) 147 { 148 BlockDriverState *bs = opaque; 149 150 qemu_co_queue_next(&bs->throttled_reqs); 151 } 152 153 void bdrv_io_limits_enable(BlockDriverState *bs) 154 { 155 qemu_co_queue_init(&bs->throttled_reqs); 156 bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs); 157 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 158 bs->slice_start = qemu_get_clock_ns(vm_clock); 159 bs->slice_end = bs->slice_start + bs->slice_time; 160 memset(&bs->io_base, 0, sizeof(bs->io_base)); 161 bs->io_limits_enabled = true; 162 } 163 164 bool bdrv_io_limits_enabled(BlockDriverState *bs) 165 { 166 BlockIOLimit *io_limits = &bs->io_limits; 167 return io_limits->bps[BLOCK_IO_LIMIT_READ] 168 || io_limits->bps[BLOCK_IO_LIMIT_WRITE] 169 || io_limits->bps[BLOCK_IO_LIMIT_TOTAL] 170 || io_limits->iops[BLOCK_IO_LIMIT_READ] 171 || io_limits->iops[BLOCK_IO_LIMIT_WRITE] 172 || io_limits->iops[BLOCK_IO_LIMIT_TOTAL]; 173 } 174 175 static void bdrv_io_limits_intercept(BlockDriverState *bs, 176 bool is_write, int nb_sectors) 177 { 178 int64_t wait_time = -1; 179 180 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 181 qemu_co_queue_wait(&bs->throttled_reqs); 182 } 183 184 /* In fact, we hope to keep each request's timing, in FIFO mode. The next 185 * throttled requests will not be dequeued until the current request is 186 * allowed to be serviced. So if the current request still exceeds the 187 * limits, it will be inserted to the head. All requests followed it will 188 * be still in throttled_reqs queue. 189 */ 190 191 while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) { 192 qemu_mod_timer(bs->block_timer, 193 wait_time + qemu_get_clock_ns(vm_clock)); 194 qemu_co_queue_wait_insert_head(&bs->throttled_reqs); 195 } 196 197 qemu_co_queue_next(&bs->throttled_reqs); 198 } 199 200 /* check if the path starts with "<protocol>:" */ 201 static int path_has_protocol(const char *path) 202 { 203 const char *p; 204 205 #ifdef _WIN32 206 if (is_windows_drive(path) || 207 is_windows_drive_prefix(path)) { 208 return 0; 209 } 210 p = path + strcspn(path, ":/\\"); 211 #else 212 p = path + strcspn(path, ":/"); 213 #endif 214 215 return *p == ':'; 216 } 217 218 int path_is_absolute(const char *path) 219 { 220 #ifdef _WIN32 221 /* specific case for names like: "\\.\d:" */ 222 if (is_windows_drive(path) || is_windows_drive_prefix(path)) { 223 return 1; 224 } 225 return (*path == '/' || *path == '\\'); 226 #else 227 return (*path == '/'); 228 #endif 229 } 230 231 /* if filename is absolute, just copy it to dest. Otherwise, build a 232 path to it by considering it is relative to base_path. URL are 233 supported. */ 234 void path_combine(char *dest, int dest_size, 235 const char *base_path, 236 const char *filename) 237 { 238 const char *p, *p1; 239 int len; 240 241 if (dest_size <= 0) 242 return; 243 if (path_is_absolute(filename)) { 244 pstrcpy(dest, dest_size, filename); 245 } else { 246 p = strchr(base_path, ':'); 247 if (p) 248 p++; 249 else 250 p = base_path; 251 p1 = strrchr(base_path, '/'); 252 #ifdef _WIN32 253 { 254 const char *p2; 255 p2 = strrchr(base_path, '\\'); 256 if (!p1 || p2 > p1) 257 p1 = p2; 258 } 259 #endif 260 if (p1) 261 p1++; 262 else 263 p1 = base_path; 264 if (p1 > p) 265 p = p1; 266 len = p - base_path; 267 if (len > dest_size - 1) 268 len = dest_size - 1; 269 memcpy(dest, base_path, len); 270 dest[len] = '\0'; 271 pstrcat(dest, dest_size, filename); 272 } 273 } 274 275 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz) 276 { 277 if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) { 278 pstrcpy(dest, sz, bs->backing_file); 279 } else { 280 path_combine(dest, sz, bs->filename, bs->backing_file); 281 } 282 } 283 284 void bdrv_register(BlockDriver *bdrv) 285 { 286 /* Block drivers without coroutine functions need emulation */ 287 if (!bdrv->bdrv_co_readv) { 288 bdrv->bdrv_co_readv = bdrv_co_readv_em; 289 bdrv->bdrv_co_writev = bdrv_co_writev_em; 290 291 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if 292 * the block driver lacks aio we need to emulate that too. 293 */ 294 if (!bdrv->bdrv_aio_readv) { 295 /* add AIO emulation layer */ 296 bdrv->bdrv_aio_readv = bdrv_aio_readv_em; 297 bdrv->bdrv_aio_writev = bdrv_aio_writev_em; 298 } 299 } 300 301 QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list); 302 } 303 304 /* create a new block device (by default it is empty) */ 305 BlockDriverState *bdrv_new(const char *device_name) 306 { 307 BlockDriverState *bs; 308 309 bs = g_malloc0(sizeof(BlockDriverState)); 310 pstrcpy(bs->device_name, sizeof(bs->device_name), device_name); 311 if (device_name[0] != '\0') { 312 QTAILQ_INSERT_TAIL(&bdrv_states, bs, list); 313 } 314 bdrv_iostatus_disable(bs); 315 return bs; 316 } 317 318 BlockDriver *bdrv_find_format(const char *format_name) 319 { 320 BlockDriver *drv1; 321 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 322 if (!strcmp(drv1->format_name, format_name)) { 323 return drv1; 324 } 325 } 326 return NULL; 327 } 328 329 static int bdrv_is_whitelisted(BlockDriver *drv) 330 { 331 static const char *whitelist[] = { 332 CONFIG_BDRV_WHITELIST 333 }; 334 const char **p; 335 336 if (!whitelist[0]) 337 return 1; /* no whitelist, anything goes */ 338 339 for (p = whitelist; *p; p++) { 340 if (!strcmp(drv->format_name, *p)) { 341 return 1; 342 } 343 } 344 return 0; 345 } 346 347 BlockDriver *bdrv_find_whitelisted_format(const char *format_name) 348 { 349 BlockDriver *drv = bdrv_find_format(format_name); 350 return drv && bdrv_is_whitelisted(drv) ? drv : NULL; 351 } 352 353 typedef struct CreateCo { 354 BlockDriver *drv; 355 char *filename; 356 QEMUOptionParameter *options; 357 int ret; 358 } CreateCo; 359 360 static void coroutine_fn bdrv_create_co_entry(void *opaque) 361 { 362 CreateCo *cco = opaque; 363 assert(cco->drv); 364 365 cco->ret = cco->drv->bdrv_create(cco->filename, cco->options); 366 } 367 368 int bdrv_create(BlockDriver *drv, const char* filename, 369 QEMUOptionParameter *options) 370 { 371 int ret; 372 373 Coroutine *co; 374 CreateCo cco = { 375 .drv = drv, 376 .filename = g_strdup(filename), 377 .options = options, 378 .ret = NOT_DONE, 379 }; 380 381 if (!drv->bdrv_create) { 382 return -ENOTSUP; 383 } 384 385 if (qemu_in_coroutine()) { 386 /* Fast-path if already in coroutine context */ 387 bdrv_create_co_entry(&cco); 388 } else { 389 co = qemu_coroutine_create(bdrv_create_co_entry); 390 qemu_coroutine_enter(co, &cco); 391 while (cco.ret == NOT_DONE) { 392 qemu_aio_wait(); 393 } 394 } 395 396 ret = cco.ret; 397 g_free(cco.filename); 398 399 return ret; 400 } 401 402 int bdrv_create_file(const char* filename, QEMUOptionParameter *options) 403 { 404 BlockDriver *drv; 405 406 drv = bdrv_find_protocol(filename); 407 if (drv == NULL) { 408 return -ENOENT; 409 } 410 411 return bdrv_create(drv, filename, options); 412 } 413 414 /* 415 * Create a uniquely-named empty temporary file. 416 * Return 0 upon success, otherwise a negative errno value. 417 */ 418 int get_tmp_filename(char *filename, int size) 419 { 420 #ifdef _WIN32 421 char temp_dir[MAX_PATH]; 422 /* GetTempFileName requires that its output buffer (4th param) 423 have length MAX_PATH or greater. */ 424 assert(size >= MAX_PATH); 425 return (GetTempPath(MAX_PATH, temp_dir) 426 && GetTempFileName(temp_dir, "qem", 0, filename) 427 ? 0 : -GetLastError()); 428 #else 429 int fd; 430 const char *tmpdir; 431 tmpdir = getenv("TMPDIR"); 432 if (!tmpdir) 433 tmpdir = "/tmp"; 434 if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) { 435 return -EOVERFLOW; 436 } 437 fd = mkstemp(filename); 438 if (fd < 0) { 439 return -errno; 440 } 441 if (close(fd) != 0) { 442 unlink(filename); 443 return -errno; 444 } 445 return 0; 446 #endif 447 } 448 449 /* 450 * Detect host devices. By convention, /dev/cdrom[N] is always 451 * recognized as a host CDROM. 452 */ 453 static BlockDriver *find_hdev_driver(const char *filename) 454 { 455 int score_max = 0, score; 456 BlockDriver *drv = NULL, *d; 457 458 QLIST_FOREACH(d, &bdrv_drivers, list) { 459 if (d->bdrv_probe_device) { 460 score = d->bdrv_probe_device(filename); 461 if (score > score_max) { 462 score_max = score; 463 drv = d; 464 } 465 } 466 } 467 468 return drv; 469 } 470 471 BlockDriver *bdrv_find_protocol(const char *filename) 472 { 473 BlockDriver *drv1; 474 char protocol[128]; 475 int len; 476 const char *p; 477 478 /* TODO Drivers without bdrv_file_open must be specified explicitly */ 479 480 /* 481 * XXX(hch): we really should not let host device detection 482 * override an explicit protocol specification, but moving this 483 * later breaks access to device names with colons in them. 484 * Thanks to the brain-dead persistent naming schemes on udev- 485 * based Linux systems those actually are quite common. 486 */ 487 drv1 = find_hdev_driver(filename); 488 if (drv1) { 489 return drv1; 490 } 491 492 if (!path_has_protocol(filename)) { 493 return bdrv_find_format("file"); 494 } 495 p = strchr(filename, ':'); 496 assert(p != NULL); 497 len = p - filename; 498 if (len > sizeof(protocol) - 1) 499 len = sizeof(protocol) - 1; 500 memcpy(protocol, filename, len); 501 protocol[len] = '\0'; 502 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 503 if (drv1->protocol_name && 504 !strcmp(drv1->protocol_name, protocol)) { 505 return drv1; 506 } 507 } 508 return NULL; 509 } 510 511 static int find_image_format(const char *filename, BlockDriver **pdrv) 512 { 513 int ret, score, score_max; 514 BlockDriver *drv1, *drv; 515 uint8_t buf[2048]; 516 BlockDriverState *bs; 517 518 ret = bdrv_file_open(&bs, filename, 0); 519 if (ret < 0) { 520 *pdrv = NULL; 521 return ret; 522 } 523 524 /* Return the raw BlockDriver * to scsi-generic devices or empty drives */ 525 if (bs->sg || !bdrv_is_inserted(bs)) { 526 bdrv_delete(bs); 527 drv = bdrv_find_format("raw"); 528 if (!drv) { 529 ret = -ENOENT; 530 } 531 *pdrv = drv; 532 return ret; 533 } 534 535 ret = bdrv_pread(bs, 0, buf, sizeof(buf)); 536 bdrv_delete(bs); 537 if (ret < 0) { 538 *pdrv = NULL; 539 return ret; 540 } 541 542 score_max = 0; 543 drv = NULL; 544 QLIST_FOREACH(drv1, &bdrv_drivers, list) { 545 if (drv1->bdrv_probe) { 546 score = drv1->bdrv_probe(buf, ret, filename); 547 if (score > score_max) { 548 score_max = score; 549 drv = drv1; 550 } 551 } 552 } 553 if (!drv) { 554 ret = -ENOENT; 555 } 556 *pdrv = drv; 557 return ret; 558 } 559 560 /** 561 * Set the current 'total_sectors' value 562 */ 563 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint) 564 { 565 BlockDriver *drv = bs->drv; 566 567 /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */ 568 if (bs->sg) 569 return 0; 570 571 /* query actual device if possible, otherwise just trust the hint */ 572 if (drv->bdrv_getlength) { 573 int64_t length = drv->bdrv_getlength(bs); 574 if (length < 0) { 575 return length; 576 } 577 hint = length >> BDRV_SECTOR_BITS; 578 } 579 580 bs->total_sectors = hint; 581 return 0; 582 } 583 584 /** 585 * Set open flags for a given cache mode 586 * 587 * Return 0 on success, -1 if the cache mode was invalid. 588 */ 589 int bdrv_parse_cache_flags(const char *mode, int *flags) 590 { 591 *flags &= ~BDRV_O_CACHE_MASK; 592 593 if (!strcmp(mode, "off") || !strcmp(mode, "none")) { 594 *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB; 595 } else if (!strcmp(mode, "directsync")) { 596 *flags |= BDRV_O_NOCACHE; 597 } else if (!strcmp(mode, "writeback")) { 598 *flags |= BDRV_O_CACHE_WB; 599 } else if (!strcmp(mode, "unsafe")) { 600 *flags |= BDRV_O_CACHE_WB; 601 *flags |= BDRV_O_NO_FLUSH; 602 } else if (!strcmp(mode, "writethrough")) { 603 /* this is the default */ 604 } else { 605 return -1; 606 } 607 608 return 0; 609 } 610 611 /** 612 * The copy-on-read flag is actually a reference count so multiple users may 613 * use the feature without worrying about clobbering its previous state. 614 * Copy-on-read stays enabled until all users have called to disable it. 615 */ 616 void bdrv_enable_copy_on_read(BlockDriverState *bs) 617 { 618 bs->copy_on_read++; 619 } 620 621 void bdrv_disable_copy_on_read(BlockDriverState *bs) 622 { 623 assert(bs->copy_on_read > 0); 624 bs->copy_on_read--; 625 } 626 627 /* 628 * Common part for opening disk images and files 629 */ 630 static int bdrv_open_common(BlockDriverState *bs, const char *filename, 631 int flags, BlockDriver *drv) 632 { 633 int ret, open_flags; 634 635 assert(drv != NULL); 636 assert(bs->file == NULL); 637 638 trace_bdrv_open_common(bs, filename, flags, drv->format_name); 639 640 bs->open_flags = flags; 641 bs->buffer_alignment = 512; 642 643 assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */ 644 if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) { 645 bdrv_enable_copy_on_read(bs); 646 } 647 648 pstrcpy(bs->filename, sizeof(bs->filename), filename); 649 650 if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) { 651 return -ENOTSUP; 652 } 653 654 bs->drv = drv; 655 bs->opaque = g_malloc0(drv->instance_size); 656 657 bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB); 658 open_flags = flags | BDRV_O_CACHE_WB; 659 660 /* 661 * Clear flags that are internal to the block layer before opening the 662 * image. 663 */ 664 open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 665 666 /* 667 * Snapshots should be writable. 668 */ 669 if (bs->is_temporary) { 670 open_flags |= BDRV_O_RDWR; 671 } 672 673 bs->read_only = !(open_flags & BDRV_O_RDWR); 674 675 /* Open the image, either directly or using a protocol */ 676 if (drv->bdrv_file_open) { 677 ret = drv->bdrv_file_open(bs, filename, open_flags); 678 } else { 679 ret = bdrv_file_open(&bs->file, filename, open_flags); 680 if (ret >= 0) { 681 ret = drv->bdrv_open(bs, open_flags); 682 } 683 } 684 685 if (ret < 0) { 686 goto free_and_fail; 687 } 688 689 ret = refresh_total_sectors(bs, bs->total_sectors); 690 if (ret < 0) { 691 goto free_and_fail; 692 } 693 694 #ifndef _WIN32 695 if (bs->is_temporary) { 696 unlink(filename); 697 } 698 #endif 699 return 0; 700 701 free_and_fail: 702 if (bs->file) { 703 bdrv_delete(bs->file); 704 bs->file = NULL; 705 } 706 g_free(bs->opaque); 707 bs->opaque = NULL; 708 bs->drv = NULL; 709 return ret; 710 } 711 712 /* 713 * Opens a file using a protocol (file, host_device, nbd, ...) 714 */ 715 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) 716 { 717 BlockDriverState *bs; 718 BlockDriver *drv; 719 int ret; 720 721 drv = bdrv_find_protocol(filename); 722 if (!drv) { 723 return -ENOENT; 724 } 725 726 bs = bdrv_new(""); 727 ret = bdrv_open_common(bs, filename, flags, drv); 728 if (ret < 0) { 729 bdrv_delete(bs); 730 return ret; 731 } 732 bs->growable = 1; 733 *pbs = bs; 734 return 0; 735 } 736 737 /* 738 * Opens a disk image (raw, qcow2, vmdk, ...) 739 */ 740 int bdrv_open(BlockDriverState *bs, const char *filename, int flags, 741 BlockDriver *drv) 742 { 743 int ret; 744 char tmp_filename[PATH_MAX]; 745 746 if (flags & BDRV_O_SNAPSHOT) { 747 BlockDriverState *bs1; 748 int64_t total_size; 749 int is_protocol = 0; 750 BlockDriver *bdrv_qcow2; 751 QEMUOptionParameter *options; 752 char backing_filename[PATH_MAX]; 753 754 /* if snapshot, we create a temporary backing file and open it 755 instead of opening 'filename' directly */ 756 757 /* if there is a backing file, use it */ 758 bs1 = bdrv_new(""); 759 ret = bdrv_open(bs1, filename, 0, drv); 760 if (ret < 0) { 761 bdrv_delete(bs1); 762 return ret; 763 } 764 total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK; 765 766 if (bs1->drv && bs1->drv->protocol_name) 767 is_protocol = 1; 768 769 bdrv_delete(bs1); 770 771 ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename)); 772 if (ret < 0) { 773 return ret; 774 } 775 776 /* Real path is meaningless for protocols */ 777 if (is_protocol) 778 snprintf(backing_filename, sizeof(backing_filename), 779 "%s", filename); 780 else if (!realpath(filename, backing_filename)) 781 return -errno; 782 783 bdrv_qcow2 = bdrv_find_format("qcow2"); 784 options = parse_option_parameters("", bdrv_qcow2->create_options, NULL); 785 786 set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size); 787 set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename); 788 if (drv) { 789 set_option_parameter(options, BLOCK_OPT_BACKING_FMT, 790 drv->format_name); 791 } 792 793 ret = bdrv_create(bdrv_qcow2, tmp_filename, options); 794 free_option_parameters(options); 795 if (ret < 0) { 796 return ret; 797 } 798 799 filename = tmp_filename; 800 drv = bdrv_qcow2; 801 bs->is_temporary = 1; 802 } 803 804 /* Find the right image format driver */ 805 if (!drv) { 806 ret = find_image_format(filename, &drv); 807 } 808 809 if (!drv) { 810 goto unlink_and_fail; 811 } 812 813 if (flags & BDRV_O_RDWR) { 814 flags |= BDRV_O_ALLOW_RDWR; 815 } 816 817 /* Open the image */ 818 ret = bdrv_open_common(bs, filename, flags, drv); 819 if (ret < 0) { 820 goto unlink_and_fail; 821 } 822 823 /* If there is a backing file, use it */ 824 if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') { 825 char backing_filename[PATH_MAX]; 826 int back_flags; 827 BlockDriver *back_drv = NULL; 828 829 bs->backing_hd = bdrv_new(""); 830 bdrv_get_full_backing_filename(bs, backing_filename, 831 sizeof(backing_filename)); 832 833 if (bs->backing_format[0] != '\0') { 834 back_drv = bdrv_find_format(bs->backing_format); 835 } 836 837 /* backing files always opened read-only */ 838 back_flags = 839 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 840 841 ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv); 842 if (ret < 0) { 843 bdrv_close(bs); 844 return ret; 845 } 846 } 847 848 if (!bdrv_key_required(bs)) { 849 bdrv_dev_change_media_cb(bs, true); 850 } 851 852 /* throttling disk I/O limits */ 853 if (bs->io_limits_enabled) { 854 bdrv_io_limits_enable(bs); 855 } 856 857 return 0; 858 859 unlink_and_fail: 860 if (bs->is_temporary) { 861 unlink(filename); 862 } 863 return ret; 864 } 865 866 typedef struct BlockReopenQueueEntry { 867 bool prepared; 868 BDRVReopenState state; 869 QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry; 870 } BlockReopenQueueEntry; 871 872 /* 873 * Adds a BlockDriverState to a simple queue for an atomic, transactional 874 * reopen of multiple devices. 875 * 876 * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT 877 * already performed, or alternatively may be NULL a new BlockReopenQueue will 878 * be created and initialized. This newly created BlockReopenQueue should be 879 * passed back in for subsequent calls that are intended to be of the same 880 * atomic 'set'. 881 * 882 * bs is the BlockDriverState to add to the reopen queue. 883 * 884 * flags contains the open flags for the associated bs 885 * 886 * returns a pointer to bs_queue, which is either the newly allocated 887 * bs_queue, or the existing bs_queue being used. 888 * 889 */ 890 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue, 891 BlockDriverState *bs, int flags) 892 { 893 assert(bs != NULL); 894 895 BlockReopenQueueEntry *bs_entry; 896 if (bs_queue == NULL) { 897 bs_queue = g_new0(BlockReopenQueue, 1); 898 QSIMPLEQ_INIT(bs_queue); 899 } 900 901 if (bs->file) { 902 bdrv_reopen_queue(bs_queue, bs->file, flags); 903 } 904 905 bs_entry = g_new0(BlockReopenQueueEntry, 1); 906 QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry); 907 908 bs_entry->state.bs = bs; 909 bs_entry->state.flags = flags; 910 911 return bs_queue; 912 } 913 914 /* 915 * Reopen multiple BlockDriverStates atomically & transactionally. 916 * 917 * The queue passed in (bs_queue) must have been built up previous 918 * via bdrv_reopen_queue(). 919 * 920 * Reopens all BDS specified in the queue, with the appropriate 921 * flags. All devices are prepared for reopen, and failure of any 922 * device will cause all device changes to be abandonded, and intermediate 923 * data cleaned up. 924 * 925 * If all devices prepare successfully, then the changes are committed 926 * to all devices. 927 * 928 */ 929 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp) 930 { 931 int ret = -1; 932 BlockReopenQueueEntry *bs_entry, *next; 933 Error *local_err = NULL; 934 935 assert(bs_queue != NULL); 936 937 bdrv_drain_all(); 938 939 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 940 if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) { 941 error_propagate(errp, local_err); 942 goto cleanup; 943 } 944 bs_entry->prepared = true; 945 } 946 947 /* If we reach this point, we have success and just need to apply the 948 * changes 949 */ 950 QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) { 951 bdrv_reopen_commit(&bs_entry->state); 952 } 953 954 ret = 0; 955 956 cleanup: 957 QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) { 958 if (ret && bs_entry->prepared) { 959 bdrv_reopen_abort(&bs_entry->state); 960 } 961 g_free(bs_entry); 962 } 963 g_free(bs_queue); 964 return ret; 965 } 966 967 968 /* Reopen a single BlockDriverState with the specified flags. */ 969 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp) 970 { 971 int ret = -1; 972 Error *local_err = NULL; 973 BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags); 974 975 ret = bdrv_reopen_multiple(queue, &local_err); 976 if (local_err != NULL) { 977 error_propagate(errp, local_err); 978 } 979 return ret; 980 } 981 982 983 /* 984 * Prepares a BlockDriverState for reopen. All changes are staged in the 985 * 'opaque' field of the BDRVReopenState, which is used and allocated by 986 * the block driver layer .bdrv_reopen_prepare() 987 * 988 * bs is the BlockDriverState to reopen 989 * flags are the new open flags 990 * queue is the reopen queue 991 * 992 * Returns 0 on success, non-zero on error. On error errp will be set 993 * as well. 994 * 995 * On failure, bdrv_reopen_abort() will be called to clean up any data. 996 * It is the responsibility of the caller to then call the abort() or 997 * commit() for any other BDS that have been left in a prepare() state 998 * 999 */ 1000 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, 1001 Error **errp) 1002 { 1003 int ret = -1; 1004 Error *local_err = NULL; 1005 BlockDriver *drv; 1006 1007 assert(reopen_state != NULL); 1008 assert(reopen_state->bs->drv != NULL); 1009 drv = reopen_state->bs->drv; 1010 1011 /* if we are to stay read-only, do not allow permission change 1012 * to r/w */ 1013 if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) && 1014 reopen_state->flags & BDRV_O_RDWR) { 1015 error_set(errp, QERR_DEVICE_IS_READ_ONLY, 1016 reopen_state->bs->device_name); 1017 goto error; 1018 } 1019 1020 1021 ret = bdrv_flush(reopen_state->bs); 1022 if (ret) { 1023 error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive", 1024 strerror(-ret)); 1025 goto error; 1026 } 1027 1028 if (drv->bdrv_reopen_prepare) { 1029 ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err); 1030 if (ret) { 1031 if (local_err != NULL) { 1032 error_propagate(errp, local_err); 1033 } else { 1034 error_set(errp, QERR_OPEN_FILE_FAILED, 1035 reopen_state->bs->filename); 1036 } 1037 goto error; 1038 } 1039 } else { 1040 /* It is currently mandatory to have a bdrv_reopen_prepare() 1041 * handler for each supported drv. */ 1042 error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED, 1043 drv->format_name, reopen_state->bs->device_name, 1044 "reopening of file"); 1045 ret = -1; 1046 goto error; 1047 } 1048 1049 ret = 0; 1050 1051 error: 1052 return ret; 1053 } 1054 1055 /* 1056 * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and 1057 * makes them final by swapping the staging BlockDriverState contents into 1058 * the active BlockDriverState contents. 1059 */ 1060 void bdrv_reopen_commit(BDRVReopenState *reopen_state) 1061 { 1062 BlockDriver *drv; 1063 1064 assert(reopen_state != NULL); 1065 drv = reopen_state->bs->drv; 1066 assert(drv != NULL); 1067 1068 /* If there are any driver level actions to take */ 1069 if (drv->bdrv_reopen_commit) { 1070 drv->bdrv_reopen_commit(reopen_state); 1071 } 1072 1073 /* set BDS specific flags now */ 1074 reopen_state->bs->open_flags = reopen_state->flags; 1075 reopen_state->bs->enable_write_cache = !!(reopen_state->flags & 1076 BDRV_O_CACHE_WB); 1077 reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR); 1078 } 1079 1080 /* 1081 * Abort the reopen, and delete and free the staged changes in 1082 * reopen_state 1083 */ 1084 void bdrv_reopen_abort(BDRVReopenState *reopen_state) 1085 { 1086 BlockDriver *drv; 1087 1088 assert(reopen_state != NULL); 1089 drv = reopen_state->bs->drv; 1090 assert(drv != NULL); 1091 1092 if (drv->bdrv_reopen_abort) { 1093 drv->bdrv_reopen_abort(reopen_state); 1094 } 1095 } 1096 1097 1098 void bdrv_close(BlockDriverState *bs) 1099 { 1100 bdrv_flush(bs); 1101 if (bs->drv) { 1102 if (bs->job) { 1103 block_job_cancel_sync(bs->job); 1104 } 1105 bdrv_drain_all(); 1106 1107 if (bs == bs_snapshots) { 1108 bs_snapshots = NULL; 1109 } 1110 if (bs->backing_hd) { 1111 bdrv_delete(bs->backing_hd); 1112 bs->backing_hd = NULL; 1113 } 1114 bs->drv->bdrv_close(bs); 1115 g_free(bs->opaque); 1116 #ifdef _WIN32 1117 if (bs->is_temporary) { 1118 unlink(bs->filename); 1119 } 1120 #endif 1121 bs->opaque = NULL; 1122 bs->drv = NULL; 1123 bs->copy_on_read = 0; 1124 bs->backing_file[0] = '\0'; 1125 bs->backing_format[0] = '\0'; 1126 bs->total_sectors = 0; 1127 bs->encrypted = 0; 1128 bs->valid_key = 0; 1129 bs->sg = 0; 1130 bs->growable = 0; 1131 1132 if (bs->file != NULL) { 1133 bdrv_delete(bs->file); 1134 bs->file = NULL; 1135 } 1136 } 1137 1138 bdrv_dev_change_media_cb(bs, false); 1139 1140 /*throttling disk I/O limits*/ 1141 if (bs->io_limits_enabled) { 1142 bdrv_io_limits_disable(bs); 1143 } 1144 } 1145 1146 void bdrv_close_all(void) 1147 { 1148 BlockDriverState *bs; 1149 1150 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1151 bdrv_close(bs); 1152 } 1153 } 1154 1155 /* 1156 * Wait for pending requests to complete across all BlockDriverStates 1157 * 1158 * This function does not flush data to disk, use bdrv_flush_all() for that 1159 * after calling this function. 1160 * 1161 * Note that completion of an asynchronous I/O operation can trigger any 1162 * number of other I/O operations on other devices---for example a coroutine 1163 * can be arbitrarily complex and a constant flow of I/O can come until the 1164 * coroutine is complete. Because of this, it is not possible to have a 1165 * function to drain a single device's I/O queue. 1166 */ 1167 void bdrv_drain_all(void) 1168 { 1169 BlockDriverState *bs; 1170 bool busy; 1171 1172 do { 1173 busy = qemu_aio_wait(); 1174 1175 /* FIXME: We do not have timer support here, so this is effectively 1176 * a busy wait. 1177 */ 1178 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1179 if (!qemu_co_queue_empty(&bs->throttled_reqs)) { 1180 qemu_co_queue_restart_all(&bs->throttled_reqs); 1181 busy = true; 1182 } 1183 } 1184 } while (busy); 1185 1186 /* If requests are still pending there is a bug somewhere */ 1187 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1188 assert(QLIST_EMPTY(&bs->tracked_requests)); 1189 assert(qemu_co_queue_empty(&bs->throttled_reqs)); 1190 } 1191 } 1192 1193 /* make a BlockDriverState anonymous by removing from bdrv_state list. 1194 Also, NULL terminate the device_name to prevent double remove */ 1195 void bdrv_make_anon(BlockDriverState *bs) 1196 { 1197 if (bs->device_name[0] != '\0') { 1198 QTAILQ_REMOVE(&bdrv_states, bs, list); 1199 } 1200 bs->device_name[0] = '\0'; 1201 } 1202 1203 static void bdrv_rebind(BlockDriverState *bs) 1204 { 1205 if (bs->drv && bs->drv->bdrv_rebind) { 1206 bs->drv->bdrv_rebind(bs); 1207 } 1208 } 1209 1210 static void bdrv_move_feature_fields(BlockDriverState *bs_dest, 1211 BlockDriverState *bs_src) 1212 { 1213 /* move some fields that need to stay attached to the device */ 1214 bs_dest->open_flags = bs_src->open_flags; 1215 1216 /* dev info */ 1217 bs_dest->dev_ops = bs_src->dev_ops; 1218 bs_dest->dev_opaque = bs_src->dev_opaque; 1219 bs_dest->dev = bs_src->dev; 1220 bs_dest->buffer_alignment = bs_src->buffer_alignment; 1221 bs_dest->copy_on_read = bs_src->copy_on_read; 1222 1223 bs_dest->enable_write_cache = bs_src->enable_write_cache; 1224 1225 /* i/o timing parameters */ 1226 bs_dest->slice_time = bs_src->slice_time; 1227 bs_dest->slice_start = bs_src->slice_start; 1228 bs_dest->slice_end = bs_src->slice_end; 1229 bs_dest->io_limits = bs_src->io_limits; 1230 bs_dest->io_base = bs_src->io_base; 1231 bs_dest->throttled_reqs = bs_src->throttled_reqs; 1232 bs_dest->block_timer = bs_src->block_timer; 1233 bs_dest->io_limits_enabled = bs_src->io_limits_enabled; 1234 1235 /* r/w error */ 1236 bs_dest->on_read_error = bs_src->on_read_error; 1237 bs_dest->on_write_error = bs_src->on_write_error; 1238 1239 /* i/o status */ 1240 bs_dest->iostatus_enabled = bs_src->iostatus_enabled; 1241 bs_dest->iostatus = bs_src->iostatus; 1242 1243 /* dirty bitmap */ 1244 bs_dest->dirty_count = bs_src->dirty_count; 1245 bs_dest->dirty_bitmap = bs_src->dirty_bitmap; 1246 1247 /* job */ 1248 bs_dest->in_use = bs_src->in_use; 1249 bs_dest->job = bs_src->job; 1250 1251 /* keep the same entry in bdrv_states */ 1252 pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name), 1253 bs_src->device_name); 1254 bs_dest->list = bs_src->list; 1255 } 1256 1257 /* 1258 * Swap bs contents for two image chains while they are live, 1259 * while keeping required fields on the BlockDriverState that is 1260 * actually attached to a device. 1261 * 1262 * This will modify the BlockDriverState fields, and swap contents 1263 * between bs_new and bs_old. Both bs_new and bs_old are modified. 1264 * 1265 * bs_new is required to be anonymous. 1266 * 1267 * This function does not create any image files. 1268 */ 1269 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) 1270 { 1271 BlockDriverState tmp; 1272 1273 /* bs_new must be anonymous and shouldn't have anything fancy enabled */ 1274 assert(bs_new->device_name[0] == '\0'); 1275 assert(bs_new->dirty_bitmap == NULL); 1276 assert(bs_new->job == NULL); 1277 assert(bs_new->dev == NULL); 1278 assert(bs_new->in_use == 0); 1279 assert(bs_new->io_limits_enabled == false); 1280 assert(bs_new->block_timer == NULL); 1281 1282 tmp = *bs_new; 1283 *bs_new = *bs_old; 1284 *bs_old = tmp; 1285 1286 /* there are some fields that should not be swapped, move them back */ 1287 bdrv_move_feature_fields(&tmp, bs_old); 1288 bdrv_move_feature_fields(bs_old, bs_new); 1289 bdrv_move_feature_fields(bs_new, &tmp); 1290 1291 /* bs_new shouldn't be in bdrv_states even after the swap! */ 1292 assert(bs_new->device_name[0] == '\0'); 1293 1294 /* Check a few fields that should remain attached to the device */ 1295 assert(bs_new->dev == NULL); 1296 assert(bs_new->job == NULL); 1297 assert(bs_new->in_use == 0); 1298 assert(bs_new->io_limits_enabled == false); 1299 assert(bs_new->block_timer == NULL); 1300 1301 bdrv_rebind(bs_new); 1302 bdrv_rebind(bs_old); 1303 } 1304 1305 /* 1306 * Add new bs contents at the top of an image chain while the chain is 1307 * live, while keeping required fields on the top layer. 1308 * 1309 * This will modify the BlockDriverState fields, and swap contents 1310 * between bs_new and bs_top. Both bs_new and bs_top are modified. 1311 * 1312 * bs_new is required to be anonymous. 1313 * 1314 * This function does not create any image files. 1315 */ 1316 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top) 1317 { 1318 bdrv_swap(bs_new, bs_top); 1319 1320 /* The contents of 'tmp' will become bs_top, as we are 1321 * swapping bs_new and bs_top contents. */ 1322 bs_top->backing_hd = bs_new; 1323 bs_top->open_flags &= ~BDRV_O_NO_BACKING; 1324 pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file), 1325 bs_new->filename); 1326 pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format), 1327 bs_new->drv ? bs_new->drv->format_name : ""); 1328 } 1329 1330 void bdrv_delete(BlockDriverState *bs) 1331 { 1332 assert(!bs->dev); 1333 assert(!bs->job); 1334 assert(!bs->in_use); 1335 1336 /* remove from list, if necessary */ 1337 bdrv_make_anon(bs); 1338 1339 bdrv_close(bs); 1340 1341 assert(bs != bs_snapshots); 1342 g_free(bs); 1343 } 1344 1345 int bdrv_attach_dev(BlockDriverState *bs, void *dev) 1346 /* TODO change to DeviceState *dev when all users are qdevified */ 1347 { 1348 if (bs->dev) { 1349 return -EBUSY; 1350 } 1351 bs->dev = dev; 1352 bdrv_iostatus_reset(bs); 1353 return 0; 1354 } 1355 1356 /* TODO qdevified devices don't use this, remove when devices are qdevified */ 1357 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev) 1358 { 1359 if (bdrv_attach_dev(bs, dev) < 0) { 1360 abort(); 1361 } 1362 } 1363 1364 void bdrv_detach_dev(BlockDriverState *bs, void *dev) 1365 /* TODO change to DeviceState *dev when all users are qdevified */ 1366 { 1367 assert(bs->dev == dev); 1368 bs->dev = NULL; 1369 bs->dev_ops = NULL; 1370 bs->dev_opaque = NULL; 1371 bs->buffer_alignment = 512; 1372 } 1373 1374 /* TODO change to return DeviceState * when all users are qdevified */ 1375 void *bdrv_get_attached_dev(BlockDriverState *bs) 1376 { 1377 return bs->dev; 1378 } 1379 1380 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops, 1381 void *opaque) 1382 { 1383 bs->dev_ops = ops; 1384 bs->dev_opaque = opaque; 1385 if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) { 1386 bs_snapshots = NULL; 1387 } 1388 } 1389 1390 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv, 1391 enum MonitorEvent ev, 1392 BlockErrorAction action, bool is_read) 1393 { 1394 QObject *data; 1395 const char *action_str; 1396 1397 switch (action) { 1398 case BDRV_ACTION_REPORT: 1399 action_str = "report"; 1400 break; 1401 case BDRV_ACTION_IGNORE: 1402 action_str = "ignore"; 1403 break; 1404 case BDRV_ACTION_STOP: 1405 action_str = "stop"; 1406 break; 1407 default: 1408 abort(); 1409 } 1410 1411 data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }", 1412 bdrv->device_name, 1413 action_str, 1414 is_read ? "read" : "write"); 1415 monitor_protocol_event(ev, data); 1416 1417 qobject_decref(data); 1418 } 1419 1420 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected) 1421 { 1422 QObject *data; 1423 1424 data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }", 1425 bdrv_get_device_name(bs), ejected); 1426 monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data); 1427 1428 qobject_decref(data); 1429 } 1430 1431 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load) 1432 { 1433 if (bs->dev_ops && bs->dev_ops->change_media_cb) { 1434 bool tray_was_closed = !bdrv_dev_is_tray_open(bs); 1435 bs->dev_ops->change_media_cb(bs->dev_opaque, load); 1436 if (tray_was_closed) { 1437 /* tray open */ 1438 bdrv_emit_qmp_eject_event(bs, true); 1439 } 1440 if (load) { 1441 /* tray close */ 1442 bdrv_emit_qmp_eject_event(bs, false); 1443 } 1444 } 1445 } 1446 1447 bool bdrv_dev_has_removable_media(BlockDriverState *bs) 1448 { 1449 return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb); 1450 } 1451 1452 void bdrv_dev_eject_request(BlockDriverState *bs, bool force) 1453 { 1454 if (bs->dev_ops && bs->dev_ops->eject_request_cb) { 1455 bs->dev_ops->eject_request_cb(bs->dev_opaque, force); 1456 } 1457 } 1458 1459 bool bdrv_dev_is_tray_open(BlockDriverState *bs) 1460 { 1461 if (bs->dev_ops && bs->dev_ops->is_tray_open) { 1462 return bs->dev_ops->is_tray_open(bs->dev_opaque); 1463 } 1464 return false; 1465 } 1466 1467 static void bdrv_dev_resize_cb(BlockDriverState *bs) 1468 { 1469 if (bs->dev_ops && bs->dev_ops->resize_cb) { 1470 bs->dev_ops->resize_cb(bs->dev_opaque); 1471 } 1472 } 1473 1474 bool bdrv_dev_is_medium_locked(BlockDriverState *bs) 1475 { 1476 if (bs->dev_ops && bs->dev_ops->is_medium_locked) { 1477 return bs->dev_ops->is_medium_locked(bs->dev_opaque); 1478 } 1479 return false; 1480 } 1481 1482 /* 1483 * Run consistency checks on an image 1484 * 1485 * Returns 0 if the check could be completed (it doesn't mean that the image is 1486 * free of errors) or -errno when an internal error occurred. The results of the 1487 * check are stored in res. 1488 */ 1489 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) 1490 { 1491 if (bs->drv->bdrv_check == NULL) { 1492 return -ENOTSUP; 1493 } 1494 1495 memset(res, 0, sizeof(*res)); 1496 return bs->drv->bdrv_check(bs, res, fix); 1497 } 1498 1499 #define COMMIT_BUF_SECTORS 2048 1500 1501 /* commit COW file into the raw image */ 1502 int bdrv_commit(BlockDriverState *bs) 1503 { 1504 BlockDriver *drv = bs->drv; 1505 int64_t sector, total_sectors; 1506 int n, ro, open_flags; 1507 int ret = 0; 1508 uint8_t *buf; 1509 char filename[PATH_MAX]; 1510 1511 if (!drv) 1512 return -ENOMEDIUM; 1513 1514 if (!bs->backing_hd) { 1515 return -ENOTSUP; 1516 } 1517 1518 if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) { 1519 return -EBUSY; 1520 } 1521 1522 ro = bs->backing_hd->read_only; 1523 /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */ 1524 pstrcpy(filename, sizeof(filename), bs->backing_hd->filename); 1525 open_flags = bs->backing_hd->open_flags; 1526 1527 if (ro) { 1528 if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) { 1529 return -EACCES; 1530 } 1531 } 1532 1533 total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS; 1534 buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE); 1535 1536 for (sector = 0; sector < total_sectors; sector += n) { 1537 if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) { 1538 1539 if (bdrv_read(bs, sector, buf, n) != 0) { 1540 ret = -EIO; 1541 goto ro_cleanup; 1542 } 1543 1544 if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) { 1545 ret = -EIO; 1546 goto ro_cleanup; 1547 } 1548 } 1549 } 1550 1551 if (drv->bdrv_make_empty) { 1552 ret = drv->bdrv_make_empty(bs); 1553 bdrv_flush(bs); 1554 } 1555 1556 /* 1557 * Make sure all data we wrote to the backing device is actually 1558 * stable on disk. 1559 */ 1560 if (bs->backing_hd) 1561 bdrv_flush(bs->backing_hd); 1562 1563 ro_cleanup: 1564 g_free(buf); 1565 1566 if (ro) { 1567 /* ignoring error return here */ 1568 bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL); 1569 } 1570 1571 return ret; 1572 } 1573 1574 int bdrv_commit_all(void) 1575 { 1576 BlockDriverState *bs; 1577 1578 QTAILQ_FOREACH(bs, &bdrv_states, list) { 1579 int ret = bdrv_commit(bs); 1580 if (ret < 0) { 1581 return ret; 1582 } 1583 } 1584 return 0; 1585 } 1586 1587 struct BdrvTrackedRequest { 1588 BlockDriverState *bs; 1589 int64_t sector_num; 1590 int nb_sectors; 1591 bool is_write; 1592 QLIST_ENTRY(BdrvTrackedRequest) list; 1593 Coroutine *co; /* owner, used for deadlock detection */ 1594 CoQueue wait_queue; /* coroutines blocked on this request */ 1595 }; 1596 1597 /** 1598 * Remove an active request from the tracked requests list 1599 * 1600 * This function should be called when a tracked request is completing. 1601 */ 1602 static void tracked_request_end(BdrvTrackedRequest *req) 1603 { 1604 QLIST_REMOVE(req, list); 1605 qemu_co_queue_restart_all(&req->wait_queue); 1606 } 1607 1608 /** 1609 * Add an active request to the tracked requests list 1610 */ 1611 static void tracked_request_begin(BdrvTrackedRequest *req, 1612 BlockDriverState *bs, 1613 int64_t sector_num, 1614 int nb_sectors, bool is_write) 1615 { 1616 *req = (BdrvTrackedRequest){ 1617 .bs = bs, 1618 .sector_num = sector_num, 1619 .nb_sectors = nb_sectors, 1620 .is_write = is_write, 1621 .co = qemu_coroutine_self(), 1622 }; 1623 1624 qemu_co_queue_init(&req->wait_queue); 1625 1626 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); 1627 } 1628 1629 /** 1630 * Round a region to cluster boundaries 1631 */ 1632 static void round_to_clusters(BlockDriverState *bs, 1633 int64_t sector_num, int nb_sectors, 1634 int64_t *cluster_sector_num, 1635 int *cluster_nb_sectors) 1636 { 1637 BlockDriverInfo bdi; 1638 1639 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { 1640 *cluster_sector_num = sector_num; 1641 *cluster_nb_sectors = nb_sectors; 1642 } else { 1643 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE; 1644 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c); 1645 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num + 1646 nb_sectors, c); 1647 } 1648 } 1649 1650 static bool tracked_request_overlaps(BdrvTrackedRequest *req, 1651 int64_t sector_num, int nb_sectors) { 1652 /* aaaa bbbb */ 1653 if (sector_num >= req->sector_num + req->nb_sectors) { 1654 return false; 1655 } 1656 /* bbbb aaaa */ 1657 if (req->sector_num >= sector_num + nb_sectors) { 1658 return false; 1659 } 1660 return true; 1661 } 1662 1663 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs, 1664 int64_t sector_num, int nb_sectors) 1665 { 1666 BdrvTrackedRequest *req; 1667 int64_t cluster_sector_num; 1668 int cluster_nb_sectors; 1669 bool retry; 1670 1671 /* If we touch the same cluster it counts as an overlap. This guarantees 1672 * that allocating writes will be serialized and not race with each other 1673 * for the same cluster. For example, in copy-on-read it ensures that the 1674 * CoR read and write operations are atomic and guest writes cannot 1675 * interleave between them. 1676 */ 1677 round_to_clusters(bs, sector_num, nb_sectors, 1678 &cluster_sector_num, &cluster_nb_sectors); 1679 1680 do { 1681 retry = false; 1682 QLIST_FOREACH(req, &bs->tracked_requests, list) { 1683 if (tracked_request_overlaps(req, cluster_sector_num, 1684 cluster_nb_sectors)) { 1685 /* Hitting this means there was a reentrant request, for 1686 * example, a block driver issuing nested requests. This must 1687 * never happen since it means deadlock. 1688 */ 1689 assert(qemu_coroutine_self() != req->co); 1690 1691 qemu_co_queue_wait(&req->wait_queue); 1692 retry = true; 1693 break; 1694 } 1695 } 1696 } while (retry); 1697 } 1698 1699 /* 1700 * Return values: 1701 * 0 - success 1702 * -EINVAL - backing format specified, but no file 1703 * -ENOSPC - can't update the backing file because no space is left in the 1704 * image file header 1705 * -ENOTSUP - format driver doesn't support changing the backing file 1706 */ 1707 int bdrv_change_backing_file(BlockDriverState *bs, 1708 const char *backing_file, const char *backing_fmt) 1709 { 1710 BlockDriver *drv = bs->drv; 1711 int ret; 1712 1713 /* Backing file format doesn't make sense without a backing file */ 1714 if (backing_fmt && !backing_file) { 1715 return -EINVAL; 1716 } 1717 1718 if (drv->bdrv_change_backing_file != NULL) { 1719 ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt); 1720 } else { 1721 ret = -ENOTSUP; 1722 } 1723 1724 if (ret == 0) { 1725 pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: ""); 1726 pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: ""); 1727 } 1728 return ret; 1729 } 1730 1731 /* 1732 * Finds the image layer in the chain that has 'bs' as its backing file. 1733 * 1734 * active is the current topmost image. 1735 * 1736 * Returns NULL if bs is not found in active's image chain, 1737 * or if active == bs. 1738 */ 1739 BlockDriverState *bdrv_find_overlay(BlockDriverState *active, 1740 BlockDriverState *bs) 1741 { 1742 BlockDriverState *overlay = NULL; 1743 BlockDriverState *intermediate; 1744 1745 assert(active != NULL); 1746 assert(bs != NULL); 1747 1748 /* if bs is the same as active, then by definition it has no overlay 1749 */ 1750 if (active == bs) { 1751 return NULL; 1752 } 1753 1754 intermediate = active; 1755 while (intermediate->backing_hd) { 1756 if (intermediate->backing_hd == bs) { 1757 overlay = intermediate; 1758 break; 1759 } 1760 intermediate = intermediate->backing_hd; 1761 } 1762 1763 return overlay; 1764 } 1765 1766 typedef struct BlkIntermediateStates { 1767 BlockDriverState *bs; 1768 QSIMPLEQ_ENTRY(BlkIntermediateStates) entry; 1769 } BlkIntermediateStates; 1770 1771 1772 /* 1773 * Drops images above 'base' up to and including 'top', and sets the image 1774 * above 'top' to have base as its backing file. 1775 * 1776 * Requires that the overlay to 'top' is opened r/w, so that the backing file 1777 * information in 'bs' can be properly updated. 1778 * 1779 * E.g., this will convert the following chain: 1780 * bottom <- base <- intermediate <- top <- active 1781 * 1782 * to 1783 * 1784 * bottom <- base <- active 1785 * 1786 * It is allowed for bottom==base, in which case it converts: 1787 * 1788 * base <- intermediate <- top <- active 1789 * 1790 * to 1791 * 1792 * base <- active 1793 * 1794 * Error conditions: 1795 * if active == top, that is considered an error 1796 * 1797 */ 1798 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top, 1799 BlockDriverState *base) 1800 { 1801 BlockDriverState *intermediate; 1802 BlockDriverState *base_bs = NULL; 1803 BlockDriverState *new_top_bs = NULL; 1804 BlkIntermediateStates *intermediate_state, *next; 1805 int ret = -EIO; 1806 1807 QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete; 1808 QSIMPLEQ_INIT(&states_to_delete); 1809 1810 if (!top->drv || !base->drv) { 1811 goto exit; 1812 } 1813 1814 new_top_bs = bdrv_find_overlay(active, top); 1815 1816 if (new_top_bs == NULL) { 1817 /* we could not find the image above 'top', this is an error */ 1818 goto exit; 1819 } 1820 1821 /* special case of new_top_bs->backing_hd already pointing to base - nothing 1822 * to do, no intermediate images */ 1823 if (new_top_bs->backing_hd == base) { 1824 ret = 0; 1825 goto exit; 1826 } 1827 1828 intermediate = top; 1829 1830 /* now we will go down through the list, and add each BDS we find 1831 * into our deletion queue, until we hit the 'base' 1832 */ 1833 while (intermediate) { 1834 intermediate_state = g_malloc0(sizeof(BlkIntermediateStates)); 1835 intermediate_state->bs = intermediate; 1836 QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry); 1837 1838 if (intermediate->backing_hd == base) { 1839 base_bs = intermediate->backing_hd; 1840 break; 1841 } 1842 intermediate = intermediate->backing_hd; 1843 } 1844 if (base_bs == NULL) { 1845 /* something went wrong, we did not end at the base. safely 1846 * unravel everything, and exit with error */ 1847 goto exit; 1848 } 1849 1850 /* success - we can delete the intermediate states, and link top->base */ 1851 ret = bdrv_change_backing_file(new_top_bs, base_bs->filename, 1852 base_bs->drv ? base_bs->drv->format_name : ""); 1853 if (ret) { 1854 goto exit; 1855 } 1856 new_top_bs->backing_hd = base_bs; 1857 1858 1859 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1860 /* so that bdrv_close() does not recursively close the chain */ 1861 intermediate_state->bs->backing_hd = NULL; 1862 bdrv_delete(intermediate_state->bs); 1863 } 1864 ret = 0; 1865 1866 exit: 1867 QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) { 1868 g_free(intermediate_state); 1869 } 1870 return ret; 1871 } 1872 1873 1874 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, 1875 size_t size) 1876 { 1877 int64_t len; 1878 1879 if (!bdrv_is_inserted(bs)) 1880 return -ENOMEDIUM; 1881 1882 if (bs->growable) 1883 return 0; 1884 1885 len = bdrv_getlength(bs); 1886 1887 if (offset < 0) 1888 return -EIO; 1889 1890 if ((offset > len) || (len - offset < size)) 1891 return -EIO; 1892 1893 return 0; 1894 } 1895 1896 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num, 1897 int nb_sectors) 1898 { 1899 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE, 1900 nb_sectors * BDRV_SECTOR_SIZE); 1901 } 1902 1903 typedef struct RwCo { 1904 BlockDriverState *bs; 1905 int64_t sector_num; 1906 int nb_sectors; 1907 QEMUIOVector *qiov; 1908 bool is_write; 1909 int ret; 1910 } RwCo; 1911 1912 static void coroutine_fn bdrv_rw_co_entry(void *opaque) 1913 { 1914 RwCo *rwco = opaque; 1915 1916 if (!rwco->is_write) { 1917 rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num, 1918 rwco->nb_sectors, rwco->qiov, 0); 1919 } else { 1920 rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num, 1921 rwco->nb_sectors, rwco->qiov, 0); 1922 } 1923 } 1924 1925 /* 1926 * Process a synchronous request using coroutines 1927 */ 1928 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, 1929 int nb_sectors, bool is_write) 1930 { 1931 QEMUIOVector qiov; 1932 struct iovec iov = { 1933 .iov_base = (void *)buf, 1934 .iov_len = nb_sectors * BDRV_SECTOR_SIZE, 1935 }; 1936 Coroutine *co; 1937 RwCo rwco = { 1938 .bs = bs, 1939 .sector_num = sector_num, 1940 .nb_sectors = nb_sectors, 1941 .qiov = &qiov, 1942 .is_write = is_write, 1943 .ret = NOT_DONE, 1944 }; 1945 1946 qemu_iovec_init_external(&qiov, &iov, 1); 1947 1948 /** 1949 * In sync call context, when the vcpu is blocked, this throttling timer 1950 * will not fire; so the I/O throttling function has to be disabled here 1951 * if it has been enabled. 1952 */ 1953 if (bs->io_limits_enabled) { 1954 fprintf(stderr, "Disabling I/O throttling on '%s' due " 1955 "to synchronous I/O.\n", bdrv_get_device_name(bs)); 1956 bdrv_io_limits_disable(bs); 1957 } 1958 1959 if (qemu_in_coroutine()) { 1960 /* Fast-path if already in coroutine context */ 1961 bdrv_rw_co_entry(&rwco); 1962 } else { 1963 co = qemu_coroutine_create(bdrv_rw_co_entry); 1964 qemu_coroutine_enter(co, &rwco); 1965 while (rwco.ret == NOT_DONE) { 1966 qemu_aio_wait(); 1967 } 1968 } 1969 return rwco.ret; 1970 } 1971 1972 /* return < 0 if error. See bdrv_write() for the return codes */ 1973 int bdrv_read(BlockDriverState *bs, int64_t sector_num, 1974 uint8_t *buf, int nb_sectors) 1975 { 1976 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false); 1977 } 1978 1979 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */ 1980 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num, 1981 uint8_t *buf, int nb_sectors) 1982 { 1983 bool enabled; 1984 int ret; 1985 1986 enabled = bs->io_limits_enabled; 1987 bs->io_limits_enabled = false; 1988 ret = bdrv_read(bs, 0, buf, 1); 1989 bs->io_limits_enabled = enabled; 1990 return ret; 1991 } 1992 1993 #define BITS_PER_LONG (sizeof(unsigned long) * 8) 1994 1995 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num, 1996 int nb_sectors, int dirty) 1997 { 1998 int64_t start, end; 1999 unsigned long val, idx, bit; 2000 2001 start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK; 2002 end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK; 2003 2004 for (; start <= end; start++) { 2005 idx = start / BITS_PER_LONG; 2006 bit = start % BITS_PER_LONG; 2007 val = bs->dirty_bitmap[idx]; 2008 if (dirty) { 2009 if (!(val & (1UL << bit))) { 2010 bs->dirty_count++; 2011 val |= 1UL << bit; 2012 } 2013 } else { 2014 if (val & (1UL << bit)) { 2015 bs->dirty_count--; 2016 val &= ~(1UL << bit); 2017 } 2018 } 2019 bs->dirty_bitmap[idx] = val; 2020 } 2021 } 2022 2023 /* Return < 0 if error. Important errors are: 2024 -EIO generic I/O error (may happen for all errors) 2025 -ENOMEDIUM No media inserted. 2026 -EINVAL Invalid sector number or nb_sectors 2027 -EACCES Trying to write a read-only device 2028 */ 2029 int bdrv_write(BlockDriverState *bs, int64_t sector_num, 2030 const uint8_t *buf, int nb_sectors) 2031 { 2032 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true); 2033 } 2034 2035 int bdrv_pread(BlockDriverState *bs, int64_t offset, 2036 void *buf, int count1) 2037 { 2038 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2039 int len, nb_sectors, count; 2040 int64_t sector_num; 2041 int ret; 2042 2043 count = count1; 2044 /* first read to align to sector start */ 2045 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2046 if (len > count) 2047 len = count; 2048 sector_num = offset >> BDRV_SECTOR_BITS; 2049 if (len > 0) { 2050 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2051 return ret; 2052 memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len); 2053 count -= len; 2054 if (count == 0) 2055 return count1; 2056 sector_num++; 2057 buf += len; 2058 } 2059 2060 /* read the sectors "in place" */ 2061 nb_sectors = count >> BDRV_SECTOR_BITS; 2062 if (nb_sectors > 0) { 2063 if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0) 2064 return ret; 2065 sector_num += nb_sectors; 2066 len = nb_sectors << BDRV_SECTOR_BITS; 2067 buf += len; 2068 count -= len; 2069 } 2070 2071 /* add data from the last sector */ 2072 if (count > 0) { 2073 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2074 return ret; 2075 memcpy(buf, tmp_buf, count); 2076 } 2077 return count1; 2078 } 2079 2080 int bdrv_pwrite(BlockDriverState *bs, int64_t offset, 2081 const void *buf, int count1) 2082 { 2083 uint8_t tmp_buf[BDRV_SECTOR_SIZE]; 2084 int len, nb_sectors, count; 2085 int64_t sector_num; 2086 int ret; 2087 2088 count = count1; 2089 /* first write to align to sector start */ 2090 len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1); 2091 if (len > count) 2092 len = count; 2093 sector_num = offset >> BDRV_SECTOR_BITS; 2094 if (len > 0) { 2095 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2096 return ret; 2097 memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len); 2098 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2099 return ret; 2100 count -= len; 2101 if (count == 0) 2102 return count1; 2103 sector_num++; 2104 buf += len; 2105 } 2106 2107 /* write the sectors "in place" */ 2108 nb_sectors = count >> BDRV_SECTOR_BITS; 2109 if (nb_sectors > 0) { 2110 if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0) 2111 return ret; 2112 sector_num += nb_sectors; 2113 len = nb_sectors << BDRV_SECTOR_BITS; 2114 buf += len; 2115 count -= len; 2116 } 2117 2118 /* add data from the last sector */ 2119 if (count > 0) { 2120 if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0) 2121 return ret; 2122 memcpy(tmp_buf, buf, count); 2123 if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0) 2124 return ret; 2125 } 2126 return count1; 2127 } 2128 2129 /* 2130 * Writes to the file and ensures that no writes are reordered across this 2131 * request (acts as a barrier) 2132 * 2133 * Returns 0 on success, -errno in error cases. 2134 */ 2135 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset, 2136 const void *buf, int count) 2137 { 2138 int ret; 2139 2140 ret = bdrv_pwrite(bs, offset, buf, count); 2141 if (ret < 0) { 2142 return ret; 2143 } 2144 2145 /* No flush needed for cache modes that already do it */ 2146 if (bs->enable_write_cache) { 2147 bdrv_flush(bs); 2148 } 2149 2150 return 0; 2151 } 2152 2153 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs, 2154 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2155 { 2156 /* Perform I/O through a temporary buffer so that users who scribble over 2157 * their read buffer while the operation is in progress do not end up 2158 * modifying the image file. This is critical for zero-copy guest I/O 2159 * where anything might happen inside guest memory. 2160 */ 2161 void *bounce_buffer; 2162 2163 BlockDriver *drv = bs->drv; 2164 struct iovec iov; 2165 QEMUIOVector bounce_qiov; 2166 int64_t cluster_sector_num; 2167 int cluster_nb_sectors; 2168 size_t skip_bytes; 2169 int ret; 2170 2171 /* Cover entire cluster so no additional backing file I/O is required when 2172 * allocating cluster in the image file. 2173 */ 2174 round_to_clusters(bs, sector_num, nb_sectors, 2175 &cluster_sector_num, &cluster_nb_sectors); 2176 2177 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, 2178 cluster_sector_num, cluster_nb_sectors); 2179 2180 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE; 2181 iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len); 2182 qemu_iovec_init_external(&bounce_qiov, &iov, 1); 2183 2184 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors, 2185 &bounce_qiov); 2186 if (ret < 0) { 2187 goto err; 2188 } 2189 2190 if (drv->bdrv_co_write_zeroes && 2191 buffer_is_zero(bounce_buffer, iov.iov_len)) { 2192 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num, 2193 cluster_nb_sectors); 2194 } else { 2195 /* This does not change the data on the disk, it is not necessary 2196 * to flush even in cache=writethrough mode. 2197 */ 2198 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors, 2199 &bounce_qiov); 2200 } 2201 2202 if (ret < 0) { 2203 /* It might be okay to ignore write errors for guest requests. If this 2204 * is a deliberate copy-on-read then we don't want to ignore the error. 2205 * Simply report it in all cases. 2206 */ 2207 goto err; 2208 } 2209 2210 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE; 2211 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, 2212 nb_sectors * BDRV_SECTOR_SIZE); 2213 2214 err: 2215 qemu_vfree(bounce_buffer); 2216 return ret; 2217 } 2218 2219 /* 2220 * Handle a read request in coroutine context 2221 */ 2222 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs, 2223 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2224 BdrvRequestFlags flags) 2225 { 2226 BlockDriver *drv = bs->drv; 2227 BdrvTrackedRequest req; 2228 int ret; 2229 2230 if (!drv) { 2231 return -ENOMEDIUM; 2232 } 2233 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2234 return -EIO; 2235 } 2236 2237 /* throttling disk read I/O */ 2238 if (bs->io_limits_enabled) { 2239 bdrv_io_limits_intercept(bs, false, nb_sectors); 2240 } 2241 2242 if (bs->copy_on_read) { 2243 flags |= BDRV_REQ_COPY_ON_READ; 2244 } 2245 if (flags & BDRV_REQ_COPY_ON_READ) { 2246 bs->copy_on_read_in_flight++; 2247 } 2248 2249 if (bs->copy_on_read_in_flight) { 2250 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2251 } 2252 2253 tracked_request_begin(&req, bs, sector_num, nb_sectors, false); 2254 2255 if (flags & BDRV_REQ_COPY_ON_READ) { 2256 int pnum; 2257 2258 ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum); 2259 if (ret < 0) { 2260 goto out; 2261 } 2262 2263 if (!ret || pnum != nb_sectors) { 2264 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov); 2265 goto out; 2266 } 2267 } 2268 2269 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); 2270 2271 out: 2272 tracked_request_end(&req); 2273 2274 if (flags & BDRV_REQ_COPY_ON_READ) { 2275 bs->copy_on_read_in_flight--; 2276 } 2277 2278 return ret; 2279 } 2280 2281 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num, 2282 int nb_sectors, QEMUIOVector *qiov) 2283 { 2284 trace_bdrv_co_readv(bs, sector_num, nb_sectors); 2285 2286 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0); 2287 } 2288 2289 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs, 2290 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) 2291 { 2292 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors); 2293 2294 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 2295 BDRV_REQ_COPY_ON_READ); 2296 } 2297 2298 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs, 2299 int64_t sector_num, int nb_sectors) 2300 { 2301 BlockDriver *drv = bs->drv; 2302 QEMUIOVector qiov; 2303 struct iovec iov; 2304 int ret; 2305 2306 /* TODO Emulate only part of misaligned requests instead of letting block 2307 * drivers return -ENOTSUP and emulate everything */ 2308 2309 /* First try the efficient write zeroes operation */ 2310 if (drv->bdrv_co_write_zeroes) { 2311 ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2312 if (ret != -ENOTSUP) { 2313 return ret; 2314 } 2315 } 2316 2317 /* Fall back to bounce buffer if write zeroes is unsupported */ 2318 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE; 2319 iov.iov_base = qemu_blockalign(bs, iov.iov_len); 2320 memset(iov.iov_base, 0, iov.iov_len); 2321 qemu_iovec_init_external(&qiov, &iov, 1); 2322 2323 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov); 2324 2325 qemu_vfree(iov.iov_base); 2326 return ret; 2327 } 2328 2329 /* 2330 * Handle a write request in coroutine context 2331 */ 2332 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs, 2333 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, 2334 BdrvRequestFlags flags) 2335 { 2336 BlockDriver *drv = bs->drv; 2337 BdrvTrackedRequest req; 2338 int ret; 2339 2340 if (!bs->drv) { 2341 return -ENOMEDIUM; 2342 } 2343 if (bs->read_only) { 2344 return -EACCES; 2345 } 2346 if (bdrv_check_request(bs, sector_num, nb_sectors)) { 2347 return -EIO; 2348 } 2349 2350 /* throttling disk write I/O */ 2351 if (bs->io_limits_enabled) { 2352 bdrv_io_limits_intercept(bs, true, nb_sectors); 2353 } 2354 2355 if (bs->copy_on_read_in_flight) { 2356 wait_for_overlapping_requests(bs, sector_num, nb_sectors); 2357 } 2358 2359 tracked_request_begin(&req, bs, sector_num, nb_sectors, true); 2360 2361 if (flags & BDRV_REQ_ZERO_WRITE) { 2362 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors); 2363 } else { 2364 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); 2365 } 2366 2367 if (ret == 0 && !bs->enable_write_cache) { 2368 ret = bdrv_co_flush(bs); 2369 } 2370 2371 if (bs->dirty_bitmap) { 2372 set_dirty_bitmap(bs, sector_num, nb_sectors, 1); 2373 } 2374 2375 if (bs->wr_highest_sector < sector_num + nb_sectors - 1) { 2376 bs->wr_highest_sector = sector_num + nb_sectors - 1; 2377 } 2378 2379 tracked_request_end(&req); 2380 2381 return ret; 2382 } 2383 2384 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num, 2385 int nb_sectors, QEMUIOVector *qiov) 2386 { 2387 trace_bdrv_co_writev(bs, sector_num, nb_sectors); 2388 2389 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0); 2390 } 2391 2392 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs, 2393 int64_t sector_num, int nb_sectors) 2394 { 2395 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors); 2396 2397 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL, 2398 BDRV_REQ_ZERO_WRITE); 2399 } 2400 2401 /** 2402 * Truncate file to 'offset' bytes (needed only for file protocols) 2403 */ 2404 int bdrv_truncate(BlockDriverState *bs, int64_t offset) 2405 { 2406 BlockDriver *drv = bs->drv; 2407 int ret; 2408 if (!drv) 2409 return -ENOMEDIUM; 2410 if (!drv->bdrv_truncate) 2411 return -ENOTSUP; 2412 if (bs->read_only) 2413 return -EACCES; 2414 if (bdrv_in_use(bs)) 2415 return -EBUSY; 2416 ret = drv->bdrv_truncate(bs, offset); 2417 if (ret == 0) { 2418 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS); 2419 bdrv_dev_resize_cb(bs); 2420 } 2421 return ret; 2422 } 2423 2424 /** 2425 * Length of a allocated file in bytes. Sparse files are counted by actual 2426 * allocated space. Return < 0 if error or unknown. 2427 */ 2428 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs) 2429 { 2430 BlockDriver *drv = bs->drv; 2431 if (!drv) { 2432 return -ENOMEDIUM; 2433 } 2434 if (drv->bdrv_get_allocated_file_size) { 2435 return drv->bdrv_get_allocated_file_size(bs); 2436 } 2437 if (bs->file) { 2438 return bdrv_get_allocated_file_size(bs->file); 2439 } 2440 return -ENOTSUP; 2441 } 2442 2443 /** 2444 * Length of a file in bytes. Return < 0 if error or unknown. 2445 */ 2446 int64_t bdrv_getlength(BlockDriverState *bs) 2447 { 2448 BlockDriver *drv = bs->drv; 2449 if (!drv) 2450 return -ENOMEDIUM; 2451 2452 if (bs->growable || bdrv_dev_has_removable_media(bs)) { 2453 if (drv->bdrv_getlength) { 2454 return drv->bdrv_getlength(bs); 2455 } 2456 } 2457 return bs->total_sectors * BDRV_SECTOR_SIZE; 2458 } 2459 2460 /* return 0 as number of sectors if no device present or error */ 2461 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr) 2462 { 2463 int64_t length; 2464 length = bdrv_getlength(bs); 2465 if (length < 0) 2466 length = 0; 2467 else 2468 length = length >> BDRV_SECTOR_BITS; 2469 *nb_sectors_ptr = length; 2470 } 2471 2472 /* throttling disk io limits */ 2473 void bdrv_set_io_limits(BlockDriverState *bs, 2474 BlockIOLimit *io_limits) 2475 { 2476 bs->io_limits = *io_limits; 2477 bs->io_limits_enabled = bdrv_io_limits_enabled(bs); 2478 } 2479 2480 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error, 2481 BlockdevOnError on_write_error) 2482 { 2483 bs->on_read_error = on_read_error; 2484 bs->on_write_error = on_write_error; 2485 } 2486 2487 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) 2488 { 2489 return is_read ? bs->on_read_error : bs->on_write_error; 2490 } 2491 2492 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error) 2493 { 2494 BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error; 2495 2496 switch (on_err) { 2497 case BLOCKDEV_ON_ERROR_ENOSPC: 2498 return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT; 2499 case BLOCKDEV_ON_ERROR_STOP: 2500 return BDRV_ACTION_STOP; 2501 case BLOCKDEV_ON_ERROR_REPORT: 2502 return BDRV_ACTION_REPORT; 2503 case BLOCKDEV_ON_ERROR_IGNORE: 2504 return BDRV_ACTION_IGNORE; 2505 default: 2506 abort(); 2507 } 2508 } 2509 2510 /* This is done by device models because, while the block layer knows 2511 * about the error, it does not know whether an operation comes from 2512 * the device or the block layer (from a job, for example). 2513 */ 2514 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action, 2515 bool is_read, int error) 2516 { 2517 assert(error >= 0); 2518 bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read); 2519 if (action == BDRV_ACTION_STOP) { 2520 vm_stop(RUN_STATE_IO_ERROR); 2521 bdrv_iostatus_set_err(bs, error); 2522 } 2523 } 2524 2525 int bdrv_is_read_only(BlockDriverState *bs) 2526 { 2527 return bs->read_only; 2528 } 2529 2530 int bdrv_is_sg(BlockDriverState *bs) 2531 { 2532 return bs->sg; 2533 } 2534 2535 int bdrv_enable_write_cache(BlockDriverState *bs) 2536 { 2537 return bs->enable_write_cache; 2538 } 2539 2540 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce) 2541 { 2542 bs->enable_write_cache = wce; 2543 2544 /* so a reopen() will preserve wce */ 2545 if (wce) { 2546 bs->open_flags |= BDRV_O_CACHE_WB; 2547 } else { 2548 bs->open_flags &= ~BDRV_O_CACHE_WB; 2549 } 2550 } 2551 2552 int bdrv_is_encrypted(BlockDriverState *bs) 2553 { 2554 if (bs->backing_hd && bs->backing_hd->encrypted) 2555 return 1; 2556 return bs->encrypted; 2557 } 2558 2559 int bdrv_key_required(BlockDriverState *bs) 2560 { 2561 BlockDriverState *backing_hd = bs->backing_hd; 2562 2563 if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key) 2564 return 1; 2565 return (bs->encrypted && !bs->valid_key); 2566 } 2567 2568 int bdrv_set_key(BlockDriverState *bs, const char *key) 2569 { 2570 int ret; 2571 if (bs->backing_hd && bs->backing_hd->encrypted) { 2572 ret = bdrv_set_key(bs->backing_hd, key); 2573 if (ret < 0) 2574 return ret; 2575 if (!bs->encrypted) 2576 return 0; 2577 } 2578 if (!bs->encrypted) { 2579 return -EINVAL; 2580 } else if (!bs->drv || !bs->drv->bdrv_set_key) { 2581 return -ENOMEDIUM; 2582 } 2583 ret = bs->drv->bdrv_set_key(bs, key); 2584 if (ret < 0) { 2585 bs->valid_key = 0; 2586 } else if (!bs->valid_key) { 2587 bs->valid_key = 1; 2588 /* call the change callback now, we skipped it on open */ 2589 bdrv_dev_change_media_cb(bs, true); 2590 } 2591 return ret; 2592 } 2593 2594 const char *bdrv_get_format_name(BlockDriverState *bs) 2595 { 2596 return bs->drv ? bs->drv->format_name : NULL; 2597 } 2598 2599 void bdrv_iterate_format(void (*it)(void *opaque, const char *name), 2600 void *opaque) 2601 { 2602 BlockDriver *drv; 2603 2604 QLIST_FOREACH(drv, &bdrv_drivers, list) { 2605 it(opaque, drv->format_name); 2606 } 2607 } 2608 2609 BlockDriverState *bdrv_find(const char *name) 2610 { 2611 BlockDriverState *bs; 2612 2613 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2614 if (!strcmp(name, bs->device_name)) { 2615 return bs; 2616 } 2617 } 2618 return NULL; 2619 } 2620 2621 BlockDriverState *bdrv_next(BlockDriverState *bs) 2622 { 2623 if (!bs) { 2624 return QTAILQ_FIRST(&bdrv_states); 2625 } 2626 return QTAILQ_NEXT(bs, list); 2627 } 2628 2629 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque) 2630 { 2631 BlockDriverState *bs; 2632 2633 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2634 it(opaque, bs); 2635 } 2636 } 2637 2638 const char *bdrv_get_device_name(BlockDriverState *bs) 2639 { 2640 return bs->device_name; 2641 } 2642 2643 int bdrv_get_flags(BlockDriverState *bs) 2644 { 2645 return bs->open_flags; 2646 } 2647 2648 void bdrv_flush_all(void) 2649 { 2650 BlockDriverState *bs; 2651 2652 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2653 bdrv_flush(bs); 2654 } 2655 } 2656 2657 int bdrv_has_zero_init(BlockDriverState *bs) 2658 { 2659 assert(bs->drv); 2660 2661 if (bs->drv->bdrv_has_zero_init) { 2662 return bs->drv->bdrv_has_zero_init(bs); 2663 } 2664 2665 return 1; 2666 } 2667 2668 typedef struct BdrvCoIsAllocatedData { 2669 BlockDriverState *bs; 2670 int64_t sector_num; 2671 int nb_sectors; 2672 int *pnum; 2673 int ret; 2674 bool done; 2675 } BdrvCoIsAllocatedData; 2676 2677 /* 2678 * Returns true iff the specified sector is present in the disk image. Drivers 2679 * not implementing the functionality are assumed to not support backing files, 2680 * hence all their sectors are reported as allocated. 2681 * 2682 * If 'sector_num' is beyond the end of the disk image the return value is 0 2683 * and 'pnum' is set to 0. 2684 * 2685 * 'pnum' is set to the number of sectors (including and immediately following 2686 * the specified sector) that are known to be in the same 2687 * allocated/unallocated state. 2688 * 2689 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes 2690 * beyond the end of the disk image it will be clamped. 2691 */ 2692 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num, 2693 int nb_sectors, int *pnum) 2694 { 2695 int64_t n; 2696 2697 if (sector_num >= bs->total_sectors) { 2698 *pnum = 0; 2699 return 0; 2700 } 2701 2702 n = bs->total_sectors - sector_num; 2703 if (n < nb_sectors) { 2704 nb_sectors = n; 2705 } 2706 2707 if (!bs->drv->bdrv_co_is_allocated) { 2708 *pnum = nb_sectors; 2709 return 1; 2710 } 2711 2712 return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum); 2713 } 2714 2715 /* Coroutine wrapper for bdrv_is_allocated() */ 2716 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque) 2717 { 2718 BdrvCoIsAllocatedData *data = opaque; 2719 BlockDriverState *bs = data->bs; 2720 2721 data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors, 2722 data->pnum); 2723 data->done = true; 2724 } 2725 2726 /* 2727 * Synchronous wrapper around bdrv_co_is_allocated(). 2728 * 2729 * See bdrv_co_is_allocated() for details. 2730 */ 2731 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, 2732 int *pnum) 2733 { 2734 Coroutine *co; 2735 BdrvCoIsAllocatedData data = { 2736 .bs = bs, 2737 .sector_num = sector_num, 2738 .nb_sectors = nb_sectors, 2739 .pnum = pnum, 2740 .done = false, 2741 }; 2742 2743 co = qemu_coroutine_create(bdrv_is_allocated_co_entry); 2744 qemu_coroutine_enter(co, &data); 2745 while (!data.done) { 2746 qemu_aio_wait(); 2747 } 2748 return data.ret; 2749 } 2750 2751 /* 2752 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] 2753 * 2754 * Return true if the given sector is allocated in any image between 2755 * BASE and TOP (inclusive). BASE can be NULL to check if the given 2756 * sector is allocated in any image of the chain. Return false otherwise. 2757 * 2758 * 'pnum' is set to the number of sectors (including and immediately following 2759 * the specified sector) that are known to be in the same 2760 * allocated/unallocated state. 2761 * 2762 */ 2763 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top, 2764 BlockDriverState *base, 2765 int64_t sector_num, 2766 int nb_sectors, int *pnum) 2767 { 2768 BlockDriverState *intermediate; 2769 int ret, n = nb_sectors; 2770 2771 intermediate = top; 2772 while (intermediate && intermediate != base) { 2773 int pnum_inter; 2774 ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors, 2775 &pnum_inter); 2776 if (ret < 0) { 2777 return ret; 2778 } else if (ret) { 2779 *pnum = pnum_inter; 2780 return 1; 2781 } 2782 2783 /* 2784 * [sector_num, nb_sectors] is unallocated on top but intermediate 2785 * might have 2786 * 2787 * [sector_num+x, nr_sectors] allocated. 2788 */ 2789 if (n > pnum_inter) { 2790 n = pnum_inter; 2791 } 2792 2793 intermediate = intermediate->backing_hd; 2794 } 2795 2796 *pnum = n; 2797 return 0; 2798 } 2799 2800 BlockInfoList *qmp_query_block(Error **errp) 2801 { 2802 BlockInfoList *head = NULL, *cur_item = NULL; 2803 BlockDriverState *bs; 2804 2805 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2806 BlockInfoList *info = g_malloc0(sizeof(*info)); 2807 2808 info->value = g_malloc0(sizeof(*info->value)); 2809 info->value->device = g_strdup(bs->device_name); 2810 info->value->type = g_strdup("unknown"); 2811 info->value->locked = bdrv_dev_is_medium_locked(bs); 2812 info->value->removable = bdrv_dev_has_removable_media(bs); 2813 2814 if (bdrv_dev_has_removable_media(bs)) { 2815 info->value->has_tray_open = true; 2816 info->value->tray_open = bdrv_dev_is_tray_open(bs); 2817 } 2818 2819 if (bdrv_iostatus_is_enabled(bs)) { 2820 info->value->has_io_status = true; 2821 info->value->io_status = bs->iostatus; 2822 } 2823 2824 if (bs->drv) { 2825 info->value->has_inserted = true; 2826 info->value->inserted = g_malloc0(sizeof(*info->value->inserted)); 2827 info->value->inserted->file = g_strdup(bs->filename); 2828 info->value->inserted->ro = bs->read_only; 2829 info->value->inserted->drv = g_strdup(bs->drv->format_name); 2830 info->value->inserted->encrypted = bs->encrypted; 2831 info->value->inserted->encryption_key_missing = bdrv_key_required(bs); 2832 if (bs->backing_file[0]) { 2833 info->value->inserted->has_backing_file = true; 2834 info->value->inserted->backing_file = g_strdup(bs->backing_file); 2835 } 2836 2837 info->value->inserted->backing_file_depth = 2838 bdrv_get_backing_file_depth(bs); 2839 2840 if (bs->io_limits_enabled) { 2841 info->value->inserted->bps = 2842 bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 2843 info->value->inserted->bps_rd = 2844 bs->io_limits.bps[BLOCK_IO_LIMIT_READ]; 2845 info->value->inserted->bps_wr = 2846 bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE]; 2847 info->value->inserted->iops = 2848 bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 2849 info->value->inserted->iops_rd = 2850 bs->io_limits.iops[BLOCK_IO_LIMIT_READ]; 2851 info->value->inserted->iops_wr = 2852 bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE]; 2853 } 2854 } 2855 2856 /* XXX: waiting for the qapi to support GSList */ 2857 if (!cur_item) { 2858 head = cur_item = info; 2859 } else { 2860 cur_item->next = info; 2861 cur_item = info; 2862 } 2863 } 2864 2865 return head; 2866 } 2867 2868 /* Consider exposing this as a full fledged QMP command */ 2869 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp) 2870 { 2871 BlockStats *s; 2872 2873 s = g_malloc0(sizeof(*s)); 2874 2875 if (bs->device_name[0]) { 2876 s->has_device = true; 2877 s->device = g_strdup(bs->device_name); 2878 } 2879 2880 s->stats = g_malloc0(sizeof(*s->stats)); 2881 s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ]; 2882 s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE]; 2883 s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ]; 2884 s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE]; 2885 s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE; 2886 s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH]; 2887 s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE]; 2888 s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ]; 2889 s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH]; 2890 2891 if (bs->file) { 2892 s->has_parent = true; 2893 s->parent = qmp_query_blockstat(bs->file, NULL); 2894 } 2895 2896 return s; 2897 } 2898 2899 BlockStatsList *qmp_query_blockstats(Error **errp) 2900 { 2901 BlockStatsList *head = NULL, *cur_item = NULL; 2902 BlockDriverState *bs; 2903 2904 QTAILQ_FOREACH(bs, &bdrv_states, list) { 2905 BlockStatsList *info = g_malloc0(sizeof(*info)); 2906 info->value = qmp_query_blockstat(bs, NULL); 2907 2908 /* XXX: waiting for the qapi to support GSList */ 2909 if (!cur_item) { 2910 head = cur_item = info; 2911 } else { 2912 cur_item->next = info; 2913 cur_item = info; 2914 } 2915 } 2916 2917 return head; 2918 } 2919 2920 const char *bdrv_get_encrypted_filename(BlockDriverState *bs) 2921 { 2922 if (bs->backing_hd && bs->backing_hd->encrypted) 2923 return bs->backing_file; 2924 else if (bs->encrypted) 2925 return bs->filename; 2926 else 2927 return NULL; 2928 } 2929 2930 void bdrv_get_backing_filename(BlockDriverState *bs, 2931 char *filename, int filename_size) 2932 { 2933 pstrcpy(filename, filename_size, bs->backing_file); 2934 } 2935 2936 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, 2937 const uint8_t *buf, int nb_sectors) 2938 { 2939 BlockDriver *drv = bs->drv; 2940 if (!drv) 2941 return -ENOMEDIUM; 2942 if (!drv->bdrv_write_compressed) 2943 return -ENOTSUP; 2944 if (bdrv_check_request(bs, sector_num, nb_sectors)) 2945 return -EIO; 2946 2947 if (bs->dirty_bitmap) { 2948 set_dirty_bitmap(bs, sector_num, nb_sectors, 1); 2949 } 2950 2951 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); 2952 } 2953 2954 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi) 2955 { 2956 BlockDriver *drv = bs->drv; 2957 if (!drv) 2958 return -ENOMEDIUM; 2959 if (!drv->bdrv_get_info) 2960 return -ENOTSUP; 2961 memset(bdi, 0, sizeof(*bdi)); 2962 return drv->bdrv_get_info(bs, bdi); 2963 } 2964 2965 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, 2966 int64_t pos, int size) 2967 { 2968 BlockDriver *drv = bs->drv; 2969 if (!drv) 2970 return -ENOMEDIUM; 2971 if (drv->bdrv_save_vmstate) 2972 return drv->bdrv_save_vmstate(bs, buf, pos, size); 2973 if (bs->file) 2974 return bdrv_save_vmstate(bs->file, buf, pos, size); 2975 return -ENOTSUP; 2976 } 2977 2978 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, 2979 int64_t pos, int size) 2980 { 2981 BlockDriver *drv = bs->drv; 2982 if (!drv) 2983 return -ENOMEDIUM; 2984 if (drv->bdrv_load_vmstate) 2985 return drv->bdrv_load_vmstate(bs, buf, pos, size); 2986 if (bs->file) 2987 return bdrv_load_vmstate(bs->file, buf, pos, size); 2988 return -ENOTSUP; 2989 } 2990 2991 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event) 2992 { 2993 BlockDriver *drv = bs->drv; 2994 2995 if (!drv || !drv->bdrv_debug_event) { 2996 return; 2997 } 2998 2999 drv->bdrv_debug_event(bs, event); 3000 3001 } 3002 3003 /**************************************************************/ 3004 /* handling of snapshots */ 3005 3006 int bdrv_can_snapshot(BlockDriverState *bs) 3007 { 3008 BlockDriver *drv = bs->drv; 3009 if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3010 return 0; 3011 } 3012 3013 if (!drv->bdrv_snapshot_create) { 3014 if (bs->file != NULL) { 3015 return bdrv_can_snapshot(bs->file); 3016 } 3017 return 0; 3018 } 3019 3020 return 1; 3021 } 3022 3023 int bdrv_is_snapshot(BlockDriverState *bs) 3024 { 3025 return !!(bs->open_flags & BDRV_O_SNAPSHOT); 3026 } 3027 3028 BlockDriverState *bdrv_snapshots(void) 3029 { 3030 BlockDriverState *bs; 3031 3032 if (bs_snapshots) { 3033 return bs_snapshots; 3034 } 3035 3036 bs = NULL; 3037 while ((bs = bdrv_next(bs))) { 3038 if (bdrv_can_snapshot(bs)) { 3039 bs_snapshots = bs; 3040 return bs; 3041 } 3042 } 3043 return NULL; 3044 } 3045 3046 int bdrv_snapshot_create(BlockDriverState *bs, 3047 QEMUSnapshotInfo *sn_info) 3048 { 3049 BlockDriver *drv = bs->drv; 3050 if (!drv) 3051 return -ENOMEDIUM; 3052 if (drv->bdrv_snapshot_create) 3053 return drv->bdrv_snapshot_create(bs, sn_info); 3054 if (bs->file) 3055 return bdrv_snapshot_create(bs->file, sn_info); 3056 return -ENOTSUP; 3057 } 3058 3059 int bdrv_snapshot_goto(BlockDriverState *bs, 3060 const char *snapshot_id) 3061 { 3062 BlockDriver *drv = bs->drv; 3063 int ret, open_ret; 3064 3065 if (!drv) 3066 return -ENOMEDIUM; 3067 if (drv->bdrv_snapshot_goto) 3068 return drv->bdrv_snapshot_goto(bs, snapshot_id); 3069 3070 if (bs->file) { 3071 drv->bdrv_close(bs); 3072 ret = bdrv_snapshot_goto(bs->file, snapshot_id); 3073 open_ret = drv->bdrv_open(bs, bs->open_flags); 3074 if (open_ret < 0) { 3075 bdrv_delete(bs->file); 3076 bs->drv = NULL; 3077 return open_ret; 3078 } 3079 return ret; 3080 } 3081 3082 return -ENOTSUP; 3083 } 3084 3085 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) 3086 { 3087 BlockDriver *drv = bs->drv; 3088 if (!drv) 3089 return -ENOMEDIUM; 3090 if (drv->bdrv_snapshot_delete) 3091 return drv->bdrv_snapshot_delete(bs, snapshot_id); 3092 if (bs->file) 3093 return bdrv_snapshot_delete(bs->file, snapshot_id); 3094 return -ENOTSUP; 3095 } 3096 3097 int bdrv_snapshot_list(BlockDriverState *bs, 3098 QEMUSnapshotInfo **psn_info) 3099 { 3100 BlockDriver *drv = bs->drv; 3101 if (!drv) 3102 return -ENOMEDIUM; 3103 if (drv->bdrv_snapshot_list) 3104 return drv->bdrv_snapshot_list(bs, psn_info); 3105 if (bs->file) 3106 return bdrv_snapshot_list(bs->file, psn_info); 3107 return -ENOTSUP; 3108 } 3109 3110 int bdrv_snapshot_load_tmp(BlockDriverState *bs, 3111 const char *snapshot_name) 3112 { 3113 BlockDriver *drv = bs->drv; 3114 if (!drv) { 3115 return -ENOMEDIUM; 3116 } 3117 if (!bs->read_only) { 3118 return -EINVAL; 3119 } 3120 if (drv->bdrv_snapshot_load_tmp) { 3121 return drv->bdrv_snapshot_load_tmp(bs, snapshot_name); 3122 } 3123 return -ENOTSUP; 3124 } 3125 3126 /* backing_file can either be relative, or absolute, or a protocol. If it is 3127 * relative, it must be relative to the chain. So, passing in bs->filename 3128 * from a BDS as backing_file should not be done, as that may be relative to 3129 * the CWD rather than the chain. */ 3130 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, 3131 const char *backing_file) 3132 { 3133 char *filename_full = NULL; 3134 char *backing_file_full = NULL; 3135 char *filename_tmp = NULL; 3136 int is_protocol = 0; 3137 BlockDriverState *curr_bs = NULL; 3138 BlockDriverState *retval = NULL; 3139 3140 if (!bs || !bs->drv || !backing_file) { 3141 return NULL; 3142 } 3143 3144 filename_full = g_malloc(PATH_MAX); 3145 backing_file_full = g_malloc(PATH_MAX); 3146 filename_tmp = g_malloc(PATH_MAX); 3147 3148 is_protocol = path_has_protocol(backing_file); 3149 3150 for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) { 3151 3152 /* If either of the filename paths is actually a protocol, then 3153 * compare unmodified paths; otherwise make paths relative */ 3154 if (is_protocol || path_has_protocol(curr_bs->backing_file)) { 3155 if (strcmp(backing_file, curr_bs->backing_file) == 0) { 3156 retval = curr_bs->backing_hd; 3157 break; 3158 } 3159 } else { 3160 /* If not an absolute filename path, make it relative to the current 3161 * image's filename path */ 3162 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3163 backing_file); 3164 3165 /* We are going to compare absolute pathnames */ 3166 if (!realpath(filename_tmp, filename_full)) { 3167 continue; 3168 } 3169 3170 /* We need to make sure the backing filename we are comparing against 3171 * is relative to the current image filename (or absolute) */ 3172 path_combine(filename_tmp, PATH_MAX, curr_bs->filename, 3173 curr_bs->backing_file); 3174 3175 if (!realpath(filename_tmp, backing_file_full)) { 3176 continue; 3177 } 3178 3179 if (strcmp(backing_file_full, filename_full) == 0) { 3180 retval = curr_bs->backing_hd; 3181 break; 3182 } 3183 } 3184 } 3185 3186 g_free(filename_full); 3187 g_free(backing_file_full); 3188 g_free(filename_tmp); 3189 return retval; 3190 } 3191 3192 int bdrv_get_backing_file_depth(BlockDriverState *bs) 3193 { 3194 if (!bs->drv) { 3195 return 0; 3196 } 3197 3198 if (!bs->backing_hd) { 3199 return 0; 3200 } 3201 3202 return 1 + bdrv_get_backing_file_depth(bs->backing_hd); 3203 } 3204 3205 BlockDriverState *bdrv_find_base(BlockDriverState *bs) 3206 { 3207 BlockDriverState *curr_bs = NULL; 3208 3209 if (!bs) { 3210 return NULL; 3211 } 3212 3213 curr_bs = bs; 3214 3215 while (curr_bs->backing_hd) { 3216 curr_bs = curr_bs->backing_hd; 3217 } 3218 return curr_bs; 3219 } 3220 3221 #define NB_SUFFIXES 4 3222 3223 char *get_human_readable_size(char *buf, int buf_size, int64_t size) 3224 { 3225 static const char suffixes[NB_SUFFIXES] = "KMGT"; 3226 int64_t base; 3227 int i; 3228 3229 if (size <= 999) { 3230 snprintf(buf, buf_size, "%" PRId64, size); 3231 } else { 3232 base = 1024; 3233 for(i = 0; i < NB_SUFFIXES; i++) { 3234 if (size < (10 * base)) { 3235 snprintf(buf, buf_size, "%0.1f%c", 3236 (double)size / base, 3237 suffixes[i]); 3238 break; 3239 } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { 3240 snprintf(buf, buf_size, "%" PRId64 "%c", 3241 ((size + (base >> 1)) / base), 3242 suffixes[i]); 3243 break; 3244 } 3245 base = base * 1024; 3246 } 3247 } 3248 return buf; 3249 } 3250 3251 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn) 3252 { 3253 char buf1[128], date_buf[128], clock_buf[128]; 3254 #ifdef _WIN32 3255 struct tm *ptm; 3256 #else 3257 struct tm tm; 3258 #endif 3259 time_t ti; 3260 int64_t secs; 3261 3262 if (!sn) { 3263 snprintf(buf, buf_size, 3264 "%-10s%-20s%7s%20s%15s", 3265 "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK"); 3266 } else { 3267 ti = sn->date_sec; 3268 #ifdef _WIN32 3269 ptm = localtime(&ti); 3270 strftime(date_buf, sizeof(date_buf), 3271 "%Y-%m-%d %H:%M:%S", ptm); 3272 #else 3273 localtime_r(&ti, &tm); 3274 strftime(date_buf, sizeof(date_buf), 3275 "%Y-%m-%d %H:%M:%S", &tm); 3276 #endif 3277 secs = sn->vm_clock_nsec / 1000000000; 3278 snprintf(clock_buf, sizeof(clock_buf), 3279 "%02d:%02d:%02d.%03d", 3280 (int)(secs / 3600), 3281 (int)((secs / 60) % 60), 3282 (int)(secs % 60), 3283 (int)((sn->vm_clock_nsec / 1000000) % 1000)); 3284 snprintf(buf, buf_size, 3285 "%-10s%-20s%7s%20s%15s", 3286 sn->id_str, sn->name, 3287 get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size), 3288 date_buf, 3289 clock_buf); 3290 } 3291 return buf; 3292 } 3293 3294 /**************************************************************/ 3295 /* async I/Os */ 3296 3297 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num, 3298 QEMUIOVector *qiov, int nb_sectors, 3299 BlockDriverCompletionFunc *cb, void *opaque) 3300 { 3301 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque); 3302 3303 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3304 cb, opaque, false); 3305 } 3306 3307 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num, 3308 QEMUIOVector *qiov, int nb_sectors, 3309 BlockDriverCompletionFunc *cb, void *opaque) 3310 { 3311 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque); 3312 3313 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 3314 cb, opaque, true); 3315 } 3316 3317 3318 typedef struct MultiwriteCB { 3319 int error; 3320 int num_requests; 3321 int num_callbacks; 3322 struct { 3323 BlockDriverCompletionFunc *cb; 3324 void *opaque; 3325 QEMUIOVector *free_qiov; 3326 } callbacks[]; 3327 } MultiwriteCB; 3328 3329 static void multiwrite_user_cb(MultiwriteCB *mcb) 3330 { 3331 int i; 3332 3333 for (i = 0; i < mcb->num_callbacks; i++) { 3334 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error); 3335 if (mcb->callbacks[i].free_qiov) { 3336 qemu_iovec_destroy(mcb->callbacks[i].free_qiov); 3337 } 3338 g_free(mcb->callbacks[i].free_qiov); 3339 } 3340 } 3341 3342 static void multiwrite_cb(void *opaque, int ret) 3343 { 3344 MultiwriteCB *mcb = opaque; 3345 3346 trace_multiwrite_cb(mcb, ret); 3347 3348 if (ret < 0 && !mcb->error) { 3349 mcb->error = ret; 3350 } 3351 3352 mcb->num_requests--; 3353 if (mcb->num_requests == 0) { 3354 multiwrite_user_cb(mcb); 3355 g_free(mcb); 3356 } 3357 } 3358 3359 static int multiwrite_req_compare(const void *a, const void *b) 3360 { 3361 const BlockRequest *req1 = a, *req2 = b; 3362 3363 /* 3364 * Note that we can't simply subtract req2->sector from req1->sector 3365 * here as that could overflow the return value. 3366 */ 3367 if (req1->sector > req2->sector) { 3368 return 1; 3369 } else if (req1->sector < req2->sector) { 3370 return -1; 3371 } else { 3372 return 0; 3373 } 3374 } 3375 3376 /* 3377 * Takes a bunch of requests and tries to merge them. Returns the number of 3378 * requests that remain after merging. 3379 */ 3380 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs, 3381 int num_reqs, MultiwriteCB *mcb) 3382 { 3383 int i, outidx; 3384 3385 // Sort requests by start sector 3386 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare); 3387 3388 // Check if adjacent requests touch the same clusters. If so, combine them, 3389 // filling up gaps with zero sectors. 3390 outidx = 0; 3391 for (i = 1; i < num_reqs; i++) { 3392 int merge = 0; 3393 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors; 3394 3395 // Handle exactly sequential writes and overlapping writes. 3396 if (reqs[i].sector <= oldreq_last) { 3397 merge = 1; 3398 } 3399 3400 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) { 3401 merge = 0; 3402 } 3403 3404 if (merge) { 3405 size_t size; 3406 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov)); 3407 qemu_iovec_init(qiov, 3408 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1); 3409 3410 // Add the first request to the merged one. If the requests are 3411 // overlapping, drop the last sectors of the first request. 3412 size = (reqs[i].sector - reqs[outidx].sector) << 9; 3413 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size); 3414 3415 // We should need to add any zeros between the two requests 3416 assert (reqs[i].sector <= oldreq_last); 3417 3418 // Add the second request 3419 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size); 3420 3421 reqs[outidx].nb_sectors = qiov->size >> 9; 3422 reqs[outidx].qiov = qiov; 3423 3424 mcb->callbacks[i].free_qiov = reqs[outidx].qiov; 3425 } else { 3426 outidx++; 3427 reqs[outidx].sector = reqs[i].sector; 3428 reqs[outidx].nb_sectors = reqs[i].nb_sectors; 3429 reqs[outidx].qiov = reqs[i].qiov; 3430 } 3431 } 3432 3433 return outidx + 1; 3434 } 3435 3436 /* 3437 * Submit multiple AIO write requests at once. 3438 * 3439 * On success, the function returns 0 and all requests in the reqs array have 3440 * been submitted. In error case this function returns -1, and any of the 3441 * requests may or may not be submitted yet. In particular, this means that the 3442 * callback will be called for some of the requests, for others it won't. The 3443 * caller must check the error field of the BlockRequest to wait for the right 3444 * callbacks (if error != 0, no callback will be called). 3445 * 3446 * The implementation may modify the contents of the reqs array, e.g. to merge 3447 * requests. However, the fields opaque and error are left unmodified as they 3448 * are used to signal failure for a single request to the caller. 3449 */ 3450 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs) 3451 { 3452 MultiwriteCB *mcb; 3453 int i; 3454 3455 /* don't submit writes if we don't have a medium */ 3456 if (bs->drv == NULL) { 3457 for (i = 0; i < num_reqs; i++) { 3458 reqs[i].error = -ENOMEDIUM; 3459 } 3460 return -1; 3461 } 3462 3463 if (num_reqs == 0) { 3464 return 0; 3465 } 3466 3467 // Create MultiwriteCB structure 3468 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks)); 3469 mcb->num_requests = 0; 3470 mcb->num_callbacks = num_reqs; 3471 3472 for (i = 0; i < num_reqs; i++) { 3473 mcb->callbacks[i].cb = reqs[i].cb; 3474 mcb->callbacks[i].opaque = reqs[i].opaque; 3475 } 3476 3477 // Check for mergable requests 3478 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb); 3479 3480 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs); 3481 3482 /* Run the aio requests. */ 3483 mcb->num_requests = num_reqs; 3484 for (i = 0; i < num_reqs; i++) { 3485 bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov, 3486 reqs[i].nb_sectors, multiwrite_cb, mcb); 3487 } 3488 3489 return 0; 3490 } 3491 3492 void bdrv_aio_cancel(BlockDriverAIOCB *acb) 3493 { 3494 acb->pool->cancel(acb); 3495 } 3496 3497 /* block I/O throttling */ 3498 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors, 3499 bool is_write, double elapsed_time, uint64_t *wait) 3500 { 3501 uint64_t bps_limit = 0; 3502 double bytes_limit, bytes_base, bytes_res; 3503 double slice_time, wait_time; 3504 3505 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3506 bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]; 3507 } else if (bs->io_limits.bps[is_write]) { 3508 bps_limit = bs->io_limits.bps[is_write]; 3509 } else { 3510 if (wait) { 3511 *wait = 0; 3512 } 3513 3514 return false; 3515 } 3516 3517 slice_time = bs->slice_end - bs->slice_start; 3518 slice_time /= (NANOSECONDS_PER_SECOND); 3519 bytes_limit = bps_limit * slice_time; 3520 bytes_base = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write]; 3521 if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) { 3522 bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write]; 3523 } 3524 3525 /* bytes_base: the bytes of data which have been read/written; and 3526 * it is obtained from the history statistic info. 3527 * bytes_res: the remaining bytes of data which need to be read/written. 3528 * (bytes_base + bytes_res) / bps_limit: used to calcuate 3529 * the total time for completing reading/writting all data. 3530 */ 3531 bytes_res = (unsigned) nb_sectors * BDRV_SECTOR_SIZE; 3532 3533 if (bytes_base + bytes_res <= bytes_limit) { 3534 if (wait) { 3535 *wait = 0; 3536 } 3537 3538 return false; 3539 } 3540 3541 /* Calc approx time to dispatch */ 3542 wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time; 3543 3544 /* When the I/O rate at runtime exceeds the limits, 3545 * bs->slice_end need to be extended in order that the current statistic 3546 * info can be kept until the timer fire, so it is increased and tuned 3547 * based on the result of experiment. 3548 */ 3549 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3550 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3551 if (wait) { 3552 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3553 } 3554 3555 return true; 3556 } 3557 3558 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write, 3559 double elapsed_time, uint64_t *wait) 3560 { 3561 uint64_t iops_limit = 0; 3562 double ios_limit, ios_base; 3563 double slice_time, wait_time; 3564 3565 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3566 iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]; 3567 } else if (bs->io_limits.iops[is_write]) { 3568 iops_limit = bs->io_limits.iops[is_write]; 3569 } else { 3570 if (wait) { 3571 *wait = 0; 3572 } 3573 3574 return false; 3575 } 3576 3577 slice_time = bs->slice_end - bs->slice_start; 3578 slice_time /= (NANOSECONDS_PER_SECOND); 3579 ios_limit = iops_limit * slice_time; 3580 ios_base = bs->nr_ops[is_write] - bs->io_base.ios[is_write]; 3581 if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) { 3582 ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write]; 3583 } 3584 3585 if (ios_base + 1 <= ios_limit) { 3586 if (wait) { 3587 *wait = 0; 3588 } 3589 3590 return false; 3591 } 3592 3593 /* Calc approx time to dispatch */ 3594 wait_time = (ios_base + 1) / iops_limit; 3595 if (wait_time > elapsed_time) { 3596 wait_time = wait_time - elapsed_time; 3597 } else { 3598 wait_time = 0; 3599 } 3600 3601 bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10; 3602 bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME; 3603 if (wait) { 3604 *wait = wait_time * BLOCK_IO_SLICE_TIME * 10; 3605 } 3606 3607 return true; 3608 } 3609 3610 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors, 3611 bool is_write, int64_t *wait) 3612 { 3613 int64_t now, max_wait; 3614 uint64_t bps_wait = 0, iops_wait = 0; 3615 double elapsed_time; 3616 int bps_ret, iops_ret; 3617 3618 now = qemu_get_clock_ns(vm_clock); 3619 if ((bs->slice_start < now) 3620 && (bs->slice_end > now)) { 3621 bs->slice_end = now + bs->slice_time; 3622 } else { 3623 bs->slice_time = 5 * BLOCK_IO_SLICE_TIME; 3624 bs->slice_start = now; 3625 bs->slice_end = now + bs->slice_time; 3626 3627 bs->io_base.bytes[is_write] = bs->nr_bytes[is_write]; 3628 bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write]; 3629 3630 bs->io_base.ios[is_write] = bs->nr_ops[is_write]; 3631 bs->io_base.ios[!is_write] = bs->nr_ops[!is_write]; 3632 } 3633 3634 elapsed_time = now - bs->slice_start; 3635 elapsed_time /= (NANOSECONDS_PER_SECOND); 3636 3637 bps_ret = bdrv_exceed_bps_limits(bs, nb_sectors, 3638 is_write, elapsed_time, &bps_wait); 3639 iops_ret = bdrv_exceed_iops_limits(bs, is_write, 3640 elapsed_time, &iops_wait); 3641 if (bps_ret || iops_ret) { 3642 max_wait = bps_wait > iops_wait ? bps_wait : iops_wait; 3643 if (wait) { 3644 *wait = max_wait; 3645 } 3646 3647 now = qemu_get_clock_ns(vm_clock); 3648 if (bs->slice_end < now + max_wait) { 3649 bs->slice_end = now + max_wait; 3650 } 3651 3652 return true; 3653 } 3654 3655 if (wait) { 3656 *wait = 0; 3657 } 3658 3659 return false; 3660 } 3661 3662 /**************************************************************/ 3663 /* async block device emulation */ 3664 3665 typedef struct BlockDriverAIOCBSync { 3666 BlockDriverAIOCB common; 3667 QEMUBH *bh; 3668 int ret; 3669 /* vector translation state */ 3670 QEMUIOVector *qiov; 3671 uint8_t *bounce; 3672 int is_write; 3673 } BlockDriverAIOCBSync; 3674 3675 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb) 3676 { 3677 BlockDriverAIOCBSync *acb = 3678 container_of(blockacb, BlockDriverAIOCBSync, common); 3679 qemu_bh_delete(acb->bh); 3680 acb->bh = NULL; 3681 qemu_aio_release(acb); 3682 } 3683 3684 static AIOPool bdrv_em_aio_pool = { 3685 .aiocb_size = sizeof(BlockDriverAIOCBSync), 3686 .cancel = bdrv_aio_cancel_em, 3687 }; 3688 3689 static void bdrv_aio_bh_cb(void *opaque) 3690 { 3691 BlockDriverAIOCBSync *acb = opaque; 3692 3693 if (!acb->is_write) 3694 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size); 3695 qemu_vfree(acb->bounce); 3696 acb->common.cb(acb->common.opaque, acb->ret); 3697 qemu_bh_delete(acb->bh); 3698 acb->bh = NULL; 3699 qemu_aio_release(acb); 3700 } 3701 3702 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs, 3703 int64_t sector_num, 3704 QEMUIOVector *qiov, 3705 int nb_sectors, 3706 BlockDriverCompletionFunc *cb, 3707 void *opaque, 3708 int is_write) 3709 3710 { 3711 BlockDriverAIOCBSync *acb; 3712 3713 acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque); 3714 acb->is_write = is_write; 3715 acb->qiov = qiov; 3716 acb->bounce = qemu_blockalign(bs, qiov->size); 3717 acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb); 3718 3719 if (is_write) { 3720 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size); 3721 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors); 3722 } else { 3723 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors); 3724 } 3725 3726 qemu_bh_schedule(acb->bh); 3727 3728 return &acb->common; 3729 } 3730 3731 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs, 3732 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3733 BlockDriverCompletionFunc *cb, void *opaque) 3734 { 3735 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); 3736 } 3737 3738 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs, 3739 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, 3740 BlockDriverCompletionFunc *cb, void *opaque) 3741 { 3742 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); 3743 } 3744 3745 3746 typedef struct BlockDriverAIOCBCoroutine { 3747 BlockDriverAIOCB common; 3748 BlockRequest req; 3749 bool is_write; 3750 QEMUBH* bh; 3751 } BlockDriverAIOCBCoroutine; 3752 3753 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb) 3754 { 3755 qemu_aio_flush(); 3756 } 3757 3758 static AIOPool bdrv_em_co_aio_pool = { 3759 .aiocb_size = sizeof(BlockDriverAIOCBCoroutine), 3760 .cancel = bdrv_aio_co_cancel_em, 3761 }; 3762 3763 static void bdrv_co_em_bh(void *opaque) 3764 { 3765 BlockDriverAIOCBCoroutine *acb = opaque; 3766 3767 acb->common.cb(acb->common.opaque, acb->req.error); 3768 qemu_bh_delete(acb->bh); 3769 qemu_aio_release(acb); 3770 } 3771 3772 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */ 3773 static void coroutine_fn bdrv_co_do_rw(void *opaque) 3774 { 3775 BlockDriverAIOCBCoroutine *acb = opaque; 3776 BlockDriverState *bs = acb->common.bs; 3777 3778 if (!acb->is_write) { 3779 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector, 3780 acb->req.nb_sectors, acb->req.qiov, 0); 3781 } else { 3782 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector, 3783 acb->req.nb_sectors, acb->req.qiov, 0); 3784 } 3785 3786 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3787 qemu_bh_schedule(acb->bh); 3788 } 3789 3790 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs, 3791 int64_t sector_num, 3792 QEMUIOVector *qiov, 3793 int nb_sectors, 3794 BlockDriverCompletionFunc *cb, 3795 void *opaque, 3796 bool is_write) 3797 { 3798 Coroutine *co; 3799 BlockDriverAIOCBCoroutine *acb; 3800 3801 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3802 acb->req.sector = sector_num; 3803 acb->req.nb_sectors = nb_sectors; 3804 acb->req.qiov = qiov; 3805 acb->is_write = is_write; 3806 3807 co = qemu_coroutine_create(bdrv_co_do_rw); 3808 qemu_coroutine_enter(co, acb); 3809 3810 return &acb->common; 3811 } 3812 3813 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque) 3814 { 3815 BlockDriverAIOCBCoroutine *acb = opaque; 3816 BlockDriverState *bs = acb->common.bs; 3817 3818 acb->req.error = bdrv_co_flush(bs); 3819 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3820 qemu_bh_schedule(acb->bh); 3821 } 3822 3823 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs, 3824 BlockDriverCompletionFunc *cb, void *opaque) 3825 { 3826 trace_bdrv_aio_flush(bs, opaque); 3827 3828 Coroutine *co; 3829 BlockDriverAIOCBCoroutine *acb; 3830 3831 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3832 co = qemu_coroutine_create(bdrv_aio_flush_co_entry); 3833 qemu_coroutine_enter(co, acb); 3834 3835 return &acb->common; 3836 } 3837 3838 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque) 3839 { 3840 BlockDriverAIOCBCoroutine *acb = opaque; 3841 BlockDriverState *bs = acb->common.bs; 3842 3843 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors); 3844 acb->bh = qemu_bh_new(bdrv_co_em_bh, acb); 3845 qemu_bh_schedule(acb->bh); 3846 } 3847 3848 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs, 3849 int64_t sector_num, int nb_sectors, 3850 BlockDriverCompletionFunc *cb, void *opaque) 3851 { 3852 Coroutine *co; 3853 BlockDriverAIOCBCoroutine *acb; 3854 3855 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque); 3856 3857 acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque); 3858 acb->req.sector = sector_num; 3859 acb->req.nb_sectors = nb_sectors; 3860 co = qemu_coroutine_create(bdrv_aio_discard_co_entry); 3861 qemu_coroutine_enter(co, acb); 3862 3863 return &acb->common; 3864 } 3865 3866 void bdrv_init(void) 3867 { 3868 module_call_init(MODULE_INIT_BLOCK); 3869 } 3870 3871 void bdrv_init_with_whitelist(void) 3872 { 3873 use_bdrv_whitelist = 1; 3874 bdrv_init(); 3875 } 3876 3877 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs, 3878 BlockDriverCompletionFunc *cb, void *opaque) 3879 { 3880 BlockDriverAIOCB *acb; 3881 3882 if (pool->free_aiocb) { 3883 acb = pool->free_aiocb; 3884 pool->free_aiocb = acb->next; 3885 } else { 3886 acb = g_malloc0(pool->aiocb_size); 3887 acb->pool = pool; 3888 } 3889 acb->bs = bs; 3890 acb->cb = cb; 3891 acb->opaque = opaque; 3892 return acb; 3893 } 3894 3895 void qemu_aio_release(void *p) 3896 { 3897 BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p; 3898 AIOPool *pool = acb->pool; 3899 acb->next = pool->free_aiocb; 3900 pool->free_aiocb = acb; 3901 } 3902 3903 /**************************************************************/ 3904 /* Coroutine block device emulation */ 3905 3906 typedef struct CoroutineIOCompletion { 3907 Coroutine *coroutine; 3908 int ret; 3909 } CoroutineIOCompletion; 3910 3911 static void bdrv_co_io_em_complete(void *opaque, int ret) 3912 { 3913 CoroutineIOCompletion *co = opaque; 3914 3915 co->ret = ret; 3916 qemu_coroutine_enter(co->coroutine, NULL); 3917 } 3918 3919 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num, 3920 int nb_sectors, QEMUIOVector *iov, 3921 bool is_write) 3922 { 3923 CoroutineIOCompletion co = { 3924 .coroutine = qemu_coroutine_self(), 3925 }; 3926 BlockDriverAIOCB *acb; 3927 3928 if (is_write) { 3929 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors, 3930 bdrv_co_io_em_complete, &co); 3931 } else { 3932 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors, 3933 bdrv_co_io_em_complete, &co); 3934 } 3935 3936 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb); 3937 if (!acb) { 3938 return -EIO; 3939 } 3940 qemu_coroutine_yield(); 3941 3942 return co.ret; 3943 } 3944 3945 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs, 3946 int64_t sector_num, int nb_sectors, 3947 QEMUIOVector *iov) 3948 { 3949 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false); 3950 } 3951 3952 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs, 3953 int64_t sector_num, int nb_sectors, 3954 QEMUIOVector *iov) 3955 { 3956 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true); 3957 } 3958 3959 static void coroutine_fn bdrv_flush_co_entry(void *opaque) 3960 { 3961 RwCo *rwco = opaque; 3962 3963 rwco->ret = bdrv_co_flush(rwco->bs); 3964 } 3965 3966 int coroutine_fn bdrv_co_flush(BlockDriverState *bs) 3967 { 3968 int ret; 3969 3970 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { 3971 return 0; 3972 } 3973 3974 /* Write back cached data to the OS even with cache=unsafe */ 3975 if (bs->drv->bdrv_co_flush_to_os) { 3976 ret = bs->drv->bdrv_co_flush_to_os(bs); 3977 if (ret < 0) { 3978 return ret; 3979 } 3980 } 3981 3982 /* But don't actually force it to the disk with cache=unsafe */ 3983 if (bs->open_flags & BDRV_O_NO_FLUSH) { 3984 goto flush_parent; 3985 } 3986 3987 if (bs->drv->bdrv_co_flush_to_disk) { 3988 ret = bs->drv->bdrv_co_flush_to_disk(bs); 3989 } else if (bs->drv->bdrv_aio_flush) { 3990 BlockDriverAIOCB *acb; 3991 CoroutineIOCompletion co = { 3992 .coroutine = qemu_coroutine_self(), 3993 }; 3994 3995 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); 3996 if (acb == NULL) { 3997 ret = -EIO; 3998 } else { 3999 qemu_coroutine_yield(); 4000 ret = co.ret; 4001 } 4002 } else { 4003 /* 4004 * Some block drivers always operate in either writethrough or unsafe 4005 * mode and don't support bdrv_flush therefore. Usually qemu doesn't 4006 * know how the server works (because the behaviour is hardcoded or 4007 * depends on server-side configuration), so we can't ensure that 4008 * everything is safe on disk. Returning an error doesn't work because 4009 * that would break guests even if the server operates in writethrough 4010 * mode. 4011 * 4012 * Let's hope the user knows what he's doing. 4013 */ 4014 ret = 0; 4015 } 4016 if (ret < 0) { 4017 return ret; 4018 } 4019 4020 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH 4021 * in the case of cache=unsafe, so there are no useless flushes. 4022 */ 4023 flush_parent: 4024 return bdrv_co_flush(bs->file); 4025 } 4026 4027 void bdrv_invalidate_cache(BlockDriverState *bs) 4028 { 4029 if (bs->drv && bs->drv->bdrv_invalidate_cache) { 4030 bs->drv->bdrv_invalidate_cache(bs); 4031 } 4032 } 4033 4034 void bdrv_invalidate_cache_all(void) 4035 { 4036 BlockDriverState *bs; 4037 4038 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4039 bdrv_invalidate_cache(bs); 4040 } 4041 } 4042 4043 void bdrv_clear_incoming_migration_all(void) 4044 { 4045 BlockDriverState *bs; 4046 4047 QTAILQ_FOREACH(bs, &bdrv_states, list) { 4048 bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING); 4049 } 4050 } 4051 4052 int bdrv_flush(BlockDriverState *bs) 4053 { 4054 Coroutine *co; 4055 RwCo rwco = { 4056 .bs = bs, 4057 .ret = NOT_DONE, 4058 }; 4059 4060 if (qemu_in_coroutine()) { 4061 /* Fast-path if already in coroutine context */ 4062 bdrv_flush_co_entry(&rwco); 4063 } else { 4064 co = qemu_coroutine_create(bdrv_flush_co_entry); 4065 qemu_coroutine_enter(co, &rwco); 4066 while (rwco.ret == NOT_DONE) { 4067 qemu_aio_wait(); 4068 } 4069 } 4070 4071 return rwco.ret; 4072 } 4073 4074 static void coroutine_fn bdrv_discard_co_entry(void *opaque) 4075 { 4076 RwCo *rwco = opaque; 4077 4078 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors); 4079 } 4080 4081 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num, 4082 int nb_sectors) 4083 { 4084 if (!bs->drv) { 4085 return -ENOMEDIUM; 4086 } else if (bdrv_check_request(bs, sector_num, nb_sectors)) { 4087 return -EIO; 4088 } else if (bs->read_only) { 4089 return -EROFS; 4090 } else if (bs->drv->bdrv_co_discard) { 4091 return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors); 4092 } else if (bs->drv->bdrv_aio_discard) { 4093 BlockDriverAIOCB *acb; 4094 CoroutineIOCompletion co = { 4095 .coroutine = qemu_coroutine_self(), 4096 }; 4097 4098 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors, 4099 bdrv_co_io_em_complete, &co); 4100 if (acb == NULL) { 4101 return -EIO; 4102 } else { 4103 qemu_coroutine_yield(); 4104 return co.ret; 4105 } 4106 } else { 4107 return 0; 4108 } 4109 } 4110 4111 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) 4112 { 4113 Coroutine *co; 4114 RwCo rwco = { 4115 .bs = bs, 4116 .sector_num = sector_num, 4117 .nb_sectors = nb_sectors, 4118 .ret = NOT_DONE, 4119 }; 4120 4121 if (qemu_in_coroutine()) { 4122 /* Fast-path if already in coroutine context */ 4123 bdrv_discard_co_entry(&rwco); 4124 } else { 4125 co = qemu_coroutine_create(bdrv_discard_co_entry); 4126 qemu_coroutine_enter(co, &rwco); 4127 while (rwco.ret == NOT_DONE) { 4128 qemu_aio_wait(); 4129 } 4130 } 4131 4132 return rwco.ret; 4133 } 4134 4135 /**************************************************************/ 4136 /* removable device support */ 4137 4138 /** 4139 * Return TRUE if the media is present 4140 */ 4141 int bdrv_is_inserted(BlockDriverState *bs) 4142 { 4143 BlockDriver *drv = bs->drv; 4144 4145 if (!drv) 4146 return 0; 4147 if (!drv->bdrv_is_inserted) 4148 return 1; 4149 return drv->bdrv_is_inserted(bs); 4150 } 4151 4152 /** 4153 * Return whether the media changed since the last call to this 4154 * function, or -ENOTSUP if we don't know. Most drivers don't know. 4155 */ 4156 int bdrv_media_changed(BlockDriverState *bs) 4157 { 4158 BlockDriver *drv = bs->drv; 4159 4160 if (drv && drv->bdrv_media_changed) { 4161 return drv->bdrv_media_changed(bs); 4162 } 4163 return -ENOTSUP; 4164 } 4165 4166 /** 4167 * If eject_flag is TRUE, eject the media. Otherwise, close the tray 4168 */ 4169 void bdrv_eject(BlockDriverState *bs, bool eject_flag) 4170 { 4171 BlockDriver *drv = bs->drv; 4172 4173 if (drv && drv->bdrv_eject) { 4174 drv->bdrv_eject(bs, eject_flag); 4175 } 4176 4177 if (bs->device_name[0] != '\0') { 4178 bdrv_emit_qmp_eject_event(bs, eject_flag); 4179 } 4180 } 4181 4182 /** 4183 * Lock or unlock the media (if it is locked, the user won't be able 4184 * to eject it manually). 4185 */ 4186 void bdrv_lock_medium(BlockDriverState *bs, bool locked) 4187 { 4188 BlockDriver *drv = bs->drv; 4189 4190 trace_bdrv_lock_medium(bs, locked); 4191 4192 if (drv && drv->bdrv_lock_medium) { 4193 drv->bdrv_lock_medium(bs, locked); 4194 } 4195 } 4196 4197 /* needed for generic scsi interface */ 4198 4199 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf) 4200 { 4201 BlockDriver *drv = bs->drv; 4202 4203 if (drv && drv->bdrv_ioctl) 4204 return drv->bdrv_ioctl(bs, req, buf); 4205 return -ENOTSUP; 4206 } 4207 4208 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs, 4209 unsigned long int req, void *buf, 4210 BlockDriverCompletionFunc *cb, void *opaque) 4211 { 4212 BlockDriver *drv = bs->drv; 4213 4214 if (drv && drv->bdrv_aio_ioctl) 4215 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque); 4216 return NULL; 4217 } 4218 4219 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align) 4220 { 4221 bs->buffer_alignment = align; 4222 } 4223 4224 void *qemu_blockalign(BlockDriverState *bs, size_t size) 4225 { 4226 return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size); 4227 } 4228 4229 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable) 4230 { 4231 int64_t bitmap_size; 4232 4233 bs->dirty_count = 0; 4234 if (enable) { 4235 if (!bs->dirty_bitmap) { 4236 bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) + 4237 BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1; 4238 bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG; 4239 4240 bs->dirty_bitmap = g_new0(unsigned long, bitmap_size); 4241 } 4242 } else { 4243 if (bs->dirty_bitmap) { 4244 g_free(bs->dirty_bitmap); 4245 bs->dirty_bitmap = NULL; 4246 } 4247 } 4248 } 4249 4250 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector) 4251 { 4252 int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK; 4253 4254 if (bs->dirty_bitmap && 4255 (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) { 4256 return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] & 4257 (1UL << (chunk % (sizeof(unsigned long) * 8)))); 4258 } else { 4259 return 0; 4260 } 4261 } 4262 4263 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector, 4264 int nr_sectors) 4265 { 4266 set_dirty_bitmap(bs, cur_sector, nr_sectors, 0); 4267 } 4268 4269 int64_t bdrv_get_dirty_count(BlockDriverState *bs) 4270 { 4271 return bs->dirty_count; 4272 } 4273 4274 void bdrv_set_in_use(BlockDriverState *bs, int in_use) 4275 { 4276 assert(bs->in_use != in_use); 4277 bs->in_use = in_use; 4278 } 4279 4280 int bdrv_in_use(BlockDriverState *bs) 4281 { 4282 return bs->in_use; 4283 } 4284 4285 void bdrv_iostatus_enable(BlockDriverState *bs) 4286 { 4287 bs->iostatus_enabled = true; 4288 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4289 } 4290 4291 /* The I/O status is only enabled if the drive explicitly 4292 * enables it _and_ the VM is configured to stop on errors */ 4293 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs) 4294 { 4295 return (bs->iostatus_enabled && 4296 (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC || 4297 bs->on_write_error == BLOCKDEV_ON_ERROR_STOP || 4298 bs->on_read_error == BLOCKDEV_ON_ERROR_STOP)); 4299 } 4300 4301 void bdrv_iostatus_disable(BlockDriverState *bs) 4302 { 4303 bs->iostatus_enabled = false; 4304 } 4305 4306 void bdrv_iostatus_reset(BlockDriverState *bs) 4307 { 4308 if (bdrv_iostatus_is_enabled(bs)) { 4309 bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK; 4310 } 4311 } 4312 4313 void bdrv_iostatus_set_err(BlockDriverState *bs, int error) 4314 { 4315 assert(bdrv_iostatus_is_enabled(bs)); 4316 if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) { 4317 bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE : 4318 BLOCK_DEVICE_IO_STATUS_FAILED; 4319 } 4320 } 4321 4322 void 4323 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes, 4324 enum BlockAcctType type) 4325 { 4326 assert(type < BDRV_MAX_IOTYPE); 4327 4328 cookie->bytes = bytes; 4329 cookie->start_time_ns = get_clock(); 4330 cookie->type = type; 4331 } 4332 4333 void 4334 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie) 4335 { 4336 assert(cookie->type < BDRV_MAX_IOTYPE); 4337 4338 bs->nr_bytes[cookie->type] += cookie->bytes; 4339 bs->nr_ops[cookie->type]++; 4340 bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns; 4341 } 4342 4343 int bdrv_img_create(const char *filename, const char *fmt, 4344 const char *base_filename, const char *base_fmt, 4345 char *options, uint64_t img_size, int flags) 4346 { 4347 QEMUOptionParameter *param = NULL, *create_options = NULL; 4348 QEMUOptionParameter *backing_fmt, *backing_file, *size; 4349 BlockDriverState *bs = NULL; 4350 BlockDriver *drv, *proto_drv; 4351 BlockDriver *backing_drv = NULL; 4352 int ret = 0; 4353 4354 /* Find driver and parse its options */ 4355 drv = bdrv_find_format(fmt); 4356 if (!drv) { 4357 error_report("Unknown file format '%s'", fmt); 4358 ret = -EINVAL; 4359 goto out; 4360 } 4361 4362 proto_drv = bdrv_find_protocol(filename); 4363 if (!proto_drv) { 4364 error_report("Unknown protocol '%s'", filename); 4365 ret = -EINVAL; 4366 goto out; 4367 } 4368 4369 create_options = append_option_parameters(create_options, 4370 drv->create_options); 4371 create_options = append_option_parameters(create_options, 4372 proto_drv->create_options); 4373 4374 /* Create parameter list with default values */ 4375 param = parse_option_parameters("", create_options, param); 4376 4377 set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size); 4378 4379 /* Parse -o options */ 4380 if (options) { 4381 param = parse_option_parameters(options, create_options, param); 4382 if (param == NULL) { 4383 error_report("Invalid options for file format '%s'.", fmt); 4384 ret = -EINVAL; 4385 goto out; 4386 } 4387 } 4388 4389 if (base_filename) { 4390 if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE, 4391 base_filename)) { 4392 error_report("Backing file not supported for file format '%s'", 4393 fmt); 4394 ret = -EINVAL; 4395 goto out; 4396 } 4397 } 4398 4399 if (base_fmt) { 4400 if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) { 4401 error_report("Backing file format not supported for file " 4402 "format '%s'", fmt); 4403 ret = -EINVAL; 4404 goto out; 4405 } 4406 } 4407 4408 backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); 4409 if (backing_file && backing_file->value.s) { 4410 if (!strcmp(filename, backing_file->value.s)) { 4411 error_report("Error: Trying to create an image with the " 4412 "same filename as the backing file"); 4413 ret = -EINVAL; 4414 goto out; 4415 } 4416 } 4417 4418 backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT); 4419 if (backing_fmt && backing_fmt->value.s) { 4420 backing_drv = bdrv_find_format(backing_fmt->value.s); 4421 if (!backing_drv) { 4422 error_report("Unknown backing file format '%s'", 4423 backing_fmt->value.s); 4424 ret = -EINVAL; 4425 goto out; 4426 } 4427 } 4428 4429 // The size for the image must always be specified, with one exception: 4430 // If we are using a backing file, we can obtain the size from there 4431 size = get_option_parameter(param, BLOCK_OPT_SIZE); 4432 if (size && size->value.n == -1) { 4433 if (backing_file && backing_file->value.s) { 4434 uint64_t size; 4435 char buf[32]; 4436 int back_flags; 4437 4438 /* backing files always opened read-only */ 4439 back_flags = 4440 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING); 4441 4442 bs = bdrv_new(""); 4443 4444 ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv); 4445 if (ret < 0) { 4446 error_report("Could not open '%s'", backing_file->value.s); 4447 goto out; 4448 } 4449 bdrv_get_geometry(bs, &size); 4450 size *= 512; 4451 4452 snprintf(buf, sizeof(buf), "%" PRId64, size); 4453 set_option_parameter(param, BLOCK_OPT_SIZE, buf); 4454 } else { 4455 error_report("Image creation needs a size parameter"); 4456 ret = -EINVAL; 4457 goto out; 4458 } 4459 } 4460 4461 printf("Formatting '%s', fmt=%s ", filename, fmt); 4462 print_option_parameters(param); 4463 puts(""); 4464 4465 ret = bdrv_create(drv, filename, param); 4466 4467 if (ret < 0) { 4468 if (ret == -ENOTSUP) { 4469 error_report("Formatting or formatting option not supported for " 4470 "file format '%s'", fmt); 4471 } else if (ret == -EFBIG) { 4472 error_report("The image size is too large for file format '%s'", 4473 fmt); 4474 } else { 4475 error_report("%s: error while creating %s: %s", filename, fmt, 4476 strerror(-ret)); 4477 } 4478 } 4479 4480 out: 4481 free_option_parameters(create_options); 4482 free_option_parameters(param); 4483 4484 if (bs) { 4485 bdrv_delete(bs); 4486 } 4487 4488 return ret; 4489 } 4490