xref: /openbmc/qemu/block.c (revision b1b1d783eabdb6ac4e4578b2c04b0c24483dce77)
1 /*
2  * QEMU System Emulator block driver
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "blockjob.h"
30 #include "module.h"
31 #include "qjson.h"
32 #include "sysemu.h"
33 #include "qemu-coroutine.h"
34 #include "qmp-commands.h"
35 #include "qemu-timer.h"
36 
37 #ifdef CONFIG_BSD
38 #include <sys/types.h>
39 #include <sys/stat.h>
40 #include <sys/ioctl.h>
41 #include <sys/queue.h>
42 #ifndef __DragonFly__
43 #include <sys/disk.h>
44 #endif
45 #endif
46 
47 #ifdef _WIN32
48 #include <windows.h>
49 #endif
50 
51 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
52 
53 typedef enum {
54     BDRV_REQ_COPY_ON_READ = 0x1,
55     BDRV_REQ_ZERO_WRITE   = 0x2,
56 } BdrvRequestFlags;
57 
58 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
59 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
60         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
61         BlockDriverCompletionFunc *cb, void *opaque);
62 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
63         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
64         BlockDriverCompletionFunc *cb, void *opaque);
65 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
66                                          int64_t sector_num, int nb_sectors,
67                                          QEMUIOVector *iov);
68 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
69                                          int64_t sector_num, int nb_sectors,
70                                          QEMUIOVector *iov);
71 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
72     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
73     BdrvRequestFlags flags);
74 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
75     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
76     BdrvRequestFlags flags);
77 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
78                                                int64_t sector_num,
79                                                QEMUIOVector *qiov,
80                                                int nb_sectors,
81                                                BlockDriverCompletionFunc *cb,
82                                                void *opaque,
83                                                bool is_write);
84 static void coroutine_fn bdrv_co_do_rw(void *opaque);
85 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
86     int64_t sector_num, int nb_sectors);
87 
88 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
89         bool is_write, double elapsed_time, uint64_t *wait);
90 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
91         double elapsed_time, uint64_t *wait);
92 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
93         bool is_write, int64_t *wait);
94 
95 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
96     QTAILQ_HEAD_INITIALIZER(bdrv_states);
97 
98 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
99     QLIST_HEAD_INITIALIZER(bdrv_drivers);
100 
101 /* The device to use for VM snapshots */
102 static BlockDriverState *bs_snapshots;
103 
104 /* If non-zero, use only whitelisted block drivers */
105 static int use_bdrv_whitelist;
106 
107 #ifdef _WIN32
108 static int is_windows_drive_prefix(const char *filename)
109 {
110     return (((filename[0] >= 'a' && filename[0] <= 'z') ||
111              (filename[0] >= 'A' && filename[0] <= 'Z')) &&
112             filename[1] == ':');
113 }
114 
115 int is_windows_drive(const char *filename)
116 {
117     if (is_windows_drive_prefix(filename) &&
118         filename[2] == '\0')
119         return 1;
120     if (strstart(filename, "\\\\.\\", NULL) ||
121         strstart(filename, "//./", NULL))
122         return 1;
123     return 0;
124 }
125 #endif
126 
127 /* throttling disk I/O limits */
128 void bdrv_io_limits_disable(BlockDriverState *bs)
129 {
130     bs->io_limits_enabled = false;
131 
132     while (qemu_co_queue_next(&bs->throttled_reqs));
133 
134     if (bs->block_timer) {
135         qemu_del_timer(bs->block_timer);
136         qemu_free_timer(bs->block_timer);
137         bs->block_timer = NULL;
138     }
139 
140     bs->slice_start = 0;
141     bs->slice_end   = 0;
142     bs->slice_time  = 0;
143     memset(&bs->io_base, 0, sizeof(bs->io_base));
144 }
145 
146 static void bdrv_block_timer(void *opaque)
147 {
148     BlockDriverState *bs = opaque;
149 
150     qemu_co_queue_next(&bs->throttled_reqs);
151 }
152 
153 void bdrv_io_limits_enable(BlockDriverState *bs)
154 {
155     qemu_co_queue_init(&bs->throttled_reqs);
156     bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
157     bs->slice_time  = 5 * BLOCK_IO_SLICE_TIME;
158     bs->slice_start = qemu_get_clock_ns(vm_clock);
159     bs->slice_end   = bs->slice_start + bs->slice_time;
160     memset(&bs->io_base, 0, sizeof(bs->io_base));
161     bs->io_limits_enabled = true;
162 }
163 
164 bool bdrv_io_limits_enabled(BlockDriverState *bs)
165 {
166     BlockIOLimit *io_limits = &bs->io_limits;
167     return io_limits->bps[BLOCK_IO_LIMIT_READ]
168          || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
169          || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
170          || io_limits->iops[BLOCK_IO_LIMIT_READ]
171          || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
172          || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
173 }
174 
175 static void bdrv_io_limits_intercept(BlockDriverState *bs,
176                                      bool is_write, int nb_sectors)
177 {
178     int64_t wait_time = -1;
179 
180     if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
181         qemu_co_queue_wait(&bs->throttled_reqs);
182     }
183 
184     /* In fact, we hope to keep each request's timing, in FIFO mode. The next
185      * throttled requests will not be dequeued until the current request is
186      * allowed to be serviced. So if the current request still exceeds the
187      * limits, it will be inserted to the head. All requests followed it will
188      * be still in throttled_reqs queue.
189      */
190 
191     while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
192         qemu_mod_timer(bs->block_timer,
193                        wait_time + qemu_get_clock_ns(vm_clock));
194         qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
195     }
196 
197     qemu_co_queue_next(&bs->throttled_reqs);
198 }
199 
200 /* check if the path starts with "<protocol>:" */
201 static int path_has_protocol(const char *path)
202 {
203     const char *p;
204 
205 #ifdef _WIN32
206     if (is_windows_drive(path) ||
207         is_windows_drive_prefix(path)) {
208         return 0;
209     }
210     p = path + strcspn(path, ":/\\");
211 #else
212     p = path + strcspn(path, ":/");
213 #endif
214 
215     return *p == ':';
216 }
217 
218 int path_is_absolute(const char *path)
219 {
220 #ifdef _WIN32
221     /* specific case for names like: "\\.\d:" */
222     if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
223         return 1;
224     }
225     return (*path == '/' || *path == '\\');
226 #else
227     return (*path == '/');
228 #endif
229 }
230 
231 /* if filename is absolute, just copy it to dest. Otherwise, build a
232    path to it by considering it is relative to base_path. URL are
233    supported. */
234 void path_combine(char *dest, int dest_size,
235                   const char *base_path,
236                   const char *filename)
237 {
238     const char *p, *p1;
239     int len;
240 
241     if (dest_size <= 0)
242         return;
243     if (path_is_absolute(filename)) {
244         pstrcpy(dest, dest_size, filename);
245     } else {
246         p = strchr(base_path, ':');
247         if (p)
248             p++;
249         else
250             p = base_path;
251         p1 = strrchr(base_path, '/');
252 #ifdef _WIN32
253         {
254             const char *p2;
255             p2 = strrchr(base_path, '\\');
256             if (!p1 || p2 > p1)
257                 p1 = p2;
258         }
259 #endif
260         if (p1)
261             p1++;
262         else
263             p1 = base_path;
264         if (p1 > p)
265             p = p1;
266         len = p - base_path;
267         if (len > dest_size - 1)
268             len = dest_size - 1;
269         memcpy(dest, base_path, len);
270         dest[len] = '\0';
271         pstrcat(dest, dest_size, filename);
272     }
273 }
274 
275 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
276 {
277     if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
278         pstrcpy(dest, sz, bs->backing_file);
279     } else {
280         path_combine(dest, sz, bs->filename, bs->backing_file);
281     }
282 }
283 
284 void bdrv_register(BlockDriver *bdrv)
285 {
286     /* Block drivers without coroutine functions need emulation */
287     if (!bdrv->bdrv_co_readv) {
288         bdrv->bdrv_co_readv = bdrv_co_readv_em;
289         bdrv->bdrv_co_writev = bdrv_co_writev_em;
290 
291         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
292          * the block driver lacks aio we need to emulate that too.
293          */
294         if (!bdrv->bdrv_aio_readv) {
295             /* add AIO emulation layer */
296             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
297             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
298         }
299     }
300 
301     QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
302 }
303 
304 /* create a new block device (by default it is empty) */
305 BlockDriverState *bdrv_new(const char *device_name)
306 {
307     BlockDriverState *bs;
308 
309     bs = g_malloc0(sizeof(BlockDriverState));
310     pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
311     if (device_name[0] != '\0') {
312         QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
313     }
314     bdrv_iostatus_disable(bs);
315     return bs;
316 }
317 
318 BlockDriver *bdrv_find_format(const char *format_name)
319 {
320     BlockDriver *drv1;
321     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
322         if (!strcmp(drv1->format_name, format_name)) {
323             return drv1;
324         }
325     }
326     return NULL;
327 }
328 
329 static int bdrv_is_whitelisted(BlockDriver *drv)
330 {
331     static const char *whitelist[] = {
332         CONFIG_BDRV_WHITELIST
333     };
334     const char **p;
335 
336     if (!whitelist[0])
337         return 1;               /* no whitelist, anything goes */
338 
339     for (p = whitelist; *p; p++) {
340         if (!strcmp(drv->format_name, *p)) {
341             return 1;
342         }
343     }
344     return 0;
345 }
346 
347 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
348 {
349     BlockDriver *drv = bdrv_find_format(format_name);
350     return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
351 }
352 
353 typedef struct CreateCo {
354     BlockDriver *drv;
355     char *filename;
356     QEMUOptionParameter *options;
357     int ret;
358 } CreateCo;
359 
360 static void coroutine_fn bdrv_create_co_entry(void *opaque)
361 {
362     CreateCo *cco = opaque;
363     assert(cco->drv);
364 
365     cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
366 }
367 
368 int bdrv_create(BlockDriver *drv, const char* filename,
369     QEMUOptionParameter *options)
370 {
371     int ret;
372 
373     Coroutine *co;
374     CreateCo cco = {
375         .drv = drv,
376         .filename = g_strdup(filename),
377         .options = options,
378         .ret = NOT_DONE,
379     };
380 
381     if (!drv->bdrv_create) {
382         return -ENOTSUP;
383     }
384 
385     if (qemu_in_coroutine()) {
386         /* Fast-path if already in coroutine context */
387         bdrv_create_co_entry(&cco);
388     } else {
389         co = qemu_coroutine_create(bdrv_create_co_entry);
390         qemu_coroutine_enter(co, &cco);
391         while (cco.ret == NOT_DONE) {
392             qemu_aio_wait();
393         }
394     }
395 
396     ret = cco.ret;
397     g_free(cco.filename);
398 
399     return ret;
400 }
401 
402 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
403 {
404     BlockDriver *drv;
405 
406     drv = bdrv_find_protocol(filename);
407     if (drv == NULL) {
408         return -ENOENT;
409     }
410 
411     return bdrv_create(drv, filename, options);
412 }
413 
414 /*
415  * Create a uniquely-named empty temporary file.
416  * Return 0 upon success, otherwise a negative errno value.
417  */
418 int get_tmp_filename(char *filename, int size)
419 {
420 #ifdef _WIN32
421     char temp_dir[MAX_PATH];
422     /* GetTempFileName requires that its output buffer (4th param)
423        have length MAX_PATH or greater.  */
424     assert(size >= MAX_PATH);
425     return (GetTempPath(MAX_PATH, temp_dir)
426             && GetTempFileName(temp_dir, "qem", 0, filename)
427             ? 0 : -GetLastError());
428 #else
429     int fd;
430     const char *tmpdir;
431     tmpdir = getenv("TMPDIR");
432     if (!tmpdir)
433         tmpdir = "/tmp";
434     if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
435         return -EOVERFLOW;
436     }
437     fd = mkstemp(filename);
438     if (fd < 0) {
439         return -errno;
440     }
441     if (close(fd) != 0) {
442         unlink(filename);
443         return -errno;
444     }
445     return 0;
446 #endif
447 }
448 
449 /*
450  * Detect host devices. By convention, /dev/cdrom[N] is always
451  * recognized as a host CDROM.
452  */
453 static BlockDriver *find_hdev_driver(const char *filename)
454 {
455     int score_max = 0, score;
456     BlockDriver *drv = NULL, *d;
457 
458     QLIST_FOREACH(d, &bdrv_drivers, list) {
459         if (d->bdrv_probe_device) {
460             score = d->bdrv_probe_device(filename);
461             if (score > score_max) {
462                 score_max = score;
463                 drv = d;
464             }
465         }
466     }
467 
468     return drv;
469 }
470 
471 BlockDriver *bdrv_find_protocol(const char *filename)
472 {
473     BlockDriver *drv1;
474     char protocol[128];
475     int len;
476     const char *p;
477 
478     /* TODO Drivers without bdrv_file_open must be specified explicitly */
479 
480     /*
481      * XXX(hch): we really should not let host device detection
482      * override an explicit protocol specification, but moving this
483      * later breaks access to device names with colons in them.
484      * Thanks to the brain-dead persistent naming schemes on udev-
485      * based Linux systems those actually are quite common.
486      */
487     drv1 = find_hdev_driver(filename);
488     if (drv1) {
489         return drv1;
490     }
491 
492     if (!path_has_protocol(filename)) {
493         return bdrv_find_format("file");
494     }
495     p = strchr(filename, ':');
496     assert(p != NULL);
497     len = p - filename;
498     if (len > sizeof(protocol) - 1)
499         len = sizeof(protocol) - 1;
500     memcpy(protocol, filename, len);
501     protocol[len] = '\0';
502     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
503         if (drv1->protocol_name &&
504             !strcmp(drv1->protocol_name, protocol)) {
505             return drv1;
506         }
507     }
508     return NULL;
509 }
510 
511 static int find_image_format(const char *filename, BlockDriver **pdrv)
512 {
513     int ret, score, score_max;
514     BlockDriver *drv1, *drv;
515     uint8_t buf[2048];
516     BlockDriverState *bs;
517 
518     ret = bdrv_file_open(&bs, filename, 0);
519     if (ret < 0) {
520         *pdrv = NULL;
521         return ret;
522     }
523 
524     /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
525     if (bs->sg || !bdrv_is_inserted(bs)) {
526         bdrv_delete(bs);
527         drv = bdrv_find_format("raw");
528         if (!drv) {
529             ret = -ENOENT;
530         }
531         *pdrv = drv;
532         return ret;
533     }
534 
535     ret = bdrv_pread(bs, 0, buf, sizeof(buf));
536     bdrv_delete(bs);
537     if (ret < 0) {
538         *pdrv = NULL;
539         return ret;
540     }
541 
542     score_max = 0;
543     drv = NULL;
544     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
545         if (drv1->bdrv_probe) {
546             score = drv1->bdrv_probe(buf, ret, filename);
547             if (score > score_max) {
548                 score_max = score;
549                 drv = drv1;
550             }
551         }
552     }
553     if (!drv) {
554         ret = -ENOENT;
555     }
556     *pdrv = drv;
557     return ret;
558 }
559 
560 /**
561  * Set the current 'total_sectors' value
562  */
563 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
564 {
565     BlockDriver *drv = bs->drv;
566 
567     /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
568     if (bs->sg)
569         return 0;
570 
571     /* query actual device if possible, otherwise just trust the hint */
572     if (drv->bdrv_getlength) {
573         int64_t length = drv->bdrv_getlength(bs);
574         if (length < 0) {
575             return length;
576         }
577         hint = length >> BDRV_SECTOR_BITS;
578     }
579 
580     bs->total_sectors = hint;
581     return 0;
582 }
583 
584 /**
585  * Set open flags for a given cache mode
586  *
587  * Return 0 on success, -1 if the cache mode was invalid.
588  */
589 int bdrv_parse_cache_flags(const char *mode, int *flags)
590 {
591     *flags &= ~BDRV_O_CACHE_MASK;
592 
593     if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
594         *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
595     } else if (!strcmp(mode, "directsync")) {
596         *flags |= BDRV_O_NOCACHE;
597     } else if (!strcmp(mode, "writeback")) {
598         *flags |= BDRV_O_CACHE_WB;
599     } else if (!strcmp(mode, "unsafe")) {
600         *flags |= BDRV_O_CACHE_WB;
601         *flags |= BDRV_O_NO_FLUSH;
602     } else if (!strcmp(mode, "writethrough")) {
603         /* this is the default */
604     } else {
605         return -1;
606     }
607 
608     return 0;
609 }
610 
611 /**
612  * The copy-on-read flag is actually a reference count so multiple users may
613  * use the feature without worrying about clobbering its previous state.
614  * Copy-on-read stays enabled until all users have called to disable it.
615  */
616 void bdrv_enable_copy_on_read(BlockDriverState *bs)
617 {
618     bs->copy_on_read++;
619 }
620 
621 void bdrv_disable_copy_on_read(BlockDriverState *bs)
622 {
623     assert(bs->copy_on_read > 0);
624     bs->copy_on_read--;
625 }
626 
627 /*
628  * Common part for opening disk images and files
629  */
630 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
631     int flags, BlockDriver *drv)
632 {
633     int ret, open_flags;
634 
635     assert(drv != NULL);
636     assert(bs->file == NULL);
637 
638     trace_bdrv_open_common(bs, filename, flags, drv->format_name);
639 
640     bs->open_flags = flags;
641     bs->buffer_alignment = 512;
642 
643     assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
644     if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
645         bdrv_enable_copy_on_read(bs);
646     }
647 
648     pstrcpy(bs->filename, sizeof(bs->filename), filename);
649 
650     if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
651         return -ENOTSUP;
652     }
653 
654     bs->drv = drv;
655     bs->opaque = g_malloc0(drv->instance_size);
656 
657     bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
658     open_flags = flags | BDRV_O_CACHE_WB;
659 
660     /*
661      * Clear flags that are internal to the block layer before opening the
662      * image.
663      */
664     open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
665 
666     /*
667      * Snapshots should be writable.
668      */
669     if (bs->is_temporary) {
670         open_flags |= BDRV_O_RDWR;
671     }
672 
673     bs->read_only = !(open_flags & BDRV_O_RDWR);
674 
675     /* Open the image, either directly or using a protocol */
676     if (drv->bdrv_file_open) {
677         ret = drv->bdrv_file_open(bs, filename, open_flags);
678     } else {
679         ret = bdrv_file_open(&bs->file, filename, open_flags);
680         if (ret >= 0) {
681             ret = drv->bdrv_open(bs, open_flags);
682         }
683     }
684 
685     if (ret < 0) {
686         goto free_and_fail;
687     }
688 
689     ret = refresh_total_sectors(bs, bs->total_sectors);
690     if (ret < 0) {
691         goto free_and_fail;
692     }
693 
694 #ifndef _WIN32
695     if (bs->is_temporary) {
696         unlink(filename);
697     }
698 #endif
699     return 0;
700 
701 free_and_fail:
702     if (bs->file) {
703         bdrv_delete(bs->file);
704         bs->file = NULL;
705     }
706     g_free(bs->opaque);
707     bs->opaque = NULL;
708     bs->drv = NULL;
709     return ret;
710 }
711 
712 /*
713  * Opens a file using a protocol (file, host_device, nbd, ...)
714  */
715 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
716 {
717     BlockDriverState *bs;
718     BlockDriver *drv;
719     int ret;
720 
721     drv = bdrv_find_protocol(filename);
722     if (!drv) {
723         return -ENOENT;
724     }
725 
726     bs = bdrv_new("");
727     ret = bdrv_open_common(bs, filename, flags, drv);
728     if (ret < 0) {
729         bdrv_delete(bs);
730         return ret;
731     }
732     bs->growable = 1;
733     *pbs = bs;
734     return 0;
735 }
736 
737 /*
738  * Opens a disk image (raw, qcow2, vmdk, ...)
739  */
740 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
741               BlockDriver *drv)
742 {
743     int ret;
744     char tmp_filename[PATH_MAX];
745 
746     if (flags & BDRV_O_SNAPSHOT) {
747         BlockDriverState *bs1;
748         int64_t total_size;
749         int is_protocol = 0;
750         BlockDriver *bdrv_qcow2;
751         QEMUOptionParameter *options;
752         char backing_filename[PATH_MAX];
753 
754         /* if snapshot, we create a temporary backing file and open it
755            instead of opening 'filename' directly */
756 
757         /* if there is a backing file, use it */
758         bs1 = bdrv_new("");
759         ret = bdrv_open(bs1, filename, 0, drv);
760         if (ret < 0) {
761             bdrv_delete(bs1);
762             return ret;
763         }
764         total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
765 
766         if (bs1->drv && bs1->drv->protocol_name)
767             is_protocol = 1;
768 
769         bdrv_delete(bs1);
770 
771         ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
772         if (ret < 0) {
773             return ret;
774         }
775 
776         /* Real path is meaningless for protocols */
777         if (is_protocol)
778             snprintf(backing_filename, sizeof(backing_filename),
779                      "%s", filename);
780         else if (!realpath(filename, backing_filename))
781             return -errno;
782 
783         bdrv_qcow2 = bdrv_find_format("qcow2");
784         options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
785 
786         set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
787         set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
788         if (drv) {
789             set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
790                 drv->format_name);
791         }
792 
793         ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
794         free_option_parameters(options);
795         if (ret < 0) {
796             return ret;
797         }
798 
799         filename = tmp_filename;
800         drv = bdrv_qcow2;
801         bs->is_temporary = 1;
802     }
803 
804     /* Find the right image format driver */
805     if (!drv) {
806         ret = find_image_format(filename, &drv);
807     }
808 
809     if (!drv) {
810         goto unlink_and_fail;
811     }
812 
813     if (flags & BDRV_O_RDWR) {
814         flags |= BDRV_O_ALLOW_RDWR;
815     }
816 
817     /* Open the image */
818     ret = bdrv_open_common(bs, filename, flags, drv);
819     if (ret < 0) {
820         goto unlink_and_fail;
821     }
822 
823     /* If there is a backing file, use it */
824     if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
825         char backing_filename[PATH_MAX];
826         int back_flags;
827         BlockDriver *back_drv = NULL;
828 
829         bs->backing_hd = bdrv_new("");
830         bdrv_get_full_backing_filename(bs, backing_filename,
831                                        sizeof(backing_filename));
832 
833         if (bs->backing_format[0] != '\0') {
834             back_drv = bdrv_find_format(bs->backing_format);
835         }
836 
837         /* backing files always opened read-only */
838         back_flags =
839             flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
840 
841         ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
842         if (ret < 0) {
843             bdrv_close(bs);
844             return ret;
845         }
846     }
847 
848     if (!bdrv_key_required(bs)) {
849         bdrv_dev_change_media_cb(bs, true);
850     }
851 
852     /* throttling disk I/O limits */
853     if (bs->io_limits_enabled) {
854         bdrv_io_limits_enable(bs);
855     }
856 
857     return 0;
858 
859 unlink_and_fail:
860     if (bs->is_temporary) {
861         unlink(filename);
862     }
863     return ret;
864 }
865 
866 typedef struct BlockReopenQueueEntry {
867      bool prepared;
868      BDRVReopenState state;
869      QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
870 } BlockReopenQueueEntry;
871 
872 /*
873  * Adds a BlockDriverState to a simple queue for an atomic, transactional
874  * reopen of multiple devices.
875  *
876  * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
877  * already performed, or alternatively may be NULL a new BlockReopenQueue will
878  * be created and initialized. This newly created BlockReopenQueue should be
879  * passed back in for subsequent calls that are intended to be of the same
880  * atomic 'set'.
881  *
882  * bs is the BlockDriverState to add to the reopen queue.
883  *
884  * flags contains the open flags for the associated bs
885  *
886  * returns a pointer to bs_queue, which is either the newly allocated
887  * bs_queue, or the existing bs_queue being used.
888  *
889  */
890 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
891                                     BlockDriverState *bs, int flags)
892 {
893     assert(bs != NULL);
894 
895     BlockReopenQueueEntry *bs_entry;
896     if (bs_queue == NULL) {
897         bs_queue = g_new0(BlockReopenQueue, 1);
898         QSIMPLEQ_INIT(bs_queue);
899     }
900 
901     if (bs->file) {
902         bdrv_reopen_queue(bs_queue, bs->file, flags);
903     }
904 
905     bs_entry = g_new0(BlockReopenQueueEntry, 1);
906     QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
907 
908     bs_entry->state.bs = bs;
909     bs_entry->state.flags = flags;
910 
911     return bs_queue;
912 }
913 
914 /*
915  * Reopen multiple BlockDriverStates atomically & transactionally.
916  *
917  * The queue passed in (bs_queue) must have been built up previous
918  * via bdrv_reopen_queue().
919  *
920  * Reopens all BDS specified in the queue, with the appropriate
921  * flags.  All devices are prepared for reopen, and failure of any
922  * device will cause all device changes to be abandonded, and intermediate
923  * data cleaned up.
924  *
925  * If all devices prepare successfully, then the changes are committed
926  * to all devices.
927  *
928  */
929 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
930 {
931     int ret = -1;
932     BlockReopenQueueEntry *bs_entry, *next;
933     Error *local_err = NULL;
934 
935     assert(bs_queue != NULL);
936 
937     bdrv_drain_all();
938 
939     QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
940         if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
941             error_propagate(errp, local_err);
942             goto cleanup;
943         }
944         bs_entry->prepared = true;
945     }
946 
947     /* If we reach this point, we have success and just need to apply the
948      * changes
949      */
950     QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
951         bdrv_reopen_commit(&bs_entry->state);
952     }
953 
954     ret = 0;
955 
956 cleanup:
957     QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
958         if (ret && bs_entry->prepared) {
959             bdrv_reopen_abort(&bs_entry->state);
960         }
961         g_free(bs_entry);
962     }
963     g_free(bs_queue);
964     return ret;
965 }
966 
967 
968 /* Reopen a single BlockDriverState with the specified flags. */
969 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
970 {
971     int ret = -1;
972     Error *local_err = NULL;
973     BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
974 
975     ret = bdrv_reopen_multiple(queue, &local_err);
976     if (local_err != NULL) {
977         error_propagate(errp, local_err);
978     }
979     return ret;
980 }
981 
982 
983 /*
984  * Prepares a BlockDriverState for reopen. All changes are staged in the
985  * 'opaque' field of the BDRVReopenState, which is used and allocated by
986  * the block driver layer .bdrv_reopen_prepare()
987  *
988  * bs is the BlockDriverState to reopen
989  * flags are the new open flags
990  * queue is the reopen queue
991  *
992  * Returns 0 on success, non-zero on error.  On error errp will be set
993  * as well.
994  *
995  * On failure, bdrv_reopen_abort() will be called to clean up any data.
996  * It is the responsibility of the caller to then call the abort() or
997  * commit() for any other BDS that have been left in a prepare() state
998  *
999  */
1000 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1001                         Error **errp)
1002 {
1003     int ret = -1;
1004     Error *local_err = NULL;
1005     BlockDriver *drv;
1006 
1007     assert(reopen_state != NULL);
1008     assert(reopen_state->bs->drv != NULL);
1009     drv = reopen_state->bs->drv;
1010 
1011     /* if we are to stay read-only, do not allow permission change
1012      * to r/w */
1013     if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1014         reopen_state->flags & BDRV_O_RDWR) {
1015         error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1016                   reopen_state->bs->device_name);
1017         goto error;
1018     }
1019 
1020 
1021     ret = bdrv_flush(reopen_state->bs);
1022     if (ret) {
1023         error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1024                   strerror(-ret));
1025         goto error;
1026     }
1027 
1028     if (drv->bdrv_reopen_prepare) {
1029         ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1030         if (ret) {
1031             if (local_err != NULL) {
1032                 error_propagate(errp, local_err);
1033             } else {
1034                 error_set(errp, QERR_OPEN_FILE_FAILED,
1035                           reopen_state->bs->filename);
1036             }
1037             goto error;
1038         }
1039     } else {
1040         /* It is currently mandatory to have a bdrv_reopen_prepare()
1041          * handler for each supported drv. */
1042         error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1043                   drv->format_name, reopen_state->bs->device_name,
1044                  "reopening of file");
1045         ret = -1;
1046         goto error;
1047     }
1048 
1049     ret = 0;
1050 
1051 error:
1052     return ret;
1053 }
1054 
1055 /*
1056  * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1057  * makes them final by swapping the staging BlockDriverState contents into
1058  * the active BlockDriverState contents.
1059  */
1060 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1061 {
1062     BlockDriver *drv;
1063 
1064     assert(reopen_state != NULL);
1065     drv = reopen_state->bs->drv;
1066     assert(drv != NULL);
1067 
1068     /* If there are any driver level actions to take */
1069     if (drv->bdrv_reopen_commit) {
1070         drv->bdrv_reopen_commit(reopen_state);
1071     }
1072 
1073     /* set BDS specific flags now */
1074     reopen_state->bs->open_flags         = reopen_state->flags;
1075     reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1076                                               BDRV_O_CACHE_WB);
1077     reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1078 }
1079 
1080 /*
1081  * Abort the reopen, and delete and free the staged changes in
1082  * reopen_state
1083  */
1084 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1085 {
1086     BlockDriver *drv;
1087 
1088     assert(reopen_state != NULL);
1089     drv = reopen_state->bs->drv;
1090     assert(drv != NULL);
1091 
1092     if (drv->bdrv_reopen_abort) {
1093         drv->bdrv_reopen_abort(reopen_state);
1094     }
1095 }
1096 
1097 
1098 void bdrv_close(BlockDriverState *bs)
1099 {
1100     bdrv_flush(bs);
1101     if (bs->drv) {
1102         if (bs->job) {
1103             block_job_cancel_sync(bs->job);
1104         }
1105         bdrv_drain_all();
1106 
1107         if (bs == bs_snapshots) {
1108             bs_snapshots = NULL;
1109         }
1110         if (bs->backing_hd) {
1111             bdrv_delete(bs->backing_hd);
1112             bs->backing_hd = NULL;
1113         }
1114         bs->drv->bdrv_close(bs);
1115         g_free(bs->opaque);
1116 #ifdef _WIN32
1117         if (bs->is_temporary) {
1118             unlink(bs->filename);
1119         }
1120 #endif
1121         bs->opaque = NULL;
1122         bs->drv = NULL;
1123         bs->copy_on_read = 0;
1124         bs->backing_file[0] = '\0';
1125         bs->backing_format[0] = '\0';
1126         bs->total_sectors = 0;
1127         bs->encrypted = 0;
1128         bs->valid_key = 0;
1129         bs->sg = 0;
1130         bs->growable = 0;
1131 
1132         if (bs->file != NULL) {
1133             bdrv_delete(bs->file);
1134             bs->file = NULL;
1135         }
1136     }
1137 
1138     bdrv_dev_change_media_cb(bs, false);
1139 
1140     /*throttling disk I/O limits*/
1141     if (bs->io_limits_enabled) {
1142         bdrv_io_limits_disable(bs);
1143     }
1144 }
1145 
1146 void bdrv_close_all(void)
1147 {
1148     BlockDriverState *bs;
1149 
1150     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1151         bdrv_close(bs);
1152     }
1153 }
1154 
1155 /*
1156  * Wait for pending requests to complete across all BlockDriverStates
1157  *
1158  * This function does not flush data to disk, use bdrv_flush_all() for that
1159  * after calling this function.
1160  *
1161  * Note that completion of an asynchronous I/O operation can trigger any
1162  * number of other I/O operations on other devices---for example a coroutine
1163  * can be arbitrarily complex and a constant flow of I/O can come until the
1164  * coroutine is complete.  Because of this, it is not possible to have a
1165  * function to drain a single device's I/O queue.
1166  */
1167 void bdrv_drain_all(void)
1168 {
1169     BlockDriverState *bs;
1170     bool busy;
1171 
1172     do {
1173         busy = qemu_aio_wait();
1174 
1175         /* FIXME: We do not have timer support here, so this is effectively
1176          * a busy wait.
1177          */
1178         QTAILQ_FOREACH(bs, &bdrv_states, list) {
1179             if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1180                 qemu_co_queue_restart_all(&bs->throttled_reqs);
1181                 busy = true;
1182             }
1183         }
1184     } while (busy);
1185 
1186     /* If requests are still pending there is a bug somewhere */
1187     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1188         assert(QLIST_EMPTY(&bs->tracked_requests));
1189         assert(qemu_co_queue_empty(&bs->throttled_reqs));
1190     }
1191 }
1192 
1193 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1194    Also, NULL terminate the device_name to prevent double remove */
1195 void bdrv_make_anon(BlockDriverState *bs)
1196 {
1197     if (bs->device_name[0] != '\0') {
1198         QTAILQ_REMOVE(&bdrv_states, bs, list);
1199     }
1200     bs->device_name[0] = '\0';
1201 }
1202 
1203 static void bdrv_rebind(BlockDriverState *bs)
1204 {
1205     if (bs->drv && bs->drv->bdrv_rebind) {
1206         bs->drv->bdrv_rebind(bs);
1207     }
1208 }
1209 
1210 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1211                                      BlockDriverState *bs_src)
1212 {
1213     /* move some fields that need to stay attached to the device */
1214     bs_dest->open_flags         = bs_src->open_flags;
1215 
1216     /* dev info */
1217     bs_dest->dev_ops            = bs_src->dev_ops;
1218     bs_dest->dev_opaque         = bs_src->dev_opaque;
1219     bs_dest->dev                = bs_src->dev;
1220     bs_dest->buffer_alignment   = bs_src->buffer_alignment;
1221     bs_dest->copy_on_read       = bs_src->copy_on_read;
1222 
1223     bs_dest->enable_write_cache = bs_src->enable_write_cache;
1224 
1225     /* i/o timing parameters */
1226     bs_dest->slice_time         = bs_src->slice_time;
1227     bs_dest->slice_start        = bs_src->slice_start;
1228     bs_dest->slice_end          = bs_src->slice_end;
1229     bs_dest->io_limits          = bs_src->io_limits;
1230     bs_dest->io_base            = bs_src->io_base;
1231     bs_dest->throttled_reqs     = bs_src->throttled_reqs;
1232     bs_dest->block_timer        = bs_src->block_timer;
1233     bs_dest->io_limits_enabled  = bs_src->io_limits_enabled;
1234 
1235     /* r/w error */
1236     bs_dest->on_read_error      = bs_src->on_read_error;
1237     bs_dest->on_write_error     = bs_src->on_write_error;
1238 
1239     /* i/o status */
1240     bs_dest->iostatus_enabled   = bs_src->iostatus_enabled;
1241     bs_dest->iostatus           = bs_src->iostatus;
1242 
1243     /* dirty bitmap */
1244     bs_dest->dirty_count        = bs_src->dirty_count;
1245     bs_dest->dirty_bitmap       = bs_src->dirty_bitmap;
1246 
1247     /* job */
1248     bs_dest->in_use             = bs_src->in_use;
1249     bs_dest->job                = bs_src->job;
1250 
1251     /* keep the same entry in bdrv_states */
1252     pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1253             bs_src->device_name);
1254     bs_dest->list = bs_src->list;
1255 }
1256 
1257 /*
1258  * Swap bs contents for two image chains while they are live,
1259  * while keeping required fields on the BlockDriverState that is
1260  * actually attached to a device.
1261  *
1262  * This will modify the BlockDriverState fields, and swap contents
1263  * between bs_new and bs_old. Both bs_new and bs_old are modified.
1264  *
1265  * bs_new is required to be anonymous.
1266  *
1267  * This function does not create any image files.
1268  */
1269 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1270 {
1271     BlockDriverState tmp;
1272 
1273     /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1274     assert(bs_new->device_name[0] == '\0');
1275     assert(bs_new->dirty_bitmap == NULL);
1276     assert(bs_new->job == NULL);
1277     assert(bs_new->dev == NULL);
1278     assert(bs_new->in_use == 0);
1279     assert(bs_new->io_limits_enabled == false);
1280     assert(bs_new->block_timer == NULL);
1281 
1282     tmp = *bs_new;
1283     *bs_new = *bs_old;
1284     *bs_old = tmp;
1285 
1286     /* there are some fields that should not be swapped, move them back */
1287     bdrv_move_feature_fields(&tmp, bs_old);
1288     bdrv_move_feature_fields(bs_old, bs_new);
1289     bdrv_move_feature_fields(bs_new, &tmp);
1290 
1291     /* bs_new shouldn't be in bdrv_states even after the swap!  */
1292     assert(bs_new->device_name[0] == '\0');
1293 
1294     /* Check a few fields that should remain attached to the device */
1295     assert(bs_new->dev == NULL);
1296     assert(bs_new->job == NULL);
1297     assert(bs_new->in_use == 0);
1298     assert(bs_new->io_limits_enabled == false);
1299     assert(bs_new->block_timer == NULL);
1300 
1301     bdrv_rebind(bs_new);
1302     bdrv_rebind(bs_old);
1303 }
1304 
1305 /*
1306  * Add new bs contents at the top of an image chain while the chain is
1307  * live, while keeping required fields on the top layer.
1308  *
1309  * This will modify the BlockDriverState fields, and swap contents
1310  * between bs_new and bs_top. Both bs_new and bs_top are modified.
1311  *
1312  * bs_new is required to be anonymous.
1313  *
1314  * This function does not create any image files.
1315  */
1316 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1317 {
1318     bdrv_swap(bs_new, bs_top);
1319 
1320     /* The contents of 'tmp' will become bs_top, as we are
1321      * swapping bs_new and bs_top contents. */
1322     bs_top->backing_hd = bs_new;
1323     bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1324     pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1325             bs_new->filename);
1326     pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1327             bs_new->drv ? bs_new->drv->format_name : "");
1328 }
1329 
1330 void bdrv_delete(BlockDriverState *bs)
1331 {
1332     assert(!bs->dev);
1333     assert(!bs->job);
1334     assert(!bs->in_use);
1335 
1336     /* remove from list, if necessary */
1337     bdrv_make_anon(bs);
1338 
1339     bdrv_close(bs);
1340 
1341     assert(bs != bs_snapshots);
1342     g_free(bs);
1343 }
1344 
1345 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1346 /* TODO change to DeviceState *dev when all users are qdevified */
1347 {
1348     if (bs->dev) {
1349         return -EBUSY;
1350     }
1351     bs->dev = dev;
1352     bdrv_iostatus_reset(bs);
1353     return 0;
1354 }
1355 
1356 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1357 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1358 {
1359     if (bdrv_attach_dev(bs, dev) < 0) {
1360         abort();
1361     }
1362 }
1363 
1364 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1365 /* TODO change to DeviceState *dev when all users are qdevified */
1366 {
1367     assert(bs->dev == dev);
1368     bs->dev = NULL;
1369     bs->dev_ops = NULL;
1370     bs->dev_opaque = NULL;
1371     bs->buffer_alignment = 512;
1372 }
1373 
1374 /* TODO change to return DeviceState * when all users are qdevified */
1375 void *bdrv_get_attached_dev(BlockDriverState *bs)
1376 {
1377     return bs->dev;
1378 }
1379 
1380 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1381                       void *opaque)
1382 {
1383     bs->dev_ops = ops;
1384     bs->dev_opaque = opaque;
1385     if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1386         bs_snapshots = NULL;
1387     }
1388 }
1389 
1390 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1391                                enum MonitorEvent ev,
1392                                BlockErrorAction action, bool is_read)
1393 {
1394     QObject *data;
1395     const char *action_str;
1396 
1397     switch (action) {
1398     case BDRV_ACTION_REPORT:
1399         action_str = "report";
1400         break;
1401     case BDRV_ACTION_IGNORE:
1402         action_str = "ignore";
1403         break;
1404     case BDRV_ACTION_STOP:
1405         action_str = "stop";
1406         break;
1407     default:
1408         abort();
1409     }
1410 
1411     data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1412                               bdrv->device_name,
1413                               action_str,
1414                               is_read ? "read" : "write");
1415     monitor_protocol_event(ev, data);
1416 
1417     qobject_decref(data);
1418 }
1419 
1420 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1421 {
1422     QObject *data;
1423 
1424     data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1425                               bdrv_get_device_name(bs), ejected);
1426     monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1427 
1428     qobject_decref(data);
1429 }
1430 
1431 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1432 {
1433     if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1434         bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1435         bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1436         if (tray_was_closed) {
1437             /* tray open */
1438             bdrv_emit_qmp_eject_event(bs, true);
1439         }
1440         if (load) {
1441             /* tray close */
1442             bdrv_emit_qmp_eject_event(bs, false);
1443         }
1444     }
1445 }
1446 
1447 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1448 {
1449     return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1450 }
1451 
1452 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1453 {
1454     if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1455         bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1456     }
1457 }
1458 
1459 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1460 {
1461     if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1462         return bs->dev_ops->is_tray_open(bs->dev_opaque);
1463     }
1464     return false;
1465 }
1466 
1467 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1468 {
1469     if (bs->dev_ops && bs->dev_ops->resize_cb) {
1470         bs->dev_ops->resize_cb(bs->dev_opaque);
1471     }
1472 }
1473 
1474 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1475 {
1476     if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1477         return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1478     }
1479     return false;
1480 }
1481 
1482 /*
1483  * Run consistency checks on an image
1484  *
1485  * Returns 0 if the check could be completed (it doesn't mean that the image is
1486  * free of errors) or -errno when an internal error occurred. The results of the
1487  * check are stored in res.
1488  */
1489 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1490 {
1491     if (bs->drv->bdrv_check == NULL) {
1492         return -ENOTSUP;
1493     }
1494 
1495     memset(res, 0, sizeof(*res));
1496     return bs->drv->bdrv_check(bs, res, fix);
1497 }
1498 
1499 #define COMMIT_BUF_SECTORS 2048
1500 
1501 /* commit COW file into the raw image */
1502 int bdrv_commit(BlockDriverState *bs)
1503 {
1504     BlockDriver *drv = bs->drv;
1505     int64_t sector, total_sectors;
1506     int n, ro, open_flags;
1507     int ret = 0;
1508     uint8_t *buf;
1509     char filename[PATH_MAX];
1510 
1511     if (!drv)
1512         return -ENOMEDIUM;
1513 
1514     if (!bs->backing_hd) {
1515         return -ENOTSUP;
1516     }
1517 
1518     if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1519         return -EBUSY;
1520     }
1521 
1522     ro = bs->backing_hd->read_only;
1523     /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1524     pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1525     open_flags =  bs->backing_hd->open_flags;
1526 
1527     if (ro) {
1528         if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1529             return -EACCES;
1530         }
1531     }
1532 
1533     total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1534     buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1535 
1536     for (sector = 0; sector < total_sectors; sector += n) {
1537         if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1538 
1539             if (bdrv_read(bs, sector, buf, n) != 0) {
1540                 ret = -EIO;
1541                 goto ro_cleanup;
1542             }
1543 
1544             if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1545                 ret = -EIO;
1546                 goto ro_cleanup;
1547             }
1548         }
1549     }
1550 
1551     if (drv->bdrv_make_empty) {
1552         ret = drv->bdrv_make_empty(bs);
1553         bdrv_flush(bs);
1554     }
1555 
1556     /*
1557      * Make sure all data we wrote to the backing device is actually
1558      * stable on disk.
1559      */
1560     if (bs->backing_hd)
1561         bdrv_flush(bs->backing_hd);
1562 
1563 ro_cleanup:
1564     g_free(buf);
1565 
1566     if (ro) {
1567         /* ignoring error return here */
1568         bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1569     }
1570 
1571     return ret;
1572 }
1573 
1574 int bdrv_commit_all(void)
1575 {
1576     BlockDriverState *bs;
1577 
1578     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1579         int ret = bdrv_commit(bs);
1580         if (ret < 0) {
1581             return ret;
1582         }
1583     }
1584     return 0;
1585 }
1586 
1587 struct BdrvTrackedRequest {
1588     BlockDriverState *bs;
1589     int64_t sector_num;
1590     int nb_sectors;
1591     bool is_write;
1592     QLIST_ENTRY(BdrvTrackedRequest) list;
1593     Coroutine *co; /* owner, used for deadlock detection */
1594     CoQueue wait_queue; /* coroutines blocked on this request */
1595 };
1596 
1597 /**
1598  * Remove an active request from the tracked requests list
1599  *
1600  * This function should be called when a tracked request is completing.
1601  */
1602 static void tracked_request_end(BdrvTrackedRequest *req)
1603 {
1604     QLIST_REMOVE(req, list);
1605     qemu_co_queue_restart_all(&req->wait_queue);
1606 }
1607 
1608 /**
1609  * Add an active request to the tracked requests list
1610  */
1611 static void tracked_request_begin(BdrvTrackedRequest *req,
1612                                   BlockDriverState *bs,
1613                                   int64_t sector_num,
1614                                   int nb_sectors, bool is_write)
1615 {
1616     *req = (BdrvTrackedRequest){
1617         .bs = bs,
1618         .sector_num = sector_num,
1619         .nb_sectors = nb_sectors,
1620         .is_write = is_write,
1621         .co = qemu_coroutine_self(),
1622     };
1623 
1624     qemu_co_queue_init(&req->wait_queue);
1625 
1626     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1627 }
1628 
1629 /**
1630  * Round a region to cluster boundaries
1631  */
1632 static void round_to_clusters(BlockDriverState *bs,
1633                               int64_t sector_num, int nb_sectors,
1634                               int64_t *cluster_sector_num,
1635                               int *cluster_nb_sectors)
1636 {
1637     BlockDriverInfo bdi;
1638 
1639     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1640         *cluster_sector_num = sector_num;
1641         *cluster_nb_sectors = nb_sectors;
1642     } else {
1643         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1644         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1645         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1646                                             nb_sectors, c);
1647     }
1648 }
1649 
1650 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1651                                      int64_t sector_num, int nb_sectors) {
1652     /*        aaaa   bbbb */
1653     if (sector_num >= req->sector_num + req->nb_sectors) {
1654         return false;
1655     }
1656     /* bbbb   aaaa        */
1657     if (req->sector_num >= sector_num + nb_sectors) {
1658         return false;
1659     }
1660     return true;
1661 }
1662 
1663 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1664         int64_t sector_num, int nb_sectors)
1665 {
1666     BdrvTrackedRequest *req;
1667     int64_t cluster_sector_num;
1668     int cluster_nb_sectors;
1669     bool retry;
1670 
1671     /* If we touch the same cluster it counts as an overlap.  This guarantees
1672      * that allocating writes will be serialized and not race with each other
1673      * for the same cluster.  For example, in copy-on-read it ensures that the
1674      * CoR read and write operations are atomic and guest writes cannot
1675      * interleave between them.
1676      */
1677     round_to_clusters(bs, sector_num, nb_sectors,
1678                       &cluster_sector_num, &cluster_nb_sectors);
1679 
1680     do {
1681         retry = false;
1682         QLIST_FOREACH(req, &bs->tracked_requests, list) {
1683             if (tracked_request_overlaps(req, cluster_sector_num,
1684                                          cluster_nb_sectors)) {
1685                 /* Hitting this means there was a reentrant request, for
1686                  * example, a block driver issuing nested requests.  This must
1687                  * never happen since it means deadlock.
1688                  */
1689                 assert(qemu_coroutine_self() != req->co);
1690 
1691                 qemu_co_queue_wait(&req->wait_queue);
1692                 retry = true;
1693                 break;
1694             }
1695         }
1696     } while (retry);
1697 }
1698 
1699 /*
1700  * Return values:
1701  * 0        - success
1702  * -EINVAL  - backing format specified, but no file
1703  * -ENOSPC  - can't update the backing file because no space is left in the
1704  *            image file header
1705  * -ENOTSUP - format driver doesn't support changing the backing file
1706  */
1707 int bdrv_change_backing_file(BlockDriverState *bs,
1708     const char *backing_file, const char *backing_fmt)
1709 {
1710     BlockDriver *drv = bs->drv;
1711     int ret;
1712 
1713     /* Backing file format doesn't make sense without a backing file */
1714     if (backing_fmt && !backing_file) {
1715         return -EINVAL;
1716     }
1717 
1718     if (drv->bdrv_change_backing_file != NULL) {
1719         ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1720     } else {
1721         ret = -ENOTSUP;
1722     }
1723 
1724     if (ret == 0) {
1725         pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1726         pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1727     }
1728     return ret;
1729 }
1730 
1731 /*
1732  * Finds the image layer in the chain that has 'bs' as its backing file.
1733  *
1734  * active is the current topmost image.
1735  *
1736  * Returns NULL if bs is not found in active's image chain,
1737  * or if active == bs.
1738  */
1739 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1740                                     BlockDriverState *bs)
1741 {
1742     BlockDriverState *overlay = NULL;
1743     BlockDriverState *intermediate;
1744 
1745     assert(active != NULL);
1746     assert(bs != NULL);
1747 
1748     /* if bs is the same as active, then by definition it has no overlay
1749      */
1750     if (active == bs) {
1751         return NULL;
1752     }
1753 
1754     intermediate = active;
1755     while (intermediate->backing_hd) {
1756         if (intermediate->backing_hd == bs) {
1757             overlay = intermediate;
1758             break;
1759         }
1760         intermediate = intermediate->backing_hd;
1761     }
1762 
1763     return overlay;
1764 }
1765 
1766 typedef struct BlkIntermediateStates {
1767     BlockDriverState *bs;
1768     QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1769 } BlkIntermediateStates;
1770 
1771 
1772 /*
1773  * Drops images above 'base' up to and including 'top', and sets the image
1774  * above 'top' to have base as its backing file.
1775  *
1776  * Requires that the overlay to 'top' is opened r/w, so that the backing file
1777  * information in 'bs' can be properly updated.
1778  *
1779  * E.g., this will convert the following chain:
1780  * bottom <- base <- intermediate <- top <- active
1781  *
1782  * to
1783  *
1784  * bottom <- base <- active
1785  *
1786  * It is allowed for bottom==base, in which case it converts:
1787  *
1788  * base <- intermediate <- top <- active
1789  *
1790  * to
1791  *
1792  * base <- active
1793  *
1794  * Error conditions:
1795  *  if active == top, that is considered an error
1796  *
1797  */
1798 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1799                            BlockDriverState *base)
1800 {
1801     BlockDriverState *intermediate;
1802     BlockDriverState *base_bs = NULL;
1803     BlockDriverState *new_top_bs = NULL;
1804     BlkIntermediateStates *intermediate_state, *next;
1805     int ret = -EIO;
1806 
1807     QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1808     QSIMPLEQ_INIT(&states_to_delete);
1809 
1810     if (!top->drv || !base->drv) {
1811         goto exit;
1812     }
1813 
1814     new_top_bs = bdrv_find_overlay(active, top);
1815 
1816     if (new_top_bs == NULL) {
1817         /* we could not find the image above 'top', this is an error */
1818         goto exit;
1819     }
1820 
1821     /* special case of new_top_bs->backing_hd already pointing to base - nothing
1822      * to do, no intermediate images */
1823     if (new_top_bs->backing_hd == base) {
1824         ret = 0;
1825         goto exit;
1826     }
1827 
1828     intermediate = top;
1829 
1830     /* now we will go down through the list, and add each BDS we find
1831      * into our deletion queue, until we hit the 'base'
1832      */
1833     while (intermediate) {
1834         intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1835         intermediate_state->bs = intermediate;
1836         QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1837 
1838         if (intermediate->backing_hd == base) {
1839             base_bs = intermediate->backing_hd;
1840             break;
1841         }
1842         intermediate = intermediate->backing_hd;
1843     }
1844     if (base_bs == NULL) {
1845         /* something went wrong, we did not end at the base. safely
1846          * unravel everything, and exit with error */
1847         goto exit;
1848     }
1849 
1850     /* success - we can delete the intermediate states, and link top->base */
1851     ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1852                                    base_bs->drv ? base_bs->drv->format_name : "");
1853     if (ret) {
1854         goto exit;
1855     }
1856     new_top_bs->backing_hd = base_bs;
1857 
1858 
1859     QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1860         /* so that bdrv_close() does not recursively close the chain */
1861         intermediate_state->bs->backing_hd = NULL;
1862         bdrv_delete(intermediate_state->bs);
1863     }
1864     ret = 0;
1865 
1866 exit:
1867     QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1868         g_free(intermediate_state);
1869     }
1870     return ret;
1871 }
1872 
1873 
1874 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1875                                    size_t size)
1876 {
1877     int64_t len;
1878 
1879     if (!bdrv_is_inserted(bs))
1880         return -ENOMEDIUM;
1881 
1882     if (bs->growable)
1883         return 0;
1884 
1885     len = bdrv_getlength(bs);
1886 
1887     if (offset < 0)
1888         return -EIO;
1889 
1890     if ((offset > len) || (len - offset < size))
1891         return -EIO;
1892 
1893     return 0;
1894 }
1895 
1896 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1897                               int nb_sectors)
1898 {
1899     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1900                                    nb_sectors * BDRV_SECTOR_SIZE);
1901 }
1902 
1903 typedef struct RwCo {
1904     BlockDriverState *bs;
1905     int64_t sector_num;
1906     int nb_sectors;
1907     QEMUIOVector *qiov;
1908     bool is_write;
1909     int ret;
1910 } RwCo;
1911 
1912 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1913 {
1914     RwCo *rwco = opaque;
1915 
1916     if (!rwco->is_write) {
1917         rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1918                                      rwco->nb_sectors, rwco->qiov, 0);
1919     } else {
1920         rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1921                                       rwco->nb_sectors, rwco->qiov, 0);
1922     }
1923 }
1924 
1925 /*
1926  * Process a synchronous request using coroutines
1927  */
1928 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1929                       int nb_sectors, bool is_write)
1930 {
1931     QEMUIOVector qiov;
1932     struct iovec iov = {
1933         .iov_base = (void *)buf,
1934         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1935     };
1936     Coroutine *co;
1937     RwCo rwco = {
1938         .bs = bs,
1939         .sector_num = sector_num,
1940         .nb_sectors = nb_sectors,
1941         .qiov = &qiov,
1942         .is_write = is_write,
1943         .ret = NOT_DONE,
1944     };
1945 
1946     qemu_iovec_init_external(&qiov, &iov, 1);
1947 
1948     /**
1949      * In sync call context, when the vcpu is blocked, this throttling timer
1950      * will not fire; so the I/O throttling function has to be disabled here
1951      * if it has been enabled.
1952      */
1953     if (bs->io_limits_enabled) {
1954         fprintf(stderr, "Disabling I/O throttling on '%s' due "
1955                         "to synchronous I/O.\n", bdrv_get_device_name(bs));
1956         bdrv_io_limits_disable(bs);
1957     }
1958 
1959     if (qemu_in_coroutine()) {
1960         /* Fast-path if already in coroutine context */
1961         bdrv_rw_co_entry(&rwco);
1962     } else {
1963         co = qemu_coroutine_create(bdrv_rw_co_entry);
1964         qemu_coroutine_enter(co, &rwco);
1965         while (rwco.ret == NOT_DONE) {
1966             qemu_aio_wait();
1967         }
1968     }
1969     return rwco.ret;
1970 }
1971 
1972 /* return < 0 if error. See bdrv_write() for the return codes */
1973 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1974               uint8_t *buf, int nb_sectors)
1975 {
1976     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1977 }
1978 
1979 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
1980 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
1981                           uint8_t *buf, int nb_sectors)
1982 {
1983     bool enabled;
1984     int ret;
1985 
1986     enabled = bs->io_limits_enabled;
1987     bs->io_limits_enabled = false;
1988     ret = bdrv_read(bs, 0, buf, 1);
1989     bs->io_limits_enabled = enabled;
1990     return ret;
1991 }
1992 
1993 #define BITS_PER_LONG  (sizeof(unsigned long) * 8)
1994 
1995 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1996                              int nb_sectors, int dirty)
1997 {
1998     int64_t start, end;
1999     unsigned long val, idx, bit;
2000 
2001     start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
2002     end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
2003 
2004     for (; start <= end; start++) {
2005         idx = start / BITS_PER_LONG;
2006         bit = start % BITS_PER_LONG;
2007         val = bs->dirty_bitmap[idx];
2008         if (dirty) {
2009             if (!(val & (1UL << bit))) {
2010                 bs->dirty_count++;
2011                 val |= 1UL << bit;
2012             }
2013         } else {
2014             if (val & (1UL << bit)) {
2015                 bs->dirty_count--;
2016                 val &= ~(1UL << bit);
2017             }
2018         }
2019         bs->dirty_bitmap[idx] = val;
2020     }
2021 }
2022 
2023 /* Return < 0 if error. Important errors are:
2024   -EIO         generic I/O error (may happen for all errors)
2025   -ENOMEDIUM   No media inserted.
2026   -EINVAL      Invalid sector number or nb_sectors
2027   -EACCES      Trying to write a read-only device
2028 */
2029 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2030                const uint8_t *buf, int nb_sectors)
2031 {
2032     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2033 }
2034 
2035 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2036                void *buf, int count1)
2037 {
2038     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2039     int len, nb_sectors, count;
2040     int64_t sector_num;
2041     int ret;
2042 
2043     count = count1;
2044     /* first read to align to sector start */
2045     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2046     if (len > count)
2047         len = count;
2048     sector_num = offset >> BDRV_SECTOR_BITS;
2049     if (len > 0) {
2050         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2051             return ret;
2052         memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2053         count -= len;
2054         if (count == 0)
2055             return count1;
2056         sector_num++;
2057         buf += len;
2058     }
2059 
2060     /* read the sectors "in place" */
2061     nb_sectors = count >> BDRV_SECTOR_BITS;
2062     if (nb_sectors > 0) {
2063         if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2064             return ret;
2065         sector_num += nb_sectors;
2066         len = nb_sectors << BDRV_SECTOR_BITS;
2067         buf += len;
2068         count -= len;
2069     }
2070 
2071     /* add data from the last sector */
2072     if (count > 0) {
2073         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2074             return ret;
2075         memcpy(buf, tmp_buf, count);
2076     }
2077     return count1;
2078 }
2079 
2080 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2081                 const void *buf, int count1)
2082 {
2083     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2084     int len, nb_sectors, count;
2085     int64_t sector_num;
2086     int ret;
2087 
2088     count = count1;
2089     /* first write to align to sector start */
2090     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2091     if (len > count)
2092         len = count;
2093     sector_num = offset >> BDRV_SECTOR_BITS;
2094     if (len > 0) {
2095         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2096             return ret;
2097         memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2098         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2099             return ret;
2100         count -= len;
2101         if (count == 0)
2102             return count1;
2103         sector_num++;
2104         buf += len;
2105     }
2106 
2107     /* write the sectors "in place" */
2108     nb_sectors = count >> BDRV_SECTOR_BITS;
2109     if (nb_sectors > 0) {
2110         if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2111             return ret;
2112         sector_num += nb_sectors;
2113         len = nb_sectors << BDRV_SECTOR_BITS;
2114         buf += len;
2115         count -= len;
2116     }
2117 
2118     /* add data from the last sector */
2119     if (count > 0) {
2120         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2121             return ret;
2122         memcpy(tmp_buf, buf, count);
2123         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2124             return ret;
2125     }
2126     return count1;
2127 }
2128 
2129 /*
2130  * Writes to the file and ensures that no writes are reordered across this
2131  * request (acts as a barrier)
2132  *
2133  * Returns 0 on success, -errno in error cases.
2134  */
2135 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2136     const void *buf, int count)
2137 {
2138     int ret;
2139 
2140     ret = bdrv_pwrite(bs, offset, buf, count);
2141     if (ret < 0) {
2142         return ret;
2143     }
2144 
2145     /* No flush needed for cache modes that already do it */
2146     if (bs->enable_write_cache) {
2147         bdrv_flush(bs);
2148     }
2149 
2150     return 0;
2151 }
2152 
2153 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2154         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2155 {
2156     /* Perform I/O through a temporary buffer so that users who scribble over
2157      * their read buffer while the operation is in progress do not end up
2158      * modifying the image file.  This is critical for zero-copy guest I/O
2159      * where anything might happen inside guest memory.
2160      */
2161     void *bounce_buffer;
2162 
2163     BlockDriver *drv = bs->drv;
2164     struct iovec iov;
2165     QEMUIOVector bounce_qiov;
2166     int64_t cluster_sector_num;
2167     int cluster_nb_sectors;
2168     size_t skip_bytes;
2169     int ret;
2170 
2171     /* Cover entire cluster so no additional backing file I/O is required when
2172      * allocating cluster in the image file.
2173      */
2174     round_to_clusters(bs, sector_num, nb_sectors,
2175                       &cluster_sector_num, &cluster_nb_sectors);
2176 
2177     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2178                                    cluster_sector_num, cluster_nb_sectors);
2179 
2180     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2181     iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2182     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2183 
2184     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2185                              &bounce_qiov);
2186     if (ret < 0) {
2187         goto err;
2188     }
2189 
2190     if (drv->bdrv_co_write_zeroes &&
2191         buffer_is_zero(bounce_buffer, iov.iov_len)) {
2192         ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2193                                       cluster_nb_sectors);
2194     } else {
2195         /* This does not change the data on the disk, it is not necessary
2196          * to flush even in cache=writethrough mode.
2197          */
2198         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2199                                   &bounce_qiov);
2200     }
2201 
2202     if (ret < 0) {
2203         /* It might be okay to ignore write errors for guest requests.  If this
2204          * is a deliberate copy-on-read then we don't want to ignore the error.
2205          * Simply report it in all cases.
2206          */
2207         goto err;
2208     }
2209 
2210     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2211     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2212                         nb_sectors * BDRV_SECTOR_SIZE);
2213 
2214 err:
2215     qemu_vfree(bounce_buffer);
2216     return ret;
2217 }
2218 
2219 /*
2220  * Handle a read request in coroutine context
2221  */
2222 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2223     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2224     BdrvRequestFlags flags)
2225 {
2226     BlockDriver *drv = bs->drv;
2227     BdrvTrackedRequest req;
2228     int ret;
2229 
2230     if (!drv) {
2231         return -ENOMEDIUM;
2232     }
2233     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2234         return -EIO;
2235     }
2236 
2237     /* throttling disk read I/O */
2238     if (bs->io_limits_enabled) {
2239         bdrv_io_limits_intercept(bs, false, nb_sectors);
2240     }
2241 
2242     if (bs->copy_on_read) {
2243         flags |= BDRV_REQ_COPY_ON_READ;
2244     }
2245     if (flags & BDRV_REQ_COPY_ON_READ) {
2246         bs->copy_on_read_in_flight++;
2247     }
2248 
2249     if (bs->copy_on_read_in_flight) {
2250         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2251     }
2252 
2253     tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2254 
2255     if (flags & BDRV_REQ_COPY_ON_READ) {
2256         int pnum;
2257 
2258         ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2259         if (ret < 0) {
2260             goto out;
2261         }
2262 
2263         if (!ret || pnum != nb_sectors) {
2264             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2265             goto out;
2266         }
2267     }
2268 
2269     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2270 
2271 out:
2272     tracked_request_end(&req);
2273 
2274     if (flags & BDRV_REQ_COPY_ON_READ) {
2275         bs->copy_on_read_in_flight--;
2276     }
2277 
2278     return ret;
2279 }
2280 
2281 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2282     int nb_sectors, QEMUIOVector *qiov)
2283 {
2284     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2285 
2286     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2287 }
2288 
2289 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2290     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2291 {
2292     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2293 
2294     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2295                             BDRV_REQ_COPY_ON_READ);
2296 }
2297 
2298 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2299     int64_t sector_num, int nb_sectors)
2300 {
2301     BlockDriver *drv = bs->drv;
2302     QEMUIOVector qiov;
2303     struct iovec iov;
2304     int ret;
2305 
2306     /* TODO Emulate only part of misaligned requests instead of letting block
2307      * drivers return -ENOTSUP and emulate everything */
2308 
2309     /* First try the efficient write zeroes operation */
2310     if (drv->bdrv_co_write_zeroes) {
2311         ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2312         if (ret != -ENOTSUP) {
2313             return ret;
2314         }
2315     }
2316 
2317     /* Fall back to bounce buffer if write zeroes is unsupported */
2318     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE;
2319     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2320     memset(iov.iov_base, 0, iov.iov_len);
2321     qemu_iovec_init_external(&qiov, &iov, 1);
2322 
2323     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2324 
2325     qemu_vfree(iov.iov_base);
2326     return ret;
2327 }
2328 
2329 /*
2330  * Handle a write request in coroutine context
2331  */
2332 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2333     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2334     BdrvRequestFlags flags)
2335 {
2336     BlockDriver *drv = bs->drv;
2337     BdrvTrackedRequest req;
2338     int ret;
2339 
2340     if (!bs->drv) {
2341         return -ENOMEDIUM;
2342     }
2343     if (bs->read_only) {
2344         return -EACCES;
2345     }
2346     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2347         return -EIO;
2348     }
2349 
2350     /* throttling disk write I/O */
2351     if (bs->io_limits_enabled) {
2352         bdrv_io_limits_intercept(bs, true, nb_sectors);
2353     }
2354 
2355     if (bs->copy_on_read_in_flight) {
2356         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2357     }
2358 
2359     tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2360 
2361     if (flags & BDRV_REQ_ZERO_WRITE) {
2362         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2363     } else {
2364         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2365     }
2366 
2367     if (ret == 0 && !bs->enable_write_cache) {
2368         ret = bdrv_co_flush(bs);
2369     }
2370 
2371     if (bs->dirty_bitmap) {
2372         set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2373     }
2374 
2375     if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2376         bs->wr_highest_sector = sector_num + nb_sectors - 1;
2377     }
2378 
2379     tracked_request_end(&req);
2380 
2381     return ret;
2382 }
2383 
2384 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2385     int nb_sectors, QEMUIOVector *qiov)
2386 {
2387     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2388 
2389     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2390 }
2391 
2392 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2393                                       int64_t sector_num, int nb_sectors)
2394 {
2395     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2396 
2397     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2398                              BDRV_REQ_ZERO_WRITE);
2399 }
2400 
2401 /**
2402  * Truncate file to 'offset' bytes (needed only for file protocols)
2403  */
2404 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2405 {
2406     BlockDriver *drv = bs->drv;
2407     int ret;
2408     if (!drv)
2409         return -ENOMEDIUM;
2410     if (!drv->bdrv_truncate)
2411         return -ENOTSUP;
2412     if (bs->read_only)
2413         return -EACCES;
2414     if (bdrv_in_use(bs))
2415         return -EBUSY;
2416     ret = drv->bdrv_truncate(bs, offset);
2417     if (ret == 0) {
2418         ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2419         bdrv_dev_resize_cb(bs);
2420     }
2421     return ret;
2422 }
2423 
2424 /**
2425  * Length of a allocated file in bytes. Sparse files are counted by actual
2426  * allocated space. Return < 0 if error or unknown.
2427  */
2428 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2429 {
2430     BlockDriver *drv = bs->drv;
2431     if (!drv) {
2432         return -ENOMEDIUM;
2433     }
2434     if (drv->bdrv_get_allocated_file_size) {
2435         return drv->bdrv_get_allocated_file_size(bs);
2436     }
2437     if (bs->file) {
2438         return bdrv_get_allocated_file_size(bs->file);
2439     }
2440     return -ENOTSUP;
2441 }
2442 
2443 /**
2444  * Length of a file in bytes. Return < 0 if error or unknown.
2445  */
2446 int64_t bdrv_getlength(BlockDriverState *bs)
2447 {
2448     BlockDriver *drv = bs->drv;
2449     if (!drv)
2450         return -ENOMEDIUM;
2451 
2452     if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2453         if (drv->bdrv_getlength) {
2454             return drv->bdrv_getlength(bs);
2455         }
2456     }
2457     return bs->total_sectors * BDRV_SECTOR_SIZE;
2458 }
2459 
2460 /* return 0 as number of sectors if no device present or error */
2461 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2462 {
2463     int64_t length;
2464     length = bdrv_getlength(bs);
2465     if (length < 0)
2466         length = 0;
2467     else
2468         length = length >> BDRV_SECTOR_BITS;
2469     *nb_sectors_ptr = length;
2470 }
2471 
2472 /* throttling disk io limits */
2473 void bdrv_set_io_limits(BlockDriverState *bs,
2474                         BlockIOLimit *io_limits)
2475 {
2476     bs->io_limits = *io_limits;
2477     bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2478 }
2479 
2480 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2481                        BlockdevOnError on_write_error)
2482 {
2483     bs->on_read_error = on_read_error;
2484     bs->on_write_error = on_write_error;
2485 }
2486 
2487 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2488 {
2489     return is_read ? bs->on_read_error : bs->on_write_error;
2490 }
2491 
2492 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2493 {
2494     BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2495 
2496     switch (on_err) {
2497     case BLOCKDEV_ON_ERROR_ENOSPC:
2498         return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2499     case BLOCKDEV_ON_ERROR_STOP:
2500         return BDRV_ACTION_STOP;
2501     case BLOCKDEV_ON_ERROR_REPORT:
2502         return BDRV_ACTION_REPORT;
2503     case BLOCKDEV_ON_ERROR_IGNORE:
2504         return BDRV_ACTION_IGNORE;
2505     default:
2506         abort();
2507     }
2508 }
2509 
2510 /* This is done by device models because, while the block layer knows
2511  * about the error, it does not know whether an operation comes from
2512  * the device or the block layer (from a job, for example).
2513  */
2514 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2515                        bool is_read, int error)
2516 {
2517     assert(error >= 0);
2518     bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2519     if (action == BDRV_ACTION_STOP) {
2520         vm_stop(RUN_STATE_IO_ERROR);
2521         bdrv_iostatus_set_err(bs, error);
2522     }
2523 }
2524 
2525 int bdrv_is_read_only(BlockDriverState *bs)
2526 {
2527     return bs->read_only;
2528 }
2529 
2530 int bdrv_is_sg(BlockDriverState *bs)
2531 {
2532     return bs->sg;
2533 }
2534 
2535 int bdrv_enable_write_cache(BlockDriverState *bs)
2536 {
2537     return bs->enable_write_cache;
2538 }
2539 
2540 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2541 {
2542     bs->enable_write_cache = wce;
2543 
2544     /* so a reopen() will preserve wce */
2545     if (wce) {
2546         bs->open_flags |= BDRV_O_CACHE_WB;
2547     } else {
2548         bs->open_flags &= ~BDRV_O_CACHE_WB;
2549     }
2550 }
2551 
2552 int bdrv_is_encrypted(BlockDriverState *bs)
2553 {
2554     if (bs->backing_hd && bs->backing_hd->encrypted)
2555         return 1;
2556     return bs->encrypted;
2557 }
2558 
2559 int bdrv_key_required(BlockDriverState *bs)
2560 {
2561     BlockDriverState *backing_hd = bs->backing_hd;
2562 
2563     if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2564         return 1;
2565     return (bs->encrypted && !bs->valid_key);
2566 }
2567 
2568 int bdrv_set_key(BlockDriverState *bs, const char *key)
2569 {
2570     int ret;
2571     if (bs->backing_hd && bs->backing_hd->encrypted) {
2572         ret = bdrv_set_key(bs->backing_hd, key);
2573         if (ret < 0)
2574             return ret;
2575         if (!bs->encrypted)
2576             return 0;
2577     }
2578     if (!bs->encrypted) {
2579         return -EINVAL;
2580     } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2581         return -ENOMEDIUM;
2582     }
2583     ret = bs->drv->bdrv_set_key(bs, key);
2584     if (ret < 0) {
2585         bs->valid_key = 0;
2586     } else if (!bs->valid_key) {
2587         bs->valid_key = 1;
2588         /* call the change callback now, we skipped it on open */
2589         bdrv_dev_change_media_cb(bs, true);
2590     }
2591     return ret;
2592 }
2593 
2594 const char *bdrv_get_format_name(BlockDriverState *bs)
2595 {
2596     return bs->drv ? bs->drv->format_name : NULL;
2597 }
2598 
2599 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2600                          void *opaque)
2601 {
2602     BlockDriver *drv;
2603 
2604     QLIST_FOREACH(drv, &bdrv_drivers, list) {
2605         it(opaque, drv->format_name);
2606     }
2607 }
2608 
2609 BlockDriverState *bdrv_find(const char *name)
2610 {
2611     BlockDriverState *bs;
2612 
2613     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2614         if (!strcmp(name, bs->device_name)) {
2615             return bs;
2616         }
2617     }
2618     return NULL;
2619 }
2620 
2621 BlockDriverState *bdrv_next(BlockDriverState *bs)
2622 {
2623     if (!bs) {
2624         return QTAILQ_FIRST(&bdrv_states);
2625     }
2626     return QTAILQ_NEXT(bs, list);
2627 }
2628 
2629 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2630 {
2631     BlockDriverState *bs;
2632 
2633     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2634         it(opaque, bs);
2635     }
2636 }
2637 
2638 const char *bdrv_get_device_name(BlockDriverState *bs)
2639 {
2640     return bs->device_name;
2641 }
2642 
2643 int bdrv_get_flags(BlockDriverState *bs)
2644 {
2645     return bs->open_flags;
2646 }
2647 
2648 void bdrv_flush_all(void)
2649 {
2650     BlockDriverState *bs;
2651 
2652     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2653         bdrv_flush(bs);
2654     }
2655 }
2656 
2657 int bdrv_has_zero_init(BlockDriverState *bs)
2658 {
2659     assert(bs->drv);
2660 
2661     if (bs->drv->bdrv_has_zero_init) {
2662         return bs->drv->bdrv_has_zero_init(bs);
2663     }
2664 
2665     return 1;
2666 }
2667 
2668 typedef struct BdrvCoIsAllocatedData {
2669     BlockDriverState *bs;
2670     int64_t sector_num;
2671     int nb_sectors;
2672     int *pnum;
2673     int ret;
2674     bool done;
2675 } BdrvCoIsAllocatedData;
2676 
2677 /*
2678  * Returns true iff the specified sector is present in the disk image. Drivers
2679  * not implementing the functionality are assumed to not support backing files,
2680  * hence all their sectors are reported as allocated.
2681  *
2682  * If 'sector_num' is beyond the end of the disk image the return value is 0
2683  * and 'pnum' is set to 0.
2684  *
2685  * 'pnum' is set to the number of sectors (including and immediately following
2686  * the specified sector) that are known to be in the same
2687  * allocated/unallocated state.
2688  *
2689  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
2690  * beyond the end of the disk image it will be clamped.
2691  */
2692 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2693                                       int nb_sectors, int *pnum)
2694 {
2695     int64_t n;
2696 
2697     if (sector_num >= bs->total_sectors) {
2698         *pnum = 0;
2699         return 0;
2700     }
2701 
2702     n = bs->total_sectors - sector_num;
2703     if (n < nb_sectors) {
2704         nb_sectors = n;
2705     }
2706 
2707     if (!bs->drv->bdrv_co_is_allocated) {
2708         *pnum = nb_sectors;
2709         return 1;
2710     }
2711 
2712     return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2713 }
2714 
2715 /* Coroutine wrapper for bdrv_is_allocated() */
2716 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2717 {
2718     BdrvCoIsAllocatedData *data = opaque;
2719     BlockDriverState *bs = data->bs;
2720 
2721     data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2722                                      data->pnum);
2723     data->done = true;
2724 }
2725 
2726 /*
2727  * Synchronous wrapper around bdrv_co_is_allocated().
2728  *
2729  * See bdrv_co_is_allocated() for details.
2730  */
2731 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2732                       int *pnum)
2733 {
2734     Coroutine *co;
2735     BdrvCoIsAllocatedData data = {
2736         .bs = bs,
2737         .sector_num = sector_num,
2738         .nb_sectors = nb_sectors,
2739         .pnum = pnum,
2740         .done = false,
2741     };
2742 
2743     co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2744     qemu_coroutine_enter(co, &data);
2745     while (!data.done) {
2746         qemu_aio_wait();
2747     }
2748     return data.ret;
2749 }
2750 
2751 /*
2752  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2753  *
2754  * Return true if the given sector is allocated in any image between
2755  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
2756  * sector is allocated in any image of the chain.  Return false otherwise.
2757  *
2758  * 'pnum' is set to the number of sectors (including and immediately following
2759  *  the specified sector) that are known to be in the same
2760  *  allocated/unallocated state.
2761  *
2762  */
2763 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2764                                             BlockDriverState *base,
2765                                             int64_t sector_num,
2766                                             int nb_sectors, int *pnum)
2767 {
2768     BlockDriverState *intermediate;
2769     int ret, n = nb_sectors;
2770 
2771     intermediate = top;
2772     while (intermediate && intermediate != base) {
2773         int pnum_inter;
2774         ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2775                                    &pnum_inter);
2776         if (ret < 0) {
2777             return ret;
2778         } else if (ret) {
2779             *pnum = pnum_inter;
2780             return 1;
2781         }
2782 
2783         /*
2784          * [sector_num, nb_sectors] is unallocated on top but intermediate
2785          * might have
2786          *
2787          * [sector_num+x, nr_sectors] allocated.
2788          */
2789         if (n > pnum_inter) {
2790             n = pnum_inter;
2791         }
2792 
2793         intermediate = intermediate->backing_hd;
2794     }
2795 
2796     *pnum = n;
2797     return 0;
2798 }
2799 
2800 BlockInfoList *qmp_query_block(Error **errp)
2801 {
2802     BlockInfoList *head = NULL, *cur_item = NULL;
2803     BlockDriverState *bs;
2804 
2805     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2806         BlockInfoList *info = g_malloc0(sizeof(*info));
2807 
2808         info->value = g_malloc0(sizeof(*info->value));
2809         info->value->device = g_strdup(bs->device_name);
2810         info->value->type = g_strdup("unknown");
2811         info->value->locked = bdrv_dev_is_medium_locked(bs);
2812         info->value->removable = bdrv_dev_has_removable_media(bs);
2813 
2814         if (bdrv_dev_has_removable_media(bs)) {
2815             info->value->has_tray_open = true;
2816             info->value->tray_open = bdrv_dev_is_tray_open(bs);
2817         }
2818 
2819         if (bdrv_iostatus_is_enabled(bs)) {
2820             info->value->has_io_status = true;
2821             info->value->io_status = bs->iostatus;
2822         }
2823 
2824         if (bs->drv) {
2825             info->value->has_inserted = true;
2826             info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2827             info->value->inserted->file = g_strdup(bs->filename);
2828             info->value->inserted->ro = bs->read_only;
2829             info->value->inserted->drv = g_strdup(bs->drv->format_name);
2830             info->value->inserted->encrypted = bs->encrypted;
2831             info->value->inserted->encryption_key_missing = bdrv_key_required(bs);
2832             if (bs->backing_file[0]) {
2833                 info->value->inserted->has_backing_file = true;
2834                 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2835             }
2836 
2837             info->value->inserted->backing_file_depth =
2838                 bdrv_get_backing_file_depth(bs);
2839 
2840             if (bs->io_limits_enabled) {
2841                 info->value->inserted->bps =
2842                                bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2843                 info->value->inserted->bps_rd =
2844                                bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2845                 info->value->inserted->bps_wr =
2846                                bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2847                 info->value->inserted->iops =
2848                                bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2849                 info->value->inserted->iops_rd =
2850                                bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2851                 info->value->inserted->iops_wr =
2852                                bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2853             }
2854         }
2855 
2856         /* XXX: waiting for the qapi to support GSList */
2857         if (!cur_item) {
2858             head = cur_item = info;
2859         } else {
2860             cur_item->next = info;
2861             cur_item = info;
2862         }
2863     }
2864 
2865     return head;
2866 }
2867 
2868 /* Consider exposing this as a full fledged QMP command */
2869 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2870 {
2871     BlockStats *s;
2872 
2873     s = g_malloc0(sizeof(*s));
2874 
2875     if (bs->device_name[0]) {
2876         s->has_device = true;
2877         s->device = g_strdup(bs->device_name);
2878     }
2879 
2880     s->stats = g_malloc0(sizeof(*s->stats));
2881     s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2882     s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2883     s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2884     s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2885     s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2886     s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2887     s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2888     s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2889     s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2890 
2891     if (bs->file) {
2892         s->has_parent = true;
2893         s->parent = qmp_query_blockstat(bs->file, NULL);
2894     }
2895 
2896     return s;
2897 }
2898 
2899 BlockStatsList *qmp_query_blockstats(Error **errp)
2900 {
2901     BlockStatsList *head = NULL, *cur_item = NULL;
2902     BlockDriverState *bs;
2903 
2904     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2905         BlockStatsList *info = g_malloc0(sizeof(*info));
2906         info->value = qmp_query_blockstat(bs, NULL);
2907 
2908         /* XXX: waiting for the qapi to support GSList */
2909         if (!cur_item) {
2910             head = cur_item = info;
2911         } else {
2912             cur_item->next = info;
2913             cur_item = info;
2914         }
2915     }
2916 
2917     return head;
2918 }
2919 
2920 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2921 {
2922     if (bs->backing_hd && bs->backing_hd->encrypted)
2923         return bs->backing_file;
2924     else if (bs->encrypted)
2925         return bs->filename;
2926     else
2927         return NULL;
2928 }
2929 
2930 void bdrv_get_backing_filename(BlockDriverState *bs,
2931                                char *filename, int filename_size)
2932 {
2933     pstrcpy(filename, filename_size, bs->backing_file);
2934 }
2935 
2936 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2937                           const uint8_t *buf, int nb_sectors)
2938 {
2939     BlockDriver *drv = bs->drv;
2940     if (!drv)
2941         return -ENOMEDIUM;
2942     if (!drv->bdrv_write_compressed)
2943         return -ENOTSUP;
2944     if (bdrv_check_request(bs, sector_num, nb_sectors))
2945         return -EIO;
2946 
2947     if (bs->dirty_bitmap) {
2948         set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2949     }
2950 
2951     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2952 }
2953 
2954 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2955 {
2956     BlockDriver *drv = bs->drv;
2957     if (!drv)
2958         return -ENOMEDIUM;
2959     if (!drv->bdrv_get_info)
2960         return -ENOTSUP;
2961     memset(bdi, 0, sizeof(*bdi));
2962     return drv->bdrv_get_info(bs, bdi);
2963 }
2964 
2965 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2966                       int64_t pos, int size)
2967 {
2968     BlockDriver *drv = bs->drv;
2969     if (!drv)
2970         return -ENOMEDIUM;
2971     if (drv->bdrv_save_vmstate)
2972         return drv->bdrv_save_vmstate(bs, buf, pos, size);
2973     if (bs->file)
2974         return bdrv_save_vmstate(bs->file, buf, pos, size);
2975     return -ENOTSUP;
2976 }
2977 
2978 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2979                       int64_t pos, int size)
2980 {
2981     BlockDriver *drv = bs->drv;
2982     if (!drv)
2983         return -ENOMEDIUM;
2984     if (drv->bdrv_load_vmstate)
2985         return drv->bdrv_load_vmstate(bs, buf, pos, size);
2986     if (bs->file)
2987         return bdrv_load_vmstate(bs->file, buf, pos, size);
2988     return -ENOTSUP;
2989 }
2990 
2991 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2992 {
2993     BlockDriver *drv = bs->drv;
2994 
2995     if (!drv || !drv->bdrv_debug_event) {
2996         return;
2997     }
2998 
2999     drv->bdrv_debug_event(bs, event);
3000 
3001 }
3002 
3003 /**************************************************************/
3004 /* handling of snapshots */
3005 
3006 int bdrv_can_snapshot(BlockDriverState *bs)
3007 {
3008     BlockDriver *drv = bs->drv;
3009     if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3010         return 0;
3011     }
3012 
3013     if (!drv->bdrv_snapshot_create) {
3014         if (bs->file != NULL) {
3015             return bdrv_can_snapshot(bs->file);
3016         }
3017         return 0;
3018     }
3019 
3020     return 1;
3021 }
3022 
3023 int bdrv_is_snapshot(BlockDriverState *bs)
3024 {
3025     return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3026 }
3027 
3028 BlockDriverState *bdrv_snapshots(void)
3029 {
3030     BlockDriverState *bs;
3031 
3032     if (bs_snapshots) {
3033         return bs_snapshots;
3034     }
3035 
3036     bs = NULL;
3037     while ((bs = bdrv_next(bs))) {
3038         if (bdrv_can_snapshot(bs)) {
3039             bs_snapshots = bs;
3040             return bs;
3041         }
3042     }
3043     return NULL;
3044 }
3045 
3046 int bdrv_snapshot_create(BlockDriverState *bs,
3047                          QEMUSnapshotInfo *sn_info)
3048 {
3049     BlockDriver *drv = bs->drv;
3050     if (!drv)
3051         return -ENOMEDIUM;
3052     if (drv->bdrv_snapshot_create)
3053         return drv->bdrv_snapshot_create(bs, sn_info);
3054     if (bs->file)
3055         return bdrv_snapshot_create(bs->file, sn_info);
3056     return -ENOTSUP;
3057 }
3058 
3059 int bdrv_snapshot_goto(BlockDriverState *bs,
3060                        const char *snapshot_id)
3061 {
3062     BlockDriver *drv = bs->drv;
3063     int ret, open_ret;
3064 
3065     if (!drv)
3066         return -ENOMEDIUM;
3067     if (drv->bdrv_snapshot_goto)
3068         return drv->bdrv_snapshot_goto(bs, snapshot_id);
3069 
3070     if (bs->file) {
3071         drv->bdrv_close(bs);
3072         ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3073         open_ret = drv->bdrv_open(bs, bs->open_flags);
3074         if (open_ret < 0) {
3075             bdrv_delete(bs->file);
3076             bs->drv = NULL;
3077             return open_ret;
3078         }
3079         return ret;
3080     }
3081 
3082     return -ENOTSUP;
3083 }
3084 
3085 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3086 {
3087     BlockDriver *drv = bs->drv;
3088     if (!drv)
3089         return -ENOMEDIUM;
3090     if (drv->bdrv_snapshot_delete)
3091         return drv->bdrv_snapshot_delete(bs, snapshot_id);
3092     if (bs->file)
3093         return bdrv_snapshot_delete(bs->file, snapshot_id);
3094     return -ENOTSUP;
3095 }
3096 
3097 int bdrv_snapshot_list(BlockDriverState *bs,
3098                        QEMUSnapshotInfo **psn_info)
3099 {
3100     BlockDriver *drv = bs->drv;
3101     if (!drv)
3102         return -ENOMEDIUM;
3103     if (drv->bdrv_snapshot_list)
3104         return drv->bdrv_snapshot_list(bs, psn_info);
3105     if (bs->file)
3106         return bdrv_snapshot_list(bs->file, psn_info);
3107     return -ENOTSUP;
3108 }
3109 
3110 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3111         const char *snapshot_name)
3112 {
3113     BlockDriver *drv = bs->drv;
3114     if (!drv) {
3115         return -ENOMEDIUM;
3116     }
3117     if (!bs->read_only) {
3118         return -EINVAL;
3119     }
3120     if (drv->bdrv_snapshot_load_tmp) {
3121         return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3122     }
3123     return -ENOTSUP;
3124 }
3125 
3126 /* backing_file can either be relative, or absolute, or a protocol.  If it is
3127  * relative, it must be relative to the chain.  So, passing in bs->filename
3128  * from a BDS as backing_file should not be done, as that may be relative to
3129  * the CWD rather than the chain. */
3130 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3131         const char *backing_file)
3132 {
3133     char *filename_full = NULL;
3134     char *backing_file_full = NULL;
3135     char *filename_tmp = NULL;
3136     int is_protocol = 0;
3137     BlockDriverState *curr_bs = NULL;
3138     BlockDriverState *retval = NULL;
3139 
3140     if (!bs || !bs->drv || !backing_file) {
3141         return NULL;
3142     }
3143 
3144     filename_full     = g_malloc(PATH_MAX);
3145     backing_file_full = g_malloc(PATH_MAX);
3146     filename_tmp      = g_malloc(PATH_MAX);
3147 
3148     is_protocol = path_has_protocol(backing_file);
3149 
3150     for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3151 
3152         /* If either of the filename paths is actually a protocol, then
3153          * compare unmodified paths; otherwise make paths relative */
3154         if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3155             if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3156                 retval = curr_bs->backing_hd;
3157                 break;
3158             }
3159         } else {
3160             /* If not an absolute filename path, make it relative to the current
3161              * image's filename path */
3162             path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3163                          backing_file);
3164 
3165             /* We are going to compare absolute pathnames */
3166             if (!realpath(filename_tmp, filename_full)) {
3167                 continue;
3168             }
3169 
3170             /* We need to make sure the backing filename we are comparing against
3171              * is relative to the current image filename (or absolute) */
3172             path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3173                          curr_bs->backing_file);
3174 
3175             if (!realpath(filename_tmp, backing_file_full)) {
3176                 continue;
3177             }
3178 
3179             if (strcmp(backing_file_full, filename_full) == 0) {
3180                 retval = curr_bs->backing_hd;
3181                 break;
3182             }
3183         }
3184     }
3185 
3186     g_free(filename_full);
3187     g_free(backing_file_full);
3188     g_free(filename_tmp);
3189     return retval;
3190 }
3191 
3192 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3193 {
3194     if (!bs->drv) {
3195         return 0;
3196     }
3197 
3198     if (!bs->backing_hd) {
3199         return 0;
3200     }
3201 
3202     return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3203 }
3204 
3205 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3206 {
3207     BlockDriverState *curr_bs = NULL;
3208 
3209     if (!bs) {
3210         return NULL;
3211     }
3212 
3213     curr_bs = bs;
3214 
3215     while (curr_bs->backing_hd) {
3216         curr_bs = curr_bs->backing_hd;
3217     }
3218     return curr_bs;
3219 }
3220 
3221 #define NB_SUFFIXES 4
3222 
3223 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3224 {
3225     static const char suffixes[NB_SUFFIXES] = "KMGT";
3226     int64_t base;
3227     int i;
3228 
3229     if (size <= 999) {
3230         snprintf(buf, buf_size, "%" PRId64, size);
3231     } else {
3232         base = 1024;
3233         for(i = 0; i < NB_SUFFIXES; i++) {
3234             if (size < (10 * base)) {
3235                 snprintf(buf, buf_size, "%0.1f%c",
3236                          (double)size / base,
3237                          suffixes[i]);
3238                 break;
3239             } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3240                 snprintf(buf, buf_size, "%" PRId64 "%c",
3241                          ((size + (base >> 1)) / base),
3242                          suffixes[i]);
3243                 break;
3244             }
3245             base = base * 1024;
3246         }
3247     }
3248     return buf;
3249 }
3250 
3251 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3252 {
3253     char buf1[128], date_buf[128], clock_buf[128];
3254 #ifdef _WIN32
3255     struct tm *ptm;
3256 #else
3257     struct tm tm;
3258 #endif
3259     time_t ti;
3260     int64_t secs;
3261 
3262     if (!sn) {
3263         snprintf(buf, buf_size,
3264                  "%-10s%-20s%7s%20s%15s",
3265                  "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3266     } else {
3267         ti = sn->date_sec;
3268 #ifdef _WIN32
3269         ptm = localtime(&ti);
3270         strftime(date_buf, sizeof(date_buf),
3271                  "%Y-%m-%d %H:%M:%S", ptm);
3272 #else
3273         localtime_r(&ti, &tm);
3274         strftime(date_buf, sizeof(date_buf),
3275                  "%Y-%m-%d %H:%M:%S", &tm);
3276 #endif
3277         secs = sn->vm_clock_nsec / 1000000000;
3278         snprintf(clock_buf, sizeof(clock_buf),
3279                  "%02d:%02d:%02d.%03d",
3280                  (int)(secs / 3600),
3281                  (int)((secs / 60) % 60),
3282                  (int)(secs % 60),
3283                  (int)((sn->vm_clock_nsec / 1000000) % 1000));
3284         snprintf(buf, buf_size,
3285                  "%-10s%-20s%7s%20s%15s",
3286                  sn->id_str, sn->name,
3287                  get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3288                  date_buf,
3289                  clock_buf);
3290     }
3291     return buf;
3292 }
3293 
3294 /**************************************************************/
3295 /* async I/Os */
3296 
3297 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3298                                  QEMUIOVector *qiov, int nb_sectors,
3299                                  BlockDriverCompletionFunc *cb, void *opaque)
3300 {
3301     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3302 
3303     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3304                                  cb, opaque, false);
3305 }
3306 
3307 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3308                                   QEMUIOVector *qiov, int nb_sectors,
3309                                   BlockDriverCompletionFunc *cb, void *opaque)
3310 {
3311     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3312 
3313     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3314                                  cb, opaque, true);
3315 }
3316 
3317 
3318 typedef struct MultiwriteCB {
3319     int error;
3320     int num_requests;
3321     int num_callbacks;
3322     struct {
3323         BlockDriverCompletionFunc *cb;
3324         void *opaque;
3325         QEMUIOVector *free_qiov;
3326     } callbacks[];
3327 } MultiwriteCB;
3328 
3329 static void multiwrite_user_cb(MultiwriteCB *mcb)
3330 {
3331     int i;
3332 
3333     for (i = 0; i < mcb->num_callbacks; i++) {
3334         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3335         if (mcb->callbacks[i].free_qiov) {
3336             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3337         }
3338         g_free(mcb->callbacks[i].free_qiov);
3339     }
3340 }
3341 
3342 static void multiwrite_cb(void *opaque, int ret)
3343 {
3344     MultiwriteCB *mcb = opaque;
3345 
3346     trace_multiwrite_cb(mcb, ret);
3347 
3348     if (ret < 0 && !mcb->error) {
3349         mcb->error = ret;
3350     }
3351 
3352     mcb->num_requests--;
3353     if (mcb->num_requests == 0) {
3354         multiwrite_user_cb(mcb);
3355         g_free(mcb);
3356     }
3357 }
3358 
3359 static int multiwrite_req_compare(const void *a, const void *b)
3360 {
3361     const BlockRequest *req1 = a, *req2 = b;
3362 
3363     /*
3364      * Note that we can't simply subtract req2->sector from req1->sector
3365      * here as that could overflow the return value.
3366      */
3367     if (req1->sector > req2->sector) {
3368         return 1;
3369     } else if (req1->sector < req2->sector) {
3370         return -1;
3371     } else {
3372         return 0;
3373     }
3374 }
3375 
3376 /*
3377  * Takes a bunch of requests and tries to merge them. Returns the number of
3378  * requests that remain after merging.
3379  */
3380 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3381     int num_reqs, MultiwriteCB *mcb)
3382 {
3383     int i, outidx;
3384 
3385     // Sort requests by start sector
3386     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3387 
3388     // Check if adjacent requests touch the same clusters. If so, combine them,
3389     // filling up gaps with zero sectors.
3390     outidx = 0;
3391     for (i = 1; i < num_reqs; i++) {
3392         int merge = 0;
3393         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3394 
3395         // Handle exactly sequential writes and overlapping writes.
3396         if (reqs[i].sector <= oldreq_last) {
3397             merge = 1;
3398         }
3399 
3400         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3401             merge = 0;
3402         }
3403 
3404         if (merge) {
3405             size_t size;
3406             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3407             qemu_iovec_init(qiov,
3408                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3409 
3410             // Add the first request to the merged one. If the requests are
3411             // overlapping, drop the last sectors of the first request.
3412             size = (reqs[i].sector - reqs[outidx].sector) << 9;
3413             qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3414 
3415             // We should need to add any zeros between the two requests
3416             assert (reqs[i].sector <= oldreq_last);
3417 
3418             // Add the second request
3419             qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3420 
3421             reqs[outidx].nb_sectors = qiov->size >> 9;
3422             reqs[outidx].qiov = qiov;
3423 
3424             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3425         } else {
3426             outidx++;
3427             reqs[outidx].sector     = reqs[i].sector;
3428             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3429             reqs[outidx].qiov       = reqs[i].qiov;
3430         }
3431     }
3432 
3433     return outidx + 1;
3434 }
3435 
3436 /*
3437  * Submit multiple AIO write requests at once.
3438  *
3439  * On success, the function returns 0 and all requests in the reqs array have
3440  * been submitted. In error case this function returns -1, and any of the
3441  * requests may or may not be submitted yet. In particular, this means that the
3442  * callback will be called for some of the requests, for others it won't. The
3443  * caller must check the error field of the BlockRequest to wait for the right
3444  * callbacks (if error != 0, no callback will be called).
3445  *
3446  * The implementation may modify the contents of the reqs array, e.g. to merge
3447  * requests. However, the fields opaque and error are left unmodified as they
3448  * are used to signal failure for a single request to the caller.
3449  */
3450 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3451 {
3452     MultiwriteCB *mcb;
3453     int i;
3454 
3455     /* don't submit writes if we don't have a medium */
3456     if (bs->drv == NULL) {
3457         for (i = 0; i < num_reqs; i++) {
3458             reqs[i].error = -ENOMEDIUM;
3459         }
3460         return -1;
3461     }
3462 
3463     if (num_reqs == 0) {
3464         return 0;
3465     }
3466 
3467     // Create MultiwriteCB structure
3468     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3469     mcb->num_requests = 0;
3470     mcb->num_callbacks = num_reqs;
3471 
3472     for (i = 0; i < num_reqs; i++) {
3473         mcb->callbacks[i].cb = reqs[i].cb;
3474         mcb->callbacks[i].opaque = reqs[i].opaque;
3475     }
3476 
3477     // Check for mergable requests
3478     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3479 
3480     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3481 
3482     /* Run the aio requests. */
3483     mcb->num_requests = num_reqs;
3484     for (i = 0; i < num_reqs; i++) {
3485         bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3486             reqs[i].nb_sectors, multiwrite_cb, mcb);
3487     }
3488 
3489     return 0;
3490 }
3491 
3492 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3493 {
3494     acb->pool->cancel(acb);
3495 }
3496 
3497 /* block I/O throttling */
3498 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3499                  bool is_write, double elapsed_time, uint64_t *wait)
3500 {
3501     uint64_t bps_limit = 0;
3502     double   bytes_limit, bytes_base, bytes_res;
3503     double   slice_time, wait_time;
3504 
3505     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3506         bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3507     } else if (bs->io_limits.bps[is_write]) {
3508         bps_limit = bs->io_limits.bps[is_write];
3509     } else {
3510         if (wait) {
3511             *wait = 0;
3512         }
3513 
3514         return false;
3515     }
3516 
3517     slice_time = bs->slice_end - bs->slice_start;
3518     slice_time /= (NANOSECONDS_PER_SECOND);
3519     bytes_limit = bps_limit * slice_time;
3520     bytes_base  = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3521     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3522         bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3523     }
3524 
3525     /* bytes_base: the bytes of data which have been read/written; and
3526      *             it is obtained from the history statistic info.
3527      * bytes_res: the remaining bytes of data which need to be read/written.
3528      * (bytes_base + bytes_res) / bps_limit: used to calcuate
3529      *             the total time for completing reading/writting all data.
3530      */
3531     bytes_res   = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3532 
3533     if (bytes_base + bytes_res <= bytes_limit) {
3534         if (wait) {
3535             *wait = 0;
3536         }
3537 
3538         return false;
3539     }
3540 
3541     /* Calc approx time to dispatch */
3542     wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3543 
3544     /* When the I/O rate at runtime exceeds the limits,
3545      * bs->slice_end need to be extended in order that the current statistic
3546      * info can be kept until the timer fire, so it is increased and tuned
3547      * based on the result of experiment.
3548      */
3549     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3550     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3551     if (wait) {
3552         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3553     }
3554 
3555     return true;
3556 }
3557 
3558 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3559                              double elapsed_time, uint64_t *wait)
3560 {
3561     uint64_t iops_limit = 0;
3562     double   ios_limit, ios_base;
3563     double   slice_time, wait_time;
3564 
3565     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3566         iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3567     } else if (bs->io_limits.iops[is_write]) {
3568         iops_limit = bs->io_limits.iops[is_write];
3569     } else {
3570         if (wait) {
3571             *wait = 0;
3572         }
3573 
3574         return false;
3575     }
3576 
3577     slice_time = bs->slice_end - bs->slice_start;
3578     slice_time /= (NANOSECONDS_PER_SECOND);
3579     ios_limit  = iops_limit * slice_time;
3580     ios_base   = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3581     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3582         ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3583     }
3584 
3585     if (ios_base + 1 <= ios_limit) {
3586         if (wait) {
3587             *wait = 0;
3588         }
3589 
3590         return false;
3591     }
3592 
3593     /* Calc approx time to dispatch */
3594     wait_time = (ios_base + 1) / iops_limit;
3595     if (wait_time > elapsed_time) {
3596         wait_time = wait_time - elapsed_time;
3597     } else {
3598         wait_time = 0;
3599     }
3600 
3601     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3602     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3603     if (wait) {
3604         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3605     }
3606 
3607     return true;
3608 }
3609 
3610 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3611                            bool is_write, int64_t *wait)
3612 {
3613     int64_t  now, max_wait;
3614     uint64_t bps_wait = 0, iops_wait = 0;
3615     double   elapsed_time;
3616     int      bps_ret, iops_ret;
3617 
3618     now = qemu_get_clock_ns(vm_clock);
3619     if ((bs->slice_start < now)
3620         && (bs->slice_end > now)) {
3621         bs->slice_end = now + bs->slice_time;
3622     } else {
3623         bs->slice_time  =  5 * BLOCK_IO_SLICE_TIME;
3624         bs->slice_start = now;
3625         bs->slice_end   = now + bs->slice_time;
3626 
3627         bs->io_base.bytes[is_write]  = bs->nr_bytes[is_write];
3628         bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3629 
3630         bs->io_base.ios[is_write]    = bs->nr_ops[is_write];
3631         bs->io_base.ios[!is_write]   = bs->nr_ops[!is_write];
3632     }
3633 
3634     elapsed_time  = now - bs->slice_start;
3635     elapsed_time  /= (NANOSECONDS_PER_SECOND);
3636 
3637     bps_ret  = bdrv_exceed_bps_limits(bs, nb_sectors,
3638                                       is_write, elapsed_time, &bps_wait);
3639     iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3640                                       elapsed_time, &iops_wait);
3641     if (bps_ret || iops_ret) {
3642         max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3643         if (wait) {
3644             *wait = max_wait;
3645         }
3646 
3647         now = qemu_get_clock_ns(vm_clock);
3648         if (bs->slice_end < now + max_wait) {
3649             bs->slice_end = now + max_wait;
3650         }
3651 
3652         return true;
3653     }
3654 
3655     if (wait) {
3656         *wait = 0;
3657     }
3658 
3659     return false;
3660 }
3661 
3662 /**************************************************************/
3663 /* async block device emulation */
3664 
3665 typedef struct BlockDriverAIOCBSync {
3666     BlockDriverAIOCB common;
3667     QEMUBH *bh;
3668     int ret;
3669     /* vector translation state */
3670     QEMUIOVector *qiov;
3671     uint8_t *bounce;
3672     int is_write;
3673 } BlockDriverAIOCBSync;
3674 
3675 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3676 {
3677     BlockDriverAIOCBSync *acb =
3678         container_of(blockacb, BlockDriverAIOCBSync, common);
3679     qemu_bh_delete(acb->bh);
3680     acb->bh = NULL;
3681     qemu_aio_release(acb);
3682 }
3683 
3684 static AIOPool bdrv_em_aio_pool = {
3685     .aiocb_size         = sizeof(BlockDriverAIOCBSync),
3686     .cancel             = bdrv_aio_cancel_em,
3687 };
3688 
3689 static void bdrv_aio_bh_cb(void *opaque)
3690 {
3691     BlockDriverAIOCBSync *acb = opaque;
3692 
3693     if (!acb->is_write)
3694         qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3695     qemu_vfree(acb->bounce);
3696     acb->common.cb(acb->common.opaque, acb->ret);
3697     qemu_bh_delete(acb->bh);
3698     acb->bh = NULL;
3699     qemu_aio_release(acb);
3700 }
3701 
3702 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3703                                             int64_t sector_num,
3704                                             QEMUIOVector *qiov,
3705                                             int nb_sectors,
3706                                             BlockDriverCompletionFunc *cb,
3707                                             void *opaque,
3708                                             int is_write)
3709 
3710 {
3711     BlockDriverAIOCBSync *acb;
3712 
3713     acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3714     acb->is_write = is_write;
3715     acb->qiov = qiov;
3716     acb->bounce = qemu_blockalign(bs, qiov->size);
3717     acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3718 
3719     if (is_write) {
3720         qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3721         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3722     } else {
3723         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3724     }
3725 
3726     qemu_bh_schedule(acb->bh);
3727 
3728     return &acb->common;
3729 }
3730 
3731 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3732         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3733         BlockDriverCompletionFunc *cb, void *opaque)
3734 {
3735     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3736 }
3737 
3738 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3739         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3740         BlockDriverCompletionFunc *cb, void *opaque)
3741 {
3742     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3743 }
3744 
3745 
3746 typedef struct BlockDriverAIOCBCoroutine {
3747     BlockDriverAIOCB common;
3748     BlockRequest req;
3749     bool is_write;
3750     QEMUBH* bh;
3751 } BlockDriverAIOCBCoroutine;
3752 
3753 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3754 {
3755     qemu_aio_flush();
3756 }
3757 
3758 static AIOPool bdrv_em_co_aio_pool = {
3759     .aiocb_size         = sizeof(BlockDriverAIOCBCoroutine),
3760     .cancel             = bdrv_aio_co_cancel_em,
3761 };
3762 
3763 static void bdrv_co_em_bh(void *opaque)
3764 {
3765     BlockDriverAIOCBCoroutine *acb = opaque;
3766 
3767     acb->common.cb(acb->common.opaque, acb->req.error);
3768     qemu_bh_delete(acb->bh);
3769     qemu_aio_release(acb);
3770 }
3771 
3772 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3773 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3774 {
3775     BlockDriverAIOCBCoroutine *acb = opaque;
3776     BlockDriverState *bs = acb->common.bs;
3777 
3778     if (!acb->is_write) {
3779         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3780             acb->req.nb_sectors, acb->req.qiov, 0);
3781     } else {
3782         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3783             acb->req.nb_sectors, acb->req.qiov, 0);
3784     }
3785 
3786     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3787     qemu_bh_schedule(acb->bh);
3788 }
3789 
3790 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3791                                                int64_t sector_num,
3792                                                QEMUIOVector *qiov,
3793                                                int nb_sectors,
3794                                                BlockDriverCompletionFunc *cb,
3795                                                void *opaque,
3796                                                bool is_write)
3797 {
3798     Coroutine *co;
3799     BlockDriverAIOCBCoroutine *acb;
3800 
3801     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3802     acb->req.sector = sector_num;
3803     acb->req.nb_sectors = nb_sectors;
3804     acb->req.qiov = qiov;
3805     acb->is_write = is_write;
3806 
3807     co = qemu_coroutine_create(bdrv_co_do_rw);
3808     qemu_coroutine_enter(co, acb);
3809 
3810     return &acb->common;
3811 }
3812 
3813 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3814 {
3815     BlockDriverAIOCBCoroutine *acb = opaque;
3816     BlockDriverState *bs = acb->common.bs;
3817 
3818     acb->req.error = bdrv_co_flush(bs);
3819     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3820     qemu_bh_schedule(acb->bh);
3821 }
3822 
3823 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3824         BlockDriverCompletionFunc *cb, void *opaque)
3825 {
3826     trace_bdrv_aio_flush(bs, opaque);
3827 
3828     Coroutine *co;
3829     BlockDriverAIOCBCoroutine *acb;
3830 
3831     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3832     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3833     qemu_coroutine_enter(co, acb);
3834 
3835     return &acb->common;
3836 }
3837 
3838 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3839 {
3840     BlockDriverAIOCBCoroutine *acb = opaque;
3841     BlockDriverState *bs = acb->common.bs;
3842 
3843     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3844     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3845     qemu_bh_schedule(acb->bh);
3846 }
3847 
3848 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3849         int64_t sector_num, int nb_sectors,
3850         BlockDriverCompletionFunc *cb, void *opaque)
3851 {
3852     Coroutine *co;
3853     BlockDriverAIOCBCoroutine *acb;
3854 
3855     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3856 
3857     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3858     acb->req.sector = sector_num;
3859     acb->req.nb_sectors = nb_sectors;
3860     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3861     qemu_coroutine_enter(co, acb);
3862 
3863     return &acb->common;
3864 }
3865 
3866 void bdrv_init(void)
3867 {
3868     module_call_init(MODULE_INIT_BLOCK);
3869 }
3870 
3871 void bdrv_init_with_whitelist(void)
3872 {
3873     use_bdrv_whitelist = 1;
3874     bdrv_init();
3875 }
3876 
3877 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3878                    BlockDriverCompletionFunc *cb, void *opaque)
3879 {
3880     BlockDriverAIOCB *acb;
3881 
3882     if (pool->free_aiocb) {
3883         acb = pool->free_aiocb;
3884         pool->free_aiocb = acb->next;
3885     } else {
3886         acb = g_malloc0(pool->aiocb_size);
3887         acb->pool = pool;
3888     }
3889     acb->bs = bs;
3890     acb->cb = cb;
3891     acb->opaque = opaque;
3892     return acb;
3893 }
3894 
3895 void qemu_aio_release(void *p)
3896 {
3897     BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3898     AIOPool *pool = acb->pool;
3899     acb->next = pool->free_aiocb;
3900     pool->free_aiocb = acb;
3901 }
3902 
3903 /**************************************************************/
3904 /* Coroutine block device emulation */
3905 
3906 typedef struct CoroutineIOCompletion {
3907     Coroutine *coroutine;
3908     int ret;
3909 } CoroutineIOCompletion;
3910 
3911 static void bdrv_co_io_em_complete(void *opaque, int ret)
3912 {
3913     CoroutineIOCompletion *co = opaque;
3914 
3915     co->ret = ret;
3916     qemu_coroutine_enter(co->coroutine, NULL);
3917 }
3918 
3919 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3920                                       int nb_sectors, QEMUIOVector *iov,
3921                                       bool is_write)
3922 {
3923     CoroutineIOCompletion co = {
3924         .coroutine = qemu_coroutine_self(),
3925     };
3926     BlockDriverAIOCB *acb;
3927 
3928     if (is_write) {
3929         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3930                                        bdrv_co_io_em_complete, &co);
3931     } else {
3932         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3933                                       bdrv_co_io_em_complete, &co);
3934     }
3935 
3936     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3937     if (!acb) {
3938         return -EIO;
3939     }
3940     qemu_coroutine_yield();
3941 
3942     return co.ret;
3943 }
3944 
3945 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3946                                          int64_t sector_num, int nb_sectors,
3947                                          QEMUIOVector *iov)
3948 {
3949     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3950 }
3951 
3952 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3953                                          int64_t sector_num, int nb_sectors,
3954                                          QEMUIOVector *iov)
3955 {
3956     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3957 }
3958 
3959 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3960 {
3961     RwCo *rwco = opaque;
3962 
3963     rwco->ret = bdrv_co_flush(rwco->bs);
3964 }
3965 
3966 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3967 {
3968     int ret;
3969 
3970     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3971         return 0;
3972     }
3973 
3974     /* Write back cached data to the OS even with cache=unsafe */
3975     if (bs->drv->bdrv_co_flush_to_os) {
3976         ret = bs->drv->bdrv_co_flush_to_os(bs);
3977         if (ret < 0) {
3978             return ret;
3979         }
3980     }
3981 
3982     /* But don't actually force it to the disk with cache=unsafe */
3983     if (bs->open_flags & BDRV_O_NO_FLUSH) {
3984         goto flush_parent;
3985     }
3986 
3987     if (bs->drv->bdrv_co_flush_to_disk) {
3988         ret = bs->drv->bdrv_co_flush_to_disk(bs);
3989     } else if (bs->drv->bdrv_aio_flush) {
3990         BlockDriverAIOCB *acb;
3991         CoroutineIOCompletion co = {
3992             .coroutine = qemu_coroutine_self(),
3993         };
3994 
3995         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3996         if (acb == NULL) {
3997             ret = -EIO;
3998         } else {
3999             qemu_coroutine_yield();
4000             ret = co.ret;
4001         }
4002     } else {
4003         /*
4004          * Some block drivers always operate in either writethrough or unsafe
4005          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4006          * know how the server works (because the behaviour is hardcoded or
4007          * depends on server-side configuration), so we can't ensure that
4008          * everything is safe on disk. Returning an error doesn't work because
4009          * that would break guests even if the server operates in writethrough
4010          * mode.
4011          *
4012          * Let's hope the user knows what he's doing.
4013          */
4014         ret = 0;
4015     }
4016     if (ret < 0) {
4017         return ret;
4018     }
4019 
4020     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
4021      * in the case of cache=unsafe, so there are no useless flushes.
4022      */
4023 flush_parent:
4024     return bdrv_co_flush(bs->file);
4025 }
4026 
4027 void bdrv_invalidate_cache(BlockDriverState *bs)
4028 {
4029     if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4030         bs->drv->bdrv_invalidate_cache(bs);
4031     }
4032 }
4033 
4034 void bdrv_invalidate_cache_all(void)
4035 {
4036     BlockDriverState *bs;
4037 
4038     QTAILQ_FOREACH(bs, &bdrv_states, list) {
4039         bdrv_invalidate_cache(bs);
4040     }
4041 }
4042 
4043 void bdrv_clear_incoming_migration_all(void)
4044 {
4045     BlockDriverState *bs;
4046 
4047     QTAILQ_FOREACH(bs, &bdrv_states, list) {
4048         bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4049     }
4050 }
4051 
4052 int bdrv_flush(BlockDriverState *bs)
4053 {
4054     Coroutine *co;
4055     RwCo rwco = {
4056         .bs = bs,
4057         .ret = NOT_DONE,
4058     };
4059 
4060     if (qemu_in_coroutine()) {
4061         /* Fast-path if already in coroutine context */
4062         bdrv_flush_co_entry(&rwco);
4063     } else {
4064         co = qemu_coroutine_create(bdrv_flush_co_entry);
4065         qemu_coroutine_enter(co, &rwco);
4066         while (rwco.ret == NOT_DONE) {
4067             qemu_aio_wait();
4068         }
4069     }
4070 
4071     return rwco.ret;
4072 }
4073 
4074 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4075 {
4076     RwCo *rwco = opaque;
4077 
4078     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4079 }
4080 
4081 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4082                                  int nb_sectors)
4083 {
4084     if (!bs->drv) {
4085         return -ENOMEDIUM;
4086     } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4087         return -EIO;
4088     } else if (bs->read_only) {
4089         return -EROFS;
4090     } else if (bs->drv->bdrv_co_discard) {
4091         return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4092     } else if (bs->drv->bdrv_aio_discard) {
4093         BlockDriverAIOCB *acb;
4094         CoroutineIOCompletion co = {
4095             .coroutine = qemu_coroutine_self(),
4096         };
4097 
4098         acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4099                                         bdrv_co_io_em_complete, &co);
4100         if (acb == NULL) {
4101             return -EIO;
4102         } else {
4103             qemu_coroutine_yield();
4104             return co.ret;
4105         }
4106     } else {
4107         return 0;
4108     }
4109 }
4110 
4111 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4112 {
4113     Coroutine *co;
4114     RwCo rwco = {
4115         .bs = bs,
4116         .sector_num = sector_num,
4117         .nb_sectors = nb_sectors,
4118         .ret = NOT_DONE,
4119     };
4120 
4121     if (qemu_in_coroutine()) {
4122         /* Fast-path if already in coroutine context */
4123         bdrv_discard_co_entry(&rwco);
4124     } else {
4125         co = qemu_coroutine_create(bdrv_discard_co_entry);
4126         qemu_coroutine_enter(co, &rwco);
4127         while (rwco.ret == NOT_DONE) {
4128             qemu_aio_wait();
4129         }
4130     }
4131 
4132     return rwco.ret;
4133 }
4134 
4135 /**************************************************************/
4136 /* removable device support */
4137 
4138 /**
4139  * Return TRUE if the media is present
4140  */
4141 int bdrv_is_inserted(BlockDriverState *bs)
4142 {
4143     BlockDriver *drv = bs->drv;
4144 
4145     if (!drv)
4146         return 0;
4147     if (!drv->bdrv_is_inserted)
4148         return 1;
4149     return drv->bdrv_is_inserted(bs);
4150 }
4151 
4152 /**
4153  * Return whether the media changed since the last call to this
4154  * function, or -ENOTSUP if we don't know.  Most drivers don't know.
4155  */
4156 int bdrv_media_changed(BlockDriverState *bs)
4157 {
4158     BlockDriver *drv = bs->drv;
4159 
4160     if (drv && drv->bdrv_media_changed) {
4161         return drv->bdrv_media_changed(bs);
4162     }
4163     return -ENOTSUP;
4164 }
4165 
4166 /**
4167  * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4168  */
4169 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4170 {
4171     BlockDriver *drv = bs->drv;
4172 
4173     if (drv && drv->bdrv_eject) {
4174         drv->bdrv_eject(bs, eject_flag);
4175     }
4176 
4177     if (bs->device_name[0] != '\0') {
4178         bdrv_emit_qmp_eject_event(bs, eject_flag);
4179     }
4180 }
4181 
4182 /**
4183  * Lock or unlock the media (if it is locked, the user won't be able
4184  * to eject it manually).
4185  */
4186 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4187 {
4188     BlockDriver *drv = bs->drv;
4189 
4190     trace_bdrv_lock_medium(bs, locked);
4191 
4192     if (drv && drv->bdrv_lock_medium) {
4193         drv->bdrv_lock_medium(bs, locked);
4194     }
4195 }
4196 
4197 /* needed for generic scsi interface */
4198 
4199 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4200 {
4201     BlockDriver *drv = bs->drv;
4202 
4203     if (drv && drv->bdrv_ioctl)
4204         return drv->bdrv_ioctl(bs, req, buf);
4205     return -ENOTSUP;
4206 }
4207 
4208 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4209         unsigned long int req, void *buf,
4210         BlockDriverCompletionFunc *cb, void *opaque)
4211 {
4212     BlockDriver *drv = bs->drv;
4213 
4214     if (drv && drv->bdrv_aio_ioctl)
4215         return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4216     return NULL;
4217 }
4218 
4219 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4220 {
4221     bs->buffer_alignment = align;
4222 }
4223 
4224 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4225 {
4226     return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4227 }
4228 
4229 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
4230 {
4231     int64_t bitmap_size;
4232 
4233     bs->dirty_count = 0;
4234     if (enable) {
4235         if (!bs->dirty_bitmap) {
4236             bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
4237                     BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG - 1;
4238             bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * BITS_PER_LONG;
4239 
4240             bs->dirty_bitmap = g_new0(unsigned long, bitmap_size);
4241         }
4242     } else {
4243         if (bs->dirty_bitmap) {
4244             g_free(bs->dirty_bitmap);
4245             bs->dirty_bitmap = NULL;
4246         }
4247     }
4248 }
4249 
4250 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4251 {
4252     int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
4253 
4254     if (bs->dirty_bitmap &&
4255         (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
4256         return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
4257             (1UL << (chunk % (sizeof(unsigned long) * 8))));
4258     } else {
4259         return 0;
4260     }
4261 }
4262 
4263 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4264                       int nr_sectors)
4265 {
4266     set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
4267 }
4268 
4269 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4270 {
4271     return bs->dirty_count;
4272 }
4273 
4274 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4275 {
4276     assert(bs->in_use != in_use);
4277     bs->in_use = in_use;
4278 }
4279 
4280 int bdrv_in_use(BlockDriverState *bs)
4281 {
4282     return bs->in_use;
4283 }
4284 
4285 void bdrv_iostatus_enable(BlockDriverState *bs)
4286 {
4287     bs->iostatus_enabled = true;
4288     bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4289 }
4290 
4291 /* The I/O status is only enabled if the drive explicitly
4292  * enables it _and_ the VM is configured to stop on errors */
4293 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4294 {
4295     return (bs->iostatus_enabled &&
4296            (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4297             bs->on_write_error == BLOCKDEV_ON_ERROR_STOP   ||
4298             bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4299 }
4300 
4301 void bdrv_iostatus_disable(BlockDriverState *bs)
4302 {
4303     bs->iostatus_enabled = false;
4304 }
4305 
4306 void bdrv_iostatus_reset(BlockDriverState *bs)
4307 {
4308     if (bdrv_iostatus_is_enabled(bs)) {
4309         bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4310     }
4311 }
4312 
4313 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4314 {
4315     assert(bdrv_iostatus_is_enabled(bs));
4316     if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4317         bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4318                                          BLOCK_DEVICE_IO_STATUS_FAILED;
4319     }
4320 }
4321 
4322 void
4323 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4324         enum BlockAcctType type)
4325 {
4326     assert(type < BDRV_MAX_IOTYPE);
4327 
4328     cookie->bytes = bytes;
4329     cookie->start_time_ns = get_clock();
4330     cookie->type = type;
4331 }
4332 
4333 void
4334 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4335 {
4336     assert(cookie->type < BDRV_MAX_IOTYPE);
4337 
4338     bs->nr_bytes[cookie->type] += cookie->bytes;
4339     bs->nr_ops[cookie->type]++;
4340     bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4341 }
4342 
4343 int bdrv_img_create(const char *filename, const char *fmt,
4344                     const char *base_filename, const char *base_fmt,
4345                     char *options, uint64_t img_size, int flags)
4346 {
4347     QEMUOptionParameter *param = NULL, *create_options = NULL;
4348     QEMUOptionParameter *backing_fmt, *backing_file, *size;
4349     BlockDriverState *bs = NULL;
4350     BlockDriver *drv, *proto_drv;
4351     BlockDriver *backing_drv = NULL;
4352     int ret = 0;
4353 
4354     /* Find driver and parse its options */
4355     drv = bdrv_find_format(fmt);
4356     if (!drv) {
4357         error_report("Unknown file format '%s'", fmt);
4358         ret = -EINVAL;
4359         goto out;
4360     }
4361 
4362     proto_drv = bdrv_find_protocol(filename);
4363     if (!proto_drv) {
4364         error_report("Unknown protocol '%s'", filename);
4365         ret = -EINVAL;
4366         goto out;
4367     }
4368 
4369     create_options = append_option_parameters(create_options,
4370                                               drv->create_options);
4371     create_options = append_option_parameters(create_options,
4372                                               proto_drv->create_options);
4373 
4374     /* Create parameter list with default values */
4375     param = parse_option_parameters("", create_options, param);
4376 
4377     set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4378 
4379     /* Parse -o options */
4380     if (options) {
4381         param = parse_option_parameters(options, create_options, param);
4382         if (param == NULL) {
4383             error_report("Invalid options for file format '%s'.", fmt);
4384             ret = -EINVAL;
4385             goto out;
4386         }
4387     }
4388 
4389     if (base_filename) {
4390         if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4391                                  base_filename)) {
4392             error_report("Backing file not supported for file format '%s'",
4393                          fmt);
4394             ret = -EINVAL;
4395             goto out;
4396         }
4397     }
4398 
4399     if (base_fmt) {
4400         if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4401             error_report("Backing file format not supported for file "
4402                          "format '%s'", fmt);
4403             ret = -EINVAL;
4404             goto out;
4405         }
4406     }
4407 
4408     backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4409     if (backing_file && backing_file->value.s) {
4410         if (!strcmp(filename, backing_file->value.s)) {
4411             error_report("Error: Trying to create an image with the "
4412                          "same filename as the backing file");
4413             ret = -EINVAL;
4414             goto out;
4415         }
4416     }
4417 
4418     backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4419     if (backing_fmt && backing_fmt->value.s) {
4420         backing_drv = bdrv_find_format(backing_fmt->value.s);
4421         if (!backing_drv) {
4422             error_report("Unknown backing file format '%s'",
4423                          backing_fmt->value.s);
4424             ret = -EINVAL;
4425             goto out;
4426         }
4427     }
4428 
4429     // The size for the image must always be specified, with one exception:
4430     // If we are using a backing file, we can obtain the size from there
4431     size = get_option_parameter(param, BLOCK_OPT_SIZE);
4432     if (size && size->value.n == -1) {
4433         if (backing_file && backing_file->value.s) {
4434             uint64_t size;
4435             char buf[32];
4436             int back_flags;
4437 
4438             /* backing files always opened read-only */
4439             back_flags =
4440                 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4441 
4442             bs = bdrv_new("");
4443 
4444             ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4445             if (ret < 0) {
4446                 error_report("Could not open '%s'", backing_file->value.s);
4447                 goto out;
4448             }
4449             bdrv_get_geometry(bs, &size);
4450             size *= 512;
4451 
4452             snprintf(buf, sizeof(buf), "%" PRId64, size);
4453             set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4454         } else {
4455             error_report("Image creation needs a size parameter");
4456             ret = -EINVAL;
4457             goto out;
4458         }
4459     }
4460 
4461     printf("Formatting '%s', fmt=%s ", filename, fmt);
4462     print_option_parameters(param);
4463     puts("");
4464 
4465     ret = bdrv_create(drv, filename, param);
4466 
4467     if (ret < 0) {
4468         if (ret == -ENOTSUP) {
4469             error_report("Formatting or formatting option not supported for "
4470                          "file format '%s'", fmt);
4471         } else if (ret == -EFBIG) {
4472             error_report("The image size is too large for file format '%s'",
4473                          fmt);
4474         } else {
4475             error_report("%s: error while creating %s: %s", filename, fmt,
4476                          strerror(-ret));
4477         }
4478     }
4479 
4480 out:
4481     free_option_parameters(create_options);
4482     free_option_parameters(param);
4483 
4484     if (bs) {
4485         bdrv_delete(bs);
4486     }
4487 
4488     return ret;
4489 }
4490