xref: /openbmc/qemu/block.c (revision 6963a30d82413bea36c7545137b090b284cc2b18)
1 /*
2  * QEMU System Emulator block driver
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor/monitor.h"
28 #include "block/block_int.h"
29 #include "block/blockjob.h"
30 #include "qemu/module.h"
31 #include "qapi/qmp/qjson.h"
32 #include "sysemu/sysemu.h"
33 #include "qemu/notify.h"
34 #include "block/coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu/timer.h"
37 
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47 
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51 
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53 
54 typedef enum {
55     BDRV_REQ_COPY_ON_READ = 0x1,
56     BDRV_REQ_ZERO_WRITE   = 0x2,
57 } BdrvRequestFlags;
58 
59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
61         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62         BlockDriverCompletionFunc *cb, void *opaque);
63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
64         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
65         BlockDriverCompletionFunc *cb, void *opaque);
66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
67                                          int64_t sector_num, int nb_sectors,
68                                          QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
70                                          int64_t sector_num, int nb_sectors,
71                                          QEMUIOVector *iov);
72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
73     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74     BdrvRequestFlags flags);
75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
76     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
77     BdrvRequestFlags flags);
78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
79                                                int64_t sector_num,
80                                                QEMUIOVector *qiov,
81                                                int nb_sectors,
82                                                BlockDriverCompletionFunc *cb,
83                                                void *opaque,
84                                                bool is_write);
85 static void coroutine_fn bdrv_co_do_rw(void *opaque);
86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
87     int64_t sector_num, int nb_sectors);
88 
89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
90         bool is_write, double elapsed_time, uint64_t *wait);
91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
92         double elapsed_time, uint64_t *wait);
93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
94         bool is_write, int64_t *wait);
95 
96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
97     QTAILQ_HEAD_INITIALIZER(bdrv_states);
98 
99 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
100     QLIST_HEAD_INITIALIZER(bdrv_drivers);
101 
102 /* The device to use for VM snapshots */
103 static BlockDriverState *bs_snapshots;
104 
105 /* If non-zero, use only whitelisted block drivers */
106 static int use_bdrv_whitelist;
107 
108 #ifdef _WIN32
109 static int is_windows_drive_prefix(const char *filename)
110 {
111     return (((filename[0] >= 'a' && filename[0] <= 'z') ||
112              (filename[0] >= 'A' && filename[0] <= 'Z')) &&
113             filename[1] == ':');
114 }
115 
116 int is_windows_drive(const char *filename)
117 {
118     if (is_windows_drive_prefix(filename) &&
119         filename[2] == '\0')
120         return 1;
121     if (strstart(filename, "\\\\.\\", NULL) ||
122         strstart(filename, "//./", NULL))
123         return 1;
124     return 0;
125 }
126 #endif
127 
128 /* throttling disk I/O limits */
129 void bdrv_io_limits_disable(BlockDriverState *bs)
130 {
131     bs->io_limits_enabled = false;
132 
133     while (qemu_co_queue_next(&bs->throttled_reqs));
134 
135     if (bs->block_timer) {
136         qemu_del_timer(bs->block_timer);
137         qemu_free_timer(bs->block_timer);
138         bs->block_timer = NULL;
139     }
140 
141     bs->slice_start = 0;
142     bs->slice_end   = 0;
143     bs->slice_time  = 0;
144     memset(&bs->io_base, 0, sizeof(bs->io_base));
145 }
146 
147 static void bdrv_block_timer(void *opaque)
148 {
149     BlockDriverState *bs = opaque;
150 
151     qemu_co_queue_next(&bs->throttled_reqs);
152 }
153 
154 void bdrv_io_limits_enable(BlockDriverState *bs)
155 {
156     qemu_co_queue_init(&bs->throttled_reqs);
157     bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
158     bs->io_limits_enabled = true;
159 }
160 
161 bool bdrv_io_limits_enabled(BlockDriverState *bs)
162 {
163     BlockIOLimit *io_limits = &bs->io_limits;
164     return io_limits->bps[BLOCK_IO_LIMIT_READ]
165          || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
166          || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
167          || io_limits->iops[BLOCK_IO_LIMIT_READ]
168          || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
169          || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
170 }
171 
172 static void bdrv_io_limits_intercept(BlockDriverState *bs,
173                                      bool is_write, int nb_sectors)
174 {
175     int64_t wait_time = -1;
176 
177     if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
178         qemu_co_queue_wait(&bs->throttled_reqs);
179     }
180 
181     /* In fact, we hope to keep each request's timing, in FIFO mode. The next
182      * throttled requests will not be dequeued until the current request is
183      * allowed to be serviced. So if the current request still exceeds the
184      * limits, it will be inserted to the head. All requests followed it will
185      * be still in throttled_reqs queue.
186      */
187 
188     while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
189         qemu_mod_timer(bs->block_timer,
190                        wait_time + qemu_get_clock_ns(vm_clock));
191         qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
192     }
193 
194     qemu_co_queue_next(&bs->throttled_reqs);
195 }
196 
197 /* check if the path starts with "<protocol>:" */
198 static int path_has_protocol(const char *path)
199 {
200     const char *p;
201 
202 #ifdef _WIN32
203     if (is_windows_drive(path) ||
204         is_windows_drive_prefix(path)) {
205         return 0;
206     }
207     p = path + strcspn(path, ":/\\");
208 #else
209     p = path + strcspn(path, ":/");
210 #endif
211 
212     return *p == ':';
213 }
214 
215 int path_is_absolute(const char *path)
216 {
217 #ifdef _WIN32
218     /* specific case for names like: "\\.\d:" */
219     if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
220         return 1;
221     }
222     return (*path == '/' || *path == '\\');
223 #else
224     return (*path == '/');
225 #endif
226 }
227 
228 /* if filename is absolute, just copy it to dest. Otherwise, build a
229    path to it by considering it is relative to base_path. URL are
230    supported. */
231 void path_combine(char *dest, int dest_size,
232                   const char *base_path,
233                   const char *filename)
234 {
235     const char *p, *p1;
236     int len;
237 
238     if (dest_size <= 0)
239         return;
240     if (path_is_absolute(filename)) {
241         pstrcpy(dest, dest_size, filename);
242     } else {
243         p = strchr(base_path, ':');
244         if (p)
245             p++;
246         else
247             p = base_path;
248         p1 = strrchr(base_path, '/');
249 #ifdef _WIN32
250         {
251             const char *p2;
252             p2 = strrchr(base_path, '\\');
253             if (!p1 || p2 > p1)
254                 p1 = p2;
255         }
256 #endif
257         if (p1)
258             p1++;
259         else
260             p1 = base_path;
261         if (p1 > p)
262             p = p1;
263         len = p - base_path;
264         if (len > dest_size - 1)
265             len = dest_size - 1;
266         memcpy(dest, base_path, len);
267         dest[len] = '\0';
268         pstrcat(dest, dest_size, filename);
269     }
270 }
271 
272 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
273 {
274     if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
275         pstrcpy(dest, sz, bs->backing_file);
276     } else {
277         path_combine(dest, sz, bs->filename, bs->backing_file);
278     }
279 }
280 
281 void bdrv_register(BlockDriver *bdrv)
282 {
283     /* Block drivers without coroutine functions need emulation */
284     if (!bdrv->bdrv_co_readv) {
285         bdrv->bdrv_co_readv = bdrv_co_readv_em;
286         bdrv->bdrv_co_writev = bdrv_co_writev_em;
287 
288         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
289          * the block driver lacks aio we need to emulate that too.
290          */
291         if (!bdrv->bdrv_aio_readv) {
292             /* add AIO emulation layer */
293             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
294             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
295         }
296     }
297 
298     QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
299 }
300 
301 /* create a new block device (by default it is empty) */
302 BlockDriverState *bdrv_new(const char *device_name)
303 {
304     BlockDriverState *bs;
305 
306     bs = g_malloc0(sizeof(BlockDriverState));
307     pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
308     if (device_name[0] != '\0') {
309         QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
310     }
311     bdrv_iostatus_disable(bs);
312     notifier_list_init(&bs->close_notifiers);
313 
314     return bs;
315 }
316 
317 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
318 {
319     notifier_list_add(&bs->close_notifiers, notify);
320 }
321 
322 BlockDriver *bdrv_find_format(const char *format_name)
323 {
324     BlockDriver *drv1;
325     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
326         if (!strcmp(drv1->format_name, format_name)) {
327             return drv1;
328         }
329     }
330     return NULL;
331 }
332 
333 static int bdrv_is_whitelisted(BlockDriver *drv)
334 {
335     static const char *whitelist[] = {
336         CONFIG_BDRV_WHITELIST
337     };
338     const char **p;
339 
340     if (!whitelist[0])
341         return 1;               /* no whitelist, anything goes */
342 
343     for (p = whitelist; *p; p++) {
344         if (!strcmp(drv->format_name, *p)) {
345             return 1;
346         }
347     }
348     return 0;
349 }
350 
351 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
352 {
353     BlockDriver *drv = bdrv_find_format(format_name);
354     return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
355 }
356 
357 typedef struct CreateCo {
358     BlockDriver *drv;
359     char *filename;
360     QEMUOptionParameter *options;
361     int ret;
362 } CreateCo;
363 
364 static void coroutine_fn bdrv_create_co_entry(void *opaque)
365 {
366     CreateCo *cco = opaque;
367     assert(cco->drv);
368 
369     cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
370 }
371 
372 int bdrv_create(BlockDriver *drv, const char* filename,
373     QEMUOptionParameter *options)
374 {
375     int ret;
376 
377     Coroutine *co;
378     CreateCo cco = {
379         .drv = drv,
380         .filename = g_strdup(filename),
381         .options = options,
382         .ret = NOT_DONE,
383     };
384 
385     if (!drv->bdrv_create) {
386         ret = -ENOTSUP;
387         goto out;
388     }
389 
390     if (qemu_in_coroutine()) {
391         /* Fast-path if already in coroutine context */
392         bdrv_create_co_entry(&cco);
393     } else {
394         co = qemu_coroutine_create(bdrv_create_co_entry);
395         qemu_coroutine_enter(co, &cco);
396         while (cco.ret == NOT_DONE) {
397             qemu_aio_wait();
398         }
399     }
400 
401     ret = cco.ret;
402 
403 out:
404     g_free(cco.filename);
405     return ret;
406 }
407 
408 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
409 {
410     BlockDriver *drv;
411 
412     drv = bdrv_find_protocol(filename);
413     if (drv == NULL) {
414         return -ENOENT;
415     }
416 
417     return bdrv_create(drv, filename, options);
418 }
419 
420 /*
421  * Create a uniquely-named empty temporary file.
422  * Return 0 upon success, otherwise a negative errno value.
423  */
424 int get_tmp_filename(char *filename, int size)
425 {
426 #ifdef _WIN32
427     char temp_dir[MAX_PATH];
428     /* GetTempFileName requires that its output buffer (4th param)
429        have length MAX_PATH or greater.  */
430     assert(size >= MAX_PATH);
431     return (GetTempPath(MAX_PATH, temp_dir)
432             && GetTempFileName(temp_dir, "qem", 0, filename)
433             ? 0 : -GetLastError());
434 #else
435     int fd;
436     const char *tmpdir;
437     tmpdir = getenv("TMPDIR");
438     if (!tmpdir)
439         tmpdir = "/tmp";
440     if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
441         return -EOVERFLOW;
442     }
443     fd = mkstemp(filename);
444     if (fd < 0) {
445         return -errno;
446     }
447     if (close(fd) != 0) {
448         unlink(filename);
449         return -errno;
450     }
451     return 0;
452 #endif
453 }
454 
455 /*
456  * Detect host devices. By convention, /dev/cdrom[N] is always
457  * recognized as a host CDROM.
458  */
459 static BlockDriver *find_hdev_driver(const char *filename)
460 {
461     int score_max = 0, score;
462     BlockDriver *drv = NULL, *d;
463 
464     QLIST_FOREACH(d, &bdrv_drivers, list) {
465         if (d->bdrv_probe_device) {
466             score = d->bdrv_probe_device(filename);
467             if (score > score_max) {
468                 score_max = score;
469                 drv = d;
470             }
471         }
472     }
473 
474     return drv;
475 }
476 
477 BlockDriver *bdrv_find_protocol(const char *filename)
478 {
479     BlockDriver *drv1;
480     char protocol[128];
481     int len;
482     const char *p;
483 
484     /* TODO Drivers without bdrv_file_open must be specified explicitly */
485 
486     /*
487      * XXX(hch): we really should not let host device detection
488      * override an explicit protocol specification, but moving this
489      * later breaks access to device names with colons in them.
490      * Thanks to the brain-dead persistent naming schemes on udev-
491      * based Linux systems those actually are quite common.
492      */
493     drv1 = find_hdev_driver(filename);
494     if (drv1) {
495         return drv1;
496     }
497 
498     if (!path_has_protocol(filename)) {
499         return bdrv_find_format("file");
500     }
501     p = strchr(filename, ':');
502     assert(p != NULL);
503     len = p - filename;
504     if (len > sizeof(protocol) - 1)
505         len = sizeof(protocol) - 1;
506     memcpy(protocol, filename, len);
507     protocol[len] = '\0';
508     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
509         if (drv1->protocol_name &&
510             !strcmp(drv1->protocol_name, protocol)) {
511             return drv1;
512         }
513     }
514     return NULL;
515 }
516 
517 static int find_image_format(BlockDriverState *bs, const char *filename,
518                              BlockDriver **pdrv)
519 {
520     int score, score_max;
521     BlockDriver *drv1, *drv;
522     uint8_t buf[2048];
523     int ret = 0;
524 
525     /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
526     if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) {
527         drv = bdrv_find_format("raw");
528         if (!drv) {
529             ret = -ENOENT;
530         }
531         *pdrv = drv;
532         return ret;
533     }
534 
535     ret = bdrv_pread(bs, 0, buf, sizeof(buf));
536     if (ret < 0) {
537         *pdrv = NULL;
538         return ret;
539     }
540 
541     score_max = 0;
542     drv = NULL;
543     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
544         if (drv1->bdrv_probe) {
545             score = drv1->bdrv_probe(buf, ret, filename);
546             if (score > score_max) {
547                 score_max = score;
548                 drv = drv1;
549             }
550         }
551     }
552     if (!drv) {
553         ret = -ENOENT;
554     }
555     *pdrv = drv;
556     return ret;
557 }
558 
559 /**
560  * Set the current 'total_sectors' value
561  */
562 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
563 {
564     BlockDriver *drv = bs->drv;
565 
566     /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
567     if (bs->sg)
568         return 0;
569 
570     /* query actual device if possible, otherwise just trust the hint */
571     if (drv->bdrv_getlength) {
572         int64_t length = drv->bdrv_getlength(bs);
573         if (length < 0) {
574             return length;
575         }
576         hint = length >> BDRV_SECTOR_BITS;
577     }
578 
579     bs->total_sectors = hint;
580     return 0;
581 }
582 
583 /**
584  * Set open flags for a given discard mode
585  *
586  * Return 0 on success, -1 if the discard mode was invalid.
587  */
588 int bdrv_parse_discard_flags(const char *mode, int *flags)
589 {
590     *flags &= ~BDRV_O_UNMAP;
591 
592     if (!strcmp(mode, "off") || !strcmp(mode, "ignore")) {
593         /* do nothing */
594     } else if (!strcmp(mode, "on") || !strcmp(mode, "unmap")) {
595         *flags |= BDRV_O_UNMAP;
596     } else {
597         return -1;
598     }
599 
600     return 0;
601 }
602 
603 /**
604  * Set open flags for a given cache mode
605  *
606  * Return 0 on success, -1 if the cache mode was invalid.
607  */
608 int bdrv_parse_cache_flags(const char *mode, int *flags)
609 {
610     *flags &= ~BDRV_O_CACHE_MASK;
611 
612     if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
613         *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
614     } else if (!strcmp(mode, "directsync")) {
615         *flags |= BDRV_O_NOCACHE;
616     } else if (!strcmp(mode, "writeback")) {
617         *flags |= BDRV_O_CACHE_WB;
618     } else if (!strcmp(mode, "unsafe")) {
619         *flags |= BDRV_O_CACHE_WB;
620         *flags |= BDRV_O_NO_FLUSH;
621     } else if (!strcmp(mode, "writethrough")) {
622         /* this is the default */
623     } else {
624         return -1;
625     }
626 
627     return 0;
628 }
629 
630 /**
631  * The copy-on-read flag is actually a reference count so multiple users may
632  * use the feature without worrying about clobbering its previous state.
633  * Copy-on-read stays enabled until all users have called to disable it.
634  */
635 void bdrv_enable_copy_on_read(BlockDriverState *bs)
636 {
637     bs->copy_on_read++;
638 }
639 
640 void bdrv_disable_copy_on_read(BlockDriverState *bs)
641 {
642     assert(bs->copy_on_read > 0);
643     bs->copy_on_read--;
644 }
645 
646 static int bdrv_open_flags(BlockDriverState *bs, int flags)
647 {
648     int open_flags = flags | BDRV_O_CACHE_WB;
649 
650     /*
651      * Clear flags that are internal to the block layer before opening the
652      * image.
653      */
654     open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
655 
656     /*
657      * Snapshots should be writable.
658      */
659     if (bs->is_temporary) {
660         open_flags |= BDRV_O_RDWR;
661     }
662 
663     return open_flags;
664 }
665 
666 /*
667  * Common part for opening disk images and files
668  *
669  * Removes all processed options from *options.
670  */
671 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file,
672     const char *filename, QDict *options,
673     int flags, BlockDriver *drv)
674 {
675     int ret, open_flags;
676 
677     assert(drv != NULL);
678     assert(bs->file == NULL);
679     assert(options != NULL && bs->options != options);
680 
681     trace_bdrv_open_common(bs, filename, flags, drv->format_name);
682 
683     bs->open_flags = flags;
684     bs->buffer_alignment = 512;
685 
686     assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
687     if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
688         bdrv_enable_copy_on_read(bs);
689     }
690 
691     pstrcpy(bs->filename, sizeof(bs->filename), filename);
692 
693     if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
694         return -ENOTSUP;
695     }
696 
697     bs->drv = drv;
698     bs->opaque = g_malloc0(drv->instance_size);
699 
700     bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
701     open_flags = bdrv_open_flags(bs, flags);
702 
703     bs->read_only = !(open_flags & BDRV_O_RDWR);
704 
705     /* Open the image, either directly or using a protocol */
706     if (drv->bdrv_file_open) {
707         if (file != NULL) {
708             bdrv_swap(file, bs);
709             ret = 0;
710         } else {
711             ret = drv->bdrv_file_open(bs, filename, options, open_flags);
712         }
713     } else {
714         assert(file != NULL);
715         bs->file = file;
716         ret = drv->bdrv_open(bs, options, open_flags);
717     }
718 
719     if (ret < 0) {
720         goto free_and_fail;
721     }
722 
723     ret = refresh_total_sectors(bs, bs->total_sectors);
724     if (ret < 0) {
725         goto free_and_fail;
726     }
727 
728 #ifndef _WIN32
729     if (bs->is_temporary) {
730         unlink(filename);
731     }
732 #endif
733     return 0;
734 
735 free_and_fail:
736     bs->file = NULL;
737     g_free(bs->opaque);
738     bs->opaque = NULL;
739     bs->drv = NULL;
740     return ret;
741 }
742 
743 /*
744  * Opens a file using a protocol (file, host_device, nbd, ...)
745  *
746  * options is a QDict of options to pass to the block drivers, or NULL for an
747  * empty set of options. The reference to the QDict belongs to the block layer
748  * after the call (even on failure), so if the caller intends to reuse the
749  * dictionary, it needs to use QINCREF() before calling bdrv_file_open.
750  */
751 int bdrv_file_open(BlockDriverState **pbs, const char *filename,
752                    QDict *options, int flags)
753 {
754     BlockDriverState *bs;
755     BlockDriver *drv;
756     int ret;
757 
758     drv = bdrv_find_protocol(filename);
759     if (!drv) {
760         QDECREF(options);
761         return -ENOENT;
762     }
763 
764     /* NULL means an empty set of options */
765     if (options == NULL) {
766         options = qdict_new();
767     }
768 
769     bs = bdrv_new("");
770     bs->options = options;
771     options = qdict_clone_shallow(options);
772 
773     if (drv->bdrv_parse_filename) {
774         Error *local_err = NULL;
775         drv->bdrv_parse_filename(filename, options, &local_err);
776         if (error_is_set(&local_err)) {
777             qerror_report_err(local_err);
778             error_free(local_err);
779             ret = -EINVAL;
780             goto fail;
781         }
782     }
783 
784     ret = bdrv_open_common(bs, NULL, filename, options, flags, drv);
785     if (ret < 0) {
786         goto fail;
787     }
788 
789     /* Check if any unknown options were used */
790     if (qdict_size(options) != 0) {
791         const QDictEntry *entry = qdict_first(options);
792         qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block protocol '%s' doesn't "
793                       "support the option '%s'",
794                       drv->format_name, entry->key);
795         ret = -EINVAL;
796         goto fail;
797     }
798     QDECREF(options);
799 
800     bs->growable = 1;
801     *pbs = bs;
802     return 0;
803 
804 fail:
805     QDECREF(options);
806     if (!bs->drv) {
807         QDECREF(bs->options);
808     }
809     bdrv_delete(bs);
810     return ret;
811 }
812 
813 int bdrv_open_backing_file(BlockDriverState *bs)
814 {
815     char backing_filename[PATH_MAX];
816     int back_flags, ret;
817     BlockDriver *back_drv = NULL;
818 
819     if (bs->backing_hd != NULL) {
820         return 0;
821     }
822 
823     bs->open_flags &= ~BDRV_O_NO_BACKING;
824     if (bs->backing_file[0] == '\0') {
825         return 0;
826     }
827 
828     bs->backing_hd = bdrv_new("");
829     bdrv_get_full_backing_filename(bs, backing_filename,
830                                    sizeof(backing_filename));
831 
832     if (bs->backing_format[0] != '\0') {
833         back_drv = bdrv_find_format(bs->backing_format);
834     }
835 
836     /* backing files always opened read-only */
837     back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
838 
839     ret = bdrv_open(bs->backing_hd, backing_filename, NULL,
840                     back_flags, back_drv);
841     if (ret < 0) {
842         bdrv_delete(bs->backing_hd);
843         bs->backing_hd = NULL;
844         bs->open_flags |= BDRV_O_NO_BACKING;
845         return ret;
846     }
847     return 0;
848 }
849 
850 static void extract_subqdict(QDict *src, QDict **dst, const char *start)
851 {
852     const QDictEntry *entry, *next;
853     const char *p;
854 
855     *dst = qdict_new();
856     entry = qdict_first(src);
857 
858     while (entry != NULL) {
859         next = qdict_next(src, entry);
860         if (strstart(entry->key, start, &p)) {
861             qobject_incref(entry->value);
862             qdict_put_obj(*dst, p, entry->value);
863             qdict_del(src, entry->key);
864         }
865         entry = next;
866     }
867 }
868 
869 /*
870  * Opens a disk image (raw, qcow2, vmdk, ...)
871  *
872  * options is a QDict of options to pass to the block drivers, or NULL for an
873  * empty set of options. The reference to the QDict belongs to the block layer
874  * after the call (even on failure), so if the caller intends to reuse the
875  * dictionary, it needs to use QINCREF() before calling bdrv_open.
876  */
877 int bdrv_open(BlockDriverState *bs, const char *filename, QDict *options,
878               int flags, BlockDriver *drv)
879 {
880     int ret;
881     /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */
882     char tmp_filename[PATH_MAX + 1];
883     BlockDriverState *file = NULL;
884     QDict *file_options = NULL;
885 
886     /* NULL means an empty set of options */
887     if (options == NULL) {
888         options = qdict_new();
889     }
890 
891     bs->options = options;
892     options = qdict_clone_shallow(options);
893 
894     /* For snapshot=on, create a temporary qcow2 overlay */
895     if (flags & BDRV_O_SNAPSHOT) {
896         BlockDriverState *bs1;
897         int64_t total_size;
898         BlockDriver *bdrv_qcow2;
899         QEMUOptionParameter *options;
900         char backing_filename[PATH_MAX];
901 
902         /* if snapshot, we create a temporary backing file and open it
903            instead of opening 'filename' directly */
904 
905         /* if there is a backing file, use it */
906         bs1 = bdrv_new("");
907         ret = bdrv_open(bs1, filename, NULL, 0, drv);
908         if (ret < 0) {
909             bdrv_delete(bs1);
910             goto fail;
911         }
912         total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
913 
914         bdrv_delete(bs1);
915 
916         ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
917         if (ret < 0) {
918             goto fail;
919         }
920 
921         /* Real path is meaningless for protocols */
922         if (path_has_protocol(filename)) {
923             snprintf(backing_filename, sizeof(backing_filename),
924                      "%s", filename);
925         } else if (!realpath(filename, backing_filename)) {
926             ret = -errno;
927             goto fail;
928         }
929 
930         bdrv_qcow2 = bdrv_find_format("qcow2");
931         options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
932 
933         set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
934         set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
935         if (drv) {
936             set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
937                 drv->format_name);
938         }
939 
940         ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
941         free_option_parameters(options);
942         if (ret < 0) {
943             goto fail;
944         }
945 
946         filename = tmp_filename;
947         drv = bdrv_qcow2;
948         bs->is_temporary = 1;
949     }
950 
951     /* Open image file without format layer */
952     if (flags & BDRV_O_RDWR) {
953         flags |= BDRV_O_ALLOW_RDWR;
954     }
955 
956     extract_subqdict(options, &file_options, "file.");
957 
958     ret = bdrv_file_open(&file, filename, file_options,
959                          bdrv_open_flags(bs, flags));
960     if (ret < 0) {
961         goto fail;
962     }
963 
964     /* Find the right image format driver */
965     if (!drv) {
966         ret = find_image_format(file, filename, &drv);
967     }
968 
969     if (!drv) {
970         goto unlink_and_fail;
971     }
972 
973     /* Open the image */
974     ret = bdrv_open_common(bs, file, filename, options, flags, drv);
975     if (ret < 0) {
976         goto unlink_and_fail;
977     }
978 
979     if (bs->file != file) {
980         bdrv_delete(file);
981         file = NULL;
982     }
983 
984     /* If there is a backing file, use it */
985     if ((flags & BDRV_O_NO_BACKING) == 0) {
986         ret = bdrv_open_backing_file(bs);
987         if (ret < 0) {
988             goto close_and_fail;
989         }
990     }
991 
992     /* Check if any unknown options were used */
993     if (qdict_size(options) != 0) {
994         const QDictEntry *entry = qdict_first(options);
995         qerror_report(ERROR_CLASS_GENERIC_ERROR, "Block format '%s' used by "
996             "device '%s' doesn't support the option '%s'",
997             drv->format_name, bs->device_name, entry->key);
998 
999         ret = -EINVAL;
1000         goto close_and_fail;
1001     }
1002     QDECREF(options);
1003 
1004     if (!bdrv_key_required(bs)) {
1005         bdrv_dev_change_media_cb(bs, true);
1006     }
1007 
1008     /* throttling disk I/O limits */
1009     if (bs->io_limits_enabled) {
1010         bdrv_io_limits_enable(bs);
1011     }
1012 
1013     return 0;
1014 
1015 unlink_and_fail:
1016     if (file != NULL) {
1017         bdrv_delete(file);
1018     }
1019     if (bs->is_temporary) {
1020         unlink(filename);
1021     }
1022 fail:
1023     QDECREF(bs->options);
1024     QDECREF(options);
1025     bs->options = NULL;
1026     return ret;
1027 
1028 close_and_fail:
1029     bdrv_close(bs);
1030     QDECREF(options);
1031     return ret;
1032 }
1033 
1034 typedef struct BlockReopenQueueEntry {
1035      bool prepared;
1036      BDRVReopenState state;
1037      QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
1038 } BlockReopenQueueEntry;
1039 
1040 /*
1041  * Adds a BlockDriverState to a simple queue for an atomic, transactional
1042  * reopen of multiple devices.
1043  *
1044  * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
1045  * already performed, or alternatively may be NULL a new BlockReopenQueue will
1046  * be created and initialized. This newly created BlockReopenQueue should be
1047  * passed back in for subsequent calls that are intended to be of the same
1048  * atomic 'set'.
1049  *
1050  * bs is the BlockDriverState to add to the reopen queue.
1051  *
1052  * flags contains the open flags for the associated bs
1053  *
1054  * returns a pointer to bs_queue, which is either the newly allocated
1055  * bs_queue, or the existing bs_queue being used.
1056  *
1057  */
1058 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
1059                                     BlockDriverState *bs, int flags)
1060 {
1061     assert(bs != NULL);
1062 
1063     BlockReopenQueueEntry *bs_entry;
1064     if (bs_queue == NULL) {
1065         bs_queue = g_new0(BlockReopenQueue, 1);
1066         QSIMPLEQ_INIT(bs_queue);
1067     }
1068 
1069     if (bs->file) {
1070         bdrv_reopen_queue(bs_queue, bs->file, flags);
1071     }
1072 
1073     bs_entry = g_new0(BlockReopenQueueEntry, 1);
1074     QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
1075 
1076     bs_entry->state.bs = bs;
1077     bs_entry->state.flags = flags;
1078 
1079     return bs_queue;
1080 }
1081 
1082 /*
1083  * Reopen multiple BlockDriverStates atomically & transactionally.
1084  *
1085  * The queue passed in (bs_queue) must have been built up previous
1086  * via bdrv_reopen_queue().
1087  *
1088  * Reopens all BDS specified in the queue, with the appropriate
1089  * flags.  All devices are prepared for reopen, and failure of any
1090  * device will cause all device changes to be abandonded, and intermediate
1091  * data cleaned up.
1092  *
1093  * If all devices prepare successfully, then the changes are committed
1094  * to all devices.
1095  *
1096  */
1097 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
1098 {
1099     int ret = -1;
1100     BlockReopenQueueEntry *bs_entry, *next;
1101     Error *local_err = NULL;
1102 
1103     assert(bs_queue != NULL);
1104 
1105     bdrv_drain_all();
1106 
1107     QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
1108         if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
1109             error_propagate(errp, local_err);
1110             goto cleanup;
1111         }
1112         bs_entry->prepared = true;
1113     }
1114 
1115     /* If we reach this point, we have success and just need to apply the
1116      * changes
1117      */
1118     QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
1119         bdrv_reopen_commit(&bs_entry->state);
1120     }
1121 
1122     ret = 0;
1123 
1124 cleanup:
1125     QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
1126         if (ret && bs_entry->prepared) {
1127             bdrv_reopen_abort(&bs_entry->state);
1128         }
1129         g_free(bs_entry);
1130     }
1131     g_free(bs_queue);
1132     return ret;
1133 }
1134 
1135 
1136 /* Reopen a single BlockDriverState with the specified flags. */
1137 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
1138 {
1139     int ret = -1;
1140     Error *local_err = NULL;
1141     BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
1142 
1143     ret = bdrv_reopen_multiple(queue, &local_err);
1144     if (local_err != NULL) {
1145         error_propagate(errp, local_err);
1146     }
1147     return ret;
1148 }
1149 
1150 
1151 /*
1152  * Prepares a BlockDriverState for reopen. All changes are staged in the
1153  * 'opaque' field of the BDRVReopenState, which is used and allocated by
1154  * the block driver layer .bdrv_reopen_prepare()
1155  *
1156  * bs is the BlockDriverState to reopen
1157  * flags are the new open flags
1158  * queue is the reopen queue
1159  *
1160  * Returns 0 on success, non-zero on error.  On error errp will be set
1161  * as well.
1162  *
1163  * On failure, bdrv_reopen_abort() will be called to clean up any data.
1164  * It is the responsibility of the caller to then call the abort() or
1165  * commit() for any other BDS that have been left in a prepare() state
1166  *
1167  */
1168 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1169                         Error **errp)
1170 {
1171     int ret = -1;
1172     Error *local_err = NULL;
1173     BlockDriver *drv;
1174 
1175     assert(reopen_state != NULL);
1176     assert(reopen_state->bs->drv != NULL);
1177     drv = reopen_state->bs->drv;
1178 
1179     /* if we are to stay read-only, do not allow permission change
1180      * to r/w */
1181     if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1182         reopen_state->flags & BDRV_O_RDWR) {
1183         error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1184                   reopen_state->bs->device_name);
1185         goto error;
1186     }
1187 
1188 
1189     ret = bdrv_flush(reopen_state->bs);
1190     if (ret) {
1191         error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1192                   strerror(-ret));
1193         goto error;
1194     }
1195 
1196     if (drv->bdrv_reopen_prepare) {
1197         ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1198         if (ret) {
1199             if (local_err != NULL) {
1200                 error_propagate(errp, local_err);
1201             } else {
1202                 error_set(errp, QERR_OPEN_FILE_FAILED,
1203                           reopen_state->bs->filename);
1204             }
1205             goto error;
1206         }
1207     } else {
1208         /* It is currently mandatory to have a bdrv_reopen_prepare()
1209          * handler for each supported drv. */
1210         error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1211                   drv->format_name, reopen_state->bs->device_name,
1212                  "reopening of file");
1213         ret = -1;
1214         goto error;
1215     }
1216 
1217     ret = 0;
1218 
1219 error:
1220     return ret;
1221 }
1222 
1223 /*
1224  * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1225  * makes them final by swapping the staging BlockDriverState contents into
1226  * the active BlockDriverState contents.
1227  */
1228 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1229 {
1230     BlockDriver *drv;
1231 
1232     assert(reopen_state != NULL);
1233     drv = reopen_state->bs->drv;
1234     assert(drv != NULL);
1235 
1236     /* If there are any driver level actions to take */
1237     if (drv->bdrv_reopen_commit) {
1238         drv->bdrv_reopen_commit(reopen_state);
1239     }
1240 
1241     /* set BDS specific flags now */
1242     reopen_state->bs->open_flags         = reopen_state->flags;
1243     reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1244                                               BDRV_O_CACHE_WB);
1245     reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1246 }
1247 
1248 /*
1249  * Abort the reopen, and delete and free the staged changes in
1250  * reopen_state
1251  */
1252 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1253 {
1254     BlockDriver *drv;
1255 
1256     assert(reopen_state != NULL);
1257     drv = reopen_state->bs->drv;
1258     assert(drv != NULL);
1259 
1260     if (drv->bdrv_reopen_abort) {
1261         drv->bdrv_reopen_abort(reopen_state);
1262     }
1263 }
1264 
1265 
1266 void bdrv_close(BlockDriverState *bs)
1267 {
1268     bdrv_flush(bs);
1269     if (bs->job) {
1270         block_job_cancel_sync(bs->job);
1271     }
1272     bdrv_drain_all();
1273     notifier_list_notify(&bs->close_notifiers, bs);
1274 
1275     if (bs->drv) {
1276         if (bs == bs_snapshots) {
1277             bs_snapshots = NULL;
1278         }
1279         if (bs->backing_hd) {
1280             bdrv_delete(bs->backing_hd);
1281             bs->backing_hd = NULL;
1282         }
1283         bs->drv->bdrv_close(bs);
1284         g_free(bs->opaque);
1285 #ifdef _WIN32
1286         if (bs->is_temporary) {
1287             unlink(bs->filename);
1288         }
1289 #endif
1290         bs->opaque = NULL;
1291         bs->drv = NULL;
1292         bs->copy_on_read = 0;
1293         bs->backing_file[0] = '\0';
1294         bs->backing_format[0] = '\0';
1295         bs->total_sectors = 0;
1296         bs->encrypted = 0;
1297         bs->valid_key = 0;
1298         bs->sg = 0;
1299         bs->growable = 0;
1300         QDECREF(bs->options);
1301         bs->options = NULL;
1302 
1303         if (bs->file != NULL) {
1304             bdrv_delete(bs->file);
1305             bs->file = NULL;
1306         }
1307     }
1308 
1309     bdrv_dev_change_media_cb(bs, false);
1310 
1311     /*throttling disk I/O limits*/
1312     if (bs->io_limits_enabled) {
1313         bdrv_io_limits_disable(bs);
1314     }
1315 }
1316 
1317 void bdrv_close_all(void)
1318 {
1319     BlockDriverState *bs;
1320 
1321     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1322         bdrv_close(bs);
1323     }
1324 }
1325 
1326 /*
1327  * Wait for pending requests to complete across all BlockDriverStates
1328  *
1329  * This function does not flush data to disk, use bdrv_flush_all() for that
1330  * after calling this function.
1331  *
1332  * Note that completion of an asynchronous I/O operation can trigger any
1333  * number of other I/O operations on other devices---for example a coroutine
1334  * can be arbitrarily complex and a constant flow of I/O can come until the
1335  * coroutine is complete.  Because of this, it is not possible to have a
1336  * function to drain a single device's I/O queue.
1337  */
1338 void bdrv_drain_all(void)
1339 {
1340     BlockDriverState *bs;
1341     bool busy;
1342 
1343     do {
1344         busy = qemu_aio_wait();
1345 
1346         /* FIXME: We do not have timer support here, so this is effectively
1347          * a busy wait.
1348          */
1349         QTAILQ_FOREACH(bs, &bdrv_states, list) {
1350             if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1351                 qemu_co_queue_restart_all(&bs->throttled_reqs);
1352                 busy = true;
1353             }
1354         }
1355     } while (busy);
1356 
1357     /* If requests are still pending there is a bug somewhere */
1358     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1359         assert(QLIST_EMPTY(&bs->tracked_requests));
1360         assert(qemu_co_queue_empty(&bs->throttled_reqs));
1361     }
1362 }
1363 
1364 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1365    Also, NULL terminate the device_name to prevent double remove */
1366 void bdrv_make_anon(BlockDriverState *bs)
1367 {
1368     if (bs->device_name[0] != '\0') {
1369         QTAILQ_REMOVE(&bdrv_states, bs, list);
1370     }
1371     bs->device_name[0] = '\0';
1372 }
1373 
1374 static void bdrv_rebind(BlockDriverState *bs)
1375 {
1376     if (bs->drv && bs->drv->bdrv_rebind) {
1377         bs->drv->bdrv_rebind(bs);
1378     }
1379 }
1380 
1381 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1382                                      BlockDriverState *bs_src)
1383 {
1384     /* move some fields that need to stay attached to the device */
1385     bs_dest->open_flags         = bs_src->open_flags;
1386 
1387     /* dev info */
1388     bs_dest->dev_ops            = bs_src->dev_ops;
1389     bs_dest->dev_opaque         = bs_src->dev_opaque;
1390     bs_dest->dev                = bs_src->dev;
1391     bs_dest->buffer_alignment   = bs_src->buffer_alignment;
1392     bs_dest->copy_on_read       = bs_src->copy_on_read;
1393 
1394     bs_dest->enable_write_cache = bs_src->enable_write_cache;
1395 
1396     /* i/o timing parameters */
1397     bs_dest->slice_time         = bs_src->slice_time;
1398     bs_dest->slice_start        = bs_src->slice_start;
1399     bs_dest->slice_end          = bs_src->slice_end;
1400     bs_dest->io_limits          = bs_src->io_limits;
1401     bs_dest->io_base            = bs_src->io_base;
1402     bs_dest->throttled_reqs     = bs_src->throttled_reqs;
1403     bs_dest->block_timer        = bs_src->block_timer;
1404     bs_dest->io_limits_enabled  = bs_src->io_limits_enabled;
1405 
1406     /* r/w error */
1407     bs_dest->on_read_error      = bs_src->on_read_error;
1408     bs_dest->on_write_error     = bs_src->on_write_error;
1409 
1410     /* i/o status */
1411     bs_dest->iostatus_enabled   = bs_src->iostatus_enabled;
1412     bs_dest->iostatus           = bs_src->iostatus;
1413 
1414     /* dirty bitmap */
1415     bs_dest->dirty_bitmap       = bs_src->dirty_bitmap;
1416 
1417     /* job */
1418     bs_dest->in_use             = bs_src->in_use;
1419     bs_dest->job                = bs_src->job;
1420 
1421     /* keep the same entry in bdrv_states */
1422     pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1423             bs_src->device_name);
1424     bs_dest->list = bs_src->list;
1425 }
1426 
1427 /*
1428  * Swap bs contents for two image chains while they are live,
1429  * while keeping required fields on the BlockDriverState that is
1430  * actually attached to a device.
1431  *
1432  * This will modify the BlockDriverState fields, and swap contents
1433  * between bs_new and bs_old. Both bs_new and bs_old are modified.
1434  *
1435  * bs_new is required to be anonymous.
1436  *
1437  * This function does not create any image files.
1438  */
1439 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1440 {
1441     BlockDriverState tmp;
1442 
1443     /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1444     assert(bs_new->device_name[0] == '\0');
1445     assert(bs_new->dirty_bitmap == NULL);
1446     assert(bs_new->job == NULL);
1447     assert(bs_new->dev == NULL);
1448     assert(bs_new->in_use == 0);
1449     assert(bs_new->io_limits_enabled == false);
1450     assert(bs_new->block_timer == NULL);
1451 
1452     tmp = *bs_new;
1453     *bs_new = *bs_old;
1454     *bs_old = tmp;
1455 
1456     /* there are some fields that should not be swapped, move them back */
1457     bdrv_move_feature_fields(&tmp, bs_old);
1458     bdrv_move_feature_fields(bs_old, bs_new);
1459     bdrv_move_feature_fields(bs_new, &tmp);
1460 
1461     /* bs_new shouldn't be in bdrv_states even after the swap!  */
1462     assert(bs_new->device_name[0] == '\0');
1463 
1464     /* Check a few fields that should remain attached to the device */
1465     assert(bs_new->dev == NULL);
1466     assert(bs_new->job == NULL);
1467     assert(bs_new->in_use == 0);
1468     assert(bs_new->io_limits_enabled == false);
1469     assert(bs_new->block_timer == NULL);
1470 
1471     bdrv_rebind(bs_new);
1472     bdrv_rebind(bs_old);
1473 }
1474 
1475 /*
1476  * Add new bs contents at the top of an image chain while the chain is
1477  * live, while keeping required fields on the top layer.
1478  *
1479  * This will modify the BlockDriverState fields, and swap contents
1480  * between bs_new and bs_top. Both bs_new and bs_top are modified.
1481  *
1482  * bs_new is required to be anonymous.
1483  *
1484  * This function does not create any image files.
1485  */
1486 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1487 {
1488     bdrv_swap(bs_new, bs_top);
1489 
1490     /* The contents of 'tmp' will become bs_top, as we are
1491      * swapping bs_new and bs_top contents. */
1492     bs_top->backing_hd = bs_new;
1493     bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1494     pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1495             bs_new->filename);
1496     pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1497             bs_new->drv ? bs_new->drv->format_name : "");
1498 }
1499 
1500 void bdrv_delete(BlockDriverState *bs)
1501 {
1502     assert(!bs->dev);
1503     assert(!bs->job);
1504     assert(!bs->in_use);
1505 
1506     /* remove from list, if necessary */
1507     bdrv_make_anon(bs);
1508 
1509     bdrv_close(bs);
1510 
1511     assert(bs != bs_snapshots);
1512     g_free(bs);
1513 }
1514 
1515 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1516 /* TODO change to DeviceState *dev when all users are qdevified */
1517 {
1518     if (bs->dev) {
1519         return -EBUSY;
1520     }
1521     bs->dev = dev;
1522     bdrv_iostatus_reset(bs);
1523     return 0;
1524 }
1525 
1526 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1527 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1528 {
1529     if (bdrv_attach_dev(bs, dev) < 0) {
1530         abort();
1531     }
1532 }
1533 
1534 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1535 /* TODO change to DeviceState *dev when all users are qdevified */
1536 {
1537     assert(bs->dev == dev);
1538     bs->dev = NULL;
1539     bs->dev_ops = NULL;
1540     bs->dev_opaque = NULL;
1541     bs->buffer_alignment = 512;
1542 }
1543 
1544 /* TODO change to return DeviceState * when all users are qdevified */
1545 void *bdrv_get_attached_dev(BlockDriverState *bs)
1546 {
1547     return bs->dev;
1548 }
1549 
1550 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1551                       void *opaque)
1552 {
1553     bs->dev_ops = ops;
1554     bs->dev_opaque = opaque;
1555     if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1556         bs_snapshots = NULL;
1557     }
1558 }
1559 
1560 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1561                                enum MonitorEvent ev,
1562                                BlockErrorAction action, bool is_read)
1563 {
1564     QObject *data;
1565     const char *action_str;
1566 
1567     switch (action) {
1568     case BDRV_ACTION_REPORT:
1569         action_str = "report";
1570         break;
1571     case BDRV_ACTION_IGNORE:
1572         action_str = "ignore";
1573         break;
1574     case BDRV_ACTION_STOP:
1575         action_str = "stop";
1576         break;
1577     default:
1578         abort();
1579     }
1580 
1581     data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1582                               bdrv->device_name,
1583                               action_str,
1584                               is_read ? "read" : "write");
1585     monitor_protocol_event(ev, data);
1586 
1587     qobject_decref(data);
1588 }
1589 
1590 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1591 {
1592     QObject *data;
1593 
1594     data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1595                               bdrv_get_device_name(bs), ejected);
1596     monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1597 
1598     qobject_decref(data);
1599 }
1600 
1601 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1602 {
1603     if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1604         bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1605         bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1606         if (tray_was_closed) {
1607             /* tray open */
1608             bdrv_emit_qmp_eject_event(bs, true);
1609         }
1610         if (load) {
1611             /* tray close */
1612             bdrv_emit_qmp_eject_event(bs, false);
1613         }
1614     }
1615 }
1616 
1617 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1618 {
1619     return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1620 }
1621 
1622 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1623 {
1624     if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1625         bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1626     }
1627 }
1628 
1629 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1630 {
1631     if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1632         return bs->dev_ops->is_tray_open(bs->dev_opaque);
1633     }
1634     return false;
1635 }
1636 
1637 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1638 {
1639     if (bs->dev_ops && bs->dev_ops->resize_cb) {
1640         bs->dev_ops->resize_cb(bs->dev_opaque);
1641     }
1642 }
1643 
1644 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1645 {
1646     if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1647         return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1648     }
1649     return false;
1650 }
1651 
1652 /*
1653  * Run consistency checks on an image
1654  *
1655  * Returns 0 if the check could be completed (it doesn't mean that the image is
1656  * free of errors) or -errno when an internal error occurred. The results of the
1657  * check are stored in res.
1658  */
1659 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1660 {
1661     if (bs->drv->bdrv_check == NULL) {
1662         return -ENOTSUP;
1663     }
1664 
1665     memset(res, 0, sizeof(*res));
1666     return bs->drv->bdrv_check(bs, res, fix);
1667 }
1668 
1669 #define COMMIT_BUF_SECTORS 2048
1670 
1671 /* commit COW file into the raw image */
1672 int bdrv_commit(BlockDriverState *bs)
1673 {
1674     BlockDriver *drv = bs->drv;
1675     int64_t sector, total_sectors;
1676     int n, ro, open_flags;
1677     int ret = 0;
1678     uint8_t *buf;
1679     char filename[PATH_MAX];
1680 
1681     if (!drv)
1682         return -ENOMEDIUM;
1683 
1684     if (!bs->backing_hd) {
1685         return -ENOTSUP;
1686     }
1687 
1688     if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1689         return -EBUSY;
1690     }
1691 
1692     ro = bs->backing_hd->read_only;
1693     /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1694     pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1695     open_flags =  bs->backing_hd->open_flags;
1696 
1697     if (ro) {
1698         if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1699             return -EACCES;
1700         }
1701     }
1702 
1703     total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1704     buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1705 
1706     for (sector = 0; sector < total_sectors; sector += n) {
1707         if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1708 
1709             if (bdrv_read(bs, sector, buf, n) != 0) {
1710                 ret = -EIO;
1711                 goto ro_cleanup;
1712             }
1713 
1714             if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1715                 ret = -EIO;
1716                 goto ro_cleanup;
1717             }
1718         }
1719     }
1720 
1721     if (drv->bdrv_make_empty) {
1722         ret = drv->bdrv_make_empty(bs);
1723         bdrv_flush(bs);
1724     }
1725 
1726     /*
1727      * Make sure all data we wrote to the backing device is actually
1728      * stable on disk.
1729      */
1730     if (bs->backing_hd)
1731         bdrv_flush(bs->backing_hd);
1732 
1733 ro_cleanup:
1734     g_free(buf);
1735 
1736     if (ro) {
1737         /* ignoring error return here */
1738         bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1739     }
1740 
1741     return ret;
1742 }
1743 
1744 int bdrv_commit_all(void)
1745 {
1746     BlockDriverState *bs;
1747 
1748     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1749         if (bs->drv && bs->backing_hd) {
1750             int ret = bdrv_commit(bs);
1751             if (ret < 0) {
1752                 return ret;
1753             }
1754         }
1755     }
1756     return 0;
1757 }
1758 
1759 struct BdrvTrackedRequest {
1760     BlockDriverState *bs;
1761     int64_t sector_num;
1762     int nb_sectors;
1763     bool is_write;
1764     QLIST_ENTRY(BdrvTrackedRequest) list;
1765     Coroutine *co; /* owner, used for deadlock detection */
1766     CoQueue wait_queue; /* coroutines blocked on this request */
1767 };
1768 
1769 /**
1770  * Remove an active request from the tracked requests list
1771  *
1772  * This function should be called when a tracked request is completing.
1773  */
1774 static void tracked_request_end(BdrvTrackedRequest *req)
1775 {
1776     QLIST_REMOVE(req, list);
1777     qemu_co_queue_restart_all(&req->wait_queue);
1778 }
1779 
1780 /**
1781  * Add an active request to the tracked requests list
1782  */
1783 static void tracked_request_begin(BdrvTrackedRequest *req,
1784                                   BlockDriverState *bs,
1785                                   int64_t sector_num,
1786                                   int nb_sectors, bool is_write)
1787 {
1788     *req = (BdrvTrackedRequest){
1789         .bs = bs,
1790         .sector_num = sector_num,
1791         .nb_sectors = nb_sectors,
1792         .is_write = is_write,
1793         .co = qemu_coroutine_self(),
1794     };
1795 
1796     qemu_co_queue_init(&req->wait_queue);
1797 
1798     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1799 }
1800 
1801 /**
1802  * Round a region to cluster boundaries
1803  */
1804 void bdrv_round_to_clusters(BlockDriverState *bs,
1805                             int64_t sector_num, int nb_sectors,
1806                             int64_t *cluster_sector_num,
1807                             int *cluster_nb_sectors)
1808 {
1809     BlockDriverInfo bdi;
1810 
1811     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1812         *cluster_sector_num = sector_num;
1813         *cluster_nb_sectors = nb_sectors;
1814     } else {
1815         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1816         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1817         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1818                                             nb_sectors, c);
1819     }
1820 }
1821 
1822 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1823                                      int64_t sector_num, int nb_sectors) {
1824     /*        aaaa   bbbb */
1825     if (sector_num >= req->sector_num + req->nb_sectors) {
1826         return false;
1827     }
1828     /* bbbb   aaaa        */
1829     if (req->sector_num >= sector_num + nb_sectors) {
1830         return false;
1831     }
1832     return true;
1833 }
1834 
1835 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1836         int64_t sector_num, int nb_sectors)
1837 {
1838     BdrvTrackedRequest *req;
1839     int64_t cluster_sector_num;
1840     int cluster_nb_sectors;
1841     bool retry;
1842 
1843     /* If we touch the same cluster it counts as an overlap.  This guarantees
1844      * that allocating writes will be serialized and not race with each other
1845      * for the same cluster.  For example, in copy-on-read it ensures that the
1846      * CoR read and write operations are atomic and guest writes cannot
1847      * interleave between them.
1848      */
1849     bdrv_round_to_clusters(bs, sector_num, nb_sectors,
1850                            &cluster_sector_num, &cluster_nb_sectors);
1851 
1852     do {
1853         retry = false;
1854         QLIST_FOREACH(req, &bs->tracked_requests, list) {
1855             if (tracked_request_overlaps(req, cluster_sector_num,
1856                                          cluster_nb_sectors)) {
1857                 /* Hitting this means there was a reentrant request, for
1858                  * example, a block driver issuing nested requests.  This must
1859                  * never happen since it means deadlock.
1860                  */
1861                 assert(qemu_coroutine_self() != req->co);
1862 
1863                 qemu_co_queue_wait(&req->wait_queue);
1864                 retry = true;
1865                 break;
1866             }
1867         }
1868     } while (retry);
1869 }
1870 
1871 /*
1872  * Return values:
1873  * 0        - success
1874  * -EINVAL  - backing format specified, but no file
1875  * -ENOSPC  - can't update the backing file because no space is left in the
1876  *            image file header
1877  * -ENOTSUP - format driver doesn't support changing the backing file
1878  */
1879 int bdrv_change_backing_file(BlockDriverState *bs,
1880     const char *backing_file, const char *backing_fmt)
1881 {
1882     BlockDriver *drv = bs->drv;
1883     int ret;
1884 
1885     /* Backing file format doesn't make sense without a backing file */
1886     if (backing_fmt && !backing_file) {
1887         return -EINVAL;
1888     }
1889 
1890     if (drv->bdrv_change_backing_file != NULL) {
1891         ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1892     } else {
1893         ret = -ENOTSUP;
1894     }
1895 
1896     if (ret == 0) {
1897         pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1898         pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1899     }
1900     return ret;
1901 }
1902 
1903 /*
1904  * Finds the image layer in the chain that has 'bs' as its backing file.
1905  *
1906  * active is the current topmost image.
1907  *
1908  * Returns NULL if bs is not found in active's image chain,
1909  * or if active == bs.
1910  */
1911 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1912                                     BlockDriverState *bs)
1913 {
1914     BlockDriverState *overlay = NULL;
1915     BlockDriverState *intermediate;
1916 
1917     assert(active != NULL);
1918     assert(bs != NULL);
1919 
1920     /* if bs is the same as active, then by definition it has no overlay
1921      */
1922     if (active == bs) {
1923         return NULL;
1924     }
1925 
1926     intermediate = active;
1927     while (intermediate->backing_hd) {
1928         if (intermediate->backing_hd == bs) {
1929             overlay = intermediate;
1930             break;
1931         }
1932         intermediate = intermediate->backing_hd;
1933     }
1934 
1935     return overlay;
1936 }
1937 
1938 typedef struct BlkIntermediateStates {
1939     BlockDriverState *bs;
1940     QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1941 } BlkIntermediateStates;
1942 
1943 
1944 /*
1945  * Drops images above 'base' up to and including 'top', and sets the image
1946  * above 'top' to have base as its backing file.
1947  *
1948  * Requires that the overlay to 'top' is opened r/w, so that the backing file
1949  * information in 'bs' can be properly updated.
1950  *
1951  * E.g., this will convert the following chain:
1952  * bottom <- base <- intermediate <- top <- active
1953  *
1954  * to
1955  *
1956  * bottom <- base <- active
1957  *
1958  * It is allowed for bottom==base, in which case it converts:
1959  *
1960  * base <- intermediate <- top <- active
1961  *
1962  * to
1963  *
1964  * base <- active
1965  *
1966  * Error conditions:
1967  *  if active == top, that is considered an error
1968  *
1969  */
1970 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1971                            BlockDriverState *base)
1972 {
1973     BlockDriverState *intermediate;
1974     BlockDriverState *base_bs = NULL;
1975     BlockDriverState *new_top_bs = NULL;
1976     BlkIntermediateStates *intermediate_state, *next;
1977     int ret = -EIO;
1978 
1979     QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1980     QSIMPLEQ_INIT(&states_to_delete);
1981 
1982     if (!top->drv || !base->drv) {
1983         goto exit;
1984     }
1985 
1986     new_top_bs = bdrv_find_overlay(active, top);
1987 
1988     if (new_top_bs == NULL) {
1989         /* we could not find the image above 'top', this is an error */
1990         goto exit;
1991     }
1992 
1993     /* special case of new_top_bs->backing_hd already pointing to base - nothing
1994      * to do, no intermediate images */
1995     if (new_top_bs->backing_hd == base) {
1996         ret = 0;
1997         goto exit;
1998     }
1999 
2000     intermediate = top;
2001 
2002     /* now we will go down through the list, and add each BDS we find
2003      * into our deletion queue, until we hit the 'base'
2004      */
2005     while (intermediate) {
2006         intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
2007         intermediate_state->bs = intermediate;
2008         QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
2009 
2010         if (intermediate->backing_hd == base) {
2011             base_bs = intermediate->backing_hd;
2012             break;
2013         }
2014         intermediate = intermediate->backing_hd;
2015     }
2016     if (base_bs == NULL) {
2017         /* something went wrong, we did not end at the base. safely
2018          * unravel everything, and exit with error */
2019         goto exit;
2020     }
2021 
2022     /* success - we can delete the intermediate states, and link top->base */
2023     ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
2024                                    base_bs->drv ? base_bs->drv->format_name : "");
2025     if (ret) {
2026         goto exit;
2027     }
2028     new_top_bs->backing_hd = base_bs;
2029 
2030 
2031     QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
2032         /* so that bdrv_close() does not recursively close the chain */
2033         intermediate_state->bs->backing_hd = NULL;
2034         bdrv_delete(intermediate_state->bs);
2035     }
2036     ret = 0;
2037 
2038 exit:
2039     QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
2040         g_free(intermediate_state);
2041     }
2042     return ret;
2043 }
2044 
2045 
2046 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
2047                                    size_t size)
2048 {
2049     int64_t len;
2050 
2051     if (!bdrv_is_inserted(bs))
2052         return -ENOMEDIUM;
2053 
2054     if (bs->growable)
2055         return 0;
2056 
2057     len = bdrv_getlength(bs);
2058 
2059     if (offset < 0)
2060         return -EIO;
2061 
2062     if ((offset > len) || (len - offset < size))
2063         return -EIO;
2064 
2065     return 0;
2066 }
2067 
2068 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
2069                               int nb_sectors)
2070 {
2071     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
2072                                    nb_sectors * BDRV_SECTOR_SIZE);
2073 }
2074 
2075 typedef struct RwCo {
2076     BlockDriverState *bs;
2077     int64_t sector_num;
2078     int nb_sectors;
2079     QEMUIOVector *qiov;
2080     bool is_write;
2081     int ret;
2082 } RwCo;
2083 
2084 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
2085 {
2086     RwCo *rwco = opaque;
2087 
2088     if (!rwco->is_write) {
2089         rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
2090                                      rwco->nb_sectors, rwco->qiov, 0);
2091     } else {
2092         rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
2093                                       rwco->nb_sectors, rwco->qiov, 0);
2094     }
2095 }
2096 
2097 /*
2098  * Process a synchronous request using coroutines
2099  */
2100 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
2101                       int nb_sectors, bool is_write)
2102 {
2103     QEMUIOVector qiov;
2104     struct iovec iov = {
2105         .iov_base = (void *)buf,
2106         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
2107     };
2108     Coroutine *co;
2109     RwCo rwco = {
2110         .bs = bs,
2111         .sector_num = sector_num,
2112         .nb_sectors = nb_sectors,
2113         .qiov = &qiov,
2114         .is_write = is_write,
2115         .ret = NOT_DONE,
2116     };
2117 
2118     qemu_iovec_init_external(&qiov, &iov, 1);
2119 
2120     /**
2121      * In sync call context, when the vcpu is blocked, this throttling timer
2122      * will not fire; so the I/O throttling function has to be disabled here
2123      * if it has been enabled.
2124      */
2125     if (bs->io_limits_enabled) {
2126         fprintf(stderr, "Disabling I/O throttling on '%s' due "
2127                         "to synchronous I/O.\n", bdrv_get_device_name(bs));
2128         bdrv_io_limits_disable(bs);
2129     }
2130 
2131     if (qemu_in_coroutine()) {
2132         /* Fast-path if already in coroutine context */
2133         bdrv_rw_co_entry(&rwco);
2134     } else {
2135         co = qemu_coroutine_create(bdrv_rw_co_entry);
2136         qemu_coroutine_enter(co, &rwco);
2137         while (rwco.ret == NOT_DONE) {
2138             qemu_aio_wait();
2139         }
2140     }
2141     return rwco.ret;
2142 }
2143 
2144 /* return < 0 if error. See bdrv_write() for the return codes */
2145 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
2146               uint8_t *buf, int nb_sectors)
2147 {
2148     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
2149 }
2150 
2151 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
2152 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
2153                           uint8_t *buf, int nb_sectors)
2154 {
2155     bool enabled;
2156     int ret;
2157 
2158     enabled = bs->io_limits_enabled;
2159     bs->io_limits_enabled = false;
2160     ret = bdrv_read(bs, 0, buf, 1);
2161     bs->io_limits_enabled = enabled;
2162     return ret;
2163 }
2164 
2165 /* Return < 0 if error. Important errors are:
2166   -EIO         generic I/O error (may happen for all errors)
2167   -ENOMEDIUM   No media inserted.
2168   -EINVAL      Invalid sector number or nb_sectors
2169   -EACCES      Trying to write a read-only device
2170 */
2171 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2172                const uint8_t *buf, int nb_sectors)
2173 {
2174     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2175 }
2176 
2177 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2178                void *buf, int count1)
2179 {
2180     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2181     int len, nb_sectors, count;
2182     int64_t sector_num;
2183     int ret;
2184 
2185     count = count1;
2186     /* first read to align to sector start */
2187     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2188     if (len > count)
2189         len = count;
2190     sector_num = offset >> BDRV_SECTOR_BITS;
2191     if (len > 0) {
2192         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2193             return ret;
2194         memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2195         count -= len;
2196         if (count == 0)
2197             return count1;
2198         sector_num++;
2199         buf += len;
2200     }
2201 
2202     /* read the sectors "in place" */
2203     nb_sectors = count >> BDRV_SECTOR_BITS;
2204     if (nb_sectors > 0) {
2205         if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2206             return ret;
2207         sector_num += nb_sectors;
2208         len = nb_sectors << BDRV_SECTOR_BITS;
2209         buf += len;
2210         count -= len;
2211     }
2212 
2213     /* add data from the last sector */
2214     if (count > 0) {
2215         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2216             return ret;
2217         memcpy(buf, tmp_buf, count);
2218     }
2219     return count1;
2220 }
2221 
2222 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2223                 const void *buf, int count1)
2224 {
2225     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2226     int len, nb_sectors, count;
2227     int64_t sector_num;
2228     int ret;
2229 
2230     count = count1;
2231     /* first write to align to sector start */
2232     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2233     if (len > count)
2234         len = count;
2235     sector_num = offset >> BDRV_SECTOR_BITS;
2236     if (len > 0) {
2237         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2238             return ret;
2239         memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2240         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2241             return ret;
2242         count -= len;
2243         if (count == 0)
2244             return count1;
2245         sector_num++;
2246         buf += len;
2247     }
2248 
2249     /* write the sectors "in place" */
2250     nb_sectors = count >> BDRV_SECTOR_BITS;
2251     if (nb_sectors > 0) {
2252         if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2253             return ret;
2254         sector_num += nb_sectors;
2255         len = nb_sectors << BDRV_SECTOR_BITS;
2256         buf += len;
2257         count -= len;
2258     }
2259 
2260     /* add data from the last sector */
2261     if (count > 0) {
2262         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2263             return ret;
2264         memcpy(tmp_buf, buf, count);
2265         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2266             return ret;
2267     }
2268     return count1;
2269 }
2270 
2271 /*
2272  * Writes to the file and ensures that no writes are reordered across this
2273  * request (acts as a barrier)
2274  *
2275  * Returns 0 on success, -errno in error cases.
2276  */
2277 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2278     const void *buf, int count)
2279 {
2280     int ret;
2281 
2282     ret = bdrv_pwrite(bs, offset, buf, count);
2283     if (ret < 0) {
2284         return ret;
2285     }
2286 
2287     /* No flush needed for cache modes that already do it */
2288     if (bs->enable_write_cache) {
2289         bdrv_flush(bs);
2290     }
2291 
2292     return 0;
2293 }
2294 
2295 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2296         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2297 {
2298     /* Perform I/O through a temporary buffer so that users who scribble over
2299      * their read buffer while the operation is in progress do not end up
2300      * modifying the image file.  This is critical for zero-copy guest I/O
2301      * where anything might happen inside guest memory.
2302      */
2303     void *bounce_buffer;
2304 
2305     BlockDriver *drv = bs->drv;
2306     struct iovec iov;
2307     QEMUIOVector bounce_qiov;
2308     int64_t cluster_sector_num;
2309     int cluster_nb_sectors;
2310     size_t skip_bytes;
2311     int ret;
2312 
2313     /* Cover entire cluster so no additional backing file I/O is required when
2314      * allocating cluster in the image file.
2315      */
2316     bdrv_round_to_clusters(bs, sector_num, nb_sectors,
2317                            &cluster_sector_num, &cluster_nb_sectors);
2318 
2319     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2320                                    cluster_sector_num, cluster_nb_sectors);
2321 
2322     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2323     iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2324     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2325 
2326     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2327                              &bounce_qiov);
2328     if (ret < 0) {
2329         goto err;
2330     }
2331 
2332     if (drv->bdrv_co_write_zeroes &&
2333         buffer_is_zero(bounce_buffer, iov.iov_len)) {
2334         ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2335                                       cluster_nb_sectors);
2336     } else {
2337         /* This does not change the data on the disk, it is not necessary
2338          * to flush even in cache=writethrough mode.
2339          */
2340         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2341                                   &bounce_qiov);
2342     }
2343 
2344     if (ret < 0) {
2345         /* It might be okay to ignore write errors for guest requests.  If this
2346          * is a deliberate copy-on-read then we don't want to ignore the error.
2347          * Simply report it in all cases.
2348          */
2349         goto err;
2350     }
2351 
2352     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2353     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2354                         nb_sectors * BDRV_SECTOR_SIZE);
2355 
2356 err:
2357     qemu_vfree(bounce_buffer);
2358     return ret;
2359 }
2360 
2361 /*
2362  * Handle a read request in coroutine context
2363  */
2364 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2365     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2366     BdrvRequestFlags flags)
2367 {
2368     BlockDriver *drv = bs->drv;
2369     BdrvTrackedRequest req;
2370     int ret;
2371 
2372     if (!drv) {
2373         return -ENOMEDIUM;
2374     }
2375     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2376         return -EIO;
2377     }
2378 
2379     /* throttling disk read I/O */
2380     if (bs->io_limits_enabled) {
2381         bdrv_io_limits_intercept(bs, false, nb_sectors);
2382     }
2383 
2384     if (bs->copy_on_read) {
2385         flags |= BDRV_REQ_COPY_ON_READ;
2386     }
2387     if (flags & BDRV_REQ_COPY_ON_READ) {
2388         bs->copy_on_read_in_flight++;
2389     }
2390 
2391     if (bs->copy_on_read_in_flight) {
2392         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2393     }
2394 
2395     tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2396 
2397     if (flags & BDRV_REQ_COPY_ON_READ) {
2398         int pnum;
2399 
2400         ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2401         if (ret < 0) {
2402             goto out;
2403         }
2404 
2405         if (!ret || pnum != nb_sectors) {
2406             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2407             goto out;
2408         }
2409     }
2410 
2411     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2412 
2413 out:
2414     tracked_request_end(&req);
2415 
2416     if (flags & BDRV_REQ_COPY_ON_READ) {
2417         bs->copy_on_read_in_flight--;
2418     }
2419 
2420     return ret;
2421 }
2422 
2423 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2424     int nb_sectors, QEMUIOVector *qiov)
2425 {
2426     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2427 
2428     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2429 }
2430 
2431 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2432     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2433 {
2434     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2435 
2436     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2437                             BDRV_REQ_COPY_ON_READ);
2438 }
2439 
2440 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2441     int64_t sector_num, int nb_sectors)
2442 {
2443     BlockDriver *drv = bs->drv;
2444     QEMUIOVector qiov;
2445     struct iovec iov;
2446     int ret;
2447 
2448     /* TODO Emulate only part of misaligned requests instead of letting block
2449      * drivers return -ENOTSUP and emulate everything */
2450 
2451     /* First try the efficient write zeroes operation */
2452     if (drv->bdrv_co_write_zeroes) {
2453         ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2454         if (ret != -ENOTSUP) {
2455             return ret;
2456         }
2457     }
2458 
2459     /* Fall back to bounce buffer if write zeroes is unsupported */
2460     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE;
2461     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2462     memset(iov.iov_base, 0, iov.iov_len);
2463     qemu_iovec_init_external(&qiov, &iov, 1);
2464 
2465     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2466 
2467     qemu_vfree(iov.iov_base);
2468     return ret;
2469 }
2470 
2471 /*
2472  * Handle a write request in coroutine context
2473  */
2474 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2475     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2476     BdrvRequestFlags flags)
2477 {
2478     BlockDriver *drv = bs->drv;
2479     BdrvTrackedRequest req;
2480     int ret;
2481 
2482     if (!bs->drv) {
2483         return -ENOMEDIUM;
2484     }
2485     if (bs->read_only) {
2486         return -EACCES;
2487     }
2488     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2489         return -EIO;
2490     }
2491 
2492     /* throttling disk write I/O */
2493     if (bs->io_limits_enabled) {
2494         bdrv_io_limits_intercept(bs, true, nb_sectors);
2495     }
2496 
2497     if (bs->copy_on_read_in_flight) {
2498         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2499     }
2500 
2501     tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2502 
2503     if (flags & BDRV_REQ_ZERO_WRITE) {
2504         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2505     } else {
2506         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2507     }
2508 
2509     if (ret == 0 && !bs->enable_write_cache) {
2510         ret = bdrv_co_flush(bs);
2511     }
2512 
2513     if (bs->dirty_bitmap) {
2514         bdrv_set_dirty(bs, sector_num, nb_sectors);
2515     }
2516 
2517     if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2518         bs->wr_highest_sector = sector_num + nb_sectors - 1;
2519     }
2520 
2521     tracked_request_end(&req);
2522 
2523     return ret;
2524 }
2525 
2526 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2527     int nb_sectors, QEMUIOVector *qiov)
2528 {
2529     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2530 
2531     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2532 }
2533 
2534 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2535                                       int64_t sector_num, int nb_sectors)
2536 {
2537     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2538 
2539     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2540                              BDRV_REQ_ZERO_WRITE);
2541 }
2542 
2543 /**
2544  * Truncate file to 'offset' bytes (needed only for file protocols)
2545  */
2546 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2547 {
2548     BlockDriver *drv = bs->drv;
2549     int ret;
2550     if (!drv)
2551         return -ENOMEDIUM;
2552     if (!drv->bdrv_truncate)
2553         return -ENOTSUP;
2554     if (bs->read_only)
2555         return -EACCES;
2556     if (bdrv_in_use(bs))
2557         return -EBUSY;
2558     ret = drv->bdrv_truncate(bs, offset);
2559     if (ret == 0) {
2560         ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2561         bdrv_dev_resize_cb(bs);
2562     }
2563     return ret;
2564 }
2565 
2566 /**
2567  * Length of a allocated file in bytes. Sparse files are counted by actual
2568  * allocated space. Return < 0 if error or unknown.
2569  */
2570 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2571 {
2572     BlockDriver *drv = bs->drv;
2573     if (!drv) {
2574         return -ENOMEDIUM;
2575     }
2576     if (drv->bdrv_get_allocated_file_size) {
2577         return drv->bdrv_get_allocated_file_size(bs);
2578     }
2579     if (bs->file) {
2580         return bdrv_get_allocated_file_size(bs->file);
2581     }
2582     return -ENOTSUP;
2583 }
2584 
2585 /**
2586  * Length of a file in bytes. Return < 0 if error or unknown.
2587  */
2588 int64_t bdrv_getlength(BlockDriverState *bs)
2589 {
2590     BlockDriver *drv = bs->drv;
2591     if (!drv)
2592         return -ENOMEDIUM;
2593 
2594     if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2595         if (drv->bdrv_getlength) {
2596             return drv->bdrv_getlength(bs);
2597         }
2598     }
2599     return bs->total_sectors * BDRV_SECTOR_SIZE;
2600 }
2601 
2602 /* return 0 as number of sectors if no device present or error */
2603 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2604 {
2605     int64_t length;
2606     length = bdrv_getlength(bs);
2607     if (length < 0)
2608         length = 0;
2609     else
2610         length = length >> BDRV_SECTOR_BITS;
2611     *nb_sectors_ptr = length;
2612 }
2613 
2614 /* throttling disk io limits */
2615 void bdrv_set_io_limits(BlockDriverState *bs,
2616                         BlockIOLimit *io_limits)
2617 {
2618     bs->io_limits = *io_limits;
2619     bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2620 }
2621 
2622 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2623                        BlockdevOnError on_write_error)
2624 {
2625     bs->on_read_error = on_read_error;
2626     bs->on_write_error = on_write_error;
2627 }
2628 
2629 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2630 {
2631     return is_read ? bs->on_read_error : bs->on_write_error;
2632 }
2633 
2634 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2635 {
2636     BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2637 
2638     switch (on_err) {
2639     case BLOCKDEV_ON_ERROR_ENOSPC:
2640         return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2641     case BLOCKDEV_ON_ERROR_STOP:
2642         return BDRV_ACTION_STOP;
2643     case BLOCKDEV_ON_ERROR_REPORT:
2644         return BDRV_ACTION_REPORT;
2645     case BLOCKDEV_ON_ERROR_IGNORE:
2646         return BDRV_ACTION_IGNORE;
2647     default:
2648         abort();
2649     }
2650 }
2651 
2652 /* This is done by device models because, while the block layer knows
2653  * about the error, it does not know whether an operation comes from
2654  * the device or the block layer (from a job, for example).
2655  */
2656 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2657                        bool is_read, int error)
2658 {
2659     assert(error >= 0);
2660     bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2661     if (action == BDRV_ACTION_STOP) {
2662         vm_stop(RUN_STATE_IO_ERROR);
2663         bdrv_iostatus_set_err(bs, error);
2664     }
2665 }
2666 
2667 int bdrv_is_read_only(BlockDriverState *bs)
2668 {
2669     return bs->read_only;
2670 }
2671 
2672 int bdrv_is_sg(BlockDriverState *bs)
2673 {
2674     return bs->sg;
2675 }
2676 
2677 int bdrv_enable_write_cache(BlockDriverState *bs)
2678 {
2679     return bs->enable_write_cache;
2680 }
2681 
2682 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2683 {
2684     bs->enable_write_cache = wce;
2685 
2686     /* so a reopen() will preserve wce */
2687     if (wce) {
2688         bs->open_flags |= BDRV_O_CACHE_WB;
2689     } else {
2690         bs->open_flags &= ~BDRV_O_CACHE_WB;
2691     }
2692 }
2693 
2694 int bdrv_is_encrypted(BlockDriverState *bs)
2695 {
2696     if (bs->backing_hd && bs->backing_hd->encrypted)
2697         return 1;
2698     return bs->encrypted;
2699 }
2700 
2701 int bdrv_key_required(BlockDriverState *bs)
2702 {
2703     BlockDriverState *backing_hd = bs->backing_hd;
2704 
2705     if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2706         return 1;
2707     return (bs->encrypted && !bs->valid_key);
2708 }
2709 
2710 int bdrv_set_key(BlockDriverState *bs, const char *key)
2711 {
2712     int ret;
2713     if (bs->backing_hd && bs->backing_hd->encrypted) {
2714         ret = bdrv_set_key(bs->backing_hd, key);
2715         if (ret < 0)
2716             return ret;
2717         if (!bs->encrypted)
2718             return 0;
2719     }
2720     if (!bs->encrypted) {
2721         return -EINVAL;
2722     } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2723         return -ENOMEDIUM;
2724     }
2725     ret = bs->drv->bdrv_set_key(bs, key);
2726     if (ret < 0) {
2727         bs->valid_key = 0;
2728     } else if (!bs->valid_key) {
2729         bs->valid_key = 1;
2730         /* call the change callback now, we skipped it on open */
2731         bdrv_dev_change_media_cb(bs, true);
2732     }
2733     return ret;
2734 }
2735 
2736 const char *bdrv_get_format_name(BlockDriverState *bs)
2737 {
2738     return bs->drv ? bs->drv->format_name : NULL;
2739 }
2740 
2741 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2742                          void *opaque)
2743 {
2744     BlockDriver *drv;
2745 
2746     QLIST_FOREACH(drv, &bdrv_drivers, list) {
2747         it(opaque, drv->format_name);
2748     }
2749 }
2750 
2751 BlockDriverState *bdrv_find(const char *name)
2752 {
2753     BlockDriverState *bs;
2754 
2755     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2756         if (!strcmp(name, bs->device_name)) {
2757             return bs;
2758         }
2759     }
2760     return NULL;
2761 }
2762 
2763 BlockDriverState *bdrv_next(BlockDriverState *bs)
2764 {
2765     if (!bs) {
2766         return QTAILQ_FIRST(&bdrv_states);
2767     }
2768     return QTAILQ_NEXT(bs, list);
2769 }
2770 
2771 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2772 {
2773     BlockDriverState *bs;
2774 
2775     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2776         it(opaque, bs);
2777     }
2778 }
2779 
2780 const char *bdrv_get_device_name(BlockDriverState *bs)
2781 {
2782     return bs->device_name;
2783 }
2784 
2785 int bdrv_get_flags(BlockDriverState *bs)
2786 {
2787     return bs->open_flags;
2788 }
2789 
2790 void bdrv_flush_all(void)
2791 {
2792     BlockDriverState *bs;
2793 
2794     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2795         bdrv_flush(bs);
2796     }
2797 }
2798 
2799 int bdrv_has_zero_init(BlockDriverState *bs)
2800 {
2801     assert(bs->drv);
2802 
2803     if (bs->drv->bdrv_has_zero_init) {
2804         return bs->drv->bdrv_has_zero_init(bs);
2805     }
2806 
2807     return 1;
2808 }
2809 
2810 typedef struct BdrvCoIsAllocatedData {
2811     BlockDriverState *bs;
2812     BlockDriverState *base;
2813     int64_t sector_num;
2814     int nb_sectors;
2815     int *pnum;
2816     int ret;
2817     bool done;
2818 } BdrvCoIsAllocatedData;
2819 
2820 /*
2821  * Returns true iff the specified sector is present in the disk image. Drivers
2822  * not implementing the functionality are assumed to not support backing files,
2823  * hence all their sectors are reported as allocated.
2824  *
2825  * If 'sector_num' is beyond the end of the disk image the return value is 0
2826  * and 'pnum' is set to 0.
2827  *
2828  * 'pnum' is set to the number of sectors (including and immediately following
2829  * the specified sector) that are known to be in the same
2830  * allocated/unallocated state.
2831  *
2832  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
2833  * beyond the end of the disk image it will be clamped.
2834  */
2835 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2836                                       int nb_sectors, int *pnum)
2837 {
2838     int64_t n;
2839 
2840     if (sector_num >= bs->total_sectors) {
2841         *pnum = 0;
2842         return 0;
2843     }
2844 
2845     n = bs->total_sectors - sector_num;
2846     if (n < nb_sectors) {
2847         nb_sectors = n;
2848     }
2849 
2850     if (!bs->drv->bdrv_co_is_allocated) {
2851         *pnum = nb_sectors;
2852         return 1;
2853     }
2854 
2855     return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2856 }
2857 
2858 /* Coroutine wrapper for bdrv_is_allocated() */
2859 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2860 {
2861     BdrvCoIsAllocatedData *data = opaque;
2862     BlockDriverState *bs = data->bs;
2863 
2864     data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2865                                      data->pnum);
2866     data->done = true;
2867 }
2868 
2869 /*
2870  * Synchronous wrapper around bdrv_co_is_allocated().
2871  *
2872  * See bdrv_co_is_allocated() for details.
2873  */
2874 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2875                       int *pnum)
2876 {
2877     Coroutine *co;
2878     BdrvCoIsAllocatedData data = {
2879         .bs = bs,
2880         .sector_num = sector_num,
2881         .nb_sectors = nb_sectors,
2882         .pnum = pnum,
2883         .done = false,
2884     };
2885 
2886     co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2887     qemu_coroutine_enter(co, &data);
2888     while (!data.done) {
2889         qemu_aio_wait();
2890     }
2891     return data.ret;
2892 }
2893 
2894 /*
2895  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2896  *
2897  * Return true if the given sector is allocated in any image between
2898  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
2899  * sector is allocated in any image of the chain.  Return false otherwise.
2900  *
2901  * 'pnum' is set to the number of sectors (including and immediately following
2902  *  the specified sector) that are known to be in the same
2903  *  allocated/unallocated state.
2904  *
2905  */
2906 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2907                                             BlockDriverState *base,
2908                                             int64_t sector_num,
2909                                             int nb_sectors, int *pnum)
2910 {
2911     BlockDriverState *intermediate;
2912     int ret, n = nb_sectors;
2913 
2914     intermediate = top;
2915     while (intermediate && intermediate != base) {
2916         int pnum_inter;
2917         ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2918                                    &pnum_inter);
2919         if (ret < 0) {
2920             return ret;
2921         } else if (ret) {
2922             *pnum = pnum_inter;
2923             return 1;
2924         }
2925 
2926         /*
2927          * [sector_num, nb_sectors] is unallocated on top but intermediate
2928          * might have
2929          *
2930          * [sector_num+x, nr_sectors] allocated.
2931          */
2932         if (n > pnum_inter &&
2933             (intermediate == top ||
2934              sector_num + pnum_inter < intermediate->total_sectors)) {
2935             n = pnum_inter;
2936         }
2937 
2938         intermediate = intermediate->backing_hd;
2939     }
2940 
2941     *pnum = n;
2942     return 0;
2943 }
2944 
2945 /* Coroutine wrapper for bdrv_is_allocated_above() */
2946 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque)
2947 {
2948     BdrvCoIsAllocatedData *data = opaque;
2949     BlockDriverState *top = data->bs;
2950     BlockDriverState *base = data->base;
2951 
2952     data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num,
2953                                            data->nb_sectors, data->pnum);
2954     data->done = true;
2955 }
2956 
2957 /*
2958  * Synchronous wrapper around bdrv_co_is_allocated_above().
2959  *
2960  * See bdrv_co_is_allocated_above() for details.
2961  */
2962 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base,
2963                             int64_t sector_num, int nb_sectors, int *pnum)
2964 {
2965     Coroutine *co;
2966     BdrvCoIsAllocatedData data = {
2967         .bs = top,
2968         .base = base,
2969         .sector_num = sector_num,
2970         .nb_sectors = nb_sectors,
2971         .pnum = pnum,
2972         .done = false,
2973     };
2974 
2975     co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry);
2976     qemu_coroutine_enter(co, &data);
2977     while (!data.done) {
2978         qemu_aio_wait();
2979     }
2980     return data.ret;
2981 }
2982 
2983 BlockInfo *bdrv_query_info(BlockDriverState *bs)
2984 {
2985     BlockInfo *info = g_malloc0(sizeof(*info));
2986     info->device = g_strdup(bs->device_name);
2987     info->type = g_strdup("unknown");
2988     info->locked = bdrv_dev_is_medium_locked(bs);
2989     info->removable = bdrv_dev_has_removable_media(bs);
2990 
2991     if (bdrv_dev_has_removable_media(bs)) {
2992         info->has_tray_open = true;
2993         info->tray_open = bdrv_dev_is_tray_open(bs);
2994     }
2995 
2996     if (bdrv_iostatus_is_enabled(bs)) {
2997         info->has_io_status = true;
2998         info->io_status = bs->iostatus;
2999     }
3000 
3001     if (bs->dirty_bitmap) {
3002         info->has_dirty = true;
3003         info->dirty = g_malloc0(sizeof(*info->dirty));
3004         info->dirty->count = bdrv_get_dirty_count(bs) * BDRV_SECTOR_SIZE;
3005         info->dirty->granularity =
3006             ((int64_t) BDRV_SECTOR_SIZE << hbitmap_granularity(bs->dirty_bitmap));
3007     }
3008 
3009     if (bs->drv) {
3010         info->has_inserted = true;
3011         info->inserted = g_malloc0(sizeof(*info->inserted));
3012         info->inserted->file = g_strdup(bs->filename);
3013         info->inserted->ro = bs->read_only;
3014         info->inserted->drv = g_strdup(bs->drv->format_name);
3015         info->inserted->encrypted = bs->encrypted;
3016         info->inserted->encryption_key_missing = bdrv_key_required(bs);
3017 
3018         if (bs->backing_file[0]) {
3019             info->inserted->has_backing_file = true;
3020             info->inserted->backing_file = g_strdup(bs->backing_file);
3021         }
3022 
3023         info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs);
3024 
3025         if (bs->io_limits_enabled) {
3026             info->inserted->bps =
3027                            bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3028             info->inserted->bps_rd =
3029                            bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
3030             info->inserted->bps_wr =
3031                            bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
3032             info->inserted->iops =
3033                            bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3034             info->inserted->iops_rd =
3035                            bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
3036             info->inserted->iops_wr =
3037                            bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
3038         }
3039     }
3040     return info;
3041 }
3042 
3043 BlockInfoList *qmp_query_block(Error **errp)
3044 {
3045     BlockInfoList *head = NULL, **p_next = &head;
3046     BlockDriverState *bs;
3047 
3048     QTAILQ_FOREACH(bs, &bdrv_states, list) {
3049         BlockInfoList *info = g_malloc0(sizeof(*info));
3050         info->value = bdrv_query_info(bs);
3051 
3052         *p_next = info;
3053         p_next = &info->next;
3054     }
3055 
3056     return head;
3057 }
3058 
3059 BlockStats *bdrv_query_stats(const BlockDriverState *bs)
3060 {
3061     BlockStats *s;
3062 
3063     s = g_malloc0(sizeof(*s));
3064 
3065     if (bs->device_name[0]) {
3066         s->has_device = true;
3067         s->device = g_strdup(bs->device_name);
3068     }
3069 
3070     s->stats = g_malloc0(sizeof(*s->stats));
3071     s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
3072     s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
3073     s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
3074     s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
3075     s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
3076     s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
3077     s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
3078     s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
3079     s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
3080 
3081     if (bs->file) {
3082         s->has_parent = true;
3083         s->parent = bdrv_query_stats(bs->file);
3084     }
3085 
3086     return s;
3087 }
3088 
3089 BlockStatsList *qmp_query_blockstats(Error **errp)
3090 {
3091     BlockStatsList *head = NULL, **p_next = &head;
3092     BlockDriverState *bs;
3093 
3094     QTAILQ_FOREACH(bs, &bdrv_states, list) {
3095         BlockStatsList *info = g_malloc0(sizeof(*info));
3096         info->value = bdrv_query_stats(bs);
3097 
3098         *p_next = info;
3099         p_next = &info->next;
3100     }
3101 
3102     return head;
3103 }
3104 
3105 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
3106 {
3107     if (bs->backing_hd && bs->backing_hd->encrypted)
3108         return bs->backing_file;
3109     else if (bs->encrypted)
3110         return bs->filename;
3111     else
3112         return NULL;
3113 }
3114 
3115 void bdrv_get_backing_filename(BlockDriverState *bs,
3116                                char *filename, int filename_size)
3117 {
3118     pstrcpy(filename, filename_size, bs->backing_file);
3119 }
3120 
3121 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
3122                           const uint8_t *buf, int nb_sectors)
3123 {
3124     BlockDriver *drv = bs->drv;
3125     if (!drv)
3126         return -ENOMEDIUM;
3127     if (!drv->bdrv_write_compressed)
3128         return -ENOTSUP;
3129     if (bdrv_check_request(bs, sector_num, nb_sectors))
3130         return -EIO;
3131 
3132     assert(!bs->dirty_bitmap);
3133 
3134     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
3135 }
3136 
3137 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
3138 {
3139     BlockDriver *drv = bs->drv;
3140     if (!drv)
3141         return -ENOMEDIUM;
3142     if (!drv->bdrv_get_info)
3143         return -ENOTSUP;
3144     memset(bdi, 0, sizeof(*bdi));
3145     return drv->bdrv_get_info(bs, bdi);
3146 }
3147 
3148 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
3149                       int64_t pos, int size)
3150 {
3151     BlockDriver *drv = bs->drv;
3152     if (!drv)
3153         return -ENOMEDIUM;
3154     if (drv->bdrv_save_vmstate)
3155         return drv->bdrv_save_vmstate(bs, buf, pos, size);
3156     if (bs->file)
3157         return bdrv_save_vmstate(bs->file, buf, pos, size);
3158     return -ENOTSUP;
3159 }
3160 
3161 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
3162                       int64_t pos, int size)
3163 {
3164     BlockDriver *drv = bs->drv;
3165     if (!drv)
3166         return -ENOMEDIUM;
3167     if (drv->bdrv_load_vmstate)
3168         return drv->bdrv_load_vmstate(bs, buf, pos, size);
3169     if (bs->file)
3170         return bdrv_load_vmstate(bs->file, buf, pos, size);
3171     return -ENOTSUP;
3172 }
3173 
3174 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3175 {
3176     BlockDriver *drv = bs->drv;
3177 
3178     if (!drv || !drv->bdrv_debug_event) {
3179         return;
3180     }
3181 
3182     drv->bdrv_debug_event(bs, event);
3183 }
3184 
3185 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
3186                           const char *tag)
3187 {
3188     while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) {
3189         bs = bs->file;
3190     }
3191 
3192     if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) {
3193         return bs->drv->bdrv_debug_breakpoint(bs, event, tag);
3194     }
3195 
3196     return -ENOTSUP;
3197 }
3198 
3199 int bdrv_debug_resume(BlockDriverState *bs, const char *tag)
3200 {
3201     while (bs && bs->drv && !bs->drv->bdrv_debug_resume) {
3202         bs = bs->file;
3203     }
3204 
3205     if (bs && bs->drv && bs->drv->bdrv_debug_resume) {
3206         return bs->drv->bdrv_debug_resume(bs, tag);
3207     }
3208 
3209     return -ENOTSUP;
3210 }
3211 
3212 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag)
3213 {
3214     while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) {
3215         bs = bs->file;
3216     }
3217 
3218     if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) {
3219         return bs->drv->bdrv_debug_is_suspended(bs, tag);
3220     }
3221 
3222     return false;
3223 }
3224 
3225 /**************************************************************/
3226 /* handling of snapshots */
3227 
3228 int bdrv_can_snapshot(BlockDriverState *bs)
3229 {
3230     BlockDriver *drv = bs->drv;
3231     if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3232         return 0;
3233     }
3234 
3235     if (!drv->bdrv_snapshot_create) {
3236         if (bs->file != NULL) {
3237             return bdrv_can_snapshot(bs->file);
3238         }
3239         return 0;
3240     }
3241 
3242     return 1;
3243 }
3244 
3245 int bdrv_is_snapshot(BlockDriverState *bs)
3246 {
3247     return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3248 }
3249 
3250 BlockDriverState *bdrv_snapshots(void)
3251 {
3252     BlockDriverState *bs;
3253 
3254     if (bs_snapshots) {
3255         return bs_snapshots;
3256     }
3257 
3258     bs = NULL;
3259     while ((bs = bdrv_next(bs))) {
3260         if (bdrv_can_snapshot(bs)) {
3261             bs_snapshots = bs;
3262             return bs;
3263         }
3264     }
3265     return NULL;
3266 }
3267 
3268 int bdrv_snapshot_create(BlockDriverState *bs,
3269                          QEMUSnapshotInfo *sn_info)
3270 {
3271     BlockDriver *drv = bs->drv;
3272     if (!drv)
3273         return -ENOMEDIUM;
3274     if (drv->bdrv_snapshot_create)
3275         return drv->bdrv_snapshot_create(bs, sn_info);
3276     if (bs->file)
3277         return bdrv_snapshot_create(bs->file, sn_info);
3278     return -ENOTSUP;
3279 }
3280 
3281 int bdrv_snapshot_goto(BlockDriverState *bs,
3282                        const char *snapshot_id)
3283 {
3284     BlockDriver *drv = bs->drv;
3285     int ret, open_ret;
3286 
3287     if (!drv)
3288         return -ENOMEDIUM;
3289     if (drv->bdrv_snapshot_goto)
3290         return drv->bdrv_snapshot_goto(bs, snapshot_id);
3291 
3292     if (bs->file) {
3293         drv->bdrv_close(bs);
3294         ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3295         open_ret = drv->bdrv_open(bs, NULL, bs->open_flags);
3296         if (open_ret < 0) {
3297             bdrv_delete(bs->file);
3298             bs->drv = NULL;
3299             return open_ret;
3300         }
3301         return ret;
3302     }
3303 
3304     return -ENOTSUP;
3305 }
3306 
3307 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3308 {
3309     BlockDriver *drv = bs->drv;
3310     if (!drv)
3311         return -ENOMEDIUM;
3312     if (drv->bdrv_snapshot_delete)
3313         return drv->bdrv_snapshot_delete(bs, snapshot_id);
3314     if (bs->file)
3315         return bdrv_snapshot_delete(bs->file, snapshot_id);
3316     return -ENOTSUP;
3317 }
3318 
3319 int bdrv_snapshot_list(BlockDriverState *bs,
3320                        QEMUSnapshotInfo **psn_info)
3321 {
3322     BlockDriver *drv = bs->drv;
3323     if (!drv)
3324         return -ENOMEDIUM;
3325     if (drv->bdrv_snapshot_list)
3326         return drv->bdrv_snapshot_list(bs, psn_info);
3327     if (bs->file)
3328         return bdrv_snapshot_list(bs->file, psn_info);
3329     return -ENOTSUP;
3330 }
3331 
3332 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3333         const char *snapshot_name)
3334 {
3335     BlockDriver *drv = bs->drv;
3336     if (!drv) {
3337         return -ENOMEDIUM;
3338     }
3339     if (!bs->read_only) {
3340         return -EINVAL;
3341     }
3342     if (drv->bdrv_snapshot_load_tmp) {
3343         return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3344     }
3345     return -ENOTSUP;
3346 }
3347 
3348 /* backing_file can either be relative, or absolute, or a protocol.  If it is
3349  * relative, it must be relative to the chain.  So, passing in bs->filename
3350  * from a BDS as backing_file should not be done, as that may be relative to
3351  * the CWD rather than the chain. */
3352 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3353         const char *backing_file)
3354 {
3355     char *filename_full = NULL;
3356     char *backing_file_full = NULL;
3357     char *filename_tmp = NULL;
3358     int is_protocol = 0;
3359     BlockDriverState *curr_bs = NULL;
3360     BlockDriverState *retval = NULL;
3361 
3362     if (!bs || !bs->drv || !backing_file) {
3363         return NULL;
3364     }
3365 
3366     filename_full     = g_malloc(PATH_MAX);
3367     backing_file_full = g_malloc(PATH_MAX);
3368     filename_tmp      = g_malloc(PATH_MAX);
3369 
3370     is_protocol = path_has_protocol(backing_file);
3371 
3372     for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3373 
3374         /* If either of the filename paths is actually a protocol, then
3375          * compare unmodified paths; otherwise make paths relative */
3376         if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3377             if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3378                 retval = curr_bs->backing_hd;
3379                 break;
3380             }
3381         } else {
3382             /* If not an absolute filename path, make it relative to the current
3383              * image's filename path */
3384             path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3385                          backing_file);
3386 
3387             /* We are going to compare absolute pathnames */
3388             if (!realpath(filename_tmp, filename_full)) {
3389                 continue;
3390             }
3391 
3392             /* We need to make sure the backing filename we are comparing against
3393              * is relative to the current image filename (or absolute) */
3394             path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3395                          curr_bs->backing_file);
3396 
3397             if (!realpath(filename_tmp, backing_file_full)) {
3398                 continue;
3399             }
3400 
3401             if (strcmp(backing_file_full, filename_full) == 0) {
3402                 retval = curr_bs->backing_hd;
3403                 break;
3404             }
3405         }
3406     }
3407 
3408     g_free(filename_full);
3409     g_free(backing_file_full);
3410     g_free(filename_tmp);
3411     return retval;
3412 }
3413 
3414 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3415 {
3416     if (!bs->drv) {
3417         return 0;
3418     }
3419 
3420     if (!bs->backing_hd) {
3421         return 0;
3422     }
3423 
3424     return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3425 }
3426 
3427 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3428 {
3429     BlockDriverState *curr_bs = NULL;
3430 
3431     if (!bs) {
3432         return NULL;
3433     }
3434 
3435     curr_bs = bs;
3436 
3437     while (curr_bs->backing_hd) {
3438         curr_bs = curr_bs->backing_hd;
3439     }
3440     return curr_bs;
3441 }
3442 
3443 #define NB_SUFFIXES 4
3444 
3445 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3446 {
3447     static const char suffixes[NB_SUFFIXES] = "KMGT";
3448     int64_t base;
3449     int i;
3450 
3451     if (size <= 999) {
3452         snprintf(buf, buf_size, "%" PRId64, size);
3453     } else {
3454         base = 1024;
3455         for(i = 0; i < NB_SUFFIXES; i++) {
3456             if (size < (10 * base)) {
3457                 snprintf(buf, buf_size, "%0.1f%c",
3458                          (double)size / base,
3459                          suffixes[i]);
3460                 break;
3461             } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3462                 snprintf(buf, buf_size, "%" PRId64 "%c",
3463                          ((size + (base >> 1)) / base),
3464                          suffixes[i]);
3465                 break;
3466             }
3467             base = base * 1024;
3468         }
3469     }
3470     return buf;
3471 }
3472 
3473 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3474 {
3475     char buf1[128], date_buf[128], clock_buf[128];
3476     struct tm tm;
3477     time_t ti;
3478     int64_t secs;
3479 
3480     if (!sn) {
3481         snprintf(buf, buf_size,
3482                  "%-10s%-20s%7s%20s%15s",
3483                  "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3484     } else {
3485         ti = sn->date_sec;
3486         localtime_r(&ti, &tm);
3487         strftime(date_buf, sizeof(date_buf),
3488                  "%Y-%m-%d %H:%M:%S", &tm);
3489         secs = sn->vm_clock_nsec / 1000000000;
3490         snprintf(clock_buf, sizeof(clock_buf),
3491                  "%02d:%02d:%02d.%03d",
3492                  (int)(secs / 3600),
3493                  (int)((secs / 60) % 60),
3494                  (int)(secs % 60),
3495                  (int)((sn->vm_clock_nsec / 1000000) % 1000));
3496         snprintf(buf, buf_size,
3497                  "%-10s%-20s%7s%20s%15s",
3498                  sn->id_str, sn->name,
3499                  get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3500                  date_buf,
3501                  clock_buf);
3502     }
3503     return buf;
3504 }
3505 
3506 /**************************************************************/
3507 /* async I/Os */
3508 
3509 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3510                                  QEMUIOVector *qiov, int nb_sectors,
3511                                  BlockDriverCompletionFunc *cb, void *opaque)
3512 {
3513     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3514 
3515     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3516                                  cb, opaque, false);
3517 }
3518 
3519 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3520                                   QEMUIOVector *qiov, int nb_sectors,
3521                                   BlockDriverCompletionFunc *cb, void *opaque)
3522 {
3523     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3524 
3525     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3526                                  cb, opaque, true);
3527 }
3528 
3529 
3530 typedef struct MultiwriteCB {
3531     int error;
3532     int num_requests;
3533     int num_callbacks;
3534     struct {
3535         BlockDriverCompletionFunc *cb;
3536         void *opaque;
3537         QEMUIOVector *free_qiov;
3538     } callbacks[];
3539 } MultiwriteCB;
3540 
3541 static void multiwrite_user_cb(MultiwriteCB *mcb)
3542 {
3543     int i;
3544 
3545     for (i = 0; i < mcb->num_callbacks; i++) {
3546         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3547         if (mcb->callbacks[i].free_qiov) {
3548             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3549         }
3550         g_free(mcb->callbacks[i].free_qiov);
3551     }
3552 }
3553 
3554 static void multiwrite_cb(void *opaque, int ret)
3555 {
3556     MultiwriteCB *mcb = opaque;
3557 
3558     trace_multiwrite_cb(mcb, ret);
3559 
3560     if (ret < 0 && !mcb->error) {
3561         mcb->error = ret;
3562     }
3563 
3564     mcb->num_requests--;
3565     if (mcb->num_requests == 0) {
3566         multiwrite_user_cb(mcb);
3567         g_free(mcb);
3568     }
3569 }
3570 
3571 static int multiwrite_req_compare(const void *a, const void *b)
3572 {
3573     const BlockRequest *req1 = a, *req2 = b;
3574 
3575     /*
3576      * Note that we can't simply subtract req2->sector from req1->sector
3577      * here as that could overflow the return value.
3578      */
3579     if (req1->sector > req2->sector) {
3580         return 1;
3581     } else if (req1->sector < req2->sector) {
3582         return -1;
3583     } else {
3584         return 0;
3585     }
3586 }
3587 
3588 /*
3589  * Takes a bunch of requests and tries to merge them. Returns the number of
3590  * requests that remain after merging.
3591  */
3592 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3593     int num_reqs, MultiwriteCB *mcb)
3594 {
3595     int i, outidx;
3596 
3597     // Sort requests by start sector
3598     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3599 
3600     // Check if adjacent requests touch the same clusters. If so, combine them,
3601     // filling up gaps with zero sectors.
3602     outidx = 0;
3603     for (i = 1; i < num_reqs; i++) {
3604         int merge = 0;
3605         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3606 
3607         // Handle exactly sequential writes and overlapping writes.
3608         if (reqs[i].sector <= oldreq_last) {
3609             merge = 1;
3610         }
3611 
3612         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3613             merge = 0;
3614         }
3615 
3616         if (merge) {
3617             size_t size;
3618             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3619             qemu_iovec_init(qiov,
3620                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3621 
3622             // Add the first request to the merged one. If the requests are
3623             // overlapping, drop the last sectors of the first request.
3624             size = (reqs[i].sector - reqs[outidx].sector) << 9;
3625             qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3626 
3627             // We should need to add any zeros between the two requests
3628             assert (reqs[i].sector <= oldreq_last);
3629 
3630             // Add the second request
3631             qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3632 
3633             reqs[outidx].nb_sectors = qiov->size >> 9;
3634             reqs[outidx].qiov = qiov;
3635 
3636             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3637         } else {
3638             outidx++;
3639             reqs[outidx].sector     = reqs[i].sector;
3640             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3641             reqs[outidx].qiov       = reqs[i].qiov;
3642         }
3643     }
3644 
3645     return outidx + 1;
3646 }
3647 
3648 /*
3649  * Submit multiple AIO write requests at once.
3650  *
3651  * On success, the function returns 0 and all requests in the reqs array have
3652  * been submitted. In error case this function returns -1, and any of the
3653  * requests may or may not be submitted yet. In particular, this means that the
3654  * callback will be called for some of the requests, for others it won't. The
3655  * caller must check the error field of the BlockRequest to wait for the right
3656  * callbacks (if error != 0, no callback will be called).
3657  *
3658  * The implementation may modify the contents of the reqs array, e.g. to merge
3659  * requests. However, the fields opaque and error are left unmodified as they
3660  * are used to signal failure for a single request to the caller.
3661  */
3662 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3663 {
3664     MultiwriteCB *mcb;
3665     int i;
3666 
3667     /* don't submit writes if we don't have a medium */
3668     if (bs->drv == NULL) {
3669         for (i = 0; i < num_reqs; i++) {
3670             reqs[i].error = -ENOMEDIUM;
3671         }
3672         return -1;
3673     }
3674 
3675     if (num_reqs == 0) {
3676         return 0;
3677     }
3678 
3679     // Create MultiwriteCB structure
3680     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3681     mcb->num_requests = 0;
3682     mcb->num_callbacks = num_reqs;
3683 
3684     for (i = 0; i < num_reqs; i++) {
3685         mcb->callbacks[i].cb = reqs[i].cb;
3686         mcb->callbacks[i].opaque = reqs[i].opaque;
3687     }
3688 
3689     // Check for mergable requests
3690     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3691 
3692     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3693 
3694     /* Run the aio requests. */
3695     mcb->num_requests = num_reqs;
3696     for (i = 0; i < num_reqs; i++) {
3697         bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3698             reqs[i].nb_sectors, multiwrite_cb, mcb);
3699     }
3700 
3701     return 0;
3702 }
3703 
3704 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3705 {
3706     acb->aiocb_info->cancel(acb);
3707 }
3708 
3709 /* block I/O throttling */
3710 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3711                  bool is_write, double elapsed_time, uint64_t *wait)
3712 {
3713     uint64_t bps_limit = 0;
3714     double   bytes_limit, bytes_base, bytes_res;
3715     double   slice_time, wait_time;
3716 
3717     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3718         bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3719     } else if (bs->io_limits.bps[is_write]) {
3720         bps_limit = bs->io_limits.bps[is_write];
3721     } else {
3722         if (wait) {
3723             *wait = 0;
3724         }
3725 
3726         return false;
3727     }
3728 
3729     slice_time = bs->slice_end - bs->slice_start;
3730     slice_time /= (NANOSECONDS_PER_SECOND);
3731     bytes_limit = bps_limit * slice_time;
3732     bytes_base  = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3733     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3734         bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3735     }
3736 
3737     /* bytes_base: the bytes of data which have been read/written; and
3738      *             it is obtained from the history statistic info.
3739      * bytes_res: the remaining bytes of data which need to be read/written.
3740      * (bytes_base + bytes_res) / bps_limit: used to calcuate
3741      *             the total time for completing reading/writting all data.
3742      */
3743     bytes_res   = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3744 
3745     if (bytes_base + bytes_res <= bytes_limit) {
3746         if (wait) {
3747             *wait = 0;
3748         }
3749 
3750         return false;
3751     }
3752 
3753     /* Calc approx time to dispatch */
3754     wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3755 
3756     /* When the I/O rate at runtime exceeds the limits,
3757      * bs->slice_end need to be extended in order that the current statistic
3758      * info can be kept until the timer fire, so it is increased and tuned
3759      * based on the result of experiment.
3760      */
3761     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3762     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3763     if (wait) {
3764         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3765     }
3766 
3767     return true;
3768 }
3769 
3770 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3771                              double elapsed_time, uint64_t *wait)
3772 {
3773     uint64_t iops_limit = 0;
3774     double   ios_limit, ios_base;
3775     double   slice_time, wait_time;
3776 
3777     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3778         iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3779     } else if (bs->io_limits.iops[is_write]) {
3780         iops_limit = bs->io_limits.iops[is_write];
3781     } else {
3782         if (wait) {
3783             *wait = 0;
3784         }
3785 
3786         return false;
3787     }
3788 
3789     slice_time = bs->slice_end - bs->slice_start;
3790     slice_time /= (NANOSECONDS_PER_SECOND);
3791     ios_limit  = iops_limit * slice_time;
3792     ios_base   = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3793     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3794         ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3795     }
3796 
3797     if (ios_base + 1 <= ios_limit) {
3798         if (wait) {
3799             *wait = 0;
3800         }
3801 
3802         return false;
3803     }
3804 
3805     /* Calc approx time to dispatch */
3806     wait_time = (ios_base + 1) / iops_limit;
3807     if (wait_time > elapsed_time) {
3808         wait_time = wait_time - elapsed_time;
3809     } else {
3810         wait_time = 0;
3811     }
3812 
3813     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3814     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3815     if (wait) {
3816         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3817     }
3818 
3819     return true;
3820 }
3821 
3822 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3823                            bool is_write, int64_t *wait)
3824 {
3825     int64_t  now, max_wait;
3826     uint64_t bps_wait = 0, iops_wait = 0;
3827     double   elapsed_time;
3828     int      bps_ret, iops_ret;
3829 
3830     now = qemu_get_clock_ns(vm_clock);
3831     if ((bs->slice_start < now)
3832         && (bs->slice_end > now)) {
3833         bs->slice_end = now + bs->slice_time;
3834     } else {
3835         bs->slice_time  =  5 * BLOCK_IO_SLICE_TIME;
3836         bs->slice_start = now;
3837         bs->slice_end   = now + bs->slice_time;
3838 
3839         bs->io_base.bytes[is_write]  = bs->nr_bytes[is_write];
3840         bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3841 
3842         bs->io_base.ios[is_write]    = bs->nr_ops[is_write];
3843         bs->io_base.ios[!is_write]   = bs->nr_ops[!is_write];
3844     }
3845 
3846     elapsed_time  = now - bs->slice_start;
3847     elapsed_time  /= (NANOSECONDS_PER_SECOND);
3848 
3849     bps_ret  = bdrv_exceed_bps_limits(bs, nb_sectors,
3850                                       is_write, elapsed_time, &bps_wait);
3851     iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3852                                       elapsed_time, &iops_wait);
3853     if (bps_ret || iops_ret) {
3854         max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3855         if (wait) {
3856             *wait = max_wait;
3857         }
3858 
3859         now = qemu_get_clock_ns(vm_clock);
3860         if (bs->slice_end < now + max_wait) {
3861             bs->slice_end = now + max_wait;
3862         }
3863 
3864         return true;
3865     }
3866 
3867     if (wait) {
3868         *wait = 0;
3869     }
3870 
3871     return false;
3872 }
3873 
3874 /**************************************************************/
3875 /* async block device emulation */
3876 
3877 typedef struct BlockDriverAIOCBSync {
3878     BlockDriverAIOCB common;
3879     QEMUBH *bh;
3880     int ret;
3881     /* vector translation state */
3882     QEMUIOVector *qiov;
3883     uint8_t *bounce;
3884     int is_write;
3885 } BlockDriverAIOCBSync;
3886 
3887 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3888 {
3889     BlockDriverAIOCBSync *acb =
3890         container_of(blockacb, BlockDriverAIOCBSync, common);
3891     qemu_bh_delete(acb->bh);
3892     acb->bh = NULL;
3893     qemu_aio_release(acb);
3894 }
3895 
3896 static const AIOCBInfo bdrv_em_aiocb_info = {
3897     .aiocb_size         = sizeof(BlockDriverAIOCBSync),
3898     .cancel             = bdrv_aio_cancel_em,
3899 };
3900 
3901 static void bdrv_aio_bh_cb(void *opaque)
3902 {
3903     BlockDriverAIOCBSync *acb = opaque;
3904 
3905     if (!acb->is_write)
3906         qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3907     qemu_vfree(acb->bounce);
3908     acb->common.cb(acb->common.opaque, acb->ret);
3909     qemu_bh_delete(acb->bh);
3910     acb->bh = NULL;
3911     qemu_aio_release(acb);
3912 }
3913 
3914 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3915                                             int64_t sector_num,
3916                                             QEMUIOVector *qiov,
3917                                             int nb_sectors,
3918                                             BlockDriverCompletionFunc *cb,
3919                                             void *opaque,
3920                                             int is_write)
3921 
3922 {
3923     BlockDriverAIOCBSync *acb;
3924 
3925     acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
3926     acb->is_write = is_write;
3927     acb->qiov = qiov;
3928     acb->bounce = qemu_blockalign(bs, qiov->size);
3929     acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3930 
3931     if (is_write) {
3932         qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3933         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3934     } else {
3935         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3936     }
3937 
3938     qemu_bh_schedule(acb->bh);
3939 
3940     return &acb->common;
3941 }
3942 
3943 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3944         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3945         BlockDriverCompletionFunc *cb, void *opaque)
3946 {
3947     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3948 }
3949 
3950 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3951         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3952         BlockDriverCompletionFunc *cb, void *opaque)
3953 {
3954     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3955 }
3956 
3957 
3958 typedef struct BlockDriverAIOCBCoroutine {
3959     BlockDriverAIOCB common;
3960     BlockRequest req;
3961     bool is_write;
3962     bool *done;
3963     QEMUBH* bh;
3964 } BlockDriverAIOCBCoroutine;
3965 
3966 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3967 {
3968     BlockDriverAIOCBCoroutine *acb =
3969         container_of(blockacb, BlockDriverAIOCBCoroutine, common);
3970     bool done = false;
3971 
3972     acb->done = &done;
3973     while (!done) {
3974         qemu_aio_wait();
3975     }
3976 }
3977 
3978 static const AIOCBInfo bdrv_em_co_aiocb_info = {
3979     .aiocb_size         = sizeof(BlockDriverAIOCBCoroutine),
3980     .cancel             = bdrv_aio_co_cancel_em,
3981 };
3982 
3983 static void bdrv_co_em_bh(void *opaque)
3984 {
3985     BlockDriverAIOCBCoroutine *acb = opaque;
3986 
3987     acb->common.cb(acb->common.opaque, acb->req.error);
3988 
3989     if (acb->done) {
3990         *acb->done = true;
3991     }
3992 
3993     qemu_bh_delete(acb->bh);
3994     qemu_aio_release(acb);
3995 }
3996 
3997 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3998 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3999 {
4000     BlockDriverAIOCBCoroutine *acb = opaque;
4001     BlockDriverState *bs = acb->common.bs;
4002 
4003     if (!acb->is_write) {
4004         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
4005             acb->req.nb_sectors, acb->req.qiov, 0);
4006     } else {
4007         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
4008             acb->req.nb_sectors, acb->req.qiov, 0);
4009     }
4010 
4011     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
4012     qemu_bh_schedule(acb->bh);
4013 }
4014 
4015 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
4016                                                int64_t sector_num,
4017                                                QEMUIOVector *qiov,
4018                                                int nb_sectors,
4019                                                BlockDriverCompletionFunc *cb,
4020                                                void *opaque,
4021                                                bool is_write)
4022 {
4023     Coroutine *co;
4024     BlockDriverAIOCBCoroutine *acb;
4025 
4026     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
4027     acb->req.sector = sector_num;
4028     acb->req.nb_sectors = nb_sectors;
4029     acb->req.qiov = qiov;
4030     acb->is_write = is_write;
4031     acb->done = NULL;
4032 
4033     co = qemu_coroutine_create(bdrv_co_do_rw);
4034     qemu_coroutine_enter(co, acb);
4035 
4036     return &acb->common;
4037 }
4038 
4039 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
4040 {
4041     BlockDriverAIOCBCoroutine *acb = opaque;
4042     BlockDriverState *bs = acb->common.bs;
4043 
4044     acb->req.error = bdrv_co_flush(bs);
4045     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
4046     qemu_bh_schedule(acb->bh);
4047 }
4048 
4049 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
4050         BlockDriverCompletionFunc *cb, void *opaque)
4051 {
4052     trace_bdrv_aio_flush(bs, opaque);
4053 
4054     Coroutine *co;
4055     BlockDriverAIOCBCoroutine *acb;
4056 
4057     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
4058     acb->done = NULL;
4059 
4060     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
4061     qemu_coroutine_enter(co, acb);
4062 
4063     return &acb->common;
4064 }
4065 
4066 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
4067 {
4068     BlockDriverAIOCBCoroutine *acb = opaque;
4069     BlockDriverState *bs = acb->common.bs;
4070 
4071     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
4072     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
4073     qemu_bh_schedule(acb->bh);
4074 }
4075 
4076 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
4077         int64_t sector_num, int nb_sectors,
4078         BlockDriverCompletionFunc *cb, void *opaque)
4079 {
4080     Coroutine *co;
4081     BlockDriverAIOCBCoroutine *acb;
4082 
4083     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
4084 
4085     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
4086     acb->req.sector = sector_num;
4087     acb->req.nb_sectors = nb_sectors;
4088     acb->done = NULL;
4089     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
4090     qemu_coroutine_enter(co, acb);
4091 
4092     return &acb->common;
4093 }
4094 
4095 void bdrv_init(void)
4096 {
4097     module_call_init(MODULE_INIT_BLOCK);
4098 }
4099 
4100 void bdrv_init_with_whitelist(void)
4101 {
4102     use_bdrv_whitelist = 1;
4103     bdrv_init();
4104 }
4105 
4106 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
4107                    BlockDriverCompletionFunc *cb, void *opaque)
4108 {
4109     BlockDriverAIOCB *acb;
4110 
4111     acb = g_slice_alloc(aiocb_info->aiocb_size);
4112     acb->aiocb_info = aiocb_info;
4113     acb->bs = bs;
4114     acb->cb = cb;
4115     acb->opaque = opaque;
4116     return acb;
4117 }
4118 
4119 void qemu_aio_release(void *p)
4120 {
4121     BlockDriverAIOCB *acb = p;
4122     g_slice_free1(acb->aiocb_info->aiocb_size, acb);
4123 }
4124 
4125 /**************************************************************/
4126 /* Coroutine block device emulation */
4127 
4128 typedef struct CoroutineIOCompletion {
4129     Coroutine *coroutine;
4130     int ret;
4131 } CoroutineIOCompletion;
4132 
4133 static void bdrv_co_io_em_complete(void *opaque, int ret)
4134 {
4135     CoroutineIOCompletion *co = opaque;
4136 
4137     co->ret = ret;
4138     qemu_coroutine_enter(co->coroutine, NULL);
4139 }
4140 
4141 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
4142                                       int nb_sectors, QEMUIOVector *iov,
4143                                       bool is_write)
4144 {
4145     CoroutineIOCompletion co = {
4146         .coroutine = qemu_coroutine_self(),
4147     };
4148     BlockDriverAIOCB *acb;
4149 
4150     if (is_write) {
4151         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
4152                                        bdrv_co_io_em_complete, &co);
4153     } else {
4154         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
4155                                       bdrv_co_io_em_complete, &co);
4156     }
4157 
4158     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
4159     if (!acb) {
4160         return -EIO;
4161     }
4162     qemu_coroutine_yield();
4163 
4164     return co.ret;
4165 }
4166 
4167 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
4168                                          int64_t sector_num, int nb_sectors,
4169                                          QEMUIOVector *iov)
4170 {
4171     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
4172 }
4173 
4174 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
4175                                          int64_t sector_num, int nb_sectors,
4176                                          QEMUIOVector *iov)
4177 {
4178     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
4179 }
4180 
4181 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
4182 {
4183     RwCo *rwco = opaque;
4184 
4185     rwco->ret = bdrv_co_flush(rwco->bs);
4186 }
4187 
4188 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
4189 {
4190     int ret;
4191 
4192     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
4193         return 0;
4194     }
4195 
4196     /* Write back cached data to the OS even with cache=unsafe */
4197     if (bs->drv->bdrv_co_flush_to_os) {
4198         ret = bs->drv->bdrv_co_flush_to_os(bs);
4199         if (ret < 0) {
4200             return ret;
4201         }
4202     }
4203 
4204     /* But don't actually force it to the disk with cache=unsafe */
4205     if (bs->open_flags & BDRV_O_NO_FLUSH) {
4206         goto flush_parent;
4207     }
4208 
4209     if (bs->drv->bdrv_co_flush_to_disk) {
4210         ret = bs->drv->bdrv_co_flush_to_disk(bs);
4211     } else if (bs->drv->bdrv_aio_flush) {
4212         BlockDriverAIOCB *acb;
4213         CoroutineIOCompletion co = {
4214             .coroutine = qemu_coroutine_self(),
4215         };
4216 
4217         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
4218         if (acb == NULL) {
4219             ret = -EIO;
4220         } else {
4221             qemu_coroutine_yield();
4222             ret = co.ret;
4223         }
4224     } else {
4225         /*
4226          * Some block drivers always operate in either writethrough or unsafe
4227          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4228          * know how the server works (because the behaviour is hardcoded or
4229          * depends on server-side configuration), so we can't ensure that
4230          * everything is safe on disk. Returning an error doesn't work because
4231          * that would break guests even if the server operates in writethrough
4232          * mode.
4233          *
4234          * Let's hope the user knows what he's doing.
4235          */
4236         ret = 0;
4237     }
4238     if (ret < 0) {
4239         return ret;
4240     }
4241 
4242     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
4243      * in the case of cache=unsafe, so there are no useless flushes.
4244      */
4245 flush_parent:
4246     return bdrv_co_flush(bs->file);
4247 }
4248 
4249 void bdrv_invalidate_cache(BlockDriverState *bs)
4250 {
4251     if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4252         bs->drv->bdrv_invalidate_cache(bs);
4253     }
4254 }
4255 
4256 void bdrv_invalidate_cache_all(void)
4257 {
4258     BlockDriverState *bs;
4259 
4260     QTAILQ_FOREACH(bs, &bdrv_states, list) {
4261         bdrv_invalidate_cache(bs);
4262     }
4263 }
4264 
4265 void bdrv_clear_incoming_migration_all(void)
4266 {
4267     BlockDriverState *bs;
4268 
4269     QTAILQ_FOREACH(bs, &bdrv_states, list) {
4270         bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4271     }
4272 }
4273 
4274 int bdrv_flush(BlockDriverState *bs)
4275 {
4276     Coroutine *co;
4277     RwCo rwco = {
4278         .bs = bs,
4279         .ret = NOT_DONE,
4280     };
4281 
4282     if (qemu_in_coroutine()) {
4283         /* Fast-path if already in coroutine context */
4284         bdrv_flush_co_entry(&rwco);
4285     } else {
4286         co = qemu_coroutine_create(bdrv_flush_co_entry);
4287         qemu_coroutine_enter(co, &rwco);
4288         while (rwco.ret == NOT_DONE) {
4289             qemu_aio_wait();
4290         }
4291     }
4292 
4293     return rwco.ret;
4294 }
4295 
4296 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4297 {
4298     RwCo *rwco = opaque;
4299 
4300     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4301 }
4302 
4303 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4304                                  int nb_sectors)
4305 {
4306     if (!bs->drv) {
4307         return -ENOMEDIUM;
4308     } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4309         return -EIO;
4310     } else if (bs->read_only) {
4311         return -EROFS;
4312     }
4313 
4314     if (bs->dirty_bitmap) {
4315         bdrv_reset_dirty(bs, sector_num, nb_sectors);
4316     }
4317 
4318     /* Do nothing if disabled.  */
4319     if (!(bs->open_flags & BDRV_O_UNMAP)) {
4320         return 0;
4321     }
4322 
4323     if (bs->drv->bdrv_co_discard) {
4324         return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4325     } else if (bs->drv->bdrv_aio_discard) {
4326         BlockDriverAIOCB *acb;
4327         CoroutineIOCompletion co = {
4328             .coroutine = qemu_coroutine_self(),
4329         };
4330 
4331         acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4332                                         bdrv_co_io_em_complete, &co);
4333         if (acb == NULL) {
4334             return -EIO;
4335         } else {
4336             qemu_coroutine_yield();
4337             return co.ret;
4338         }
4339     } else {
4340         return 0;
4341     }
4342 }
4343 
4344 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4345 {
4346     Coroutine *co;
4347     RwCo rwco = {
4348         .bs = bs,
4349         .sector_num = sector_num,
4350         .nb_sectors = nb_sectors,
4351         .ret = NOT_DONE,
4352     };
4353 
4354     if (qemu_in_coroutine()) {
4355         /* Fast-path if already in coroutine context */
4356         bdrv_discard_co_entry(&rwco);
4357     } else {
4358         co = qemu_coroutine_create(bdrv_discard_co_entry);
4359         qemu_coroutine_enter(co, &rwco);
4360         while (rwco.ret == NOT_DONE) {
4361             qemu_aio_wait();
4362         }
4363     }
4364 
4365     return rwco.ret;
4366 }
4367 
4368 /**************************************************************/
4369 /* removable device support */
4370 
4371 /**
4372  * Return TRUE if the media is present
4373  */
4374 int bdrv_is_inserted(BlockDriverState *bs)
4375 {
4376     BlockDriver *drv = bs->drv;
4377 
4378     if (!drv)
4379         return 0;
4380     if (!drv->bdrv_is_inserted)
4381         return 1;
4382     return drv->bdrv_is_inserted(bs);
4383 }
4384 
4385 /**
4386  * Return whether the media changed since the last call to this
4387  * function, or -ENOTSUP if we don't know.  Most drivers don't know.
4388  */
4389 int bdrv_media_changed(BlockDriverState *bs)
4390 {
4391     BlockDriver *drv = bs->drv;
4392 
4393     if (drv && drv->bdrv_media_changed) {
4394         return drv->bdrv_media_changed(bs);
4395     }
4396     return -ENOTSUP;
4397 }
4398 
4399 /**
4400  * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4401  */
4402 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4403 {
4404     BlockDriver *drv = bs->drv;
4405 
4406     if (drv && drv->bdrv_eject) {
4407         drv->bdrv_eject(bs, eject_flag);
4408     }
4409 
4410     if (bs->device_name[0] != '\0') {
4411         bdrv_emit_qmp_eject_event(bs, eject_flag);
4412     }
4413 }
4414 
4415 /**
4416  * Lock or unlock the media (if it is locked, the user won't be able
4417  * to eject it manually).
4418  */
4419 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4420 {
4421     BlockDriver *drv = bs->drv;
4422 
4423     trace_bdrv_lock_medium(bs, locked);
4424 
4425     if (drv && drv->bdrv_lock_medium) {
4426         drv->bdrv_lock_medium(bs, locked);
4427     }
4428 }
4429 
4430 /* needed for generic scsi interface */
4431 
4432 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4433 {
4434     BlockDriver *drv = bs->drv;
4435 
4436     if (drv && drv->bdrv_ioctl)
4437         return drv->bdrv_ioctl(bs, req, buf);
4438     return -ENOTSUP;
4439 }
4440 
4441 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4442         unsigned long int req, void *buf,
4443         BlockDriverCompletionFunc *cb, void *opaque)
4444 {
4445     BlockDriver *drv = bs->drv;
4446 
4447     if (drv && drv->bdrv_aio_ioctl)
4448         return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4449     return NULL;
4450 }
4451 
4452 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4453 {
4454     bs->buffer_alignment = align;
4455 }
4456 
4457 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4458 {
4459     return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4460 }
4461 
4462 /*
4463  * Check if all memory in this vector is sector aligned.
4464  */
4465 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
4466 {
4467     int i;
4468 
4469     for (i = 0; i < qiov->niov; i++) {
4470         if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) {
4471             return false;
4472         }
4473     }
4474 
4475     return true;
4476 }
4477 
4478 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity)
4479 {
4480     int64_t bitmap_size;
4481 
4482     assert((granularity & (granularity - 1)) == 0);
4483 
4484     if (granularity) {
4485         granularity >>= BDRV_SECTOR_BITS;
4486         assert(!bs->dirty_bitmap);
4487         bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS);
4488         bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1);
4489     } else {
4490         if (bs->dirty_bitmap) {
4491             hbitmap_free(bs->dirty_bitmap);
4492             bs->dirty_bitmap = NULL;
4493         }
4494     }
4495 }
4496 
4497 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4498 {
4499     if (bs->dirty_bitmap) {
4500         return hbitmap_get(bs->dirty_bitmap, sector);
4501     } else {
4502         return 0;
4503     }
4504 }
4505 
4506 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi)
4507 {
4508     hbitmap_iter_init(hbi, bs->dirty_bitmap, 0);
4509 }
4510 
4511 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
4512                     int nr_sectors)
4513 {
4514     hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors);
4515 }
4516 
4517 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4518                       int nr_sectors)
4519 {
4520     hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors);
4521 }
4522 
4523 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4524 {
4525     if (bs->dirty_bitmap) {
4526         return hbitmap_count(bs->dirty_bitmap);
4527     } else {
4528         return 0;
4529     }
4530 }
4531 
4532 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4533 {
4534     assert(bs->in_use != in_use);
4535     bs->in_use = in_use;
4536 }
4537 
4538 int bdrv_in_use(BlockDriverState *bs)
4539 {
4540     return bs->in_use;
4541 }
4542 
4543 void bdrv_iostatus_enable(BlockDriverState *bs)
4544 {
4545     bs->iostatus_enabled = true;
4546     bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4547 }
4548 
4549 /* The I/O status is only enabled if the drive explicitly
4550  * enables it _and_ the VM is configured to stop on errors */
4551 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4552 {
4553     return (bs->iostatus_enabled &&
4554            (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4555             bs->on_write_error == BLOCKDEV_ON_ERROR_STOP   ||
4556             bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4557 }
4558 
4559 void bdrv_iostatus_disable(BlockDriverState *bs)
4560 {
4561     bs->iostatus_enabled = false;
4562 }
4563 
4564 void bdrv_iostatus_reset(BlockDriverState *bs)
4565 {
4566     if (bdrv_iostatus_is_enabled(bs)) {
4567         bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4568         if (bs->job) {
4569             block_job_iostatus_reset(bs->job);
4570         }
4571     }
4572 }
4573 
4574 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4575 {
4576     assert(bdrv_iostatus_is_enabled(bs));
4577     if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4578         bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4579                                          BLOCK_DEVICE_IO_STATUS_FAILED;
4580     }
4581 }
4582 
4583 void
4584 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4585         enum BlockAcctType type)
4586 {
4587     assert(type < BDRV_MAX_IOTYPE);
4588 
4589     cookie->bytes = bytes;
4590     cookie->start_time_ns = get_clock();
4591     cookie->type = type;
4592 }
4593 
4594 void
4595 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4596 {
4597     assert(cookie->type < BDRV_MAX_IOTYPE);
4598 
4599     bs->nr_bytes[cookie->type] += cookie->bytes;
4600     bs->nr_ops[cookie->type]++;
4601     bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4602 }
4603 
4604 void bdrv_img_create(const char *filename, const char *fmt,
4605                      const char *base_filename, const char *base_fmt,
4606                      char *options, uint64_t img_size, int flags,
4607                      Error **errp, bool quiet)
4608 {
4609     QEMUOptionParameter *param = NULL, *create_options = NULL;
4610     QEMUOptionParameter *backing_fmt, *backing_file, *size;
4611     BlockDriverState *bs = NULL;
4612     BlockDriver *drv, *proto_drv;
4613     BlockDriver *backing_drv = NULL;
4614     int ret = 0;
4615 
4616     /* Find driver and parse its options */
4617     drv = bdrv_find_format(fmt);
4618     if (!drv) {
4619         error_setg(errp, "Unknown file format '%s'", fmt);
4620         return;
4621     }
4622 
4623     proto_drv = bdrv_find_protocol(filename);
4624     if (!proto_drv) {
4625         error_setg(errp, "Unknown protocol '%s'", filename);
4626         return;
4627     }
4628 
4629     create_options = append_option_parameters(create_options,
4630                                               drv->create_options);
4631     create_options = append_option_parameters(create_options,
4632                                               proto_drv->create_options);
4633 
4634     /* Create parameter list with default values */
4635     param = parse_option_parameters("", create_options, param);
4636 
4637     set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4638 
4639     /* Parse -o options */
4640     if (options) {
4641         param = parse_option_parameters(options, create_options, param);
4642         if (param == NULL) {
4643             error_setg(errp, "Invalid options for file format '%s'.", fmt);
4644             goto out;
4645         }
4646     }
4647 
4648     if (base_filename) {
4649         if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4650                                  base_filename)) {
4651             error_setg(errp, "Backing file not supported for file format '%s'",
4652                        fmt);
4653             goto out;
4654         }
4655     }
4656 
4657     if (base_fmt) {
4658         if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4659             error_setg(errp, "Backing file format not supported for file "
4660                              "format '%s'", fmt);
4661             goto out;
4662         }
4663     }
4664 
4665     backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4666     if (backing_file && backing_file->value.s) {
4667         if (!strcmp(filename, backing_file->value.s)) {
4668             error_setg(errp, "Error: Trying to create an image with the "
4669                              "same filename as the backing file");
4670             goto out;
4671         }
4672     }
4673 
4674     backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4675     if (backing_fmt && backing_fmt->value.s) {
4676         backing_drv = bdrv_find_format(backing_fmt->value.s);
4677         if (!backing_drv) {
4678             error_setg(errp, "Unknown backing file format '%s'",
4679                        backing_fmt->value.s);
4680             goto out;
4681         }
4682     }
4683 
4684     // The size for the image must always be specified, with one exception:
4685     // If we are using a backing file, we can obtain the size from there
4686     size = get_option_parameter(param, BLOCK_OPT_SIZE);
4687     if (size && size->value.n == -1) {
4688         if (backing_file && backing_file->value.s) {
4689             uint64_t size;
4690             char buf[32];
4691             int back_flags;
4692 
4693             /* backing files always opened read-only */
4694             back_flags =
4695                 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4696 
4697             bs = bdrv_new("");
4698 
4699             ret = bdrv_open(bs, backing_file->value.s, NULL, back_flags,
4700                             backing_drv);
4701             if (ret < 0) {
4702                 error_setg_errno(errp, -ret, "Could not open '%s'",
4703                                  backing_file->value.s);
4704                 goto out;
4705             }
4706             bdrv_get_geometry(bs, &size);
4707             size *= 512;
4708 
4709             snprintf(buf, sizeof(buf), "%" PRId64, size);
4710             set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4711         } else {
4712             error_setg(errp, "Image creation needs a size parameter");
4713             goto out;
4714         }
4715     }
4716 
4717     if (!quiet) {
4718         printf("Formatting '%s', fmt=%s ", filename, fmt);
4719         print_option_parameters(param);
4720         puts("");
4721     }
4722     ret = bdrv_create(drv, filename, param);
4723     if (ret < 0) {
4724         if (ret == -ENOTSUP) {
4725             error_setg(errp,"Formatting or formatting option not supported for "
4726                             "file format '%s'", fmt);
4727         } else if (ret == -EFBIG) {
4728             error_setg(errp, "The image size is too large for file format '%s'",
4729                        fmt);
4730         } else {
4731             error_setg(errp, "%s: error while creating %s: %s", filename, fmt,
4732                        strerror(-ret));
4733         }
4734     }
4735 
4736 out:
4737     free_option_parameters(create_options);
4738     free_option_parameters(param);
4739 
4740     if (bs) {
4741         bdrv_delete(bs);
4742     }
4743 }
4744 
4745 AioContext *bdrv_get_aio_context(BlockDriverState *bs)
4746 {
4747     /* Currently BlockDriverState always uses the main loop AioContext */
4748     return qemu_get_aio_context();
4749 }
4750