xref: /openbmc/qemu/accel/tcg/user-exec.c (revision 5439d7a68ce3449d4091e0b4c084579b9467a683)
1 /*
2  *  User emulator execution
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/translate-all.h"
27 #include "exec/helper-proto.h"
28 #include "qemu/atomic128.h"
29 #include "trace/trace-root.h"
30 #include "tcg/tcg-ldst.h"
31 #include "internal.h"
32 
33 __thread uintptr_t helper_retaddr;
34 
35 //#define DEBUG_SIGNAL
36 
37 /*
38  * Adjust the pc to pass to cpu_restore_state; return the memop type.
39  */
40 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
41 {
42     switch (helper_retaddr) {
43     default:
44         /*
45          * Fault during host memory operation within a helper function.
46          * The helper's host return address, saved here, gives us a
47          * pointer into the generated code that will unwind to the
48          * correct guest pc.
49          */
50         *pc = helper_retaddr;
51         break;
52 
53     case 0:
54         /*
55          * Fault during host memory operation within generated code.
56          * (Or, a unrelated bug within qemu, but we can't tell from here).
57          *
58          * We take the host pc from the signal frame.  However, we cannot
59          * use that value directly.  Within cpu_restore_state_from_tb, we
60          * assume PC comes from GETPC(), as used by the helper functions,
61          * so we adjust the address by -GETPC_ADJ to form an address that
62          * is within the call insn, so that the address does not accidentally
63          * match the beginning of the next guest insn.  However, when the
64          * pc comes from the signal frame it points to the actual faulting
65          * host memory insn and not the return from a call insn.
66          *
67          * Therefore, adjust to compensate for what will be done later
68          * by cpu_restore_state_from_tb.
69          */
70         *pc += GETPC_ADJ;
71         break;
72 
73     case 1:
74         /*
75          * Fault during host read for translation, or loosely, "execution".
76          *
77          * The guest pc is already pointing to the start of the TB for which
78          * code is being generated.  If the guest translator manages the
79          * page crossings correctly, this is exactly the correct address
80          * (and if the translator doesn't handle page boundaries correctly
81          * there's little we can do about that here).  Therefore, do not
82          * trigger the unwinder.
83          */
84         *pc = 0;
85         return MMU_INST_FETCH;
86     }
87 
88     return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
89 }
90 
91 /**
92  * handle_sigsegv_accerr_write:
93  * @cpu: the cpu context
94  * @old_set: the sigset_t from the signal ucontext_t
95  * @host_pc: the host pc, adjusted for the signal
96  * @guest_addr: the guest address of the fault
97  *
98  * Return true if the write fault has been handled, and should be re-tried.
99  *
100  * Note that it is important that we don't call page_unprotect() unless
101  * this is really a "write to nonwritable page" fault, because
102  * page_unprotect() assumes that if it is called for an access to
103  * a page that's writable this means we had two threads racing and
104  * another thread got there first and already made the page writable;
105  * so we will retry the access. If we were to call page_unprotect()
106  * for some other kind of fault that should really be passed to the
107  * guest, we'd end up in an infinite loop of retrying the faulting access.
108  */
109 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
110                                  uintptr_t host_pc, abi_ptr guest_addr)
111 {
112     switch (page_unprotect(guest_addr, host_pc)) {
113     case 0:
114         /*
115          * Fault not caused by a page marked unwritable to protect
116          * cached translations, must be the guest binary's problem.
117          */
118         return false;
119     case 1:
120         /*
121          * Fault caused by protection of cached translation; TBs
122          * invalidated, so resume execution.
123          */
124         return true;
125     case 2:
126         /*
127          * Fault caused by protection of cached translation, and the
128          * currently executing TB was modified and must be exited immediately.
129          */
130         sigprocmask(SIG_SETMASK, old_set, NULL);
131         cpu_loop_exit_noexc(cpu);
132         /* NORETURN */
133     default:
134         g_assert_not_reached();
135     }
136 }
137 
138 static int probe_access_internal(CPUArchState *env, target_ulong addr,
139                                  int fault_size, MMUAccessType access_type,
140                                  bool nonfault, uintptr_t ra)
141 {
142     int acc_flag;
143     bool maperr;
144 
145     switch (access_type) {
146     case MMU_DATA_STORE:
147         acc_flag = PAGE_WRITE_ORG;
148         break;
149     case MMU_DATA_LOAD:
150         acc_flag = PAGE_READ;
151         break;
152     case MMU_INST_FETCH:
153         acc_flag = PAGE_EXEC;
154         break;
155     default:
156         g_assert_not_reached();
157     }
158 
159     if (guest_addr_valid_untagged(addr)) {
160         int page_flags = page_get_flags(addr);
161         if (page_flags & acc_flag) {
162             return 0; /* success */
163         }
164         maperr = !(page_flags & PAGE_VALID);
165     } else {
166         maperr = true;
167     }
168 
169     if (nonfault) {
170         return TLB_INVALID_MASK;
171     }
172 
173     cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
174 }
175 
176 int probe_access_flags(CPUArchState *env, target_ulong addr,
177                        MMUAccessType access_type, int mmu_idx,
178                        bool nonfault, void **phost, uintptr_t ra)
179 {
180     int flags;
181 
182     flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
183     *phost = flags ? NULL : g2h(env_cpu(env), addr);
184     return flags;
185 }
186 
187 void *probe_access(CPUArchState *env, target_ulong addr, int size,
188                    MMUAccessType access_type, int mmu_idx, uintptr_t ra)
189 {
190     int flags;
191 
192     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
193     flags = probe_access_internal(env, addr, size, access_type, false, ra);
194     g_assert(flags == 0);
195 
196     return size ? g2h(env_cpu(env), addr) : NULL;
197 }
198 
199 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
200                                         void **hostp)
201 {
202     int flags;
203 
204     flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
205     g_assert(flags == 0);
206 
207     if (hostp) {
208         *hostp = g2h_untagged(addr);
209     }
210     return addr;
211 }
212 
213 void page_reset_target_data(target_ulong start, target_ulong end)
214 {
215 #ifdef TARGET_PAGE_DATA_SIZE
216     target_ulong addr, len;
217 
218     /*
219      * This function should never be called with addresses outside the
220      * guest address space.  If this assert fires, it probably indicates
221      * a missing call to h2g_valid.
222      */
223     assert(end - 1 <= GUEST_ADDR_MAX);
224     assert(start < end);
225     assert_memory_lock();
226 
227     start = start & TARGET_PAGE_MASK;
228     end = TARGET_PAGE_ALIGN(end);
229 
230     for (addr = start, len = end - start;
231          len != 0;
232          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
233         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
234 
235         g_free(p->target_data);
236         p->target_data = NULL;
237     }
238 #endif
239 }
240 
241 #ifdef TARGET_PAGE_DATA_SIZE
242 void *page_get_target_data(target_ulong address)
243 {
244     PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
245     void *ret = p->target_data;
246 
247     if (!ret) {
248         ret = g_malloc0(TARGET_PAGE_DATA_SIZE);
249         p->target_data = ret;
250     }
251     return ret;
252 }
253 #endif
254 
255 /* The softmmu versions of these helpers are in cputlb.c.  */
256 
257 /*
258  * Verify that we have passed the correct MemOp to the correct function.
259  *
260  * We could present one function to target code, and dispatch based on
261  * the MemOp, but so far we have worked hard to avoid an indirect function
262  * call along the memory path.
263  */
264 static void validate_memop(MemOpIdx oi, MemOp expected)
265 {
266 #ifdef CONFIG_DEBUG_TCG
267     MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
268     assert(have == expected);
269 #endif
270 }
271 
272 void helper_unaligned_ld(CPUArchState *env, target_ulong addr)
273 {
274     cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_LOAD, GETPC());
275 }
276 
277 void helper_unaligned_st(CPUArchState *env, target_ulong addr)
278 {
279     cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, GETPC());
280 }
281 
282 static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr,
283                             MemOpIdx oi, uintptr_t ra, MMUAccessType type)
284 {
285     MemOp mop = get_memop(oi);
286     int a_bits = get_alignment_bits(mop);
287     void *ret;
288 
289     /* Enforce guest required alignment.  */
290     if (unlikely(addr & ((1 << a_bits) - 1))) {
291         cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
292     }
293 
294     ret = g2h(env_cpu(env), addr);
295     set_helper_retaddr(ra);
296     return ret;
297 }
298 
299 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
300                     MemOpIdx oi, uintptr_t ra)
301 {
302     void *haddr;
303     uint8_t ret;
304 
305     validate_memop(oi, MO_UB);
306     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
307     ret = ldub_p(haddr);
308     clear_helper_retaddr();
309     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
310     return ret;
311 }
312 
313 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
314                         MemOpIdx oi, uintptr_t ra)
315 {
316     void *haddr;
317     uint16_t ret;
318 
319     validate_memop(oi, MO_BEUW);
320     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
321     ret = lduw_be_p(haddr);
322     clear_helper_retaddr();
323     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
324     return ret;
325 }
326 
327 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
328                         MemOpIdx oi, uintptr_t ra)
329 {
330     void *haddr;
331     uint32_t ret;
332 
333     validate_memop(oi, MO_BEUL);
334     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
335     ret = ldl_be_p(haddr);
336     clear_helper_retaddr();
337     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
338     return ret;
339 }
340 
341 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
342                         MemOpIdx oi, uintptr_t ra)
343 {
344     void *haddr;
345     uint64_t ret;
346 
347     validate_memop(oi, MO_BEUQ);
348     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
349     ret = ldq_be_p(haddr);
350     clear_helper_retaddr();
351     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
352     return ret;
353 }
354 
355 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
356                         MemOpIdx oi, uintptr_t ra)
357 {
358     void *haddr;
359     uint16_t ret;
360 
361     validate_memop(oi, MO_LEUW);
362     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
363     ret = lduw_le_p(haddr);
364     clear_helper_retaddr();
365     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
366     return ret;
367 }
368 
369 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
370                         MemOpIdx oi, uintptr_t ra)
371 {
372     void *haddr;
373     uint32_t ret;
374 
375     validate_memop(oi, MO_LEUL);
376     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
377     ret = ldl_le_p(haddr);
378     clear_helper_retaddr();
379     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
380     return ret;
381 }
382 
383 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
384                         MemOpIdx oi, uintptr_t ra)
385 {
386     void *haddr;
387     uint64_t ret;
388 
389     validate_memop(oi, MO_LEUQ);
390     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
391     ret = ldq_le_p(haddr);
392     clear_helper_retaddr();
393     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
394     return ret;
395 }
396 
397 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
398                  MemOpIdx oi, uintptr_t ra)
399 {
400     void *haddr;
401 
402     validate_memop(oi, MO_UB);
403     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
404     stb_p(haddr, val);
405     clear_helper_retaddr();
406     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
407 }
408 
409 void cpu_stw_be_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
410                     MemOpIdx oi, uintptr_t ra)
411 {
412     void *haddr;
413 
414     validate_memop(oi, MO_BEUW);
415     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
416     stw_be_p(haddr, val);
417     clear_helper_retaddr();
418     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
419 }
420 
421 void cpu_stl_be_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
422                     MemOpIdx oi, uintptr_t ra)
423 {
424     void *haddr;
425 
426     validate_memop(oi, MO_BEUL);
427     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
428     stl_be_p(haddr, val);
429     clear_helper_retaddr();
430     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
431 }
432 
433 void cpu_stq_be_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
434                     MemOpIdx oi, uintptr_t ra)
435 {
436     void *haddr;
437 
438     validate_memop(oi, MO_BEUQ);
439     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
440     stq_be_p(haddr, val);
441     clear_helper_retaddr();
442     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
443 }
444 
445 void cpu_stw_le_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
446                     MemOpIdx oi, uintptr_t ra)
447 {
448     void *haddr;
449 
450     validate_memop(oi, MO_LEUW);
451     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
452     stw_le_p(haddr, val);
453     clear_helper_retaddr();
454     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
455 }
456 
457 void cpu_stl_le_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
458                     MemOpIdx oi, uintptr_t ra)
459 {
460     void *haddr;
461 
462     validate_memop(oi, MO_LEUL);
463     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
464     stl_le_p(haddr, val);
465     clear_helper_retaddr();
466     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
467 }
468 
469 void cpu_stq_le_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
470                     MemOpIdx oi, uintptr_t ra)
471 {
472     void *haddr;
473 
474     validate_memop(oi, MO_LEUQ);
475     haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
476     stq_le_p(haddr, val);
477     clear_helper_retaddr();
478     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
479 }
480 
481 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
482 {
483     uint32_t ret;
484 
485     set_helper_retaddr(1);
486     ret = ldub_p(g2h_untagged(ptr));
487     clear_helper_retaddr();
488     return ret;
489 }
490 
491 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
492 {
493     uint32_t ret;
494 
495     set_helper_retaddr(1);
496     ret = lduw_p(g2h_untagged(ptr));
497     clear_helper_retaddr();
498     return ret;
499 }
500 
501 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
502 {
503     uint32_t ret;
504 
505     set_helper_retaddr(1);
506     ret = ldl_p(g2h_untagged(ptr));
507     clear_helper_retaddr();
508     return ret;
509 }
510 
511 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
512 {
513     uint64_t ret;
514 
515     set_helper_retaddr(1);
516     ret = ldq_p(g2h_untagged(ptr));
517     clear_helper_retaddr();
518     return ret;
519 }
520 
521 #include "ldst_common.c.inc"
522 
523 /*
524  * Do not allow unaligned operations to proceed.  Return the host address.
525  *
526  * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
527  */
528 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
529                                MemOpIdx oi, int size, int prot,
530                                uintptr_t retaddr)
531 {
532     MemOp mop = get_memop(oi);
533     int a_bits = get_alignment_bits(mop);
534     void *ret;
535 
536     /* Enforce guest required alignment.  */
537     if (unlikely(addr & ((1 << a_bits) - 1))) {
538         MMUAccessType t = prot == PAGE_READ ? MMU_DATA_LOAD : MMU_DATA_STORE;
539         cpu_loop_exit_sigbus(env_cpu(env), addr, t, retaddr);
540     }
541 
542     /* Enforce qemu required alignment.  */
543     if (unlikely(addr & (size - 1))) {
544         cpu_loop_exit_atomic(env_cpu(env), retaddr);
545     }
546 
547     ret = g2h(env_cpu(env), addr);
548     set_helper_retaddr(retaddr);
549     return ret;
550 }
551 
552 #include "atomic_common.c.inc"
553 
554 /*
555  * First set of functions passes in OI and RETADDR.
556  * This makes them callable from other helpers.
557  */
558 
559 #define ATOMIC_NAME(X) \
560     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
561 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
562 
563 #define DATA_SIZE 1
564 #include "atomic_template.h"
565 
566 #define DATA_SIZE 2
567 #include "atomic_template.h"
568 
569 #define DATA_SIZE 4
570 #include "atomic_template.h"
571 
572 #ifdef CONFIG_ATOMIC64
573 #define DATA_SIZE 8
574 #include "atomic_template.h"
575 #endif
576 
577 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
578 #define DATA_SIZE 16
579 #include "atomic_template.h"
580 #endif
581