xref: /openbmc/qemu/accel/tcg/translate-all.c (revision 750541c492018e01bad5f34b087397ee6a0b835b)
1 /*
2  *  Host code generation
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "qemu-common.h"
22 #define NO_CPU_IO_DEFS
23 #include "cpu.h"
24 #include "trace.h"
25 #include "disas/disas.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #if defined(CONFIG_USER_ONLY)
29 #include "qemu.h"
30 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
31 #include <sys/param.h>
32 #if __FreeBSD_version >= 700104
33 #define HAVE_KINFO_GETVMMAP
34 #define sigqueue sigqueue_freebsd  /* avoid redefinition */
35 #include <sys/proc.h>
36 #include <machine/profile.h>
37 #define _KERNEL
38 #include <sys/user.h>
39 #undef _KERNEL
40 #undef sigqueue
41 #include <libutil.h>
42 #endif
43 #endif
44 #else
45 #include "exec/ram_addr.h"
46 #endif
47 
48 #include "exec/cputlb.h"
49 #include "exec/tb-hash.h"
50 #include "translate-all.h"
51 #include "qemu/bitmap.h"
52 #include "qemu/error-report.h"
53 #include "qemu/qemu-print.h"
54 #include "qemu/timer.h"
55 #include "qemu/main-loop.h"
56 #include "exec/log.h"
57 #include "sysemu/cpus.h"
58 
59 /* #define DEBUG_TB_INVALIDATE */
60 /* #define DEBUG_TB_FLUSH */
61 /* make various TB consistency checks */
62 /* #define DEBUG_TB_CHECK */
63 
64 #ifdef DEBUG_TB_INVALIDATE
65 #define DEBUG_TB_INVALIDATE_GATE 1
66 #else
67 #define DEBUG_TB_INVALIDATE_GATE 0
68 #endif
69 
70 #ifdef DEBUG_TB_FLUSH
71 #define DEBUG_TB_FLUSH_GATE 1
72 #else
73 #define DEBUG_TB_FLUSH_GATE 0
74 #endif
75 
76 #if !defined(CONFIG_USER_ONLY)
77 /* TB consistency checks only implemented for usermode emulation.  */
78 #undef DEBUG_TB_CHECK
79 #endif
80 
81 #ifdef DEBUG_TB_CHECK
82 #define DEBUG_TB_CHECK_GATE 1
83 #else
84 #define DEBUG_TB_CHECK_GATE 0
85 #endif
86 
87 /* Access to the various translations structures need to be serialised via locks
88  * for consistency.
89  * In user-mode emulation access to the memory related structures are protected
90  * with mmap_lock.
91  * In !user-mode we use per-page locks.
92  */
93 #ifdef CONFIG_SOFTMMU
94 #define assert_memory_lock()
95 #else
96 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
97 #endif
98 
99 #define SMC_BITMAP_USE_THRESHOLD 10
100 
101 typedef struct PageDesc {
102     /* list of TBs intersecting this ram page */
103     uintptr_t first_tb;
104 #ifdef CONFIG_SOFTMMU
105     /* in order to optimize self modifying code, we count the number
106        of lookups we do to a given page to use a bitmap */
107     unsigned long *code_bitmap;
108     unsigned int code_write_count;
109 #else
110     unsigned long flags;
111 #endif
112 #ifndef CONFIG_USER_ONLY
113     QemuSpin lock;
114 #endif
115 } PageDesc;
116 
117 /**
118  * struct page_entry - page descriptor entry
119  * @pd:     pointer to the &struct PageDesc of the page this entry represents
120  * @index:  page index of the page
121  * @locked: whether the page is locked
122  *
123  * This struct helps us keep track of the locked state of a page, without
124  * bloating &struct PageDesc.
125  *
126  * A page lock protects accesses to all fields of &struct PageDesc.
127  *
128  * See also: &struct page_collection.
129  */
130 struct page_entry {
131     PageDesc *pd;
132     tb_page_addr_t index;
133     bool locked;
134 };
135 
136 /**
137  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
138  * @tree:   Binary search tree (BST) of the pages, with key == page index
139  * @max:    Pointer to the page in @tree with the highest page index
140  *
141  * To avoid deadlock we lock pages in ascending order of page index.
142  * When operating on a set of pages, we need to keep track of them so that
143  * we can lock them in order and also unlock them later. For this we collect
144  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
145  * @tree implementation we use does not provide an O(1) operation to obtain the
146  * highest-ranked element, we use @max to keep track of the inserted page
147  * with the highest index. This is valuable because if a page is not in
148  * the tree and its index is higher than @max's, then we can lock it
149  * without breaking the locking order rule.
150  *
151  * Note on naming: 'struct page_set' would be shorter, but we already have a few
152  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
153  *
154  * See also: page_collection_lock().
155  */
156 struct page_collection {
157     GTree *tree;
158     struct page_entry *max;
159 };
160 
161 /* list iterators for lists of tagged pointers in TranslationBlock */
162 #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
163     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
164          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
165              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
166 
167 #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
168     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
169 
170 #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
171     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
172 
173 /* In system mode we want L1_MAP to be based on ram offsets,
174    while in user mode we want it to be based on virtual addresses.  */
175 #if !defined(CONFIG_USER_ONLY)
176 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
177 # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
178 #else
179 # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
180 #endif
181 #else
182 # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
183 #endif
184 
185 /* Size of the L2 (and L3, etc) page tables.  */
186 #define V_L2_BITS 10
187 #define V_L2_SIZE (1 << V_L2_BITS)
188 
189 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
190 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
191                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
192                   * BITS_PER_BYTE);
193 
194 /*
195  * L1 Mapping properties
196  */
197 static int v_l1_size;
198 static int v_l1_shift;
199 static int v_l2_levels;
200 
201 /* The bottom level has pointers to PageDesc, and is indexed by
202  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
203  */
204 #define V_L1_MIN_BITS 4
205 #define V_L1_MAX_BITS (V_L2_BITS + 3)
206 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
207 
208 static void *l1_map[V_L1_MAX_SIZE];
209 
210 /* code generation context */
211 TCGContext tcg_init_ctx;
212 __thread TCGContext *tcg_ctx;
213 TBContext tb_ctx;
214 bool parallel_cpus;
215 
216 static void page_table_config_init(void)
217 {
218     uint32_t v_l1_bits;
219 
220     assert(TARGET_PAGE_BITS);
221     /* The bits remaining after N lower levels of page tables.  */
222     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
223     if (v_l1_bits < V_L1_MIN_BITS) {
224         v_l1_bits += V_L2_BITS;
225     }
226 
227     v_l1_size = 1 << v_l1_bits;
228     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
229     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
230 
231     assert(v_l1_bits <= V_L1_MAX_BITS);
232     assert(v_l1_shift % V_L2_BITS == 0);
233     assert(v_l2_levels >= 0);
234 }
235 
236 void cpu_gen_init(void)
237 {
238     tcg_context_init(&tcg_init_ctx);
239 }
240 
241 /* Encode VAL as a signed leb128 sequence at P.
242    Return P incremented past the encoded value.  */
243 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
244 {
245     int more, byte;
246 
247     do {
248         byte = val & 0x7f;
249         val >>= 7;
250         more = !((val == 0 && (byte & 0x40) == 0)
251                  || (val == -1 && (byte & 0x40) != 0));
252         if (more) {
253             byte |= 0x80;
254         }
255         *p++ = byte;
256     } while (more);
257 
258     return p;
259 }
260 
261 /* Decode a signed leb128 sequence at *PP; increment *PP past the
262    decoded value.  Return the decoded value.  */
263 static target_long decode_sleb128(uint8_t **pp)
264 {
265     uint8_t *p = *pp;
266     target_long val = 0;
267     int byte, shift = 0;
268 
269     do {
270         byte = *p++;
271         val |= (target_ulong)(byte & 0x7f) << shift;
272         shift += 7;
273     } while (byte & 0x80);
274     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
275         val |= -(target_ulong)1 << shift;
276     }
277 
278     *pp = p;
279     return val;
280 }
281 
282 /* Encode the data collected about the instructions while compiling TB.
283    Place the data at BLOCK, and return the number of bytes consumed.
284 
285    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
286    which come from the target's insn_start data, followed by a uintptr_t
287    which comes from the host pc of the end of the code implementing the insn.
288 
289    Each line of the table is encoded as sleb128 deltas from the previous
290    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
291    That is, the first column is seeded with the guest pc, the last column
292    with the host pc, and the middle columns with zeros.  */
293 
294 static int encode_search(TranslationBlock *tb, uint8_t *block)
295 {
296     uint8_t *highwater = tcg_ctx->code_gen_highwater;
297     uint8_t *p = block;
298     int i, j, n;
299 
300     for (i = 0, n = tb->icount; i < n; ++i) {
301         target_ulong prev;
302 
303         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
304             if (i == 0) {
305                 prev = (j == 0 ? tb->pc : 0);
306             } else {
307                 prev = tcg_ctx->gen_insn_data[i - 1][j];
308             }
309             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
310         }
311         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
312         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
313 
314         /* Test for (pending) buffer overflow.  The assumption is that any
315            one row beginning below the high water mark cannot overrun
316            the buffer completely.  Thus we can test for overflow after
317            encoding a row without having to check during encoding.  */
318         if (unlikely(p > highwater)) {
319             return -1;
320         }
321     }
322 
323     return p - block;
324 }
325 
326 /* The cpu state corresponding to 'searched_pc' is restored.
327  * When reset_icount is true, current TB will be interrupted and
328  * icount should be recalculated.
329  */
330 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
331                                      uintptr_t searched_pc, bool reset_icount)
332 {
333     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
334     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
335     CPUArchState *env = cpu->env_ptr;
336     uint8_t *p = tb->tc.ptr + tb->tc.size;
337     int i, j, num_insns = tb->icount;
338 #ifdef CONFIG_PROFILER
339     TCGProfile *prof = &tcg_ctx->prof;
340     int64_t ti = profile_getclock();
341 #endif
342 
343     searched_pc -= GETPC_ADJ;
344 
345     if (searched_pc < host_pc) {
346         return -1;
347     }
348 
349     /* Reconstruct the stored insn data while looking for the point at
350        which the end of the insn exceeds the searched_pc.  */
351     for (i = 0; i < num_insns; ++i) {
352         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
353             data[j] += decode_sleb128(&p);
354         }
355         host_pc += decode_sleb128(&p);
356         if (host_pc > searched_pc) {
357             goto found;
358         }
359     }
360     return -1;
361 
362  found:
363     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
364         assert(use_icount);
365         /* Reset the cycle counter to the start of the block
366            and shift if to the number of actually executed instructions */
367         cpu->icount_decr.u16.low += num_insns - i;
368     }
369     restore_state_to_opc(env, tb, data);
370 
371 #ifdef CONFIG_PROFILER
372     atomic_set(&prof->restore_time,
373                 prof->restore_time + profile_getclock() - ti);
374     atomic_set(&prof->restore_count, prof->restore_count + 1);
375 #endif
376     return 0;
377 }
378 
379 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
380 {
381     TranslationBlock *tb;
382     bool r = false;
383     uintptr_t check_offset;
384 
385     /* The host_pc has to be in the region of current code buffer. If
386      * it is not we will not be able to resolve it here. The two cases
387      * where host_pc will not be correct are:
388      *
389      *  - fault during translation (instruction fetch)
390      *  - fault from helper (not using GETPC() macro)
391      *
392      * Either way we need return early as we can't resolve it here.
393      *
394      * We are using unsigned arithmetic so if host_pc <
395      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
396      * above the code_gen_buffer_size
397      */
398     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
399 
400     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
401         tb = tcg_tb_lookup(host_pc);
402         if (tb) {
403             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
404             if (tb_cflags(tb) & CF_NOCACHE) {
405                 /* one-shot translation, invalidate it immediately */
406                 tb_phys_invalidate(tb, -1);
407                 tcg_tb_remove(tb);
408             }
409             r = true;
410         }
411     }
412 
413     return r;
414 }
415 
416 static void page_init(void)
417 {
418     page_size_init();
419     page_table_config_init();
420 
421 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
422     {
423 #ifdef HAVE_KINFO_GETVMMAP
424         struct kinfo_vmentry *freep;
425         int i, cnt;
426 
427         freep = kinfo_getvmmap(getpid(), &cnt);
428         if (freep) {
429             mmap_lock();
430             for (i = 0; i < cnt; i++) {
431                 unsigned long startaddr, endaddr;
432 
433                 startaddr = freep[i].kve_start;
434                 endaddr = freep[i].kve_end;
435                 if (h2g_valid(startaddr)) {
436                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
437 
438                     if (h2g_valid(endaddr)) {
439                         endaddr = h2g(endaddr);
440                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
441                     } else {
442 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
443                         endaddr = ~0ul;
444                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
445 #endif
446                     }
447                 }
448             }
449             free(freep);
450             mmap_unlock();
451         }
452 #else
453         FILE *f;
454 
455         last_brk = (unsigned long)sbrk(0);
456 
457         f = fopen("/compat/linux/proc/self/maps", "r");
458         if (f) {
459             mmap_lock();
460 
461             do {
462                 unsigned long startaddr, endaddr;
463                 int n;
464 
465                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
466 
467                 if (n == 2 && h2g_valid(startaddr)) {
468                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
469 
470                     if (h2g_valid(endaddr)) {
471                         endaddr = h2g(endaddr);
472                     } else {
473                         endaddr = ~0ul;
474                     }
475                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
476                 }
477             } while (!feof(f));
478 
479             fclose(f);
480             mmap_unlock();
481         }
482 #endif
483     }
484 #endif
485 }
486 
487 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
488 {
489     PageDesc *pd;
490     void **lp;
491     int i;
492 
493     /* Level 1.  Always allocated.  */
494     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
495 
496     /* Level 2..N-1.  */
497     for (i = v_l2_levels; i > 0; i--) {
498         void **p = atomic_rcu_read(lp);
499 
500         if (p == NULL) {
501             void *existing;
502 
503             if (!alloc) {
504                 return NULL;
505             }
506             p = g_new0(void *, V_L2_SIZE);
507             existing = atomic_cmpxchg(lp, NULL, p);
508             if (unlikely(existing)) {
509                 g_free(p);
510                 p = existing;
511             }
512         }
513 
514         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
515     }
516 
517     pd = atomic_rcu_read(lp);
518     if (pd == NULL) {
519         void *existing;
520 
521         if (!alloc) {
522             return NULL;
523         }
524         pd = g_new0(PageDesc, V_L2_SIZE);
525 #ifndef CONFIG_USER_ONLY
526         {
527             int i;
528 
529             for (i = 0; i < V_L2_SIZE; i++) {
530                 qemu_spin_init(&pd[i].lock);
531             }
532         }
533 #endif
534         existing = atomic_cmpxchg(lp, NULL, pd);
535         if (unlikely(existing)) {
536             g_free(pd);
537             pd = existing;
538         }
539     }
540 
541     return pd + (index & (V_L2_SIZE - 1));
542 }
543 
544 static inline PageDesc *page_find(tb_page_addr_t index)
545 {
546     return page_find_alloc(index, 0);
547 }
548 
549 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
550                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
551 
552 /* In user-mode page locks aren't used; mmap_lock is enough */
553 #ifdef CONFIG_USER_ONLY
554 
555 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
556 
557 static inline void page_lock(PageDesc *pd)
558 { }
559 
560 static inline void page_unlock(PageDesc *pd)
561 { }
562 
563 static inline void page_lock_tb(const TranslationBlock *tb)
564 { }
565 
566 static inline void page_unlock_tb(const TranslationBlock *tb)
567 { }
568 
569 struct page_collection *
570 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
571 {
572     return NULL;
573 }
574 
575 void page_collection_unlock(struct page_collection *set)
576 { }
577 #else /* !CONFIG_USER_ONLY */
578 
579 #ifdef CONFIG_DEBUG_TCG
580 
581 static __thread GHashTable *ht_pages_locked_debug;
582 
583 static void ht_pages_locked_debug_init(void)
584 {
585     if (ht_pages_locked_debug) {
586         return;
587     }
588     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
589 }
590 
591 static bool page_is_locked(const PageDesc *pd)
592 {
593     PageDesc *found;
594 
595     ht_pages_locked_debug_init();
596     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
597     return !!found;
598 }
599 
600 static void page_lock__debug(PageDesc *pd)
601 {
602     ht_pages_locked_debug_init();
603     g_assert(!page_is_locked(pd));
604     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
605 }
606 
607 static void page_unlock__debug(const PageDesc *pd)
608 {
609     bool removed;
610 
611     ht_pages_locked_debug_init();
612     g_assert(page_is_locked(pd));
613     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
614     g_assert(removed);
615 }
616 
617 static void
618 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
619 {
620     if (unlikely(!page_is_locked(pd))) {
621         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
622                      pd, file, line);
623         abort();
624     }
625 }
626 
627 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
628 
629 void assert_no_pages_locked(void)
630 {
631     ht_pages_locked_debug_init();
632     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
633 }
634 
635 #else /* !CONFIG_DEBUG_TCG */
636 
637 #define assert_page_locked(pd)
638 
639 static inline void page_lock__debug(const PageDesc *pd)
640 {
641 }
642 
643 static inline void page_unlock__debug(const PageDesc *pd)
644 {
645 }
646 
647 #endif /* CONFIG_DEBUG_TCG */
648 
649 static inline void page_lock(PageDesc *pd)
650 {
651     page_lock__debug(pd);
652     qemu_spin_lock(&pd->lock);
653 }
654 
655 static inline void page_unlock(PageDesc *pd)
656 {
657     qemu_spin_unlock(&pd->lock);
658     page_unlock__debug(pd);
659 }
660 
661 /* lock the page(s) of a TB in the correct acquisition order */
662 static inline void page_lock_tb(const TranslationBlock *tb)
663 {
664     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
665 }
666 
667 static inline void page_unlock_tb(const TranslationBlock *tb)
668 {
669     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
670 
671     page_unlock(p1);
672     if (unlikely(tb->page_addr[1] != -1)) {
673         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
674 
675         if (p2 != p1) {
676             page_unlock(p2);
677         }
678     }
679 }
680 
681 static inline struct page_entry *
682 page_entry_new(PageDesc *pd, tb_page_addr_t index)
683 {
684     struct page_entry *pe = g_malloc(sizeof(*pe));
685 
686     pe->index = index;
687     pe->pd = pd;
688     pe->locked = false;
689     return pe;
690 }
691 
692 static void page_entry_destroy(gpointer p)
693 {
694     struct page_entry *pe = p;
695 
696     g_assert(pe->locked);
697     page_unlock(pe->pd);
698     g_free(pe);
699 }
700 
701 /* returns false on success */
702 static bool page_entry_trylock(struct page_entry *pe)
703 {
704     bool busy;
705 
706     busy = qemu_spin_trylock(&pe->pd->lock);
707     if (!busy) {
708         g_assert(!pe->locked);
709         pe->locked = true;
710         page_lock__debug(pe->pd);
711     }
712     return busy;
713 }
714 
715 static void do_page_entry_lock(struct page_entry *pe)
716 {
717     page_lock(pe->pd);
718     g_assert(!pe->locked);
719     pe->locked = true;
720 }
721 
722 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
723 {
724     struct page_entry *pe = value;
725 
726     do_page_entry_lock(pe);
727     return FALSE;
728 }
729 
730 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
731 {
732     struct page_entry *pe = value;
733 
734     if (pe->locked) {
735         pe->locked = false;
736         page_unlock(pe->pd);
737     }
738     return FALSE;
739 }
740 
741 /*
742  * Trylock a page, and if successful, add the page to a collection.
743  * Returns true ("busy") if the page could not be locked; false otherwise.
744  */
745 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
746 {
747     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
748     struct page_entry *pe;
749     PageDesc *pd;
750 
751     pe = g_tree_lookup(set->tree, &index);
752     if (pe) {
753         return false;
754     }
755 
756     pd = page_find(index);
757     if (pd == NULL) {
758         return false;
759     }
760 
761     pe = page_entry_new(pd, index);
762     g_tree_insert(set->tree, &pe->index, pe);
763 
764     /*
765      * If this is either (1) the first insertion or (2) a page whose index
766      * is higher than any other so far, just lock the page and move on.
767      */
768     if (set->max == NULL || pe->index > set->max->index) {
769         set->max = pe;
770         do_page_entry_lock(pe);
771         return false;
772     }
773     /*
774      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
775      * locks in order.
776      */
777     return page_entry_trylock(pe);
778 }
779 
780 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
781 {
782     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
783     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
784 
785     if (a == b) {
786         return 0;
787     } else if (a < b) {
788         return -1;
789     }
790     return 1;
791 }
792 
793 /*
794  * Lock a range of pages ([@start,@end[) as well as the pages of all
795  * intersecting TBs.
796  * Locking order: acquire locks in ascending order of page index.
797  */
798 struct page_collection *
799 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
800 {
801     struct page_collection *set = g_malloc(sizeof(*set));
802     tb_page_addr_t index;
803     PageDesc *pd;
804 
805     start >>= TARGET_PAGE_BITS;
806     end   >>= TARGET_PAGE_BITS;
807     g_assert(start <= end);
808 
809     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
810                                 page_entry_destroy);
811     set->max = NULL;
812     assert_no_pages_locked();
813 
814  retry:
815     g_tree_foreach(set->tree, page_entry_lock, NULL);
816 
817     for (index = start; index <= end; index++) {
818         TranslationBlock *tb;
819         int n;
820 
821         pd = page_find(index);
822         if (pd == NULL) {
823             continue;
824         }
825         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
826             g_tree_foreach(set->tree, page_entry_unlock, NULL);
827             goto retry;
828         }
829         assert_page_locked(pd);
830         PAGE_FOR_EACH_TB(pd, tb, n) {
831             if (page_trylock_add(set, tb->page_addr[0]) ||
832                 (tb->page_addr[1] != -1 &&
833                  page_trylock_add(set, tb->page_addr[1]))) {
834                 /* drop all locks, and reacquire in order */
835                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
836                 goto retry;
837             }
838         }
839     }
840     return set;
841 }
842 
843 void page_collection_unlock(struct page_collection *set)
844 {
845     /* entries are unlocked and freed via page_entry_destroy */
846     g_tree_destroy(set->tree);
847     g_free(set);
848 }
849 
850 #endif /* !CONFIG_USER_ONLY */
851 
852 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
853                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
854 {
855     PageDesc *p1, *p2;
856     tb_page_addr_t page1;
857     tb_page_addr_t page2;
858 
859     assert_memory_lock();
860     g_assert(phys1 != -1);
861 
862     page1 = phys1 >> TARGET_PAGE_BITS;
863     page2 = phys2 >> TARGET_PAGE_BITS;
864 
865     p1 = page_find_alloc(page1, alloc);
866     if (ret_p1) {
867         *ret_p1 = p1;
868     }
869     if (likely(phys2 == -1)) {
870         page_lock(p1);
871         return;
872     } else if (page1 == page2) {
873         page_lock(p1);
874         if (ret_p2) {
875             *ret_p2 = p1;
876         }
877         return;
878     }
879     p2 = page_find_alloc(page2, alloc);
880     if (ret_p2) {
881         *ret_p2 = p2;
882     }
883     if (page1 < page2) {
884         page_lock(p1);
885         page_lock(p2);
886     } else {
887         page_lock(p2);
888         page_lock(p1);
889     }
890 }
891 
892 #if defined(CONFIG_USER_ONLY)
893 /* Currently it is not recommended to allocate big chunks of data in
894    user mode. It will change when a dedicated libc will be used.  */
895 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
896    region in which the guest needs to run.  Revisit this.  */
897 #define USE_STATIC_CODE_GEN_BUFFER
898 #endif
899 
900 /* Minimum size of the code gen buffer.  This number is randomly chosen,
901    but not so small that we can't have a fair number of TB's live.  */
902 #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
903 
904 /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
905    indicated, this is constrained by the range of direct branches on the
906    host cpu, as used by the TCG implementation of goto_tb.  */
907 #if defined(__x86_64__)
908 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
909 #elif defined(__sparc__)
910 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
911 #elif defined(__powerpc64__)
912 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
913 #elif defined(__powerpc__)
914 # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
915 #elif defined(__aarch64__)
916 # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
917 #elif defined(__s390x__)
918   /* We have a +- 4GB range on the branches; leave some slop.  */
919 # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
920 #elif defined(__mips__)
921   /* We have a 256MB branch region, but leave room to make sure the
922      main executable is also within that region.  */
923 # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
924 #else
925 # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
926 #endif
927 
928 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
929 
930 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
931   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
932    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
933 
934 static inline size_t size_code_gen_buffer(size_t tb_size)
935 {
936     /* Size the buffer.  */
937     if (tb_size == 0) {
938 #ifdef USE_STATIC_CODE_GEN_BUFFER
939         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
940 #else
941         /* ??? Needs adjustments.  */
942         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
943            static buffer, we could size this on RESERVED_VA, on the text
944            segment size of the executable, or continue to use the default.  */
945         tb_size = (unsigned long)(ram_size / 4);
946 #endif
947     }
948     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
949         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
950     }
951     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
952         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
953     }
954     return tb_size;
955 }
956 
957 #ifdef __mips__
958 /* In order to use J and JAL within the code_gen_buffer, we require
959    that the buffer not cross a 256MB boundary.  */
960 static inline bool cross_256mb(void *addr, size_t size)
961 {
962     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
963 }
964 
965 /* We weren't able to allocate a buffer without crossing that boundary,
966    so make do with the larger portion of the buffer that doesn't cross.
967    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
968 static inline void *split_cross_256mb(void *buf1, size_t size1)
969 {
970     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
971     size_t size2 = buf1 + size1 - buf2;
972 
973     size1 = buf2 - buf1;
974     if (size1 < size2) {
975         size1 = size2;
976         buf1 = buf2;
977     }
978 
979     tcg_ctx->code_gen_buffer_size = size1;
980     return buf1;
981 }
982 #endif
983 
984 #ifdef USE_STATIC_CODE_GEN_BUFFER
985 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
986     __attribute__((aligned(CODE_GEN_ALIGN)));
987 
988 static inline void *alloc_code_gen_buffer(void)
989 {
990     void *buf = static_code_gen_buffer;
991     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
992     size_t size;
993 
994     /* page-align the beginning and end of the buffer */
995     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
996     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
997 
998     size = end - buf;
999 
1000     /* Honor a command-line option limiting the size of the buffer.  */
1001     if (size > tcg_ctx->code_gen_buffer_size) {
1002         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1003                                qemu_real_host_page_size);
1004     }
1005     tcg_ctx->code_gen_buffer_size = size;
1006 
1007 #ifdef __mips__
1008     if (cross_256mb(buf, size)) {
1009         buf = split_cross_256mb(buf, size);
1010         size = tcg_ctx->code_gen_buffer_size;
1011     }
1012 #endif
1013 
1014     if (qemu_mprotect_rwx(buf, size)) {
1015         abort();
1016     }
1017     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1018 
1019     return buf;
1020 }
1021 #elif defined(_WIN32)
1022 static inline void *alloc_code_gen_buffer(void)
1023 {
1024     size_t size = tcg_ctx->code_gen_buffer_size;
1025     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1026                         PAGE_EXECUTE_READWRITE);
1027 }
1028 #else
1029 static inline void *alloc_code_gen_buffer(void)
1030 {
1031     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1032     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1033     uintptr_t start = 0;
1034     size_t size = tcg_ctx->code_gen_buffer_size;
1035     void *buf;
1036 
1037     /* Constrain the position of the buffer based on the host cpu.
1038        Note that these addresses are chosen in concert with the
1039        addresses assigned in the relevant linker script file.  */
1040 # if defined(__PIE__) || defined(__PIC__)
1041     /* Don't bother setting a preferred location if we're building
1042        a position-independent executable.  We're more likely to get
1043        an address near the main executable if we let the kernel
1044        choose the address.  */
1045 # elif defined(__x86_64__) && defined(MAP_32BIT)
1046     /* Force the memory down into low memory with the executable.
1047        Leave the choice of exact location with the kernel.  */
1048     flags |= MAP_32BIT;
1049     /* Cannot expect to map more than 800MB in low memory.  */
1050     if (size > 800u * 1024 * 1024) {
1051         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1052     }
1053 # elif defined(__sparc__)
1054     start = 0x40000000ul;
1055 # elif defined(__s390x__)
1056     start = 0x90000000ul;
1057 # elif defined(__mips__)
1058 #  if _MIPS_SIM == _ABI64
1059     start = 0x128000000ul;
1060 #  else
1061     start = 0x08000000ul;
1062 #  endif
1063 # endif
1064 
1065     buf = mmap((void *)start, size, prot, flags, -1, 0);
1066     if (buf == MAP_FAILED) {
1067         return NULL;
1068     }
1069 
1070 #ifdef __mips__
1071     if (cross_256mb(buf, size)) {
1072         /* Try again, with the original still mapped, to avoid re-acquiring
1073            that 256mb crossing.  This time don't specify an address.  */
1074         size_t size2;
1075         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1076         switch ((int)(buf2 != MAP_FAILED)) {
1077         case 1:
1078             if (!cross_256mb(buf2, size)) {
1079                 /* Success!  Use the new buffer.  */
1080                 munmap(buf, size);
1081                 break;
1082             }
1083             /* Failure.  Work with what we had.  */
1084             munmap(buf2, size);
1085             /* fallthru */
1086         default:
1087             /* Split the original buffer.  Free the smaller half.  */
1088             buf2 = split_cross_256mb(buf, size);
1089             size2 = tcg_ctx->code_gen_buffer_size;
1090             if (buf == buf2) {
1091                 munmap(buf + size2, size - size2);
1092             } else {
1093                 munmap(buf, size - size2);
1094             }
1095             size = size2;
1096             break;
1097         }
1098         buf = buf2;
1099     }
1100 #endif
1101 
1102     /* Request large pages for the buffer.  */
1103     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1104 
1105     return buf;
1106 }
1107 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1108 
1109 static inline void code_gen_alloc(size_t tb_size)
1110 {
1111     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1112     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1113     if (tcg_ctx->code_gen_buffer == NULL) {
1114         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1115         exit(1);
1116     }
1117 }
1118 
1119 static bool tb_cmp(const void *ap, const void *bp)
1120 {
1121     const TranslationBlock *a = ap;
1122     const TranslationBlock *b = bp;
1123 
1124     return a->pc == b->pc &&
1125         a->cs_base == b->cs_base &&
1126         a->flags == b->flags &&
1127         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1128         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1129         a->page_addr[0] == b->page_addr[0] &&
1130         a->page_addr[1] == b->page_addr[1];
1131 }
1132 
1133 static void tb_htable_init(void)
1134 {
1135     unsigned int mode = QHT_MODE_AUTO_RESIZE;
1136 
1137     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1138 }
1139 
1140 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1141    (in bytes) allocated to the translation buffer. Zero means default
1142    size. */
1143 void tcg_exec_init(unsigned long tb_size)
1144 {
1145     tcg_allowed = true;
1146     cpu_gen_init();
1147     page_init();
1148     tb_htable_init();
1149     code_gen_alloc(tb_size);
1150 #if defined(CONFIG_SOFTMMU)
1151     /* There's no guest base to take into account, so go ahead and
1152        initialize the prologue now.  */
1153     tcg_prologue_init(tcg_ctx);
1154 #endif
1155 }
1156 
1157 /*
1158  * Allocate a new translation block. Flush the translation buffer if
1159  * too many translation blocks or too much generated code.
1160  */
1161 static TranslationBlock *tb_alloc(target_ulong pc)
1162 {
1163     TranslationBlock *tb;
1164 
1165     assert_memory_lock();
1166 
1167     tb = tcg_tb_alloc(tcg_ctx);
1168     if (unlikely(tb == NULL)) {
1169         return NULL;
1170     }
1171     return tb;
1172 }
1173 
1174 /* call with @p->lock held */
1175 static inline void invalidate_page_bitmap(PageDesc *p)
1176 {
1177     assert_page_locked(p);
1178 #ifdef CONFIG_SOFTMMU
1179     g_free(p->code_bitmap);
1180     p->code_bitmap = NULL;
1181     p->code_write_count = 0;
1182 #endif
1183 }
1184 
1185 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1186 static void page_flush_tb_1(int level, void **lp)
1187 {
1188     int i;
1189 
1190     if (*lp == NULL) {
1191         return;
1192     }
1193     if (level == 0) {
1194         PageDesc *pd = *lp;
1195 
1196         for (i = 0; i < V_L2_SIZE; ++i) {
1197             page_lock(&pd[i]);
1198             pd[i].first_tb = (uintptr_t)NULL;
1199             invalidate_page_bitmap(pd + i);
1200             page_unlock(&pd[i]);
1201         }
1202     } else {
1203         void **pp = *lp;
1204 
1205         for (i = 0; i < V_L2_SIZE; ++i) {
1206             page_flush_tb_1(level - 1, pp + i);
1207         }
1208     }
1209 }
1210 
1211 static void page_flush_tb(void)
1212 {
1213     int i, l1_sz = v_l1_size;
1214 
1215     for (i = 0; i < l1_sz; i++) {
1216         page_flush_tb_1(v_l2_levels, l1_map + i);
1217     }
1218 }
1219 
1220 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1221 {
1222     const TranslationBlock *tb = value;
1223     size_t *size = data;
1224 
1225     *size += tb->tc.size;
1226     return false;
1227 }
1228 
1229 /* flush all the translation blocks */
1230 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1231 {
1232     mmap_lock();
1233     /* If it is already been done on request of another CPU,
1234      * just retry.
1235      */
1236     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1237         goto done;
1238     }
1239 
1240     if (DEBUG_TB_FLUSH_GATE) {
1241         size_t nb_tbs = tcg_nb_tbs();
1242         size_t host_size = 0;
1243 
1244         tcg_tb_foreach(tb_host_size_iter, &host_size);
1245         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1246                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1247     }
1248 
1249     CPU_FOREACH(cpu) {
1250         cpu_tb_jmp_cache_clear(cpu);
1251     }
1252 
1253     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1254     page_flush_tb();
1255 
1256     tcg_region_reset_all();
1257     /* XXX: flush processor icache at this point if cache flush is
1258        expensive */
1259     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1260 
1261 done:
1262     mmap_unlock();
1263 }
1264 
1265 void tb_flush(CPUState *cpu)
1266 {
1267     if (tcg_enabled()) {
1268         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1269         async_safe_run_on_cpu(cpu, do_tb_flush,
1270                               RUN_ON_CPU_HOST_INT(tb_flush_count));
1271     }
1272 }
1273 
1274 /*
1275  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1276  * so in order to prevent bit rot we compile them unconditionally in user-mode,
1277  * and let the optimizer get rid of them by wrapping their user-only callers
1278  * with if (DEBUG_TB_CHECK_GATE).
1279  */
1280 #ifdef CONFIG_USER_ONLY
1281 
1282 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1283 {
1284     TranslationBlock *tb = p;
1285     target_ulong addr = *(target_ulong *)userp;
1286 
1287     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1288         printf("ERROR invalidate: address=" TARGET_FMT_lx
1289                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1290     }
1291 }
1292 
1293 /* verify that all the pages have correct rights for code
1294  *
1295  * Called with mmap_lock held.
1296  */
1297 static void tb_invalidate_check(target_ulong address)
1298 {
1299     address &= TARGET_PAGE_MASK;
1300     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1301 }
1302 
1303 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1304 {
1305     TranslationBlock *tb = p;
1306     int flags1, flags2;
1307 
1308     flags1 = page_get_flags(tb->pc);
1309     flags2 = page_get_flags(tb->pc + tb->size - 1);
1310     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1311         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1312                (long)tb->pc, tb->size, flags1, flags2);
1313     }
1314 }
1315 
1316 /* verify that all the pages have correct rights for code */
1317 static void tb_page_check(void)
1318 {
1319     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1320 }
1321 
1322 #endif /* CONFIG_USER_ONLY */
1323 
1324 /*
1325  * user-mode: call with mmap_lock held
1326  * !user-mode: call with @pd->lock held
1327  */
1328 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1329 {
1330     TranslationBlock *tb1;
1331     uintptr_t *pprev;
1332     unsigned int n1;
1333 
1334     assert_page_locked(pd);
1335     pprev = &pd->first_tb;
1336     PAGE_FOR_EACH_TB(pd, tb1, n1) {
1337         if (tb1 == tb) {
1338             *pprev = tb1->page_next[n1];
1339             return;
1340         }
1341         pprev = &tb1->page_next[n1];
1342     }
1343     g_assert_not_reached();
1344 }
1345 
1346 /* remove @orig from its @n_orig-th jump list */
1347 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1348 {
1349     uintptr_t ptr, ptr_locked;
1350     TranslationBlock *dest;
1351     TranslationBlock *tb;
1352     uintptr_t *pprev;
1353     int n;
1354 
1355     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1356     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1357     dest = (TranslationBlock *)(ptr & ~1);
1358     if (dest == NULL) {
1359         return;
1360     }
1361 
1362     qemu_spin_lock(&dest->jmp_lock);
1363     /*
1364      * While acquiring the lock, the jump might have been removed if the
1365      * destination TB was invalidated; check again.
1366      */
1367     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1368     if (ptr_locked != ptr) {
1369         qemu_spin_unlock(&dest->jmp_lock);
1370         /*
1371          * The only possibility is that the jump was unlinked via
1372          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1373          * because we set the LSB above.
1374          */
1375         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1376         return;
1377     }
1378     /*
1379      * We first acquired the lock, and since the destination pointer matches,
1380      * we know for sure that @orig is in the jmp list.
1381      */
1382     pprev = &dest->jmp_list_head;
1383     TB_FOR_EACH_JMP(dest, tb, n) {
1384         if (tb == orig && n == n_orig) {
1385             *pprev = tb->jmp_list_next[n];
1386             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1387             qemu_spin_unlock(&dest->jmp_lock);
1388             return;
1389         }
1390         pprev = &tb->jmp_list_next[n];
1391     }
1392     g_assert_not_reached();
1393 }
1394 
1395 /* reset the jump entry 'n' of a TB so that it is not chained to
1396    another TB */
1397 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1398 {
1399     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1400     tb_set_jmp_target(tb, n, addr);
1401 }
1402 
1403 /* remove any jumps to the TB */
1404 static inline void tb_jmp_unlink(TranslationBlock *dest)
1405 {
1406     TranslationBlock *tb;
1407     int n;
1408 
1409     qemu_spin_lock(&dest->jmp_lock);
1410 
1411     TB_FOR_EACH_JMP(dest, tb, n) {
1412         tb_reset_jump(tb, n);
1413         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1414         /* No need to clear the list entry; setting the dest ptr is enough */
1415     }
1416     dest->jmp_list_head = (uintptr_t)NULL;
1417 
1418     qemu_spin_unlock(&dest->jmp_lock);
1419 }
1420 
1421 /*
1422  * In user-mode, call with mmap_lock held.
1423  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1424  * locks held.
1425  */
1426 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1427 {
1428     CPUState *cpu;
1429     PageDesc *p;
1430     uint32_t h;
1431     tb_page_addr_t phys_pc;
1432 
1433     assert_memory_lock();
1434 
1435     /* make sure no further incoming jumps will be chained to this TB */
1436     qemu_spin_lock(&tb->jmp_lock);
1437     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1438     qemu_spin_unlock(&tb->jmp_lock);
1439 
1440     /* remove the TB from the hash list */
1441     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1442     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1443                      tb->trace_vcpu_dstate);
1444     if (!(tb->cflags & CF_NOCACHE) &&
1445         !qht_remove(&tb_ctx.htable, tb, h)) {
1446         return;
1447     }
1448 
1449     /* remove the TB from the page list */
1450     if (rm_from_page_list) {
1451         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1452         tb_page_remove(p, tb);
1453         invalidate_page_bitmap(p);
1454         if (tb->page_addr[1] != -1) {
1455             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1456             tb_page_remove(p, tb);
1457             invalidate_page_bitmap(p);
1458         }
1459     }
1460 
1461     /* remove the TB from the hash list */
1462     h = tb_jmp_cache_hash_func(tb->pc);
1463     CPU_FOREACH(cpu) {
1464         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1465             atomic_set(&cpu->tb_jmp_cache[h], NULL);
1466         }
1467     }
1468 
1469     /* suppress this TB from the two jump lists */
1470     tb_remove_from_jmp_list(tb, 0);
1471     tb_remove_from_jmp_list(tb, 1);
1472 
1473     /* suppress any remaining jumps to this TB */
1474     tb_jmp_unlink(tb);
1475 
1476     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1477                tcg_ctx->tb_phys_invalidate_count + 1);
1478 }
1479 
1480 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1481 {
1482     do_tb_phys_invalidate(tb, true);
1483 }
1484 
1485 /* invalidate one TB
1486  *
1487  * Called with mmap_lock held in user-mode.
1488  */
1489 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1490 {
1491     if (page_addr == -1 && tb->page_addr[0] != -1) {
1492         page_lock_tb(tb);
1493         do_tb_phys_invalidate(tb, true);
1494         page_unlock_tb(tb);
1495     } else {
1496         do_tb_phys_invalidate(tb, false);
1497     }
1498 }
1499 
1500 #ifdef CONFIG_SOFTMMU
1501 /* call with @p->lock held */
1502 static void build_page_bitmap(PageDesc *p)
1503 {
1504     int n, tb_start, tb_end;
1505     TranslationBlock *tb;
1506 
1507     assert_page_locked(p);
1508     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1509 
1510     PAGE_FOR_EACH_TB(p, tb, n) {
1511         /* NOTE: this is subtle as a TB may span two physical pages */
1512         if (n == 0) {
1513             /* NOTE: tb_end may be after the end of the page, but
1514                it is not a problem */
1515             tb_start = tb->pc & ~TARGET_PAGE_MASK;
1516             tb_end = tb_start + tb->size;
1517             if (tb_end > TARGET_PAGE_SIZE) {
1518                 tb_end = TARGET_PAGE_SIZE;
1519              }
1520         } else {
1521             tb_start = 0;
1522             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1523         }
1524         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1525     }
1526 }
1527 #endif
1528 
1529 /* add the tb in the target page and protect it if necessary
1530  *
1531  * Called with mmap_lock held for user-mode emulation.
1532  * Called with @p->lock held in !user-mode.
1533  */
1534 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1535                                unsigned int n, tb_page_addr_t page_addr)
1536 {
1537 #ifndef CONFIG_USER_ONLY
1538     bool page_already_protected;
1539 #endif
1540 
1541     assert_page_locked(p);
1542 
1543     tb->page_addr[n] = page_addr;
1544     tb->page_next[n] = p->first_tb;
1545 #ifndef CONFIG_USER_ONLY
1546     page_already_protected = p->first_tb != (uintptr_t)NULL;
1547 #endif
1548     p->first_tb = (uintptr_t)tb | n;
1549     invalidate_page_bitmap(p);
1550 
1551 #if defined(CONFIG_USER_ONLY)
1552     if (p->flags & PAGE_WRITE) {
1553         target_ulong addr;
1554         PageDesc *p2;
1555         int prot;
1556 
1557         /* force the host page as non writable (writes will have a
1558            page fault + mprotect overhead) */
1559         page_addr &= qemu_host_page_mask;
1560         prot = 0;
1561         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1562             addr += TARGET_PAGE_SIZE) {
1563 
1564             p2 = page_find(addr >> TARGET_PAGE_BITS);
1565             if (!p2) {
1566                 continue;
1567             }
1568             prot |= p2->flags;
1569             p2->flags &= ~PAGE_WRITE;
1570           }
1571         mprotect(g2h(page_addr), qemu_host_page_size,
1572                  (prot & PAGE_BITS) & ~PAGE_WRITE);
1573         if (DEBUG_TB_INVALIDATE_GATE) {
1574             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1575         }
1576     }
1577 #else
1578     /* if some code is already present, then the pages are already
1579        protected. So we handle the case where only the first TB is
1580        allocated in a physical page */
1581     if (!page_already_protected) {
1582         tlb_protect_code(page_addr);
1583     }
1584 #endif
1585 }
1586 
1587 /* add a new TB and link it to the physical page tables. phys_page2 is
1588  * (-1) to indicate that only one page contains the TB.
1589  *
1590  * Called with mmap_lock held for user-mode emulation.
1591  *
1592  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1593  * Note that in !user-mode, another thread might have already added a TB
1594  * for the same block of guest code that @tb corresponds to. In that case,
1595  * the caller should discard the original @tb, and use instead the returned TB.
1596  */
1597 static TranslationBlock *
1598 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1599              tb_page_addr_t phys_page2)
1600 {
1601     PageDesc *p;
1602     PageDesc *p2 = NULL;
1603 
1604     assert_memory_lock();
1605 
1606     if (phys_pc == -1) {
1607         /*
1608          * If the TB is not associated with a physical RAM page then
1609          * it must be a temporary one-insn TB, and we have nothing to do
1610          * except fill in the page_addr[] fields.
1611          */
1612         assert(tb->cflags & CF_NOCACHE);
1613         tb->page_addr[0] = tb->page_addr[1] = -1;
1614         return tb;
1615     }
1616 
1617     /*
1618      * Add the TB to the page list, acquiring first the pages's locks.
1619      * We keep the locks held until after inserting the TB in the hash table,
1620      * so that if the insertion fails we know for sure that the TBs are still
1621      * in the page descriptors.
1622      * Note that inserting into the hash table first isn't an option, since
1623      * we can only insert TBs that are fully initialized.
1624      */
1625     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1626     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1627     if (p2) {
1628         tb_page_add(p2, tb, 1, phys_page2);
1629     } else {
1630         tb->page_addr[1] = -1;
1631     }
1632 
1633     if (!(tb->cflags & CF_NOCACHE)) {
1634         void *existing_tb = NULL;
1635         uint32_t h;
1636 
1637         /* add in the hash table */
1638         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1639                          tb->trace_vcpu_dstate);
1640         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1641 
1642         /* remove TB from the page(s) if we couldn't insert it */
1643         if (unlikely(existing_tb)) {
1644             tb_page_remove(p, tb);
1645             invalidate_page_bitmap(p);
1646             if (p2) {
1647                 tb_page_remove(p2, tb);
1648                 invalidate_page_bitmap(p2);
1649             }
1650             tb = existing_tb;
1651         }
1652     }
1653 
1654     if (p2 && p2 != p) {
1655         page_unlock(p2);
1656     }
1657     page_unlock(p);
1658 
1659 #ifdef CONFIG_USER_ONLY
1660     if (DEBUG_TB_CHECK_GATE) {
1661         tb_page_check();
1662     }
1663 #endif
1664     return tb;
1665 }
1666 
1667 /* Called with mmap_lock held for user mode emulation.  */
1668 TranslationBlock *tb_gen_code(CPUState *cpu,
1669                               target_ulong pc, target_ulong cs_base,
1670                               uint32_t flags, int cflags)
1671 {
1672     CPUArchState *env = cpu->env_ptr;
1673     TranslationBlock *tb, *existing_tb;
1674     tb_page_addr_t phys_pc, phys_page2;
1675     target_ulong virt_page2;
1676     tcg_insn_unit *gen_code_buf;
1677     int gen_code_size, search_size, max_insns;
1678 #ifdef CONFIG_PROFILER
1679     TCGProfile *prof = &tcg_ctx->prof;
1680     int64_t ti;
1681 #endif
1682     assert_memory_lock();
1683 
1684     phys_pc = get_page_addr_code(env, pc);
1685 
1686     if (phys_pc == -1) {
1687         /* Generate a temporary TB with 1 insn in it */
1688         cflags &= ~CF_COUNT_MASK;
1689         cflags |= CF_NOCACHE | 1;
1690     }
1691 
1692     cflags &= ~CF_CLUSTER_MASK;
1693     cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1694 
1695     max_insns = cflags & CF_COUNT_MASK;
1696     if (max_insns == 0) {
1697         max_insns = CF_COUNT_MASK;
1698     }
1699     if (max_insns > TCG_MAX_INSNS) {
1700         max_insns = TCG_MAX_INSNS;
1701     }
1702     if (cpu->singlestep_enabled || singlestep) {
1703         max_insns = 1;
1704     }
1705 
1706  buffer_overflow:
1707     tb = tb_alloc(pc);
1708     if (unlikely(!tb)) {
1709         /* flush must be done */
1710         tb_flush(cpu);
1711         mmap_unlock();
1712         /* Make the execution loop process the flush as soon as possible.  */
1713         cpu->exception_index = EXCP_INTERRUPT;
1714         cpu_loop_exit(cpu);
1715     }
1716 
1717     gen_code_buf = tcg_ctx->code_gen_ptr;
1718     tb->tc.ptr = gen_code_buf;
1719     tb->pc = pc;
1720     tb->cs_base = cs_base;
1721     tb->flags = flags;
1722     tb->cflags = cflags;
1723     tb->trace_vcpu_dstate = *cpu->trace_dstate;
1724     tcg_ctx->tb_cflags = cflags;
1725  tb_overflow:
1726 
1727 #ifdef CONFIG_PROFILER
1728     /* includes aborted translations because of exceptions */
1729     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1730     ti = profile_getclock();
1731 #endif
1732 
1733     tcg_func_start(tcg_ctx);
1734 
1735     tcg_ctx->cpu = ENV_GET_CPU(env);
1736     gen_intermediate_code(cpu, tb, max_insns);
1737     tcg_ctx->cpu = NULL;
1738 
1739     trace_translate_block(tb, tb->pc, tb->tc.ptr);
1740 
1741     /* generate machine code */
1742     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1743     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1744     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1745     if (TCG_TARGET_HAS_direct_jump) {
1746         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1747         tcg_ctx->tb_jmp_target_addr = NULL;
1748     } else {
1749         tcg_ctx->tb_jmp_insn_offset = NULL;
1750         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1751     }
1752 
1753 #ifdef CONFIG_PROFILER
1754     atomic_set(&prof->tb_count, prof->tb_count + 1);
1755     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1756     ti = profile_getclock();
1757 #endif
1758 
1759     gen_code_size = tcg_gen_code(tcg_ctx, tb);
1760     if (unlikely(gen_code_size < 0)) {
1761         switch (gen_code_size) {
1762         case -1:
1763             /*
1764              * Overflow of code_gen_buffer, or the current slice of it.
1765              *
1766              * TODO: We don't need to re-do gen_intermediate_code, nor
1767              * should we re-do the tcg optimization currently hidden
1768              * inside tcg_gen_code.  All that should be required is to
1769              * flush the TBs, allocate a new TB, re-initialize it per
1770              * above, and re-do the actual code generation.
1771              */
1772             goto buffer_overflow;
1773 
1774         case -2:
1775             /*
1776              * The code generated for the TranslationBlock is too large.
1777              * The maximum size allowed by the unwind info is 64k.
1778              * There may be stricter constraints from relocations
1779              * in the tcg backend.
1780              *
1781              * Try again with half as many insns as we attempted this time.
1782              * If a single insn overflows, there's a bug somewhere...
1783              */
1784             max_insns = tb->icount;
1785             assert(max_insns > 1);
1786             max_insns /= 2;
1787             goto tb_overflow;
1788 
1789         default:
1790             g_assert_not_reached();
1791         }
1792     }
1793     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1794     if (unlikely(search_size < 0)) {
1795         goto buffer_overflow;
1796     }
1797     tb->tc.size = gen_code_size;
1798 
1799 #ifdef CONFIG_PROFILER
1800     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1801     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1802     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1803     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1804 #endif
1805 
1806 #ifdef DEBUG_DISAS
1807     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1808         qemu_log_in_addr_range(tb->pc)) {
1809         qemu_log_lock();
1810         qemu_log("OUT: [size=%d]\n", gen_code_size);
1811         if (tcg_ctx->data_gen_ptr) {
1812             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1813             size_t data_size = gen_code_size - code_size;
1814             size_t i;
1815 
1816             log_disas(tb->tc.ptr, code_size);
1817 
1818             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1819                 if (sizeof(tcg_target_ulong) == 8) {
1820                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
1821                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1822                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1823                 } else {
1824                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
1825                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
1826                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1827                 }
1828             }
1829         } else {
1830             log_disas(tb->tc.ptr, gen_code_size);
1831         }
1832         qemu_log("\n");
1833         qemu_log_flush();
1834         qemu_log_unlock();
1835     }
1836 #endif
1837 
1838     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1839         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1840                  CODE_GEN_ALIGN));
1841 
1842     /* init jump list */
1843     qemu_spin_init(&tb->jmp_lock);
1844     tb->jmp_list_head = (uintptr_t)NULL;
1845     tb->jmp_list_next[0] = (uintptr_t)NULL;
1846     tb->jmp_list_next[1] = (uintptr_t)NULL;
1847     tb->jmp_dest[0] = (uintptr_t)NULL;
1848     tb->jmp_dest[1] = (uintptr_t)NULL;
1849 
1850     /* init original jump addresses which have been set during tcg_gen_code() */
1851     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1852         tb_reset_jump(tb, 0);
1853     }
1854     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1855         tb_reset_jump(tb, 1);
1856     }
1857 
1858     /* check next page if needed */
1859     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1860     phys_page2 = -1;
1861     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1862         phys_page2 = get_page_addr_code(env, virt_page2);
1863     }
1864     /*
1865      * No explicit memory barrier is required -- tb_link_page() makes the
1866      * TB visible in a consistent state.
1867      */
1868     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1869     /* if the TB already exists, discard what we just translated */
1870     if (unlikely(existing_tb != tb)) {
1871         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1872 
1873         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1874         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1875         return existing_tb;
1876     }
1877     tcg_tb_insert(tb);
1878     return tb;
1879 }
1880 
1881 /*
1882  * @p must be non-NULL.
1883  * user-mode: call with mmap_lock held.
1884  * !user-mode: call with all @pages locked.
1885  */
1886 static void
1887 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1888                                       PageDesc *p, tb_page_addr_t start,
1889                                       tb_page_addr_t end,
1890                                       int is_cpu_write_access)
1891 {
1892     TranslationBlock *tb;
1893     tb_page_addr_t tb_start, tb_end;
1894     int n;
1895 #ifdef TARGET_HAS_PRECISE_SMC
1896     CPUState *cpu = current_cpu;
1897     CPUArchState *env = NULL;
1898     int current_tb_not_found = is_cpu_write_access;
1899     TranslationBlock *current_tb = NULL;
1900     int current_tb_modified = 0;
1901     target_ulong current_pc = 0;
1902     target_ulong current_cs_base = 0;
1903     uint32_t current_flags = 0;
1904 #endif /* TARGET_HAS_PRECISE_SMC */
1905 
1906     assert_page_locked(p);
1907 
1908 #if defined(TARGET_HAS_PRECISE_SMC)
1909     if (cpu != NULL) {
1910         env = cpu->env_ptr;
1911     }
1912 #endif
1913 
1914     /* we remove all the TBs in the range [start, end[ */
1915     /* XXX: see if in some cases it could be faster to invalidate all
1916        the code */
1917     PAGE_FOR_EACH_TB(p, tb, n) {
1918         assert_page_locked(p);
1919         /* NOTE: this is subtle as a TB may span two physical pages */
1920         if (n == 0) {
1921             /* NOTE: tb_end may be after the end of the page, but
1922                it is not a problem */
1923             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1924             tb_end = tb_start + tb->size;
1925         } else {
1926             tb_start = tb->page_addr[1];
1927             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1928         }
1929         if (!(tb_end <= start || tb_start >= end)) {
1930 #ifdef TARGET_HAS_PRECISE_SMC
1931             if (current_tb_not_found) {
1932                 current_tb_not_found = 0;
1933                 current_tb = NULL;
1934                 if (cpu->mem_io_pc) {
1935                     /* now we have a real cpu fault */
1936                     current_tb = tcg_tb_lookup(cpu->mem_io_pc);
1937                 }
1938             }
1939             if (current_tb == tb &&
1940                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1941                 /* If we are modifying the current TB, we must stop
1942                 its execution. We could be more precise by checking
1943                 that the modification is after the current PC, but it
1944                 would require a specialized function to partially
1945                 restore the CPU state */
1946 
1947                 current_tb_modified = 1;
1948                 cpu_restore_state_from_tb(cpu, current_tb,
1949                                           cpu->mem_io_pc, true);
1950                 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1951                                      &current_flags);
1952             }
1953 #endif /* TARGET_HAS_PRECISE_SMC */
1954             tb_phys_invalidate__locked(tb);
1955         }
1956     }
1957 #if !defined(CONFIG_USER_ONLY)
1958     /* if no code remaining, no need to continue to use slow writes */
1959     if (!p->first_tb) {
1960         invalidate_page_bitmap(p);
1961         tlb_unprotect_code(start);
1962     }
1963 #endif
1964 #ifdef TARGET_HAS_PRECISE_SMC
1965     if (current_tb_modified) {
1966         page_collection_unlock(pages);
1967         /* Force execution of one insn next time.  */
1968         cpu->cflags_next_tb = 1 | curr_cflags();
1969         mmap_unlock();
1970         cpu_loop_exit_noexc(cpu);
1971     }
1972 #endif
1973 }
1974 
1975 /*
1976  * Invalidate all TBs which intersect with the target physical address range
1977  * [start;end[. NOTE: start and end must refer to the *same* physical page.
1978  * 'is_cpu_write_access' should be true if called from a real cpu write
1979  * access: the virtual CPU will exit the current TB if code is modified inside
1980  * this TB.
1981  *
1982  * Called with mmap_lock held for user-mode emulation
1983  */
1984 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1985                                    int is_cpu_write_access)
1986 {
1987     struct page_collection *pages;
1988     PageDesc *p;
1989 
1990     assert_memory_lock();
1991 
1992     p = page_find(start >> TARGET_PAGE_BITS);
1993     if (p == NULL) {
1994         return;
1995     }
1996     pages = page_collection_lock(start, end);
1997     tb_invalidate_phys_page_range__locked(pages, p, start, end,
1998                                           is_cpu_write_access);
1999     page_collection_unlock(pages);
2000 }
2001 
2002 /*
2003  * Invalidate all TBs which intersect with the target physical address range
2004  * [start;end[. NOTE: start and end may refer to *different* physical pages.
2005  * 'is_cpu_write_access' should be true if called from a real cpu write
2006  * access: the virtual CPU will exit the current TB if code is modified inside
2007  * this TB.
2008  *
2009  * Called with mmap_lock held for user-mode emulation.
2010  */
2011 #ifdef CONFIG_SOFTMMU
2012 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2013 #else
2014 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2015 #endif
2016 {
2017     struct page_collection *pages;
2018     tb_page_addr_t next;
2019 
2020     assert_memory_lock();
2021 
2022     pages = page_collection_lock(start, end);
2023     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2024          start < end;
2025          start = next, next += TARGET_PAGE_SIZE) {
2026         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2027         tb_page_addr_t bound = MIN(next, end);
2028 
2029         if (pd == NULL) {
2030             continue;
2031         }
2032         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2033     }
2034     page_collection_unlock(pages);
2035 }
2036 
2037 #ifdef CONFIG_SOFTMMU
2038 /* len must be <= 8 and start must be a multiple of len.
2039  * Called via softmmu_template.h when code areas are written to with
2040  * iothread mutex not held.
2041  *
2042  * Call with all @pages in the range [@start, @start + len[ locked.
2043  */
2044 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2045                                   tb_page_addr_t start, int len)
2046 {
2047     PageDesc *p;
2048 
2049     assert_memory_lock();
2050 
2051     p = page_find(start >> TARGET_PAGE_BITS);
2052     if (!p) {
2053         return;
2054     }
2055 
2056     assert_page_locked(p);
2057     if (!p->code_bitmap &&
2058         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2059         build_page_bitmap(p);
2060     }
2061     if (p->code_bitmap) {
2062         unsigned int nr;
2063         unsigned long b;
2064 
2065         nr = start & ~TARGET_PAGE_MASK;
2066         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2067         if (b & ((1 << len) - 1)) {
2068             goto do_invalidate;
2069         }
2070     } else {
2071     do_invalidate:
2072         tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1);
2073     }
2074 }
2075 #else
2076 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2077  * host PC of the faulting store instruction that caused this invalidate.
2078  * Returns true if the caller needs to abort execution of the current
2079  * TB (because it was modified by this store and the guest CPU has
2080  * precise-SMC semantics).
2081  */
2082 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2083 {
2084     TranslationBlock *tb;
2085     PageDesc *p;
2086     int n;
2087 #ifdef TARGET_HAS_PRECISE_SMC
2088     TranslationBlock *current_tb = NULL;
2089     CPUState *cpu = current_cpu;
2090     CPUArchState *env = NULL;
2091     int current_tb_modified = 0;
2092     target_ulong current_pc = 0;
2093     target_ulong current_cs_base = 0;
2094     uint32_t current_flags = 0;
2095 #endif
2096 
2097     assert_memory_lock();
2098 
2099     addr &= TARGET_PAGE_MASK;
2100     p = page_find(addr >> TARGET_PAGE_BITS);
2101     if (!p) {
2102         return false;
2103     }
2104 
2105 #ifdef TARGET_HAS_PRECISE_SMC
2106     if (p->first_tb && pc != 0) {
2107         current_tb = tcg_tb_lookup(pc);
2108     }
2109     if (cpu != NULL) {
2110         env = cpu->env_ptr;
2111     }
2112 #endif
2113     assert_page_locked(p);
2114     PAGE_FOR_EACH_TB(p, tb, n) {
2115 #ifdef TARGET_HAS_PRECISE_SMC
2116         if (current_tb == tb &&
2117             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2118                 /* If we are modifying the current TB, we must stop
2119                    its execution. We could be more precise by checking
2120                    that the modification is after the current PC, but it
2121                    would require a specialized function to partially
2122                    restore the CPU state */
2123 
2124             current_tb_modified = 1;
2125             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2126             cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2127                                  &current_flags);
2128         }
2129 #endif /* TARGET_HAS_PRECISE_SMC */
2130         tb_phys_invalidate(tb, addr);
2131     }
2132     p->first_tb = (uintptr_t)NULL;
2133 #ifdef TARGET_HAS_PRECISE_SMC
2134     if (current_tb_modified) {
2135         /* Force execution of one insn next time.  */
2136         cpu->cflags_next_tb = 1 | curr_cflags();
2137         return true;
2138     }
2139 #endif
2140 
2141     return false;
2142 }
2143 #endif
2144 
2145 /* user-mode: call with mmap_lock held */
2146 void tb_check_watchpoint(CPUState *cpu)
2147 {
2148     TranslationBlock *tb;
2149 
2150     assert_memory_lock();
2151 
2152     tb = tcg_tb_lookup(cpu->mem_io_pc);
2153     if (tb) {
2154         /* We can use retranslation to find the PC.  */
2155         cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
2156         tb_phys_invalidate(tb, -1);
2157     } else {
2158         /* The exception probably happened in a helper.  The CPU state should
2159            have been saved before calling it. Fetch the PC from there.  */
2160         CPUArchState *env = cpu->env_ptr;
2161         target_ulong pc, cs_base;
2162         tb_page_addr_t addr;
2163         uint32_t flags;
2164 
2165         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2166         addr = get_page_addr_code(env, pc);
2167         if (addr != -1) {
2168             tb_invalidate_phys_range(addr, addr + 1);
2169         }
2170     }
2171 }
2172 
2173 #ifndef CONFIG_USER_ONLY
2174 /* in deterministic execution mode, instructions doing device I/Os
2175  * must be at the end of the TB.
2176  *
2177  * Called by softmmu_template.h, with iothread mutex not held.
2178  */
2179 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2180 {
2181 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2182     CPUArchState *env = cpu->env_ptr;
2183 #endif
2184     TranslationBlock *tb;
2185     uint32_t n;
2186 
2187     tb = tcg_tb_lookup(retaddr);
2188     if (!tb) {
2189         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2190                   (void *)retaddr);
2191     }
2192     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2193 
2194     /* On MIPS and SH, delay slot instructions can only be restarted if
2195        they were already the first instruction in the TB.  If this is not
2196        the first instruction in a TB then re-execute the preceding
2197        branch.  */
2198     n = 1;
2199 #if defined(TARGET_MIPS)
2200     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2201         && env->active_tc.PC != tb->pc) {
2202         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2203         cpu->icount_decr.u16.low++;
2204         env->hflags &= ~MIPS_HFLAG_BMASK;
2205         n = 2;
2206     }
2207 #elif defined(TARGET_SH4)
2208     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2209         && env->pc != tb->pc) {
2210         env->pc -= 2;
2211         cpu->icount_decr.u16.low++;
2212         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2213         n = 2;
2214     }
2215 #endif
2216 
2217     /* Generate a new TB executing the I/O insn.  */
2218     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2219 
2220     if (tb_cflags(tb) & CF_NOCACHE) {
2221         if (tb->orig_tb) {
2222             /* Invalidate original TB if this TB was generated in
2223              * cpu_exec_nocache() */
2224             tb_phys_invalidate(tb->orig_tb, -1);
2225         }
2226         tcg_tb_remove(tb);
2227     }
2228 
2229     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2230      * the first in the TB) then we end up generating a whole new TB and
2231      *  repeating the fault, which is horribly inefficient.
2232      *  Better would be to execute just this insn uncached, or generate a
2233      *  second new TB.
2234      */
2235     cpu_loop_exit_noexc(cpu);
2236 }
2237 
2238 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2239 {
2240     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2241 
2242     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2243         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2244     }
2245 }
2246 
2247 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2248 {
2249     /* Discard jump cache entries for any tb which might potentially
2250        overlap the flushed page.  */
2251     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2252     tb_jmp_cache_clear_page(cpu, addr);
2253 }
2254 
2255 static void print_qht_statistics(struct qht_stats hst)
2256 {
2257     uint32_t hgram_opts;
2258     size_t hgram_bins;
2259     char *hgram;
2260 
2261     if (!hst.head_buckets) {
2262         return;
2263     }
2264     qemu_printf("TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
2265                 hst.used_head_buckets, hst.head_buckets,
2266                 (double)hst.used_head_buckets / hst.head_buckets * 100);
2267 
2268     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
2269     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
2270     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2271         hgram_opts |= QDIST_PR_NODECIMAL;
2272     }
2273     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2274     qemu_printf("TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
2275                 qdist_avg(&hst.occupancy) * 100, hgram);
2276     g_free(hgram);
2277 
2278     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2279     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2280     if (hgram_bins > 10) {
2281         hgram_bins = 10;
2282     } else {
2283         hgram_bins = 0;
2284         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2285     }
2286     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2287     qemu_printf("TB hash avg chain   %0.3f buckets. Histogram: %s\n",
2288                 qdist_avg(&hst.chain), hgram);
2289     g_free(hgram);
2290 }
2291 
2292 struct tb_tree_stats {
2293     size_t nb_tbs;
2294     size_t host_size;
2295     size_t target_size;
2296     size_t max_target_size;
2297     size_t direct_jmp_count;
2298     size_t direct_jmp2_count;
2299     size_t cross_page;
2300 };
2301 
2302 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2303 {
2304     const TranslationBlock *tb = value;
2305     struct tb_tree_stats *tst = data;
2306 
2307     tst->nb_tbs++;
2308     tst->host_size += tb->tc.size;
2309     tst->target_size += tb->size;
2310     if (tb->size > tst->max_target_size) {
2311         tst->max_target_size = tb->size;
2312     }
2313     if (tb->page_addr[1] != -1) {
2314         tst->cross_page++;
2315     }
2316     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2317         tst->direct_jmp_count++;
2318         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2319             tst->direct_jmp2_count++;
2320         }
2321     }
2322     return false;
2323 }
2324 
2325 void dump_exec_info(void)
2326 {
2327     struct tb_tree_stats tst = {};
2328     struct qht_stats hst;
2329     size_t nb_tbs, flush_full, flush_part, flush_elide;
2330 
2331     tcg_tb_foreach(tb_tree_stats_iter, &tst);
2332     nb_tbs = tst.nb_tbs;
2333     /* XXX: avoid using doubles ? */
2334     qemu_printf("Translation buffer state:\n");
2335     /*
2336      * Report total code size including the padding and TB structs;
2337      * otherwise users might think "-tb-size" is not honoured.
2338      * For avg host size we use the precise numbers from tb_tree_stats though.
2339      */
2340     qemu_printf("gen code size       %zu/%zu\n",
2341                 tcg_code_size(), tcg_code_capacity());
2342     qemu_printf("TB count            %zu\n", nb_tbs);
2343     qemu_printf("TB avg target size  %zu max=%zu bytes\n",
2344                 nb_tbs ? tst.target_size / nb_tbs : 0,
2345                 tst.max_target_size);
2346     qemu_printf("TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
2347                 nb_tbs ? tst.host_size / nb_tbs : 0,
2348                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2349     qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2350                 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2351     qemu_printf("direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2352                 tst.direct_jmp_count,
2353                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2354                 tst.direct_jmp2_count,
2355                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2356 
2357     qht_statistics_init(&tb_ctx.htable, &hst);
2358     print_qht_statistics(hst);
2359     qht_statistics_destroy(&hst);
2360 
2361     qemu_printf("\nStatistics:\n");
2362     qemu_printf("TB flush count      %u\n",
2363                 atomic_read(&tb_ctx.tb_flush_count));
2364     qemu_printf("TB invalidate count %zu\n",
2365                 tcg_tb_phys_invalidate_count());
2366 
2367     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2368     qemu_printf("TLB full flushes    %zu\n", flush_full);
2369     qemu_printf("TLB partial flushes %zu\n", flush_part);
2370     qemu_printf("TLB elided flushes  %zu\n", flush_elide);
2371     tcg_dump_info();
2372 }
2373 
2374 void dump_opcount_info(void)
2375 {
2376     tcg_dump_op_count();
2377 }
2378 
2379 #else /* CONFIG_USER_ONLY */
2380 
2381 void cpu_interrupt(CPUState *cpu, int mask)
2382 {
2383     g_assert(qemu_mutex_iothread_locked());
2384     cpu->interrupt_request |= mask;
2385     atomic_set(&cpu->icount_decr.u16.high, -1);
2386 }
2387 
2388 /*
2389  * Walks guest process memory "regions" one by one
2390  * and calls callback function 'fn' for each region.
2391  */
2392 struct walk_memory_regions_data {
2393     walk_memory_regions_fn fn;
2394     void *priv;
2395     target_ulong start;
2396     int prot;
2397 };
2398 
2399 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2400                                    target_ulong end, int new_prot)
2401 {
2402     if (data->start != -1u) {
2403         int rc = data->fn(data->priv, data->start, end, data->prot);
2404         if (rc != 0) {
2405             return rc;
2406         }
2407     }
2408 
2409     data->start = (new_prot ? end : -1u);
2410     data->prot = new_prot;
2411 
2412     return 0;
2413 }
2414 
2415 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2416                                  target_ulong base, int level, void **lp)
2417 {
2418     target_ulong pa;
2419     int i, rc;
2420 
2421     if (*lp == NULL) {
2422         return walk_memory_regions_end(data, base, 0);
2423     }
2424 
2425     if (level == 0) {
2426         PageDesc *pd = *lp;
2427 
2428         for (i = 0; i < V_L2_SIZE; ++i) {
2429             int prot = pd[i].flags;
2430 
2431             pa = base | (i << TARGET_PAGE_BITS);
2432             if (prot != data->prot) {
2433                 rc = walk_memory_regions_end(data, pa, prot);
2434                 if (rc != 0) {
2435                     return rc;
2436                 }
2437             }
2438         }
2439     } else {
2440         void **pp = *lp;
2441 
2442         for (i = 0; i < V_L2_SIZE; ++i) {
2443             pa = base | ((target_ulong)i <<
2444                 (TARGET_PAGE_BITS + V_L2_BITS * level));
2445             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2446             if (rc != 0) {
2447                 return rc;
2448             }
2449         }
2450     }
2451 
2452     return 0;
2453 }
2454 
2455 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2456 {
2457     struct walk_memory_regions_data data;
2458     uintptr_t i, l1_sz = v_l1_size;
2459 
2460     data.fn = fn;
2461     data.priv = priv;
2462     data.start = -1u;
2463     data.prot = 0;
2464 
2465     for (i = 0; i < l1_sz; i++) {
2466         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2467         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2468         if (rc != 0) {
2469             return rc;
2470         }
2471     }
2472 
2473     return walk_memory_regions_end(&data, 0, 0);
2474 }
2475 
2476 static int dump_region(void *priv, target_ulong start,
2477     target_ulong end, unsigned long prot)
2478 {
2479     FILE *f = (FILE *)priv;
2480 
2481     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2482         " "TARGET_FMT_lx" %c%c%c\n",
2483         start, end, end - start,
2484         ((prot & PAGE_READ) ? 'r' : '-'),
2485         ((prot & PAGE_WRITE) ? 'w' : '-'),
2486         ((prot & PAGE_EXEC) ? 'x' : '-'));
2487 
2488     return 0;
2489 }
2490 
2491 /* dump memory mappings */
2492 void page_dump(FILE *f)
2493 {
2494     const int length = sizeof(target_ulong) * 2;
2495     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2496             length, "start", length, "end", length, "size", "prot");
2497     walk_memory_regions(f, dump_region);
2498 }
2499 
2500 int page_get_flags(target_ulong address)
2501 {
2502     PageDesc *p;
2503 
2504     p = page_find(address >> TARGET_PAGE_BITS);
2505     if (!p) {
2506         return 0;
2507     }
2508     return p->flags;
2509 }
2510 
2511 /* Modify the flags of a page and invalidate the code if necessary.
2512    The flag PAGE_WRITE_ORG is positioned automatically depending
2513    on PAGE_WRITE.  The mmap_lock should already be held.  */
2514 void page_set_flags(target_ulong start, target_ulong end, int flags)
2515 {
2516     target_ulong addr, len;
2517 
2518     /* This function should never be called with addresses outside the
2519        guest address space.  If this assert fires, it probably indicates
2520        a missing call to h2g_valid.  */
2521 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2522     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2523 #endif
2524     assert(start < end);
2525     assert_memory_lock();
2526 
2527     start = start & TARGET_PAGE_MASK;
2528     end = TARGET_PAGE_ALIGN(end);
2529 
2530     if (flags & PAGE_WRITE) {
2531         flags |= PAGE_WRITE_ORG;
2532     }
2533 
2534     for (addr = start, len = end - start;
2535          len != 0;
2536          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2537         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2538 
2539         /* If the write protection bit is set, then we invalidate
2540            the code inside.  */
2541         if (!(p->flags & PAGE_WRITE) &&
2542             (flags & PAGE_WRITE) &&
2543             p->first_tb) {
2544             tb_invalidate_phys_page(addr, 0);
2545         }
2546         p->flags = flags;
2547     }
2548 }
2549 
2550 int page_check_range(target_ulong start, target_ulong len, int flags)
2551 {
2552     PageDesc *p;
2553     target_ulong end;
2554     target_ulong addr;
2555 
2556     /* This function should never be called with addresses outside the
2557        guest address space.  If this assert fires, it probably indicates
2558        a missing call to h2g_valid.  */
2559 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2560     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2561 #endif
2562 
2563     if (len == 0) {
2564         return 0;
2565     }
2566     if (start + len - 1 < start) {
2567         /* We've wrapped around.  */
2568         return -1;
2569     }
2570 
2571     /* must do before we loose bits in the next step */
2572     end = TARGET_PAGE_ALIGN(start + len);
2573     start = start & TARGET_PAGE_MASK;
2574 
2575     for (addr = start, len = end - start;
2576          len != 0;
2577          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2578         p = page_find(addr >> TARGET_PAGE_BITS);
2579         if (!p) {
2580             return -1;
2581         }
2582         if (!(p->flags & PAGE_VALID)) {
2583             return -1;
2584         }
2585 
2586         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2587             return -1;
2588         }
2589         if (flags & PAGE_WRITE) {
2590             if (!(p->flags & PAGE_WRITE_ORG)) {
2591                 return -1;
2592             }
2593             /* unprotect the page if it was put read-only because it
2594                contains translated code */
2595             if (!(p->flags & PAGE_WRITE)) {
2596                 if (!page_unprotect(addr, 0)) {
2597                     return -1;
2598                 }
2599             }
2600         }
2601     }
2602     return 0;
2603 }
2604 
2605 /* called from signal handler: invalidate the code and unprotect the
2606  * page. Return 0 if the fault was not handled, 1 if it was handled,
2607  * and 2 if it was handled but the caller must cause the TB to be
2608  * immediately exited. (We can only return 2 if the 'pc' argument is
2609  * non-zero.)
2610  */
2611 int page_unprotect(target_ulong address, uintptr_t pc)
2612 {
2613     unsigned int prot;
2614     bool current_tb_invalidated;
2615     PageDesc *p;
2616     target_ulong host_start, host_end, addr;
2617 
2618     /* Technically this isn't safe inside a signal handler.  However we
2619        know this only ever happens in a synchronous SEGV handler, so in
2620        practice it seems to be ok.  */
2621     mmap_lock();
2622 
2623     p = page_find(address >> TARGET_PAGE_BITS);
2624     if (!p) {
2625         mmap_unlock();
2626         return 0;
2627     }
2628 
2629     /* if the page was really writable, then we change its
2630        protection back to writable */
2631     if (p->flags & PAGE_WRITE_ORG) {
2632         current_tb_invalidated = false;
2633         if (p->flags & PAGE_WRITE) {
2634             /* If the page is actually marked WRITE then assume this is because
2635              * this thread raced with another one which got here first and
2636              * set the page to PAGE_WRITE and did the TB invalidate for us.
2637              */
2638 #ifdef TARGET_HAS_PRECISE_SMC
2639             TranslationBlock *current_tb = tcg_tb_lookup(pc);
2640             if (current_tb) {
2641                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2642             }
2643 #endif
2644         } else {
2645             host_start = address & qemu_host_page_mask;
2646             host_end = host_start + qemu_host_page_size;
2647 
2648             prot = 0;
2649             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2650                 p = page_find(addr >> TARGET_PAGE_BITS);
2651                 p->flags |= PAGE_WRITE;
2652                 prot |= p->flags;
2653 
2654                 /* and since the content will be modified, we must invalidate
2655                    the corresponding translated code. */
2656                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2657 #ifdef CONFIG_USER_ONLY
2658                 if (DEBUG_TB_CHECK_GATE) {
2659                     tb_invalidate_check(addr);
2660                 }
2661 #endif
2662             }
2663             mprotect((void *)g2h(host_start), qemu_host_page_size,
2664                      prot & PAGE_BITS);
2665         }
2666         mmap_unlock();
2667         /* If current TB was invalidated return to main loop */
2668         return current_tb_invalidated ? 2 : 1;
2669     }
2670     mmap_unlock();
2671     return 0;
2672 }
2673 #endif /* CONFIG_USER_ONLY */
2674 
2675 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2676 void tcg_flush_softmmu_tlb(CPUState *cs)
2677 {
2678 #ifdef CONFIG_SOFTMMU
2679     tlb_flush(cs);
2680 #endif
2681 }
2682