xref: /openbmc/qemu/accel/tcg/cputlb.c (revision ebe92db2ccf791208c58d15652f9460a67cc0fdd)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44 
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48 
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 #  define DEBUG_TLB_LOG_GATE 1
53 # else
54 #  define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60 
61 #define tlb_debug(fmt, ...) do { \
62     if (DEBUG_TLB_LOG_GATE) { \
63         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64                       ## __VA_ARGS__); \
65     } else if (DEBUG_TLB_GATE) { \
66         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67     } \
68 } while (0)
69 
70 #define assert_cpu_is_self(cpu) do {                              \
71         if (DEBUG_TLB_GATE) {                                     \
72             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
73         }                                                         \
74     } while (0)
75 
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77  * vaddr even on 32 bit builds
78  */
79 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
80 
81 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
82  */
83 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
84 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
85 
86 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
87 {
88     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
89 }
90 
91 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
92 {
93     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
94 }
95 
96 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
97                              size_t max_entries)
98 {
99     desc->window_begin_ns = ns;
100     desc->window_max_entries = max_entries;
101 }
102 
103 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
104 {
105     CPUJumpCache *jc = cpu->tb_jmp_cache;
106     int i, i0;
107 
108     if (unlikely(!jc)) {
109         return;
110     }
111 
112     i0 = tb_jmp_cache_hash_page(page_addr);
113     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
114         qatomic_set(&jc->array[i0 + i].tb, NULL);
115     }
116 }
117 
118 /**
119  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120  * @desc: The CPUTLBDesc portion of the TLB
121  * @fast: The CPUTLBDescFast portion of the same TLB
122  *
123  * Called with tlb_lock_held.
124  *
125  * We have two main constraints when resizing a TLB: (1) we only resize it
126  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127  * the array or unnecessarily flushing it), which means we do not control how
128  * frequently the resizing can occur; (2) we don't have access to the guest's
129  * future scheduling decisions, and therefore have to decide the magnitude of
130  * the resize based on past observations.
131  *
132  * In general, a memory-hungry process can benefit greatly from an appropriately
133  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134  * we just have to make the TLB as large as possible; while an oversized TLB
135  * results in minimal TLB miss rates, it also takes longer to be flushed
136  * (flushes can be _very_ frequent), and the reduced locality can also hurt
137  * performance.
138  *
139  * To achieve near-optimal performance for all kinds of workloads, we:
140  *
141  * 1. Aggressively increase the size of the TLB when the use rate of the
142  * TLB being flushed is high, since it is likely that in the near future this
143  * memory-hungry process will execute again, and its memory hungriness will
144  * probably be similar.
145  *
146  * 2. Slowly reduce the size of the TLB as the use rate declines over a
147  * reasonably large time window. The rationale is that if in such a time window
148  * we have not observed a high TLB use rate, it is likely that we won't observe
149  * it in the near future. In that case, once a time window expires we downsize
150  * the TLB to match the maximum use rate observed in the window.
151  *
152  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153  * since in that range performance is likely near-optimal. Recall that the TLB
154  * is direct mapped, so we want the use rate to be low (or at least not too
155  * high), since otherwise we are likely to have a significant amount of
156  * conflict misses.
157  */
158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159                                   int64_t now)
160 {
161     size_t old_size = tlb_n_entries(fast);
162     size_t rate;
163     size_t new_size = old_size;
164     int64_t window_len_ms = 100;
165     int64_t window_len_ns = window_len_ms * 1000 * 1000;
166     bool window_expired = now > desc->window_begin_ns + window_len_ns;
167 
168     if (desc->n_used_entries > desc->window_max_entries) {
169         desc->window_max_entries = desc->n_used_entries;
170     }
171     rate = desc->window_max_entries * 100 / old_size;
172 
173     if (rate > 70) {
174         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175     } else if (rate < 30 && window_expired) {
176         size_t ceil = pow2ceil(desc->window_max_entries);
177         size_t expected_rate = desc->window_max_entries * 100 / ceil;
178 
179         /*
180          * Avoid undersizing when the max number of entries seen is just below
181          * a pow2. For instance, if max_entries == 1025, the expected use rate
182          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184          * later. Thus, make sure that the expected use rate remains below 70%.
185          * (and since we double the size, that means the lowest rate we'd
186          * expect to get is 35%, which is still in the 30-70% range where
187          * we consider that the size is appropriate.)
188          */
189         if (expected_rate > 70) {
190             ceil *= 2;
191         }
192         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
193     }
194 
195     if (new_size == old_size) {
196         if (window_expired) {
197             tlb_window_reset(desc, now, desc->n_used_entries);
198         }
199         return;
200     }
201 
202     g_free(fast->table);
203     g_free(desc->fulltlb);
204 
205     tlb_window_reset(desc, now, 0);
206     /* desc->n_used_entries is cleared by the caller */
207     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208     fast->table = g_try_new(CPUTLBEntry, new_size);
209     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
210 
211     /*
212      * If the allocations fail, try smaller sizes. We just freed some
213      * memory, so going back to half of new_size has a good chance of working.
214      * Increased memory pressure elsewhere in the system might cause the
215      * allocations to fail though, so we progressively reduce the allocation
216      * size, aborting if we cannot even allocate the smallest TLB we support.
217      */
218     while (fast->table == NULL || desc->fulltlb == NULL) {
219         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220             error_report("%s: %s", __func__, strerror(errno));
221             abort();
222         }
223         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
224         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
225 
226         g_free(fast->table);
227         g_free(desc->fulltlb);
228         fast->table = g_try_new(CPUTLBEntry, new_size);
229         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
230     }
231 }
232 
233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
234 {
235     desc->n_used_entries = 0;
236     desc->large_page_addr = -1;
237     desc->large_page_mask = -1;
238     desc->vindex = 0;
239     memset(fast->table, -1, sizeof_tlb(fast));
240     memset(desc->vtable, -1, sizeof(desc->vtable));
241 }
242 
243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
244                                         int64_t now)
245 {
246     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
247     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
248 
249     tlb_mmu_resize_locked(desc, fast, now);
250     tlb_mmu_flush_locked(desc, fast);
251 }
252 
253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
254 {
255     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
256 
257     tlb_window_reset(desc, now, 0);
258     desc->n_used_entries = 0;
259     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260     fast->table = g_new(CPUTLBEntry, n_entries);
261     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
262     tlb_mmu_flush_locked(desc, fast);
263 }
264 
265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
266 {
267     env_tlb(env)->d[mmu_idx].n_used_entries++;
268 }
269 
270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
271 {
272     env_tlb(env)->d[mmu_idx].n_used_entries--;
273 }
274 
275 void tlb_init(CPUState *cpu)
276 {
277     CPUArchState *env = cpu->env_ptr;
278     int64_t now = get_clock_realtime();
279     int i;
280 
281     qemu_spin_init(&env_tlb(env)->c.lock);
282 
283     /* All tlbs are initialized flushed. */
284     env_tlb(env)->c.dirty = 0;
285 
286     for (i = 0; i < NB_MMU_MODES; i++) {
287         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
288     }
289 }
290 
291 void tlb_destroy(CPUState *cpu)
292 {
293     CPUArchState *env = cpu->env_ptr;
294     int i;
295 
296     qemu_spin_destroy(&env_tlb(env)->c.lock);
297     for (i = 0; i < NB_MMU_MODES; i++) {
298         CPUTLBDesc *desc = &env_tlb(env)->d[i];
299         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
300 
301         g_free(fast->table);
302         g_free(desc->fulltlb);
303     }
304 }
305 
306 /* flush_all_helper: run fn across all cpus
307  *
308  * If the wait flag is set then the src cpu's helper will be queued as
309  * "safe" work and the loop exited creating a synchronisation point
310  * where all queued work will be finished before execution starts
311  * again.
312  */
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314                              run_on_cpu_data d)
315 {
316     CPUState *cpu;
317 
318     CPU_FOREACH(cpu) {
319         if (cpu != src) {
320             async_run_on_cpu(cpu, fn, d);
321         }
322     }
323 }
324 
325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
326 {
327     CPUState *cpu;
328     size_t full = 0, part = 0, elide = 0;
329 
330     CPU_FOREACH(cpu) {
331         CPUArchState *env = cpu->env_ptr;
332 
333         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
334         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
335         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
336     }
337     *pfull = full;
338     *ppart = part;
339     *pelide = elide;
340 }
341 
342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
343 {
344     CPUArchState *env = cpu->env_ptr;
345     uint16_t asked = data.host_int;
346     uint16_t all_dirty, work, to_clean;
347     int64_t now = get_clock_realtime();
348 
349     assert_cpu_is_self(cpu);
350 
351     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
352 
353     qemu_spin_lock(&env_tlb(env)->c.lock);
354 
355     all_dirty = env_tlb(env)->c.dirty;
356     to_clean = asked & all_dirty;
357     all_dirty &= ~to_clean;
358     env_tlb(env)->c.dirty = all_dirty;
359 
360     for (work = to_clean; work != 0; work &= work - 1) {
361         int mmu_idx = ctz32(work);
362         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
363     }
364 
365     qemu_spin_unlock(&env_tlb(env)->c.lock);
366 
367     tcg_flush_jmp_cache(cpu);
368 
369     if (to_clean == ALL_MMUIDX_BITS) {
370         qatomic_set(&env_tlb(env)->c.full_flush_count,
371                    env_tlb(env)->c.full_flush_count + 1);
372     } else {
373         qatomic_set(&env_tlb(env)->c.part_flush_count,
374                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
375         if (to_clean != asked) {
376             qatomic_set(&env_tlb(env)->c.elide_flush_count,
377                        env_tlb(env)->c.elide_flush_count +
378                        ctpop16(asked & ~to_clean));
379         }
380     }
381 }
382 
383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
384 {
385     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
386 
387     if (cpu->created && !qemu_cpu_is_self(cpu)) {
388         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
389                          RUN_ON_CPU_HOST_INT(idxmap));
390     } else {
391         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
392     }
393 }
394 
395 void tlb_flush(CPUState *cpu)
396 {
397     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
398 }
399 
400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
401 {
402     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
403 
404     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
405 
406     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
408 }
409 
410 void tlb_flush_all_cpus(CPUState *src_cpu)
411 {
412     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
413 }
414 
415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
416 {
417     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
418 
419     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
420 
421     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
423 }
424 
425 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
426 {
427     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
428 }
429 
430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
431                                       vaddr page, vaddr mask)
432 {
433     page &= mask;
434     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
435 
436     return (page == (tlb_entry->addr_read & mask) ||
437             page == (tlb_addr_write(tlb_entry) & mask) ||
438             page == (tlb_entry->addr_code & mask));
439 }
440 
441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
442 {
443     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
444 }
445 
446 /**
447  * tlb_entry_is_empty - return true if the entry is not in use
448  * @te: pointer to CPUTLBEntry
449  */
450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
451 {
452     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
453 }
454 
455 /* Called with tlb_c.lock held */
456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
457                                         vaddr page,
458                                         vaddr mask)
459 {
460     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
461         memset(tlb_entry, -1, sizeof(*tlb_entry));
462         return true;
463     }
464     return false;
465 }
466 
467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
468 {
469     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
470 }
471 
472 /* Called with tlb_c.lock held */
473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
474                                             vaddr page,
475                                             vaddr mask)
476 {
477     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
478     int k;
479 
480     assert_cpu_is_self(env_cpu(env));
481     for (k = 0; k < CPU_VTLB_SIZE; k++) {
482         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
483             tlb_n_used_entries_dec(env, mmu_idx);
484         }
485     }
486 }
487 
488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
489                                               vaddr page)
490 {
491     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
492 }
493 
494 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page)
495 {
496     vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr;
497     vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask;
498 
499     /* Check if we need to flush due to large pages.  */
500     if ((page & lp_mask) == lp_addr) {
501         tlb_debug("forcing full flush midx %d (%016"
502                   VADDR_PRIx "/%016" VADDR_PRIx ")\n",
503                   midx, lp_addr, lp_mask);
504         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
505     } else {
506         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
507             tlb_n_used_entries_dec(env, midx);
508         }
509         tlb_flush_vtlb_page_locked(env, midx, page);
510     }
511 }
512 
513 /**
514  * tlb_flush_page_by_mmuidx_async_0:
515  * @cpu: cpu on which to flush
516  * @addr: page of virtual address to flush
517  * @idxmap: set of mmu_idx to flush
518  *
519  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
520  * at @addr from the tlbs indicated by @idxmap from @cpu.
521  */
522 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
523                                              vaddr addr,
524                                              uint16_t idxmap)
525 {
526     CPUArchState *env = cpu->env_ptr;
527     int mmu_idx;
528 
529     assert_cpu_is_self(cpu);
530 
531     tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
532 
533     qemu_spin_lock(&env_tlb(env)->c.lock);
534     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
535         if ((idxmap >> mmu_idx) & 1) {
536             tlb_flush_page_locked(env, mmu_idx, addr);
537         }
538     }
539     qemu_spin_unlock(&env_tlb(env)->c.lock);
540 
541     /*
542      * Discard jump cache entries for any tb which might potentially
543      * overlap the flushed page, which includes the previous.
544      */
545     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
546     tb_jmp_cache_clear_page(cpu, addr);
547 }
548 
549 /**
550  * tlb_flush_page_by_mmuidx_async_1:
551  * @cpu: cpu on which to flush
552  * @data: encoded addr + idxmap
553  *
554  * Helper for tlb_flush_page_by_mmuidx and friends, called through
555  * async_run_on_cpu.  The idxmap parameter is encoded in the page
556  * offset of the target_ptr field.  This limits the set of mmu_idx
557  * that can be passed via this method.
558  */
559 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
560                                              run_on_cpu_data data)
561 {
562     vaddr addr_and_idxmap = data.target_ptr;
563     vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
564     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
565 
566     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
567 }
568 
569 typedef struct {
570     vaddr addr;
571     uint16_t idxmap;
572 } TLBFlushPageByMMUIdxData;
573 
574 /**
575  * tlb_flush_page_by_mmuidx_async_2:
576  * @cpu: cpu on which to flush
577  * @data: allocated addr + idxmap
578  *
579  * Helper for tlb_flush_page_by_mmuidx and friends, called through
580  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
581  * TLBFlushPageByMMUIdxData structure that has been allocated
582  * specifically for this helper.  Free the structure when done.
583  */
584 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
585                                              run_on_cpu_data data)
586 {
587     TLBFlushPageByMMUIdxData *d = data.host_ptr;
588 
589     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
590     g_free(d);
591 }
592 
593 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
594 {
595     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
596 
597     /* This should already be page aligned */
598     addr &= TARGET_PAGE_MASK;
599 
600     if (qemu_cpu_is_self(cpu)) {
601         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
602     } else if (idxmap < TARGET_PAGE_SIZE) {
603         /*
604          * Most targets have only a few mmu_idx.  In the case where
605          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
606          * allocating memory for this operation.
607          */
608         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
609                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
610     } else {
611         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
612 
613         /* Otherwise allocate a structure, freed by the worker.  */
614         d->addr = addr;
615         d->idxmap = idxmap;
616         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
617                          RUN_ON_CPU_HOST_PTR(d));
618     }
619 }
620 
621 void tlb_flush_page(CPUState *cpu, vaddr addr)
622 {
623     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
624 }
625 
626 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
627                                        uint16_t idxmap)
628 {
629     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
630 
631     /* This should already be page aligned */
632     addr &= TARGET_PAGE_MASK;
633 
634     /*
635      * Allocate memory to hold addr+idxmap only when needed.
636      * See tlb_flush_page_by_mmuidx for details.
637      */
638     if (idxmap < TARGET_PAGE_SIZE) {
639         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
640                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
641     } else {
642         CPUState *dst_cpu;
643 
644         /* Allocate a separate data block for each destination cpu.  */
645         CPU_FOREACH(dst_cpu) {
646             if (dst_cpu != src_cpu) {
647                 TLBFlushPageByMMUIdxData *d
648                     = g_new(TLBFlushPageByMMUIdxData, 1);
649 
650                 d->addr = addr;
651                 d->idxmap = idxmap;
652                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
653                                  RUN_ON_CPU_HOST_PTR(d));
654             }
655         }
656     }
657 
658     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
659 }
660 
661 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
662 {
663     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
664 }
665 
666 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
667                                               vaddr addr,
668                                               uint16_t idxmap)
669 {
670     tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
671 
672     /* This should already be page aligned */
673     addr &= TARGET_PAGE_MASK;
674 
675     /*
676      * Allocate memory to hold addr+idxmap only when needed.
677      * See tlb_flush_page_by_mmuidx for details.
678      */
679     if (idxmap < TARGET_PAGE_SIZE) {
680         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
681                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
682         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
683                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
684     } else {
685         CPUState *dst_cpu;
686         TLBFlushPageByMMUIdxData *d;
687 
688         /* Allocate a separate data block for each destination cpu.  */
689         CPU_FOREACH(dst_cpu) {
690             if (dst_cpu != src_cpu) {
691                 d = g_new(TLBFlushPageByMMUIdxData, 1);
692                 d->addr = addr;
693                 d->idxmap = idxmap;
694                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
695                                  RUN_ON_CPU_HOST_PTR(d));
696             }
697         }
698 
699         d = g_new(TLBFlushPageByMMUIdxData, 1);
700         d->addr = addr;
701         d->idxmap = idxmap;
702         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
703                               RUN_ON_CPU_HOST_PTR(d));
704     }
705 }
706 
707 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
708 {
709     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
710 }
711 
712 static void tlb_flush_range_locked(CPUArchState *env, int midx,
713                                    vaddr addr, vaddr len,
714                                    unsigned bits)
715 {
716     CPUTLBDesc *d = &env_tlb(env)->d[midx];
717     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
718     vaddr mask = MAKE_64BIT_MASK(0, bits);
719 
720     /*
721      * If @bits is smaller than the tlb size, there may be multiple entries
722      * within the TLB; otherwise all addresses that match under @mask hit
723      * the same TLB entry.
724      * TODO: Perhaps allow bits to be a few bits less than the size.
725      * For now, just flush the entire TLB.
726      *
727      * If @len is larger than the tlb size, then it will take longer to
728      * test all of the entries in the TLB than it will to flush it all.
729      */
730     if (mask < f->mask || len > f->mask) {
731         tlb_debug("forcing full flush midx %d ("
732                   "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
733                   midx, addr, mask, len);
734         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
735         return;
736     }
737 
738     /*
739      * Check if we need to flush due to large pages.
740      * Because large_page_mask contains all 1's from the msb,
741      * we only need to test the end of the range.
742      */
743     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
744         tlb_debug("forcing full flush midx %d ("
745                   "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
746                   midx, d->large_page_addr, d->large_page_mask);
747         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
748         return;
749     }
750 
751     for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
752         vaddr page = addr + i;
753         CPUTLBEntry *entry = tlb_entry(env, midx, page);
754 
755         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
756             tlb_n_used_entries_dec(env, midx);
757         }
758         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
759     }
760 }
761 
762 typedef struct {
763     vaddr addr;
764     vaddr len;
765     uint16_t idxmap;
766     uint16_t bits;
767 } TLBFlushRangeData;
768 
769 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
770                                               TLBFlushRangeData d)
771 {
772     CPUArchState *env = cpu->env_ptr;
773     int mmu_idx;
774 
775     assert_cpu_is_self(cpu);
776 
777     tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
778               d.addr, d.bits, d.len, d.idxmap);
779 
780     qemu_spin_lock(&env_tlb(env)->c.lock);
781     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
782         if ((d.idxmap >> mmu_idx) & 1) {
783             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
784         }
785     }
786     qemu_spin_unlock(&env_tlb(env)->c.lock);
787 
788     /*
789      * If the length is larger than the jump cache size, then it will take
790      * longer to clear each entry individually than it will to clear it all.
791      */
792     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
793         tcg_flush_jmp_cache(cpu);
794         return;
795     }
796 
797     /*
798      * Discard jump cache entries for any tb which might potentially
799      * overlap the flushed pages, which includes the previous.
800      */
801     d.addr -= TARGET_PAGE_SIZE;
802     for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
803         tb_jmp_cache_clear_page(cpu, d.addr);
804         d.addr += TARGET_PAGE_SIZE;
805     }
806 }
807 
808 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
809                                               run_on_cpu_data data)
810 {
811     TLBFlushRangeData *d = data.host_ptr;
812     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
813     g_free(d);
814 }
815 
816 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
817                                vaddr len, uint16_t idxmap,
818                                unsigned bits)
819 {
820     TLBFlushRangeData d;
821 
822     /*
823      * If all bits are significant, and len is small,
824      * this devolves to tlb_flush_page.
825      */
826     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
827         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
828         return;
829     }
830     /* If no page bits are significant, this devolves to tlb_flush. */
831     if (bits < TARGET_PAGE_BITS) {
832         tlb_flush_by_mmuidx(cpu, idxmap);
833         return;
834     }
835 
836     /* This should already be page aligned */
837     d.addr = addr & TARGET_PAGE_MASK;
838     d.len = len;
839     d.idxmap = idxmap;
840     d.bits = bits;
841 
842     if (qemu_cpu_is_self(cpu)) {
843         tlb_flush_range_by_mmuidx_async_0(cpu, d);
844     } else {
845         /* Otherwise allocate a structure, freed by the worker.  */
846         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
847         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
848                          RUN_ON_CPU_HOST_PTR(p));
849     }
850 }
851 
852 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
853                                    uint16_t idxmap, unsigned bits)
854 {
855     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
856 }
857 
858 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
859                                         vaddr addr, vaddr len,
860                                         uint16_t idxmap, unsigned bits)
861 {
862     TLBFlushRangeData d;
863     CPUState *dst_cpu;
864 
865     /*
866      * If all bits are significant, and len is small,
867      * this devolves to tlb_flush_page.
868      */
869     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
870         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
871         return;
872     }
873     /* If no page bits are significant, this devolves to tlb_flush. */
874     if (bits < TARGET_PAGE_BITS) {
875         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
876         return;
877     }
878 
879     /* This should already be page aligned */
880     d.addr = addr & TARGET_PAGE_MASK;
881     d.len = len;
882     d.idxmap = idxmap;
883     d.bits = bits;
884 
885     /* Allocate a separate data block for each destination cpu.  */
886     CPU_FOREACH(dst_cpu) {
887         if (dst_cpu != src_cpu) {
888             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
889             async_run_on_cpu(dst_cpu,
890                              tlb_flush_range_by_mmuidx_async_1,
891                              RUN_ON_CPU_HOST_PTR(p));
892         }
893     }
894 
895     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
896 }
897 
898 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
899                                             vaddr addr, uint16_t idxmap,
900                                             unsigned bits)
901 {
902     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
903                                        idxmap, bits);
904 }
905 
906 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
907                                                vaddr addr,
908                                                vaddr len,
909                                                uint16_t idxmap,
910                                                unsigned bits)
911 {
912     TLBFlushRangeData d, *p;
913     CPUState *dst_cpu;
914 
915     /*
916      * If all bits are significant, and len is small,
917      * this devolves to tlb_flush_page.
918      */
919     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
920         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
921         return;
922     }
923     /* If no page bits are significant, this devolves to tlb_flush. */
924     if (bits < TARGET_PAGE_BITS) {
925         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
926         return;
927     }
928 
929     /* This should already be page aligned */
930     d.addr = addr & TARGET_PAGE_MASK;
931     d.len = len;
932     d.idxmap = idxmap;
933     d.bits = bits;
934 
935     /* Allocate a separate data block for each destination cpu.  */
936     CPU_FOREACH(dst_cpu) {
937         if (dst_cpu != src_cpu) {
938             p = g_memdup(&d, sizeof(d));
939             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
940                              RUN_ON_CPU_HOST_PTR(p));
941         }
942     }
943 
944     p = g_memdup(&d, sizeof(d));
945     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
946                           RUN_ON_CPU_HOST_PTR(p));
947 }
948 
949 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
950                                                    vaddr addr,
951                                                    uint16_t idxmap,
952                                                    unsigned bits)
953 {
954     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
955                                               idxmap, bits);
956 }
957 
958 /* update the TLBs so that writes to code in the virtual page 'addr'
959    can be detected */
960 void tlb_protect_code(ram_addr_t ram_addr)
961 {
962     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
963                                              TARGET_PAGE_SIZE,
964                                              DIRTY_MEMORY_CODE);
965 }
966 
967 /* update the TLB so that writes in physical page 'phys_addr' are no longer
968    tested for self modifying code */
969 void tlb_unprotect_code(ram_addr_t ram_addr)
970 {
971     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
972 }
973 
974 
975 /*
976  * Dirty write flag handling
977  *
978  * When the TCG code writes to a location it looks up the address in
979  * the TLB and uses that data to compute the final address. If any of
980  * the lower bits of the address are set then the slow path is forced.
981  * There are a number of reasons to do this but for normal RAM the
982  * most usual is detecting writes to code regions which may invalidate
983  * generated code.
984  *
985  * Other vCPUs might be reading their TLBs during guest execution, so we update
986  * te->addr_write with qatomic_set. We don't need to worry about this for
987  * oversized guests as MTTCG is disabled for them.
988  *
989  * Called with tlb_c.lock held.
990  */
991 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
992                                          uintptr_t start, uintptr_t length)
993 {
994     uintptr_t addr = tlb_entry->addr_write;
995 
996     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
997                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
998         addr &= TARGET_PAGE_MASK;
999         addr += tlb_entry->addend;
1000         if ((addr - start) < length) {
1001 #if TARGET_LONG_BITS == 32
1002             uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1003             ptr_write += HOST_BIG_ENDIAN;
1004             qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1005 #elif TCG_OVERSIZED_GUEST
1006             tlb_entry->addr_write |= TLB_NOTDIRTY;
1007 #else
1008             qatomic_set(&tlb_entry->addr_write,
1009                         tlb_entry->addr_write | TLB_NOTDIRTY);
1010 #endif
1011         }
1012     }
1013 }
1014 
1015 /*
1016  * Called with tlb_c.lock held.
1017  * Called only from the vCPU context, i.e. the TLB's owner thread.
1018  */
1019 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1020 {
1021     *d = *s;
1022 }
1023 
1024 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1025  * the target vCPU).
1026  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1027  * thing actually updated is the target TLB entry ->addr_write flags.
1028  */
1029 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1030 {
1031     CPUArchState *env;
1032 
1033     int mmu_idx;
1034 
1035     env = cpu->env_ptr;
1036     qemu_spin_lock(&env_tlb(env)->c.lock);
1037     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1038         unsigned int i;
1039         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1040 
1041         for (i = 0; i < n; i++) {
1042             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1043                                          start1, length);
1044         }
1045 
1046         for (i = 0; i < CPU_VTLB_SIZE; i++) {
1047             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1048                                          start1, length);
1049         }
1050     }
1051     qemu_spin_unlock(&env_tlb(env)->c.lock);
1052 }
1053 
1054 /* Called with tlb_c.lock held */
1055 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1056                                          vaddr addr)
1057 {
1058     if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1059         tlb_entry->addr_write = addr;
1060     }
1061 }
1062 
1063 /* update the TLB corresponding to virtual page vaddr
1064    so that it is no longer dirty */
1065 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1066 {
1067     CPUArchState *env = cpu->env_ptr;
1068     int mmu_idx;
1069 
1070     assert_cpu_is_self(cpu);
1071 
1072     addr &= TARGET_PAGE_MASK;
1073     qemu_spin_lock(&env_tlb(env)->c.lock);
1074     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1075         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr);
1076     }
1077 
1078     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1079         int k;
1080         for (k = 0; k < CPU_VTLB_SIZE; k++) {
1081             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr);
1082         }
1083     }
1084     qemu_spin_unlock(&env_tlb(env)->c.lock);
1085 }
1086 
1087 /* Our TLB does not support large pages, so remember the area covered by
1088    large pages and trigger a full TLB flush if these are invalidated.  */
1089 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1090                                vaddr addr, uint64_t size)
1091 {
1092     vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1093     vaddr lp_mask = ~(size - 1);
1094 
1095     if (lp_addr == (vaddr)-1) {
1096         /* No previous large page.  */
1097         lp_addr = addr;
1098     } else {
1099         /* Extend the existing region to include the new page.
1100            This is a compromise between unnecessary flushes and
1101            the cost of maintaining a full variable size TLB.  */
1102         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1103         while (((lp_addr ^ addr) & lp_mask) != 0) {
1104             lp_mask <<= 1;
1105         }
1106     }
1107     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1108     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1109 }
1110 
1111 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1112                                    vaddr address, int flags,
1113                                    MMUAccessType access_type, bool enable)
1114 {
1115     if (enable) {
1116         address |= flags & TLB_FLAGS_MASK;
1117         flags &= TLB_SLOW_FLAGS_MASK;
1118         if (flags) {
1119             address |= TLB_FORCE_SLOW;
1120         }
1121     } else {
1122         address = -1;
1123         flags = 0;
1124     }
1125     ent->addr_idx[access_type] = address;
1126     full->slow_flags[access_type] = flags;
1127 }
1128 
1129 /*
1130  * Add a new TLB entry. At most one entry for a given virtual address
1131  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1132  * supplied size is only used by tlb_flush_page.
1133  *
1134  * Called from TCG-generated code, which is under an RCU read-side
1135  * critical section.
1136  */
1137 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1138                        vaddr addr, CPUTLBEntryFull *full)
1139 {
1140     CPUArchState *env = cpu->env_ptr;
1141     CPUTLB *tlb = env_tlb(env);
1142     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1143     MemoryRegionSection *section;
1144     unsigned int index, read_flags, write_flags;
1145     uintptr_t addend;
1146     CPUTLBEntry *te, tn;
1147     hwaddr iotlb, xlat, sz, paddr_page;
1148     vaddr addr_page;
1149     int asidx, wp_flags, prot;
1150     bool is_ram, is_romd;
1151 
1152     assert_cpu_is_self(cpu);
1153 
1154     if (full->lg_page_size <= TARGET_PAGE_BITS) {
1155         sz = TARGET_PAGE_SIZE;
1156     } else {
1157         sz = (hwaddr)1 << full->lg_page_size;
1158         tlb_add_large_page(env, mmu_idx, addr, sz);
1159     }
1160     addr_page = addr & TARGET_PAGE_MASK;
1161     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1162 
1163     prot = full->prot;
1164     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1165     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1166                                                 &xlat, &sz, full->attrs, &prot);
1167     assert(sz >= TARGET_PAGE_SIZE);
1168 
1169     tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1170               " prot=%x idx=%d\n",
1171               addr, full->phys_addr, prot, mmu_idx);
1172 
1173     read_flags = 0;
1174     if (full->lg_page_size < TARGET_PAGE_BITS) {
1175         /* Repeat the MMU check and TLB fill on every access.  */
1176         read_flags |= TLB_INVALID_MASK;
1177     }
1178     if (full->attrs.byte_swap) {
1179         read_flags |= TLB_BSWAP;
1180     }
1181 
1182     is_ram = memory_region_is_ram(section->mr);
1183     is_romd = memory_region_is_romd(section->mr);
1184 
1185     if (is_ram || is_romd) {
1186         /* RAM and ROMD both have associated host memory. */
1187         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1188     } else {
1189         /* I/O does not; force the host address to NULL. */
1190         addend = 0;
1191     }
1192 
1193     write_flags = read_flags;
1194     if (is_ram) {
1195         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1196         assert(!(iotlb & ~TARGET_PAGE_MASK));
1197         /*
1198          * Computing is_clean is expensive; avoid all that unless
1199          * the page is actually writable.
1200          */
1201         if (prot & PAGE_WRITE) {
1202             if (section->readonly) {
1203                 write_flags |= TLB_DISCARD_WRITE;
1204             } else if (cpu_physical_memory_is_clean(iotlb)) {
1205                 write_flags |= TLB_NOTDIRTY;
1206             }
1207         }
1208     } else {
1209         /* I/O or ROMD */
1210         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1211         /*
1212          * Writes to romd devices must go through MMIO to enable write.
1213          * Reads to romd devices go through the ram_ptr found above,
1214          * but of course reads to I/O must go through MMIO.
1215          */
1216         write_flags |= TLB_MMIO;
1217         if (!is_romd) {
1218             read_flags = write_flags;
1219         }
1220     }
1221 
1222     wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1223                                               TARGET_PAGE_SIZE);
1224 
1225     index = tlb_index(env, mmu_idx, addr_page);
1226     te = tlb_entry(env, mmu_idx, addr_page);
1227 
1228     /*
1229      * Hold the TLB lock for the rest of the function. We could acquire/release
1230      * the lock several times in the function, but it is faster to amortize the
1231      * acquisition cost by acquiring it just once. Note that this leads to
1232      * a longer critical section, but this is not a concern since the TLB lock
1233      * is unlikely to be contended.
1234      */
1235     qemu_spin_lock(&tlb->c.lock);
1236 
1237     /* Note that the tlb is no longer clean.  */
1238     tlb->c.dirty |= 1 << mmu_idx;
1239 
1240     /* Make sure there's no cached translation for the new page.  */
1241     tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page);
1242 
1243     /*
1244      * Only evict the old entry to the victim tlb if it's for a
1245      * different page; otherwise just overwrite the stale data.
1246      */
1247     if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1248         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1249         CPUTLBEntry *tv = &desc->vtable[vidx];
1250 
1251         /* Evict the old entry into the victim tlb.  */
1252         copy_tlb_helper_locked(tv, te);
1253         desc->vfulltlb[vidx] = desc->fulltlb[index];
1254         tlb_n_used_entries_dec(env, mmu_idx);
1255     }
1256 
1257     /* refill the tlb */
1258     /*
1259      * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1260      * aligned ram_addr_t of the page base of the target RAM.
1261      * Otherwise, iotlb contains
1262      *  - a physical section number in the lower TARGET_PAGE_BITS
1263      *  - the offset within section->mr of the page base (I/O, ROMD) with the
1264      *    TARGET_PAGE_BITS masked off.
1265      * We subtract addr_page (which is page aligned and thus won't
1266      * disturb the low bits) to give an offset which can be added to the
1267      * (non-page-aligned) vaddr of the eventual memory access to get
1268      * the MemoryRegion offset for the access. Note that the vaddr we
1269      * subtract here is that of the page base, and not the same as the
1270      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1271      */
1272     desc->fulltlb[index] = *full;
1273     full = &desc->fulltlb[index];
1274     full->xlat_section = iotlb - addr_page;
1275     full->phys_addr = paddr_page;
1276 
1277     /* Now calculate the new entry */
1278     tn.addend = addend - addr_page;
1279 
1280     tlb_set_compare(full, &tn, addr_page, read_flags,
1281                     MMU_INST_FETCH, prot & PAGE_EXEC);
1282 
1283     if (wp_flags & BP_MEM_READ) {
1284         read_flags |= TLB_WATCHPOINT;
1285     }
1286     tlb_set_compare(full, &tn, addr_page, read_flags,
1287                     MMU_DATA_LOAD, prot & PAGE_READ);
1288 
1289     if (prot & PAGE_WRITE_INV) {
1290         write_flags |= TLB_INVALID_MASK;
1291     }
1292     if (wp_flags & BP_MEM_WRITE) {
1293         write_flags |= TLB_WATCHPOINT;
1294     }
1295     tlb_set_compare(full, &tn, addr_page, write_flags,
1296                     MMU_DATA_STORE, prot & PAGE_WRITE);
1297 
1298     copy_tlb_helper_locked(te, &tn);
1299     tlb_n_used_entries_inc(env, mmu_idx);
1300     qemu_spin_unlock(&tlb->c.lock);
1301 }
1302 
1303 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1304                              hwaddr paddr, MemTxAttrs attrs, int prot,
1305                              int mmu_idx, uint64_t size)
1306 {
1307     CPUTLBEntryFull full = {
1308         .phys_addr = paddr,
1309         .attrs = attrs,
1310         .prot = prot,
1311         .lg_page_size = ctz64(size)
1312     };
1313 
1314     assert(is_power_of_2(size));
1315     tlb_set_page_full(cpu, mmu_idx, addr, &full);
1316 }
1317 
1318 void tlb_set_page(CPUState *cpu, vaddr addr,
1319                   hwaddr paddr, int prot,
1320                   int mmu_idx, uint64_t size)
1321 {
1322     tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1323                             prot, mmu_idx, size);
1324 }
1325 
1326 /*
1327  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1328  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1329  * be discarded and looked up again (e.g. via tlb_entry()).
1330  */
1331 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1332                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1333 {
1334     bool ok;
1335 
1336     /*
1337      * This is not a probe, so only valid return is success; failure
1338      * should result in exception + longjmp to the cpu loop.
1339      */
1340     ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1341                                     access_type, mmu_idx, false, retaddr);
1342     assert(ok);
1343 }
1344 
1345 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1346                                         MMUAccessType access_type,
1347                                         int mmu_idx, uintptr_t retaddr)
1348 {
1349     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1350                                           mmu_idx, retaddr);
1351 }
1352 
1353 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1354                                           vaddr addr, unsigned size,
1355                                           MMUAccessType access_type,
1356                                           int mmu_idx, MemTxAttrs attrs,
1357                                           MemTxResult response,
1358                                           uintptr_t retaddr)
1359 {
1360     CPUClass *cc = CPU_GET_CLASS(cpu);
1361 
1362     if (!cpu->ignore_memory_transaction_failures &&
1363         cc->tcg_ops->do_transaction_failed) {
1364         cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1365                                            access_type, mmu_idx, attrs,
1366                                            response, retaddr);
1367     }
1368 }
1369 
1370 /*
1371  * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1372  * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1373  * because of the side effect of io_writex changing memory layout.
1374  */
1375 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1376                             hwaddr mr_offset)
1377 {
1378 #ifdef CONFIG_PLUGIN
1379     SavedIOTLB *saved = &cs->saved_iotlb;
1380     saved->section = section;
1381     saved->mr_offset = mr_offset;
1382 #endif
1383 }
1384 
1385 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1386                          int mmu_idx, vaddr addr, uintptr_t retaddr,
1387                          MMUAccessType access_type, MemOp op)
1388 {
1389     CPUState *cpu = env_cpu(env);
1390     hwaddr mr_offset;
1391     MemoryRegionSection *section;
1392     MemoryRegion *mr;
1393     uint64_t val;
1394     MemTxResult r;
1395 
1396     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1397     mr = section->mr;
1398     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1399     cpu->mem_io_pc = retaddr;
1400     if (!cpu->can_do_io) {
1401         cpu_io_recompile(cpu, retaddr);
1402     }
1403 
1404     /*
1405      * The memory_region_dispatch may trigger a flush/resize
1406      * so for plugins we save the iotlb_data just in case.
1407      */
1408     save_iotlb_data(cpu, section, mr_offset);
1409 
1410     {
1411         QEMU_IOTHREAD_LOCK_GUARD();
1412         r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1413     }
1414 
1415     if (r != MEMTX_OK) {
1416         hwaddr physaddr = mr_offset +
1417             section->offset_within_address_space -
1418             section->offset_within_region;
1419 
1420         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1421                                mmu_idx, full->attrs, r, retaddr);
1422     }
1423     return val;
1424 }
1425 
1426 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1427                       int mmu_idx, uint64_t val, vaddr addr,
1428                       uintptr_t retaddr, MemOp op)
1429 {
1430     CPUState *cpu = env_cpu(env);
1431     hwaddr mr_offset;
1432     MemoryRegionSection *section;
1433     MemoryRegion *mr;
1434     MemTxResult r;
1435 
1436     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1437     mr = section->mr;
1438     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1439     if (!cpu->can_do_io) {
1440         cpu_io_recompile(cpu, retaddr);
1441     }
1442     cpu->mem_io_pc = retaddr;
1443 
1444     /*
1445      * The memory_region_dispatch may trigger a flush/resize
1446      * so for plugins we save the iotlb_data just in case.
1447      */
1448     save_iotlb_data(cpu, section, mr_offset);
1449 
1450     {
1451         QEMU_IOTHREAD_LOCK_GUARD();
1452         r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1453     }
1454 
1455     if (r != MEMTX_OK) {
1456         hwaddr physaddr = mr_offset +
1457             section->offset_within_address_space -
1458             section->offset_within_region;
1459 
1460         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1461                                MMU_DATA_STORE, mmu_idx, full->attrs, r,
1462                                retaddr);
1463     }
1464 }
1465 
1466 /* Return true if ADDR is present in the victim tlb, and has been copied
1467    back to the main tlb.  */
1468 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1469                            MMUAccessType access_type, vaddr page)
1470 {
1471     size_t vidx;
1472 
1473     assert_cpu_is_self(env_cpu(env));
1474     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1475         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1476         uint64_t cmp = tlb_read_idx(vtlb, access_type);
1477 
1478         if (cmp == page) {
1479             /* Found entry in victim tlb, swap tlb and iotlb.  */
1480             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1481 
1482             qemu_spin_lock(&env_tlb(env)->c.lock);
1483             copy_tlb_helper_locked(&tmptlb, tlb);
1484             copy_tlb_helper_locked(tlb, vtlb);
1485             copy_tlb_helper_locked(vtlb, &tmptlb);
1486             qemu_spin_unlock(&env_tlb(env)->c.lock);
1487 
1488             CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1489             CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1490             CPUTLBEntryFull tmpf;
1491             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1492             return true;
1493         }
1494     }
1495     return false;
1496 }
1497 
1498 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1499                            CPUTLBEntryFull *full, uintptr_t retaddr)
1500 {
1501     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1502 
1503     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1504 
1505     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1506         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1507     }
1508 
1509     /*
1510      * Set both VGA and migration bits for simplicity and to remove
1511      * the notdirty callback faster.
1512      */
1513     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1514 
1515     /* We remove the notdirty callback only if the code has been flushed. */
1516     if (!cpu_physical_memory_is_clean(ram_addr)) {
1517         trace_memory_notdirty_set_dirty(mem_vaddr);
1518         tlb_set_dirty(cpu, mem_vaddr);
1519     }
1520 }
1521 
1522 static int probe_access_internal(CPUArchState *env, vaddr addr,
1523                                  int fault_size, MMUAccessType access_type,
1524                                  int mmu_idx, bool nonfault,
1525                                  void **phost, CPUTLBEntryFull **pfull,
1526                                  uintptr_t retaddr, bool check_mem_cbs)
1527 {
1528     uintptr_t index = tlb_index(env, mmu_idx, addr);
1529     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1530     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1531     vaddr page_addr = addr & TARGET_PAGE_MASK;
1532     int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1533     bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env));
1534     CPUTLBEntryFull *full;
1535 
1536     if (!tlb_hit_page(tlb_addr, page_addr)) {
1537         if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1538             CPUState *cs = env_cpu(env);
1539 
1540             if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1541                                            mmu_idx, nonfault, retaddr)) {
1542                 /* Non-faulting page table read failed.  */
1543                 *phost = NULL;
1544                 *pfull = NULL;
1545                 return TLB_INVALID_MASK;
1546             }
1547 
1548             /* TLB resize via tlb_fill may have moved the entry.  */
1549             index = tlb_index(env, mmu_idx, addr);
1550             entry = tlb_entry(env, mmu_idx, addr);
1551 
1552             /*
1553              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1554              * to force the next access through tlb_fill.  We've just
1555              * called tlb_fill, so we know that this entry *is* valid.
1556              */
1557             flags &= ~TLB_INVALID_MASK;
1558         }
1559         tlb_addr = tlb_read_idx(entry, access_type);
1560     }
1561     flags &= tlb_addr;
1562 
1563     *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1564     flags |= full->slow_flags[access_type];
1565 
1566     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1567     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
1568         ||
1569         (access_type != MMU_INST_FETCH && force_mmio)) {
1570         *phost = NULL;
1571         return TLB_MMIO;
1572     }
1573 
1574     /* Everything else is RAM. */
1575     *phost = (void *)((uintptr_t)addr + entry->addend);
1576     return flags;
1577 }
1578 
1579 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1580                       MMUAccessType access_type, int mmu_idx,
1581                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1582                       uintptr_t retaddr)
1583 {
1584     int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1585                                       nonfault, phost, pfull, retaddr, true);
1586 
1587     /* Handle clean RAM pages.  */
1588     if (unlikely(flags & TLB_NOTDIRTY)) {
1589         notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1590         flags &= ~TLB_NOTDIRTY;
1591     }
1592 
1593     return flags;
1594 }
1595 
1596 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1597                           MMUAccessType access_type, int mmu_idx,
1598                           void **phost, CPUTLBEntryFull **pfull)
1599 {
1600     void *discard_phost;
1601     CPUTLBEntryFull *discard_tlb;
1602 
1603     /* privately handle users that don't need full results */
1604     phost = phost ? phost : &discard_phost;
1605     pfull = pfull ? pfull : &discard_tlb;
1606 
1607     int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1608                                       true, phost, pfull, 0, false);
1609 
1610     /* Handle clean RAM pages.  */
1611     if (unlikely(flags & TLB_NOTDIRTY)) {
1612         notdirty_write(env_cpu(env), addr, 1, *pfull, 0);
1613         flags &= ~TLB_NOTDIRTY;
1614     }
1615 
1616     return flags;
1617 }
1618 
1619 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1620                        MMUAccessType access_type, int mmu_idx,
1621                        bool nonfault, void **phost, uintptr_t retaddr)
1622 {
1623     CPUTLBEntryFull *full;
1624     int flags;
1625 
1626     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1627 
1628     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1629                                   nonfault, phost, &full, retaddr, true);
1630 
1631     /* Handle clean RAM pages. */
1632     if (unlikely(flags & TLB_NOTDIRTY)) {
1633         notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1634         flags &= ~TLB_NOTDIRTY;
1635     }
1636 
1637     return flags;
1638 }
1639 
1640 void *probe_access(CPUArchState *env, vaddr addr, int size,
1641                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1642 {
1643     CPUTLBEntryFull *full;
1644     void *host;
1645     int flags;
1646 
1647     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1648 
1649     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1650                                   false, &host, &full, retaddr, true);
1651 
1652     /* Per the interface, size == 0 merely faults the access. */
1653     if (size == 0) {
1654         return NULL;
1655     }
1656 
1657     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1658         /* Handle watchpoints.  */
1659         if (flags & TLB_WATCHPOINT) {
1660             int wp_access = (access_type == MMU_DATA_STORE
1661                              ? BP_MEM_WRITE : BP_MEM_READ);
1662             cpu_check_watchpoint(env_cpu(env), addr, size,
1663                                  full->attrs, wp_access, retaddr);
1664         }
1665 
1666         /* Handle clean RAM pages.  */
1667         if (flags & TLB_NOTDIRTY) {
1668             notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1669         }
1670     }
1671 
1672     return host;
1673 }
1674 
1675 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1676                         MMUAccessType access_type, int mmu_idx)
1677 {
1678     CPUTLBEntryFull *full;
1679     void *host;
1680     int flags;
1681 
1682     flags = probe_access_internal(env, addr, 0, access_type,
1683                                   mmu_idx, true, &host, &full, 0, false);
1684 
1685     /* No combination of flags are expected by the caller. */
1686     return flags ? NULL : host;
1687 }
1688 
1689 /*
1690  * Return a ram_addr_t for the virtual address for execution.
1691  *
1692  * Return -1 if we can't translate and execute from an entire page
1693  * of RAM.  This will force us to execute by loading and translating
1694  * one insn at a time, without caching.
1695  *
1696  * NOTE: This function will trigger an exception if the page is
1697  * not executable.
1698  */
1699 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1700                                         void **hostp)
1701 {
1702     CPUTLBEntryFull *full;
1703     void *p;
1704 
1705     (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1706                                 cpu_mmu_index(env, true), false,
1707                                 &p, &full, 0, false);
1708     if (p == NULL) {
1709         return -1;
1710     }
1711 
1712     if (full->lg_page_size < TARGET_PAGE_BITS) {
1713         return -1;
1714     }
1715 
1716     if (hostp) {
1717         *hostp = p;
1718     }
1719     return qemu_ram_addr_from_host_nofail(p);
1720 }
1721 
1722 /* Load/store with atomicity primitives. */
1723 #include "ldst_atomicity.c.inc"
1724 
1725 #ifdef CONFIG_PLUGIN
1726 /*
1727  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1728  * This should be a hot path as we will have just looked this path up
1729  * in the softmmu lookup code (or helper). We don't handle re-fills or
1730  * checking the victim table. This is purely informational.
1731  *
1732  * This almost never fails as the memory access being instrumented
1733  * should have just filled the TLB. The one corner case is io_writex
1734  * which can cause TLB flushes and potential resizing of the TLBs
1735  * losing the information we need. In those cases we need to recover
1736  * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1737  * from the same thread (which a mem callback will be) this is safe.
1738  */
1739 
1740 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1741                        bool is_store, struct qemu_plugin_hwaddr *data)
1742 {
1743     CPUArchState *env = cpu->env_ptr;
1744     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1745     uintptr_t index = tlb_index(env, mmu_idx, addr);
1746     uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1747 
1748     if (likely(tlb_hit(tlb_addr, addr))) {
1749         /* We must have an iotlb entry for MMIO */
1750         if (tlb_addr & TLB_MMIO) {
1751             CPUTLBEntryFull *full;
1752             full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1753             data->is_io = true;
1754             data->v.io.section =
1755                 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1756             data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1757         } else {
1758             data->is_io = false;
1759             data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1760         }
1761         return true;
1762     } else {
1763         SavedIOTLB *saved = &cpu->saved_iotlb;
1764         data->is_io = true;
1765         data->v.io.section = saved->section;
1766         data->v.io.offset = saved->mr_offset;
1767         return true;
1768     }
1769 }
1770 
1771 #endif
1772 
1773 /*
1774  * Probe for a load/store operation.
1775  * Return the host address and into @flags.
1776  */
1777 
1778 typedef struct MMULookupPageData {
1779     CPUTLBEntryFull *full;
1780     void *haddr;
1781     vaddr addr;
1782     int flags;
1783     int size;
1784 } MMULookupPageData;
1785 
1786 typedef struct MMULookupLocals {
1787     MMULookupPageData page[2];
1788     MemOp memop;
1789     int mmu_idx;
1790 } MMULookupLocals;
1791 
1792 /**
1793  * mmu_lookup1: translate one page
1794  * @env: cpu context
1795  * @data: lookup parameters
1796  * @mmu_idx: virtual address context
1797  * @access_type: load/store/code
1798  * @ra: return address into tcg generated code, or 0
1799  *
1800  * Resolve the translation for the one page at @data.addr, filling in
1801  * the rest of @data with the results.  If the translation fails,
1802  * tlb_fill will longjmp out.  Return true if the softmmu tlb for
1803  * @mmu_idx may have resized.
1804  */
1805 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1806                         int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1807 {
1808     vaddr addr = data->addr;
1809     uintptr_t index = tlb_index(env, mmu_idx, addr);
1810     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1811     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1812     bool maybe_resized = false;
1813     CPUTLBEntryFull *full;
1814     int flags;
1815 
1816     /* If the TLB entry is for a different page, reload and try again.  */
1817     if (!tlb_hit(tlb_addr, addr)) {
1818         if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1819                             addr & TARGET_PAGE_MASK)) {
1820             tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1821             maybe_resized = true;
1822             index = tlb_index(env, mmu_idx, addr);
1823             entry = tlb_entry(env, mmu_idx, addr);
1824         }
1825         tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1826     }
1827 
1828     full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1829     flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1830     flags |= full->slow_flags[access_type];
1831 
1832     data->full = full;
1833     data->flags = flags;
1834     /* Compute haddr speculatively; depending on flags it might be invalid. */
1835     data->haddr = (void *)((uintptr_t)addr + entry->addend);
1836 
1837     return maybe_resized;
1838 }
1839 
1840 /**
1841  * mmu_watch_or_dirty
1842  * @env: cpu context
1843  * @data: lookup parameters
1844  * @access_type: load/store/code
1845  * @ra: return address into tcg generated code, or 0
1846  *
1847  * Trigger watchpoints for @data.addr:@data.size;
1848  * record writes to protected clean pages.
1849  */
1850 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1851                                MMUAccessType access_type, uintptr_t ra)
1852 {
1853     CPUTLBEntryFull *full = data->full;
1854     vaddr addr = data->addr;
1855     int flags = data->flags;
1856     int size = data->size;
1857 
1858     /* On watchpoint hit, this will longjmp out.  */
1859     if (flags & TLB_WATCHPOINT) {
1860         int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1861         cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1862         flags &= ~TLB_WATCHPOINT;
1863     }
1864 
1865     /* Note that notdirty is only set for writes. */
1866     if (flags & TLB_NOTDIRTY) {
1867         notdirty_write(env_cpu(env), addr, size, full, ra);
1868         flags &= ~TLB_NOTDIRTY;
1869     }
1870     data->flags = flags;
1871 }
1872 
1873 /**
1874  * mmu_lookup: translate page(s)
1875  * @env: cpu context
1876  * @addr: virtual address
1877  * @oi: combined mmu_idx and MemOp
1878  * @ra: return address into tcg generated code, or 0
1879  * @access_type: load/store/code
1880  * @l: output result
1881  *
1882  * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1883  * bytes.  Return true if the lookup crosses a page boundary.
1884  */
1885 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1886                        uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1887 {
1888     unsigned a_bits;
1889     bool crosspage;
1890     int flags;
1891 
1892     l->memop = get_memop(oi);
1893     l->mmu_idx = get_mmuidx(oi);
1894 
1895     tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1896 
1897     /* Handle CPU specific unaligned behaviour */
1898     a_bits = get_alignment_bits(l->memop);
1899     if (addr & ((1 << a_bits) - 1)) {
1900         cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1901     }
1902 
1903     l->page[0].addr = addr;
1904     l->page[0].size = memop_size(l->memop);
1905     l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1906     l->page[1].size = 0;
1907     crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1908 
1909     if (likely(!crosspage)) {
1910         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1911 
1912         flags = l->page[0].flags;
1913         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1914             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1915         }
1916         if (unlikely(flags & TLB_BSWAP)) {
1917             l->memop ^= MO_BSWAP;
1918         }
1919     } else {
1920         /* Finish compute of page crossing. */
1921         int size0 = l->page[1].addr - addr;
1922         l->page[1].size = l->page[0].size - size0;
1923         l->page[0].size = size0;
1924 
1925         /*
1926          * Lookup both pages, recognizing exceptions from either.  If the
1927          * second lookup potentially resized, refresh first CPUTLBEntryFull.
1928          */
1929         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1930         if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1931             uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1932             l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1933         }
1934 
1935         flags = l->page[0].flags | l->page[1].flags;
1936         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1937             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1938             mmu_watch_or_dirty(env, &l->page[1], type, ra);
1939         }
1940 
1941         /*
1942          * Since target/sparc is the only user of TLB_BSWAP, and all
1943          * Sparc accesses are aligned, any treatment across two pages
1944          * would be arbitrary.  Refuse it until there's a use.
1945          */
1946         tcg_debug_assert((flags & TLB_BSWAP) == 0);
1947     }
1948 
1949     return crosspage;
1950 }
1951 
1952 /*
1953  * Probe for an atomic operation.  Do not allow unaligned operations,
1954  * or io operations to proceed.  Return the host address.
1955  */
1956 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1957                                int size, uintptr_t retaddr)
1958 {
1959     uintptr_t mmu_idx = get_mmuidx(oi);
1960     MemOp mop = get_memop(oi);
1961     int a_bits = get_alignment_bits(mop);
1962     uintptr_t index;
1963     CPUTLBEntry *tlbe;
1964     vaddr tlb_addr;
1965     void *hostaddr;
1966     CPUTLBEntryFull *full;
1967 
1968     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1969 
1970     /* Adjust the given return address.  */
1971     retaddr -= GETPC_ADJ;
1972 
1973     /* Enforce guest required alignment.  */
1974     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1975         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1976         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1977                              mmu_idx, retaddr);
1978     }
1979 
1980     /* Enforce qemu required alignment.  */
1981     if (unlikely(addr & (size - 1))) {
1982         /* We get here if guest alignment was not requested,
1983            or was not enforced by cpu_unaligned_access above.
1984            We might widen the access and emulate, but for now
1985            mark an exception and exit the cpu loop.  */
1986         goto stop_the_world;
1987     }
1988 
1989     index = tlb_index(env, mmu_idx, addr);
1990     tlbe = tlb_entry(env, mmu_idx, addr);
1991 
1992     /* Check TLB entry and enforce page permissions.  */
1993     tlb_addr = tlb_addr_write(tlbe);
1994     if (!tlb_hit(tlb_addr, addr)) {
1995         if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1996                             addr & TARGET_PAGE_MASK)) {
1997             tlb_fill(env_cpu(env), addr, size,
1998                      MMU_DATA_STORE, mmu_idx, retaddr);
1999             index = tlb_index(env, mmu_idx, addr);
2000             tlbe = tlb_entry(env, mmu_idx, addr);
2001         }
2002         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
2003     }
2004 
2005     /*
2006      * Let the guest notice RMW on a write-only page.
2007      * We have just verified that the page is writable.
2008      * Subpage lookups may have left TLB_INVALID_MASK set,
2009      * but addr_read will only be -1 if PAGE_READ was unset.
2010      */
2011     if (unlikely(tlbe->addr_read == -1)) {
2012         tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
2013         /*
2014          * Since we don't support reads and writes to different
2015          * addresses, and we do have the proper page loaded for
2016          * write, this shouldn't ever return.  But just in case,
2017          * handle via stop-the-world.
2018          */
2019         goto stop_the_world;
2020     }
2021     /* Collect tlb flags for read. */
2022     tlb_addr |= tlbe->addr_read;
2023 
2024     /* Notice an IO access or a needs-MMU-lookup access */
2025     if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
2026         /* There's really nothing that can be done to
2027            support this apart from stop-the-world.  */
2028         goto stop_the_world;
2029     }
2030 
2031     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
2032     full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
2033 
2034     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
2035         notdirty_write(env_cpu(env), addr, size, full, retaddr);
2036     }
2037 
2038     if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
2039         int wp_flags = 0;
2040 
2041         if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
2042             wp_flags |= BP_MEM_WRITE;
2043         }
2044         if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
2045             wp_flags |= BP_MEM_READ;
2046         }
2047         if (wp_flags) {
2048             cpu_check_watchpoint(env_cpu(env), addr, size,
2049                                  full->attrs, wp_flags, retaddr);
2050         }
2051     }
2052 
2053     return hostaddr;
2054 
2055  stop_the_world:
2056     cpu_loop_exit_atomic(env_cpu(env), retaddr);
2057 }
2058 
2059 /*
2060  * Load Helpers
2061  *
2062  * We support two different access types. SOFTMMU_CODE_ACCESS is
2063  * specifically for reading instructions from system memory. It is
2064  * called by the translation loop and in some helpers where the code
2065  * is disassembled. It shouldn't be called directly by guest code.
2066  *
2067  * For the benefit of TCG generated code, we want to avoid the
2068  * complication of ABI-specific return type promotion and always
2069  * return a value extended to the register size of the host. This is
2070  * tcg_target_long, except in the case of a 32-bit host and 64-bit
2071  * data, and for that we always have uint64_t.
2072  *
2073  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2074  */
2075 
2076 /**
2077  * do_ld_mmio_beN:
2078  * @env: cpu context
2079  * @full: page parameters
2080  * @ret_be: accumulated data
2081  * @addr: virtual address
2082  * @size: number of bytes
2083  * @mmu_idx: virtual address context
2084  * @ra: return address into tcg generated code, or 0
2085  * Context: iothread lock held
2086  *
2087  * Load @size bytes from @addr, which is memory-mapped i/o.
2088  * The bytes are concatenated in big-endian order with @ret_be.
2089  */
2090 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2091                                uint64_t ret_be, vaddr addr, int size,
2092                                int mmu_idx, MMUAccessType type, uintptr_t ra)
2093 {
2094     uint64_t t;
2095 
2096     tcg_debug_assert(size > 0 && size <= 8);
2097     do {
2098         /* Read aligned pieces up to 8 bytes. */
2099         switch ((size | (int)addr) & 7) {
2100         case 1:
2101         case 3:
2102         case 5:
2103         case 7:
2104             t = io_readx(env, full, mmu_idx, addr, ra, type, MO_UB);
2105             ret_be = (ret_be << 8) | t;
2106             size -= 1;
2107             addr += 1;
2108             break;
2109         case 2:
2110         case 6:
2111             t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUW);
2112             ret_be = (ret_be << 16) | t;
2113             size -= 2;
2114             addr += 2;
2115             break;
2116         case 4:
2117             t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUL);
2118             ret_be = (ret_be << 32) | t;
2119             size -= 4;
2120             addr += 4;
2121             break;
2122         case 0:
2123             return io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUQ);
2124         default:
2125             qemu_build_not_reached();
2126         }
2127     } while (size);
2128     return ret_be;
2129 }
2130 
2131 /**
2132  * do_ld_bytes_beN
2133  * @p: translation parameters
2134  * @ret_be: accumulated data
2135  *
2136  * Load @p->size bytes from @p->haddr, which is RAM.
2137  * The bytes to concatenated in big-endian order with @ret_be.
2138  */
2139 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2140 {
2141     uint8_t *haddr = p->haddr;
2142     int i, size = p->size;
2143 
2144     for (i = 0; i < size; i++) {
2145         ret_be = (ret_be << 8) | haddr[i];
2146     }
2147     return ret_be;
2148 }
2149 
2150 /**
2151  * do_ld_parts_beN
2152  * @p: translation parameters
2153  * @ret_be: accumulated data
2154  *
2155  * As do_ld_bytes_beN, but atomically on each aligned part.
2156  */
2157 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2158 {
2159     void *haddr = p->haddr;
2160     int size = p->size;
2161 
2162     do {
2163         uint64_t x;
2164         int n;
2165 
2166         /*
2167          * Find minimum of alignment and size.
2168          * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2169          * would have only checked the low bits of addr|size once at the start,
2170          * but is just as easy.
2171          */
2172         switch (((uintptr_t)haddr | size) & 7) {
2173         case 4:
2174             x = cpu_to_be32(load_atomic4(haddr));
2175             ret_be = (ret_be << 32) | x;
2176             n = 4;
2177             break;
2178         case 2:
2179         case 6:
2180             x = cpu_to_be16(load_atomic2(haddr));
2181             ret_be = (ret_be << 16) | x;
2182             n = 2;
2183             break;
2184         default:
2185             x = *(uint8_t *)haddr;
2186             ret_be = (ret_be << 8) | x;
2187             n = 1;
2188             break;
2189         case 0:
2190             g_assert_not_reached();
2191         }
2192         haddr += n;
2193         size -= n;
2194     } while (size != 0);
2195     return ret_be;
2196 }
2197 
2198 /**
2199  * do_ld_parts_be4
2200  * @p: translation parameters
2201  * @ret_be: accumulated data
2202  *
2203  * As do_ld_bytes_beN, but with one atomic load.
2204  * Four aligned bytes are guaranteed to cover the load.
2205  */
2206 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2207 {
2208     int o = p->addr & 3;
2209     uint32_t x = load_atomic4(p->haddr - o);
2210 
2211     x = cpu_to_be32(x);
2212     x <<= o * 8;
2213     x >>= (4 - p->size) * 8;
2214     return (ret_be << (p->size * 8)) | x;
2215 }
2216 
2217 /**
2218  * do_ld_parts_be8
2219  * @p: translation parameters
2220  * @ret_be: accumulated data
2221  *
2222  * As do_ld_bytes_beN, but with one atomic load.
2223  * Eight aligned bytes are guaranteed to cover the load.
2224  */
2225 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2226                                 MMULookupPageData *p, uint64_t ret_be)
2227 {
2228     int o = p->addr & 7;
2229     uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2230 
2231     x = cpu_to_be64(x);
2232     x <<= o * 8;
2233     x >>= (8 - p->size) * 8;
2234     return (ret_be << (p->size * 8)) | x;
2235 }
2236 
2237 /**
2238  * do_ld_parts_be16
2239  * @p: translation parameters
2240  * @ret_be: accumulated data
2241  *
2242  * As do_ld_bytes_beN, but with one atomic load.
2243  * 16 aligned bytes are guaranteed to cover the load.
2244  */
2245 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2246                                MMULookupPageData *p, uint64_t ret_be)
2247 {
2248     int o = p->addr & 15;
2249     Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2250     int size = p->size;
2251 
2252     if (!HOST_BIG_ENDIAN) {
2253         y = bswap128(y);
2254     }
2255     y = int128_lshift(y, o * 8);
2256     y = int128_urshift(y, (16 - size) * 8);
2257     x = int128_make64(ret_be);
2258     x = int128_lshift(x, size * 8);
2259     return int128_or(x, y);
2260 }
2261 
2262 /*
2263  * Wrapper for the above.
2264  */
2265 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2266                           uint64_t ret_be, int mmu_idx, MMUAccessType type,
2267                           MemOp mop, uintptr_t ra)
2268 {
2269     MemOp atom;
2270     unsigned tmp, half_size;
2271 
2272     if (unlikely(p->flags & TLB_MMIO)) {
2273         QEMU_IOTHREAD_LOCK_GUARD();
2274         return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size,
2275                               mmu_idx, type, ra);
2276     }
2277 
2278     /*
2279      * It is a given that we cross a page and therefore there is no
2280      * atomicity for the load as a whole, but subobjects may need attention.
2281      */
2282     atom = mop & MO_ATOM_MASK;
2283     switch (atom) {
2284     case MO_ATOM_SUBALIGN:
2285         return do_ld_parts_beN(p, ret_be);
2286 
2287     case MO_ATOM_IFALIGN_PAIR:
2288     case MO_ATOM_WITHIN16_PAIR:
2289         tmp = mop & MO_SIZE;
2290         tmp = tmp ? tmp - 1 : 0;
2291         half_size = 1 << tmp;
2292         if (atom == MO_ATOM_IFALIGN_PAIR
2293             ? p->size == half_size
2294             : p->size >= half_size) {
2295             if (!HAVE_al8_fast && p->size < 4) {
2296                 return do_ld_whole_be4(p, ret_be);
2297             } else {
2298                 return do_ld_whole_be8(env, ra, p, ret_be);
2299             }
2300         }
2301         /* fall through */
2302 
2303     case MO_ATOM_IFALIGN:
2304     case MO_ATOM_WITHIN16:
2305     case MO_ATOM_NONE:
2306         return do_ld_bytes_beN(p, ret_be);
2307 
2308     default:
2309         g_assert_not_reached();
2310     }
2311 }
2312 
2313 /*
2314  * Wrapper for the above, for 8 < size < 16.
2315  */
2316 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2317                           uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2318 {
2319     int size = p->size;
2320     uint64_t b;
2321     MemOp atom;
2322 
2323     if (unlikely(p->flags & TLB_MMIO)) {
2324         QEMU_IOTHREAD_LOCK_GUARD();
2325         a = do_ld_mmio_beN(env, p->full, a, p->addr, size - 8,
2326                            mmu_idx, MMU_DATA_LOAD, ra);
2327         b = do_ld_mmio_beN(env, p->full, 0, p->addr + 8, 8,
2328                            mmu_idx, MMU_DATA_LOAD, ra);
2329         return int128_make128(b, a);
2330     }
2331 
2332     /*
2333      * It is a given that we cross a page and therefore there is no
2334      * atomicity for the load as a whole, but subobjects may need attention.
2335      */
2336     atom = mop & MO_ATOM_MASK;
2337     switch (atom) {
2338     case MO_ATOM_SUBALIGN:
2339         p->size = size - 8;
2340         a = do_ld_parts_beN(p, a);
2341         p->haddr += size - 8;
2342         p->size = 8;
2343         b = do_ld_parts_beN(p, 0);
2344         break;
2345 
2346     case MO_ATOM_WITHIN16_PAIR:
2347         /* Since size > 8, this is the half that must be atomic. */
2348         return do_ld_whole_be16(env, ra, p, a);
2349 
2350     case MO_ATOM_IFALIGN_PAIR:
2351         /*
2352          * Since size > 8, both halves are misaligned,
2353          * and so neither is atomic.
2354          */
2355     case MO_ATOM_IFALIGN:
2356     case MO_ATOM_WITHIN16:
2357     case MO_ATOM_NONE:
2358         p->size = size - 8;
2359         a = do_ld_bytes_beN(p, a);
2360         b = ldq_be_p(p->haddr + size - 8);
2361         break;
2362 
2363     default:
2364         g_assert_not_reached();
2365     }
2366 
2367     return int128_make128(b, a);
2368 }
2369 
2370 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2371                        MMUAccessType type, uintptr_t ra)
2372 {
2373     if (unlikely(p->flags & TLB_MMIO)) {
2374         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2375     } else {
2376         return *(uint8_t *)p->haddr;
2377     }
2378 }
2379 
2380 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2381                         MMUAccessType type, MemOp memop, uintptr_t ra)
2382 {
2383     uint16_t ret;
2384 
2385     if (unlikely(p->flags & TLB_MMIO)) {
2386         QEMU_IOTHREAD_LOCK_GUARD();
2387         ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2388         if ((memop & MO_BSWAP) == MO_LE) {
2389             ret = bswap16(ret);
2390         }
2391     } else {
2392         /* Perform the load host endian, then swap if necessary. */
2393         ret = load_atom_2(env, ra, p->haddr, memop);
2394         if (memop & MO_BSWAP) {
2395             ret = bswap16(ret);
2396         }
2397     }
2398     return ret;
2399 }
2400 
2401 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2402                         MMUAccessType type, MemOp memop, uintptr_t ra)
2403 {
2404     uint32_t ret;
2405 
2406     if (unlikely(p->flags & TLB_MMIO)) {
2407         QEMU_IOTHREAD_LOCK_GUARD();
2408         ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2409         if ((memop & MO_BSWAP) == MO_LE) {
2410             ret = bswap32(ret);
2411         }
2412     } else {
2413         /* Perform the load host endian. */
2414         ret = load_atom_4(env, ra, p->haddr, memop);
2415         if (memop & MO_BSWAP) {
2416             ret = bswap32(ret);
2417         }
2418     }
2419     return ret;
2420 }
2421 
2422 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2423                         MMUAccessType type, MemOp memop, uintptr_t ra)
2424 {
2425     uint64_t ret;
2426 
2427     if (unlikely(p->flags & TLB_MMIO)) {
2428         QEMU_IOTHREAD_LOCK_GUARD();
2429         ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2430         if ((memop & MO_BSWAP) == MO_LE) {
2431             ret = bswap64(ret);
2432         }
2433     } else {
2434         /* Perform the load host endian. */
2435         ret = load_atom_8(env, ra, p->haddr, memop);
2436         if (memop & MO_BSWAP) {
2437             ret = bswap64(ret);
2438         }
2439     }
2440     return ret;
2441 }
2442 
2443 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2444                           uintptr_t ra, MMUAccessType access_type)
2445 {
2446     MMULookupLocals l;
2447     bool crosspage;
2448 
2449     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2450     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2451     tcg_debug_assert(!crosspage);
2452 
2453     return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2454 }
2455 
2456 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2457                                  MemOpIdx oi, uintptr_t retaddr)
2458 {
2459     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2460     return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2461 }
2462 
2463 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2464                            uintptr_t ra, MMUAccessType access_type)
2465 {
2466     MMULookupLocals l;
2467     bool crosspage;
2468     uint16_t ret;
2469     uint8_t a, b;
2470 
2471     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2472     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2473     if (likely(!crosspage)) {
2474         return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2475     }
2476 
2477     a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2478     b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2479 
2480     if ((l.memop & MO_BSWAP) == MO_LE) {
2481         ret = a | (b << 8);
2482     } else {
2483         ret = b | (a << 8);
2484     }
2485     return ret;
2486 }
2487 
2488 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2489                                  MemOpIdx oi, uintptr_t retaddr)
2490 {
2491     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2492     return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2493 }
2494 
2495 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2496                            uintptr_t ra, MMUAccessType access_type)
2497 {
2498     MMULookupLocals l;
2499     bool crosspage;
2500     uint32_t ret;
2501 
2502     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2503     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2504     if (likely(!crosspage)) {
2505         return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2506     }
2507 
2508     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2509     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2510     if ((l.memop & MO_BSWAP) == MO_LE) {
2511         ret = bswap32(ret);
2512     }
2513     return ret;
2514 }
2515 
2516 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2517                                  MemOpIdx oi, uintptr_t retaddr)
2518 {
2519     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2520     return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2521 }
2522 
2523 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2524                            uintptr_t ra, MMUAccessType access_type)
2525 {
2526     MMULookupLocals l;
2527     bool crosspage;
2528     uint64_t ret;
2529 
2530     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2531     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2532     if (likely(!crosspage)) {
2533         return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2534     }
2535 
2536     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2537     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2538     if ((l.memop & MO_BSWAP) == MO_LE) {
2539         ret = bswap64(ret);
2540     }
2541     return ret;
2542 }
2543 
2544 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2545                         MemOpIdx oi, uintptr_t retaddr)
2546 {
2547     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2548     return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2549 }
2550 
2551 /*
2552  * Provide signed versions of the load routines as well.  We can of course
2553  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2554  */
2555 
2556 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2557                                  MemOpIdx oi, uintptr_t retaddr)
2558 {
2559     return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2560 }
2561 
2562 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2563                                  MemOpIdx oi, uintptr_t retaddr)
2564 {
2565     return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2566 }
2567 
2568 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2569                                  MemOpIdx oi, uintptr_t retaddr)
2570 {
2571     return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2572 }
2573 
2574 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr,
2575                           MemOpIdx oi, uintptr_t ra)
2576 {
2577     MMULookupLocals l;
2578     bool crosspage;
2579     uint64_t a, b;
2580     Int128 ret;
2581     int first;
2582 
2583     cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2584     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2585     if (likely(!crosspage)) {
2586         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2587             QEMU_IOTHREAD_LOCK_GUARD();
2588             a = do_ld_mmio_beN(env, l.page[0].full, 0, addr, 8,
2589                                l.mmu_idx, MMU_DATA_LOAD, ra);
2590             b = do_ld_mmio_beN(env, l.page[0].full, 0, addr + 8, 8,
2591                                l.mmu_idx, MMU_DATA_LOAD, ra);
2592             ret = int128_make128(b, a);
2593             if ((l.memop & MO_BSWAP) == MO_LE) {
2594                 ret = bswap128(ret);
2595             }
2596         } else {
2597             /* Perform the load host endian. */
2598             ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2599             if (l.memop & MO_BSWAP) {
2600                 ret = bswap128(ret);
2601             }
2602         }
2603         return ret;
2604     }
2605 
2606     first = l.page[0].size;
2607     if (first == 8) {
2608         MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2609 
2610         a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2611         b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2612         if ((mop8 & MO_BSWAP) == MO_LE) {
2613             ret = int128_make128(a, b);
2614         } else {
2615             ret = int128_make128(b, a);
2616         }
2617         return ret;
2618     }
2619 
2620     if (first < 8) {
2621         a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2622                       MMU_DATA_LOAD, l.memop, ra);
2623         ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2624     } else {
2625         ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2626         b = int128_getlo(ret);
2627         ret = int128_lshift(ret, l.page[1].size * 8);
2628         a = int128_gethi(ret);
2629         b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2630                       MMU_DATA_LOAD, l.memop, ra);
2631         ret = int128_make128(b, a);
2632     }
2633     if ((l.memop & MO_BSWAP) == MO_LE) {
2634         ret = bswap128(ret);
2635     }
2636     return ret;
2637 }
2638 
2639 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2640                        uint32_t oi, uintptr_t retaddr)
2641 {
2642     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2643     return do_ld16_mmu(env, addr, oi, retaddr);
2644 }
2645 
2646 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2647 {
2648     return helper_ld16_mmu(env, addr, oi, GETPC());
2649 }
2650 
2651 /*
2652  * Load helpers for cpu_ldst.h.
2653  */
2654 
2655 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2656 {
2657     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2658 }
2659 
2660 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2661 {
2662     uint8_t ret;
2663 
2664     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2665     ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2666     plugin_load_cb(env, addr, oi);
2667     return ret;
2668 }
2669 
2670 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2671                      MemOpIdx oi, uintptr_t ra)
2672 {
2673     uint16_t ret;
2674 
2675     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2676     ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2677     plugin_load_cb(env, addr, oi);
2678     return ret;
2679 }
2680 
2681 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2682                      MemOpIdx oi, uintptr_t ra)
2683 {
2684     uint32_t ret;
2685 
2686     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2687     ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2688     plugin_load_cb(env, addr, oi);
2689     return ret;
2690 }
2691 
2692 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2693                      MemOpIdx oi, uintptr_t ra)
2694 {
2695     uint64_t ret;
2696 
2697     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2698     ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2699     plugin_load_cb(env, addr, oi);
2700     return ret;
2701 }
2702 
2703 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2704                     MemOpIdx oi, uintptr_t ra)
2705 {
2706     Int128 ret;
2707 
2708     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2709     ret = do_ld16_mmu(env, addr, oi, ra);
2710     plugin_load_cb(env, addr, oi);
2711     return ret;
2712 }
2713 
2714 /*
2715  * Store Helpers
2716  */
2717 
2718 /**
2719  * do_st_mmio_leN:
2720  * @env: cpu context
2721  * @full: page parameters
2722  * @val_le: data to store
2723  * @addr: virtual address
2724  * @size: number of bytes
2725  * @mmu_idx: virtual address context
2726  * @ra: return address into tcg generated code, or 0
2727  * Context: iothread lock held
2728  *
2729  * Store @size bytes at @addr, which is memory-mapped i/o.
2730  * The bytes to store are extracted in little-endian order from @val_le;
2731  * return the bytes of @val_le beyond @p->size that have not been stored.
2732  */
2733 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2734                                uint64_t val_le, vaddr addr, int size,
2735                                int mmu_idx, uintptr_t ra)
2736 {
2737     tcg_debug_assert(size > 0 && size <= 8);
2738 
2739     do {
2740         /* Store aligned pieces up to 8 bytes. */
2741         switch ((size | (int)addr) & 7) {
2742         case 1:
2743         case 3:
2744         case 5:
2745         case 7:
2746             io_writex(env, full, mmu_idx, val_le, addr, ra, MO_UB);
2747             val_le >>= 8;
2748             size -= 1;
2749             addr += 1;
2750             break;
2751         case 2:
2752         case 6:
2753             io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUW);
2754             val_le >>= 16;
2755             size -= 2;
2756             addr += 2;
2757             break;
2758         case 4:
2759             io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUL);
2760             val_le >>= 32;
2761             size -= 4;
2762             addr += 4;
2763             break;
2764         case 0:
2765             io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUQ);
2766             return 0;
2767         default:
2768             qemu_build_not_reached();
2769         }
2770     } while (size);
2771 
2772     return val_le;
2773 }
2774 
2775 /*
2776  * Wrapper for the above.
2777  */
2778 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2779                           uint64_t val_le, int mmu_idx,
2780                           MemOp mop, uintptr_t ra)
2781 {
2782     MemOp atom;
2783     unsigned tmp, half_size;
2784 
2785     if (unlikely(p->flags & TLB_MMIO)) {
2786         QEMU_IOTHREAD_LOCK_GUARD();
2787         return do_st_mmio_leN(env, p->full, val_le, p->addr,
2788                               p->size, mmu_idx, ra);
2789     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2790         return val_le >> (p->size * 8);
2791     }
2792 
2793     /*
2794      * It is a given that we cross a page and therefore there is no atomicity
2795      * for the store as a whole, but subobjects may need attention.
2796      */
2797     atom = mop & MO_ATOM_MASK;
2798     switch (atom) {
2799     case MO_ATOM_SUBALIGN:
2800         return store_parts_leN(p->haddr, p->size, val_le);
2801 
2802     case MO_ATOM_IFALIGN_PAIR:
2803     case MO_ATOM_WITHIN16_PAIR:
2804         tmp = mop & MO_SIZE;
2805         tmp = tmp ? tmp - 1 : 0;
2806         half_size = 1 << tmp;
2807         if (atom == MO_ATOM_IFALIGN_PAIR
2808             ? p->size == half_size
2809             : p->size >= half_size) {
2810             if (!HAVE_al8_fast && p->size <= 4) {
2811                 return store_whole_le4(p->haddr, p->size, val_le);
2812             } else if (HAVE_al8) {
2813                 return store_whole_le8(p->haddr, p->size, val_le);
2814             } else {
2815                 cpu_loop_exit_atomic(env_cpu(env), ra);
2816             }
2817         }
2818         /* fall through */
2819 
2820     case MO_ATOM_IFALIGN:
2821     case MO_ATOM_WITHIN16:
2822     case MO_ATOM_NONE:
2823         return store_bytes_leN(p->haddr, p->size, val_le);
2824 
2825     default:
2826         g_assert_not_reached();
2827     }
2828 }
2829 
2830 /*
2831  * Wrapper for the above, for 8 < size < 16.
2832  */
2833 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2834                             Int128 val_le, int mmu_idx,
2835                             MemOp mop, uintptr_t ra)
2836 {
2837     int size = p->size;
2838     MemOp atom;
2839 
2840     if (unlikely(p->flags & TLB_MMIO)) {
2841         QEMU_IOTHREAD_LOCK_GUARD();
2842         do_st_mmio_leN(env, p->full, int128_getlo(val_le),
2843                        p->addr, 8, mmu_idx, ra);
2844         return do_st_mmio_leN(env, p->full, int128_gethi(val_le),
2845                               p->addr + 8, size - 8, mmu_idx, ra);
2846     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2847         return int128_gethi(val_le) >> ((size - 8) * 8);
2848     }
2849 
2850     /*
2851      * It is a given that we cross a page and therefore there is no atomicity
2852      * for the store as a whole, but subobjects may need attention.
2853      */
2854     atom = mop & MO_ATOM_MASK;
2855     switch (atom) {
2856     case MO_ATOM_SUBALIGN:
2857         store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2858         return store_parts_leN(p->haddr + 8, p->size - 8,
2859                                int128_gethi(val_le));
2860 
2861     case MO_ATOM_WITHIN16_PAIR:
2862         /* Since size > 8, this is the half that must be atomic. */
2863         if (!HAVE_ATOMIC128_RW) {
2864             cpu_loop_exit_atomic(env_cpu(env), ra);
2865         }
2866         return store_whole_le16(p->haddr, p->size, val_le);
2867 
2868     case MO_ATOM_IFALIGN_PAIR:
2869         /*
2870          * Since size > 8, both halves are misaligned,
2871          * and so neither is atomic.
2872          */
2873     case MO_ATOM_IFALIGN:
2874     case MO_ATOM_WITHIN16:
2875     case MO_ATOM_NONE:
2876         stq_le_p(p->haddr, int128_getlo(val_le));
2877         return store_bytes_leN(p->haddr + 8, p->size - 8,
2878                                int128_gethi(val_le));
2879 
2880     default:
2881         g_assert_not_reached();
2882     }
2883 }
2884 
2885 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2886                     int mmu_idx, uintptr_t ra)
2887 {
2888     if (unlikely(p->flags & TLB_MMIO)) {
2889         io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2890     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2891         /* nothing */
2892     } else {
2893         *(uint8_t *)p->haddr = val;
2894     }
2895 }
2896 
2897 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2898                     int mmu_idx, MemOp memop, uintptr_t ra)
2899 {
2900     if (unlikely(p->flags & TLB_MMIO)) {
2901         if ((memop & MO_BSWAP) != MO_LE) {
2902             val = bswap16(val);
2903         }
2904         QEMU_IOTHREAD_LOCK_GUARD();
2905         do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra);
2906     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2907         /* nothing */
2908     } else {
2909         /* Swap to host endian if necessary, then store. */
2910         if (memop & MO_BSWAP) {
2911             val = bswap16(val);
2912         }
2913         store_atom_2(env, ra, p->haddr, memop, val);
2914     }
2915 }
2916 
2917 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2918                     int mmu_idx, MemOp memop, uintptr_t ra)
2919 {
2920     if (unlikely(p->flags & TLB_MMIO)) {
2921         if ((memop & MO_BSWAP) != MO_LE) {
2922             val = bswap32(val);
2923         }
2924         QEMU_IOTHREAD_LOCK_GUARD();
2925         do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra);
2926     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2927         /* nothing */
2928     } else {
2929         /* Swap to host endian if necessary, then store. */
2930         if (memop & MO_BSWAP) {
2931             val = bswap32(val);
2932         }
2933         store_atom_4(env, ra, p->haddr, memop, val);
2934     }
2935 }
2936 
2937 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2938                     int mmu_idx, MemOp memop, uintptr_t ra)
2939 {
2940     if (unlikely(p->flags & TLB_MMIO)) {
2941         if ((memop & MO_BSWAP) != MO_LE) {
2942             val = bswap64(val);
2943         }
2944         QEMU_IOTHREAD_LOCK_GUARD();
2945         do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra);
2946     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2947         /* nothing */
2948     } else {
2949         /* Swap to host endian if necessary, then store. */
2950         if (memop & MO_BSWAP) {
2951             val = bswap64(val);
2952         }
2953         store_atom_8(env, ra, p->haddr, memop, val);
2954     }
2955 }
2956 
2957 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2958                     MemOpIdx oi, uintptr_t ra)
2959 {
2960     MMULookupLocals l;
2961     bool crosspage;
2962 
2963     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2964     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2965     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2966     tcg_debug_assert(!crosspage);
2967 
2968     do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2969 }
2970 
2971 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val,
2972                        MemOpIdx oi, uintptr_t ra)
2973 {
2974     MMULookupLocals l;
2975     bool crosspage;
2976     uint8_t a, b;
2977 
2978     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2979     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2980     if (likely(!crosspage)) {
2981         do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2982         return;
2983     }
2984 
2985     if ((l.memop & MO_BSWAP) == MO_LE) {
2986         a = val, b = val >> 8;
2987     } else {
2988         b = val, a = val >> 8;
2989     }
2990     do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2991     do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2992 }
2993 
2994 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2995                     MemOpIdx oi, uintptr_t retaddr)
2996 {
2997     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2998     do_st2_mmu(env, addr, val, oi, retaddr);
2999 }
3000 
3001 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val,
3002                        MemOpIdx oi, uintptr_t ra)
3003 {
3004     MMULookupLocals l;
3005     bool crosspage;
3006 
3007     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3008     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3009     if (likely(!crosspage)) {
3010         do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3011         return;
3012     }
3013 
3014     /* Swap to little endian for simplicity, then store by bytes. */
3015     if ((l.memop & MO_BSWAP) != MO_LE) {
3016         val = bswap32(val);
3017     }
3018     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3019     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3020 }
3021 
3022 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
3023                     MemOpIdx oi, uintptr_t retaddr)
3024 {
3025     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3026     do_st4_mmu(env, addr, val, oi, retaddr);
3027 }
3028 
3029 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val,
3030                        MemOpIdx oi, uintptr_t ra)
3031 {
3032     MMULookupLocals l;
3033     bool crosspage;
3034 
3035     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3036     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3037     if (likely(!crosspage)) {
3038         do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3039         return;
3040     }
3041 
3042     /* Swap to little endian for simplicity, then store by bytes. */
3043     if ((l.memop & MO_BSWAP) != MO_LE) {
3044         val = bswap64(val);
3045     }
3046     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3047     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3048 }
3049 
3050 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
3051                     MemOpIdx oi, uintptr_t retaddr)
3052 {
3053     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3054     do_st8_mmu(env, addr, val, oi, retaddr);
3055 }
3056 
3057 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val,
3058                         MemOpIdx oi, uintptr_t ra)
3059 {
3060     MMULookupLocals l;
3061     bool crosspage;
3062     uint64_t a, b;
3063     int first;
3064 
3065     cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3066     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3067     if (likely(!crosspage)) {
3068         if (unlikely(l.page[0].flags & TLB_MMIO)) {
3069             if ((l.memop & MO_BSWAP) != MO_LE) {
3070                 val = bswap128(val);
3071             }
3072             a = int128_getlo(val);
3073             b = int128_gethi(val);
3074             QEMU_IOTHREAD_LOCK_GUARD();
3075             do_st_mmio_leN(env, l.page[0].full, a, addr, 8, l.mmu_idx, ra);
3076             do_st_mmio_leN(env, l.page[0].full, b, addr + 8, 8, l.mmu_idx, ra);
3077         } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
3078             /* nothing */
3079         } else {
3080             /* Swap to host endian if necessary, then store. */
3081             if (l.memop & MO_BSWAP) {
3082                 val = bswap128(val);
3083             }
3084             store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
3085         }
3086         return;
3087     }
3088 
3089     first = l.page[0].size;
3090     if (first == 8) {
3091         MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
3092 
3093         if (l.memop & MO_BSWAP) {
3094             val = bswap128(val);
3095         }
3096         if (HOST_BIG_ENDIAN) {
3097             b = int128_getlo(val), a = int128_gethi(val);
3098         } else {
3099             a = int128_getlo(val), b = int128_gethi(val);
3100         }
3101         do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
3102         do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
3103         return;
3104     }
3105 
3106     if ((l.memop & MO_BSWAP) != MO_LE) {
3107         val = bswap128(val);
3108     }
3109     if (first < 8) {
3110         do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
3111         val = int128_urshift(val, first * 8);
3112         do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3113     } else {
3114         b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3115         do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
3116     }
3117 }
3118 
3119 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
3120                      MemOpIdx oi, uintptr_t retaddr)
3121 {
3122     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3123     do_st16_mmu(env, addr, val, oi, retaddr);
3124 }
3125 
3126 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
3127 {
3128     helper_st16_mmu(env, addr, val, oi, GETPC());
3129 }
3130 
3131 /*
3132  * Store Helpers for cpu_ldst.h
3133  */
3134 
3135 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
3136 {
3137     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
3138 }
3139 
3140 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
3141                  MemOpIdx oi, uintptr_t retaddr)
3142 {
3143     helper_stb_mmu(env, addr, val, oi, retaddr);
3144     plugin_store_cb(env, addr, oi);
3145 }
3146 
3147 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
3148                  MemOpIdx oi, uintptr_t retaddr)
3149 {
3150     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
3151     do_st2_mmu(env, addr, val, oi, retaddr);
3152     plugin_store_cb(env, addr, oi);
3153 }
3154 
3155 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
3156                     MemOpIdx oi, uintptr_t retaddr)
3157 {
3158     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3159     do_st4_mmu(env, addr, val, oi, retaddr);
3160     plugin_store_cb(env, addr, oi);
3161 }
3162 
3163 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
3164                  MemOpIdx oi, uintptr_t retaddr)
3165 {
3166     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3167     do_st8_mmu(env, addr, val, oi, retaddr);
3168     plugin_store_cb(env, addr, oi);
3169 }
3170 
3171 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
3172                   MemOpIdx oi, uintptr_t retaddr)
3173 {
3174     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3175     do_st16_mmu(env, addr, val, oi, retaddr);
3176     plugin_store_cb(env, addr, oi);
3177 }
3178 
3179 #include "ldst_common.c.inc"
3180 
3181 /*
3182  * First set of functions passes in OI and RETADDR.
3183  * This makes them callable from other helpers.
3184  */
3185 
3186 #define ATOMIC_NAME(X) \
3187     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3188 
3189 #define ATOMIC_MMU_CLEANUP
3190 
3191 #include "atomic_common.c.inc"
3192 
3193 #define DATA_SIZE 1
3194 #include "atomic_template.h"
3195 
3196 #define DATA_SIZE 2
3197 #include "atomic_template.h"
3198 
3199 #define DATA_SIZE 4
3200 #include "atomic_template.h"
3201 
3202 #ifdef CONFIG_ATOMIC64
3203 #define DATA_SIZE 8
3204 #include "atomic_template.h"
3205 #endif
3206 
3207 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
3208 #define DATA_SIZE 16
3209 #include "atomic_template.h"
3210 #endif
3211 
3212 /* Code access functions.  */
3213 
3214 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3215 {
3216     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3217     return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3218 }
3219 
3220 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3221 {
3222     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3223     return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3224 }
3225 
3226 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3227 {
3228     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3229     return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3230 }
3231 
3232 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3233 {
3234     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3235     return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3236 }
3237 
3238 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3239                          MemOpIdx oi, uintptr_t retaddr)
3240 {
3241     return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3242 }
3243 
3244 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3245                           MemOpIdx oi, uintptr_t retaddr)
3246 {
3247     return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3248 }
3249 
3250 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3251                           MemOpIdx oi, uintptr_t retaddr)
3252 {
3253     return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3254 }
3255 
3256 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3257                           MemOpIdx oi, uintptr_t retaddr)
3258 {
3259     return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3260 }
3261