1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto-common.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 #include "tcg/oversized-guest.h" 44 45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 46 /* #define DEBUG_TLB */ 47 /* #define DEBUG_TLB_LOG */ 48 49 #ifdef DEBUG_TLB 50 # define DEBUG_TLB_GATE 1 51 # ifdef DEBUG_TLB_LOG 52 # define DEBUG_TLB_LOG_GATE 1 53 # else 54 # define DEBUG_TLB_LOG_GATE 0 55 # endif 56 #else 57 # define DEBUG_TLB_GATE 0 58 # define DEBUG_TLB_LOG_GATE 0 59 #endif 60 61 #define tlb_debug(fmt, ...) do { \ 62 if (DEBUG_TLB_LOG_GATE) { \ 63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 64 ## __VA_ARGS__); \ 65 } else if (DEBUG_TLB_GATE) { \ 66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 67 } \ 68 } while (0) 69 70 #define assert_cpu_is_self(cpu) do { \ 71 if (DEBUG_TLB_GATE) { \ 72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 73 } \ 74 } while (0) 75 76 /* run_on_cpu_data.target_ptr should always be big enough for a 77 * vaddr even on 32 bit builds 78 */ 79 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); 80 81 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 82 */ 83 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 84 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 85 86 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 87 { 88 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 89 } 90 91 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 92 { 93 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 94 } 95 96 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 97 size_t max_entries) 98 { 99 desc->window_begin_ns = ns; 100 desc->window_max_entries = max_entries; 101 } 102 103 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 104 { 105 CPUJumpCache *jc = cpu->tb_jmp_cache; 106 int i, i0; 107 108 if (unlikely(!jc)) { 109 return; 110 } 111 112 i0 = tb_jmp_cache_hash_page(page_addr); 113 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 114 qatomic_set(&jc->array[i0 + i].tb, NULL); 115 } 116 } 117 118 /** 119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 120 * @desc: The CPUTLBDesc portion of the TLB 121 * @fast: The CPUTLBDescFast portion of the same TLB 122 * 123 * Called with tlb_lock_held. 124 * 125 * We have two main constraints when resizing a TLB: (1) we only resize it 126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 127 * the array or unnecessarily flushing it), which means we do not control how 128 * frequently the resizing can occur; (2) we don't have access to the guest's 129 * future scheduling decisions, and therefore have to decide the magnitude of 130 * the resize based on past observations. 131 * 132 * In general, a memory-hungry process can benefit greatly from an appropriately 133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 134 * we just have to make the TLB as large as possible; while an oversized TLB 135 * results in minimal TLB miss rates, it also takes longer to be flushed 136 * (flushes can be _very_ frequent), and the reduced locality can also hurt 137 * performance. 138 * 139 * To achieve near-optimal performance for all kinds of workloads, we: 140 * 141 * 1. Aggressively increase the size of the TLB when the use rate of the 142 * TLB being flushed is high, since it is likely that in the near future this 143 * memory-hungry process will execute again, and its memory hungriness will 144 * probably be similar. 145 * 146 * 2. Slowly reduce the size of the TLB as the use rate declines over a 147 * reasonably large time window. The rationale is that if in such a time window 148 * we have not observed a high TLB use rate, it is likely that we won't observe 149 * it in the near future. In that case, once a time window expires we downsize 150 * the TLB to match the maximum use rate observed in the window. 151 * 152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 153 * since in that range performance is likely near-optimal. Recall that the TLB 154 * is direct mapped, so we want the use rate to be low (or at least not too 155 * high), since otherwise we are likely to have a significant amount of 156 * conflict misses. 157 */ 158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 159 int64_t now) 160 { 161 size_t old_size = tlb_n_entries(fast); 162 size_t rate; 163 size_t new_size = old_size; 164 int64_t window_len_ms = 100; 165 int64_t window_len_ns = window_len_ms * 1000 * 1000; 166 bool window_expired = now > desc->window_begin_ns + window_len_ns; 167 168 if (desc->n_used_entries > desc->window_max_entries) { 169 desc->window_max_entries = desc->n_used_entries; 170 } 171 rate = desc->window_max_entries * 100 / old_size; 172 173 if (rate > 70) { 174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 175 } else if (rate < 30 && window_expired) { 176 size_t ceil = pow2ceil(desc->window_max_entries); 177 size_t expected_rate = desc->window_max_entries * 100 / ceil; 178 179 /* 180 * Avoid undersizing when the max number of entries seen is just below 181 * a pow2. For instance, if max_entries == 1025, the expected use rate 182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 184 * later. Thus, make sure that the expected use rate remains below 70%. 185 * (and since we double the size, that means the lowest rate we'd 186 * expect to get is 35%, which is still in the 30-70% range where 187 * we consider that the size is appropriate.) 188 */ 189 if (expected_rate > 70) { 190 ceil *= 2; 191 } 192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 193 } 194 195 if (new_size == old_size) { 196 if (window_expired) { 197 tlb_window_reset(desc, now, desc->n_used_entries); 198 } 199 return; 200 } 201 202 g_free(fast->table); 203 g_free(desc->fulltlb); 204 205 tlb_window_reset(desc, now, 0); 206 /* desc->n_used_entries is cleared by the caller */ 207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 208 fast->table = g_try_new(CPUTLBEntry, new_size); 209 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 210 211 /* 212 * If the allocations fail, try smaller sizes. We just freed some 213 * memory, so going back to half of new_size has a good chance of working. 214 * Increased memory pressure elsewhere in the system might cause the 215 * allocations to fail though, so we progressively reduce the allocation 216 * size, aborting if we cannot even allocate the smallest TLB we support. 217 */ 218 while (fast->table == NULL || desc->fulltlb == NULL) { 219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 220 error_report("%s: %s", __func__, strerror(errno)); 221 abort(); 222 } 223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 225 226 g_free(fast->table); 227 g_free(desc->fulltlb); 228 fast->table = g_try_new(CPUTLBEntry, new_size); 229 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 230 } 231 } 232 233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 234 { 235 desc->n_used_entries = 0; 236 desc->large_page_addr = -1; 237 desc->large_page_mask = -1; 238 desc->vindex = 0; 239 memset(fast->table, -1, sizeof_tlb(fast)); 240 memset(desc->vtable, -1, sizeof(desc->vtable)); 241 } 242 243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 244 int64_t now) 245 { 246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 248 249 tlb_mmu_resize_locked(desc, fast, now); 250 tlb_mmu_flush_locked(desc, fast); 251 } 252 253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 254 { 255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 256 257 tlb_window_reset(desc, now, 0); 258 desc->n_used_entries = 0; 259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 260 fast->table = g_new(CPUTLBEntry, n_entries); 261 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 262 tlb_mmu_flush_locked(desc, fast); 263 } 264 265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 266 { 267 env_tlb(env)->d[mmu_idx].n_used_entries++; 268 } 269 270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 271 { 272 env_tlb(env)->d[mmu_idx].n_used_entries--; 273 } 274 275 void tlb_init(CPUState *cpu) 276 { 277 CPUArchState *env = cpu->env_ptr; 278 int64_t now = get_clock_realtime(); 279 int i; 280 281 qemu_spin_init(&env_tlb(env)->c.lock); 282 283 /* All tlbs are initialized flushed. */ 284 env_tlb(env)->c.dirty = 0; 285 286 for (i = 0; i < NB_MMU_MODES; i++) { 287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 288 } 289 } 290 291 void tlb_destroy(CPUState *cpu) 292 { 293 CPUArchState *env = cpu->env_ptr; 294 int i; 295 296 qemu_spin_destroy(&env_tlb(env)->c.lock); 297 for (i = 0; i < NB_MMU_MODES; i++) { 298 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 299 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 300 301 g_free(fast->table); 302 g_free(desc->fulltlb); 303 } 304 } 305 306 /* flush_all_helper: run fn across all cpus 307 * 308 * If the wait flag is set then the src cpu's helper will be queued as 309 * "safe" work and the loop exited creating a synchronisation point 310 * where all queued work will be finished before execution starts 311 * again. 312 */ 313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 314 run_on_cpu_data d) 315 { 316 CPUState *cpu; 317 318 CPU_FOREACH(cpu) { 319 if (cpu != src) { 320 async_run_on_cpu(cpu, fn, d); 321 } 322 } 323 } 324 325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 326 { 327 CPUState *cpu; 328 size_t full = 0, part = 0, elide = 0; 329 330 CPU_FOREACH(cpu) { 331 CPUArchState *env = cpu->env_ptr; 332 333 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 334 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 336 } 337 *pfull = full; 338 *ppart = part; 339 *pelide = elide; 340 } 341 342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 343 { 344 CPUArchState *env = cpu->env_ptr; 345 uint16_t asked = data.host_int; 346 uint16_t all_dirty, work, to_clean; 347 int64_t now = get_clock_realtime(); 348 349 assert_cpu_is_self(cpu); 350 351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 352 353 qemu_spin_lock(&env_tlb(env)->c.lock); 354 355 all_dirty = env_tlb(env)->c.dirty; 356 to_clean = asked & all_dirty; 357 all_dirty &= ~to_clean; 358 env_tlb(env)->c.dirty = all_dirty; 359 360 for (work = to_clean; work != 0; work &= work - 1) { 361 int mmu_idx = ctz32(work); 362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 363 } 364 365 qemu_spin_unlock(&env_tlb(env)->c.lock); 366 367 tcg_flush_jmp_cache(cpu); 368 369 if (to_clean == ALL_MMUIDX_BITS) { 370 qatomic_set(&env_tlb(env)->c.full_flush_count, 371 env_tlb(env)->c.full_flush_count + 1); 372 } else { 373 qatomic_set(&env_tlb(env)->c.part_flush_count, 374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 375 if (to_clean != asked) { 376 qatomic_set(&env_tlb(env)->c.elide_flush_count, 377 env_tlb(env)->c.elide_flush_count + 378 ctpop16(asked & ~to_clean)); 379 } 380 } 381 } 382 383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 384 { 385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 386 387 if (cpu->created && !qemu_cpu_is_self(cpu)) { 388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 389 RUN_ON_CPU_HOST_INT(idxmap)); 390 } else { 391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 392 } 393 } 394 395 void tlb_flush(CPUState *cpu) 396 { 397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 398 } 399 400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 401 { 402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 403 404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 405 406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 408 } 409 410 void tlb_flush_all_cpus(CPUState *src_cpu) 411 { 412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 413 } 414 415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 416 { 417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 418 419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 420 421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 423 } 424 425 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 426 { 427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 428 } 429 430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 431 vaddr page, vaddr mask) 432 { 433 page &= mask; 434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 435 436 return (page == (tlb_entry->addr_read & mask) || 437 page == (tlb_addr_write(tlb_entry) & mask) || 438 page == (tlb_entry->addr_code & mask)); 439 } 440 441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 442 { 443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 444 } 445 446 /** 447 * tlb_entry_is_empty - return true if the entry is not in use 448 * @te: pointer to CPUTLBEntry 449 */ 450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 451 { 452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 453 } 454 455 /* Called with tlb_c.lock held */ 456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 457 vaddr page, 458 vaddr mask) 459 { 460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 461 memset(tlb_entry, -1, sizeof(*tlb_entry)); 462 return true; 463 } 464 return false; 465 } 466 467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 468 { 469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 470 } 471 472 /* Called with tlb_c.lock held */ 473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 474 vaddr page, 475 vaddr mask) 476 { 477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 478 int k; 479 480 assert_cpu_is_self(env_cpu(env)); 481 for (k = 0; k < CPU_VTLB_SIZE; k++) { 482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 483 tlb_n_used_entries_dec(env, mmu_idx); 484 } 485 } 486 } 487 488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 489 vaddr page) 490 { 491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 492 } 493 494 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page) 495 { 496 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr; 497 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask; 498 499 /* Check if we need to flush due to large pages. */ 500 if ((page & lp_mask) == lp_addr) { 501 tlb_debug("forcing full flush midx %d (%016" 502 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 503 midx, lp_addr, lp_mask); 504 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 505 } else { 506 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 507 tlb_n_used_entries_dec(env, midx); 508 } 509 tlb_flush_vtlb_page_locked(env, midx, page); 510 } 511 } 512 513 /** 514 * tlb_flush_page_by_mmuidx_async_0: 515 * @cpu: cpu on which to flush 516 * @addr: page of virtual address to flush 517 * @idxmap: set of mmu_idx to flush 518 * 519 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 520 * at @addr from the tlbs indicated by @idxmap from @cpu. 521 */ 522 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 523 vaddr addr, 524 uint16_t idxmap) 525 { 526 CPUArchState *env = cpu->env_ptr; 527 int mmu_idx; 528 529 assert_cpu_is_self(cpu); 530 531 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 532 533 qemu_spin_lock(&env_tlb(env)->c.lock); 534 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 535 if ((idxmap >> mmu_idx) & 1) { 536 tlb_flush_page_locked(env, mmu_idx, addr); 537 } 538 } 539 qemu_spin_unlock(&env_tlb(env)->c.lock); 540 541 /* 542 * Discard jump cache entries for any tb which might potentially 543 * overlap the flushed page, which includes the previous. 544 */ 545 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 546 tb_jmp_cache_clear_page(cpu, addr); 547 } 548 549 /** 550 * tlb_flush_page_by_mmuidx_async_1: 551 * @cpu: cpu on which to flush 552 * @data: encoded addr + idxmap 553 * 554 * Helper for tlb_flush_page_by_mmuidx and friends, called through 555 * async_run_on_cpu. The idxmap parameter is encoded in the page 556 * offset of the target_ptr field. This limits the set of mmu_idx 557 * that can be passed via this method. 558 */ 559 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 560 run_on_cpu_data data) 561 { 562 vaddr addr_and_idxmap = data.target_ptr; 563 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 564 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 565 566 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 567 } 568 569 typedef struct { 570 vaddr addr; 571 uint16_t idxmap; 572 } TLBFlushPageByMMUIdxData; 573 574 /** 575 * tlb_flush_page_by_mmuidx_async_2: 576 * @cpu: cpu on which to flush 577 * @data: allocated addr + idxmap 578 * 579 * Helper for tlb_flush_page_by_mmuidx and friends, called through 580 * async_run_on_cpu. The addr+idxmap parameters are stored in a 581 * TLBFlushPageByMMUIdxData structure that has been allocated 582 * specifically for this helper. Free the structure when done. 583 */ 584 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 585 run_on_cpu_data data) 586 { 587 TLBFlushPageByMMUIdxData *d = data.host_ptr; 588 589 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 590 g_free(d); 591 } 592 593 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 594 { 595 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 596 597 /* This should already be page aligned */ 598 addr &= TARGET_PAGE_MASK; 599 600 if (qemu_cpu_is_self(cpu)) { 601 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 602 } else if (idxmap < TARGET_PAGE_SIZE) { 603 /* 604 * Most targets have only a few mmu_idx. In the case where 605 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 606 * allocating memory for this operation. 607 */ 608 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 609 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 610 } else { 611 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 612 613 /* Otherwise allocate a structure, freed by the worker. */ 614 d->addr = addr; 615 d->idxmap = idxmap; 616 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 617 RUN_ON_CPU_HOST_PTR(d)); 618 } 619 } 620 621 void tlb_flush_page(CPUState *cpu, vaddr addr) 622 { 623 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 624 } 625 626 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, 627 uint16_t idxmap) 628 { 629 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 630 631 /* This should already be page aligned */ 632 addr &= TARGET_PAGE_MASK; 633 634 /* 635 * Allocate memory to hold addr+idxmap only when needed. 636 * See tlb_flush_page_by_mmuidx for details. 637 */ 638 if (idxmap < TARGET_PAGE_SIZE) { 639 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 640 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 641 } else { 642 CPUState *dst_cpu; 643 644 /* Allocate a separate data block for each destination cpu. */ 645 CPU_FOREACH(dst_cpu) { 646 if (dst_cpu != src_cpu) { 647 TLBFlushPageByMMUIdxData *d 648 = g_new(TLBFlushPageByMMUIdxData, 1); 649 650 d->addr = addr; 651 d->idxmap = idxmap; 652 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 653 RUN_ON_CPU_HOST_PTR(d)); 654 } 655 } 656 } 657 658 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 659 } 660 661 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr) 662 { 663 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 664 } 665 666 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 667 vaddr addr, 668 uint16_t idxmap) 669 { 670 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 671 672 /* This should already be page aligned */ 673 addr &= TARGET_PAGE_MASK; 674 675 /* 676 * Allocate memory to hold addr+idxmap only when needed. 677 * See tlb_flush_page_by_mmuidx for details. 678 */ 679 if (idxmap < TARGET_PAGE_SIZE) { 680 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 681 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 682 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 683 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 684 } else { 685 CPUState *dst_cpu; 686 TLBFlushPageByMMUIdxData *d; 687 688 /* Allocate a separate data block for each destination cpu. */ 689 CPU_FOREACH(dst_cpu) { 690 if (dst_cpu != src_cpu) { 691 d = g_new(TLBFlushPageByMMUIdxData, 1); 692 d->addr = addr; 693 d->idxmap = idxmap; 694 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 695 RUN_ON_CPU_HOST_PTR(d)); 696 } 697 } 698 699 d = g_new(TLBFlushPageByMMUIdxData, 1); 700 d->addr = addr; 701 d->idxmap = idxmap; 702 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 703 RUN_ON_CPU_HOST_PTR(d)); 704 } 705 } 706 707 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 708 { 709 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 710 } 711 712 static void tlb_flush_range_locked(CPUArchState *env, int midx, 713 vaddr addr, vaddr len, 714 unsigned bits) 715 { 716 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 717 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 718 vaddr mask = MAKE_64BIT_MASK(0, bits); 719 720 /* 721 * If @bits is smaller than the tlb size, there may be multiple entries 722 * within the TLB; otherwise all addresses that match under @mask hit 723 * the same TLB entry. 724 * TODO: Perhaps allow bits to be a few bits less than the size. 725 * For now, just flush the entire TLB. 726 * 727 * If @len is larger than the tlb size, then it will take longer to 728 * test all of the entries in the TLB than it will to flush it all. 729 */ 730 if (mask < f->mask || len > f->mask) { 731 tlb_debug("forcing full flush midx %d (" 732 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 733 midx, addr, mask, len); 734 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 735 return; 736 } 737 738 /* 739 * Check if we need to flush due to large pages. 740 * Because large_page_mask contains all 1's from the msb, 741 * we only need to test the end of the range. 742 */ 743 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 744 tlb_debug("forcing full flush midx %d (" 745 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 746 midx, d->large_page_addr, d->large_page_mask); 747 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 748 return; 749 } 750 751 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 752 vaddr page = addr + i; 753 CPUTLBEntry *entry = tlb_entry(env, midx, page); 754 755 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 756 tlb_n_used_entries_dec(env, midx); 757 } 758 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 759 } 760 } 761 762 typedef struct { 763 vaddr addr; 764 vaddr len; 765 uint16_t idxmap; 766 uint16_t bits; 767 } TLBFlushRangeData; 768 769 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 770 TLBFlushRangeData d) 771 { 772 CPUArchState *env = cpu->env_ptr; 773 int mmu_idx; 774 775 assert_cpu_is_self(cpu); 776 777 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 778 d.addr, d.bits, d.len, d.idxmap); 779 780 qemu_spin_lock(&env_tlb(env)->c.lock); 781 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 782 if ((d.idxmap >> mmu_idx) & 1) { 783 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 784 } 785 } 786 qemu_spin_unlock(&env_tlb(env)->c.lock); 787 788 /* 789 * If the length is larger than the jump cache size, then it will take 790 * longer to clear each entry individually than it will to clear it all. 791 */ 792 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 793 tcg_flush_jmp_cache(cpu); 794 return; 795 } 796 797 /* 798 * Discard jump cache entries for any tb which might potentially 799 * overlap the flushed pages, which includes the previous. 800 */ 801 d.addr -= TARGET_PAGE_SIZE; 802 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 803 tb_jmp_cache_clear_page(cpu, d.addr); 804 d.addr += TARGET_PAGE_SIZE; 805 } 806 } 807 808 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 809 run_on_cpu_data data) 810 { 811 TLBFlushRangeData *d = data.host_ptr; 812 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 813 g_free(d); 814 } 815 816 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 817 vaddr len, uint16_t idxmap, 818 unsigned bits) 819 { 820 TLBFlushRangeData d; 821 822 /* 823 * If all bits are significant, and len is small, 824 * this devolves to tlb_flush_page. 825 */ 826 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 827 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 828 return; 829 } 830 /* If no page bits are significant, this devolves to tlb_flush. */ 831 if (bits < TARGET_PAGE_BITS) { 832 tlb_flush_by_mmuidx(cpu, idxmap); 833 return; 834 } 835 836 /* This should already be page aligned */ 837 d.addr = addr & TARGET_PAGE_MASK; 838 d.len = len; 839 d.idxmap = idxmap; 840 d.bits = bits; 841 842 if (qemu_cpu_is_self(cpu)) { 843 tlb_flush_range_by_mmuidx_async_0(cpu, d); 844 } else { 845 /* Otherwise allocate a structure, freed by the worker. */ 846 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 847 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 848 RUN_ON_CPU_HOST_PTR(p)); 849 } 850 } 851 852 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 853 uint16_t idxmap, unsigned bits) 854 { 855 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 856 } 857 858 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 859 vaddr addr, vaddr len, 860 uint16_t idxmap, unsigned bits) 861 { 862 TLBFlushRangeData d; 863 CPUState *dst_cpu; 864 865 /* 866 * If all bits are significant, and len is small, 867 * this devolves to tlb_flush_page. 868 */ 869 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 870 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 871 return; 872 } 873 /* If no page bits are significant, this devolves to tlb_flush. */ 874 if (bits < TARGET_PAGE_BITS) { 875 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 876 return; 877 } 878 879 /* This should already be page aligned */ 880 d.addr = addr & TARGET_PAGE_MASK; 881 d.len = len; 882 d.idxmap = idxmap; 883 d.bits = bits; 884 885 /* Allocate a separate data block for each destination cpu. */ 886 CPU_FOREACH(dst_cpu) { 887 if (dst_cpu != src_cpu) { 888 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 889 async_run_on_cpu(dst_cpu, 890 tlb_flush_range_by_mmuidx_async_1, 891 RUN_ON_CPU_HOST_PTR(p)); 892 } 893 } 894 895 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 896 } 897 898 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 899 vaddr addr, uint16_t idxmap, 900 unsigned bits) 901 { 902 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 903 idxmap, bits); 904 } 905 906 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 907 vaddr addr, 908 vaddr len, 909 uint16_t idxmap, 910 unsigned bits) 911 { 912 TLBFlushRangeData d, *p; 913 CPUState *dst_cpu; 914 915 /* 916 * If all bits are significant, and len is small, 917 * this devolves to tlb_flush_page. 918 */ 919 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 920 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 921 return; 922 } 923 /* If no page bits are significant, this devolves to tlb_flush. */ 924 if (bits < TARGET_PAGE_BITS) { 925 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 926 return; 927 } 928 929 /* This should already be page aligned */ 930 d.addr = addr & TARGET_PAGE_MASK; 931 d.len = len; 932 d.idxmap = idxmap; 933 d.bits = bits; 934 935 /* Allocate a separate data block for each destination cpu. */ 936 CPU_FOREACH(dst_cpu) { 937 if (dst_cpu != src_cpu) { 938 p = g_memdup(&d, sizeof(d)); 939 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 940 RUN_ON_CPU_HOST_PTR(p)); 941 } 942 } 943 944 p = g_memdup(&d, sizeof(d)); 945 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 946 RUN_ON_CPU_HOST_PTR(p)); 947 } 948 949 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 950 vaddr addr, 951 uint16_t idxmap, 952 unsigned bits) 953 { 954 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 955 idxmap, bits); 956 } 957 958 /* update the TLBs so that writes to code in the virtual page 'addr' 959 can be detected */ 960 void tlb_protect_code(ram_addr_t ram_addr) 961 { 962 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 963 TARGET_PAGE_SIZE, 964 DIRTY_MEMORY_CODE); 965 } 966 967 /* update the TLB so that writes in physical page 'phys_addr' are no longer 968 tested for self modifying code */ 969 void tlb_unprotect_code(ram_addr_t ram_addr) 970 { 971 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 972 } 973 974 975 /* 976 * Dirty write flag handling 977 * 978 * When the TCG code writes to a location it looks up the address in 979 * the TLB and uses that data to compute the final address. If any of 980 * the lower bits of the address are set then the slow path is forced. 981 * There are a number of reasons to do this but for normal RAM the 982 * most usual is detecting writes to code regions which may invalidate 983 * generated code. 984 * 985 * Other vCPUs might be reading their TLBs during guest execution, so we update 986 * te->addr_write with qatomic_set. We don't need to worry about this for 987 * oversized guests as MTTCG is disabled for them. 988 * 989 * Called with tlb_c.lock held. 990 */ 991 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 992 uintptr_t start, uintptr_t length) 993 { 994 uintptr_t addr = tlb_entry->addr_write; 995 996 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 997 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 998 addr &= TARGET_PAGE_MASK; 999 addr += tlb_entry->addend; 1000 if ((addr - start) < length) { 1001 #if TARGET_LONG_BITS == 32 1002 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 1003 ptr_write += HOST_BIG_ENDIAN; 1004 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 1005 #elif TCG_OVERSIZED_GUEST 1006 tlb_entry->addr_write |= TLB_NOTDIRTY; 1007 #else 1008 qatomic_set(&tlb_entry->addr_write, 1009 tlb_entry->addr_write | TLB_NOTDIRTY); 1010 #endif 1011 } 1012 } 1013 } 1014 1015 /* 1016 * Called with tlb_c.lock held. 1017 * Called only from the vCPU context, i.e. the TLB's owner thread. 1018 */ 1019 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1020 { 1021 *d = *s; 1022 } 1023 1024 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1025 * the target vCPU). 1026 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1027 * thing actually updated is the target TLB entry ->addr_write flags. 1028 */ 1029 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1030 { 1031 CPUArchState *env; 1032 1033 int mmu_idx; 1034 1035 env = cpu->env_ptr; 1036 qemu_spin_lock(&env_tlb(env)->c.lock); 1037 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1038 unsigned int i; 1039 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1040 1041 for (i = 0; i < n; i++) { 1042 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1043 start1, length); 1044 } 1045 1046 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1047 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1048 start1, length); 1049 } 1050 } 1051 qemu_spin_unlock(&env_tlb(env)->c.lock); 1052 } 1053 1054 /* Called with tlb_c.lock held */ 1055 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1056 vaddr addr) 1057 { 1058 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 1059 tlb_entry->addr_write = addr; 1060 } 1061 } 1062 1063 /* update the TLB corresponding to virtual page vaddr 1064 so that it is no longer dirty */ 1065 void tlb_set_dirty(CPUState *cpu, vaddr addr) 1066 { 1067 CPUArchState *env = cpu->env_ptr; 1068 int mmu_idx; 1069 1070 assert_cpu_is_self(cpu); 1071 1072 addr &= TARGET_PAGE_MASK; 1073 qemu_spin_lock(&env_tlb(env)->c.lock); 1074 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1075 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr); 1076 } 1077 1078 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1079 int k; 1080 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1081 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr); 1082 } 1083 } 1084 qemu_spin_unlock(&env_tlb(env)->c.lock); 1085 } 1086 1087 /* Our TLB does not support large pages, so remember the area covered by 1088 large pages and trigger a full TLB flush if these are invalidated. */ 1089 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1090 vaddr addr, uint64_t size) 1091 { 1092 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1093 vaddr lp_mask = ~(size - 1); 1094 1095 if (lp_addr == (vaddr)-1) { 1096 /* No previous large page. */ 1097 lp_addr = addr; 1098 } else { 1099 /* Extend the existing region to include the new page. 1100 This is a compromise between unnecessary flushes and 1101 the cost of maintaining a full variable size TLB. */ 1102 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1103 while (((lp_addr ^ addr) & lp_mask) != 0) { 1104 lp_mask <<= 1; 1105 } 1106 } 1107 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1108 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1109 } 1110 1111 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 1112 vaddr address, int flags, 1113 MMUAccessType access_type, bool enable) 1114 { 1115 if (enable) { 1116 address |= flags & TLB_FLAGS_MASK; 1117 flags &= TLB_SLOW_FLAGS_MASK; 1118 if (flags) { 1119 address |= TLB_FORCE_SLOW; 1120 } 1121 } else { 1122 address = -1; 1123 flags = 0; 1124 } 1125 ent->addr_idx[access_type] = address; 1126 full->slow_flags[access_type] = flags; 1127 } 1128 1129 /* 1130 * Add a new TLB entry. At most one entry for a given virtual address 1131 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1132 * supplied size is only used by tlb_flush_page. 1133 * 1134 * Called from TCG-generated code, which is under an RCU read-side 1135 * critical section. 1136 */ 1137 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1138 vaddr addr, CPUTLBEntryFull *full) 1139 { 1140 CPUArchState *env = cpu->env_ptr; 1141 CPUTLB *tlb = env_tlb(env); 1142 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1143 MemoryRegionSection *section; 1144 unsigned int index, read_flags, write_flags; 1145 uintptr_t addend; 1146 CPUTLBEntry *te, tn; 1147 hwaddr iotlb, xlat, sz, paddr_page; 1148 vaddr addr_page; 1149 int asidx, wp_flags, prot; 1150 bool is_ram, is_romd; 1151 1152 assert_cpu_is_self(cpu); 1153 1154 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1155 sz = TARGET_PAGE_SIZE; 1156 } else { 1157 sz = (hwaddr)1 << full->lg_page_size; 1158 tlb_add_large_page(env, mmu_idx, addr, sz); 1159 } 1160 addr_page = addr & TARGET_PAGE_MASK; 1161 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1162 1163 prot = full->prot; 1164 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1165 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1166 &xlat, &sz, full->attrs, &prot); 1167 assert(sz >= TARGET_PAGE_SIZE); 1168 1169 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1170 " prot=%x idx=%d\n", 1171 addr, full->phys_addr, prot, mmu_idx); 1172 1173 read_flags = 0; 1174 if (full->lg_page_size < TARGET_PAGE_BITS) { 1175 /* Repeat the MMU check and TLB fill on every access. */ 1176 read_flags |= TLB_INVALID_MASK; 1177 } 1178 if (full->attrs.byte_swap) { 1179 read_flags |= TLB_BSWAP; 1180 } 1181 1182 is_ram = memory_region_is_ram(section->mr); 1183 is_romd = memory_region_is_romd(section->mr); 1184 1185 if (is_ram || is_romd) { 1186 /* RAM and ROMD both have associated host memory. */ 1187 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1188 } else { 1189 /* I/O does not; force the host address to NULL. */ 1190 addend = 0; 1191 } 1192 1193 write_flags = read_flags; 1194 if (is_ram) { 1195 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1196 assert(!(iotlb & ~TARGET_PAGE_MASK)); 1197 /* 1198 * Computing is_clean is expensive; avoid all that unless 1199 * the page is actually writable. 1200 */ 1201 if (prot & PAGE_WRITE) { 1202 if (section->readonly) { 1203 write_flags |= TLB_DISCARD_WRITE; 1204 } else if (cpu_physical_memory_is_clean(iotlb)) { 1205 write_flags |= TLB_NOTDIRTY; 1206 } 1207 } 1208 } else { 1209 /* I/O or ROMD */ 1210 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1211 /* 1212 * Writes to romd devices must go through MMIO to enable write. 1213 * Reads to romd devices go through the ram_ptr found above, 1214 * but of course reads to I/O must go through MMIO. 1215 */ 1216 write_flags |= TLB_MMIO; 1217 if (!is_romd) { 1218 read_flags = write_flags; 1219 } 1220 } 1221 1222 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1223 TARGET_PAGE_SIZE); 1224 1225 index = tlb_index(env, mmu_idx, addr_page); 1226 te = tlb_entry(env, mmu_idx, addr_page); 1227 1228 /* 1229 * Hold the TLB lock for the rest of the function. We could acquire/release 1230 * the lock several times in the function, but it is faster to amortize the 1231 * acquisition cost by acquiring it just once. Note that this leads to 1232 * a longer critical section, but this is not a concern since the TLB lock 1233 * is unlikely to be contended. 1234 */ 1235 qemu_spin_lock(&tlb->c.lock); 1236 1237 /* Note that the tlb is no longer clean. */ 1238 tlb->c.dirty |= 1 << mmu_idx; 1239 1240 /* Make sure there's no cached translation for the new page. */ 1241 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page); 1242 1243 /* 1244 * Only evict the old entry to the victim tlb if it's for a 1245 * different page; otherwise just overwrite the stale data. 1246 */ 1247 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1248 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1249 CPUTLBEntry *tv = &desc->vtable[vidx]; 1250 1251 /* Evict the old entry into the victim tlb. */ 1252 copy_tlb_helper_locked(tv, te); 1253 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1254 tlb_n_used_entries_dec(env, mmu_idx); 1255 } 1256 1257 /* refill the tlb */ 1258 /* 1259 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS 1260 * aligned ram_addr_t of the page base of the target RAM. 1261 * Otherwise, iotlb contains 1262 * - a physical section number in the lower TARGET_PAGE_BITS 1263 * - the offset within section->mr of the page base (I/O, ROMD) with the 1264 * TARGET_PAGE_BITS masked off. 1265 * We subtract addr_page (which is page aligned and thus won't 1266 * disturb the low bits) to give an offset which can be added to the 1267 * (non-page-aligned) vaddr of the eventual memory access to get 1268 * the MemoryRegion offset for the access. Note that the vaddr we 1269 * subtract here is that of the page base, and not the same as the 1270 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1271 */ 1272 desc->fulltlb[index] = *full; 1273 full = &desc->fulltlb[index]; 1274 full->xlat_section = iotlb - addr_page; 1275 full->phys_addr = paddr_page; 1276 1277 /* Now calculate the new entry */ 1278 tn.addend = addend - addr_page; 1279 1280 tlb_set_compare(full, &tn, addr_page, read_flags, 1281 MMU_INST_FETCH, prot & PAGE_EXEC); 1282 1283 if (wp_flags & BP_MEM_READ) { 1284 read_flags |= TLB_WATCHPOINT; 1285 } 1286 tlb_set_compare(full, &tn, addr_page, read_flags, 1287 MMU_DATA_LOAD, prot & PAGE_READ); 1288 1289 if (prot & PAGE_WRITE_INV) { 1290 write_flags |= TLB_INVALID_MASK; 1291 } 1292 if (wp_flags & BP_MEM_WRITE) { 1293 write_flags |= TLB_WATCHPOINT; 1294 } 1295 tlb_set_compare(full, &tn, addr_page, write_flags, 1296 MMU_DATA_STORE, prot & PAGE_WRITE); 1297 1298 copy_tlb_helper_locked(te, &tn); 1299 tlb_n_used_entries_inc(env, mmu_idx); 1300 qemu_spin_unlock(&tlb->c.lock); 1301 } 1302 1303 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1304 hwaddr paddr, MemTxAttrs attrs, int prot, 1305 int mmu_idx, uint64_t size) 1306 { 1307 CPUTLBEntryFull full = { 1308 .phys_addr = paddr, 1309 .attrs = attrs, 1310 .prot = prot, 1311 .lg_page_size = ctz64(size) 1312 }; 1313 1314 assert(is_power_of_2(size)); 1315 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1316 } 1317 1318 void tlb_set_page(CPUState *cpu, vaddr addr, 1319 hwaddr paddr, int prot, 1320 int mmu_idx, uint64_t size) 1321 { 1322 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1323 prot, mmu_idx, size); 1324 } 1325 1326 /* 1327 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1328 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1329 * be discarded and looked up again (e.g. via tlb_entry()). 1330 */ 1331 static void tlb_fill(CPUState *cpu, vaddr addr, int size, 1332 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1333 { 1334 bool ok; 1335 1336 /* 1337 * This is not a probe, so only valid return is success; failure 1338 * should result in exception + longjmp to the cpu loop. 1339 */ 1340 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1341 access_type, mmu_idx, false, retaddr); 1342 assert(ok); 1343 } 1344 1345 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1346 MMUAccessType access_type, 1347 int mmu_idx, uintptr_t retaddr) 1348 { 1349 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1350 mmu_idx, retaddr); 1351 } 1352 1353 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1354 vaddr addr, unsigned size, 1355 MMUAccessType access_type, 1356 int mmu_idx, MemTxAttrs attrs, 1357 MemTxResult response, 1358 uintptr_t retaddr) 1359 { 1360 CPUClass *cc = CPU_GET_CLASS(cpu); 1361 1362 if (!cpu->ignore_memory_transaction_failures && 1363 cc->tcg_ops->do_transaction_failed) { 1364 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1365 access_type, mmu_idx, attrs, 1366 response, retaddr); 1367 } 1368 } 1369 1370 /* 1371 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. 1372 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match 1373 * because of the side effect of io_writex changing memory layout. 1374 */ 1375 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, 1376 hwaddr mr_offset) 1377 { 1378 #ifdef CONFIG_PLUGIN 1379 SavedIOTLB *saved = &cs->saved_iotlb; 1380 saved->section = section; 1381 saved->mr_offset = mr_offset; 1382 #endif 1383 } 1384 1385 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, 1386 int mmu_idx, vaddr addr, uintptr_t retaddr, 1387 MMUAccessType access_type, MemOp op) 1388 { 1389 CPUState *cpu = env_cpu(env); 1390 hwaddr mr_offset; 1391 MemoryRegionSection *section; 1392 MemoryRegion *mr; 1393 uint64_t val; 1394 MemTxResult r; 1395 1396 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1397 mr = section->mr; 1398 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1399 cpu->mem_io_pc = retaddr; 1400 if (!cpu->can_do_io) { 1401 cpu_io_recompile(cpu, retaddr); 1402 } 1403 1404 /* 1405 * The memory_region_dispatch may trigger a flush/resize 1406 * so for plugins we save the iotlb_data just in case. 1407 */ 1408 save_iotlb_data(cpu, section, mr_offset); 1409 1410 { 1411 QEMU_IOTHREAD_LOCK_GUARD(); 1412 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); 1413 } 1414 1415 if (r != MEMTX_OK) { 1416 hwaddr physaddr = mr_offset + 1417 section->offset_within_address_space - 1418 section->offset_within_region; 1419 1420 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1421 mmu_idx, full->attrs, r, retaddr); 1422 } 1423 return val; 1424 } 1425 1426 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, 1427 int mmu_idx, uint64_t val, vaddr addr, 1428 uintptr_t retaddr, MemOp op) 1429 { 1430 CPUState *cpu = env_cpu(env); 1431 hwaddr mr_offset; 1432 MemoryRegionSection *section; 1433 MemoryRegion *mr; 1434 MemTxResult r; 1435 1436 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1437 mr = section->mr; 1438 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1439 if (!cpu->can_do_io) { 1440 cpu_io_recompile(cpu, retaddr); 1441 } 1442 cpu->mem_io_pc = retaddr; 1443 1444 /* 1445 * The memory_region_dispatch may trigger a flush/resize 1446 * so for plugins we save the iotlb_data just in case. 1447 */ 1448 save_iotlb_data(cpu, section, mr_offset); 1449 1450 { 1451 QEMU_IOTHREAD_LOCK_GUARD(); 1452 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); 1453 } 1454 1455 if (r != MEMTX_OK) { 1456 hwaddr physaddr = mr_offset + 1457 section->offset_within_address_space - 1458 section->offset_within_region; 1459 1460 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1461 MMU_DATA_STORE, mmu_idx, full->attrs, r, 1462 retaddr); 1463 } 1464 } 1465 1466 /* Return true if ADDR is present in the victim tlb, and has been copied 1467 back to the main tlb. */ 1468 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1469 MMUAccessType access_type, vaddr page) 1470 { 1471 size_t vidx; 1472 1473 assert_cpu_is_self(env_cpu(env)); 1474 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1475 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1476 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1477 1478 if (cmp == page) { 1479 /* Found entry in victim tlb, swap tlb and iotlb. */ 1480 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1481 1482 qemu_spin_lock(&env_tlb(env)->c.lock); 1483 copy_tlb_helper_locked(&tmptlb, tlb); 1484 copy_tlb_helper_locked(tlb, vtlb); 1485 copy_tlb_helper_locked(vtlb, &tmptlb); 1486 qemu_spin_unlock(&env_tlb(env)->c.lock); 1487 1488 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1489 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1490 CPUTLBEntryFull tmpf; 1491 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1492 return true; 1493 } 1494 } 1495 return false; 1496 } 1497 1498 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1499 CPUTLBEntryFull *full, uintptr_t retaddr) 1500 { 1501 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1502 1503 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1504 1505 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1506 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1507 } 1508 1509 /* 1510 * Set both VGA and migration bits for simplicity and to remove 1511 * the notdirty callback faster. 1512 */ 1513 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1514 1515 /* We remove the notdirty callback only if the code has been flushed. */ 1516 if (!cpu_physical_memory_is_clean(ram_addr)) { 1517 trace_memory_notdirty_set_dirty(mem_vaddr); 1518 tlb_set_dirty(cpu, mem_vaddr); 1519 } 1520 } 1521 1522 static int probe_access_internal(CPUArchState *env, vaddr addr, 1523 int fault_size, MMUAccessType access_type, 1524 int mmu_idx, bool nonfault, 1525 void **phost, CPUTLBEntryFull **pfull, 1526 uintptr_t retaddr, bool check_mem_cbs) 1527 { 1528 uintptr_t index = tlb_index(env, mmu_idx, addr); 1529 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1530 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1531 vaddr page_addr = addr & TARGET_PAGE_MASK; 1532 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1533 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env)); 1534 CPUTLBEntryFull *full; 1535 1536 if (!tlb_hit_page(tlb_addr, page_addr)) { 1537 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) { 1538 CPUState *cs = env_cpu(env); 1539 1540 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1541 mmu_idx, nonfault, retaddr)) { 1542 /* Non-faulting page table read failed. */ 1543 *phost = NULL; 1544 *pfull = NULL; 1545 return TLB_INVALID_MASK; 1546 } 1547 1548 /* TLB resize via tlb_fill may have moved the entry. */ 1549 index = tlb_index(env, mmu_idx, addr); 1550 entry = tlb_entry(env, mmu_idx, addr); 1551 1552 /* 1553 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1554 * to force the next access through tlb_fill. We've just 1555 * called tlb_fill, so we know that this entry *is* valid. 1556 */ 1557 flags &= ~TLB_INVALID_MASK; 1558 } 1559 tlb_addr = tlb_read_idx(entry, access_type); 1560 } 1561 flags &= tlb_addr; 1562 1563 *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1564 flags |= full->slow_flags[access_type]; 1565 1566 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1567 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY)) 1568 || 1569 (access_type != MMU_INST_FETCH && force_mmio)) { 1570 *phost = NULL; 1571 return TLB_MMIO; 1572 } 1573 1574 /* Everything else is RAM. */ 1575 *phost = (void *)((uintptr_t)addr + entry->addend); 1576 return flags; 1577 } 1578 1579 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1580 MMUAccessType access_type, int mmu_idx, 1581 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1582 uintptr_t retaddr) 1583 { 1584 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1585 nonfault, phost, pfull, retaddr, true); 1586 1587 /* Handle clean RAM pages. */ 1588 if (unlikely(flags & TLB_NOTDIRTY)) { 1589 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1590 flags &= ~TLB_NOTDIRTY; 1591 } 1592 1593 return flags; 1594 } 1595 1596 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1597 MMUAccessType access_type, int mmu_idx, 1598 void **phost, CPUTLBEntryFull **pfull) 1599 { 1600 void *discard_phost; 1601 CPUTLBEntryFull *discard_tlb; 1602 1603 /* privately handle users that don't need full results */ 1604 phost = phost ? phost : &discard_phost; 1605 pfull = pfull ? pfull : &discard_tlb; 1606 1607 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1608 true, phost, pfull, 0, false); 1609 1610 /* Handle clean RAM pages. */ 1611 if (unlikely(flags & TLB_NOTDIRTY)) { 1612 notdirty_write(env_cpu(env), addr, 1, *pfull, 0); 1613 flags &= ~TLB_NOTDIRTY; 1614 } 1615 1616 return flags; 1617 } 1618 1619 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1620 MMUAccessType access_type, int mmu_idx, 1621 bool nonfault, void **phost, uintptr_t retaddr) 1622 { 1623 CPUTLBEntryFull *full; 1624 int flags; 1625 1626 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1627 1628 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1629 nonfault, phost, &full, retaddr, true); 1630 1631 /* Handle clean RAM pages. */ 1632 if (unlikely(flags & TLB_NOTDIRTY)) { 1633 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1634 flags &= ~TLB_NOTDIRTY; 1635 } 1636 1637 return flags; 1638 } 1639 1640 void *probe_access(CPUArchState *env, vaddr addr, int size, 1641 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1642 { 1643 CPUTLBEntryFull *full; 1644 void *host; 1645 int flags; 1646 1647 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1648 1649 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1650 false, &host, &full, retaddr, true); 1651 1652 /* Per the interface, size == 0 merely faults the access. */ 1653 if (size == 0) { 1654 return NULL; 1655 } 1656 1657 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1658 /* Handle watchpoints. */ 1659 if (flags & TLB_WATCHPOINT) { 1660 int wp_access = (access_type == MMU_DATA_STORE 1661 ? BP_MEM_WRITE : BP_MEM_READ); 1662 cpu_check_watchpoint(env_cpu(env), addr, size, 1663 full->attrs, wp_access, retaddr); 1664 } 1665 1666 /* Handle clean RAM pages. */ 1667 if (flags & TLB_NOTDIRTY) { 1668 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1669 } 1670 } 1671 1672 return host; 1673 } 1674 1675 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1676 MMUAccessType access_type, int mmu_idx) 1677 { 1678 CPUTLBEntryFull *full; 1679 void *host; 1680 int flags; 1681 1682 flags = probe_access_internal(env, addr, 0, access_type, 1683 mmu_idx, true, &host, &full, 0, false); 1684 1685 /* No combination of flags are expected by the caller. */ 1686 return flags ? NULL : host; 1687 } 1688 1689 /* 1690 * Return a ram_addr_t for the virtual address for execution. 1691 * 1692 * Return -1 if we can't translate and execute from an entire page 1693 * of RAM. This will force us to execute by loading and translating 1694 * one insn at a time, without caching. 1695 * 1696 * NOTE: This function will trigger an exception if the page is 1697 * not executable. 1698 */ 1699 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1700 void **hostp) 1701 { 1702 CPUTLBEntryFull *full; 1703 void *p; 1704 1705 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1706 cpu_mmu_index(env, true), false, 1707 &p, &full, 0, false); 1708 if (p == NULL) { 1709 return -1; 1710 } 1711 1712 if (full->lg_page_size < TARGET_PAGE_BITS) { 1713 return -1; 1714 } 1715 1716 if (hostp) { 1717 *hostp = p; 1718 } 1719 return qemu_ram_addr_from_host_nofail(p); 1720 } 1721 1722 /* Load/store with atomicity primitives. */ 1723 #include "ldst_atomicity.c.inc" 1724 1725 #ifdef CONFIG_PLUGIN 1726 /* 1727 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1728 * This should be a hot path as we will have just looked this path up 1729 * in the softmmu lookup code (or helper). We don't handle re-fills or 1730 * checking the victim table. This is purely informational. 1731 * 1732 * This almost never fails as the memory access being instrumented 1733 * should have just filled the TLB. The one corner case is io_writex 1734 * which can cause TLB flushes and potential resizing of the TLBs 1735 * losing the information we need. In those cases we need to recover 1736 * data from a copy of the CPUTLBEntryFull. As long as this always occurs 1737 * from the same thread (which a mem callback will be) this is safe. 1738 */ 1739 1740 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1741 bool is_store, struct qemu_plugin_hwaddr *data) 1742 { 1743 CPUArchState *env = cpu->env_ptr; 1744 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1745 uintptr_t index = tlb_index(env, mmu_idx, addr); 1746 uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1747 1748 if (likely(tlb_hit(tlb_addr, addr))) { 1749 /* We must have an iotlb entry for MMIO */ 1750 if (tlb_addr & TLB_MMIO) { 1751 CPUTLBEntryFull *full; 1752 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1753 data->is_io = true; 1754 data->v.io.section = 1755 iotlb_to_section(cpu, full->xlat_section, full->attrs); 1756 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1757 } else { 1758 data->is_io = false; 1759 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1760 } 1761 return true; 1762 } else { 1763 SavedIOTLB *saved = &cpu->saved_iotlb; 1764 data->is_io = true; 1765 data->v.io.section = saved->section; 1766 data->v.io.offset = saved->mr_offset; 1767 return true; 1768 } 1769 } 1770 1771 #endif 1772 1773 /* 1774 * Probe for a load/store operation. 1775 * Return the host address and into @flags. 1776 */ 1777 1778 typedef struct MMULookupPageData { 1779 CPUTLBEntryFull *full; 1780 void *haddr; 1781 vaddr addr; 1782 int flags; 1783 int size; 1784 } MMULookupPageData; 1785 1786 typedef struct MMULookupLocals { 1787 MMULookupPageData page[2]; 1788 MemOp memop; 1789 int mmu_idx; 1790 } MMULookupLocals; 1791 1792 /** 1793 * mmu_lookup1: translate one page 1794 * @env: cpu context 1795 * @data: lookup parameters 1796 * @mmu_idx: virtual address context 1797 * @access_type: load/store/code 1798 * @ra: return address into tcg generated code, or 0 1799 * 1800 * Resolve the translation for the one page at @data.addr, filling in 1801 * the rest of @data with the results. If the translation fails, 1802 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1803 * @mmu_idx may have resized. 1804 */ 1805 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data, 1806 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1807 { 1808 vaddr addr = data->addr; 1809 uintptr_t index = tlb_index(env, mmu_idx, addr); 1810 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1811 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1812 bool maybe_resized = false; 1813 CPUTLBEntryFull *full; 1814 int flags; 1815 1816 /* If the TLB entry is for a different page, reload and try again. */ 1817 if (!tlb_hit(tlb_addr, addr)) { 1818 if (!victim_tlb_hit(env, mmu_idx, index, access_type, 1819 addr & TARGET_PAGE_MASK)) { 1820 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra); 1821 maybe_resized = true; 1822 index = tlb_index(env, mmu_idx, addr); 1823 entry = tlb_entry(env, mmu_idx, addr); 1824 } 1825 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1826 } 1827 1828 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1829 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1830 flags |= full->slow_flags[access_type]; 1831 1832 data->full = full; 1833 data->flags = flags; 1834 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1835 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1836 1837 return maybe_resized; 1838 } 1839 1840 /** 1841 * mmu_watch_or_dirty 1842 * @env: cpu context 1843 * @data: lookup parameters 1844 * @access_type: load/store/code 1845 * @ra: return address into tcg generated code, or 0 1846 * 1847 * Trigger watchpoints for @data.addr:@data.size; 1848 * record writes to protected clean pages. 1849 */ 1850 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data, 1851 MMUAccessType access_type, uintptr_t ra) 1852 { 1853 CPUTLBEntryFull *full = data->full; 1854 vaddr addr = data->addr; 1855 int flags = data->flags; 1856 int size = data->size; 1857 1858 /* On watchpoint hit, this will longjmp out. */ 1859 if (flags & TLB_WATCHPOINT) { 1860 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1861 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra); 1862 flags &= ~TLB_WATCHPOINT; 1863 } 1864 1865 /* Note that notdirty is only set for writes. */ 1866 if (flags & TLB_NOTDIRTY) { 1867 notdirty_write(env_cpu(env), addr, size, full, ra); 1868 flags &= ~TLB_NOTDIRTY; 1869 } 1870 data->flags = flags; 1871 } 1872 1873 /** 1874 * mmu_lookup: translate page(s) 1875 * @env: cpu context 1876 * @addr: virtual address 1877 * @oi: combined mmu_idx and MemOp 1878 * @ra: return address into tcg generated code, or 0 1879 * @access_type: load/store/code 1880 * @l: output result 1881 * 1882 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1883 * bytes. Return true if the lookup crosses a page boundary. 1884 */ 1885 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, 1886 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1887 { 1888 unsigned a_bits; 1889 bool crosspage; 1890 int flags; 1891 1892 l->memop = get_memop(oi); 1893 l->mmu_idx = get_mmuidx(oi); 1894 1895 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1896 1897 /* Handle CPU specific unaligned behaviour */ 1898 a_bits = get_alignment_bits(l->memop); 1899 if (addr & ((1 << a_bits) - 1)) { 1900 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra); 1901 } 1902 1903 l->page[0].addr = addr; 1904 l->page[0].size = memop_size(l->memop); 1905 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1906 l->page[1].size = 0; 1907 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1908 1909 if (likely(!crosspage)) { 1910 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1911 1912 flags = l->page[0].flags; 1913 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1914 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1915 } 1916 if (unlikely(flags & TLB_BSWAP)) { 1917 l->memop ^= MO_BSWAP; 1918 } 1919 } else { 1920 /* Finish compute of page crossing. */ 1921 int size0 = l->page[1].addr - addr; 1922 l->page[1].size = l->page[0].size - size0; 1923 l->page[0].size = size0; 1924 1925 /* 1926 * Lookup both pages, recognizing exceptions from either. If the 1927 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1928 */ 1929 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1930 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) { 1931 uintptr_t index = tlb_index(env, l->mmu_idx, addr); 1932 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index]; 1933 } 1934 1935 flags = l->page[0].flags | l->page[1].flags; 1936 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1937 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1938 mmu_watch_or_dirty(env, &l->page[1], type, ra); 1939 } 1940 1941 /* 1942 * Since target/sparc is the only user of TLB_BSWAP, and all 1943 * Sparc accesses are aligned, any treatment across two pages 1944 * would be arbitrary. Refuse it until there's a use. 1945 */ 1946 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1947 } 1948 1949 return crosspage; 1950 } 1951 1952 /* 1953 * Probe for an atomic operation. Do not allow unaligned operations, 1954 * or io operations to proceed. Return the host address. 1955 */ 1956 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, 1957 int size, uintptr_t retaddr) 1958 { 1959 uintptr_t mmu_idx = get_mmuidx(oi); 1960 MemOp mop = get_memop(oi); 1961 int a_bits = get_alignment_bits(mop); 1962 uintptr_t index; 1963 CPUTLBEntry *tlbe; 1964 vaddr tlb_addr; 1965 void *hostaddr; 1966 CPUTLBEntryFull *full; 1967 1968 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1969 1970 /* Adjust the given return address. */ 1971 retaddr -= GETPC_ADJ; 1972 1973 /* Enforce guest required alignment. */ 1974 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1975 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1976 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1977 mmu_idx, retaddr); 1978 } 1979 1980 /* Enforce qemu required alignment. */ 1981 if (unlikely(addr & (size - 1))) { 1982 /* We get here if guest alignment was not requested, 1983 or was not enforced by cpu_unaligned_access above. 1984 We might widen the access and emulate, but for now 1985 mark an exception and exit the cpu loop. */ 1986 goto stop_the_world; 1987 } 1988 1989 index = tlb_index(env, mmu_idx, addr); 1990 tlbe = tlb_entry(env, mmu_idx, addr); 1991 1992 /* Check TLB entry and enforce page permissions. */ 1993 tlb_addr = tlb_addr_write(tlbe); 1994 if (!tlb_hit(tlb_addr, addr)) { 1995 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE, 1996 addr & TARGET_PAGE_MASK)) { 1997 tlb_fill(env_cpu(env), addr, size, 1998 MMU_DATA_STORE, mmu_idx, retaddr); 1999 index = tlb_index(env, mmu_idx, addr); 2000 tlbe = tlb_entry(env, mmu_idx, addr); 2001 } 2002 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 2003 } 2004 2005 /* 2006 * Let the guest notice RMW on a write-only page. 2007 * We have just verified that the page is writable. 2008 * Subpage lookups may have left TLB_INVALID_MASK set, 2009 * but addr_read will only be -1 if PAGE_READ was unset. 2010 */ 2011 if (unlikely(tlbe->addr_read == -1)) { 2012 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 2013 /* 2014 * Since we don't support reads and writes to different 2015 * addresses, and we do have the proper page loaded for 2016 * write, this shouldn't ever return. But just in case, 2017 * handle via stop-the-world. 2018 */ 2019 goto stop_the_world; 2020 } 2021 /* Collect tlb flags for read. */ 2022 tlb_addr |= tlbe->addr_read; 2023 2024 /* Notice an IO access or a needs-MMU-lookup access */ 2025 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 2026 /* There's really nothing that can be done to 2027 support this apart from stop-the-world. */ 2028 goto stop_the_world; 2029 } 2030 2031 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 2032 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 2033 2034 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 2035 notdirty_write(env_cpu(env), addr, size, full, retaddr); 2036 } 2037 2038 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 2039 int wp_flags = 0; 2040 2041 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 2042 wp_flags |= BP_MEM_WRITE; 2043 } 2044 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 2045 wp_flags |= BP_MEM_READ; 2046 } 2047 if (wp_flags) { 2048 cpu_check_watchpoint(env_cpu(env), addr, size, 2049 full->attrs, wp_flags, retaddr); 2050 } 2051 } 2052 2053 return hostaddr; 2054 2055 stop_the_world: 2056 cpu_loop_exit_atomic(env_cpu(env), retaddr); 2057 } 2058 2059 /* 2060 * Load Helpers 2061 * 2062 * We support two different access types. SOFTMMU_CODE_ACCESS is 2063 * specifically for reading instructions from system memory. It is 2064 * called by the translation loop and in some helpers where the code 2065 * is disassembled. It shouldn't be called directly by guest code. 2066 * 2067 * For the benefit of TCG generated code, we want to avoid the 2068 * complication of ABI-specific return type promotion and always 2069 * return a value extended to the register size of the host. This is 2070 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2071 * data, and for that we always have uint64_t. 2072 * 2073 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2074 */ 2075 2076 /** 2077 * do_ld_mmio_beN: 2078 * @env: cpu context 2079 * @full: page parameters 2080 * @ret_be: accumulated data 2081 * @addr: virtual address 2082 * @size: number of bytes 2083 * @mmu_idx: virtual address context 2084 * @ra: return address into tcg generated code, or 0 2085 * Context: iothread lock held 2086 * 2087 * Load @size bytes from @addr, which is memory-mapped i/o. 2088 * The bytes are concatenated in big-endian order with @ret_be. 2089 */ 2090 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full, 2091 uint64_t ret_be, vaddr addr, int size, 2092 int mmu_idx, MMUAccessType type, uintptr_t ra) 2093 { 2094 uint64_t t; 2095 2096 tcg_debug_assert(size > 0 && size <= 8); 2097 do { 2098 /* Read aligned pieces up to 8 bytes. */ 2099 switch ((size | (int)addr) & 7) { 2100 case 1: 2101 case 3: 2102 case 5: 2103 case 7: 2104 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_UB); 2105 ret_be = (ret_be << 8) | t; 2106 size -= 1; 2107 addr += 1; 2108 break; 2109 case 2: 2110 case 6: 2111 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUW); 2112 ret_be = (ret_be << 16) | t; 2113 size -= 2; 2114 addr += 2; 2115 break; 2116 case 4: 2117 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUL); 2118 ret_be = (ret_be << 32) | t; 2119 size -= 4; 2120 addr += 4; 2121 break; 2122 case 0: 2123 return io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUQ); 2124 default: 2125 qemu_build_not_reached(); 2126 } 2127 } while (size); 2128 return ret_be; 2129 } 2130 2131 /** 2132 * do_ld_bytes_beN 2133 * @p: translation parameters 2134 * @ret_be: accumulated data 2135 * 2136 * Load @p->size bytes from @p->haddr, which is RAM. 2137 * The bytes to concatenated in big-endian order with @ret_be. 2138 */ 2139 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2140 { 2141 uint8_t *haddr = p->haddr; 2142 int i, size = p->size; 2143 2144 for (i = 0; i < size; i++) { 2145 ret_be = (ret_be << 8) | haddr[i]; 2146 } 2147 return ret_be; 2148 } 2149 2150 /** 2151 * do_ld_parts_beN 2152 * @p: translation parameters 2153 * @ret_be: accumulated data 2154 * 2155 * As do_ld_bytes_beN, but atomically on each aligned part. 2156 */ 2157 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2158 { 2159 void *haddr = p->haddr; 2160 int size = p->size; 2161 2162 do { 2163 uint64_t x; 2164 int n; 2165 2166 /* 2167 * Find minimum of alignment and size. 2168 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2169 * would have only checked the low bits of addr|size once at the start, 2170 * but is just as easy. 2171 */ 2172 switch (((uintptr_t)haddr | size) & 7) { 2173 case 4: 2174 x = cpu_to_be32(load_atomic4(haddr)); 2175 ret_be = (ret_be << 32) | x; 2176 n = 4; 2177 break; 2178 case 2: 2179 case 6: 2180 x = cpu_to_be16(load_atomic2(haddr)); 2181 ret_be = (ret_be << 16) | x; 2182 n = 2; 2183 break; 2184 default: 2185 x = *(uint8_t *)haddr; 2186 ret_be = (ret_be << 8) | x; 2187 n = 1; 2188 break; 2189 case 0: 2190 g_assert_not_reached(); 2191 } 2192 haddr += n; 2193 size -= n; 2194 } while (size != 0); 2195 return ret_be; 2196 } 2197 2198 /** 2199 * do_ld_parts_be4 2200 * @p: translation parameters 2201 * @ret_be: accumulated data 2202 * 2203 * As do_ld_bytes_beN, but with one atomic load. 2204 * Four aligned bytes are guaranteed to cover the load. 2205 */ 2206 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2207 { 2208 int o = p->addr & 3; 2209 uint32_t x = load_atomic4(p->haddr - o); 2210 2211 x = cpu_to_be32(x); 2212 x <<= o * 8; 2213 x >>= (4 - p->size) * 8; 2214 return (ret_be << (p->size * 8)) | x; 2215 } 2216 2217 /** 2218 * do_ld_parts_be8 2219 * @p: translation parameters 2220 * @ret_be: accumulated data 2221 * 2222 * As do_ld_bytes_beN, but with one atomic load. 2223 * Eight aligned bytes are guaranteed to cover the load. 2224 */ 2225 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra, 2226 MMULookupPageData *p, uint64_t ret_be) 2227 { 2228 int o = p->addr & 7; 2229 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o); 2230 2231 x = cpu_to_be64(x); 2232 x <<= o * 8; 2233 x >>= (8 - p->size) * 8; 2234 return (ret_be << (p->size * 8)) | x; 2235 } 2236 2237 /** 2238 * do_ld_parts_be16 2239 * @p: translation parameters 2240 * @ret_be: accumulated data 2241 * 2242 * As do_ld_bytes_beN, but with one atomic load. 2243 * 16 aligned bytes are guaranteed to cover the load. 2244 */ 2245 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra, 2246 MMULookupPageData *p, uint64_t ret_be) 2247 { 2248 int o = p->addr & 15; 2249 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o); 2250 int size = p->size; 2251 2252 if (!HOST_BIG_ENDIAN) { 2253 y = bswap128(y); 2254 } 2255 y = int128_lshift(y, o * 8); 2256 y = int128_urshift(y, (16 - size) * 8); 2257 x = int128_make64(ret_be); 2258 x = int128_lshift(x, size * 8); 2259 return int128_or(x, y); 2260 } 2261 2262 /* 2263 * Wrapper for the above. 2264 */ 2265 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p, 2266 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2267 MemOp mop, uintptr_t ra) 2268 { 2269 MemOp atom; 2270 unsigned tmp, half_size; 2271 2272 if (unlikely(p->flags & TLB_MMIO)) { 2273 QEMU_IOTHREAD_LOCK_GUARD(); 2274 return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size, 2275 mmu_idx, type, ra); 2276 } 2277 2278 /* 2279 * It is a given that we cross a page and therefore there is no 2280 * atomicity for the load as a whole, but subobjects may need attention. 2281 */ 2282 atom = mop & MO_ATOM_MASK; 2283 switch (atom) { 2284 case MO_ATOM_SUBALIGN: 2285 return do_ld_parts_beN(p, ret_be); 2286 2287 case MO_ATOM_IFALIGN_PAIR: 2288 case MO_ATOM_WITHIN16_PAIR: 2289 tmp = mop & MO_SIZE; 2290 tmp = tmp ? tmp - 1 : 0; 2291 half_size = 1 << tmp; 2292 if (atom == MO_ATOM_IFALIGN_PAIR 2293 ? p->size == half_size 2294 : p->size >= half_size) { 2295 if (!HAVE_al8_fast && p->size < 4) { 2296 return do_ld_whole_be4(p, ret_be); 2297 } else { 2298 return do_ld_whole_be8(env, ra, p, ret_be); 2299 } 2300 } 2301 /* fall through */ 2302 2303 case MO_ATOM_IFALIGN: 2304 case MO_ATOM_WITHIN16: 2305 case MO_ATOM_NONE: 2306 return do_ld_bytes_beN(p, ret_be); 2307 2308 default: 2309 g_assert_not_reached(); 2310 } 2311 } 2312 2313 /* 2314 * Wrapper for the above, for 8 < size < 16. 2315 */ 2316 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p, 2317 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2318 { 2319 int size = p->size; 2320 uint64_t b; 2321 MemOp atom; 2322 2323 if (unlikely(p->flags & TLB_MMIO)) { 2324 QEMU_IOTHREAD_LOCK_GUARD(); 2325 a = do_ld_mmio_beN(env, p->full, a, p->addr, size - 8, 2326 mmu_idx, MMU_DATA_LOAD, ra); 2327 b = do_ld_mmio_beN(env, p->full, 0, p->addr + 8, 8, 2328 mmu_idx, MMU_DATA_LOAD, ra); 2329 return int128_make128(b, a); 2330 } 2331 2332 /* 2333 * It is a given that we cross a page and therefore there is no 2334 * atomicity for the load as a whole, but subobjects may need attention. 2335 */ 2336 atom = mop & MO_ATOM_MASK; 2337 switch (atom) { 2338 case MO_ATOM_SUBALIGN: 2339 p->size = size - 8; 2340 a = do_ld_parts_beN(p, a); 2341 p->haddr += size - 8; 2342 p->size = 8; 2343 b = do_ld_parts_beN(p, 0); 2344 break; 2345 2346 case MO_ATOM_WITHIN16_PAIR: 2347 /* Since size > 8, this is the half that must be atomic. */ 2348 return do_ld_whole_be16(env, ra, p, a); 2349 2350 case MO_ATOM_IFALIGN_PAIR: 2351 /* 2352 * Since size > 8, both halves are misaligned, 2353 * and so neither is atomic. 2354 */ 2355 case MO_ATOM_IFALIGN: 2356 case MO_ATOM_WITHIN16: 2357 case MO_ATOM_NONE: 2358 p->size = size - 8; 2359 a = do_ld_bytes_beN(p, a); 2360 b = ldq_be_p(p->haddr + size - 8); 2361 break; 2362 2363 default: 2364 g_assert_not_reached(); 2365 } 2366 2367 return int128_make128(b, a); 2368 } 2369 2370 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2371 MMUAccessType type, uintptr_t ra) 2372 { 2373 if (unlikely(p->flags & TLB_MMIO)) { 2374 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB); 2375 } else { 2376 return *(uint8_t *)p->haddr; 2377 } 2378 } 2379 2380 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2381 MMUAccessType type, MemOp memop, uintptr_t ra) 2382 { 2383 uint16_t ret; 2384 2385 if (unlikely(p->flags & TLB_MMIO)) { 2386 QEMU_IOTHREAD_LOCK_GUARD(); 2387 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2388 if ((memop & MO_BSWAP) == MO_LE) { 2389 ret = bswap16(ret); 2390 } 2391 } else { 2392 /* Perform the load host endian, then swap if necessary. */ 2393 ret = load_atom_2(env, ra, p->haddr, memop); 2394 if (memop & MO_BSWAP) { 2395 ret = bswap16(ret); 2396 } 2397 } 2398 return ret; 2399 } 2400 2401 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2402 MMUAccessType type, MemOp memop, uintptr_t ra) 2403 { 2404 uint32_t ret; 2405 2406 if (unlikely(p->flags & TLB_MMIO)) { 2407 QEMU_IOTHREAD_LOCK_GUARD(); 2408 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2409 if ((memop & MO_BSWAP) == MO_LE) { 2410 ret = bswap32(ret); 2411 } 2412 } else { 2413 /* Perform the load host endian. */ 2414 ret = load_atom_4(env, ra, p->haddr, memop); 2415 if (memop & MO_BSWAP) { 2416 ret = bswap32(ret); 2417 } 2418 } 2419 return ret; 2420 } 2421 2422 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2423 MMUAccessType type, MemOp memop, uintptr_t ra) 2424 { 2425 uint64_t ret; 2426 2427 if (unlikely(p->flags & TLB_MMIO)) { 2428 QEMU_IOTHREAD_LOCK_GUARD(); 2429 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2430 if ((memop & MO_BSWAP) == MO_LE) { 2431 ret = bswap64(ret); 2432 } 2433 } else { 2434 /* Perform the load host endian. */ 2435 ret = load_atom_8(env, ra, p->haddr, memop); 2436 if (memop & MO_BSWAP) { 2437 ret = bswap64(ret); 2438 } 2439 } 2440 return ret; 2441 } 2442 2443 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2444 uintptr_t ra, MMUAccessType access_type) 2445 { 2446 MMULookupLocals l; 2447 bool crosspage; 2448 2449 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2450 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2451 tcg_debug_assert(!crosspage); 2452 2453 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2454 } 2455 2456 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr, 2457 MemOpIdx oi, uintptr_t retaddr) 2458 { 2459 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2460 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2461 } 2462 2463 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2464 uintptr_t ra, MMUAccessType access_type) 2465 { 2466 MMULookupLocals l; 2467 bool crosspage; 2468 uint16_t ret; 2469 uint8_t a, b; 2470 2471 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2472 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2473 if (likely(!crosspage)) { 2474 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2475 } 2476 2477 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2478 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra); 2479 2480 if ((l.memop & MO_BSWAP) == MO_LE) { 2481 ret = a | (b << 8); 2482 } else { 2483 ret = b | (a << 8); 2484 } 2485 return ret; 2486 } 2487 2488 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr, 2489 MemOpIdx oi, uintptr_t retaddr) 2490 { 2491 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2492 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2493 } 2494 2495 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2496 uintptr_t ra, MMUAccessType access_type) 2497 { 2498 MMULookupLocals l; 2499 bool crosspage; 2500 uint32_t ret; 2501 2502 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2503 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2504 if (likely(!crosspage)) { 2505 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2506 } 2507 2508 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2509 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2510 if ((l.memop & MO_BSWAP) == MO_LE) { 2511 ret = bswap32(ret); 2512 } 2513 return ret; 2514 } 2515 2516 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr, 2517 MemOpIdx oi, uintptr_t retaddr) 2518 { 2519 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2520 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2521 } 2522 2523 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2524 uintptr_t ra, MMUAccessType access_type) 2525 { 2526 MMULookupLocals l; 2527 bool crosspage; 2528 uint64_t ret; 2529 2530 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2531 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2532 if (likely(!crosspage)) { 2533 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2534 } 2535 2536 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2537 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2538 if ((l.memop & MO_BSWAP) == MO_LE) { 2539 ret = bswap64(ret); 2540 } 2541 return ret; 2542 } 2543 2544 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr, 2545 MemOpIdx oi, uintptr_t retaddr) 2546 { 2547 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2548 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2549 } 2550 2551 /* 2552 * Provide signed versions of the load routines as well. We can of course 2553 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2554 */ 2555 2556 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr, 2557 MemOpIdx oi, uintptr_t retaddr) 2558 { 2559 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr); 2560 } 2561 2562 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr, 2563 MemOpIdx oi, uintptr_t retaddr) 2564 { 2565 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr); 2566 } 2567 2568 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr, 2569 MemOpIdx oi, uintptr_t retaddr) 2570 { 2571 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr); 2572 } 2573 2574 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr, 2575 MemOpIdx oi, uintptr_t ra) 2576 { 2577 MMULookupLocals l; 2578 bool crosspage; 2579 uint64_t a, b; 2580 Int128 ret; 2581 int first; 2582 2583 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2584 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l); 2585 if (likely(!crosspage)) { 2586 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2587 QEMU_IOTHREAD_LOCK_GUARD(); 2588 a = do_ld_mmio_beN(env, l.page[0].full, 0, addr, 8, 2589 l.mmu_idx, MMU_DATA_LOAD, ra); 2590 b = do_ld_mmio_beN(env, l.page[0].full, 0, addr + 8, 8, 2591 l.mmu_idx, MMU_DATA_LOAD, ra); 2592 ret = int128_make128(b, a); 2593 if ((l.memop & MO_BSWAP) == MO_LE) { 2594 ret = bswap128(ret); 2595 } 2596 } else { 2597 /* Perform the load host endian. */ 2598 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop); 2599 if (l.memop & MO_BSWAP) { 2600 ret = bswap128(ret); 2601 } 2602 } 2603 return ret; 2604 } 2605 2606 first = l.page[0].size; 2607 if (first == 8) { 2608 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2609 2610 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2611 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2612 if ((mop8 & MO_BSWAP) == MO_LE) { 2613 ret = int128_make128(a, b); 2614 } else { 2615 ret = int128_make128(b, a); 2616 } 2617 return ret; 2618 } 2619 2620 if (first < 8) { 2621 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, 2622 MMU_DATA_LOAD, l.memop, ra); 2623 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra); 2624 } else { 2625 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2626 b = int128_getlo(ret); 2627 ret = int128_lshift(ret, l.page[1].size * 8); 2628 a = int128_gethi(ret); 2629 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx, 2630 MMU_DATA_LOAD, l.memop, ra); 2631 ret = int128_make128(b, a); 2632 } 2633 if ((l.memop & MO_BSWAP) == MO_LE) { 2634 ret = bswap128(ret); 2635 } 2636 return ret; 2637 } 2638 2639 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr, 2640 uint32_t oi, uintptr_t retaddr) 2641 { 2642 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2643 return do_ld16_mmu(env, addr, oi, retaddr); 2644 } 2645 2646 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi) 2647 { 2648 return helper_ld16_mmu(env, addr, oi, GETPC()); 2649 } 2650 2651 /* 2652 * Load helpers for cpu_ldst.h. 2653 */ 2654 2655 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2656 { 2657 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2658 } 2659 2660 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2661 { 2662 uint8_t ret; 2663 2664 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB); 2665 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2666 plugin_load_cb(env, addr, oi); 2667 return ret; 2668 } 2669 2670 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr, 2671 MemOpIdx oi, uintptr_t ra) 2672 { 2673 uint16_t ret; 2674 2675 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2676 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2677 plugin_load_cb(env, addr, oi); 2678 return ret; 2679 } 2680 2681 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr, 2682 MemOpIdx oi, uintptr_t ra) 2683 { 2684 uint32_t ret; 2685 2686 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2687 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2688 plugin_load_cb(env, addr, oi); 2689 return ret; 2690 } 2691 2692 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr, 2693 MemOpIdx oi, uintptr_t ra) 2694 { 2695 uint64_t ret; 2696 2697 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2698 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2699 plugin_load_cb(env, addr, oi); 2700 return ret; 2701 } 2702 2703 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, 2704 MemOpIdx oi, uintptr_t ra) 2705 { 2706 Int128 ret; 2707 2708 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2709 ret = do_ld16_mmu(env, addr, oi, ra); 2710 plugin_load_cb(env, addr, oi); 2711 return ret; 2712 } 2713 2714 /* 2715 * Store Helpers 2716 */ 2717 2718 /** 2719 * do_st_mmio_leN: 2720 * @env: cpu context 2721 * @full: page parameters 2722 * @val_le: data to store 2723 * @addr: virtual address 2724 * @size: number of bytes 2725 * @mmu_idx: virtual address context 2726 * @ra: return address into tcg generated code, or 0 2727 * Context: iothread lock held 2728 * 2729 * Store @size bytes at @addr, which is memory-mapped i/o. 2730 * The bytes to store are extracted in little-endian order from @val_le; 2731 * return the bytes of @val_le beyond @p->size that have not been stored. 2732 */ 2733 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full, 2734 uint64_t val_le, vaddr addr, int size, 2735 int mmu_idx, uintptr_t ra) 2736 { 2737 tcg_debug_assert(size > 0 && size <= 8); 2738 2739 do { 2740 /* Store aligned pieces up to 8 bytes. */ 2741 switch ((size | (int)addr) & 7) { 2742 case 1: 2743 case 3: 2744 case 5: 2745 case 7: 2746 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_UB); 2747 val_le >>= 8; 2748 size -= 1; 2749 addr += 1; 2750 break; 2751 case 2: 2752 case 6: 2753 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUW); 2754 val_le >>= 16; 2755 size -= 2; 2756 addr += 2; 2757 break; 2758 case 4: 2759 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUL); 2760 val_le >>= 32; 2761 size -= 4; 2762 addr += 4; 2763 break; 2764 case 0: 2765 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUQ); 2766 return 0; 2767 default: 2768 qemu_build_not_reached(); 2769 } 2770 } while (size); 2771 2772 return val_le; 2773 } 2774 2775 /* 2776 * Wrapper for the above. 2777 */ 2778 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p, 2779 uint64_t val_le, int mmu_idx, 2780 MemOp mop, uintptr_t ra) 2781 { 2782 MemOp atom; 2783 unsigned tmp, half_size; 2784 2785 if (unlikely(p->flags & TLB_MMIO)) { 2786 QEMU_IOTHREAD_LOCK_GUARD(); 2787 return do_st_mmio_leN(env, p->full, val_le, p->addr, 2788 p->size, mmu_idx, ra); 2789 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2790 return val_le >> (p->size * 8); 2791 } 2792 2793 /* 2794 * It is a given that we cross a page and therefore there is no atomicity 2795 * for the store as a whole, but subobjects may need attention. 2796 */ 2797 atom = mop & MO_ATOM_MASK; 2798 switch (atom) { 2799 case MO_ATOM_SUBALIGN: 2800 return store_parts_leN(p->haddr, p->size, val_le); 2801 2802 case MO_ATOM_IFALIGN_PAIR: 2803 case MO_ATOM_WITHIN16_PAIR: 2804 tmp = mop & MO_SIZE; 2805 tmp = tmp ? tmp - 1 : 0; 2806 half_size = 1 << tmp; 2807 if (atom == MO_ATOM_IFALIGN_PAIR 2808 ? p->size == half_size 2809 : p->size >= half_size) { 2810 if (!HAVE_al8_fast && p->size <= 4) { 2811 return store_whole_le4(p->haddr, p->size, val_le); 2812 } else if (HAVE_al8) { 2813 return store_whole_le8(p->haddr, p->size, val_le); 2814 } else { 2815 cpu_loop_exit_atomic(env_cpu(env), ra); 2816 } 2817 } 2818 /* fall through */ 2819 2820 case MO_ATOM_IFALIGN: 2821 case MO_ATOM_WITHIN16: 2822 case MO_ATOM_NONE: 2823 return store_bytes_leN(p->haddr, p->size, val_le); 2824 2825 default: 2826 g_assert_not_reached(); 2827 } 2828 } 2829 2830 /* 2831 * Wrapper for the above, for 8 < size < 16. 2832 */ 2833 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p, 2834 Int128 val_le, int mmu_idx, 2835 MemOp mop, uintptr_t ra) 2836 { 2837 int size = p->size; 2838 MemOp atom; 2839 2840 if (unlikely(p->flags & TLB_MMIO)) { 2841 QEMU_IOTHREAD_LOCK_GUARD(); 2842 do_st_mmio_leN(env, p->full, int128_getlo(val_le), 2843 p->addr, 8, mmu_idx, ra); 2844 return do_st_mmio_leN(env, p->full, int128_gethi(val_le), 2845 p->addr + 8, size - 8, mmu_idx, ra); 2846 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2847 return int128_gethi(val_le) >> ((size - 8) * 8); 2848 } 2849 2850 /* 2851 * It is a given that we cross a page and therefore there is no atomicity 2852 * for the store as a whole, but subobjects may need attention. 2853 */ 2854 atom = mop & MO_ATOM_MASK; 2855 switch (atom) { 2856 case MO_ATOM_SUBALIGN: 2857 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2858 return store_parts_leN(p->haddr + 8, p->size - 8, 2859 int128_gethi(val_le)); 2860 2861 case MO_ATOM_WITHIN16_PAIR: 2862 /* Since size > 8, this is the half that must be atomic. */ 2863 if (!HAVE_ATOMIC128_RW) { 2864 cpu_loop_exit_atomic(env_cpu(env), ra); 2865 } 2866 return store_whole_le16(p->haddr, p->size, val_le); 2867 2868 case MO_ATOM_IFALIGN_PAIR: 2869 /* 2870 * Since size > 8, both halves are misaligned, 2871 * and so neither is atomic. 2872 */ 2873 case MO_ATOM_IFALIGN: 2874 case MO_ATOM_WITHIN16: 2875 case MO_ATOM_NONE: 2876 stq_le_p(p->haddr, int128_getlo(val_le)); 2877 return store_bytes_leN(p->haddr + 8, p->size - 8, 2878 int128_gethi(val_le)); 2879 2880 default: 2881 g_assert_not_reached(); 2882 } 2883 } 2884 2885 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val, 2886 int mmu_idx, uintptr_t ra) 2887 { 2888 if (unlikely(p->flags & TLB_MMIO)) { 2889 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB); 2890 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2891 /* nothing */ 2892 } else { 2893 *(uint8_t *)p->haddr = val; 2894 } 2895 } 2896 2897 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val, 2898 int mmu_idx, MemOp memop, uintptr_t ra) 2899 { 2900 if (unlikely(p->flags & TLB_MMIO)) { 2901 if ((memop & MO_BSWAP) != MO_LE) { 2902 val = bswap16(val); 2903 } 2904 QEMU_IOTHREAD_LOCK_GUARD(); 2905 do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra); 2906 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2907 /* nothing */ 2908 } else { 2909 /* Swap to host endian if necessary, then store. */ 2910 if (memop & MO_BSWAP) { 2911 val = bswap16(val); 2912 } 2913 store_atom_2(env, ra, p->haddr, memop, val); 2914 } 2915 } 2916 2917 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val, 2918 int mmu_idx, MemOp memop, uintptr_t ra) 2919 { 2920 if (unlikely(p->flags & TLB_MMIO)) { 2921 if ((memop & MO_BSWAP) != MO_LE) { 2922 val = bswap32(val); 2923 } 2924 QEMU_IOTHREAD_LOCK_GUARD(); 2925 do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra); 2926 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2927 /* nothing */ 2928 } else { 2929 /* Swap to host endian if necessary, then store. */ 2930 if (memop & MO_BSWAP) { 2931 val = bswap32(val); 2932 } 2933 store_atom_4(env, ra, p->haddr, memop, val); 2934 } 2935 } 2936 2937 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val, 2938 int mmu_idx, MemOp memop, uintptr_t ra) 2939 { 2940 if (unlikely(p->flags & TLB_MMIO)) { 2941 if ((memop & MO_BSWAP) != MO_LE) { 2942 val = bswap64(val); 2943 } 2944 QEMU_IOTHREAD_LOCK_GUARD(); 2945 do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra); 2946 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2947 /* nothing */ 2948 } else { 2949 /* Swap to host endian if necessary, then store. */ 2950 if (memop & MO_BSWAP) { 2951 val = bswap64(val); 2952 } 2953 store_atom_8(env, ra, p->haddr, memop, val); 2954 } 2955 } 2956 2957 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2958 MemOpIdx oi, uintptr_t ra) 2959 { 2960 MMULookupLocals l; 2961 bool crosspage; 2962 2963 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2964 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2965 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2966 tcg_debug_assert(!crosspage); 2967 2968 do_st_1(env, &l.page[0], val, l.mmu_idx, ra); 2969 } 2970 2971 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val, 2972 MemOpIdx oi, uintptr_t ra) 2973 { 2974 MMULookupLocals l; 2975 bool crosspage; 2976 uint8_t a, b; 2977 2978 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2979 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2980 if (likely(!crosspage)) { 2981 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2982 return; 2983 } 2984 2985 if ((l.memop & MO_BSWAP) == MO_LE) { 2986 a = val, b = val >> 8; 2987 } else { 2988 b = val, a = val >> 8; 2989 } 2990 do_st_1(env, &l.page[0], a, l.mmu_idx, ra); 2991 do_st_1(env, &l.page[1], b, l.mmu_idx, ra); 2992 } 2993 2994 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2995 MemOpIdx oi, uintptr_t retaddr) 2996 { 2997 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2998 do_st2_mmu(env, addr, val, oi, retaddr); 2999 } 3000 3001 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val, 3002 MemOpIdx oi, uintptr_t ra) 3003 { 3004 MMULookupLocals l; 3005 bool crosspage; 3006 3007 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 3008 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 3009 if (likely(!crosspage)) { 3010 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3011 return; 3012 } 3013 3014 /* Swap to little endian for simplicity, then store by bytes. */ 3015 if ((l.memop & MO_BSWAP) != MO_LE) { 3016 val = bswap32(val); 3017 } 3018 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3019 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3020 } 3021 3022 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 3023 MemOpIdx oi, uintptr_t retaddr) 3024 { 3025 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 3026 do_st4_mmu(env, addr, val, oi, retaddr); 3027 } 3028 3029 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val, 3030 MemOpIdx oi, uintptr_t ra) 3031 { 3032 MMULookupLocals l; 3033 bool crosspage; 3034 3035 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 3036 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 3037 if (likely(!crosspage)) { 3038 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3039 return; 3040 } 3041 3042 /* Swap to little endian for simplicity, then store by bytes. */ 3043 if ((l.memop & MO_BSWAP) != MO_LE) { 3044 val = bswap64(val); 3045 } 3046 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3047 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3048 } 3049 3050 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val, 3051 MemOpIdx oi, uintptr_t retaddr) 3052 { 3053 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 3054 do_st8_mmu(env, addr, val, oi, retaddr); 3055 } 3056 3057 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val, 3058 MemOpIdx oi, uintptr_t ra) 3059 { 3060 MMULookupLocals l; 3061 bool crosspage; 3062 uint64_t a, b; 3063 int first; 3064 3065 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 3066 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 3067 if (likely(!crosspage)) { 3068 if (unlikely(l.page[0].flags & TLB_MMIO)) { 3069 if ((l.memop & MO_BSWAP) != MO_LE) { 3070 val = bswap128(val); 3071 } 3072 a = int128_getlo(val); 3073 b = int128_gethi(val); 3074 QEMU_IOTHREAD_LOCK_GUARD(); 3075 do_st_mmio_leN(env, l.page[0].full, a, addr, 8, l.mmu_idx, ra); 3076 do_st_mmio_leN(env, l.page[0].full, b, addr + 8, 8, l.mmu_idx, ra); 3077 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 3078 /* nothing */ 3079 } else { 3080 /* Swap to host endian if necessary, then store. */ 3081 if (l.memop & MO_BSWAP) { 3082 val = bswap128(val); 3083 } 3084 store_atom_16(env, ra, l.page[0].haddr, l.memop, val); 3085 } 3086 return; 3087 } 3088 3089 first = l.page[0].size; 3090 if (first == 8) { 3091 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 3092 3093 if (l.memop & MO_BSWAP) { 3094 val = bswap128(val); 3095 } 3096 if (HOST_BIG_ENDIAN) { 3097 b = int128_getlo(val), a = int128_gethi(val); 3098 } else { 3099 a = int128_getlo(val), b = int128_gethi(val); 3100 } 3101 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra); 3102 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra); 3103 return; 3104 } 3105 3106 if ((l.memop & MO_BSWAP) != MO_LE) { 3107 val = bswap128(val); 3108 } 3109 if (first < 8) { 3110 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 3111 val = int128_urshift(val, first * 8); 3112 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3113 } else { 3114 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3115 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra); 3116 } 3117 } 3118 3119 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val, 3120 MemOpIdx oi, uintptr_t retaddr) 3121 { 3122 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 3123 do_st16_mmu(env, addr, val, oi, retaddr); 3124 } 3125 3126 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi) 3127 { 3128 helper_st16_mmu(env, addr, val, oi, GETPC()); 3129 } 3130 3131 /* 3132 * Store Helpers for cpu_ldst.h 3133 */ 3134 3135 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 3136 { 3137 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 3138 } 3139 3140 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val, 3141 MemOpIdx oi, uintptr_t retaddr) 3142 { 3143 helper_stb_mmu(env, addr, val, oi, retaddr); 3144 plugin_store_cb(env, addr, oi); 3145 } 3146 3147 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, 3148 MemOpIdx oi, uintptr_t retaddr) 3149 { 3150 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 3151 do_st2_mmu(env, addr, val, oi, retaddr); 3152 plugin_store_cb(env, addr, oi); 3153 } 3154 3155 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, 3156 MemOpIdx oi, uintptr_t retaddr) 3157 { 3158 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 3159 do_st4_mmu(env, addr, val, oi, retaddr); 3160 plugin_store_cb(env, addr, oi); 3161 } 3162 3163 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, 3164 MemOpIdx oi, uintptr_t retaddr) 3165 { 3166 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 3167 do_st8_mmu(env, addr, val, oi, retaddr); 3168 plugin_store_cb(env, addr, oi); 3169 } 3170 3171 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val, 3172 MemOpIdx oi, uintptr_t retaddr) 3173 { 3174 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 3175 do_st16_mmu(env, addr, val, oi, retaddr); 3176 plugin_store_cb(env, addr, oi); 3177 } 3178 3179 #include "ldst_common.c.inc" 3180 3181 /* 3182 * First set of functions passes in OI and RETADDR. 3183 * This makes them callable from other helpers. 3184 */ 3185 3186 #define ATOMIC_NAME(X) \ 3187 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 3188 3189 #define ATOMIC_MMU_CLEANUP 3190 3191 #include "atomic_common.c.inc" 3192 3193 #define DATA_SIZE 1 3194 #include "atomic_template.h" 3195 3196 #define DATA_SIZE 2 3197 #include "atomic_template.h" 3198 3199 #define DATA_SIZE 4 3200 #include "atomic_template.h" 3201 3202 #ifdef CONFIG_ATOMIC64 3203 #define DATA_SIZE 8 3204 #include "atomic_template.h" 3205 #endif 3206 3207 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 3208 #define DATA_SIZE 16 3209 #include "atomic_template.h" 3210 #endif 3211 3212 /* Code access functions. */ 3213 3214 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 3215 { 3216 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 3217 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3218 } 3219 3220 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 3221 { 3222 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 3223 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3224 } 3225 3226 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 3227 { 3228 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 3229 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3230 } 3231 3232 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 3233 { 3234 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 3235 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3236 } 3237 3238 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 3239 MemOpIdx oi, uintptr_t retaddr) 3240 { 3241 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3242 } 3243 3244 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 3245 MemOpIdx oi, uintptr_t retaddr) 3246 { 3247 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3248 } 3249 3250 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 3251 MemOpIdx oi, uintptr_t retaddr) 3252 { 3253 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3254 } 3255 3256 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 3257 MemOpIdx oi, uintptr_t retaddr) 3258 { 3259 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3260 } 3261