xref: /openbmc/qemu/accel/tcg/cputlb.c (revision c5a5839856119a3644dcc0775a046ed0ee3081c3)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
35 #include "qemu/atomic128.h"
36 #include "translate-all.h"
37 #include "trace-root.h"
38 #include "trace/mem.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 
43 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
44 /* #define DEBUG_TLB */
45 /* #define DEBUG_TLB_LOG */
46 
47 #ifdef DEBUG_TLB
48 # define DEBUG_TLB_GATE 1
49 # ifdef DEBUG_TLB_LOG
50 #  define DEBUG_TLB_LOG_GATE 1
51 # else
52 #  define DEBUG_TLB_LOG_GATE 0
53 # endif
54 #else
55 # define DEBUG_TLB_GATE 0
56 # define DEBUG_TLB_LOG_GATE 0
57 #endif
58 
59 #define tlb_debug(fmt, ...) do { \
60     if (DEBUG_TLB_LOG_GATE) { \
61         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
62                       ## __VA_ARGS__); \
63     } else if (DEBUG_TLB_GATE) { \
64         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
65     } \
66 } while (0)
67 
68 #define assert_cpu_is_self(cpu) do {                              \
69         if (DEBUG_TLB_GATE) {                                     \
70             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
71         }                                                         \
72     } while (0)
73 
74 /* run_on_cpu_data.target_ptr should always be big enough for a
75  * target_ulong even on 32 bit builds */
76 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
77 
78 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
79  */
80 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
81 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
82 
83 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
84 {
85     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
86 }
87 
88 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
89 {
90     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
91 }
92 
93 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
94                              size_t max_entries)
95 {
96     desc->window_begin_ns = ns;
97     desc->window_max_entries = max_entries;
98 }
99 
100 /**
101  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
102  * @desc: The CPUTLBDesc portion of the TLB
103  * @fast: The CPUTLBDescFast portion of the same TLB
104  *
105  * Called with tlb_lock_held.
106  *
107  * We have two main constraints when resizing a TLB: (1) we only resize it
108  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
109  * the array or unnecessarily flushing it), which means we do not control how
110  * frequently the resizing can occur; (2) we don't have access to the guest's
111  * future scheduling decisions, and therefore have to decide the magnitude of
112  * the resize based on past observations.
113  *
114  * In general, a memory-hungry process can benefit greatly from an appropriately
115  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
116  * we just have to make the TLB as large as possible; while an oversized TLB
117  * results in minimal TLB miss rates, it also takes longer to be flushed
118  * (flushes can be _very_ frequent), and the reduced locality can also hurt
119  * performance.
120  *
121  * To achieve near-optimal performance for all kinds of workloads, we:
122  *
123  * 1. Aggressively increase the size of the TLB when the use rate of the
124  * TLB being flushed is high, since it is likely that in the near future this
125  * memory-hungry process will execute again, and its memory hungriness will
126  * probably be similar.
127  *
128  * 2. Slowly reduce the size of the TLB as the use rate declines over a
129  * reasonably large time window. The rationale is that if in such a time window
130  * we have not observed a high TLB use rate, it is likely that we won't observe
131  * it in the near future. In that case, once a time window expires we downsize
132  * the TLB to match the maximum use rate observed in the window.
133  *
134  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
135  * since in that range performance is likely near-optimal. Recall that the TLB
136  * is direct mapped, so we want the use rate to be low (or at least not too
137  * high), since otherwise we are likely to have a significant amount of
138  * conflict misses.
139  */
140 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
141                                   int64_t now)
142 {
143     size_t old_size = tlb_n_entries(fast);
144     size_t rate;
145     size_t new_size = old_size;
146     int64_t window_len_ms = 100;
147     int64_t window_len_ns = window_len_ms * 1000 * 1000;
148     bool window_expired = now > desc->window_begin_ns + window_len_ns;
149 
150     if (desc->n_used_entries > desc->window_max_entries) {
151         desc->window_max_entries = desc->n_used_entries;
152     }
153     rate = desc->window_max_entries * 100 / old_size;
154 
155     if (rate > 70) {
156         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
157     } else if (rate < 30 && window_expired) {
158         size_t ceil = pow2ceil(desc->window_max_entries);
159         size_t expected_rate = desc->window_max_entries * 100 / ceil;
160 
161         /*
162          * Avoid undersizing when the max number of entries seen is just below
163          * a pow2. For instance, if max_entries == 1025, the expected use rate
164          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
165          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
166          * later. Thus, make sure that the expected use rate remains below 70%.
167          * (and since we double the size, that means the lowest rate we'd
168          * expect to get is 35%, which is still in the 30-70% range where
169          * we consider that the size is appropriate.)
170          */
171         if (expected_rate > 70) {
172             ceil *= 2;
173         }
174         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
175     }
176 
177     if (new_size == old_size) {
178         if (window_expired) {
179             tlb_window_reset(desc, now, desc->n_used_entries);
180         }
181         return;
182     }
183 
184     g_free(fast->table);
185     g_free(desc->iotlb);
186 
187     tlb_window_reset(desc, now, 0);
188     /* desc->n_used_entries is cleared by the caller */
189     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
190     fast->table = g_try_new(CPUTLBEntry, new_size);
191     desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
192 
193     /*
194      * If the allocations fail, try smaller sizes. We just freed some
195      * memory, so going back to half of new_size has a good chance of working.
196      * Increased memory pressure elsewhere in the system might cause the
197      * allocations to fail though, so we progressively reduce the allocation
198      * size, aborting if we cannot even allocate the smallest TLB we support.
199      */
200     while (fast->table == NULL || desc->iotlb == NULL) {
201         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
202             error_report("%s: %s", __func__, strerror(errno));
203             abort();
204         }
205         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
206         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
207 
208         g_free(fast->table);
209         g_free(desc->iotlb);
210         fast->table = g_try_new(CPUTLBEntry, new_size);
211         desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
212     }
213 }
214 
215 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
216 {
217     desc->n_used_entries = 0;
218     desc->large_page_addr = -1;
219     desc->large_page_mask = -1;
220     desc->vindex = 0;
221     memset(fast->table, -1, sizeof_tlb(fast));
222     memset(desc->vtable, -1, sizeof(desc->vtable));
223 }
224 
225 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
226                                         int64_t now)
227 {
228     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
229     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
230 
231     tlb_mmu_resize_locked(desc, fast, now);
232     tlb_mmu_flush_locked(desc, fast);
233 }
234 
235 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
236 {
237     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
238 
239     tlb_window_reset(desc, now, 0);
240     desc->n_used_entries = 0;
241     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
242     fast->table = g_new(CPUTLBEntry, n_entries);
243     desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
244     tlb_mmu_flush_locked(desc, fast);
245 }
246 
247 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
248 {
249     env_tlb(env)->d[mmu_idx].n_used_entries++;
250 }
251 
252 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
253 {
254     env_tlb(env)->d[mmu_idx].n_used_entries--;
255 }
256 
257 void tlb_init(CPUState *cpu)
258 {
259     CPUArchState *env = cpu->env_ptr;
260     int64_t now = get_clock_realtime();
261     int i;
262 
263     qemu_spin_init(&env_tlb(env)->c.lock);
264 
265     /* All tlbs are initialized flushed. */
266     env_tlb(env)->c.dirty = 0;
267 
268     for (i = 0; i < NB_MMU_MODES; i++) {
269         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
270     }
271 }
272 
273 void tlb_destroy(CPUState *cpu)
274 {
275     CPUArchState *env = cpu->env_ptr;
276     int i;
277 
278     qemu_spin_destroy(&env_tlb(env)->c.lock);
279     for (i = 0; i < NB_MMU_MODES; i++) {
280         CPUTLBDesc *desc = &env_tlb(env)->d[i];
281         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
282 
283         g_free(fast->table);
284         g_free(desc->iotlb);
285     }
286 }
287 
288 /* flush_all_helper: run fn across all cpus
289  *
290  * If the wait flag is set then the src cpu's helper will be queued as
291  * "safe" work and the loop exited creating a synchronisation point
292  * where all queued work will be finished before execution starts
293  * again.
294  */
295 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
296                              run_on_cpu_data d)
297 {
298     CPUState *cpu;
299 
300     CPU_FOREACH(cpu) {
301         if (cpu != src) {
302             async_run_on_cpu(cpu, fn, d);
303         }
304     }
305 }
306 
307 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
308 {
309     CPUState *cpu;
310     size_t full = 0, part = 0, elide = 0;
311 
312     CPU_FOREACH(cpu) {
313         CPUArchState *env = cpu->env_ptr;
314 
315         full += atomic_read(&env_tlb(env)->c.full_flush_count);
316         part += atomic_read(&env_tlb(env)->c.part_flush_count);
317         elide += atomic_read(&env_tlb(env)->c.elide_flush_count);
318     }
319     *pfull = full;
320     *ppart = part;
321     *pelide = elide;
322 }
323 
324 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
325 {
326     CPUArchState *env = cpu->env_ptr;
327     uint16_t asked = data.host_int;
328     uint16_t all_dirty, work, to_clean;
329     int64_t now = get_clock_realtime();
330 
331     assert_cpu_is_self(cpu);
332 
333     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
334 
335     qemu_spin_lock(&env_tlb(env)->c.lock);
336 
337     all_dirty = env_tlb(env)->c.dirty;
338     to_clean = asked & all_dirty;
339     all_dirty &= ~to_clean;
340     env_tlb(env)->c.dirty = all_dirty;
341 
342     for (work = to_clean; work != 0; work &= work - 1) {
343         int mmu_idx = ctz32(work);
344         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
345     }
346 
347     qemu_spin_unlock(&env_tlb(env)->c.lock);
348 
349     cpu_tb_jmp_cache_clear(cpu);
350 
351     if (to_clean == ALL_MMUIDX_BITS) {
352         atomic_set(&env_tlb(env)->c.full_flush_count,
353                    env_tlb(env)->c.full_flush_count + 1);
354     } else {
355         atomic_set(&env_tlb(env)->c.part_flush_count,
356                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
357         if (to_clean != asked) {
358             atomic_set(&env_tlb(env)->c.elide_flush_count,
359                        env_tlb(env)->c.elide_flush_count +
360                        ctpop16(asked & ~to_clean));
361         }
362     }
363 }
364 
365 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
366 {
367     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
368 
369     if (cpu->created && !qemu_cpu_is_self(cpu)) {
370         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
371                          RUN_ON_CPU_HOST_INT(idxmap));
372     } else {
373         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
374     }
375 }
376 
377 void tlb_flush(CPUState *cpu)
378 {
379     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
380 }
381 
382 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
383 {
384     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
385 
386     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
387 
388     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
389     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
390 }
391 
392 void tlb_flush_all_cpus(CPUState *src_cpu)
393 {
394     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
395 }
396 
397 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
398 {
399     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
400 
401     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
402 
403     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
404     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
405 }
406 
407 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
408 {
409     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
410 }
411 
412 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
413                                         target_ulong page)
414 {
415     return tlb_hit_page(tlb_entry->addr_read, page) ||
416            tlb_hit_page(tlb_addr_write(tlb_entry), page) ||
417            tlb_hit_page(tlb_entry->addr_code, page);
418 }
419 
420 /**
421  * tlb_entry_is_empty - return true if the entry is not in use
422  * @te: pointer to CPUTLBEntry
423  */
424 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
425 {
426     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
427 }
428 
429 /* Called with tlb_c.lock held */
430 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
431                                           target_ulong page)
432 {
433     if (tlb_hit_page_anyprot(tlb_entry, page)) {
434         memset(tlb_entry, -1, sizeof(*tlb_entry));
435         return true;
436     }
437     return false;
438 }
439 
440 /* Called with tlb_c.lock held */
441 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
442                                               target_ulong page)
443 {
444     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
445     int k;
446 
447     assert_cpu_is_self(env_cpu(env));
448     for (k = 0; k < CPU_VTLB_SIZE; k++) {
449         if (tlb_flush_entry_locked(&d->vtable[k], page)) {
450             tlb_n_used_entries_dec(env, mmu_idx);
451         }
452     }
453 }
454 
455 static void tlb_flush_page_locked(CPUArchState *env, int midx,
456                                   target_ulong page)
457 {
458     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
459     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
460 
461     /* Check if we need to flush due to large pages.  */
462     if ((page & lp_mask) == lp_addr) {
463         tlb_debug("forcing full flush midx %d ("
464                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
465                   midx, lp_addr, lp_mask);
466         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
467     } else {
468         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
469             tlb_n_used_entries_dec(env, midx);
470         }
471         tlb_flush_vtlb_page_locked(env, midx, page);
472     }
473 }
474 
475 /**
476  * tlb_flush_page_by_mmuidx_async_0:
477  * @cpu: cpu on which to flush
478  * @addr: page of virtual address to flush
479  * @idxmap: set of mmu_idx to flush
480  *
481  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
482  * at @addr from the tlbs indicated by @idxmap from @cpu.
483  */
484 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
485                                              target_ulong addr,
486                                              uint16_t idxmap)
487 {
488     CPUArchState *env = cpu->env_ptr;
489     int mmu_idx;
490 
491     assert_cpu_is_self(cpu);
492 
493     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
494 
495     qemu_spin_lock(&env_tlb(env)->c.lock);
496     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
497         if ((idxmap >> mmu_idx) & 1) {
498             tlb_flush_page_locked(env, mmu_idx, addr);
499         }
500     }
501     qemu_spin_unlock(&env_tlb(env)->c.lock);
502 
503     tb_flush_jmp_cache(cpu, addr);
504 }
505 
506 /**
507  * tlb_flush_page_by_mmuidx_async_1:
508  * @cpu: cpu on which to flush
509  * @data: encoded addr + idxmap
510  *
511  * Helper for tlb_flush_page_by_mmuidx and friends, called through
512  * async_run_on_cpu.  The idxmap parameter is encoded in the page
513  * offset of the target_ptr field.  This limits the set of mmu_idx
514  * that can be passed via this method.
515  */
516 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
517                                              run_on_cpu_data data)
518 {
519     target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
520     target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
521     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
522 
523     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
524 }
525 
526 typedef struct {
527     target_ulong addr;
528     uint16_t idxmap;
529 } TLBFlushPageByMMUIdxData;
530 
531 /**
532  * tlb_flush_page_by_mmuidx_async_2:
533  * @cpu: cpu on which to flush
534  * @data: allocated addr + idxmap
535  *
536  * Helper for tlb_flush_page_by_mmuidx and friends, called through
537  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
538  * TLBFlushPageByMMUIdxData structure that has been allocated
539  * specifically for this helper.  Free the structure when done.
540  */
541 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
542                                              run_on_cpu_data data)
543 {
544     TLBFlushPageByMMUIdxData *d = data.host_ptr;
545 
546     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
547     g_free(d);
548 }
549 
550 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
551 {
552     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
553 
554     /* This should already be page aligned */
555     addr &= TARGET_PAGE_MASK;
556 
557     if (qemu_cpu_is_self(cpu)) {
558         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
559     } else if (idxmap < TARGET_PAGE_SIZE) {
560         /*
561          * Most targets have only a few mmu_idx.  In the case where
562          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
563          * allocating memory for this operation.
564          */
565         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
566                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
567     } else {
568         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
569 
570         /* Otherwise allocate a structure, freed by the worker.  */
571         d->addr = addr;
572         d->idxmap = idxmap;
573         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
574                          RUN_ON_CPU_HOST_PTR(d));
575     }
576 }
577 
578 void tlb_flush_page(CPUState *cpu, target_ulong addr)
579 {
580     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
581 }
582 
583 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
584                                        uint16_t idxmap)
585 {
586     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
587 
588     /* This should already be page aligned */
589     addr &= TARGET_PAGE_MASK;
590 
591     /*
592      * Allocate memory to hold addr+idxmap only when needed.
593      * See tlb_flush_page_by_mmuidx for details.
594      */
595     if (idxmap < TARGET_PAGE_SIZE) {
596         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
597                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
598     } else {
599         CPUState *dst_cpu;
600 
601         /* Allocate a separate data block for each destination cpu.  */
602         CPU_FOREACH(dst_cpu) {
603             if (dst_cpu != src_cpu) {
604                 TLBFlushPageByMMUIdxData *d
605                     = g_new(TLBFlushPageByMMUIdxData, 1);
606 
607                 d->addr = addr;
608                 d->idxmap = idxmap;
609                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
610                                  RUN_ON_CPU_HOST_PTR(d));
611             }
612         }
613     }
614 
615     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
616 }
617 
618 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
619 {
620     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
621 }
622 
623 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
624                                               target_ulong addr,
625                                               uint16_t idxmap)
626 {
627     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
628 
629     /* This should already be page aligned */
630     addr &= TARGET_PAGE_MASK;
631 
632     /*
633      * Allocate memory to hold addr+idxmap only when needed.
634      * See tlb_flush_page_by_mmuidx for details.
635      */
636     if (idxmap < TARGET_PAGE_SIZE) {
637         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
638                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
639         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
640                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
641     } else {
642         CPUState *dst_cpu;
643         TLBFlushPageByMMUIdxData *d;
644 
645         /* Allocate a separate data block for each destination cpu.  */
646         CPU_FOREACH(dst_cpu) {
647             if (dst_cpu != src_cpu) {
648                 d = g_new(TLBFlushPageByMMUIdxData, 1);
649                 d->addr = addr;
650                 d->idxmap = idxmap;
651                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
652                                  RUN_ON_CPU_HOST_PTR(d));
653             }
654         }
655 
656         d = g_new(TLBFlushPageByMMUIdxData, 1);
657         d->addr = addr;
658         d->idxmap = idxmap;
659         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
660                               RUN_ON_CPU_HOST_PTR(d));
661     }
662 }
663 
664 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
665 {
666     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
667 }
668 
669 /* update the TLBs so that writes to code in the virtual page 'addr'
670    can be detected */
671 void tlb_protect_code(ram_addr_t ram_addr)
672 {
673     cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
674                                              DIRTY_MEMORY_CODE);
675 }
676 
677 /* update the TLB so that writes in physical page 'phys_addr' are no longer
678    tested for self modifying code */
679 void tlb_unprotect_code(ram_addr_t ram_addr)
680 {
681     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
682 }
683 
684 
685 /*
686  * Dirty write flag handling
687  *
688  * When the TCG code writes to a location it looks up the address in
689  * the TLB and uses that data to compute the final address. If any of
690  * the lower bits of the address are set then the slow path is forced.
691  * There are a number of reasons to do this but for normal RAM the
692  * most usual is detecting writes to code regions which may invalidate
693  * generated code.
694  *
695  * Other vCPUs might be reading their TLBs during guest execution, so we update
696  * te->addr_write with atomic_set. We don't need to worry about this for
697  * oversized guests as MTTCG is disabled for them.
698  *
699  * Called with tlb_c.lock held.
700  */
701 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
702                                          uintptr_t start, uintptr_t length)
703 {
704     uintptr_t addr = tlb_entry->addr_write;
705 
706     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
707                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
708         addr &= TARGET_PAGE_MASK;
709         addr += tlb_entry->addend;
710         if ((addr - start) < length) {
711 #if TCG_OVERSIZED_GUEST
712             tlb_entry->addr_write |= TLB_NOTDIRTY;
713 #else
714             atomic_set(&tlb_entry->addr_write,
715                        tlb_entry->addr_write | TLB_NOTDIRTY);
716 #endif
717         }
718     }
719 }
720 
721 /*
722  * Called with tlb_c.lock held.
723  * Called only from the vCPU context, i.e. the TLB's owner thread.
724  */
725 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
726 {
727     *d = *s;
728 }
729 
730 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
731  * the target vCPU).
732  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
733  * thing actually updated is the target TLB entry ->addr_write flags.
734  */
735 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
736 {
737     CPUArchState *env;
738 
739     int mmu_idx;
740 
741     env = cpu->env_ptr;
742     qemu_spin_lock(&env_tlb(env)->c.lock);
743     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
744         unsigned int i;
745         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
746 
747         for (i = 0; i < n; i++) {
748             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
749                                          start1, length);
750         }
751 
752         for (i = 0; i < CPU_VTLB_SIZE; i++) {
753             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
754                                          start1, length);
755         }
756     }
757     qemu_spin_unlock(&env_tlb(env)->c.lock);
758 }
759 
760 /* Called with tlb_c.lock held */
761 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
762                                          target_ulong vaddr)
763 {
764     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
765         tlb_entry->addr_write = vaddr;
766     }
767 }
768 
769 /* update the TLB corresponding to virtual page vaddr
770    so that it is no longer dirty */
771 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
772 {
773     CPUArchState *env = cpu->env_ptr;
774     int mmu_idx;
775 
776     assert_cpu_is_self(cpu);
777 
778     vaddr &= TARGET_PAGE_MASK;
779     qemu_spin_lock(&env_tlb(env)->c.lock);
780     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
781         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
782     }
783 
784     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
785         int k;
786         for (k = 0; k < CPU_VTLB_SIZE; k++) {
787             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
788         }
789     }
790     qemu_spin_unlock(&env_tlb(env)->c.lock);
791 }
792 
793 /* Our TLB does not support large pages, so remember the area covered by
794    large pages and trigger a full TLB flush if these are invalidated.  */
795 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
796                                target_ulong vaddr, target_ulong size)
797 {
798     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
799     target_ulong lp_mask = ~(size - 1);
800 
801     if (lp_addr == (target_ulong)-1) {
802         /* No previous large page.  */
803         lp_addr = vaddr;
804     } else {
805         /* Extend the existing region to include the new page.
806            This is a compromise between unnecessary flushes and
807            the cost of maintaining a full variable size TLB.  */
808         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
809         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
810             lp_mask <<= 1;
811         }
812     }
813     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
814     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
815 }
816 
817 /* Add a new TLB entry. At most one entry for a given virtual address
818  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
819  * supplied size is only used by tlb_flush_page.
820  *
821  * Called from TCG-generated code, which is under an RCU read-side
822  * critical section.
823  */
824 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
825                              hwaddr paddr, MemTxAttrs attrs, int prot,
826                              int mmu_idx, target_ulong size)
827 {
828     CPUArchState *env = cpu->env_ptr;
829     CPUTLB *tlb = env_tlb(env);
830     CPUTLBDesc *desc = &tlb->d[mmu_idx];
831     MemoryRegionSection *section;
832     unsigned int index;
833     target_ulong address;
834     target_ulong write_address;
835     uintptr_t addend;
836     CPUTLBEntry *te, tn;
837     hwaddr iotlb, xlat, sz, paddr_page;
838     target_ulong vaddr_page;
839     int asidx = cpu_asidx_from_attrs(cpu, attrs);
840     int wp_flags;
841     bool is_ram, is_romd;
842 
843     assert_cpu_is_self(cpu);
844 
845     if (size <= TARGET_PAGE_SIZE) {
846         sz = TARGET_PAGE_SIZE;
847     } else {
848         tlb_add_large_page(env, mmu_idx, vaddr, size);
849         sz = size;
850     }
851     vaddr_page = vaddr & TARGET_PAGE_MASK;
852     paddr_page = paddr & TARGET_PAGE_MASK;
853 
854     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
855                                                 &xlat, &sz, attrs, &prot);
856     assert(sz >= TARGET_PAGE_SIZE);
857 
858     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
859               " prot=%x idx=%d\n",
860               vaddr, paddr, prot, mmu_idx);
861 
862     address = vaddr_page;
863     if (size < TARGET_PAGE_SIZE) {
864         /* Repeat the MMU check and TLB fill on every access.  */
865         address |= TLB_INVALID_MASK;
866     }
867     if (attrs.byte_swap) {
868         address |= TLB_BSWAP;
869     }
870 
871     is_ram = memory_region_is_ram(section->mr);
872     is_romd = memory_region_is_romd(section->mr);
873 
874     if (is_ram || is_romd) {
875         /* RAM and ROMD both have associated host memory. */
876         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
877     } else {
878         /* I/O does not; force the host address to NULL. */
879         addend = 0;
880     }
881 
882     write_address = address;
883     if (is_ram) {
884         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
885         /*
886          * Computing is_clean is expensive; avoid all that unless
887          * the page is actually writable.
888          */
889         if (prot & PAGE_WRITE) {
890             if (section->readonly) {
891                 write_address |= TLB_DISCARD_WRITE;
892             } else if (cpu_physical_memory_is_clean(iotlb)) {
893                 write_address |= TLB_NOTDIRTY;
894             }
895         }
896     } else {
897         /* I/O or ROMD */
898         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
899         /*
900          * Writes to romd devices must go through MMIO to enable write.
901          * Reads to romd devices go through the ram_ptr found above,
902          * but of course reads to I/O must go through MMIO.
903          */
904         write_address |= TLB_MMIO;
905         if (!is_romd) {
906             address = write_address;
907         }
908     }
909 
910     wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
911                                               TARGET_PAGE_SIZE);
912 
913     index = tlb_index(env, mmu_idx, vaddr_page);
914     te = tlb_entry(env, mmu_idx, vaddr_page);
915 
916     /*
917      * Hold the TLB lock for the rest of the function. We could acquire/release
918      * the lock several times in the function, but it is faster to amortize the
919      * acquisition cost by acquiring it just once. Note that this leads to
920      * a longer critical section, but this is not a concern since the TLB lock
921      * is unlikely to be contended.
922      */
923     qemu_spin_lock(&tlb->c.lock);
924 
925     /* Note that the tlb is no longer clean.  */
926     tlb->c.dirty |= 1 << mmu_idx;
927 
928     /* Make sure there's no cached translation for the new page.  */
929     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
930 
931     /*
932      * Only evict the old entry to the victim tlb if it's for a
933      * different page; otherwise just overwrite the stale data.
934      */
935     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
936         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
937         CPUTLBEntry *tv = &desc->vtable[vidx];
938 
939         /* Evict the old entry into the victim tlb.  */
940         copy_tlb_helper_locked(tv, te);
941         desc->viotlb[vidx] = desc->iotlb[index];
942         tlb_n_used_entries_dec(env, mmu_idx);
943     }
944 
945     /* refill the tlb */
946     /*
947      * At this point iotlb contains a physical section number in the lower
948      * TARGET_PAGE_BITS, and either
949      *  + the ram_addr_t of the page base of the target RAM (RAM)
950      *  + the offset within section->mr of the page base (I/O, ROMD)
951      * We subtract the vaddr_page (which is page aligned and thus won't
952      * disturb the low bits) to give an offset which can be added to the
953      * (non-page-aligned) vaddr of the eventual memory access to get
954      * the MemoryRegion offset for the access. Note that the vaddr we
955      * subtract here is that of the page base, and not the same as the
956      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
957      */
958     desc->iotlb[index].addr = iotlb - vaddr_page;
959     desc->iotlb[index].attrs = attrs;
960 
961     /* Now calculate the new entry */
962     tn.addend = addend - vaddr_page;
963     if (prot & PAGE_READ) {
964         tn.addr_read = address;
965         if (wp_flags & BP_MEM_READ) {
966             tn.addr_read |= TLB_WATCHPOINT;
967         }
968     } else {
969         tn.addr_read = -1;
970     }
971 
972     if (prot & PAGE_EXEC) {
973         tn.addr_code = address;
974     } else {
975         tn.addr_code = -1;
976     }
977 
978     tn.addr_write = -1;
979     if (prot & PAGE_WRITE) {
980         tn.addr_write = write_address;
981         if (prot & PAGE_WRITE_INV) {
982             tn.addr_write |= TLB_INVALID_MASK;
983         }
984         if (wp_flags & BP_MEM_WRITE) {
985             tn.addr_write |= TLB_WATCHPOINT;
986         }
987     }
988 
989     copy_tlb_helper_locked(te, &tn);
990     tlb_n_used_entries_inc(env, mmu_idx);
991     qemu_spin_unlock(&tlb->c.lock);
992 }
993 
994 /* Add a new TLB entry, but without specifying the memory
995  * transaction attributes to be used.
996  */
997 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
998                   hwaddr paddr, int prot,
999                   int mmu_idx, target_ulong size)
1000 {
1001     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1002                             prot, mmu_idx, size);
1003 }
1004 
1005 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1006 {
1007     ram_addr_t ram_addr;
1008 
1009     ram_addr = qemu_ram_addr_from_host(ptr);
1010     if (ram_addr == RAM_ADDR_INVALID) {
1011         error_report("Bad ram pointer %p", ptr);
1012         abort();
1013     }
1014     return ram_addr;
1015 }
1016 
1017 /*
1018  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1019  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1020  * be discarded and looked up again (e.g. via tlb_entry()).
1021  */
1022 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1023                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1024 {
1025     CPUClass *cc = CPU_GET_CLASS(cpu);
1026     bool ok;
1027 
1028     /*
1029      * This is not a probe, so only valid return is success; failure
1030      * should result in exception + longjmp to the cpu loop.
1031      */
1032     ok = cc->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr);
1033     assert(ok);
1034 }
1035 
1036 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1037                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
1038                          MMUAccessType access_type, MemOp op)
1039 {
1040     CPUState *cpu = env_cpu(env);
1041     hwaddr mr_offset;
1042     MemoryRegionSection *section;
1043     MemoryRegion *mr;
1044     uint64_t val;
1045     bool locked = false;
1046     MemTxResult r;
1047 
1048     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1049     mr = section->mr;
1050     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1051     cpu->mem_io_pc = retaddr;
1052     if (!cpu->can_do_io) {
1053         cpu_io_recompile(cpu, retaddr);
1054     }
1055 
1056     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
1057         qemu_mutex_lock_iothread();
1058         locked = true;
1059     }
1060     r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
1061     if (r != MEMTX_OK) {
1062         hwaddr physaddr = mr_offset +
1063             section->offset_within_address_space -
1064             section->offset_within_region;
1065 
1066         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1067                                mmu_idx, iotlbentry->attrs, r, retaddr);
1068     }
1069     if (locked) {
1070         qemu_mutex_unlock_iothread();
1071     }
1072 
1073     return val;
1074 }
1075 
1076 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1077                       int mmu_idx, uint64_t val, target_ulong addr,
1078                       uintptr_t retaddr, MemOp op)
1079 {
1080     CPUState *cpu = env_cpu(env);
1081     hwaddr mr_offset;
1082     MemoryRegionSection *section;
1083     MemoryRegion *mr;
1084     bool locked = false;
1085     MemTxResult r;
1086 
1087     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1088     mr = section->mr;
1089     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1090     if (!cpu->can_do_io) {
1091         cpu_io_recompile(cpu, retaddr);
1092     }
1093     cpu->mem_io_pc = retaddr;
1094 
1095     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
1096         qemu_mutex_lock_iothread();
1097         locked = true;
1098     }
1099     r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
1100     if (r != MEMTX_OK) {
1101         hwaddr physaddr = mr_offset +
1102             section->offset_within_address_space -
1103             section->offset_within_region;
1104 
1105         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1106                                MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
1107                                retaddr);
1108     }
1109     if (locked) {
1110         qemu_mutex_unlock_iothread();
1111     }
1112 }
1113 
1114 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1115 {
1116 #if TCG_OVERSIZED_GUEST
1117     return *(target_ulong *)((uintptr_t)entry + ofs);
1118 #else
1119     /* ofs might correspond to .addr_write, so use atomic_read */
1120     return atomic_read((target_ulong *)((uintptr_t)entry + ofs));
1121 #endif
1122 }
1123 
1124 /* Return true if ADDR is present in the victim tlb, and has been copied
1125    back to the main tlb.  */
1126 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1127                            size_t elt_ofs, target_ulong page)
1128 {
1129     size_t vidx;
1130 
1131     assert_cpu_is_self(env_cpu(env));
1132     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1133         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1134         target_ulong cmp;
1135 
1136         /* elt_ofs might correspond to .addr_write, so use atomic_read */
1137 #if TCG_OVERSIZED_GUEST
1138         cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1139 #else
1140         cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1141 #endif
1142 
1143         if (cmp == page) {
1144             /* Found entry in victim tlb, swap tlb and iotlb.  */
1145             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1146 
1147             qemu_spin_lock(&env_tlb(env)->c.lock);
1148             copy_tlb_helper_locked(&tmptlb, tlb);
1149             copy_tlb_helper_locked(tlb, vtlb);
1150             copy_tlb_helper_locked(vtlb, &tmptlb);
1151             qemu_spin_unlock(&env_tlb(env)->c.lock);
1152 
1153             CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1154             CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1155             tmpio = *io; *io = *vio; *vio = tmpio;
1156             return true;
1157         }
1158     }
1159     return false;
1160 }
1161 
1162 /* Macro to call the above, with local variables from the use context.  */
1163 #define VICTIM_TLB_HIT(TY, ADDR) \
1164   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1165                  (ADDR) & TARGET_PAGE_MASK)
1166 
1167 /*
1168  * Return a ram_addr_t for the virtual address for execution.
1169  *
1170  * Return -1 if we can't translate and execute from an entire page
1171  * of RAM.  This will force us to execute by loading and translating
1172  * one insn at a time, without caching.
1173  *
1174  * NOTE: This function will trigger an exception if the page is
1175  * not executable.
1176  */
1177 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1178                                         void **hostp)
1179 {
1180     uintptr_t mmu_idx = cpu_mmu_index(env, true);
1181     uintptr_t index = tlb_index(env, mmu_idx, addr);
1182     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1183     void *p;
1184 
1185     if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1186         if (!VICTIM_TLB_HIT(addr_code, addr)) {
1187             tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1188             index = tlb_index(env, mmu_idx, addr);
1189             entry = tlb_entry(env, mmu_idx, addr);
1190 
1191             if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1192                 /*
1193                  * The MMU protection covers a smaller range than a target
1194                  * page, so we must redo the MMU check for every insn.
1195                  */
1196                 return -1;
1197             }
1198         }
1199         assert(tlb_hit(entry->addr_code, addr));
1200     }
1201 
1202     if (unlikely(entry->addr_code & TLB_MMIO)) {
1203         /* The region is not backed by RAM.  */
1204         if (hostp) {
1205             *hostp = NULL;
1206         }
1207         return -1;
1208     }
1209 
1210     p = (void *)((uintptr_t)addr + entry->addend);
1211     if (hostp) {
1212         *hostp = p;
1213     }
1214     return qemu_ram_addr_from_host_nofail(p);
1215 }
1216 
1217 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1218 {
1219     return get_page_addr_code_hostp(env, addr, NULL);
1220 }
1221 
1222 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1223                            CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
1224 {
1225     ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
1226 
1227     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1228 
1229     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1230         struct page_collection *pages
1231             = page_collection_lock(ram_addr, ram_addr + size);
1232         tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
1233         page_collection_unlock(pages);
1234     }
1235 
1236     /*
1237      * Set both VGA and migration bits for simplicity and to remove
1238      * the notdirty callback faster.
1239      */
1240     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1241 
1242     /* We remove the notdirty callback only if the code has been flushed. */
1243     if (!cpu_physical_memory_is_clean(ram_addr)) {
1244         trace_memory_notdirty_set_dirty(mem_vaddr);
1245         tlb_set_dirty(cpu, mem_vaddr);
1246     }
1247 }
1248 
1249 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1250                                  int fault_size, MMUAccessType access_type,
1251                                  int mmu_idx, bool nonfault,
1252                                  void **phost, uintptr_t retaddr)
1253 {
1254     uintptr_t index = tlb_index(env, mmu_idx, addr);
1255     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1256     target_ulong tlb_addr, page_addr;
1257     size_t elt_ofs;
1258     int flags;
1259 
1260     switch (access_type) {
1261     case MMU_DATA_LOAD:
1262         elt_ofs = offsetof(CPUTLBEntry, addr_read);
1263         break;
1264     case MMU_DATA_STORE:
1265         elt_ofs = offsetof(CPUTLBEntry, addr_write);
1266         break;
1267     case MMU_INST_FETCH:
1268         elt_ofs = offsetof(CPUTLBEntry, addr_code);
1269         break;
1270     default:
1271         g_assert_not_reached();
1272     }
1273     tlb_addr = tlb_read_ofs(entry, elt_ofs);
1274 
1275     page_addr = addr & TARGET_PAGE_MASK;
1276     if (!tlb_hit_page(tlb_addr, page_addr)) {
1277         if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1278             CPUState *cs = env_cpu(env);
1279             CPUClass *cc = CPU_GET_CLASS(cs);
1280 
1281             if (!cc->tlb_fill(cs, addr, fault_size, access_type,
1282                               mmu_idx, nonfault, retaddr)) {
1283                 /* Non-faulting page table read failed.  */
1284                 *phost = NULL;
1285                 return TLB_INVALID_MASK;
1286             }
1287 
1288             /* TLB resize via tlb_fill may have moved the entry.  */
1289             entry = tlb_entry(env, mmu_idx, addr);
1290         }
1291         tlb_addr = tlb_read_ofs(entry, elt_ofs);
1292     }
1293     flags = tlb_addr & TLB_FLAGS_MASK;
1294 
1295     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1296     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1297         *phost = NULL;
1298         return TLB_MMIO;
1299     }
1300 
1301     /* Everything else is RAM. */
1302     *phost = (void *)((uintptr_t)addr + entry->addend);
1303     return flags;
1304 }
1305 
1306 int probe_access_flags(CPUArchState *env, target_ulong addr,
1307                        MMUAccessType access_type, int mmu_idx,
1308                        bool nonfault, void **phost, uintptr_t retaddr)
1309 {
1310     int flags;
1311 
1312     flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1313                                   nonfault, phost, retaddr);
1314 
1315     /* Handle clean RAM pages.  */
1316     if (unlikely(flags & TLB_NOTDIRTY)) {
1317         uintptr_t index = tlb_index(env, mmu_idx, addr);
1318         CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1319 
1320         notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1321         flags &= ~TLB_NOTDIRTY;
1322     }
1323 
1324     return flags;
1325 }
1326 
1327 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1328                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1329 {
1330     void *host;
1331     int flags;
1332 
1333     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1334 
1335     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1336                                   false, &host, retaddr);
1337 
1338     /* Per the interface, size == 0 merely faults the access. */
1339     if (size == 0) {
1340         return NULL;
1341     }
1342 
1343     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1344         uintptr_t index = tlb_index(env, mmu_idx, addr);
1345         CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1346 
1347         /* Handle watchpoints.  */
1348         if (flags & TLB_WATCHPOINT) {
1349             int wp_access = (access_type == MMU_DATA_STORE
1350                              ? BP_MEM_WRITE : BP_MEM_READ);
1351             cpu_check_watchpoint(env_cpu(env), addr, size,
1352                                  iotlbentry->attrs, wp_access, retaddr);
1353         }
1354 
1355         /* Handle clean RAM pages.  */
1356         if (flags & TLB_NOTDIRTY) {
1357             notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1358         }
1359     }
1360 
1361     return host;
1362 }
1363 
1364 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1365                         MMUAccessType access_type, int mmu_idx)
1366 {
1367     void *host;
1368     int flags;
1369 
1370     flags = probe_access_internal(env, addr, 0, access_type,
1371                                   mmu_idx, true, &host, 0);
1372 
1373     /* No combination of flags are expected by the caller. */
1374     return flags ? NULL : host;
1375 }
1376 
1377 #ifdef CONFIG_PLUGIN
1378 /*
1379  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1380  * This should be a hot path as we will have just looked this path up
1381  * in the softmmu lookup code (or helper). We don't handle re-fills or
1382  * checking the victim table. This is purely informational.
1383  *
1384  * This should never fail as the memory access being instrumented
1385  * should have just filled the TLB.
1386  */
1387 
1388 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1389                        bool is_store, struct qemu_plugin_hwaddr *data)
1390 {
1391     CPUArchState *env = cpu->env_ptr;
1392     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1393     uintptr_t index = tlb_index(env, mmu_idx, addr);
1394     target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1395 
1396     if (likely(tlb_hit(tlb_addr, addr))) {
1397         /* We must have an iotlb entry for MMIO */
1398         if (tlb_addr & TLB_MMIO) {
1399             CPUIOTLBEntry *iotlbentry;
1400             iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1401             data->is_io = true;
1402             data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1403             data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1404         } else {
1405             data->is_io = false;
1406             data->v.ram.hostaddr = addr + tlbe->addend;
1407         }
1408         return true;
1409     }
1410     return false;
1411 }
1412 
1413 #endif
1414 
1415 /* Probe for a read-modify-write atomic operation.  Do not allow unaligned
1416  * operations, or io operations to proceed.  Return the host address.  */
1417 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1418                                TCGMemOpIdx oi, uintptr_t retaddr)
1419 {
1420     size_t mmu_idx = get_mmuidx(oi);
1421     uintptr_t index = tlb_index(env, mmu_idx, addr);
1422     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1423     target_ulong tlb_addr = tlb_addr_write(tlbe);
1424     MemOp mop = get_memop(oi);
1425     int a_bits = get_alignment_bits(mop);
1426     int s_bits = mop & MO_SIZE;
1427     void *hostaddr;
1428 
1429     /* Adjust the given return address.  */
1430     retaddr -= GETPC_ADJ;
1431 
1432     /* Enforce guest required alignment.  */
1433     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1434         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1435         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1436                              mmu_idx, retaddr);
1437     }
1438 
1439     /* Enforce qemu required alignment.  */
1440     if (unlikely(addr & ((1 << s_bits) - 1))) {
1441         /* We get here if guest alignment was not requested,
1442            or was not enforced by cpu_unaligned_access above.
1443            We might widen the access and emulate, but for now
1444            mark an exception and exit the cpu loop.  */
1445         goto stop_the_world;
1446     }
1447 
1448     /* Check TLB entry and enforce page permissions.  */
1449     if (!tlb_hit(tlb_addr, addr)) {
1450         if (!VICTIM_TLB_HIT(addr_write, addr)) {
1451             tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE,
1452                      mmu_idx, retaddr);
1453             index = tlb_index(env, mmu_idx, addr);
1454             tlbe = tlb_entry(env, mmu_idx, addr);
1455         }
1456         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1457     }
1458 
1459     /* Notice an IO access or a needs-MMU-lookup access */
1460     if (unlikely(tlb_addr & TLB_MMIO)) {
1461         /* There's really nothing that can be done to
1462            support this apart from stop-the-world.  */
1463         goto stop_the_world;
1464     }
1465 
1466     /* Let the guest notice RMW on a write-only page.  */
1467     if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1468         tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD,
1469                  mmu_idx, retaddr);
1470         /* Since we don't support reads and writes to different addresses,
1471            and we do have the proper page loaded for write, this shouldn't
1472            ever return.  But just in case, handle via stop-the-world.  */
1473         goto stop_the_world;
1474     }
1475 
1476     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1477 
1478     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1479         notdirty_write(env_cpu(env), addr, 1 << s_bits,
1480                        &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
1481     }
1482 
1483     return hostaddr;
1484 
1485  stop_the_world:
1486     cpu_loop_exit_atomic(env_cpu(env), retaddr);
1487 }
1488 
1489 /*
1490  * Load Helpers
1491  *
1492  * We support two different access types. SOFTMMU_CODE_ACCESS is
1493  * specifically for reading instructions from system memory. It is
1494  * called by the translation loop and in some helpers where the code
1495  * is disassembled. It shouldn't be called directly by guest code.
1496  */
1497 
1498 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1499                                 TCGMemOpIdx oi, uintptr_t retaddr);
1500 
1501 static inline uint64_t QEMU_ALWAYS_INLINE
1502 load_memop(const void *haddr, MemOp op)
1503 {
1504     switch (op) {
1505     case MO_UB:
1506         return ldub_p(haddr);
1507     case MO_BEUW:
1508         return lduw_be_p(haddr);
1509     case MO_LEUW:
1510         return lduw_le_p(haddr);
1511     case MO_BEUL:
1512         return (uint32_t)ldl_be_p(haddr);
1513     case MO_LEUL:
1514         return (uint32_t)ldl_le_p(haddr);
1515     case MO_BEQ:
1516         return ldq_be_p(haddr);
1517     case MO_LEQ:
1518         return ldq_le_p(haddr);
1519     default:
1520         qemu_build_not_reached();
1521     }
1522 }
1523 
1524 static inline uint64_t QEMU_ALWAYS_INLINE
1525 load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1526             uintptr_t retaddr, MemOp op, bool code_read,
1527             FullLoadHelper *full_load)
1528 {
1529     uintptr_t mmu_idx = get_mmuidx(oi);
1530     uintptr_t index = tlb_index(env, mmu_idx, addr);
1531     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1532     target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1533     const size_t tlb_off = code_read ?
1534         offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1535     const MMUAccessType access_type =
1536         code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1537     unsigned a_bits = get_alignment_bits(get_memop(oi));
1538     void *haddr;
1539     uint64_t res;
1540     size_t size = memop_size(op);
1541 
1542     /* Handle CPU specific unaligned behaviour */
1543     if (addr & ((1 << a_bits) - 1)) {
1544         cpu_unaligned_access(env_cpu(env), addr, access_type,
1545                              mmu_idx, retaddr);
1546     }
1547 
1548     /* If the TLB entry is for a different page, reload and try again.  */
1549     if (!tlb_hit(tlb_addr, addr)) {
1550         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1551                             addr & TARGET_PAGE_MASK)) {
1552             tlb_fill(env_cpu(env), addr, size,
1553                      access_type, mmu_idx, retaddr);
1554             index = tlb_index(env, mmu_idx, addr);
1555             entry = tlb_entry(env, mmu_idx, addr);
1556         }
1557         tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1558         tlb_addr &= ~TLB_INVALID_MASK;
1559     }
1560 
1561     /* Handle anything that isn't just a straight memory access.  */
1562     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1563         CPUIOTLBEntry *iotlbentry;
1564         bool need_swap;
1565 
1566         /* For anything that is unaligned, recurse through full_load.  */
1567         if ((addr & (size - 1)) != 0) {
1568             goto do_unaligned_access;
1569         }
1570 
1571         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1572 
1573         /* Handle watchpoints.  */
1574         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1575             /* On watchpoint hit, this will longjmp out.  */
1576             cpu_check_watchpoint(env_cpu(env), addr, size,
1577                                  iotlbentry->attrs, BP_MEM_READ, retaddr);
1578         }
1579 
1580         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1581 
1582         /* Handle I/O access.  */
1583         if (likely(tlb_addr & TLB_MMIO)) {
1584             return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1585                             access_type, op ^ (need_swap * MO_BSWAP));
1586         }
1587 
1588         haddr = (void *)((uintptr_t)addr + entry->addend);
1589 
1590         /*
1591          * Keep these two load_memop separate to ensure that the compiler
1592          * is able to fold the entire function to a single instruction.
1593          * There is a build-time assert inside to remind you of this.  ;-)
1594          */
1595         if (unlikely(need_swap)) {
1596             return load_memop(haddr, op ^ MO_BSWAP);
1597         }
1598         return load_memop(haddr, op);
1599     }
1600 
1601     /* Handle slow unaligned access (it spans two pages or IO).  */
1602     if (size > 1
1603         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1604                     >= TARGET_PAGE_SIZE)) {
1605         target_ulong addr1, addr2;
1606         uint64_t r1, r2;
1607         unsigned shift;
1608     do_unaligned_access:
1609         addr1 = addr & ~((target_ulong)size - 1);
1610         addr2 = addr1 + size;
1611         r1 = full_load(env, addr1, oi, retaddr);
1612         r2 = full_load(env, addr2, oi, retaddr);
1613         shift = (addr & (size - 1)) * 8;
1614 
1615         if (memop_big_endian(op)) {
1616             /* Big-endian combine.  */
1617             res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1618         } else {
1619             /* Little-endian combine.  */
1620             res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1621         }
1622         return res & MAKE_64BIT_MASK(0, size * 8);
1623     }
1624 
1625     haddr = (void *)((uintptr_t)addr + entry->addend);
1626     return load_memop(haddr, op);
1627 }
1628 
1629 /*
1630  * For the benefit of TCG generated code, we want to avoid the
1631  * complication of ABI-specific return type promotion and always
1632  * return a value extended to the register size of the host. This is
1633  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1634  * data, and for that we always have uint64_t.
1635  *
1636  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1637  */
1638 
1639 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
1640                               TCGMemOpIdx oi, uintptr_t retaddr)
1641 {
1642     return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
1643 }
1644 
1645 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
1646                                      TCGMemOpIdx oi, uintptr_t retaddr)
1647 {
1648     return full_ldub_mmu(env, addr, oi, retaddr);
1649 }
1650 
1651 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1652                                  TCGMemOpIdx oi, uintptr_t retaddr)
1653 {
1654     return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
1655                        full_le_lduw_mmu);
1656 }
1657 
1658 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1659                                     TCGMemOpIdx oi, uintptr_t retaddr)
1660 {
1661     return full_le_lduw_mmu(env, addr, oi, retaddr);
1662 }
1663 
1664 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1665                                  TCGMemOpIdx oi, uintptr_t retaddr)
1666 {
1667     return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
1668                        full_be_lduw_mmu);
1669 }
1670 
1671 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1672                                     TCGMemOpIdx oi, uintptr_t retaddr)
1673 {
1674     return full_be_lduw_mmu(env, addr, oi, retaddr);
1675 }
1676 
1677 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1678                                  TCGMemOpIdx oi, uintptr_t retaddr)
1679 {
1680     return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
1681                        full_le_ldul_mmu);
1682 }
1683 
1684 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1685                                     TCGMemOpIdx oi, uintptr_t retaddr)
1686 {
1687     return full_le_ldul_mmu(env, addr, oi, retaddr);
1688 }
1689 
1690 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1691                                  TCGMemOpIdx oi, uintptr_t retaddr)
1692 {
1693     return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
1694                        full_be_ldul_mmu);
1695 }
1696 
1697 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1698                                     TCGMemOpIdx oi, uintptr_t retaddr)
1699 {
1700     return full_be_ldul_mmu(env, addr, oi, retaddr);
1701 }
1702 
1703 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
1704                            TCGMemOpIdx oi, uintptr_t retaddr)
1705 {
1706     return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
1707                        helper_le_ldq_mmu);
1708 }
1709 
1710 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
1711                            TCGMemOpIdx oi, uintptr_t retaddr)
1712 {
1713     return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
1714                        helper_be_ldq_mmu);
1715 }
1716 
1717 /*
1718  * Provide signed versions of the load routines as well.  We can of course
1719  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
1720  */
1721 
1722 
1723 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
1724                                      TCGMemOpIdx oi, uintptr_t retaddr)
1725 {
1726     return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
1727 }
1728 
1729 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
1730                                     TCGMemOpIdx oi, uintptr_t retaddr)
1731 {
1732     return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
1733 }
1734 
1735 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
1736                                     TCGMemOpIdx oi, uintptr_t retaddr)
1737 {
1738     return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
1739 }
1740 
1741 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
1742                                     TCGMemOpIdx oi, uintptr_t retaddr)
1743 {
1744     return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
1745 }
1746 
1747 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
1748                                     TCGMemOpIdx oi, uintptr_t retaddr)
1749 {
1750     return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
1751 }
1752 
1753 /*
1754  * Load helpers for cpu_ldst.h.
1755  */
1756 
1757 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
1758                                        int mmu_idx, uintptr_t retaddr,
1759                                        MemOp op, FullLoadHelper *full_load)
1760 {
1761     uint16_t meminfo;
1762     TCGMemOpIdx oi;
1763     uint64_t ret;
1764 
1765     meminfo = trace_mem_get_info(op, mmu_idx, false);
1766     trace_guest_mem_before_exec(env_cpu(env), addr, meminfo);
1767 
1768     op &= ~MO_SIGN;
1769     oi = make_memop_idx(op, mmu_idx);
1770     ret = full_load(env, addr, oi, retaddr);
1771 
1772     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, meminfo);
1773 
1774     return ret;
1775 }
1776 
1777 uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1778                             int mmu_idx, uintptr_t ra)
1779 {
1780     return cpu_load_helper(env, addr, mmu_idx, ra, MO_UB, full_ldub_mmu);
1781 }
1782 
1783 int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1784                        int mmu_idx, uintptr_t ra)
1785 {
1786     return (int8_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_SB,
1787                                    full_ldub_mmu);
1788 }
1789 
1790 uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1791                                int mmu_idx, uintptr_t ra)
1792 {
1793     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUW, full_be_lduw_mmu);
1794 }
1795 
1796 int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1797                           int mmu_idx, uintptr_t ra)
1798 {
1799     return (int16_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_BESW,
1800                                     full_be_lduw_mmu);
1801 }
1802 
1803 uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1804                               int mmu_idx, uintptr_t ra)
1805 {
1806     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUL, full_be_ldul_mmu);
1807 }
1808 
1809 uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1810                               int mmu_idx, uintptr_t ra)
1811 {
1812     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEQ, helper_be_ldq_mmu);
1813 }
1814 
1815 uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1816                                int mmu_idx, uintptr_t ra)
1817 {
1818     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUW, full_le_lduw_mmu);
1819 }
1820 
1821 int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1822                           int mmu_idx, uintptr_t ra)
1823 {
1824     return (int16_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_LESW,
1825                                     full_le_lduw_mmu);
1826 }
1827 
1828 uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1829                               int mmu_idx, uintptr_t ra)
1830 {
1831     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUL, full_le_ldul_mmu);
1832 }
1833 
1834 uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
1835                               int mmu_idx, uintptr_t ra)
1836 {
1837     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEQ, helper_le_ldq_mmu);
1838 }
1839 
1840 uint32_t cpu_ldub_data_ra(CPUArchState *env, target_ulong ptr,
1841                           uintptr_t retaddr)
1842 {
1843     return cpu_ldub_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1844 }
1845 
1846 int cpu_ldsb_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
1847 {
1848     return cpu_ldsb_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1849 }
1850 
1851 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, target_ulong ptr,
1852                              uintptr_t retaddr)
1853 {
1854     return cpu_lduw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1855 }
1856 
1857 int cpu_ldsw_be_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
1858 {
1859     return cpu_ldsw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1860 }
1861 
1862 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, target_ulong ptr,
1863                             uintptr_t retaddr)
1864 {
1865     return cpu_ldl_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1866 }
1867 
1868 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, target_ulong ptr,
1869                             uintptr_t retaddr)
1870 {
1871     return cpu_ldq_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1872 }
1873 
1874 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, target_ulong ptr,
1875                              uintptr_t retaddr)
1876 {
1877     return cpu_lduw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1878 }
1879 
1880 int cpu_ldsw_le_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
1881 {
1882     return cpu_ldsw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1883 }
1884 
1885 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, target_ulong ptr,
1886                             uintptr_t retaddr)
1887 {
1888     return cpu_ldl_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1889 }
1890 
1891 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, target_ulong ptr,
1892                             uintptr_t retaddr)
1893 {
1894     return cpu_ldq_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
1895 }
1896 
1897 uint32_t cpu_ldub_data(CPUArchState *env, target_ulong ptr)
1898 {
1899     return cpu_ldub_data_ra(env, ptr, 0);
1900 }
1901 
1902 int cpu_ldsb_data(CPUArchState *env, target_ulong ptr)
1903 {
1904     return cpu_ldsb_data_ra(env, ptr, 0);
1905 }
1906 
1907 uint32_t cpu_lduw_be_data(CPUArchState *env, target_ulong ptr)
1908 {
1909     return cpu_lduw_be_data_ra(env, ptr, 0);
1910 }
1911 
1912 int cpu_ldsw_be_data(CPUArchState *env, target_ulong ptr)
1913 {
1914     return cpu_ldsw_be_data_ra(env, ptr, 0);
1915 }
1916 
1917 uint32_t cpu_ldl_be_data(CPUArchState *env, target_ulong ptr)
1918 {
1919     return cpu_ldl_be_data_ra(env, ptr, 0);
1920 }
1921 
1922 uint64_t cpu_ldq_be_data(CPUArchState *env, target_ulong ptr)
1923 {
1924     return cpu_ldq_be_data_ra(env, ptr, 0);
1925 }
1926 
1927 uint32_t cpu_lduw_le_data(CPUArchState *env, target_ulong ptr)
1928 {
1929     return cpu_lduw_le_data_ra(env, ptr, 0);
1930 }
1931 
1932 int cpu_ldsw_le_data(CPUArchState *env, target_ulong ptr)
1933 {
1934     return cpu_ldsw_le_data_ra(env, ptr, 0);
1935 }
1936 
1937 uint32_t cpu_ldl_le_data(CPUArchState *env, target_ulong ptr)
1938 {
1939     return cpu_ldl_le_data_ra(env, ptr, 0);
1940 }
1941 
1942 uint64_t cpu_ldq_le_data(CPUArchState *env, target_ulong ptr)
1943 {
1944     return cpu_ldq_le_data_ra(env, ptr, 0);
1945 }
1946 
1947 /*
1948  * Store Helpers
1949  */
1950 
1951 static inline void QEMU_ALWAYS_INLINE
1952 store_memop(void *haddr, uint64_t val, MemOp op)
1953 {
1954     switch (op) {
1955     case MO_UB:
1956         stb_p(haddr, val);
1957         break;
1958     case MO_BEUW:
1959         stw_be_p(haddr, val);
1960         break;
1961     case MO_LEUW:
1962         stw_le_p(haddr, val);
1963         break;
1964     case MO_BEUL:
1965         stl_be_p(haddr, val);
1966         break;
1967     case MO_LEUL:
1968         stl_le_p(haddr, val);
1969         break;
1970     case MO_BEQ:
1971         stq_be_p(haddr, val);
1972         break;
1973     case MO_LEQ:
1974         stq_le_p(haddr, val);
1975         break;
1976     default:
1977         qemu_build_not_reached();
1978     }
1979 }
1980 
1981 static inline void QEMU_ALWAYS_INLINE
1982 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
1983              TCGMemOpIdx oi, uintptr_t retaddr, MemOp op)
1984 {
1985     uintptr_t mmu_idx = get_mmuidx(oi);
1986     uintptr_t index = tlb_index(env, mmu_idx, addr);
1987     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1988     target_ulong tlb_addr = tlb_addr_write(entry);
1989     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
1990     unsigned a_bits = get_alignment_bits(get_memop(oi));
1991     void *haddr;
1992     size_t size = memop_size(op);
1993 
1994     /* Handle CPU specific unaligned behaviour */
1995     if (addr & ((1 << a_bits) - 1)) {
1996         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1997                              mmu_idx, retaddr);
1998     }
1999 
2000     /* If the TLB entry is for a different page, reload and try again.  */
2001     if (!tlb_hit(tlb_addr, addr)) {
2002         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2003             addr & TARGET_PAGE_MASK)) {
2004             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2005                      mmu_idx, retaddr);
2006             index = tlb_index(env, mmu_idx, addr);
2007             entry = tlb_entry(env, mmu_idx, addr);
2008         }
2009         tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2010     }
2011 
2012     /* Handle anything that isn't just a straight memory access.  */
2013     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2014         CPUIOTLBEntry *iotlbentry;
2015         bool need_swap;
2016 
2017         /* For anything that is unaligned, recurse through byte stores.  */
2018         if ((addr & (size - 1)) != 0) {
2019             goto do_unaligned_access;
2020         }
2021 
2022         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
2023 
2024         /* Handle watchpoints.  */
2025         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2026             /* On watchpoint hit, this will longjmp out.  */
2027             cpu_check_watchpoint(env_cpu(env), addr, size,
2028                                  iotlbentry->attrs, BP_MEM_WRITE, retaddr);
2029         }
2030 
2031         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2032 
2033         /* Handle I/O access.  */
2034         if (tlb_addr & TLB_MMIO) {
2035             io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
2036                       op ^ (need_swap * MO_BSWAP));
2037             return;
2038         }
2039 
2040         /* Ignore writes to ROM.  */
2041         if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2042             return;
2043         }
2044 
2045         /* Handle clean RAM pages.  */
2046         if (tlb_addr & TLB_NOTDIRTY) {
2047             notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
2048         }
2049 
2050         haddr = (void *)((uintptr_t)addr + entry->addend);
2051 
2052         /*
2053          * Keep these two store_memop separate to ensure that the compiler
2054          * is able to fold the entire function to a single instruction.
2055          * There is a build-time assert inside to remind you of this.  ;-)
2056          */
2057         if (unlikely(need_swap)) {
2058             store_memop(haddr, val, op ^ MO_BSWAP);
2059         } else {
2060             store_memop(haddr, val, op);
2061         }
2062         return;
2063     }
2064 
2065     /* Handle slow unaligned access (it spans two pages or IO).  */
2066     if (size > 1
2067         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2068                      >= TARGET_PAGE_SIZE)) {
2069         int i;
2070         uintptr_t index2;
2071         CPUTLBEntry *entry2;
2072         target_ulong page2, tlb_addr2;
2073         size_t size2;
2074 
2075     do_unaligned_access:
2076         /*
2077          * Ensure the second page is in the TLB.  Note that the first page
2078          * is already guaranteed to be filled, and that the second page
2079          * cannot evict the first.
2080          */
2081         page2 = (addr + size) & TARGET_PAGE_MASK;
2082         size2 = (addr + size) & ~TARGET_PAGE_MASK;
2083         index2 = tlb_index(env, mmu_idx, page2);
2084         entry2 = tlb_entry(env, mmu_idx, page2);
2085         tlb_addr2 = tlb_addr_write(entry2);
2086         if (!tlb_hit_page(tlb_addr2, page2)) {
2087             if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2088                 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2089                          mmu_idx, retaddr);
2090                 index2 = tlb_index(env, mmu_idx, page2);
2091                 entry2 = tlb_entry(env, mmu_idx, page2);
2092             }
2093             tlb_addr2 = tlb_addr_write(entry2);
2094         }
2095 
2096         /*
2097          * Handle watchpoints.  Since this may trap, all checks
2098          * must happen before any store.
2099          */
2100         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2101             cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2102                                  env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
2103                                  BP_MEM_WRITE, retaddr);
2104         }
2105         if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2106             cpu_check_watchpoint(env_cpu(env), page2, size2,
2107                                  env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
2108                                  BP_MEM_WRITE, retaddr);
2109         }
2110 
2111         /*
2112          * XXX: not efficient, but simple.
2113          * This loop must go in the forward direction to avoid issues
2114          * with self-modifying code in Windows 64-bit.
2115          */
2116         for (i = 0; i < size; ++i) {
2117             uint8_t val8;
2118             if (memop_big_endian(op)) {
2119                 /* Big-endian extract.  */
2120                 val8 = val >> (((size - 1) * 8) - (i * 8));
2121             } else {
2122                 /* Little-endian extract.  */
2123                 val8 = val >> (i * 8);
2124             }
2125             helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
2126         }
2127         return;
2128     }
2129 
2130     haddr = (void *)((uintptr_t)addr + entry->addend);
2131     store_memop(haddr, val, op);
2132 }
2133 
2134 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2135                         TCGMemOpIdx oi, uintptr_t retaddr)
2136 {
2137     store_helper(env, addr, val, oi, retaddr, MO_UB);
2138 }
2139 
2140 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2141                        TCGMemOpIdx oi, uintptr_t retaddr)
2142 {
2143     store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2144 }
2145 
2146 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2147                        TCGMemOpIdx oi, uintptr_t retaddr)
2148 {
2149     store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2150 }
2151 
2152 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2153                        TCGMemOpIdx oi, uintptr_t retaddr)
2154 {
2155     store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2156 }
2157 
2158 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2159                        TCGMemOpIdx oi, uintptr_t retaddr)
2160 {
2161     store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2162 }
2163 
2164 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2165                        TCGMemOpIdx oi, uintptr_t retaddr)
2166 {
2167     store_helper(env, addr, val, oi, retaddr, MO_LEQ);
2168 }
2169 
2170 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2171                        TCGMemOpIdx oi, uintptr_t retaddr)
2172 {
2173     store_helper(env, addr, val, oi, retaddr, MO_BEQ);
2174 }
2175 
2176 /*
2177  * Store Helpers for cpu_ldst.h
2178  */
2179 
2180 static inline void QEMU_ALWAYS_INLINE
2181 cpu_store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2182                  int mmu_idx, uintptr_t retaddr, MemOp op)
2183 {
2184     TCGMemOpIdx oi;
2185     uint16_t meminfo;
2186 
2187     meminfo = trace_mem_get_info(op, mmu_idx, true);
2188     trace_guest_mem_before_exec(env_cpu(env), addr, meminfo);
2189 
2190     oi = make_memop_idx(op, mmu_idx);
2191     store_helper(env, addr, val, oi, retaddr, op);
2192 
2193     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, meminfo);
2194 }
2195 
2196 void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2197                        int mmu_idx, uintptr_t retaddr)
2198 {
2199     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_UB);
2200 }
2201 
2202 void cpu_stw_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2203                           int mmu_idx, uintptr_t retaddr)
2204 {
2205     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUW);
2206 }
2207 
2208 void cpu_stl_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2209                           int mmu_idx, uintptr_t retaddr)
2210 {
2211     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUL);
2212 }
2213 
2214 void cpu_stq_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2215                           int mmu_idx, uintptr_t retaddr)
2216 {
2217     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEQ);
2218 }
2219 
2220 void cpu_stw_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2221                           int mmu_idx, uintptr_t retaddr)
2222 {
2223     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUW);
2224 }
2225 
2226 void cpu_stl_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2227                           int mmu_idx, uintptr_t retaddr)
2228 {
2229     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUL);
2230 }
2231 
2232 void cpu_stq_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2233                           int mmu_idx, uintptr_t retaddr)
2234 {
2235     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEQ);
2236 }
2237 
2238 void cpu_stb_data_ra(CPUArchState *env, target_ulong ptr,
2239                      uint32_t val, uintptr_t retaddr)
2240 {
2241     cpu_stb_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2242 }
2243 
2244 void cpu_stw_be_data_ra(CPUArchState *env, target_ulong ptr,
2245                         uint32_t val, uintptr_t retaddr)
2246 {
2247     cpu_stw_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2248 }
2249 
2250 void cpu_stl_be_data_ra(CPUArchState *env, target_ulong ptr,
2251                         uint32_t val, uintptr_t retaddr)
2252 {
2253     cpu_stl_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2254 }
2255 
2256 void cpu_stq_be_data_ra(CPUArchState *env, target_ulong ptr,
2257                         uint64_t val, uintptr_t retaddr)
2258 {
2259     cpu_stq_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2260 }
2261 
2262 void cpu_stw_le_data_ra(CPUArchState *env, target_ulong ptr,
2263                         uint32_t val, uintptr_t retaddr)
2264 {
2265     cpu_stw_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2266 }
2267 
2268 void cpu_stl_le_data_ra(CPUArchState *env, target_ulong ptr,
2269                         uint32_t val, uintptr_t retaddr)
2270 {
2271     cpu_stl_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2272 }
2273 
2274 void cpu_stq_le_data_ra(CPUArchState *env, target_ulong ptr,
2275                         uint64_t val, uintptr_t retaddr)
2276 {
2277     cpu_stq_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2278 }
2279 
2280 void cpu_stb_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2281 {
2282     cpu_stb_data_ra(env, ptr, val, 0);
2283 }
2284 
2285 void cpu_stw_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2286 {
2287     cpu_stw_be_data_ra(env, ptr, val, 0);
2288 }
2289 
2290 void cpu_stl_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2291 {
2292     cpu_stl_be_data_ra(env, ptr, val, 0);
2293 }
2294 
2295 void cpu_stq_be_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2296 {
2297     cpu_stq_be_data_ra(env, ptr, val, 0);
2298 }
2299 
2300 void cpu_stw_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2301 {
2302     cpu_stw_le_data_ra(env, ptr, val, 0);
2303 }
2304 
2305 void cpu_stl_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2306 {
2307     cpu_stl_le_data_ra(env, ptr, val, 0);
2308 }
2309 
2310 void cpu_stq_le_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2311 {
2312     cpu_stq_le_data_ra(env, ptr, val, 0);
2313 }
2314 
2315 /* First set of helpers allows passing in of OI and RETADDR.  This makes
2316    them callable from other helpers.  */
2317 
2318 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
2319 #define ATOMIC_NAME(X) \
2320     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
2321 #define ATOMIC_MMU_DECLS
2322 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr)
2323 #define ATOMIC_MMU_CLEANUP
2324 #define ATOMIC_MMU_IDX   get_mmuidx(oi)
2325 
2326 #include "atomic_common.inc.c"
2327 
2328 #define DATA_SIZE 1
2329 #include "atomic_template.h"
2330 
2331 #define DATA_SIZE 2
2332 #include "atomic_template.h"
2333 
2334 #define DATA_SIZE 4
2335 #include "atomic_template.h"
2336 
2337 #ifdef CONFIG_ATOMIC64
2338 #define DATA_SIZE 8
2339 #include "atomic_template.h"
2340 #endif
2341 
2342 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2343 #define DATA_SIZE 16
2344 #include "atomic_template.h"
2345 #endif
2346 
2347 /* Second set of helpers are directly callable from TCG as helpers.  */
2348 
2349 #undef EXTRA_ARGS
2350 #undef ATOMIC_NAME
2351 #undef ATOMIC_MMU_LOOKUP
2352 #define EXTRA_ARGS         , TCGMemOpIdx oi
2353 #define ATOMIC_NAME(X)     HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
2354 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, GETPC())
2355 
2356 #define DATA_SIZE 1
2357 #include "atomic_template.h"
2358 
2359 #define DATA_SIZE 2
2360 #include "atomic_template.h"
2361 
2362 #define DATA_SIZE 4
2363 #include "atomic_template.h"
2364 
2365 #ifdef CONFIG_ATOMIC64
2366 #define DATA_SIZE 8
2367 #include "atomic_template.h"
2368 #endif
2369 #undef ATOMIC_MMU_IDX
2370 
2371 /* Code access functions.  */
2372 
2373 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2374                                TCGMemOpIdx oi, uintptr_t retaddr)
2375 {
2376     return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2377 }
2378 
2379 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2380 {
2381     TCGMemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2382     return full_ldub_code(env, addr, oi, 0);
2383 }
2384 
2385 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2386                                TCGMemOpIdx oi, uintptr_t retaddr)
2387 {
2388     return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2389 }
2390 
2391 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2392 {
2393     TCGMemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2394     return full_lduw_code(env, addr, oi, 0);
2395 }
2396 
2397 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2398                               TCGMemOpIdx oi, uintptr_t retaddr)
2399 {
2400     return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2401 }
2402 
2403 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2404 {
2405     TCGMemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2406     return full_ldl_code(env, addr, oi, 0);
2407 }
2408 
2409 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2410                               TCGMemOpIdx oi, uintptr_t retaddr)
2411 {
2412     return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code);
2413 }
2414 
2415 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2416 {
2417     TCGMemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true));
2418     return full_ldq_code(env, addr, oi, 0);
2419 }
2420