1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/page-protection.h" 25 #include "exec/memory.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/cputlb.h" 28 #include "exec/tb-flush.h" 29 #include "exec/memory-internal.h" 30 #include "exec/ram_addr.h" 31 #include "exec/mmu-access-type.h" 32 #include "exec/tlb-common.h" 33 #include "exec/vaddr.h" 34 #include "tcg/tcg.h" 35 #include "qemu/error-report.h" 36 #include "exec/log.h" 37 #include "exec/helper-proto-common.h" 38 #include "qemu/atomic.h" 39 #include "qemu/atomic128.h" 40 #include "exec/translate-all.h" 41 #include "trace.h" 42 #include "tb-hash.h" 43 #include "internal-common.h" 44 #include "internal-target.h" 45 #ifdef CONFIG_PLUGIN 46 #include "qemu/plugin-memory.h" 47 #endif 48 #include "tcg/tcg-ldst.h" 49 #include "tcg/oversized-guest.h" 50 51 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 52 /* #define DEBUG_TLB */ 53 /* #define DEBUG_TLB_LOG */ 54 55 #ifdef DEBUG_TLB 56 # define DEBUG_TLB_GATE 1 57 # ifdef DEBUG_TLB_LOG 58 # define DEBUG_TLB_LOG_GATE 1 59 # else 60 # define DEBUG_TLB_LOG_GATE 0 61 # endif 62 #else 63 # define DEBUG_TLB_GATE 0 64 # define DEBUG_TLB_LOG_GATE 0 65 #endif 66 67 #define tlb_debug(fmt, ...) do { \ 68 if (DEBUG_TLB_LOG_GATE) { \ 69 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 70 ## __VA_ARGS__); \ 71 } else if (DEBUG_TLB_GATE) { \ 72 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 73 } \ 74 } while (0) 75 76 #define assert_cpu_is_self(cpu) do { \ 77 if (DEBUG_TLB_GATE) { \ 78 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 79 } \ 80 } while (0) 81 82 /* run_on_cpu_data.target_ptr should always be big enough for a 83 * vaddr even on 32 bit builds 84 */ 85 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); 86 87 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 88 */ 89 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 90 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 91 92 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 93 { 94 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 95 } 96 97 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 98 { 99 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 100 } 101 102 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry, 103 MMUAccessType access_type) 104 { 105 /* Do not rearrange the CPUTLBEntry structure members. */ 106 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) != 107 MMU_DATA_LOAD * sizeof(uint64_t)); 108 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) != 109 MMU_DATA_STORE * sizeof(uint64_t)); 110 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) != 111 MMU_INST_FETCH * sizeof(uint64_t)); 112 113 #if TARGET_LONG_BITS == 32 114 /* Use qatomic_read, in case of addr_write; only care about low bits. */ 115 const uint32_t *ptr = (uint32_t *)&entry->addr_idx[access_type]; 116 ptr += HOST_BIG_ENDIAN; 117 return qatomic_read(ptr); 118 #else 119 const uint64_t *ptr = &entry->addr_idx[access_type]; 120 # if TCG_OVERSIZED_GUEST 121 return *ptr; 122 # else 123 /* ofs might correspond to .addr_write, so use qatomic_read */ 124 return qatomic_read(ptr); 125 # endif 126 #endif 127 } 128 129 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry) 130 { 131 return tlb_read_idx(entry, MMU_DATA_STORE); 132 } 133 134 /* Find the TLB index corresponding to the mmu_idx + address pair. */ 135 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx, 136 vaddr addr) 137 { 138 uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS; 139 140 return (addr >> TARGET_PAGE_BITS) & size_mask; 141 } 142 143 /* Find the TLB entry corresponding to the mmu_idx + address pair. */ 144 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx, 145 vaddr addr) 146 { 147 return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)]; 148 } 149 150 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 151 size_t max_entries) 152 { 153 desc->window_begin_ns = ns; 154 desc->window_max_entries = max_entries; 155 } 156 157 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 158 { 159 CPUJumpCache *jc = cpu->tb_jmp_cache; 160 int i, i0; 161 162 if (unlikely(!jc)) { 163 return; 164 } 165 166 i0 = tb_jmp_cache_hash_page(page_addr); 167 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 168 qatomic_set(&jc->array[i0 + i].tb, NULL); 169 } 170 } 171 172 /** 173 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 174 * @desc: The CPUTLBDesc portion of the TLB 175 * @fast: The CPUTLBDescFast portion of the same TLB 176 * 177 * Called with tlb_lock_held. 178 * 179 * We have two main constraints when resizing a TLB: (1) we only resize it 180 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 181 * the array or unnecessarily flushing it), which means we do not control how 182 * frequently the resizing can occur; (2) we don't have access to the guest's 183 * future scheduling decisions, and therefore have to decide the magnitude of 184 * the resize based on past observations. 185 * 186 * In general, a memory-hungry process can benefit greatly from an appropriately 187 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 188 * we just have to make the TLB as large as possible; while an oversized TLB 189 * results in minimal TLB miss rates, it also takes longer to be flushed 190 * (flushes can be _very_ frequent), and the reduced locality can also hurt 191 * performance. 192 * 193 * To achieve near-optimal performance for all kinds of workloads, we: 194 * 195 * 1. Aggressively increase the size of the TLB when the use rate of the 196 * TLB being flushed is high, since it is likely that in the near future this 197 * memory-hungry process will execute again, and its memory hungriness will 198 * probably be similar. 199 * 200 * 2. Slowly reduce the size of the TLB as the use rate declines over a 201 * reasonably large time window. The rationale is that if in such a time window 202 * we have not observed a high TLB use rate, it is likely that we won't observe 203 * it in the near future. In that case, once a time window expires we downsize 204 * the TLB to match the maximum use rate observed in the window. 205 * 206 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 207 * since in that range performance is likely near-optimal. Recall that the TLB 208 * is direct mapped, so we want the use rate to be low (or at least not too 209 * high), since otherwise we are likely to have a significant amount of 210 * conflict misses. 211 */ 212 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 213 int64_t now) 214 { 215 size_t old_size = tlb_n_entries(fast); 216 size_t rate; 217 size_t new_size = old_size; 218 int64_t window_len_ms = 100; 219 int64_t window_len_ns = window_len_ms * 1000 * 1000; 220 bool window_expired = now > desc->window_begin_ns + window_len_ns; 221 222 if (desc->n_used_entries > desc->window_max_entries) { 223 desc->window_max_entries = desc->n_used_entries; 224 } 225 rate = desc->window_max_entries * 100 / old_size; 226 227 if (rate > 70) { 228 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 229 } else if (rate < 30 && window_expired) { 230 size_t ceil = pow2ceil(desc->window_max_entries); 231 size_t expected_rate = desc->window_max_entries * 100 / ceil; 232 233 /* 234 * Avoid undersizing when the max number of entries seen is just below 235 * a pow2. For instance, if max_entries == 1025, the expected use rate 236 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 237 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 238 * later. Thus, make sure that the expected use rate remains below 70%. 239 * (and since we double the size, that means the lowest rate we'd 240 * expect to get is 35%, which is still in the 30-70% range where 241 * we consider that the size is appropriate.) 242 */ 243 if (expected_rate > 70) { 244 ceil *= 2; 245 } 246 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 247 } 248 249 if (new_size == old_size) { 250 if (window_expired) { 251 tlb_window_reset(desc, now, desc->n_used_entries); 252 } 253 return; 254 } 255 256 g_free(fast->table); 257 g_free(desc->fulltlb); 258 259 tlb_window_reset(desc, now, 0); 260 /* desc->n_used_entries is cleared by the caller */ 261 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 262 fast->table = g_try_new(CPUTLBEntry, new_size); 263 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 264 265 /* 266 * If the allocations fail, try smaller sizes. We just freed some 267 * memory, so going back to half of new_size has a good chance of working. 268 * Increased memory pressure elsewhere in the system might cause the 269 * allocations to fail though, so we progressively reduce the allocation 270 * size, aborting if we cannot even allocate the smallest TLB we support. 271 */ 272 while (fast->table == NULL || desc->fulltlb == NULL) { 273 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 274 error_report("%s: %s", __func__, strerror(errno)); 275 abort(); 276 } 277 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 278 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 279 280 g_free(fast->table); 281 g_free(desc->fulltlb); 282 fast->table = g_try_new(CPUTLBEntry, new_size); 283 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 284 } 285 } 286 287 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 288 { 289 desc->n_used_entries = 0; 290 desc->large_page_addr = -1; 291 desc->large_page_mask = -1; 292 desc->vindex = 0; 293 memset(fast->table, -1, sizeof_tlb(fast)); 294 memset(desc->vtable, -1, sizeof(desc->vtable)); 295 } 296 297 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx, 298 int64_t now) 299 { 300 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx]; 301 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx]; 302 303 tlb_mmu_resize_locked(desc, fast, now); 304 tlb_mmu_flush_locked(desc, fast); 305 } 306 307 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 308 { 309 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 310 311 tlb_window_reset(desc, now, 0); 312 desc->n_used_entries = 0; 313 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 314 fast->table = g_new(CPUTLBEntry, n_entries); 315 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 316 tlb_mmu_flush_locked(desc, fast); 317 } 318 319 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx) 320 { 321 cpu->neg.tlb.d[mmu_idx].n_used_entries++; 322 } 323 324 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx) 325 { 326 cpu->neg.tlb.d[mmu_idx].n_used_entries--; 327 } 328 329 void tlb_init(CPUState *cpu) 330 { 331 int64_t now = get_clock_realtime(); 332 int i; 333 334 qemu_spin_init(&cpu->neg.tlb.c.lock); 335 336 /* All tlbs are initialized flushed. */ 337 cpu->neg.tlb.c.dirty = 0; 338 339 for (i = 0; i < NB_MMU_MODES; i++) { 340 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now); 341 } 342 } 343 344 void tlb_destroy(CPUState *cpu) 345 { 346 int i; 347 348 qemu_spin_destroy(&cpu->neg.tlb.c.lock); 349 for (i = 0; i < NB_MMU_MODES; i++) { 350 CPUTLBDesc *desc = &cpu->neg.tlb.d[i]; 351 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i]; 352 353 g_free(fast->table); 354 g_free(desc->fulltlb); 355 } 356 } 357 358 /* flush_all_helper: run fn across all cpus 359 * 360 * If the wait flag is set then the src cpu's helper will be queued as 361 * "safe" work and the loop exited creating a synchronisation point 362 * where all queued work will be finished before execution starts 363 * again. 364 */ 365 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 366 run_on_cpu_data d) 367 { 368 CPUState *cpu; 369 370 CPU_FOREACH(cpu) { 371 if (cpu != src) { 372 async_run_on_cpu(cpu, fn, d); 373 } 374 } 375 } 376 377 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 378 { 379 uint16_t asked = data.host_int; 380 uint16_t all_dirty, work, to_clean; 381 int64_t now = get_clock_realtime(); 382 383 assert_cpu_is_self(cpu); 384 385 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 386 387 qemu_spin_lock(&cpu->neg.tlb.c.lock); 388 389 all_dirty = cpu->neg.tlb.c.dirty; 390 to_clean = asked & all_dirty; 391 all_dirty &= ~to_clean; 392 cpu->neg.tlb.c.dirty = all_dirty; 393 394 for (work = to_clean; work != 0; work &= work - 1) { 395 int mmu_idx = ctz32(work); 396 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now); 397 } 398 399 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 400 401 tcg_flush_jmp_cache(cpu); 402 403 if (to_clean == ALL_MMUIDX_BITS) { 404 qatomic_set(&cpu->neg.tlb.c.full_flush_count, 405 cpu->neg.tlb.c.full_flush_count + 1); 406 } else { 407 qatomic_set(&cpu->neg.tlb.c.part_flush_count, 408 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean)); 409 if (to_clean != asked) { 410 qatomic_set(&cpu->neg.tlb.c.elide_flush_count, 411 cpu->neg.tlb.c.elide_flush_count + 412 ctpop16(asked & ~to_clean)); 413 } 414 } 415 } 416 417 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 418 { 419 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 420 421 if (cpu->created && !qemu_cpu_is_self(cpu)) { 422 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 423 RUN_ON_CPU_HOST_INT(idxmap)); 424 } else { 425 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 426 } 427 } 428 429 void tlb_flush(CPUState *cpu) 430 { 431 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 432 } 433 434 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 435 { 436 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 437 438 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 439 440 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 441 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 442 } 443 444 void tlb_flush_all_cpus(CPUState *src_cpu) 445 { 446 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 447 } 448 449 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 450 { 451 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 452 453 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 454 455 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 456 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 457 } 458 459 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 460 { 461 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 462 } 463 464 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 465 vaddr page, vaddr mask) 466 { 467 page &= mask; 468 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 469 470 return (page == (tlb_entry->addr_read & mask) || 471 page == (tlb_addr_write(tlb_entry) & mask) || 472 page == (tlb_entry->addr_code & mask)); 473 } 474 475 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 476 { 477 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 478 } 479 480 /** 481 * tlb_entry_is_empty - return true if the entry is not in use 482 * @te: pointer to CPUTLBEntry 483 */ 484 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 485 { 486 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 487 } 488 489 /* Called with tlb_c.lock held */ 490 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 491 vaddr page, 492 vaddr mask) 493 { 494 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 495 memset(tlb_entry, -1, sizeof(*tlb_entry)); 496 return true; 497 } 498 return false; 499 } 500 501 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 502 { 503 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 504 } 505 506 /* Called with tlb_c.lock held */ 507 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx, 508 vaddr page, 509 vaddr mask) 510 { 511 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx]; 512 int k; 513 514 assert_cpu_is_self(cpu); 515 for (k = 0; k < CPU_VTLB_SIZE; k++) { 516 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 517 tlb_n_used_entries_dec(cpu, mmu_idx); 518 } 519 } 520 } 521 522 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx, 523 vaddr page) 524 { 525 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1); 526 } 527 528 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page) 529 { 530 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr; 531 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask; 532 533 /* Check if we need to flush due to large pages. */ 534 if ((page & lp_mask) == lp_addr) { 535 tlb_debug("forcing full flush midx %d (%016" 536 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 537 midx, lp_addr, lp_mask); 538 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 539 } else { 540 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) { 541 tlb_n_used_entries_dec(cpu, midx); 542 } 543 tlb_flush_vtlb_page_locked(cpu, midx, page); 544 } 545 } 546 547 /** 548 * tlb_flush_page_by_mmuidx_async_0: 549 * @cpu: cpu on which to flush 550 * @addr: page of virtual address to flush 551 * @idxmap: set of mmu_idx to flush 552 * 553 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 554 * at @addr from the tlbs indicated by @idxmap from @cpu. 555 */ 556 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 557 vaddr addr, 558 uint16_t idxmap) 559 { 560 int mmu_idx; 561 562 assert_cpu_is_self(cpu); 563 564 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 565 566 qemu_spin_lock(&cpu->neg.tlb.c.lock); 567 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 568 if ((idxmap >> mmu_idx) & 1) { 569 tlb_flush_page_locked(cpu, mmu_idx, addr); 570 } 571 } 572 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 573 574 /* 575 * Discard jump cache entries for any tb which might potentially 576 * overlap the flushed page, which includes the previous. 577 */ 578 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 579 tb_jmp_cache_clear_page(cpu, addr); 580 } 581 582 /** 583 * tlb_flush_page_by_mmuidx_async_1: 584 * @cpu: cpu on which to flush 585 * @data: encoded addr + idxmap 586 * 587 * Helper for tlb_flush_page_by_mmuidx and friends, called through 588 * async_run_on_cpu. The idxmap parameter is encoded in the page 589 * offset of the target_ptr field. This limits the set of mmu_idx 590 * that can be passed via this method. 591 */ 592 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 593 run_on_cpu_data data) 594 { 595 vaddr addr_and_idxmap = data.target_ptr; 596 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 597 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 598 599 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 600 } 601 602 typedef struct { 603 vaddr addr; 604 uint16_t idxmap; 605 } TLBFlushPageByMMUIdxData; 606 607 /** 608 * tlb_flush_page_by_mmuidx_async_2: 609 * @cpu: cpu on which to flush 610 * @data: allocated addr + idxmap 611 * 612 * Helper for tlb_flush_page_by_mmuidx and friends, called through 613 * async_run_on_cpu. The addr+idxmap parameters are stored in a 614 * TLBFlushPageByMMUIdxData structure that has been allocated 615 * specifically for this helper. Free the structure when done. 616 */ 617 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 618 run_on_cpu_data data) 619 { 620 TLBFlushPageByMMUIdxData *d = data.host_ptr; 621 622 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 623 g_free(d); 624 } 625 626 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 627 { 628 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 629 630 /* This should already be page aligned */ 631 addr &= TARGET_PAGE_MASK; 632 633 if (qemu_cpu_is_self(cpu)) { 634 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 635 } else if (idxmap < TARGET_PAGE_SIZE) { 636 /* 637 * Most targets have only a few mmu_idx. In the case where 638 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 639 * allocating memory for this operation. 640 */ 641 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 642 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 643 } else { 644 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 645 646 /* Otherwise allocate a structure, freed by the worker. */ 647 d->addr = addr; 648 d->idxmap = idxmap; 649 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 650 RUN_ON_CPU_HOST_PTR(d)); 651 } 652 } 653 654 void tlb_flush_page(CPUState *cpu, vaddr addr) 655 { 656 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 657 } 658 659 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, 660 uint16_t idxmap) 661 { 662 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 663 664 /* This should already be page aligned */ 665 addr &= TARGET_PAGE_MASK; 666 667 /* 668 * Allocate memory to hold addr+idxmap only when needed. 669 * See tlb_flush_page_by_mmuidx for details. 670 */ 671 if (idxmap < TARGET_PAGE_SIZE) { 672 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 673 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 674 } else { 675 CPUState *dst_cpu; 676 677 /* Allocate a separate data block for each destination cpu. */ 678 CPU_FOREACH(dst_cpu) { 679 if (dst_cpu != src_cpu) { 680 TLBFlushPageByMMUIdxData *d 681 = g_new(TLBFlushPageByMMUIdxData, 1); 682 683 d->addr = addr; 684 d->idxmap = idxmap; 685 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 686 RUN_ON_CPU_HOST_PTR(d)); 687 } 688 } 689 } 690 691 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 692 } 693 694 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr) 695 { 696 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 697 } 698 699 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 700 vaddr addr, 701 uint16_t idxmap) 702 { 703 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 704 705 /* This should already be page aligned */ 706 addr &= TARGET_PAGE_MASK; 707 708 /* 709 * Allocate memory to hold addr+idxmap only when needed. 710 * See tlb_flush_page_by_mmuidx for details. 711 */ 712 if (idxmap < TARGET_PAGE_SIZE) { 713 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 714 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 715 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 716 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 717 } else { 718 CPUState *dst_cpu; 719 TLBFlushPageByMMUIdxData *d; 720 721 /* Allocate a separate data block for each destination cpu. */ 722 CPU_FOREACH(dst_cpu) { 723 if (dst_cpu != src_cpu) { 724 d = g_new(TLBFlushPageByMMUIdxData, 1); 725 d->addr = addr; 726 d->idxmap = idxmap; 727 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 728 RUN_ON_CPU_HOST_PTR(d)); 729 } 730 } 731 732 d = g_new(TLBFlushPageByMMUIdxData, 1); 733 d->addr = addr; 734 d->idxmap = idxmap; 735 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 736 RUN_ON_CPU_HOST_PTR(d)); 737 } 738 } 739 740 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 741 { 742 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 743 } 744 745 static void tlb_flush_range_locked(CPUState *cpu, int midx, 746 vaddr addr, vaddr len, 747 unsigned bits) 748 { 749 CPUTLBDesc *d = &cpu->neg.tlb.d[midx]; 750 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx]; 751 vaddr mask = MAKE_64BIT_MASK(0, bits); 752 753 /* 754 * If @bits is smaller than the tlb size, there may be multiple entries 755 * within the TLB; otherwise all addresses that match under @mask hit 756 * the same TLB entry. 757 * TODO: Perhaps allow bits to be a few bits less than the size. 758 * For now, just flush the entire TLB. 759 * 760 * If @len is larger than the tlb size, then it will take longer to 761 * test all of the entries in the TLB than it will to flush it all. 762 */ 763 if (mask < f->mask || len > f->mask) { 764 tlb_debug("forcing full flush midx %d (" 765 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 766 midx, addr, mask, len); 767 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 768 return; 769 } 770 771 /* 772 * Check if we need to flush due to large pages. 773 * Because large_page_mask contains all 1's from the msb, 774 * we only need to test the end of the range. 775 */ 776 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 777 tlb_debug("forcing full flush midx %d (" 778 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 779 midx, d->large_page_addr, d->large_page_mask); 780 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 781 return; 782 } 783 784 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 785 vaddr page = addr + i; 786 CPUTLBEntry *entry = tlb_entry(cpu, midx, page); 787 788 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 789 tlb_n_used_entries_dec(cpu, midx); 790 } 791 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask); 792 } 793 } 794 795 typedef struct { 796 vaddr addr; 797 vaddr len; 798 uint16_t idxmap; 799 uint16_t bits; 800 } TLBFlushRangeData; 801 802 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 803 TLBFlushRangeData d) 804 { 805 int mmu_idx; 806 807 assert_cpu_is_self(cpu); 808 809 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 810 d.addr, d.bits, d.len, d.idxmap); 811 812 qemu_spin_lock(&cpu->neg.tlb.c.lock); 813 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 814 if ((d.idxmap >> mmu_idx) & 1) { 815 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits); 816 } 817 } 818 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 819 820 /* 821 * If the length is larger than the jump cache size, then it will take 822 * longer to clear each entry individually than it will to clear it all. 823 */ 824 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 825 tcg_flush_jmp_cache(cpu); 826 return; 827 } 828 829 /* 830 * Discard jump cache entries for any tb which might potentially 831 * overlap the flushed pages, which includes the previous. 832 */ 833 d.addr -= TARGET_PAGE_SIZE; 834 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 835 tb_jmp_cache_clear_page(cpu, d.addr); 836 d.addr += TARGET_PAGE_SIZE; 837 } 838 } 839 840 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 841 run_on_cpu_data data) 842 { 843 TLBFlushRangeData *d = data.host_ptr; 844 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 845 g_free(d); 846 } 847 848 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 849 vaddr len, uint16_t idxmap, 850 unsigned bits) 851 { 852 TLBFlushRangeData d; 853 854 /* 855 * If all bits are significant, and len is small, 856 * this devolves to tlb_flush_page. 857 */ 858 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 859 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 860 return; 861 } 862 /* If no page bits are significant, this devolves to tlb_flush. */ 863 if (bits < TARGET_PAGE_BITS) { 864 tlb_flush_by_mmuidx(cpu, idxmap); 865 return; 866 } 867 868 /* This should already be page aligned */ 869 d.addr = addr & TARGET_PAGE_MASK; 870 d.len = len; 871 d.idxmap = idxmap; 872 d.bits = bits; 873 874 if (qemu_cpu_is_self(cpu)) { 875 tlb_flush_range_by_mmuidx_async_0(cpu, d); 876 } else { 877 /* Otherwise allocate a structure, freed by the worker. */ 878 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 879 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 880 RUN_ON_CPU_HOST_PTR(p)); 881 } 882 } 883 884 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 885 uint16_t idxmap, unsigned bits) 886 { 887 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 888 } 889 890 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 891 vaddr addr, vaddr len, 892 uint16_t idxmap, unsigned bits) 893 { 894 TLBFlushRangeData d; 895 CPUState *dst_cpu; 896 897 /* 898 * If all bits are significant, and len is small, 899 * this devolves to tlb_flush_page. 900 */ 901 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 902 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 903 return; 904 } 905 /* If no page bits are significant, this devolves to tlb_flush. */ 906 if (bits < TARGET_PAGE_BITS) { 907 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 908 return; 909 } 910 911 /* This should already be page aligned */ 912 d.addr = addr & TARGET_PAGE_MASK; 913 d.len = len; 914 d.idxmap = idxmap; 915 d.bits = bits; 916 917 /* Allocate a separate data block for each destination cpu. */ 918 CPU_FOREACH(dst_cpu) { 919 if (dst_cpu != src_cpu) { 920 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 921 async_run_on_cpu(dst_cpu, 922 tlb_flush_range_by_mmuidx_async_1, 923 RUN_ON_CPU_HOST_PTR(p)); 924 } 925 } 926 927 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 928 } 929 930 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 931 vaddr addr, uint16_t idxmap, 932 unsigned bits) 933 { 934 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 935 idxmap, bits); 936 } 937 938 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 939 vaddr addr, 940 vaddr len, 941 uint16_t idxmap, 942 unsigned bits) 943 { 944 TLBFlushRangeData d, *p; 945 CPUState *dst_cpu; 946 947 /* 948 * If all bits are significant, and len is small, 949 * this devolves to tlb_flush_page. 950 */ 951 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 952 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 953 return; 954 } 955 /* If no page bits are significant, this devolves to tlb_flush. */ 956 if (bits < TARGET_PAGE_BITS) { 957 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 958 return; 959 } 960 961 /* This should already be page aligned */ 962 d.addr = addr & TARGET_PAGE_MASK; 963 d.len = len; 964 d.idxmap = idxmap; 965 d.bits = bits; 966 967 /* Allocate a separate data block for each destination cpu. */ 968 CPU_FOREACH(dst_cpu) { 969 if (dst_cpu != src_cpu) { 970 p = g_memdup(&d, sizeof(d)); 971 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 972 RUN_ON_CPU_HOST_PTR(p)); 973 } 974 } 975 976 p = g_memdup(&d, sizeof(d)); 977 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 978 RUN_ON_CPU_HOST_PTR(p)); 979 } 980 981 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 982 vaddr addr, 983 uint16_t idxmap, 984 unsigned bits) 985 { 986 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 987 idxmap, bits); 988 } 989 990 /* update the TLBs so that writes to code in the virtual page 'addr' 991 can be detected */ 992 void tlb_protect_code(ram_addr_t ram_addr) 993 { 994 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 995 TARGET_PAGE_SIZE, 996 DIRTY_MEMORY_CODE); 997 } 998 999 /* update the TLB so that writes in physical page 'phys_addr' are no longer 1000 tested for self modifying code */ 1001 void tlb_unprotect_code(ram_addr_t ram_addr) 1002 { 1003 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 1004 } 1005 1006 1007 /* 1008 * Dirty write flag handling 1009 * 1010 * When the TCG code writes to a location it looks up the address in 1011 * the TLB and uses that data to compute the final address. If any of 1012 * the lower bits of the address are set then the slow path is forced. 1013 * There are a number of reasons to do this but for normal RAM the 1014 * most usual is detecting writes to code regions which may invalidate 1015 * generated code. 1016 * 1017 * Other vCPUs might be reading their TLBs during guest execution, so we update 1018 * te->addr_write with qatomic_set. We don't need to worry about this for 1019 * oversized guests as MTTCG is disabled for them. 1020 * 1021 * Called with tlb_c.lock held. 1022 */ 1023 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 1024 uintptr_t start, uintptr_t length) 1025 { 1026 uintptr_t addr = tlb_entry->addr_write; 1027 1028 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 1029 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 1030 addr &= TARGET_PAGE_MASK; 1031 addr += tlb_entry->addend; 1032 if ((addr - start) < length) { 1033 #if TARGET_LONG_BITS == 32 1034 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 1035 ptr_write += HOST_BIG_ENDIAN; 1036 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 1037 #elif TCG_OVERSIZED_GUEST 1038 tlb_entry->addr_write |= TLB_NOTDIRTY; 1039 #else 1040 qatomic_set(&tlb_entry->addr_write, 1041 tlb_entry->addr_write | TLB_NOTDIRTY); 1042 #endif 1043 } 1044 } 1045 } 1046 1047 /* 1048 * Called with tlb_c.lock held. 1049 * Called only from the vCPU context, i.e. the TLB's owner thread. 1050 */ 1051 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1052 { 1053 *d = *s; 1054 } 1055 1056 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1057 * the target vCPU). 1058 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1059 * thing actually updated is the target TLB entry ->addr_write flags. 1060 */ 1061 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1062 { 1063 int mmu_idx; 1064 1065 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1066 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1067 unsigned int i; 1068 unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]); 1069 1070 for (i = 0; i < n; i++) { 1071 tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i], 1072 start1, length); 1073 } 1074 1075 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1076 tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i], 1077 start1, length); 1078 } 1079 } 1080 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1081 } 1082 1083 /* Called with tlb_c.lock held */ 1084 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1085 vaddr addr) 1086 { 1087 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 1088 tlb_entry->addr_write = addr; 1089 } 1090 } 1091 1092 /* update the TLB corresponding to virtual page vaddr 1093 so that it is no longer dirty */ 1094 static void tlb_set_dirty(CPUState *cpu, vaddr addr) 1095 { 1096 int mmu_idx; 1097 1098 assert_cpu_is_self(cpu); 1099 1100 addr &= TARGET_PAGE_MASK; 1101 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1102 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1103 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr); 1104 } 1105 1106 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1107 int k; 1108 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1109 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr); 1110 } 1111 } 1112 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1113 } 1114 1115 /* Our TLB does not support large pages, so remember the area covered by 1116 large pages and trigger a full TLB flush if these are invalidated. */ 1117 static void tlb_add_large_page(CPUState *cpu, int mmu_idx, 1118 vaddr addr, uint64_t size) 1119 { 1120 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr; 1121 vaddr lp_mask = ~(size - 1); 1122 1123 if (lp_addr == (vaddr)-1) { 1124 /* No previous large page. */ 1125 lp_addr = addr; 1126 } else { 1127 /* Extend the existing region to include the new page. 1128 This is a compromise between unnecessary flushes and 1129 the cost of maintaining a full variable size TLB. */ 1130 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask; 1131 while (((lp_addr ^ addr) & lp_mask) != 0) { 1132 lp_mask <<= 1; 1133 } 1134 } 1135 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1136 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask; 1137 } 1138 1139 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 1140 vaddr address, int flags, 1141 MMUAccessType access_type, bool enable) 1142 { 1143 if (enable) { 1144 address |= flags & TLB_FLAGS_MASK; 1145 flags &= TLB_SLOW_FLAGS_MASK; 1146 if (flags) { 1147 address |= TLB_FORCE_SLOW; 1148 } 1149 } else { 1150 address = -1; 1151 flags = 0; 1152 } 1153 ent->addr_idx[access_type] = address; 1154 full->slow_flags[access_type] = flags; 1155 } 1156 1157 /* 1158 * Add a new TLB entry. At most one entry for a given virtual address 1159 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1160 * supplied size is only used by tlb_flush_page. 1161 * 1162 * Called from TCG-generated code, which is under an RCU read-side 1163 * critical section. 1164 */ 1165 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1166 vaddr addr, CPUTLBEntryFull *full) 1167 { 1168 CPUTLB *tlb = &cpu->neg.tlb; 1169 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1170 MemoryRegionSection *section; 1171 unsigned int index, read_flags, write_flags; 1172 uintptr_t addend; 1173 CPUTLBEntry *te, tn; 1174 hwaddr iotlb, xlat, sz, paddr_page; 1175 vaddr addr_page; 1176 int asidx, wp_flags, prot; 1177 bool is_ram, is_romd; 1178 1179 assert_cpu_is_self(cpu); 1180 1181 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1182 sz = TARGET_PAGE_SIZE; 1183 } else { 1184 sz = (hwaddr)1 << full->lg_page_size; 1185 tlb_add_large_page(cpu, mmu_idx, addr, sz); 1186 } 1187 addr_page = addr & TARGET_PAGE_MASK; 1188 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1189 1190 prot = full->prot; 1191 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1192 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1193 &xlat, &sz, full->attrs, &prot); 1194 assert(sz >= TARGET_PAGE_SIZE); 1195 1196 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1197 " prot=%x idx=%d\n", 1198 addr, full->phys_addr, prot, mmu_idx); 1199 1200 read_flags = full->tlb_fill_flags; 1201 if (full->lg_page_size < TARGET_PAGE_BITS) { 1202 /* Repeat the MMU check and TLB fill on every access. */ 1203 read_flags |= TLB_INVALID_MASK; 1204 } 1205 1206 is_ram = memory_region_is_ram(section->mr); 1207 is_romd = memory_region_is_romd(section->mr); 1208 1209 if (is_ram || is_romd) { 1210 /* RAM and ROMD both have associated host memory. */ 1211 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1212 } else { 1213 /* I/O does not; force the host address to NULL. */ 1214 addend = 0; 1215 } 1216 1217 write_flags = read_flags; 1218 if (is_ram) { 1219 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1220 assert(!(iotlb & ~TARGET_PAGE_MASK)); 1221 /* 1222 * Computing is_clean is expensive; avoid all that unless 1223 * the page is actually writable. 1224 */ 1225 if (prot & PAGE_WRITE) { 1226 if (section->readonly) { 1227 write_flags |= TLB_DISCARD_WRITE; 1228 } else if (cpu_physical_memory_is_clean(iotlb)) { 1229 write_flags |= TLB_NOTDIRTY; 1230 } 1231 } 1232 } else { 1233 /* I/O or ROMD */ 1234 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1235 /* 1236 * Writes to romd devices must go through MMIO to enable write. 1237 * Reads to romd devices go through the ram_ptr found above, 1238 * but of course reads to I/O must go through MMIO. 1239 */ 1240 write_flags |= TLB_MMIO; 1241 if (!is_romd) { 1242 read_flags = write_flags; 1243 } 1244 } 1245 1246 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1247 TARGET_PAGE_SIZE); 1248 1249 index = tlb_index(cpu, mmu_idx, addr_page); 1250 te = tlb_entry(cpu, mmu_idx, addr_page); 1251 1252 /* 1253 * Hold the TLB lock for the rest of the function. We could acquire/release 1254 * the lock several times in the function, but it is faster to amortize the 1255 * acquisition cost by acquiring it just once. Note that this leads to 1256 * a longer critical section, but this is not a concern since the TLB lock 1257 * is unlikely to be contended. 1258 */ 1259 qemu_spin_lock(&tlb->c.lock); 1260 1261 /* Note that the tlb is no longer clean. */ 1262 tlb->c.dirty |= 1 << mmu_idx; 1263 1264 /* Make sure there's no cached translation for the new page. */ 1265 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page); 1266 1267 /* 1268 * Only evict the old entry to the victim tlb if it's for a 1269 * different page; otherwise just overwrite the stale data. 1270 */ 1271 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1272 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1273 CPUTLBEntry *tv = &desc->vtable[vidx]; 1274 1275 /* Evict the old entry into the victim tlb. */ 1276 copy_tlb_helper_locked(tv, te); 1277 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1278 tlb_n_used_entries_dec(cpu, mmu_idx); 1279 } 1280 1281 /* refill the tlb */ 1282 /* 1283 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS 1284 * aligned ram_addr_t of the page base of the target RAM. 1285 * Otherwise, iotlb contains 1286 * - a physical section number in the lower TARGET_PAGE_BITS 1287 * - the offset within section->mr of the page base (I/O, ROMD) with the 1288 * TARGET_PAGE_BITS masked off. 1289 * We subtract addr_page (which is page aligned and thus won't 1290 * disturb the low bits) to give an offset which can be added to the 1291 * (non-page-aligned) vaddr of the eventual memory access to get 1292 * the MemoryRegion offset for the access. Note that the vaddr we 1293 * subtract here is that of the page base, and not the same as the 1294 * vaddr we add back in io_prepare()/get_page_addr_code(). 1295 */ 1296 desc->fulltlb[index] = *full; 1297 full = &desc->fulltlb[index]; 1298 full->xlat_section = iotlb - addr_page; 1299 full->phys_addr = paddr_page; 1300 1301 /* Now calculate the new entry */ 1302 tn.addend = addend - addr_page; 1303 1304 tlb_set_compare(full, &tn, addr_page, read_flags, 1305 MMU_INST_FETCH, prot & PAGE_EXEC); 1306 1307 if (wp_flags & BP_MEM_READ) { 1308 read_flags |= TLB_WATCHPOINT; 1309 } 1310 tlb_set_compare(full, &tn, addr_page, read_flags, 1311 MMU_DATA_LOAD, prot & PAGE_READ); 1312 1313 if (prot & PAGE_WRITE_INV) { 1314 write_flags |= TLB_INVALID_MASK; 1315 } 1316 if (wp_flags & BP_MEM_WRITE) { 1317 write_flags |= TLB_WATCHPOINT; 1318 } 1319 tlb_set_compare(full, &tn, addr_page, write_flags, 1320 MMU_DATA_STORE, prot & PAGE_WRITE); 1321 1322 copy_tlb_helper_locked(te, &tn); 1323 tlb_n_used_entries_inc(cpu, mmu_idx); 1324 qemu_spin_unlock(&tlb->c.lock); 1325 } 1326 1327 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1328 hwaddr paddr, MemTxAttrs attrs, int prot, 1329 int mmu_idx, uint64_t size) 1330 { 1331 CPUTLBEntryFull full = { 1332 .phys_addr = paddr, 1333 .attrs = attrs, 1334 .prot = prot, 1335 .lg_page_size = ctz64(size) 1336 }; 1337 1338 assert(is_power_of_2(size)); 1339 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1340 } 1341 1342 void tlb_set_page(CPUState *cpu, vaddr addr, 1343 hwaddr paddr, int prot, 1344 int mmu_idx, uint64_t size) 1345 { 1346 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1347 prot, mmu_idx, size); 1348 } 1349 1350 /* 1351 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1352 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1353 * be discarded and looked up again (e.g. via tlb_entry()). 1354 */ 1355 static void tlb_fill(CPUState *cpu, vaddr addr, int size, 1356 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1357 { 1358 bool ok; 1359 1360 /* 1361 * This is not a probe, so only valid return is success; failure 1362 * should result in exception + longjmp to the cpu loop. 1363 */ 1364 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1365 access_type, mmu_idx, false, retaddr); 1366 assert(ok); 1367 } 1368 1369 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1370 MMUAccessType access_type, 1371 int mmu_idx, uintptr_t retaddr) 1372 { 1373 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1374 mmu_idx, retaddr); 1375 } 1376 1377 static MemoryRegionSection * 1378 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat, 1379 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr) 1380 { 1381 MemoryRegionSection *section; 1382 hwaddr mr_offset; 1383 1384 section = iotlb_to_section(cpu, xlat, attrs); 1385 mr_offset = (xlat & TARGET_PAGE_MASK) + addr; 1386 cpu->mem_io_pc = retaddr; 1387 if (!cpu->neg.can_do_io) { 1388 cpu_io_recompile(cpu, retaddr); 1389 } 1390 1391 *out_offset = mr_offset; 1392 return section; 1393 } 1394 1395 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr, 1396 unsigned size, MMUAccessType access_type, int mmu_idx, 1397 MemTxResult response, uintptr_t retaddr) 1398 { 1399 if (!cpu->ignore_memory_transaction_failures 1400 && cpu->cc->tcg_ops->do_transaction_failed) { 1401 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1402 1403 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1404 access_type, mmu_idx, 1405 full->attrs, response, retaddr); 1406 } 1407 } 1408 1409 /* Return true if ADDR is present in the victim tlb, and has been copied 1410 back to the main tlb. */ 1411 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index, 1412 MMUAccessType access_type, vaddr page) 1413 { 1414 size_t vidx; 1415 1416 assert_cpu_is_self(cpu); 1417 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1418 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx]; 1419 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1420 1421 if (cmp == page) { 1422 /* Found entry in victim tlb, swap tlb and iotlb. */ 1423 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index]; 1424 1425 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1426 copy_tlb_helper_locked(&tmptlb, tlb); 1427 copy_tlb_helper_locked(tlb, vtlb); 1428 copy_tlb_helper_locked(vtlb, &tmptlb); 1429 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1430 1431 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1432 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx]; 1433 CPUTLBEntryFull tmpf; 1434 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1435 return true; 1436 } 1437 } 1438 return false; 1439 } 1440 1441 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1442 CPUTLBEntryFull *full, uintptr_t retaddr) 1443 { 1444 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1445 1446 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1447 1448 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1449 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1450 } 1451 1452 /* 1453 * Set both VGA and migration bits for simplicity and to remove 1454 * the notdirty callback faster. 1455 */ 1456 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1457 1458 /* We remove the notdirty callback only if the code has been flushed. */ 1459 if (!cpu_physical_memory_is_clean(ram_addr)) { 1460 trace_memory_notdirty_set_dirty(mem_vaddr); 1461 tlb_set_dirty(cpu, mem_vaddr); 1462 } 1463 } 1464 1465 static int probe_access_internal(CPUState *cpu, vaddr addr, 1466 int fault_size, MMUAccessType access_type, 1467 int mmu_idx, bool nonfault, 1468 void **phost, CPUTLBEntryFull **pfull, 1469 uintptr_t retaddr, bool check_mem_cbs) 1470 { 1471 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1472 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1473 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1474 vaddr page_addr = addr & TARGET_PAGE_MASK; 1475 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1476 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu); 1477 CPUTLBEntryFull *full; 1478 1479 if (!tlb_hit_page(tlb_addr, page_addr)) { 1480 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) { 1481 if (!cpu->cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type, 1482 mmu_idx, nonfault, retaddr)) { 1483 /* Non-faulting page table read failed. */ 1484 *phost = NULL; 1485 *pfull = NULL; 1486 return TLB_INVALID_MASK; 1487 } 1488 1489 /* TLB resize via tlb_fill may have moved the entry. */ 1490 index = tlb_index(cpu, mmu_idx, addr); 1491 entry = tlb_entry(cpu, mmu_idx, addr); 1492 1493 /* 1494 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1495 * to force the next access through tlb_fill. We've just 1496 * called tlb_fill, so we know that this entry *is* valid. 1497 */ 1498 flags &= ~TLB_INVALID_MASK; 1499 } 1500 tlb_addr = tlb_read_idx(entry, access_type); 1501 } 1502 flags &= tlb_addr; 1503 1504 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1505 flags |= full->slow_flags[access_type]; 1506 1507 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1508 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED)) 1509 || (access_type != MMU_INST_FETCH && force_mmio)) { 1510 *phost = NULL; 1511 return TLB_MMIO; 1512 } 1513 1514 /* Everything else is RAM. */ 1515 *phost = (void *)((uintptr_t)addr + entry->addend); 1516 return flags; 1517 } 1518 1519 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1520 MMUAccessType access_type, int mmu_idx, 1521 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1522 uintptr_t retaddr) 1523 { 1524 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1525 mmu_idx, nonfault, phost, pfull, retaddr, 1526 true); 1527 1528 /* Handle clean RAM pages. */ 1529 if (unlikely(flags & TLB_NOTDIRTY)) { 1530 int dirtysize = size == 0 ? 1 : size; 1531 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr); 1532 flags &= ~TLB_NOTDIRTY; 1533 } 1534 1535 return flags; 1536 } 1537 1538 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1539 MMUAccessType access_type, int mmu_idx, 1540 void **phost, CPUTLBEntryFull **pfull) 1541 { 1542 void *discard_phost; 1543 CPUTLBEntryFull *discard_tlb; 1544 1545 /* privately handle users that don't need full results */ 1546 phost = phost ? phost : &discard_phost; 1547 pfull = pfull ? pfull : &discard_tlb; 1548 1549 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1550 mmu_idx, true, phost, pfull, 0, false); 1551 1552 /* Handle clean RAM pages. */ 1553 if (unlikely(flags & TLB_NOTDIRTY)) { 1554 int dirtysize = size == 0 ? 1 : size; 1555 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0); 1556 flags &= ~TLB_NOTDIRTY; 1557 } 1558 1559 return flags; 1560 } 1561 1562 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1563 MMUAccessType access_type, int mmu_idx, 1564 bool nonfault, void **phost, uintptr_t retaddr) 1565 { 1566 CPUTLBEntryFull *full; 1567 int flags; 1568 1569 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1570 1571 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1572 mmu_idx, nonfault, phost, &full, retaddr, 1573 true); 1574 1575 /* Handle clean RAM pages. */ 1576 if (unlikely(flags & TLB_NOTDIRTY)) { 1577 int dirtysize = size == 0 ? 1 : size; 1578 notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr); 1579 flags &= ~TLB_NOTDIRTY; 1580 } 1581 1582 return flags; 1583 } 1584 1585 void *probe_access(CPUArchState *env, vaddr addr, int size, 1586 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1587 { 1588 CPUTLBEntryFull *full; 1589 void *host; 1590 int flags; 1591 1592 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1593 1594 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1595 mmu_idx, false, &host, &full, retaddr, 1596 true); 1597 1598 /* Per the interface, size == 0 merely faults the access. */ 1599 if (size == 0) { 1600 return NULL; 1601 } 1602 1603 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1604 /* Handle watchpoints. */ 1605 if (flags & TLB_WATCHPOINT) { 1606 int wp_access = (access_type == MMU_DATA_STORE 1607 ? BP_MEM_WRITE : BP_MEM_READ); 1608 cpu_check_watchpoint(env_cpu(env), addr, size, 1609 full->attrs, wp_access, retaddr); 1610 } 1611 1612 /* Handle clean RAM pages. */ 1613 if (flags & TLB_NOTDIRTY) { 1614 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1615 } 1616 } 1617 1618 return host; 1619 } 1620 1621 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1622 MMUAccessType access_type, int mmu_idx) 1623 { 1624 CPUTLBEntryFull *full; 1625 void *host; 1626 int flags; 1627 1628 flags = probe_access_internal(env_cpu(env), addr, 0, access_type, 1629 mmu_idx, true, &host, &full, 0, false); 1630 1631 /* No combination of flags are expected by the caller. */ 1632 return flags ? NULL : host; 1633 } 1634 1635 /* 1636 * Return a ram_addr_t for the virtual address for execution. 1637 * 1638 * Return -1 if we can't translate and execute from an entire page 1639 * of RAM. This will force us to execute by loading and translating 1640 * one insn at a time, without caching. 1641 * 1642 * NOTE: This function will trigger an exception if the page is 1643 * not executable. 1644 */ 1645 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1646 void **hostp) 1647 { 1648 CPUTLBEntryFull *full; 1649 void *p; 1650 1651 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH, 1652 cpu_mmu_index(env_cpu(env), true), false, 1653 &p, &full, 0, false); 1654 if (p == NULL) { 1655 return -1; 1656 } 1657 1658 if (full->lg_page_size < TARGET_PAGE_BITS) { 1659 return -1; 1660 } 1661 1662 if (hostp) { 1663 *hostp = p; 1664 } 1665 return qemu_ram_addr_from_host_nofail(p); 1666 } 1667 1668 /* Load/store with atomicity primitives. */ 1669 #include "ldst_atomicity.c.inc" 1670 1671 #ifdef CONFIG_PLUGIN 1672 /* 1673 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1674 * This should be a hot path as we will have just looked this path up 1675 * in the softmmu lookup code (or helper). We don't handle re-fills or 1676 * checking the victim table. This is purely informational. 1677 * 1678 * The one corner case is i/o write, which can cause changes to the 1679 * address space. Those changes, and the corresponding tlb flush, 1680 * should be delayed until the next TB, so even then this ought not fail. 1681 * But check, Just in Case. 1682 */ 1683 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1684 bool is_store, struct qemu_plugin_hwaddr *data) 1685 { 1686 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr); 1687 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1688 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD; 1689 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type); 1690 CPUTLBEntryFull *full; 1691 1692 if (unlikely(!tlb_hit(tlb_addr, addr))) { 1693 return false; 1694 } 1695 1696 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1697 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1698 1699 /* We must have an iotlb entry for MMIO */ 1700 if (tlb_addr & TLB_MMIO) { 1701 MemoryRegionSection *section = 1702 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK, 1703 full->attrs); 1704 data->is_io = true; 1705 data->mr = section->mr; 1706 } else { 1707 data->is_io = false; 1708 data->mr = NULL; 1709 } 1710 return true; 1711 } 1712 #endif 1713 1714 /* 1715 * Probe for a load/store operation. 1716 * Return the host address and into @flags. 1717 */ 1718 1719 typedef struct MMULookupPageData { 1720 CPUTLBEntryFull *full; 1721 void *haddr; 1722 vaddr addr; 1723 int flags; 1724 int size; 1725 } MMULookupPageData; 1726 1727 typedef struct MMULookupLocals { 1728 MMULookupPageData page[2]; 1729 MemOp memop; 1730 int mmu_idx; 1731 } MMULookupLocals; 1732 1733 /** 1734 * mmu_lookup1: translate one page 1735 * @cpu: generic cpu state 1736 * @data: lookup parameters 1737 * @mmu_idx: virtual address context 1738 * @access_type: load/store/code 1739 * @ra: return address into tcg generated code, or 0 1740 * 1741 * Resolve the translation for the one page at @data.addr, filling in 1742 * the rest of @data with the results. If the translation fails, 1743 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1744 * @mmu_idx may have resized. 1745 */ 1746 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, 1747 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1748 { 1749 vaddr addr = data->addr; 1750 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1751 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1752 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1753 bool maybe_resized = false; 1754 CPUTLBEntryFull *full; 1755 int flags; 1756 1757 /* If the TLB entry is for a different page, reload and try again. */ 1758 if (!tlb_hit(tlb_addr, addr)) { 1759 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, 1760 addr & TARGET_PAGE_MASK)) { 1761 tlb_fill(cpu, addr, data->size, access_type, mmu_idx, ra); 1762 maybe_resized = true; 1763 index = tlb_index(cpu, mmu_idx, addr); 1764 entry = tlb_entry(cpu, mmu_idx, addr); 1765 } 1766 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1767 } 1768 1769 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1770 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1771 flags |= full->slow_flags[access_type]; 1772 1773 data->full = full; 1774 data->flags = flags; 1775 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1776 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1777 1778 return maybe_resized; 1779 } 1780 1781 /** 1782 * mmu_watch_or_dirty 1783 * @cpu: generic cpu state 1784 * @data: lookup parameters 1785 * @access_type: load/store/code 1786 * @ra: return address into tcg generated code, or 0 1787 * 1788 * Trigger watchpoints for @data.addr:@data.size; 1789 * record writes to protected clean pages. 1790 */ 1791 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data, 1792 MMUAccessType access_type, uintptr_t ra) 1793 { 1794 CPUTLBEntryFull *full = data->full; 1795 vaddr addr = data->addr; 1796 int flags = data->flags; 1797 int size = data->size; 1798 1799 /* On watchpoint hit, this will longjmp out. */ 1800 if (flags & TLB_WATCHPOINT) { 1801 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1802 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra); 1803 flags &= ~TLB_WATCHPOINT; 1804 } 1805 1806 /* Note that notdirty is only set for writes. */ 1807 if (flags & TLB_NOTDIRTY) { 1808 notdirty_write(cpu, addr, size, full, ra); 1809 flags &= ~TLB_NOTDIRTY; 1810 } 1811 data->flags = flags; 1812 } 1813 1814 /** 1815 * mmu_lookup: translate page(s) 1816 * @cpu: generic cpu state 1817 * @addr: virtual address 1818 * @oi: combined mmu_idx and MemOp 1819 * @ra: return address into tcg generated code, or 0 1820 * @access_type: load/store/code 1821 * @l: output result 1822 * 1823 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1824 * bytes. Return true if the lookup crosses a page boundary. 1825 */ 1826 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1827 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1828 { 1829 unsigned a_bits; 1830 bool crosspage; 1831 int flags; 1832 1833 l->memop = get_memop(oi); 1834 l->mmu_idx = get_mmuidx(oi); 1835 1836 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1837 1838 /* Handle CPU specific unaligned behaviour */ 1839 a_bits = get_alignment_bits(l->memop); 1840 if (addr & ((1 << a_bits) - 1)) { 1841 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra); 1842 } 1843 1844 l->page[0].addr = addr; 1845 l->page[0].size = memop_size(l->memop); 1846 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1847 l->page[1].size = 0; 1848 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1849 1850 if (likely(!crosspage)) { 1851 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra); 1852 1853 flags = l->page[0].flags; 1854 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1855 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1856 } 1857 if (unlikely(flags & TLB_BSWAP)) { 1858 l->memop ^= MO_BSWAP; 1859 } 1860 } else { 1861 /* Finish compute of page crossing. */ 1862 int size0 = l->page[1].addr - addr; 1863 l->page[1].size = l->page[0].size - size0; 1864 l->page[0].size = size0; 1865 1866 /* 1867 * Lookup both pages, recognizing exceptions from either. If the 1868 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1869 */ 1870 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra); 1871 if (mmu_lookup1(cpu, &l->page[1], l->mmu_idx, type, ra)) { 1872 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr); 1873 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index]; 1874 } 1875 1876 flags = l->page[0].flags | l->page[1].flags; 1877 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1878 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1879 mmu_watch_or_dirty(cpu, &l->page[1], type, ra); 1880 } 1881 1882 /* 1883 * Since target/sparc is the only user of TLB_BSWAP, and all 1884 * Sparc accesses are aligned, any treatment across two pages 1885 * would be arbitrary. Refuse it until there's a use. 1886 */ 1887 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1888 } 1889 1890 /* 1891 * This alignment check differs from the one above, in that this is 1892 * based on the atomicity of the operation. The intended use case is 1893 * the ARM memory type field of each PTE, where access to pages with 1894 * Device memory type require alignment. 1895 */ 1896 if (unlikely(flags & TLB_CHECK_ALIGNED)) { 1897 MemOp size = l->memop & MO_SIZE; 1898 1899 switch (l->memop & MO_ATOM_MASK) { 1900 case MO_ATOM_NONE: 1901 size = MO_8; 1902 break; 1903 case MO_ATOM_IFALIGN_PAIR: 1904 case MO_ATOM_WITHIN16_PAIR: 1905 size = size ? size - 1 : 0; 1906 break; 1907 default: 1908 break; 1909 } 1910 if (addr & ((1 << size) - 1)) { 1911 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra); 1912 } 1913 } 1914 1915 return crosspage; 1916 } 1917 1918 /* 1919 * Probe for an atomic operation. Do not allow unaligned operations, 1920 * or io operations to proceed. Return the host address. 1921 */ 1922 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1923 int size, uintptr_t retaddr) 1924 { 1925 uintptr_t mmu_idx = get_mmuidx(oi); 1926 MemOp mop = get_memop(oi); 1927 int a_bits = get_alignment_bits(mop); 1928 uintptr_t index; 1929 CPUTLBEntry *tlbe; 1930 vaddr tlb_addr; 1931 void *hostaddr; 1932 CPUTLBEntryFull *full; 1933 1934 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1935 1936 /* Adjust the given return address. */ 1937 retaddr -= GETPC_ADJ; 1938 1939 /* Enforce guest required alignment. */ 1940 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1941 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1942 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, 1943 mmu_idx, retaddr); 1944 } 1945 1946 /* Enforce qemu required alignment. */ 1947 if (unlikely(addr & (size - 1))) { 1948 /* We get here if guest alignment was not requested, 1949 or was not enforced by cpu_unaligned_access above. 1950 We might widen the access and emulate, but for now 1951 mark an exception and exit the cpu loop. */ 1952 goto stop_the_world; 1953 } 1954 1955 index = tlb_index(cpu, mmu_idx, addr); 1956 tlbe = tlb_entry(cpu, mmu_idx, addr); 1957 1958 /* Check TLB entry and enforce page permissions. */ 1959 tlb_addr = tlb_addr_write(tlbe); 1960 if (!tlb_hit(tlb_addr, addr)) { 1961 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE, 1962 addr & TARGET_PAGE_MASK)) { 1963 tlb_fill(cpu, addr, size, 1964 MMU_DATA_STORE, mmu_idx, retaddr); 1965 index = tlb_index(cpu, mmu_idx, addr); 1966 tlbe = tlb_entry(cpu, mmu_idx, addr); 1967 } 1968 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1969 } 1970 1971 /* 1972 * Let the guest notice RMW on a write-only page. 1973 * We have just verified that the page is writable. 1974 * Subpage lookups may have left TLB_INVALID_MASK set, 1975 * but addr_read will only be -1 if PAGE_READ was unset. 1976 */ 1977 if (unlikely(tlbe->addr_read == -1)) { 1978 tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 1979 /* 1980 * Since we don't support reads and writes to different 1981 * addresses, and we do have the proper page loaded for 1982 * write, this shouldn't ever return. But just in case, 1983 * handle via stop-the-world. 1984 */ 1985 goto stop_the_world; 1986 } 1987 /* Collect tlb flags for read. */ 1988 tlb_addr |= tlbe->addr_read; 1989 1990 /* Notice an IO access or a needs-MMU-lookup access */ 1991 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1992 /* There's really nothing that can be done to 1993 support this apart from stop-the-world. */ 1994 goto stop_the_world; 1995 } 1996 1997 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1998 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1999 2000 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 2001 notdirty_write(cpu, addr, size, full, retaddr); 2002 } 2003 2004 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 2005 int wp_flags = 0; 2006 2007 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 2008 wp_flags |= BP_MEM_WRITE; 2009 } 2010 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 2011 wp_flags |= BP_MEM_READ; 2012 } 2013 if (wp_flags) { 2014 cpu_check_watchpoint(cpu, addr, size, 2015 full->attrs, wp_flags, retaddr); 2016 } 2017 } 2018 2019 return hostaddr; 2020 2021 stop_the_world: 2022 cpu_loop_exit_atomic(cpu, retaddr); 2023 } 2024 2025 /* 2026 * Load Helpers 2027 * 2028 * We support two different access types. SOFTMMU_CODE_ACCESS is 2029 * specifically for reading instructions from system memory. It is 2030 * called by the translation loop and in some helpers where the code 2031 * is disassembled. It shouldn't be called directly by guest code. 2032 * 2033 * For the benefit of TCG generated code, we want to avoid the 2034 * complication of ABI-specific return type promotion and always 2035 * return a value extended to the register size of the host. This is 2036 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2037 * data, and for that we always have uint64_t. 2038 * 2039 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2040 */ 2041 2042 /** 2043 * do_ld_mmio_beN: 2044 * @cpu: generic cpu state 2045 * @full: page parameters 2046 * @ret_be: accumulated data 2047 * @addr: virtual address 2048 * @size: number of bytes 2049 * @mmu_idx: virtual address context 2050 * @ra: return address into tcg generated code, or 0 2051 * Context: BQL held 2052 * 2053 * Load @size bytes from @addr, which is memory-mapped i/o. 2054 * The bytes are concatenated in big-endian order with @ret_be. 2055 */ 2056 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 2057 uint64_t ret_be, vaddr addr, int size, 2058 int mmu_idx, MMUAccessType type, uintptr_t ra, 2059 MemoryRegion *mr, hwaddr mr_offset) 2060 { 2061 do { 2062 MemOp this_mop; 2063 unsigned this_size; 2064 uint64_t val; 2065 MemTxResult r; 2066 2067 /* Read aligned pieces up to 8 bytes. */ 2068 this_mop = ctz32(size | (int)addr | 8); 2069 this_size = 1 << this_mop; 2070 this_mop |= MO_BE; 2071 2072 r = memory_region_dispatch_read(mr, mr_offset, &val, 2073 this_mop, full->attrs); 2074 if (unlikely(r != MEMTX_OK)) { 2075 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra); 2076 } 2077 if (this_size == 8) { 2078 return val; 2079 } 2080 2081 ret_be = (ret_be << (this_size * 8)) | val; 2082 addr += this_size; 2083 mr_offset += this_size; 2084 size -= this_size; 2085 } while (size); 2086 2087 return ret_be; 2088 } 2089 2090 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 2091 uint64_t ret_be, vaddr addr, int size, 2092 int mmu_idx, MMUAccessType type, uintptr_t ra) 2093 { 2094 MemoryRegionSection *section; 2095 MemoryRegion *mr; 2096 hwaddr mr_offset; 2097 MemTxAttrs attrs; 2098 2099 tcg_debug_assert(size > 0 && size <= 8); 2100 2101 attrs = full->attrs; 2102 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2103 mr = section->mr; 2104 2105 BQL_LOCK_GUARD(); 2106 return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx, 2107 type, ra, mr, mr_offset); 2108 } 2109 2110 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 2111 uint64_t ret_be, vaddr addr, int size, 2112 int mmu_idx, uintptr_t ra) 2113 { 2114 MemoryRegionSection *section; 2115 MemoryRegion *mr; 2116 hwaddr mr_offset; 2117 MemTxAttrs attrs; 2118 uint64_t a, b; 2119 2120 tcg_debug_assert(size > 8 && size <= 16); 2121 2122 attrs = full->attrs; 2123 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2124 mr = section->mr; 2125 2126 BQL_LOCK_GUARD(); 2127 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx, 2128 MMU_DATA_LOAD, ra, mr, mr_offset); 2129 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx, 2130 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8); 2131 return int128_make128(b, a); 2132 } 2133 2134 /** 2135 * do_ld_bytes_beN 2136 * @p: translation parameters 2137 * @ret_be: accumulated data 2138 * 2139 * Load @p->size bytes from @p->haddr, which is RAM. 2140 * The bytes to concatenated in big-endian order with @ret_be. 2141 */ 2142 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2143 { 2144 uint8_t *haddr = p->haddr; 2145 int i, size = p->size; 2146 2147 for (i = 0; i < size; i++) { 2148 ret_be = (ret_be << 8) | haddr[i]; 2149 } 2150 return ret_be; 2151 } 2152 2153 /** 2154 * do_ld_parts_beN 2155 * @p: translation parameters 2156 * @ret_be: accumulated data 2157 * 2158 * As do_ld_bytes_beN, but atomically on each aligned part. 2159 */ 2160 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2161 { 2162 void *haddr = p->haddr; 2163 int size = p->size; 2164 2165 do { 2166 uint64_t x; 2167 int n; 2168 2169 /* 2170 * Find minimum of alignment and size. 2171 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2172 * would have only checked the low bits of addr|size once at the start, 2173 * but is just as easy. 2174 */ 2175 switch (((uintptr_t)haddr | size) & 7) { 2176 case 4: 2177 x = cpu_to_be32(load_atomic4(haddr)); 2178 ret_be = (ret_be << 32) | x; 2179 n = 4; 2180 break; 2181 case 2: 2182 case 6: 2183 x = cpu_to_be16(load_atomic2(haddr)); 2184 ret_be = (ret_be << 16) | x; 2185 n = 2; 2186 break; 2187 default: 2188 x = *(uint8_t *)haddr; 2189 ret_be = (ret_be << 8) | x; 2190 n = 1; 2191 break; 2192 case 0: 2193 g_assert_not_reached(); 2194 } 2195 haddr += n; 2196 size -= n; 2197 } while (size != 0); 2198 return ret_be; 2199 } 2200 2201 /** 2202 * do_ld_parts_be4 2203 * @p: translation parameters 2204 * @ret_be: accumulated data 2205 * 2206 * As do_ld_bytes_beN, but with one atomic load. 2207 * Four aligned bytes are guaranteed to cover the load. 2208 */ 2209 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2210 { 2211 int o = p->addr & 3; 2212 uint32_t x = load_atomic4(p->haddr - o); 2213 2214 x = cpu_to_be32(x); 2215 x <<= o * 8; 2216 x >>= (4 - p->size) * 8; 2217 return (ret_be << (p->size * 8)) | x; 2218 } 2219 2220 /** 2221 * do_ld_parts_be8 2222 * @p: translation parameters 2223 * @ret_be: accumulated data 2224 * 2225 * As do_ld_bytes_beN, but with one atomic load. 2226 * Eight aligned bytes are guaranteed to cover the load. 2227 */ 2228 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra, 2229 MMULookupPageData *p, uint64_t ret_be) 2230 { 2231 int o = p->addr & 7; 2232 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o); 2233 2234 x = cpu_to_be64(x); 2235 x <<= o * 8; 2236 x >>= (8 - p->size) * 8; 2237 return (ret_be << (p->size * 8)) | x; 2238 } 2239 2240 /** 2241 * do_ld_parts_be16 2242 * @p: translation parameters 2243 * @ret_be: accumulated data 2244 * 2245 * As do_ld_bytes_beN, but with one atomic load. 2246 * 16 aligned bytes are guaranteed to cover the load. 2247 */ 2248 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra, 2249 MMULookupPageData *p, uint64_t ret_be) 2250 { 2251 int o = p->addr & 15; 2252 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o); 2253 int size = p->size; 2254 2255 if (!HOST_BIG_ENDIAN) { 2256 y = bswap128(y); 2257 } 2258 y = int128_lshift(y, o * 8); 2259 y = int128_urshift(y, (16 - size) * 8); 2260 x = int128_make64(ret_be); 2261 x = int128_lshift(x, size * 8); 2262 return int128_or(x, y); 2263 } 2264 2265 /* 2266 * Wrapper for the above. 2267 */ 2268 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p, 2269 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2270 MemOp mop, uintptr_t ra) 2271 { 2272 MemOp atom; 2273 unsigned tmp, half_size; 2274 2275 if (unlikely(p->flags & TLB_MMIO)) { 2276 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size, 2277 mmu_idx, type, ra); 2278 } 2279 2280 /* 2281 * It is a given that we cross a page and therefore there is no 2282 * atomicity for the load as a whole, but subobjects may need attention. 2283 */ 2284 atom = mop & MO_ATOM_MASK; 2285 switch (atom) { 2286 case MO_ATOM_SUBALIGN: 2287 return do_ld_parts_beN(p, ret_be); 2288 2289 case MO_ATOM_IFALIGN_PAIR: 2290 case MO_ATOM_WITHIN16_PAIR: 2291 tmp = mop & MO_SIZE; 2292 tmp = tmp ? tmp - 1 : 0; 2293 half_size = 1 << tmp; 2294 if (atom == MO_ATOM_IFALIGN_PAIR 2295 ? p->size == half_size 2296 : p->size >= half_size) { 2297 if (!HAVE_al8_fast && p->size < 4) { 2298 return do_ld_whole_be4(p, ret_be); 2299 } else { 2300 return do_ld_whole_be8(cpu, ra, p, ret_be); 2301 } 2302 } 2303 /* fall through */ 2304 2305 case MO_ATOM_IFALIGN: 2306 case MO_ATOM_WITHIN16: 2307 case MO_ATOM_NONE: 2308 return do_ld_bytes_beN(p, ret_be); 2309 2310 default: 2311 g_assert_not_reached(); 2312 } 2313 } 2314 2315 /* 2316 * Wrapper for the above, for 8 < size < 16. 2317 */ 2318 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p, 2319 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2320 { 2321 int size = p->size; 2322 uint64_t b; 2323 MemOp atom; 2324 2325 if (unlikely(p->flags & TLB_MMIO)) { 2326 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra); 2327 } 2328 2329 /* 2330 * It is a given that we cross a page and therefore there is no 2331 * atomicity for the load as a whole, but subobjects may need attention. 2332 */ 2333 atom = mop & MO_ATOM_MASK; 2334 switch (atom) { 2335 case MO_ATOM_SUBALIGN: 2336 p->size = size - 8; 2337 a = do_ld_parts_beN(p, a); 2338 p->haddr += size - 8; 2339 p->size = 8; 2340 b = do_ld_parts_beN(p, 0); 2341 break; 2342 2343 case MO_ATOM_WITHIN16_PAIR: 2344 /* Since size > 8, this is the half that must be atomic. */ 2345 return do_ld_whole_be16(cpu, ra, p, a); 2346 2347 case MO_ATOM_IFALIGN_PAIR: 2348 /* 2349 * Since size > 8, both halves are misaligned, 2350 * and so neither is atomic. 2351 */ 2352 case MO_ATOM_IFALIGN: 2353 case MO_ATOM_WITHIN16: 2354 case MO_ATOM_NONE: 2355 p->size = size - 8; 2356 a = do_ld_bytes_beN(p, a); 2357 b = ldq_be_p(p->haddr + size - 8); 2358 break; 2359 2360 default: 2361 g_assert_not_reached(); 2362 } 2363 2364 return int128_make128(b, a); 2365 } 2366 2367 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2368 MMUAccessType type, uintptr_t ra) 2369 { 2370 if (unlikely(p->flags & TLB_MMIO)) { 2371 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra); 2372 } else { 2373 return *(uint8_t *)p->haddr; 2374 } 2375 } 2376 2377 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2378 MMUAccessType type, MemOp memop, uintptr_t ra) 2379 { 2380 uint16_t ret; 2381 2382 if (unlikely(p->flags & TLB_MMIO)) { 2383 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2384 if ((memop & MO_BSWAP) == MO_LE) { 2385 ret = bswap16(ret); 2386 } 2387 } else { 2388 /* Perform the load host endian, then swap if necessary. */ 2389 ret = load_atom_2(cpu, ra, p->haddr, memop); 2390 if (memop & MO_BSWAP) { 2391 ret = bswap16(ret); 2392 } 2393 } 2394 return ret; 2395 } 2396 2397 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2398 MMUAccessType type, MemOp memop, uintptr_t ra) 2399 { 2400 uint32_t ret; 2401 2402 if (unlikely(p->flags & TLB_MMIO)) { 2403 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2404 if ((memop & MO_BSWAP) == MO_LE) { 2405 ret = bswap32(ret); 2406 } 2407 } else { 2408 /* Perform the load host endian. */ 2409 ret = load_atom_4(cpu, ra, p->haddr, memop); 2410 if (memop & MO_BSWAP) { 2411 ret = bswap32(ret); 2412 } 2413 } 2414 return ret; 2415 } 2416 2417 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2418 MMUAccessType type, MemOp memop, uintptr_t ra) 2419 { 2420 uint64_t ret; 2421 2422 if (unlikely(p->flags & TLB_MMIO)) { 2423 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2424 if ((memop & MO_BSWAP) == MO_LE) { 2425 ret = bswap64(ret); 2426 } 2427 } else { 2428 /* Perform the load host endian. */ 2429 ret = load_atom_8(cpu, ra, p->haddr, memop); 2430 if (memop & MO_BSWAP) { 2431 ret = bswap64(ret); 2432 } 2433 } 2434 return ret; 2435 } 2436 2437 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2438 uintptr_t ra, MMUAccessType access_type) 2439 { 2440 MMULookupLocals l; 2441 bool crosspage; 2442 2443 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2444 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2445 tcg_debug_assert(!crosspage); 2446 2447 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2448 } 2449 2450 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2451 uintptr_t ra, MMUAccessType access_type) 2452 { 2453 MMULookupLocals l; 2454 bool crosspage; 2455 uint16_t ret; 2456 uint8_t a, b; 2457 2458 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2459 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2460 if (likely(!crosspage)) { 2461 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2462 } 2463 2464 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2465 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra); 2466 2467 if ((l.memop & MO_BSWAP) == MO_LE) { 2468 ret = a | (b << 8); 2469 } else { 2470 ret = b | (a << 8); 2471 } 2472 return ret; 2473 } 2474 2475 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2476 uintptr_t ra, MMUAccessType access_type) 2477 { 2478 MMULookupLocals l; 2479 bool crosspage; 2480 uint32_t ret; 2481 2482 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2483 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2484 if (likely(!crosspage)) { 2485 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2486 } 2487 2488 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2489 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2490 if ((l.memop & MO_BSWAP) == MO_LE) { 2491 ret = bswap32(ret); 2492 } 2493 return ret; 2494 } 2495 2496 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2497 uintptr_t ra, MMUAccessType access_type) 2498 { 2499 MMULookupLocals l; 2500 bool crosspage; 2501 uint64_t ret; 2502 2503 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2504 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2505 if (likely(!crosspage)) { 2506 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2507 } 2508 2509 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2510 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2511 if ((l.memop & MO_BSWAP) == MO_LE) { 2512 ret = bswap64(ret); 2513 } 2514 return ret; 2515 } 2516 2517 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr, 2518 MemOpIdx oi, uintptr_t ra) 2519 { 2520 MMULookupLocals l; 2521 bool crosspage; 2522 uint64_t a, b; 2523 Int128 ret; 2524 int first; 2525 2526 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2527 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l); 2528 if (likely(!crosspage)) { 2529 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2530 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16, 2531 l.mmu_idx, ra); 2532 if ((l.memop & MO_BSWAP) == MO_LE) { 2533 ret = bswap128(ret); 2534 } 2535 } else { 2536 /* Perform the load host endian. */ 2537 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop); 2538 if (l.memop & MO_BSWAP) { 2539 ret = bswap128(ret); 2540 } 2541 } 2542 return ret; 2543 } 2544 2545 first = l.page[0].size; 2546 if (first == 8) { 2547 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2548 2549 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2550 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2551 if ((mop8 & MO_BSWAP) == MO_LE) { 2552 ret = int128_make128(a, b); 2553 } else { 2554 ret = int128_make128(b, a); 2555 } 2556 return ret; 2557 } 2558 2559 if (first < 8) { 2560 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, 2561 MMU_DATA_LOAD, l.memop, ra); 2562 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra); 2563 } else { 2564 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2565 b = int128_getlo(ret); 2566 ret = int128_lshift(ret, l.page[1].size * 8); 2567 a = int128_gethi(ret); 2568 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx, 2569 MMU_DATA_LOAD, l.memop, ra); 2570 ret = int128_make128(b, a); 2571 } 2572 if ((l.memop & MO_BSWAP) == MO_LE) { 2573 ret = bswap128(ret); 2574 } 2575 return ret; 2576 } 2577 2578 /* 2579 * Store Helpers 2580 */ 2581 2582 /** 2583 * do_st_mmio_leN: 2584 * @cpu: generic cpu state 2585 * @full: page parameters 2586 * @val_le: data to store 2587 * @addr: virtual address 2588 * @size: number of bytes 2589 * @mmu_idx: virtual address context 2590 * @ra: return address into tcg generated code, or 0 2591 * Context: BQL held 2592 * 2593 * Store @size bytes at @addr, which is memory-mapped i/o. 2594 * The bytes to store are extracted in little-endian order from @val_le; 2595 * return the bytes of @val_le beyond @p->size that have not been stored. 2596 */ 2597 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2598 uint64_t val_le, vaddr addr, int size, 2599 int mmu_idx, uintptr_t ra, 2600 MemoryRegion *mr, hwaddr mr_offset) 2601 { 2602 do { 2603 MemOp this_mop; 2604 unsigned this_size; 2605 MemTxResult r; 2606 2607 /* Store aligned pieces up to 8 bytes. */ 2608 this_mop = ctz32(size | (int)addr | 8); 2609 this_size = 1 << this_mop; 2610 this_mop |= MO_LE; 2611 2612 r = memory_region_dispatch_write(mr, mr_offset, val_le, 2613 this_mop, full->attrs); 2614 if (unlikely(r != MEMTX_OK)) { 2615 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE, 2616 mmu_idx, r, ra); 2617 } 2618 if (this_size == 8) { 2619 return 0; 2620 } 2621 2622 val_le >>= this_size * 8; 2623 addr += this_size; 2624 mr_offset += this_size; 2625 size -= this_size; 2626 } while (size); 2627 2628 return val_le; 2629 } 2630 2631 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2632 uint64_t val_le, vaddr addr, int size, 2633 int mmu_idx, uintptr_t ra) 2634 { 2635 MemoryRegionSection *section; 2636 hwaddr mr_offset; 2637 MemoryRegion *mr; 2638 MemTxAttrs attrs; 2639 2640 tcg_debug_assert(size > 0 && size <= 8); 2641 2642 attrs = full->attrs; 2643 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2644 mr = section->mr; 2645 2646 BQL_LOCK_GUARD(); 2647 return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx, 2648 ra, mr, mr_offset); 2649 } 2650 2651 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2652 Int128 val_le, vaddr addr, int size, 2653 int mmu_idx, uintptr_t ra) 2654 { 2655 MemoryRegionSection *section; 2656 MemoryRegion *mr; 2657 hwaddr mr_offset; 2658 MemTxAttrs attrs; 2659 2660 tcg_debug_assert(size > 8 && size <= 16); 2661 2662 attrs = full->attrs; 2663 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2664 mr = section->mr; 2665 2666 BQL_LOCK_GUARD(); 2667 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8, 2668 mmu_idx, ra, mr, mr_offset); 2669 return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8, 2670 size - 8, mmu_idx, ra, mr, mr_offset + 8); 2671 } 2672 2673 /* 2674 * Wrapper for the above. 2675 */ 2676 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p, 2677 uint64_t val_le, int mmu_idx, 2678 MemOp mop, uintptr_t ra) 2679 { 2680 MemOp atom; 2681 unsigned tmp, half_size; 2682 2683 if (unlikely(p->flags & TLB_MMIO)) { 2684 return do_st_mmio_leN(cpu, p->full, val_le, p->addr, 2685 p->size, mmu_idx, ra); 2686 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2687 return val_le >> (p->size * 8); 2688 } 2689 2690 /* 2691 * It is a given that we cross a page and therefore there is no atomicity 2692 * for the store as a whole, but subobjects may need attention. 2693 */ 2694 atom = mop & MO_ATOM_MASK; 2695 switch (atom) { 2696 case MO_ATOM_SUBALIGN: 2697 return store_parts_leN(p->haddr, p->size, val_le); 2698 2699 case MO_ATOM_IFALIGN_PAIR: 2700 case MO_ATOM_WITHIN16_PAIR: 2701 tmp = mop & MO_SIZE; 2702 tmp = tmp ? tmp - 1 : 0; 2703 half_size = 1 << tmp; 2704 if (atom == MO_ATOM_IFALIGN_PAIR 2705 ? p->size == half_size 2706 : p->size >= half_size) { 2707 if (!HAVE_al8_fast && p->size <= 4) { 2708 return store_whole_le4(p->haddr, p->size, val_le); 2709 } else if (HAVE_al8) { 2710 return store_whole_le8(p->haddr, p->size, val_le); 2711 } else { 2712 cpu_loop_exit_atomic(cpu, ra); 2713 } 2714 } 2715 /* fall through */ 2716 2717 case MO_ATOM_IFALIGN: 2718 case MO_ATOM_WITHIN16: 2719 case MO_ATOM_NONE: 2720 return store_bytes_leN(p->haddr, p->size, val_le); 2721 2722 default: 2723 g_assert_not_reached(); 2724 } 2725 } 2726 2727 /* 2728 * Wrapper for the above, for 8 < size < 16. 2729 */ 2730 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p, 2731 Int128 val_le, int mmu_idx, 2732 MemOp mop, uintptr_t ra) 2733 { 2734 int size = p->size; 2735 MemOp atom; 2736 2737 if (unlikely(p->flags & TLB_MMIO)) { 2738 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr, 2739 size, mmu_idx, ra); 2740 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2741 return int128_gethi(val_le) >> ((size - 8) * 8); 2742 } 2743 2744 /* 2745 * It is a given that we cross a page and therefore there is no atomicity 2746 * for the store as a whole, but subobjects may need attention. 2747 */ 2748 atom = mop & MO_ATOM_MASK; 2749 switch (atom) { 2750 case MO_ATOM_SUBALIGN: 2751 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2752 return store_parts_leN(p->haddr + 8, p->size - 8, 2753 int128_gethi(val_le)); 2754 2755 case MO_ATOM_WITHIN16_PAIR: 2756 /* Since size > 8, this is the half that must be atomic. */ 2757 if (!HAVE_CMPXCHG128) { 2758 cpu_loop_exit_atomic(cpu, ra); 2759 } 2760 return store_whole_le16(p->haddr, p->size, val_le); 2761 2762 case MO_ATOM_IFALIGN_PAIR: 2763 /* 2764 * Since size > 8, both halves are misaligned, 2765 * and so neither is atomic. 2766 */ 2767 case MO_ATOM_IFALIGN: 2768 case MO_ATOM_WITHIN16: 2769 case MO_ATOM_NONE: 2770 stq_le_p(p->haddr, int128_getlo(val_le)); 2771 return store_bytes_leN(p->haddr + 8, p->size - 8, 2772 int128_gethi(val_le)); 2773 2774 default: 2775 g_assert_not_reached(); 2776 } 2777 } 2778 2779 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val, 2780 int mmu_idx, uintptr_t ra) 2781 { 2782 if (unlikely(p->flags & TLB_MMIO)) { 2783 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra); 2784 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2785 /* nothing */ 2786 } else { 2787 *(uint8_t *)p->haddr = val; 2788 } 2789 } 2790 2791 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val, 2792 int mmu_idx, MemOp memop, uintptr_t ra) 2793 { 2794 if (unlikely(p->flags & TLB_MMIO)) { 2795 if ((memop & MO_BSWAP) != MO_LE) { 2796 val = bswap16(val); 2797 } 2798 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra); 2799 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2800 /* nothing */ 2801 } else { 2802 /* Swap to host endian if necessary, then store. */ 2803 if (memop & MO_BSWAP) { 2804 val = bswap16(val); 2805 } 2806 store_atom_2(cpu, ra, p->haddr, memop, val); 2807 } 2808 } 2809 2810 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val, 2811 int mmu_idx, MemOp memop, uintptr_t ra) 2812 { 2813 if (unlikely(p->flags & TLB_MMIO)) { 2814 if ((memop & MO_BSWAP) != MO_LE) { 2815 val = bswap32(val); 2816 } 2817 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra); 2818 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2819 /* nothing */ 2820 } else { 2821 /* Swap to host endian if necessary, then store. */ 2822 if (memop & MO_BSWAP) { 2823 val = bswap32(val); 2824 } 2825 store_atom_4(cpu, ra, p->haddr, memop, val); 2826 } 2827 } 2828 2829 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val, 2830 int mmu_idx, MemOp memop, uintptr_t ra) 2831 { 2832 if (unlikely(p->flags & TLB_MMIO)) { 2833 if ((memop & MO_BSWAP) != MO_LE) { 2834 val = bswap64(val); 2835 } 2836 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra); 2837 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2838 /* nothing */ 2839 } else { 2840 /* Swap to host endian if necessary, then store. */ 2841 if (memop & MO_BSWAP) { 2842 val = bswap64(val); 2843 } 2844 store_atom_8(cpu, ra, p->haddr, memop, val); 2845 } 2846 } 2847 2848 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val, 2849 MemOpIdx oi, uintptr_t ra) 2850 { 2851 MMULookupLocals l; 2852 bool crosspage; 2853 2854 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2855 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2856 tcg_debug_assert(!crosspage); 2857 2858 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra); 2859 } 2860 2861 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val, 2862 MemOpIdx oi, uintptr_t ra) 2863 { 2864 MMULookupLocals l; 2865 bool crosspage; 2866 uint8_t a, b; 2867 2868 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2869 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2870 if (likely(!crosspage)) { 2871 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2872 return; 2873 } 2874 2875 if ((l.memop & MO_BSWAP) == MO_LE) { 2876 a = val, b = val >> 8; 2877 } else { 2878 b = val, a = val >> 8; 2879 } 2880 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra); 2881 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra); 2882 } 2883 2884 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val, 2885 MemOpIdx oi, uintptr_t ra) 2886 { 2887 MMULookupLocals l; 2888 bool crosspage; 2889 2890 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2891 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2892 if (likely(!crosspage)) { 2893 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2894 return; 2895 } 2896 2897 /* Swap to little endian for simplicity, then store by bytes. */ 2898 if ((l.memop & MO_BSWAP) != MO_LE) { 2899 val = bswap32(val); 2900 } 2901 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2902 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2903 } 2904 2905 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val, 2906 MemOpIdx oi, uintptr_t ra) 2907 { 2908 MMULookupLocals l; 2909 bool crosspage; 2910 2911 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2912 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2913 if (likely(!crosspage)) { 2914 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2915 return; 2916 } 2917 2918 /* Swap to little endian for simplicity, then store by bytes. */ 2919 if ((l.memop & MO_BSWAP) != MO_LE) { 2920 val = bswap64(val); 2921 } 2922 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2923 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2924 } 2925 2926 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val, 2927 MemOpIdx oi, uintptr_t ra) 2928 { 2929 MMULookupLocals l; 2930 bool crosspage; 2931 uint64_t a, b; 2932 int first; 2933 2934 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2935 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2936 if (likely(!crosspage)) { 2937 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2938 if ((l.memop & MO_BSWAP) != MO_LE) { 2939 val = bswap128(val); 2940 } 2941 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra); 2942 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 2943 /* nothing */ 2944 } else { 2945 /* Swap to host endian if necessary, then store. */ 2946 if (l.memop & MO_BSWAP) { 2947 val = bswap128(val); 2948 } 2949 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val); 2950 } 2951 return; 2952 } 2953 2954 first = l.page[0].size; 2955 if (first == 8) { 2956 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 2957 2958 if (l.memop & MO_BSWAP) { 2959 val = bswap128(val); 2960 } 2961 if (HOST_BIG_ENDIAN) { 2962 b = int128_getlo(val), a = int128_gethi(val); 2963 } else { 2964 a = int128_getlo(val), b = int128_gethi(val); 2965 } 2966 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra); 2967 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra); 2968 return; 2969 } 2970 2971 if ((l.memop & MO_BSWAP) != MO_LE) { 2972 val = bswap128(val); 2973 } 2974 if (first < 8) { 2975 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 2976 val = int128_urshift(val, first * 8); 2977 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2978 } else { 2979 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2980 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra); 2981 } 2982 } 2983 2984 #include "ldst_common.c.inc" 2985 2986 /* 2987 * First set of functions passes in OI and RETADDR. 2988 * This makes them callable from other helpers. 2989 */ 2990 2991 #define ATOMIC_NAME(X) \ 2992 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2993 2994 #define ATOMIC_MMU_CLEANUP 2995 2996 #include "atomic_common.c.inc" 2997 2998 #define DATA_SIZE 1 2999 #include "atomic_template.h" 3000 3001 #define DATA_SIZE 2 3002 #include "atomic_template.h" 3003 3004 #define DATA_SIZE 4 3005 #include "atomic_template.h" 3006 3007 #ifdef CONFIG_ATOMIC64 3008 #define DATA_SIZE 8 3009 #include "atomic_template.h" 3010 #endif 3011 3012 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 3013 #define DATA_SIZE 16 3014 #include "atomic_template.h" 3015 #endif 3016 3017 /* Code access functions. */ 3018 3019 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 3020 { 3021 CPUState *cs = env_cpu(env); 3022 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true)); 3023 return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 3024 } 3025 3026 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 3027 { 3028 CPUState *cs = env_cpu(env); 3029 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true)); 3030 return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 3031 } 3032 3033 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 3034 { 3035 CPUState *cs = env_cpu(env); 3036 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true)); 3037 return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 3038 } 3039 3040 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 3041 { 3042 CPUState *cs = env_cpu(env); 3043 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true)); 3044 return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 3045 } 3046 3047 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 3048 MemOpIdx oi, uintptr_t retaddr) 3049 { 3050 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3051 } 3052 3053 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 3054 MemOpIdx oi, uintptr_t retaddr) 3055 { 3056 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3057 } 3058 3059 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 3060 MemOpIdx oi, uintptr_t retaddr) 3061 { 3062 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3063 } 3064 3065 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 3066 MemOpIdx oi, uintptr_t retaddr) 3067 { 3068 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3069 } 3070