xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 8e6fe6b8bab4716b4adf99a9ab52eaa82464b37e)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "cpu.h"
23 #include "trace.h"
24 #include "disas/disas.h"
25 #include "exec/exec-all.h"
26 #include "tcg.h"
27 #include "qemu/atomic.h"
28 #include "sysemu/qtest.h"
29 #include "qemu/timer.h"
30 #include "qemu/rcu.h"
31 #include "exec/tb-hash.h"
32 #include "exec/tb-lookup.h"
33 #include "exec/log.h"
34 #include "qemu/main-loop.h"
35 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
36 #include "hw/i386/apic.h"
37 #endif
38 #include "sysemu/cpus.h"
39 #include "sysemu/replay.h"
40 
41 /* -icount align implementation. */
42 
43 typedef struct SyncClocks {
44     int64_t diff_clk;
45     int64_t last_cpu_icount;
46     int64_t realtime_clock;
47 } SyncClocks;
48 
49 #if !defined(CONFIG_USER_ONLY)
50 /* Allow the guest to have a max 3ms advance.
51  * The difference between the 2 clocks could therefore
52  * oscillate around 0.
53  */
54 #define VM_CLOCK_ADVANCE 3000000
55 #define THRESHOLD_REDUCE 1.5
56 #define MAX_DELAY_PRINT_RATE 2000000000LL
57 #define MAX_NB_PRINTS 100
58 
59 static void align_clocks(SyncClocks *sc, CPUState *cpu)
60 {
61     int64_t cpu_icount;
62 
63     if (!icount_align_option) {
64         return;
65     }
66 
67     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
68     sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
69     sc->last_cpu_icount = cpu_icount;
70 
71     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
72 #ifndef _WIN32
73         struct timespec sleep_delay, rem_delay;
74         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
75         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
76         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
77             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
78         } else {
79             sc->diff_clk = 0;
80         }
81 #else
82         Sleep(sc->diff_clk / SCALE_MS);
83         sc->diff_clk = 0;
84 #endif
85     }
86 }
87 
88 static void print_delay(const SyncClocks *sc)
89 {
90     static float threshold_delay;
91     static int64_t last_realtime_clock;
92     static int nb_prints;
93 
94     if (icount_align_option &&
95         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
96         nb_prints < MAX_NB_PRINTS) {
97         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
98             (-sc->diff_clk / (float)1000000000LL <
99              (threshold_delay - THRESHOLD_REDUCE))) {
100             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
101             printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
102                    threshold_delay - 1,
103                    threshold_delay);
104             nb_prints++;
105             last_realtime_clock = sc->realtime_clock;
106         }
107     }
108 }
109 
110 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
111 {
112     if (!icount_align_option) {
113         return;
114     }
115     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
116     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
117     sc->last_cpu_icount
118         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
119     if (sc->diff_clk < max_delay) {
120         max_delay = sc->diff_clk;
121     }
122     if (sc->diff_clk > max_advance) {
123         max_advance = sc->diff_clk;
124     }
125 
126     /* Print every 2s max if the guest is late. We limit the number
127        of printed messages to NB_PRINT_MAX(currently 100) */
128     print_delay(sc);
129 }
130 #else
131 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
132 {
133 }
134 
135 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
136 {
137 }
138 #endif /* CONFIG USER ONLY */
139 
140 /* Execute a TB, and fix up the CPU state afterwards if necessary */
141 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
142 {
143     CPUArchState *env = cpu->env_ptr;
144     uintptr_t ret;
145     TranslationBlock *last_tb;
146     int tb_exit;
147     uint8_t *tb_ptr = itb->tc.ptr;
148 
149     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
150                            "Trace %d: %p ["
151                            TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
152                            cpu->cpu_index, itb->tc.ptr,
153                            itb->cs_base, itb->pc, itb->flags,
154                            lookup_symbol(itb->pc));
155 
156 #if defined(DEBUG_DISAS)
157     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
158         && qemu_log_in_addr_range(itb->pc)) {
159         qemu_log_lock();
160         int flags = 0;
161         if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
162             flags |= CPU_DUMP_FPU;
163         }
164 #if defined(TARGET_I386)
165         flags |= CPU_DUMP_CCOP;
166 #endif
167         log_cpu_state(cpu, flags);
168         qemu_log_unlock();
169     }
170 #endif /* DEBUG_DISAS */
171 
172     cpu->can_do_io = !use_icount;
173     ret = tcg_qemu_tb_exec(env, tb_ptr);
174     cpu->can_do_io = 1;
175     last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
176     tb_exit = ret & TB_EXIT_MASK;
177     trace_exec_tb_exit(last_tb, tb_exit);
178 
179     if (tb_exit > TB_EXIT_IDX1) {
180         /* We didn't start executing this TB (eg because the instruction
181          * counter hit zero); we must restore the guest PC to the address
182          * of the start of the TB.
183          */
184         CPUClass *cc = CPU_GET_CLASS(cpu);
185         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
186                                "Stopped execution of TB chain before %p ["
187                                TARGET_FMT_lx "] %s\n",
188                                last_tb->tc.ptr, last_tb->pc,
189                                lookup_symbol(last_tb->pc));
190         if (cc->synchronize_from_tb) {
191             cc->synchronize_from_tb(cpu, last_tb);
192         } else {
193             assert(cc->set_pc);
194             cc->set_pc(cpu, last_tb->pc);
195         }
196     }
197     return ret;
198 }
199 
200 #ifndef CONFIG_USER_ONLY
201 /* Execute the code without caching the generated code. An interpreter
202    could be used if available. */
203 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
204                              TranslationBlock *orig_tb, bool ignore_icount)
205 {
206     TranslationBlock *tb;
207     uint32_t cflags = curr_cflags() | CF_NOCACHE;
208 
209     if (ignore_icount) {
210         cflags &= ~CF_USE_ICOUNT;
211     }
212 
213     /* Should never happen.
214        We only end up here when an existing TB is too long.  */
215     cflags |= MIN(max_cycles, CF_COUNT_MASK);
216 
217     mmap_lock();
218     tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
219                      orig_tb->flags, cflags);
220     tb->orig_tb = orig_tb;
221     mmap_unlock();
222 
223     /* execute the generated code */
224     trace_exec_tb_nocache(tb, tb->pc);
225     cpu_tb_exec(cpu, tb);
226 
227     mmap_lock();
228     tb_phys_invalidate(tb, -1);
229     mmap_unlock();
230     tcg_tb_remove(tb);
231 }
232 #endif
233 
234 void cpu_exec_step_atomic(CPUState *cpu)
235 {
236     CPUClass *cc = CPU_GET_CLASS(cpu);
237     TranslationBlock *tb;
238     target_ulong cs_base, pc;
239     uint32_t flags;
240     uint32_t cflags = 1;
241     uint32_t cf_mask = cflags & CF_HASH_MASK;
242     /* volatile because we modify it between setjmp and longjmp */
243     volatile bool in_exclusive_region = false;
244 
245     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
246         tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
247         if (tb == NULL) {
248             mmap_lock();
249             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
250             mmap_unlock();
251         }
252 
253         start_exclusive();
254 
255         /* Since we got here, we know that parallel_cpus must be true.  */
256         parallel_cpus = false;
257         in_exclusive_region = true;
258         cc->cpu_exec_enter(cpu);
259         /* execute the generated code */
260         trace_exec_tb(tb, pc);
261         cpu_tb_exec(cpu, tb);
262         cc->cpu_exec_exit(cpu);
263     } else {
264         /*
265          * The mmap_lock is dropped by tb_gen_code if it runs out of
266          * memory.
267          */
268 #ifndef CONFIG_SOFTMMU
269         tcg_debug_assert(!have_mmap_lock());
270 #endif
271         if (qemu_mutex_iothread_locked()) {
272             qemu_mutex_unlock_iothread();
273         }
274         assert_no_pages_locked();
275     }
276 
277     if (in_exclusive_region) {
278         /* We might longjump out of either the codegen or the
279          * execution, so must make sure we only end the exclusive
280          * region if we started it.
281          */
282         parallel_cpus = true;
283         end_exclusive();
284     }
285 }
286 
287 struct tb_desc {
288     target_ulong pc;
289     target_ulong cs_base;
290     CPUArchState *env;
291     tb_page_addr_t phys_page1;
292     uint32_t flags;
293     uint32_t cf_mask;
294     uint32_t trace_vcpu_dstate;
295 };
296 
297 static bool tb_lookup_cmp(const void *p, const void *d)
298 {
299     const TranslationBlock *tb = p;
300     const struct tb_desc *desc = d;
301 
302     if (tb->pc == desc->pc &&
303         tb->page_addr[0] == desc->phys_page1 &&
304         tb->cs_base == desc->cs_base &&
305         tb->flags == desc->flags &&
306         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
307         (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
308         /* check next page if needed */
309         if (tb->page_addr[1] == -1) {
310             return true;
311         } else {
312             tb_page_addr_t phys_page2;
313             target_ulong virt_page2;
314 
315             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
316             phys_page2 = get_page_addr_code(desc->env, virt_page2);
317             if (tb->page_addr[1] == phys_page2) {
318                 return true;
319             }
320         }
321     }
322     return false;
323 }
324 
325 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
326                                    target_ulong cs_base, uint32_t flags,
327                                    uint32_t cf_mask)
328 {
329     tb_page_addr_t phys_pc;
330     struct tb_desc desc;
331     uint32_t h;
332 
333     desc.env = (CPUArchState *)cpu->env_ptr;
334     desc.cs_base = cs_base;
335     desc.flags = flags;
336     desc.cf_mask = cf_mask;
337     desc.trace_vcpu_dstate = *cpu->trace_dstate;
338     desc.pc = pc;
339     phys_pc = get_page_addr_code(desc.env, pc);
340     if (phys_pc == -1) {
341         return NULL;
342     }
343     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
344     h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
345     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
346 }
347 
348 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
349 {
350     if (TCG_TARGET_HAS_direct_jump) {
351         uintptr_t offset = tb->jmp_target_arg[n];
352         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
353         tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
354     } else {
355         tb->jmp_target_arg[n] = addr;
356     }
357 }
358 
359 static inline void tb_add_jump(TranslationBlock *tb, int n,
360                                TranslationBlock *tb_next)
361 {
362     uintptr_t old;
363 
364     assert(n < ARRAY_SIZE(tb->jmp_list_next));
365     qemu_spin_lock(&tb_next->jmp_lock);
366 
367     /* make sure the destination TB is valid */
368     if (tb_next->cflags & CF_INVALID) {
369         goto out_unlock_next;
370     }
371     /* Atomically claim the jump destination slot only if it was NULL */
372     old = atomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next);
373     if (old) {
374         goto out_unlock_next;
375     }
376 
377     /* patch the native jump address */
378     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
379 
380     /* add in TB jmp list */
381     tb->jmp_list_next[n] = tb_next->jmp_list_head;
382     tb_next->jmp_list_head = (uintptr_t)tb | n;
383 
384     qemu_spin_unlock(&tb_next->jmp_lock);
385 
386     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
387                            "Linking TBs %p [" TARGET_FMT_lx
388                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
389                            tb->tc.ptr, tb->pc, n,
390                            tb_next->tc.ptr, tb_next->pc);
391     return;
392 
393  out_unlock_next:
394     qemu_spin_unlock(&tb_next->jmp_lock);
395     return;
396 }
397 
398 static inline TranslationBlock *tb_find(CPUState *cpu,
399                                         TranslationBlock *last_tb,
400                                         int tb_exit, uint32_t cf_mask)
401 {
402     TranslationBlock *tb;
403     target_ulong cs_base, pc;
404     uint32_t flags;
405 
406     tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
407     if (tb == NULL) {
408         mmap_lock();
409         tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
410         mmap_unlock();
411         /* We add the TB in the virtual pc hash table for the fast lookup */
412         atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
413     }
414 #ifndef CONFIG_USER_ONLY
415     /* We don't take care of direct jumps when address mapping changes in
416      * system emulation. So it's not safe to make a direct jump to a TB
417      * spanning two pages because the mapping for the second page can change.
418      */
419     if (tb->page_addr[1] != -1) {
420         last_tb = NULL;
421     }
422 #endif
423     /* See if we can patch the calling TB. */
424     if (last_tb) {
425         tb_add_jump(last_tb, tb_exit, tb);
426     }
427     return tb;
428 }
429 
430 static inline bool cpu_handle_halt(CPUState *cpu)
431 {
432     if (cpu->halted) {
433 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
434         if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
435             && replay_interrupt()) {
436             X86CPU *x86_cpu = X86_CPU(cpu);
437             qemu_mutex_lock_iothread();
438             apic_poll_irq(x86_cpu->apic_state);
439             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
440             qemu_mutex_unlock_iothread();
441         }
442 #endif
443         if (!cpu_has_work(cpu)) {
444             return true;
445         }
446 
447         cpu->halted = 0;
448     }
449 
450     return false;
451 }
452 
453 static inline void cpu_handle_debug_exception(CPUState *cpu)
454 {
455     CPUClass *cc = CPU_GET_CLASS(cpu);
456     CPUWatchpoint *wp;
457 
458     if (!cpu->watchpoint_hit) {
459         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
460             wp->flags &= ~BP_WATCHPOINT_HIT;
461         }
462     }
463 
464     cc->debug_excp_handler(cpu);
465 }
466 
467 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
468 {
469     if (cpu->exception_index < 0) {
470 #ifndef CONFIG_USER_ONLY
471         if (replay_has_exception()
472             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
473             /* try to cause an exception pending in the log */
474             cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
475         }
476 #endif
477         if (cpu->exception_index < 0) {
478             return false;
479         }
480     }
481 
482     if (cpu->exception_index >= EXCP_INTERRUPT) {
483         /* exit request from the cpu execution loop */
484         *ret = cpu->exception_index;
485         if (*ret == EXCP_DEBUG) {
486             cpu_handle_debug_exception(cpu);
487         }
488         cpu->exception_index = -1;
489         return true;
490     } else {
491 #if defined(CONFIG_USER_ONLY)
492         /* if user mode only, we simulate a fake exception
493            which will be handled outside the cpu execution
494            loop */
495 #if defined(TARGET_I386)
496         CPUClass *cc = CPU_GET_CLASS(cpu);
497         cc->do_interrupt(cpu);
498 #endif
499         *ret = cpu->exception_index;
500         cpu->exception_index = -1;
501         return true;
502 #else
503         if (replay_exception()) {
504             CPUClass *cc = CPU_GET_CLASS(cpu);
505             qemu_mutex_lock_iothread();
506             cc->do_interrupt(cpu);
507             qemu_mutex_unlock_iothread();
508             cpu->exception_index = -1;
509         } else if (!replay_has_interrupt()) {
510             /* give a chance to iothread in replay mode */
511             *ret = EXCP_INTERRUPT;
512             return true;
513         }
514 #endif
515     }
516 
517     return false;
518 }
519 
520 static inline bool cpu_handle_interrupt(CPUState *cpu,
521                                         TranslationBlock **last_tb)
522 {
523     CPUClass *cc = CPU_GET_CLASS(cpu);
524 
525     /* Clear the interrupt flag now since we're processing
526      * cpu->interrupt_request and cpu->exit_request.
527      * Ensure zeroing happens before reading cpu->exit_request or
528      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
529      */
530     atomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
531 
532     if (unlikely(atomic_read(&cpu->interrupt_request))) {
533         int interrupt_request;
534         qemu_mutex_lock_iothread();
535         interrupt_request = cpu->interrupt_request;
536         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
537             /* Mask out external interrupts for this step. */
538             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
539         }
540         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
541             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
542             cpu->exception_index = EXCP_DEBUG;
543             qemu_mutex_unlock_iothread();
544             return true;
545         }
546         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
547             /* Do nothing */
548         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
549             replay_interrupt();
550             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
551             cpu->halted = 1;
552             cpu->exception_index = EXCP_HLT;
553             qemu_mutex_unlock_iothread();
554             return true;
555         }
556 #if defined(TARGET_I386)
557         else if (interrupt_request & CPU_INTERRUPT_INIT) {
558             X86CPU *x86_cpu = X86_CPU(cpu);
559             CPUArchState *env = &x86_cpu->env;
560             replay_interrupt();
561             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
562             do_cpu_init(x86_cpu);
563             cpu->exception_index = EXCP_HALTED;
564             qemu_mutex_unlock_iothread();
565             return true;
566         }
567 #else
568         else if (interrupt_request & CPU_INTERRUPT_RESET) {
569             replay_interrupt();
570             cpu_reset(cpu);
571             qemu_mutex_unlock_iothread();
572             return true;
573         }
574 #endif
575         /* The target hook has 3 exit conditions:
576            False when the interrupt isn't processed,
577            True when it is, and we should restart on a new TB,
578            and via longjmp via cpu_loop_exit.  */
579         else {
580             if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
581                 replay_interrupt();
582                 cpu->exception_index = -1;
583                 *last_tb = NULL;
584             }
585             /* The target hook may have updated the 'cpu->interrupt_request';
586              * reload the 'interrupt_request' value */
587             interrupt_request = cpu->interrupt_request;
588         }
589         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
590             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
591             /* ensure that no TB jump will be modified as
592                the program flow was changed */
593             *last_tb = NULL;
594         }
595 
596         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
597         qemu_mutex_unlock_iothread();
598     }
599 
600     /* Finally, check if we need to exit to the main loop.  */
601     if (unlikely(atomic_read(&cpu->exit_request))
602         || (use_icount
603             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
604         atomic_set(&cpu->exit_request, 0);
605         if (cpu->exception_index == -1) {
606             cpu->exception_index = EXCP_INTERRUPT;
607         }
608         return true;
609     }
610 
611     return false;
612 }
613 
614 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
615                                     TranslationBlock **last_tb, int *tb_exit)
616 {
617     uintptr_t ret;
618     int32_t insns_left;
619 
620     trace_exec_tb(tb, tb->pc);
621     ret = cpu_tb_exec(cpu, tb);
622     tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
623     *tb_exit = ret & TB_EXIT_MASK;
624     if (*tb_exit != TB_EXIT_REQUESTED) {
625         *last_tb = tb;
626         return;
627     }
628 
629     *last_tb = NULL;
630     insns_left = atomic_read(&cpu_neg(cpu)->icount_decr.u32);
631     if (insns_left < 0) {
632         /* Something asked us to stop executing chained TBs; just
633          * continue round the main loop. Whatever requested the exit
634          * will also have set something else (eg exit_request or
635          * interrupt_request) which will be handled by
636          * cpu_handle_interrupt.  cpu_handle_interrupt will also
637          * clear cpu->icount_decr.u16.high.
638          */
639         return;
640     }
641 
642     /* Instruction counter expired.  */
643     assert(use_icount);
644 #ifndef CONFIG_USER_ONLY
645     /* Ensure global icount has gone forward */
646     cpu_update_icount(cpu);
647     /* Refill decrementer and continue execution.  */
648     insns_left = MIN(0xffff, cpu->icount_budget);
649     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
650     cpu->icount_extra = cpu->icount_budget - insns_left;
651     if (!cpu->icount_extra) {
652         /* Execute any remaining instructions, then let the main loop
653          * handle the next event.
654          */
655         if (insns_left > 0) {
656             cpu_exec_nocache(cpu, insns_left, tb, false);
657         }
658     }
659 #endif
660 }
661 
662 /* main execution loop */
663 
664 int cpu_exec(CPUState *cpu)
665 {
666     CPUClass *cc = CPU_GET_CLASS(cpu);
667     int ret;
668     SyncClocks sc = { 0 };
669 
670     /* replay_interrupt may need current_cpu */
671     current_cpu = cpu;
672 
673     if (cpu_handle_halt(cpu)) {
674         return EXCP_HALTED;
675     }
676 
677     rcu_read_lock();
678 
679     cc->cpu_exec_enter(cpu);
680 
681     /* Calculate difference between guest clock and host clock.
682      * This delay includes the delay of the last cycle, so
683      * what we have to do is sleep until it is 0. As for the
684      * advance/delay we gain here, we try to fix it next time.
685      */
686     init_delay_params(&sc, cpu);
687 
688     /* prepare setjmp context for exception handling */
689     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
690 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
691         /* Some compilers wrongly smash all local variables after
692          * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
693          * Reload essential local variables here for those compilers.
694          * Newer versions of gcc would complain about this code (-Wclobbered). */
695         cpu = current_cpu;
696         cc = CPU_GET_CLASS(cpu);
697 #else /* buggy compiler */
698         /* Assert that the compiler does not smash local variables. */
699         g_assert(cpu == current_cpu);
700         g_assert(cc == CPU_GET_CLASS(cpu));
701 #endif /* buggy compiler */
702 #ifndef CONFIG_SOFTMMU
703         tcg_debug_assert(!have_mmap_lock());
704 #endif
705         if (qemu_mutex_iothread_locked()) {
706             qemu_mutex_unlock_iothread();
707         }
708         assert_no_pages_locked();
709     }
710 
711     /* if an exception is pending, we execute it here */
712     while (!cpu_handle_exception(cpu, &ret)) {
713         TranslationBlock *last_tb = NULL;
714         int tb_exit = 0;
715 
716         while (!cpu_handle_interrupt(cpu, &last_tb)) {
717             uint32_t cflags = cpu->cflags_next_tb;
718             TranslationBlock *tb;
719 
720             /* When requested, use an exact setting for cflags for the next
721                execution.  This is used for icount, precise smc, and stop-
722                after-access watchpoints.  Since this request should never
723                have CF_INVALID set, -1 is a convenient invalid value that
724                does not require tcg headers for cpu_common_reset.  */
725             if (cflags == -1) {
726                 cflags = curr_cflags();
727             } else {
728                 cpu->cflags_next_tb = -1;
729             }
730 
731             tb = tb_find(cpu, last_tb, tb_exit, cflags);
732             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
733             /* Try to align the host and virtual clocks
734                if the guest is in advance */
735             align_clocks(&sc, cpu);
736         }
737     }
738 
739     cc->cpu_exec_exit(cpu);
740     rcu_read_unlock();
741 
742     return ret;
743 }
744