xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 32f0c394bbf7fb2be635658cbf84c72a124720a0)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "exec/cpu-all.h"
38 #include "sysemu/cpu-timers.h"
39 #include "exec/replay-core.h"
40 #include "sysemu/tcg.h"
41 #include "exec/helper-proto-common.h"
42 #include "tb-jmp-cache.h"
43 #include "tb-hash.h"
44 #include "tb-context.h"
45 #include "internal-common.h"
46 #include "internal-target.h"
47 
48 /* -icount align implementation. */
49 
50 typedef struct SyncClocks {
51     int64_t diff_clk;
52     int64_t last_cpu_icount;
53     int64_t realtime_clock;
54 } SyncClocks;
55 
56 #if !defined(CONFIG_USER_ONLY)
57 /* Allow the guest to have a max 3ms advance.
58  * The difference between the 2 clocks could therefore
59  * oscillate around 0.
60  */
61 #define VM_CLOCK_ADVANCE 3000000
62 #define THRESHOLD_REDUCE 1.5
63 #define MAX_DELAY_PRINT_RATE 2000000000LL
64 #define MAX_NB_PRINTS 100
65 
66 int64_t max_delay;
67 int64_t max_advance;
68 
69 static void align_clocks(SyncClocks *sc, CPUState *cpu)
70 {
71     int64_t cpu_icount;
72 
73     if (!icount_align_option) {
74         return;
75     }
76 
77     cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
78     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
79     sc->last_cpu_icount = cpu_icount;
80 
81     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
82 #ifndef _WIN32
83         struct timespec sleep_delay, rem_delay;
84         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
85         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
86         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
87             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
88         } else {
89             sc->diff_clk = 0;
90         }
91 #else
92         Sleep(sc->diff_clk / SCALE_MS);
93         sc->diff_clk = 0;
94 #endif
95     }
96 }
97 
98 static void print_delay(const SyncClocks *sc)
99 {
100     static float threshold_delay;
101     static int64_t last_realtime_clock;
102     static int nb_prints;
103 
104     if (icount_align_option &&
105         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
106         nb_prints < MAX_NB_PRINTS) {
107         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
108             (-sc->diff_clk / (float)1000000000LL <
109              (threshold_delay - THRESHOLD_REDUCE))) {
110             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
111             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
112                         threshold_delay - 1,
113                         threshold_delay);
114             nb_prints++;
115             last_realtime_clock = sc->realtime_clock;
116         }
117     }
118 }
119 
120 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
121 {
122     if (!icount_align_option) {
123         return;
124     }
125     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
126     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
127     sc->last_cpu_icount
128         = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
129     if (sc->diff_clk < max_delay) {
130         max_delay = sc->diff_clk;
131     }
132     if (sc->diff_clk > max_advance) {
133         max_advance = sc->diff_clk;
134     }
135 
136     /* Print every 2s max if the guest is late. We limit the number
137        of printed messages to NB_PRINT_MAX(currently 100) */
138     print_delay(sc);
139 }
140 #else
141 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
142 {
143 }
144 
145 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
146 {
147 }
148 #endif /* CONFIG USER ONLY */
149 
150 uint32_t curr_cflags(CPUState *cpu)
151 {
152     uint32_t cflags = cpu->tcg_cflags;
153 
154     /*
155      * Record gdb single-step.  We should be exiting the TB by raising
156      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
157      *
158      * For singlestep and -d nochain, suppress goto_tb so that
159      * we can log -d cpu,exec after every TB.
160      */
161     if (unlikely(cpu->singlestep_enabled)) {
162         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
163     } else if (qatomic_read(&one_insn_per_tb)) {
164         cflags |= CF_NO_GOTO_TB | 1;
165     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
166         cflags |= CF_NO_GOTO_TB;
167     }
168 
169     return cflags;
170 }
171 
172 struct tb_desc {
173     vaddr pc;
174     uint64_t cs_base;
175     CPUArchState *env;
176     tb_page_addr_t page_addr0;
177     uint32_t flags;
178     uint32_t cflags;
179 };
180 
181 static bool tb_lookup_cmp(const void *p, const void *d)
182 {
183     const TranslationBlock *tb = p;
184     const struct tb_desc *desc = d;
185 
186     if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
187         tb_page_addr0(tb) == desc->page_addr0 &&
188         tb->cs_base == desc->cs_base &&
189         tb->flags == desc->flags &&
190         tb_cflags(tb) == desc->cflags) {
191         /* check next page if needed */
192         tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
193         if (tb_phys_page1 == -1) {
194             return true;
195         } else {
196             tb_page_addr_t phys_page1;
197             vaddr virt_page1;
198 
199             /*
200              * We know that the first page matched, and an otherwise valid TB
201              * encountered an incomplete instruction at the end of that page,
202              * therefore we know that generating a new TB from the current PC
203              * must also require reading from the next page -- even if the
204              * second pages do not match, and therefore the resulting insn
205              * is different for the new TB.  Therefore any exception raised
206              * here by the faulting lookup is not premature.
207              */
208             virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
209             phys_page1 = get_page_addr_code(desc->env, virt_page1);
210             if (tb_phys_page1 == phys_page1) {
211                 return true;
212             }
213         }
214     }
215     return false;
216 }
217 
218 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc,
219                                           uint64_t cs_base, uint32_t flags,
220                                           uint32_t cflags)
221 {
222     tb_page_addr_t phys_pc;
223     struct tb_desc desc;
224     uint32_t h;
225 
226     desc.env = cpu_env(cpu);
227     desc.cs_base = cs_base;
228     desc.flags = flags;
229     desc.cflags = cflags;
230     desc.pc = pc;
231     phys_pc = get_page_addr_code(desc.env, pc);
232     if (phys_pc == -1) {
233         return NULL;
234     }
235     desc.page_addr0 = phys_pc;
236     h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
237                      flags, cs_base, cflags);
238     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
239 }
240 
241 /* Might cause an exception, so have a longjmp destination ready */
242 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc,
243                                           uint64_t cs_base, uint32_t flags,
244                                           uint32_t cflags)
245 {
246     TranslationBlock *tb;
247     CPUJumpCache *jc;
248     uint32_t hash;
249 
250     /* we should never be trying to look up an INVALID tb */
251     tcg_debug_assert(!(cflags & CF_INVALID));
252 
253     hash = tb_jmp_cache_hash_func(pc);
254     jc = cpu->tb_jmp_cache;
255 
256     tb = qatomic_read(&jc->array[hash].tb);
257     if (likely(tb &&
258                jc->array[hash].pc == pc &&
259                tb->cs_base == cs_base &&
260                tb->flags == flags &&
261                tb_cflags(tb) == cflags)) {
262         goto hit;
263     }
264 
265     tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
266     if (tb == NULL) {
267         return NULL;
268     }
269 
270     jc->array[hash].pc = pc;
271     qatomic_set(&jc->array[hash].tb, tb);
272 
273 hit:
274     /*
275      * As long as tb is not NULL, the contents are consistent.  Therefore,
276      * the virtual PC has to match for non-CF_PCREL translations.
277      */
278     assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc);
279     return tb;
280 }
281 
282 static void log_cpu_exec(vaddr pc, CPUState *cpu,
283                          const TranslationBlock *tb)
284 {
285     if (qemu_log_in_addr_range(pc)) {
286         qemu_log_mask(CPU_LOG_EXEC,
287                       "Trace %d: %p [%08" PRIx64
288                       "/%016" VADDR_PRIx "/%08x/%08x] %s\n",
289                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
290                       tb->flags, tb->cflags, lookup_symbol(pc));
291 
292         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
293             FILE *logfile = qemu_log_trylock();
294             if (logfile) {
295                 int flags = 0;
296 
297                 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
298                     flags |= CPU_DUMP_FPU;
299                 }
300 #if defined(TARGET_I386)
301                 flags |= CPU_DUMP_CCOP;
302 #endif
303                 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
304                     flags |= CPU_DUMP_VPU;
305                 }
306                 cpu_dump_state(cpu, logfile, flags);
307                 qemu_log_unlock(logfile);
308             }
309         }
310     }
311 }
312 
313 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
314                                        uint32_t *cflags)
315 {
316     CPUBreakpoint *bp;
317     bool match_page = false;
318 
319     /*
320      * Singlestep overrides breakpoints.
321      * This requirement is visible in the record-replay tests, where
322      * we would fail to make forward progress in reverse-continue.
323      *
324      * TODO: gdb singlestep should only override gdb breakpoints,
325      * so that one could (gdb) singlestep into the guest kernel's
326      * architectural breakpoint handler.
327      */
328     if (cpu->singlestep_enabled) {
329         return false;
330     }
331 
332     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
333         /*
334          * If we have an exact pc match, trigger the breakpoint.
335          * Otherwise, note matches within the page.
336          */
337         if (pc == bp->pc) {
338             bool match_bp = false;
339 
340             if (bp->flags & BP_GDB) {
341                 match_bp = true;
342             } else if (bp->flags & BP_CPU) {
343 #ifdef CONFIG_USER_ONLY
344                 g_assert_not_reached();
345 #else
346                 CPUClass *cc = CPU_GET_CLASS(cpu);
347                 assert(cc->tcg_ops->debug_check_breakpoint);
348                 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
349 #endif
350             }
351 
352             if (match_bp) {
353                 cpu->exception_index = EXCP_DEBUG;
354                 return true;
355             }
356         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
357             match_page = true;
358         }
359     }
360 
361     /*
362      * Within the same page as a breakpoint, single-step,
363      * returning to helper_lookup_tb_ptr after each insn looking
364      * for the actual breakpoint.
365      *
366      * TODO: Perhaps better to record all of the TBs associated
367      * with a given virtual page that contains a breakpoint, and
368      * then invalidate them when a new overlapping breakpoint is
369      * set on the page.  Non-overlapping TBs would not be
370      * invalidated, nor would any TB need to be invalidated as
371      * breakpoints are removed.
372      */
373     if (match_page) {
374         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
375     }
376     return false;
377 }
378 
379 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
380                                          uint32_t *cflags)
381 {
382     return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
383         check_for_breakpoints_slow(cpu, pc, cflags);
384 }
385 
386 /**
387  * helper_lookup_tb_ptr: quick check for next tb
388  * @env: current cpu state
389  *
390  * Look for an existing TB matching the current cpu state.
391  * If found, return the code pointer.  If not found, return
392  * the tcg epilogue so that we return into cpu_tb_exec.
393  */
394 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
395 {
396     CPUState *cpu = env_cpu(env);
397     TranslationBlock *tb;
398     vaddr pc;
399     uint64_t cs_base;
400     uint32_t flags, cflags;
401 
402     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
403 
404     cflags = curr_cflags(cpu);
405     if (check_for_breakpoints(cpu, pc, &cflags)) {
406         cpu_loop_exit(cpu);
407     }
408 
409     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
410     if (tb == NULL) {
411         return tcg_code_gen_epilogue;
412     }
413 
414     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
415         log_cpu_exec(pc, cpu, tb);
416     }
417 
418     return tb->tc.ptr;
419 }
420 
421 /* Execute a TB, and fix up the CPU state afterwards if necessary */
422 /*
423  * Disable CFI checks.
424  * TCG creates binary blobs at runtime, with the transformed code.
425  * A TB is a blob of binary code, created at runtime and called with an
426  * indirect function call. Since such function did not exist at compile time,
427  * the CFI runtime has no way to verify its signature and would fail.
428  * TCG is not considered a security-sensitive part of QEMU so this does not
429  * affect the impact of CFI in environment with high security requirements
430  */
431 static inline TranslationBlock * QEMU_DISABLE_CFI
432 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
433 {
434     CPUArchState *env = cpu_env(cpu);
435     uintptr_t ret;
436     TranslationBlock *last_tb;
437     const void *tb_ptr = itb->tc.ptr;
438 
439     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
440         log_cpu_exec(log_pc(cpu, itb), cpu, itb);
441     }
442 
443     qemu_thread_jit_execute();
444     ret = tcg_qemu_tb_exec(env, tb_ptr);
445     cpu->neg.can_do_io = true;
446     qemu_plugin_disable_mem_helpers(cpu);
447     /*
448      * TODO: Delay swapping back to the read-write region of the TB
449      * until we actually need to modify the TB.  The read-only copy,
450      * coming from the rx region, shares the same host TLB entry as
451      * the code that executed the exit_tb opcode that arrived here.
452      * If we insist on touching both the RX and the RW pages, we
453      * double the host TLB pressure.
454      */
455     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
456     *tb_exit = ret & TB_EXIT_MASK;
457 
458     trace_exec_tb_exit(last_tb, *tb_exit);
459 
460     if (*tb_exit > TB_EXIT_IDX1) {
461         /* We didn't start executing this TB (eg because the instruction
462          * counter hit zero); we must restore the guest PC to the address
463          * of the start of the TB.
464          */
465         CPUClass *cc = CPU_GET_CLASS(cpu);
466 
467         if (cc->tcg_ops->synchronize_from_tb) {
468             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
469         } else {
470             tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
471             assert(cc->set_pc);
472             cc->set_pc(cpu, last_tb->pc);
473         }
474         if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
475             vaddr pc = log_pc(cpu, last_tb);
476             if (qemu_log_in_addr_range(pc)) {
477                 qemu_log("Stopped execution of TB chain before %p [%016"
478                          VADDR_PRIx "] %s\n",
479                          last_tb->tc.ptr, pc, lookup_symbol(pc));
480             }
481         }
482     }
483 
484     /*
485      * If gdb single-step, and we haven't raised another exception,
486      * raise a debug exception.  Single-step with another exception
487      * is handled in cpu_handle_exception.
488      */
489     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
490         cpu->exception_index = EXCP_DEBUG;
491         cpu_loop_exit(cpu);
492     }
493 
494     return last_tb;
495 }
496 
497 
498 static void cpu_exec_enter(CPUState *cpu)
499 {
500     CPUClass *cc = CPU_GET_CLASS(cpu);
501 
502     if (cc->tcg_ops->cpu_exec_enter) {
503         cc->tcg_ops->cpu_exec_enter(cpu);
504     }
505 }
506 
507 static void cpu_exec_exit(CPUState *cpu)
508 {
509     CPUClass *cc = CPU_GET_CLASS(cpu);
510 
511     if (cc->tcg_ops->cpu_exec_exit) {
512         cc->tcg_ops->cpu_exec_exit(cpu);
513     }
514 }
515 
516 static void cpu_exec_longjmp_cleanup(CPUState *cpu)
517 {
518     /* Non-buggy compilers preserve this; assert the correct value. */
519     g_assert(cpu == current_cpu);
520 
521 #ifdef CONFIG_USER_ONLY
522     clear_helper_retaddr();
523     if (have_mmap_lock()) {
524         mmap_unlock();
525     }
526 #else
527     /*
528      * For softmmu, a tlb_fill fault during translation will land here,
529      * and we need to release any page locks held.  In system mode we
530      * have one tcg_ctx per thread, so we know it was this cpu doing
531      * the translation.
532      *
533      * Alternative 1: Install a cleanup to be called via an exception
534      * handling safe longjmp.  It seems plausible that all our hosts
535      * support such a thing.  We'd have to properly register unwind info
536      * for the JIT for EH, rather that just for GDB.
537      *
538      * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to
539      * capture the cpu_loop_exit longjmp, perform the cleanup, and
540      * jump again to arrive here.
541      */
542     if (tcg_ctx->gen_tb) {
543         tb_unlock_pages(tcg_ctx->gen_tb);
544         tcg_ctx->gen_tb = NULL;
545     }
546 #endif
547     if (bql_locked()) {
548         bql_unlock();
549     }
550     assert_no_pages_locked();
551 }
552 
553 void cpu_exec_step_atomic(CPUState *cpu)
554 {
555     CPUArchState *env = cpu_env(cpu);
556     TranslationBlock *tb;
557     vaddr pc;
558     uint64_t cs_base;
559     uint32_t flags, cflags;
560     int tb_exit;
561 
562     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
563         start_exclusive();
564         g_assert(cpu == current_cpu);
565         g_assert(!cpu->running);
566         cpu->running = true;
567 
568         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
569 
570         cflags = curr_cflags(cpu);
571         /* Execute in a serial context. */
572         cflags &= ~CF_PARALLEL;
573         /* After 1 insn, return and release the exclusive lock. */
574         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
575         /*
576          * No need to check_for_breakpoints here.
577          * We only arrive in cpu_exec_step_atomic after beginning execution
578          * of an insn that includes an atomic operation we can't handle.
579          * Any breakpoint for this insn will have been recognized earlier.
580          */
581 
582         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
583         if (tb == NULL) {
584             mmap_lock();
585             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
586             mmap_unlock();
587         }
588 
589         cpu_exec_enter(cpu);
590         /* execute the generated code */
591         trace_exec_tb(tb, pc);
592         cpu_tb_exec(cpu, tb, &tb_exit);
593         cpu_exec_exit(cpu);
594     } else {
595         cpu_exec_longjmp_cleanup(cpu);
596     }
597 
598     /*
599      * As we start the exclusive region before codegen we must still
600      * be in the region if we longjump out of either the codegen or
601      * the execution.
602      */
603     g_assert(cpu_in_exclusive_context(cpu));
604     cpu->running = false;
605     end_exclusive();
606 }
607 
608 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
609 {
610     /*
611      * Get the rx view of the structure, from which we find the
612      * executable code address, and tb_target_set_jmp_target can
613      * produce a pc-relative displacement to jmp_target_addr[n].
614      */
615     const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
616     uintptr_t offset = tb->jmp_insn_offset[n];
617     uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
618     uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
619 
620     tb->jmp_target_addr[n] = addr;
621     tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
622 }
623 
624 static inline void tb_add_jump(TranslationBlock *tb, int n,
625                                TranslationBlock *tb_next)
626 {
627     uintptr_t old;
628 
629     qemu_thread_jit_write();
630     assert(n < ARRAY_SIZE(tb->jmp_list_next));
631     qemu_spin_lock(&tb_next->jmp_lock);
632 
633     /* make sure the destination TB is valid */
634     if (tb_next->cflags & CF_INVALID) {
635         goto out_unlock_next;
636     }
637     /* Atomically claim the jump destination slot only if it was NULL */
638     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
639                           (uintptr_t)tb_next);
640     if (old) {
641         goto out_unlock_next;
642     }
643 
644     /* patch the native jump address */
645     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
646 
647     /* add in TB jmp list */
648     tb->jmp_list_next[n] = tb_next->jmp_list_head;
649     tb_next->jmp_list_head = (uintptr_t)tb | n;
650 
651     qemu_spin_unlock(&tb_next->jmp_lock);
652 
653     qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
654                   tb->tc.ptr, n, tb_next->tc.ptr);
655     return;
656 
657  out_unlock_next:
658     qemu_spin_unlock(&tb_next->jmp_lock);
659     return;
660 }
661 
662 static inline bool cpu_handle_halt(CPUState *cpu)
663 {
664 #ifndef CONFIG_USER_ONLY
665     if (cpu->halted) {
666 #if defined(TARGET_I386)
667         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
668             X86CPU *x86_cpu = X86_CPU(cpu);
669             bql_lock();
670             apic_poll_irq(x86_cpu->apic_state);
671             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
672             bql_unlock();
673         }
674 #endif /* TARGET_I386 */
675         if (!cpu_has_work(cpu)) {
676             return true;
677         }
678 
679         cpu->halted = 0;
680     }
681 #endif /* !CONFIG_USER_ONLY */
682 
683     return false;
684 }
685 
686 static inline void cpu_handle_debug_exception(CPUState *cpu)
687 {
688     CPUClass *cc = CPU_GET_CLASS(cpu);
689     CPUWatchpoint *wp;
690 
691     if (!cpu->watchpoint_hit) {
692         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
693             wp->flags &= ~BP_WATCHPOINT_HIT;
694         }
695     }
696 
697     if (cc->tcg_ops->debug_excp_handler) {
698         cc->tcg_ops->debug_excp_handler(cpu);
699     }
700 }
701 
702 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
703 {
704     if (cpu->exception_index < 0) {
705 #ifndef CONFIG_USER_ONLY
706         if (replay_has_exception()
707             && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) {
708             /* Execute just one insn to trigger exception pending in the log */
709             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
710                 | CF_NOIRQ | 1;
711         }
712 #endif
713         return false;
714     }
715     if (cpu->exception_index >= EXCP_INTERRUPT) {
716         /* exit request from the cpu execution loop */
717         *ret = cpu->exception_index;
718         if (*ret == EXCP_DEBUG) {
719             cpu_handle_debug_exception(cpu);
720         }
721         cpu->exception_index = -1;
722         return true;
723     } else {
724 #if defined(CONFIG_USER_ONLY)
725         /* if user mode only, we simulate a fake exception
726            which will be handled outside the cpu execution
727            loop */
728 #if defined(TARGET_I386)
729         CPUClass *cc = CPU_GET_CLASS(cpu);
730         cc->tcg_ops->fake_user_interrupt(cpu);
731 #endif /* TARGET_I386 */
732         *ret = cpu->exception_index;
733         cpu->exception_index = -1;
734         return true;
735 #else
736         if (replay_exception()) {
737             CPUClass *cc = CPU_GET_CLASS(cpu);
738             bql_lock();
739             cc->tcg_ops->do_interrupt(cpu);
740             bql_unlock();
741             cpu->exception_index = -1;
742 
743             if (unlikely(cpu->singlestep_enabled)) {
744                 /*
745                  * After processing the exception, ensure an EXCP_DEBUG is
746                  * raised when single-stepping so that GDB doesn't miss the
747                  * next instruction.
748                  */
749                 *ret = EXCP_DEBUG;
750                 cpu_handle_debug_exception(cpu);
751                 return true;
752             }
753         } else if (!replay_has_interrupt()) {
754             /* give a chance to iothread in replay mode */
755             *ret = EXCP_INTERRUPT;
756             return true;
757         }
758 #endif
759     }
760 
761     return false;
762 }
763 
764 #ifndef CONFIG_USER_ONLY
765 /*
766  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
767  * "real" interrupt event later. It does not need to be recorded for
768  * replay purposes.
769  */
770 static inline bool need_replay_interrupt(int interrupt_request)
771 {
772 #if defined(TARGET_I386)
773     return !(interrupt_request & CPU_INTERRUPT_POLL);
774 #else
775     return true;
776 #endif
777 }
778 #endif /* !CONFIG_USER_ONLY */
779 
780 static inline bool cpu_handle_interrupt(CPUState *cpu,
781                                         TranslationBlock **last_tb)
782 {
783     /*
784      * If we have requested custom cflags with CF_NOIRQ we should
785      * skip checking here. Any pending interrupts will get picked up
786      * by the next TB we execute under normal cflags.
787      */
788     if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
789         return false;
790     }
791 
792     /* Clear the interrupt flag now since we're processing
793      * cpu->interrupt_request and cpu->exit_request.
794      * Ensure zeroing happens before reading cpu->exit_request or
795      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
796      */
797     qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0);
798 
799     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
800         int interrupt_request;
801         bql_lock();
802         interrupt_request = cpu->interrupt_request;
803         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
804             /* Mask out external interrupts for this step. */
805             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
806         }
807         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
808             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
809             cpu->exception_index = EXCP_DEBUG;
810             bql_unlock();
811             return true;
812         }
813 #if !defined(CONFIG_USER_ONLY)
814         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
815             /* Do nothing */
816         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
817             replay_interrupt();
818             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
819             cpu->halted = 1;
820             cpu->exception_index = EXCP_HLT;
821             bql_unlock();
822             return true;
823         }
824 #if defined(TARGET_I386)
825         else if (interrupt_request & CPU_INTERRUPT_INIT) {
826             X86CPU *x86_cpu = X86_CPU(cpu);
827             CPUArchState *env = &x86_cpu->env;
828             replay_interrupt();
829             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
830             do_cpu_init(x86_cpu);
831             cpu->exception_index = EXCP_HALTED;
832             bql_unlock();
833             return true;
834         }
835 #else
836         else if (interrupt_request & CPU_INTERRUPT_RESET) {
837             replay_interrupt();
838             cpu_reset(cpu);
839             bql_unlock();
840             return true;
841         }
842 #endif /* !TARGET_I386 */
843         /* The target hook has 3 exit conditions:
844            False when the interrupt isn't processed,
845            True when it is, and we should restart on a new TB,
846            and via longjmp via cpu_loop_exit.  */
847         else {
848             CPUClass *cc = CPU_GET_CLASS(cpu);
849 
850             if (cc->tcg_ops->cpu_exec_interrupt &&
851                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
852                 if (need_replay_interrupt(interrupt_request)) {
853                     replay_interrupt();
854                 }
855                 /*
856                  * After processing the interrupt, ensure an EXCP_DEBUG is
857                  * raised when single-stepping so that GDB doesn't miss the
858                  * next instruction.
859                  */
860                 if (unlikely(cpu->singlestep_enabled)) {
861                     cpu->exception_index = EXCP_DEBUG;
862                     bql_unlock();
863                     return true;
864                 }
865                 cpu->exception_index = -1;
866                 *last_tb = NULL;
867             }
868             /* The target hook may have updated the 'cpu->interrupt_request';
869              * reload the 'interrupt_request' value */
870             interrupt_request = cpu->interrupt_request;
871         }
872 #endif /* !CONFIG_USER_ONLY */
873         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
874             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
875             /* ensure that no TB jump will be modified as
876                the program flow was changed */
877             *last_tb = NULL;
878         }
879 
880         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
881         bql_unlock();
882     }
883 
884     /* Finally, check if we need to exit to the main loop.  */
885     if (unlikely(qatomic_read(&cpu->exit_request))
886         || (icount_enabled()
887             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
888             && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0)) {
889         qatomic_set(&cpu->exit_request, 0);
890         if (cpu->exception_index == -1) {
891             cpu->exception_index = EXCP_INTERRUPT;
892         }
893         return true;
894     }
895 
896     return false;
897 }
898 
899 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
900                                     vaddr pc, TranslationBlock **last_tb,
901                                     int *tb_exit)
902 {
903     int32_t insns_left;
904 
905     trace_exec_tb(tb, pc);
906     tb = cpu_tb_exec(cpu, tb, tb_exit);
907     if (*tb_exit != TB_EXIT_REQUESTED) {
908         *last_tb = tb;
909         return;
910     }
911 
912     *last_tb = NULL;
913     insns_left = qatomic_read(&cpu->neg.icount_decr.u32);
914     if (insns_left < 0) {
915         /* Something asked us to stop executing chained TBs; just
916          * continue round the main loop. Whatever requested the exit
917          * will also have set something else (eg exit_request or
918          * interrupt_request) which will be handled by
919          * cpu_handle_interrupt.  cpu_handle_interrupt will also
920          * clear cpu->icount_decr.u16.high.
921          */
922         return;
923     }
924 
925     /* Instruction counter expired.  */
926     assert(icount_enabled());
927 #ifndef CONFIG_USER_ONLY
928     /* Ensure global icount has gone forward */
929     icount_update(cpu);
930     /* Refill decrementer and continue execution.  */
931     insns_left = MIN(0xffff, cpu->icount_budget);
932     cpu->neg.icount_decr.u16.low = insns_left;
933     cpu->icount_extra = cpu->icount_budget - insns_left;
934 
935     /*
936      * If the next tb has more instructions than we have left to
937      * execute we need to ensure we find/generate a TB with exactly
938      * insns_left instructions in it.
939      */
940     if (insns_left > 0 && insns_left < tb->icount)  {
941         assert(insns_left <= CF_COUNT_MASK);
942         assert(cpu->icount_extra == 0);
943         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
944     }
945 #endif
946 }
947 
948 /* main execution loop */
949 
950 static int __attribute__((noinline))
951 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
952 {
953     int ret;
954 
955     /* if an exception is pending, we execute it here */
956     while (!cpu_handle_exception(cpu, &ret)) {
957         TranslationBlock *last_tb = NULL;
958         int tb_exit = 0;
959 
960         while (!cpu_handle_interrupt(cpu, &last_tb)) {
961             TranslationBlock *tb;
962             vaddr pc;
963             uint64_t cs_base;
964             uint32_t flags, cflags;
965 
966             cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags);
967 
968             /*
969              * When requested, use an exact setting for cflags for the next
970              * execution.  This is used for icount, precise smc, and stop-
971              * after-access watchpoints.  Since this request should never
972              * have CF_INVALID set, -1 is a convenient invalid value that
973              * does not require tcg headers for cpu_common_reset.
974              */
975             cflags = cpu->cflags_next_tb;
976             if (cflags == -1) {
977                 cflags = curr_cflags(cpu);
978             } else {
979                 cpu->cflags_next_tb = -1;
980             }
981 
982             if (check_for_breakpoints(cpu, pc, &cflags)) {
983                 break;
984             }
985 
986             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
987             if (tb == NULL) {
988                 CPUJumpCache *jc;
989                 uint32_t h;
990 
991                 mmap_lock();
992                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
993                 mmap_unlock();
994 
995                 /*
996                  * We add the TB in the virtual pc hash table
997                  * for the fast lookup
998                  */
999                 h = tb_jmp_cache_hash_func(pc);
1000                 jc = cpu->tb_jmp_cache;
1001                 jc->array[h].pc = pc;
1002                 qatomic_set(&jc->array[h].tb, tb);
1003             }
1004 
1005 #ifndef CONFIG_USER_ONLY
1006             /*
1007              * We don't take care of direct jumps when address mapping
1008              * changes in system emulation.  So it's not safe to make a
1009              * direct jump to a TB spanning two pages because the mapping
1010              * for the second page can change.
1011              */
1012             if (tb_page_addr1(tb) != -1) {
1013                 last_tb = NULL;
1014             }
1015 #endif
1016             /* See if we can patch the calling TB. */
1017             if (last_tb) {
1018                 tb_add_jump(last_tb, tb_exit, tb);
1019             }
1020 
1021             cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1022 
1023             /* Try to align the host and virtual clocks
1024                if the guest is in advance */
1025             align_clocks(sc, cpu);
1026         }
1027     }
1028     return ret;
1029 }
1030 
1031 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1032 {
1033     /* Prepare setjmp context for exception handling. */
1034     if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1035         cpu_exec_longjmp_cleanup(cpu);
1036     }
1037 
1038     return cpu_exec_loop(cpu, sc);
1039 }
1040 
1041 int cpu_exec(CPUState *cpu)
1042 {
1043     int ret;
1044     SyncClocks sc = { 0 };
1045 
1046     /* replay_interrupt may need current_cpu */
1047     current_cpu = cpu;
1048 
1049     if (cpu_handle_halt(cpu)) {
1050         return EXCP_HALTED;
1051     }
1052 
1053     rcu_read_lock();
1054     cpu_exec_enter(cpu);
1055 
1056     /*
1057      * Calculate difference between guest clock and host clock.
1058      * This delay includes the delay of the last cycle, so
1059      * what we have to do is sleep until it is 0. As for the
1060      * advance/delay we gain here, we try to fix it next time.
1061      */
1062     init_delay_params(&sc, cpu);
1063 
1064     ret = cpu_exec_setjmp(cpu, &sc);
1065 
1066     cpu_exec_exit(cpu);
1067     rcu_read_unlock();
1068 
1069     return ret;
1070 }
1071 
1072 bool tcg_exec_realizefn(CPUState *cpu, Error **errp)
1073 {
1074     static bool tcg_target_initialized;
1075     CPUClass *cc = CPU_GET_CLASS(cpu);
1076 
1077     if (!tcg_target_initialized) {
1078         cc->tcg_ops->initialize();
1079         tcg_target_initialized = true;
1080     }
1081 
1082     cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1083     tlb_init(cpu);
1084 #ifndef CONFIG_USER_ONLY
1085     tcg_iommu_init_notifier_list(cpu);
1086 #endif /* !CONFIG_USER_ONLY */
1087     /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1088 
1089     return true;
1090 }
1091 
1092 /* undo the initializations in reverse order */
1093 void tcg_exec_unrealizefn(CPUState *cpu)
1094 {
1095 #ifndef CONFIG_USER_ONLY
1096     tcg_iommu_free_notifier_list(cpu);
1097 #endif /* !CONFIG_USER_ONLY */
1098 
1099     tlb_destroy(cpu);
1100     g_free_rcu(cpu->tb_jmp_cache, rcu);
1101 }
1102