xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 197a137290103993b33f93c90e788ab4984f103a)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "exec/cpu-all.h"
38 #include "sysemu/cpu-timers.h"
39 #include "exec/replay-core.h"
40 #include "sysemu/tcg.h"
41 #include "exec/helper-proto.h"
42 #include "tb-jmp-cache.h"
43 #include "tb-hash.h"
44 #include "tb-context.h"
45 #include "internal.h"
46 
47 /* -icount align implementation. */
48 
49 typedef struct SyncClocks {
50     int64_t diff_clk;
51     int64_t last_cpu_icount;
52     int64_t realtime_clock;
53 } SyncClocks;
54 
55 #if !defined(CONFIG_USER_ONLY)
56 /* Allow the guest to have a max 3ms advance.
57  * The difference between the 2 clocks could therefore
58  * oscillate around 0.
59  */
60 #define VM_CLOCK_ADVANCE 3000000
61 #define THRESHOLD_REDUCE 1.5
62 #define MAX_DELAY_PRINT_RATE 2000000000LL
63 #define MAX_NB_PRINTS 100
64 
65 int64_t max_delay;
66 int64_t max_advance;
67 
68 static void align_clocks(SyncClocks *sc, CPUState *cpu)
69 {
70     int64_t cpu_icount;
71 
72     if (!icount_align_option) {
73         return;
74     }
75 
76     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
77     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
78     sc->last_cpu_icount = cpu_icount;
79 
80     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
81 #ifndef _WIN32
82         struct timespec sleep_delay, rem_delay;
83         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
84         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
85         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
86             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
87         } else {
88             sc->diff_clk = 0;
89         }
90 #else
91         Sleep(sc->diff_clk / SCALE_MS);
92         sc->diff_clk = 0;
93 #endif
94     }
95 }
96 
97 static void print_delay(const SyncClocks *sc)
98 {
99     static float threshold_delay;
100     static int64_t last_realtime_clock;
101     static int nb_prints;
102 
103     if (icount_align_option &&
104         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
105         nb_prints < MAX_NB_PRINTS) {
106         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
107             (-sc->diff_clk / (float)1000000000LL <
108              (threshold_delay - THRESHOLD_REDUCE))) {
109             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
110             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
111                         threshold_delay - 1,
112                         threshold_delay);
113             nb_prints++;
114             last_realtime_clock = sc->realtime_clock;
115         }
116     }
117 }
118 
119 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
120 {
121     if (!icount_align_option) {
122         return;
123     }
124     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
125     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
126     sc->last_cpu_icount
127         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
128     if (sc->diff_clk < max_delay) {
129         max_delay = sc->diff_clk;
130     }
131     if (sc->diff_clk > max_advance) {
132         max_advance = sc->diff_clk;
133     }
134 
135     /* Print every 2s max if the guest is late. We limit the number
136        of printed messages to NB_PRINT_MAX(currently 100) */
137     print_delay(sc);
138 }
139 #else
140 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
141 {
142 }
143 
144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
145 {
146 }
147 #endif /* CONFIG USER ONLY */
148 
149 uint32_t curr_cflags(CPUState *cpu)
150 {
151     uint32_t cflags = cpu->tcg_cflags;
152 
153     /*
154      * Record gdb single-step.  We should be exiting the TB by raising
155      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
156      *
157      * For singlestep and -d nochain, suppress goto_tb so that
158      * we can log -d cpu,exec after every TB.
159      */
160     if (unlikely(cpu->singlestep_enabled)) {
161         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
162     } else if (singlestep) {
163         cflags |= CF_NO_GOTO_TB | 1;
164     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
165         cflags |= CF_NO_GOTO_TB;
166     }
167 
168     return cflags;
169 }
170 
171 struct tb_desc {
172     target_ulong pc;
173     target_ulong cs_base;
174     CPUArchState *env;
175     tb_page_addr_t page_addr0;
176     uint32_t flags;
177     uint32_t cflags;
178     uint32_t trace_vcpu_dstate;
179 };
180 
181 static bool tb_lookup_cmp(const void *p, const void *d)
182 {
183     const TranslationBlock *tb = p;
184     const struct tb_desc *desc = d;
185 
186     if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
187         tb_page_addr0(tb) == desc->page_addr0 &&
188         tb->cs_base == desc->cs_base &&
189         tb->flags == desc->flags &&
190         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
191         tb_cflags(tb) == desc->cflags) {
192         /* check next page if needed */
193         tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
194         if (tb_phys_page1 == -1) {
195             return true;
196         } else {
197             tb_page_addr_t phys_page1;
198             target_ulong virt_page1;
199 
200             /*
201              * We know that the first page matched, and an otherwise valid TB
202              * encountered an incomplete instruction at the end of that page,
203              * therefore we know that generating a new TB from the current PC
204              * must also require reading from the next page -- even if the
205              * second pages do not match, and therefore the resulting insn
206              * is different for the new TB.  Therefore any exception raised
207              * here by the faulting lookup is not premature.
208              */
209             virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
210             phys_page1 = get_page_addr_code(desc->env, virt_page1);
211             if (tb_phys_page1 == phys_page1) {
212                 return true;
213             }
214         }
215     }
216     return false;
217 }
218 
219 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
220                                           target_ulong cs_base, uint32_t flags,
221                                           uint32_t cflags)
222 {
223     tb_page_addr_t phys_pc;
224     struct tb_desc desc;
225     uint32_t h;
226 
227     desc.env = cpu->env_ptr;
228     desc.cs_base = cs_base;
229     desc.flags = flags;
230     desc.cflags = cflags;
231     desc.trace_vcpu_dstate = *cpu->trace_dstate;
232     desc.pc = pc;
233     phys_pc = get_page_addr_code(desc.env, pc);
234     if (phys_pc == -1) {
235         return NULL;
236     }
237     desc.page_addr0 = phys_pc;
238     h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
239                      flags, cflags, *cpu->trace_dstate);
240     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
241 }
242 
243 /* Might cause an exception, so have a longjmp destination ready */
244 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
245                                           target_ulong cs_base,
246                                           uint32_t flags, uint32_t cflags)
247 {
248     TranslationBlock *tb;
249     CPUJumpCache *jc;
250     uint32_t hash;
251 
252     /* we should never be trying to look up an INVALID tb */
253     tcg_debug_assert(!(cflags & CF_INVALID));
254 
255     hash = tb_jmp_cache_hash_func(pc);
256     jc = cpu->tb_jmp_cache;
257 
258     if (cflags & CF_PCREL) {
259         /* Use acquire to ensure current load of pc from jc. */
260         tb =  qatomic_load_acquire(&jc->array[hash].tb);
261 
262         if (likely(tb &&
263                    jc->array[hash].pc == pc &&
264                    tb->cs_base == cs_base &&
265                    tb->flags == flags &&
266                    tb->trace_vcpu_dstate == *cpu->trace_dstate &&
267                    tb_cflags(tb) == cflags)) {
268             return tb;
269         }
270         tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
271         if (tb == NULL) {
272             return NULL;
273         }
274         jc->array[hash].pc = pc;
275         /* Use store_release on tb to ensure pc is written first. */
276         qatomic_store_release(&jc->array[hash].tb, tb);
277     } else {
278         /* Use rcu_read to ensure current load of pc from *tb. */
279         tb = qatomic_rcu_read(&jc->array[hash].tb);
280 
281         if (likely(tb &&
282                    tb->pc == pc &&
283                    tb->cs_base == cs_base &&
284                    tb->flags == flags &&
285                    tb->trace_vcpu_dstate == *cpu->trace_dstate &&
286                    tb_cflags(tb) == cflags)) {
287             return tb;
288         }
289         tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
290         if (tb == NULL) {
291             return NULL;
292         }
293         /* Use the pc value already stored in tb->pc. */
294         qatomic_set(&jc->array[hash].tb, tb);
295     }
296 
297     return tb;
298 }
299 
300 static void log_cpu_exec(target_ulong pc, CPUState *cpu,
301                          const TranslationBlock *tb)
302 {
303     if (qemu_log_in_addr_range(pc)) {
304         qemu_log_mask(CPU_LOG_EXEC,
305                       "Trace %d: %p [" TARGET_FMT_lx
306                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
307                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
308                       tb->flags, tb->cflags, lookup_symbol(pc));
309 
310 #if defined(DEBUG_DISAS)
311         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
312             FILE *logfile = qemu_log_trylock();
313             if (logfile) {
314                 int flags = 0;
315 
316                 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
317                     flags |= CPU_DUMP_FPU;
318                 }
319 #if defined(TARGET_I386)
320                 flags |= CPU_DUMP_CCOP;
321 #endif
322                 cpu_dump_state(cpu, logfile, flags);
323                 qemu_log_unlock(logfile);
324             }
325         }
326 #endif /* DEBUG_DISAS */
327     }
328 }
329 
330 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc,
331                                        uint32_t *cflags)
332 {
333     CPUBreakpoint *bp;
334     bool match_page = false;
335 
336     /*
337      * Singlestep overrides breakpoints.
338      * This requirement is visible in the record-replay tests, where
339      * we would fail to make forward progress in reverse-continue.
340      *
341      * TODO: gdb singlestep should only override gdb breakpoints,
342      * so that one could (gdb) singlestep into the guest kernel's
343      * architectural breakpoint handler.
344      */
345     if (cpu->singlestep_enabled) {
346         return false;
347     }
348 
349     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
350         /*
351          * If we have an exact pc match, trigger the breakpoint.
352          * Otherwise, note matches within the page.
353          */
354         if (pc == bp->pc) {
355             bool match_bp = false;
356 
357             if (bp->flags & BP_GDB) {
358                 match_bp = true;
359             } else if (bp->flags & BP_CPU) {
360 #ifdef CONFIG_USER_ONLY
361                 g_assert_not_reached();
362 #else
363                 CPUClass *cc = CPU_GET_CLASS(cpu);
364                 assert(cc->tcg_ops->debug_check_breakpoint);
365                 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
366 #endif
367             }
368 
369             if (match_bp) {
370                 cpu->exception_index = EXCP_DEBUG;
371                 return true;
372             }
373         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
374             match_page = true;
375         }
376     }
377 
378     /*
379      * Within the same page as a breakpoint, single-step,
380      * returning to helper_lookup_tb_ptr after each insn looking
381      * for the actual breakpoint.
382      *
383      * TODO: Perhaps better to record all of the TBs associated
384      * with a given virtual page that contains a breakpoint, and
385      * then invalidate them when a new overlapping breakpoint is
386      * set on the page.  Non-overlapping TBs would not be
387      * invalidated, nor would any TB need to be invalidated as
388      * breakpoints are removed.
389      */
390     if (match_page) {
391         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
392     }
393     return false;
394 }
395 
396 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
397                                          uint32_t *cflags)
398 {
399     return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
400         check_for_breakpoints_slow(cpu, pc, cflags);
401 }
402 
403 /**
404  * helper_lookup_tb_ptr: quick check for next tb
405  * @env: current cpu state
406  *
407  * Look for an existing TB matching the current cpu state.
408  * If found, return the code pointer.  If not found, return
409  * the tcg epilogue so that we return into cpu_tb_exec.
410  */
411 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
412 {
413     CPUState *cpu = env_cpu(env);
414     TranslationBlock *tb;
415     target_ulong cs_base, pc;
416     uint32_t flags, cflags;
417 
418     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
419 
420     cflags = curr_cflags(cpu);
421     if (check_for_breakpoints(cpu, pc, &cflags)) {
422         cpu_loop_exit(cpu);
423     }
424 
425     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
426     if (tb == NULL) {
427         return tcg_code_gen_epilogue;
428     }
429 
430     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
431         log_cpu_exec(pc, cpu, tb);
432     }
433 
434     return tb->tc.ptr;
435 }
436 
437 /* Execute a TB, and fix up the CPU state afterwards if necessary */
438 /*
439  * Disable CFI checks.
440  * TCG creates binary blobs at runtime, with the transformed code.
441  * A TB is a blob of binary code, created at runtime and called with an
442  * indirect function call. Since such function did not exist at compile time,
443  * the CFI runtime has no way to verify its signature and would fail.
444  * TCG is not considered a security-sensitive part of QEMU so this does not
445  * affect the impact of CFI in environment with high security requirements
446  */
447 static inline TranslationBlock * QEMU_DISABLE_CFI
448 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
449 {
450     CPUArchState *env = cpu->env_ptr;
451     uintptr_t ret;
452     TranslationBlock *last_tb;
453     const void *tb_ptr = itb->tc.ptr;
454 
455     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
456         log_cpu_exec(log_pc(cpu, itb), cpu, itb);
457     }
458 
459     qemu_thread_jit_execute();
460     ret = tcg_qemu_tb_exec(env, tb_ptr);
461     cpu->can_do_io = 1;
462     /*
463      * TODO: Delay swapping back to the read-write region of the TB
464      * until we actually need to modify the TB.  The read-only copy,
465      * coming from the rx region, shares the same host TLB entry as
466      * the code that executed the exit_tb opcode that arrived here.
467      * If we insist on touching both the RX and the RW pages, we
468      * double the host TLB pressure.
469      */
470     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
471     *tb_exit = ret & TB_EXIT_MASK;
472 
473     trace_exec_tb_exit(last_tb, *tb_exit);
474 
475     if (*tb_exit > TB_EXIT_IDX1) {
476         /* We didn't start executing this TB (eg because the instruction
477          * counter hit zero); we must restore the guest PC to the address
478          * of the start of the TB.
479          */
480         CPUClass *cc = CPU_GET_CLASS(cpu);
481 
482         if (cc->tcg_ops->synchronize_from_tb) {
483             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
484         } else {
485             tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
486             assert(cc->set_pc);
487             cc->set_pc(cpu, last_tb->pc);
488         }
489         if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
490             target_ulong pc = log_pc(cpu, last_tb);
491             if (qemu_log_in_addr_range(pc)) {
492                 qemu_log("Stopped execution of TB chain before %p ["
493                          TARGET_FMT_lx "] %s\n",
494                          last_tb->tc.ptr, pc, lookup_symbol(pc));
495             }
496         }
497     }
498 
499     /*
500      * If gdb single-step, and we haven't raised another exception,
501      * raise a debug exception.  Single-step with another exception
502      * is handled in cpu_handle_exception.
503      */
504     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
505         cpu->exception_index = EXCP_DEBUG;
506         cpu_loop_exit(cpu);
507     }
508 
509     return last_tb;
510 }
511 
512 
513 static void cpu_exec_enter(CPUState *cpu)
514 {
515     CPUClass *cc = CPU_GET_CLASS(cpu);
516 
517     if (cc->tcg_ops->cpu_exec_enter) {
518         cc->tcg_ops->cpu_exec_enter(cpu);
519     }
520 }
521 
522 static void cpu_exec_exit(CPUState *cpu)
523 {
524     CPUClass *cc = CPU_GET_CLASS(cpu);
525 
526     if (cc->tcg_ops->cpu_exec_exit) {
527         cc->tcg_ops->cpu_exec_exit(cpu);
528     }
529     QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
530 }
531 
532 void cpu_exec_step_atomic(CPUState *cpu)
533 {
534     CPUArchState *env = cpu->env_ptr;
535     TranslationBlock *tb;
536     target_ulong cs_base, pc;
537     uint32_t flags, cflags;
538     int tb_exit;
539 
540     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
541         start_exclusive();
542         g_assert(cpu == current_cpu);
543         g_assert(!cpu->running);
544         cpu->running = true;
545 
546         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
547 
548         cflags = curr_cflags(cpu);
549         /* Execute in a serial context. */
550         cflags &= ~CF_PARALLEL;
551         /* After 1 insn, return and release the exclusive lock. */
552         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
553         /*
554          * No need to check_for_breakpoints here.
555          * We only arrive in cpu_exec_step_atomic after beginning execution
556          * of an insn that includes an atomic operation we can't handle.
557          * Any breakpoint for this insn will have been recognized earlier.
558          */
559 
560         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
561         if (tb == NULL) {
562             mmap_lock();
563             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
564             mmap_unlock();
565         }
566 
567         cpu_exec_enter(cpu);
568         /* execute the generated code */
569         trace_exec_tb(tb, pc);
570         cpu_tb_exec(cpu, tb, &tb_exit);
571         cpu_exec_exit(cpu);
572     } else {
573 #ifndef CONFIG_SOFTMMU
574         clear_helper_retaddr();
575         if (have_mmap_lock()) {
576             mmap_unlock();
577         }
578 #endif
579         if (qemu_mutex_iothread_locked()) {
580             qemu_mutex_unlock_iothread();
581         }
582         assert_no_pages_locked();
583         qemu_plugin_disable_mem_helpers(cpu);
584     }
585 
586     /*
587      * As we start the exclusive region before codegen we must still
588      * be in the region if we longjump out of either the codegen or
589      * the execution.
590      */
591     g_assert(cpu_in_exclusive_context(cpu));
592     cpu->running = false;
593     end_exclusive();
594 }
595 
596 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
597 {
598     /*
599      * Get the rx view of the structure, from which we find the
600      * executable code address, and tb_target_set_jmp_target can
601      * produce a pc-relative displacement to jmp_target_addr[n].
602      */
603     const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
604     uintptr_t offset = tb->jmp_insn_offset[n];
605     uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
606     uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
607 
608     tb->jmp_target_addr[n] = addr;
609     tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
610 }
611 
612 static inline void tb_add_jump(TranslationBlock *tb, int n,
613                                TranslationBlock *tb_next)
614 {
615     uintptr_t old;
616 
617     qemu_thread_jit_write();
618     assert(n < ARRAY_SIZE(tb->jmp_list_next));
619     qemu_spin_lock(&tb_next->jmp_lock);
620 
621     /* make sure the destination TB is valid */
622     if (tb_next->cflags & CF_INVALID) {
623         goto out_unlock_next;
624     }
625     /* Atomically claim the jump destination slot only if it was NULL */
626     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
627                           (uintptr_t)tb_next);
628     if (old) {
629         goto out_unlock_next;
630     }
631 
632     /* patch the native jump address */
633     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
634 
635     /* add in TB jmp list */
636     tb->jmp_list_next[n] = tb_next->jmp_list_head;
637     tb_next->jmp_list_head = (uintptr_t)tb | n;
638 
639     qemu_spin_unlock(&tb_next->jmp_lock);
640 
641     qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
642                   tb->tc.ptr, n, tb_next->tc.ptr);
643     return;
644 
645  out_unlock_next:
646     qemu_spin_unlock(&tb_next->jmp_lock);
647     return;
648 }
649 
650 static inline bool cpu_handle_halt(CPUState *cpu)
651 {
652 #ifndef CONFIG_USER_ONLY
653     if (cpu->halted) {
654 #if defined(TARGET_I386)
655         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
656             X86CPU *x86_cpu = X86_CPU(cpu);
657             qemu_mutex_lock_iothread();
658             apic_poll_irq(x86_cpu->apic_state);
659             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
660             qemu_mutex_unlock_iothread();
661         }
662 #endif /* TARGET_I386 */
663         if (!cpu_has_work(cpu)) {
664             return true;
665         }
666 
667         cpu->halted = 0;
668     }
669 #endif /* !CONFIG_USER_ONLY */
670 
671     return false;
672 }
673 
674 static inline void cpu_handle_debug_exception(CPUState *cpu)
675 {
676     CPUClass *cc = CPU_GET_CLASS(cpu);
677     CPUWatchpoint *wp;
678 
679     if (!cpu->watchpoint_hit) {
680         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
681             wp->flags &= ~BP_WATCHPOINT_HIT;
682         }
683     }
684 
685     if (cc->tcg_ops->debug_excp_handler) {
686         cc->tcg_ops->debug_excp_handler(cpu);
687     }
688 }
689 
690 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
691 {
692     if (cpu->exception_index < 0) {
693 #ifndef CONFIG_USER_ONLY
694         if (replay_has_exception()
695             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
696             /* Execute just one insn to trigger exception pending in the log */
697             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
698                 | CF_NOIRQ | 1;
699         }
700 #endif
701         return false;
702     }
703     if (cpu->exception_index >= EXCP_INTERRUPT) {
704         /* exit request from the cpu execution loop */
705         *ret = cpu->exception_index;
706         if (*ret == EXCP_DEBUG) {
707             cpu_handle_debug_exception(cpu);
708         }
709         cpu->exception_index = -1;
710         return true;
711     } else {
712 #if defined(CONFIG_USER_ONLY)
713         /* if user mode only, we simulate a fake exception
714            which will be handled outside the cpu execution
715            loop */
716 #if defined(TARGET_I386)
717         CPUClass *cc = CPU_GET_CLASS(cpu);
718         cc->tcg_ops->fake_user_interrupt(cpu);
719 #endif /* TARGET_I386 */
720         *ret = cpu->exception_index;
721         cpu->exception_index = -1;
722         return true;
723 #else
724         if (replay_exception()) {
725             CPUClass *cc = CPU_GET_CLASS(cpu);
726             qemu_mutex_lock_iothread();
727             cc->tcg_ops->do_interrupt(cpu);
728             qemu_mutex_unlock_iothread();
729             cpu->exception_index = -1;
730 
731             if (unlikely(cpu->singlestep_enabled)) {
732                 /*
733                  * After processing the exception, ensure an EXCP_DEBUG is
734                  * raised when single-stepping so that GDB doesn't miss the
735                  * next instruction.
736                  */
737                 *ret = EXCP_DEBUG;
738                 cpu_handle_debug_exception(cpu);
739                 return true;
740             }
741         } else if (!replay_has_interrupt()) {
742             /* give a chance to iothread in replay mode */
743             *ret = EXCP_INTERRUPT;
744             return true;
745         }
746 #endif
747     }
748 
749     return false;
750 }
751 
752 #ifndef CONFIG_USER_ONLY
753 /*
754  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
755  * "real" interrupt event later. It does not need to be recorded for
756  * replay purposes.
757  */
758 static inline bool need_replay_interrupt(int interrupt_request)
759 {
760 #if defined(TARGET_I386)
761     return !(interrupt_request & CPU_INTERRUPT_POLL);
762 #else
763     return true;
764 #endif
765 }
766 #endif /* !CONFIG_USER_ONLY */
767 
768 static inline bool cpu_handle_interrupt(CPUState *cpu,
769                                         TranslationBlock **last_tb)
770 {
771     /*
772      * If we have requested custom cflags with CF_NOIRQ we should
773      * skip checking here. Any pending interrupts will get picked up
774      * by the next TB we execute under normal cflags.
775      */
776     if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
777         return false;
778     }
779 
780     /* Clear the interrupt flag now since we're processing
781      * cpu->interrupt_request and cpu->exit_request.
782      * Ensure zeroing happens before reading cpu->exit_request or
783      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
784      */
785     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
786 
787     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
788         int interrupt_request;
789         qemu_mutex_lock_iothread();
790         interrupt_request = cpu->interrupt_request;
791         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
792             /* Mask out external interrupts for this step. */
793             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
794         }
795         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
796             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
797             cpu->exception_index = EXCP_DEBUG;
798             qemu_mutex_unlock_iothread();
799             return true;
800         }
801 #if !defined(CONFIG_USER_ONLY)
802         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
803             /* Do nothing */
804         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
805             replay_interrupt();
806             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
807             cpu->halted = 1;
808             cpu->exception_index = EXCP_HLT;
809             qemu_mutex_unlock_iothread();
810             return true;
811         }
812 #if defined(TARGET_I386)
813         else if (interrupt_request & CPU_INTERRUPT_INIT) {
814             X86CPU *x86_cpu = X86_CPU(cpu);
815             CPUArchState *env = &x86_cpu->env;
816             replay_interrupt();
817             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
818             do_cpu_init(x86_cpu);
819             cpu->exception_index = EXCP_HALTED;
820             qemu_mutex_unlock_iothread();
821             return true;
822         }
823 #else
824         else if (interrupt_request & CPU_INTERRUPT_RESET) {
825             replay_interrupt();
826             cpu_reset(cpu);
827             qemu_mutex_unlock_iothread();
828             return true;
829         }
830 #endif /* !TARGET_I386 */
831         /* The target hook has 3 exit conditions:
832            False when the interrupt isn't processed,
833            True when it is, and we should restart on a new TB,
834            and via longjmp via cpu_loop_exit.  */
835         else {
836             CPUClass *cc = CPU_GET_CLASS(cpu);
837 
838             if (cc->tcg_ops->cpu_exec_interrupt &&
839                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
840                 if (need_replay_interrupt(interrupt_request)) {
841                     replay_interrupt();
842                 }
843                 /*
844                  * After processing the interrupt, ensure an EXCP_DEBUG is
845                  * raised when single-stepping so that GDB doesn't miss the
846                  * next instruction.
847                  */
848                 if (unlikely(cpu->singlestep_enabled)) {
849                     cpu->exception_index = EXCP_DEBUG;
850                     qemu_mutex_unlock_iothread();
851                     return true;
852                 }
853                 cpu->exception_index = -1;
854                 *last_tb = NULL;
855             }
856             /* The target hook may have updated the 'cpu->interrupt_request';
857              * reload the 'interrupt_request' value */
858             interrupt_request = cpu->interrupt_request;
859         }
860 #endif /* !CONFIG_USER_ONLY */
861         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
862             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
863             /* ensure that no TB jump will be modified as
864                the program flow was changed */
865             *last_tb = NULL;
866         }
867 
868         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
869         qemu_mutex_unlock_iothread();
870     }
871 
872     /* Finally, check if we need to exit to the main loop.  */
873     if (unlikely(qatomic_read(&cpu->exit_request))
874         || (icount_enabled()
875             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
876             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
877         qatomic_set(&cpu->exit_request, 0);
878         if (cpu->exception_index == -1) {
879             cpu->exception_index = EXCP_INTERRUPT;
880         }
881         return true;
882     }
883 
884     return false;
885 }
886 
887 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
888                                     target_ulong pc,
889                                     TranslationBlock **last_tb, int *tb_exit)
890 {
891     int32_t insns_left;
892 
893     trace_exec_tb(tb, pc);
894     tb = cpu_tb_exec(cpu, tb, tb_exit);
895     if (*tb_exit != TB_EXIT_REQUESTED) {
896         *last_tb = tb;
897         return;
898     }
899 
900     *last_tb = NULL;
901     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
902     if (insns_left < 0) {
903         /* Something asked us to stop executing chained TBs; just
904          * continue round the main loop. Whatever requested the exit
905          * will also have set something else (eg exit_request or
906          * interrupt_request) which will be handled by
907          * cpu_handle_interrupt.  cpu_handle_interrupt will also
908          * clear cpu->icount_decr.u16.high.
909          */
910         return;
911     }
912 
913     /* Instruction counter expired.  */
914     assert(icount_enabled());
915 #ifndef CONFIG_USER_ONLY
916     /* Ensure global icount has gone forward */
917     icount_update(cpu);
918     /* Refill decrementer and continue execution.  */
919     insns_left = MIN(0xffff, cpu->icount_budget);
920     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
921     cpu->icount_extra = cpu->icount_budget - insns_left;
922 
923     /*
924      * If the next tb has more instructions than we have left to
925      * execute we need to ensure we find/generate a TB with exactly
926      * insns_left instructions in it.
927      */
928     if (insns_left > 0 && insns_left < tb->icount)  {
929         assert(insns_left <= CF_COUNT_MASK);
930         assert(cpu->icount_extra == 0);
931         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
932     }
933 #endif
934 }
935 
936 /* main execution loop */
937 
938 static int __attribute__((noinline))
939 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
940 {
941     int ret;
942 
943     /* if an exception is pending, we execute it here */
944     while (!cpu_handle_exception(cpu, &ret)) {
945         TranslationBlock *last_tb = NULL;
946         int tb_exit = 0;
947 
948         while (!cpu_handle_interrupt(cpu, &last_tb)) {
949             TranslationBlock *tb;
950             target_ulong cs_base, pc;
951             uint32_t flags, cflags;
952 
953             cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
954 
955             /*
956              * When requested, use an exact setting for cflags for the next
957              * execution.  This is used for icount, precise smc, and stop-
958              * after-access watchpoints.  Since this request should never
959              * have CF_INVALID set, -1 is a convenient invalid value that
960              * does not require tcg headers for cpu_common_reset.
961              */
962             cflags = cpu->cflags_next_tb;
963             if (cflags == -1) {
964                 cflags = curr_cflags(cpu);
965             } else {
966                 cpu->cflags_next_tb = -1;
967             }
968 
969             if (check_for_breakpoints(cpu, pc, &cflags)) {
970                 break;
971             }
972 
973             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
974             if (tb == NULL) {
975                 uint32_t h;
976 
977                 mmap_lock();
978                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
979                 mmap_unlock();
980                 /*
981                  * We add the TB in the virtual pc hash table
982                  * for the fast lookup
983                  */
984                 h = tb_jmp_cache_hash_func(pc);
985                 /* Use the pc value already stored in tb->pc. */
986                 qatomic_set(&cpu->tb_jmp_cache->array[h].tb, tb);
987             }
988 
989 #ifndef CONFIG_USER_ONLY
990             /*
991              * We don't take care of direct jumps when address mapping
992              * changes in system emulation.  So it's not safe to make a
993              * direct jump to a TB spanning two pages because the mapping
994              * for the second page can change.
995              */
996             if (tb_page_addr1(tb) != -1) {
997                 last_tb = NULL;
998             }
999 #endif
1000             /* See if we can patch the calling TB. */
1001             if (last_tb) {
1002                 tb_add_jump(last_tb, tb_exit, tb);
1003             }
1004 
1005             cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1006 
1007             QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL);
1008             /* Try to align the host and virtual clocks
1009                if the guest is in advance */
1010             align_clocks(sc, cpu);
1011         }
1012     }
1013     return ret;
1014 }
1015 
1016 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1017 {
1018     /* Prepare setjmp context for exception handling. */
1019     if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1020         /* Non-buggy compilers preserve this; assert the correct value. */
1021         g_assert(cpu == current_cpu);
1022 
1023 #ifndef CONFIG_SOFTMMU
1024         clear_helper_retaddr();
1025         if (have_mmap_lock()) {
1026             mmap_unlock();
1027         }
1028 #endif
1029         if (qemu_mutex_iothread_locked()) {
1030             qemu_mutex_unlock_iothread();
1031         }
1032         qemu_plugin_disable_mem_helpers(cpu);
1033 
1034         assert_no_pages_locked();
1035     }
1036 
1037     return cpu_exec_loop(cpu, sc);
1038 }
1039 
1040 int cpu_exec(CPUState *cpu)
1041 {
1042     int ret;
1043     SyncClocks sc = { 0 };
1044 
1045     /* replay_interrupt may need current_cpu */
1046     current_cpu = cpu;
1047 
1048     if (cpu_handle_halt(cpu)) {
1049         return EXCP_HALTED;
1050     }
1051 
1052     rcu_read_lock();
1053     cpu_exec_enter(cpu);
1054 
1055     /*
1056      * Calculate difference between guest clock and host clock.
1057      * This delay includes the delay of the last cycle, so
1058      * what we have to do is sleep until it is 0. As for the
1059      * advance/delay we gain here, we try to fix it next time.
1060      */
1061     init_delay_params(&sc, cpu);
1062 
1063     ret = cpu_exec_setjmp(cpu, &sc);
1064 
1065     cpu_exec_exit(cpu);
1066     rcu_read_unlock();
1067 
1068     return ret;
1069 }
1070 
1071 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1072 {
1073     static bool tcg_target_initialized;
1074     CPUClass *cc = CPU_GET_CLASS(cpu);
1075 
1076     if (!tcg_target_initialized) {
1077         cc->tcg_ops->initialize();
1078         tcg_target_initialized = true;
1079     }
1080 
1081     cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1082     tlb_init(cpu);
1083 #ifndef CONFIG_USER_ONLY
1084     tcg_iommu_init_notifier_list(cpu);
1085 #endif /* !CONFIG_USER_ONLY */
1086     /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1087 }
1088 
1089 /* undo the initializations in reverse order */
1090 void tcg_exec_unrealizefn(CPUState *cpu)
1091 {
1092 #ifndef CONFIG_USER_ONLY
1093     tcg_iommu_free_notifier_list(cpu);
1094 #endif /* !CONFIG_USER_ONLY */
1095 
1096     tlb_destroy(cpu);
1097     g_free_rcu(cpu->tb_jmp_cache, rcu);
1098 }
1099