1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "qemu/bswap.h" 35 #include "exec/memory.h" 36 #include "exec/ram_addr.h" 37 #include "qemu/event_notifier.h" 38 #include "qemu/main-loop.h" 39 #include "trace.h" 40 #include "hw/irq.h" 41 #include "qapi/visitor.h" 42 #include "qapi/qapi-types-common.h" 43 #include "qapi/qapi-visit-common.h" 44 #include "sysemu/reset.h" 45 #include "qemu/guest-random.h" 46 #include "sysemu/hw_accel.h" 47 #include "kvm-cpus.h" 48 #include "sysemu/dirtylimit.h" 49 50 #include "hw/boards.h" 51 #include "monitor/stats.h" 52 53 /* This check must be after config-host.h is included */ 54 #ifdef CONFIG_EVENTFD 55 #include <sys/eventfd.h> 56 #endif 57 58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 59 * need to use the real host PAGE_SIZE, as that's what KVM will use. 60 */ 61 #ifdef PAGE_SIZE 62 #undef PAGE_SIZE 63 #endif 64 #define PAGE_SIZE qemu_real_host_page_size() 65 66 #ifndef KVM_GUESTDBG_BLOCKIRQ 67 #define KVM_GUESTDBG_BLOCKIRQ 0 68 #endif 69 70 //#define DEBUG_KVM 71 72 #ifdef DEBUG_KVM 73 #define DPRINTF(fmt, ...) \ 74 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 75 #else 76 #define DPRINTF(fmt, ...) \ 77 do { } while (0) 78 #endif 79 80 #define KVM_MSI_HASHTAB_SIZE 256 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 enum KVMDirtyRingReaperState { 89 KVM_DIRTY_RING_REAPER_NONE = 0, 90 /* The reaper is sleeping */ 91 KVM_DIRTY_RING_REAPER_WAIT, 92 /* The reaper is reaping for dirty pages */ 93 KVM_DIRTY_RING_REAPER_REAPING, 94 }; 95 96 /* 97 * KVM reaper instance, responsible for collecting the KVM dirty bits 98 * via the dirty ring. 99 */ 100 struct KVMDirtyRingReaper { 101 /* The reaper thread */ 102 QemuThread reaper_thr; 103 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */ 104 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */ 105 }; 106 107 struct KVMState 108 { 109 AccelState parent_obj; 110 111 int nr_slots; 112 int fd; 113 int vmfd; 114 int coalesced_mmio; 115 int coalesced_pio; 116 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 117 bool coalesced_flush_in_progress; 118 int vcpu_events; 119 int robust_singlestep; 120 int debugregs; 121 #ifdef KVM_CAP_SET_GUEST_DEBUG 122 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints; 123 #endif 124 int max_nested_state_len; 125 int many_ioeventfds; 126 int intx_set_mask; 127 int kvm_shadow_mem; 128 bool kernel_irqchip_allowed; 129 bool kernel_irqchip_required; 130 OnOffAuto kernel_irqchip_split; 131 bool sync_mmu; 132 uint64_t manual_dirty_log_protect; 133 /* The man page (and posix) say ioctl numbers are signed int, but 134 * they're not. Linux, glibc and *BSD all treat ioctl numbers as 135 * unsigned, and treating them as signed here can break things */ 136 unsigned irq_set_ioctl; 137 unsigned int sigmask_len; 138 GHashTable *gsimap; 139 #ifdef KVM_CAP_IRQ_ROUTING 140 struct kvm_irq_routing *irq_routes; 141 int nr_allocated_irq_routes; 142 unsigned long *used_gsi_bitmap; 143 unsigned int gsi_count; 144 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; 145 #endif 146 KVMMemoryListener memory_listener; 147 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus; 148 149 /* For "info mtree -f" to tell if an MR is registered in KVM */ 150 int nr_as; 151 struct KVMAs { 152 KVMMemoryListener *ml; 153 AddressSpace *as; 154 } *as; 155 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */ 156 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */ 157 struct KVMDirtyRingReaper reaper; 158 }; 159 160 KVMState *kvm_state; 161 bool kvm_kernel_irqchip; 162 bool kvm_split_irqchip; 163 bool kvm_async_interrupts_allowed; 164 bool kvm_halt_in_kernel_allowed; 165 bool kvm_eventfds_allowed; 166 bool kvm_irqfds_allowed; 167 bool kvm_resamplefds_allowed; 168 bool kvm_msi_via_irqfd_allowed; 169 bool kvm_gsi_routing_allowed; 170 bool kvm_gsi_direct_mapping; 171 bool kvm_allowed; 172 bool kvm_readonly_mem_allowed; 173 bool kvm_vm_attributes_allowed; 174 bool kvm_direct_msi_allowed; 175 bool kvm_ioeventfd_any_length_allowed; 176 bool kvm_msi_use_devid; 177 bool kvm_has_guest_debug; 178 static int kvm_sstep_flags; 179 static bool kvm_immediate_exit; 180 static hwaddr kvm_max_slot_size = ~0; 181 182 static const KVMCapabilityInfo kvm_required_capabilites[] = { 183 KVM_CAP_INFO(USER_MEMORY), 184 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 185 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 186 KVM_CAP_LAST_INFO 187 }; 188 189 static NotifierList kvm_irqchip_change_notifiers = 190 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 191 192 struct KVMResampleFd { 193 int gsi; 194 EventNotifier *resample_event; 195 QLIST_ENTRY(KVMResampleFd) node; 196 }; 197 typedef struct KVMResampleFd KVMResampleFd; 198 199 /* 200 * Only used with split irqchip where we need to do the resample fd 201 * kick for the kernel from userspace. 202 */ 203 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 204 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 205 206 static QemuMutex kml_slots_lock; 207 208 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 209 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 210 211 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 212 213 static inline void kvm_resample_fd_remove(int gsi) 214 { 215 KVMResampleFd *rfd; 216 217 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 218 if (rfd->gsi == gsi) { 219 QLIST_REMOVE(rfd, node); 220 g_free(rfd); 221 break; 222 } 223 } 224 } 225 226 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 227 { 228 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 229 230 rfd->gsi = gsi; 231 rfd->resample_event = event; 232 233 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 234 } 235 236 void kvm_resample_fd_notify(int gsi) 237 { 238 KVMResampleFd *rfd; 239 240 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 241 if (rfd->gsi == gsi) { 242 event_notifier_set(rfd->resample_event); 243 trace_kvm_resample_fd_notify(gsi); 244 return; 245 } 246 } 247 } 248 249 int kvm_get_max_memslots(void) 250 { 251 KVMState *s = KVM_STATE(current_accel()); 252 253 return s->nr_slots; 254 } 255 256 /* Called with KVMMemoryListener.slots_lock held */ 257 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 258 { 259 KVMState *s = kvm_state; 260 int i; 261 262 for (i = 0; i < s->nr_slots; i++) { 263 if (kml->slots[i].memory_size == 0) { 264 return &kml->slots[i]; 265 } 266 } 267 268 return NULL; 269 } 270 271 bool kvm_has_free_slot(MachineState *ms) 272 { 273 KVMState *s = KVM_STATE(ms->accelerator); 274 bool result; 275 KVMMemoryListener *kml = &s->memory_listener; 276 277 kvm_slots_lock(); 278 result = !!kvm_get_free_slot(kml); 279 kvm_slots_unlock(); 280 281 return result; 282 } 283 284 /* Called with KVMMemoryListener.slots_lock held */ 285 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 286 { 287 KVMSlot *slot = kvm_get_free_slot(kml); 288 289 if (slot) { 290 return slot; 291 } 292 293 fprintf(stderr, "%s: no free slot available\n", __func__); 294 abort(); 295 } 296 297 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 298 hwaddr start_addr, 299 hwaddr size) 300 { 301 KVMState *s = kvm_state; 302 int i; 303 304 for (i = 0; i < s->nr_slots; i++) { 305 KVMSlot *mem = &kml->slots[i]; 306 307 if (start_addr == mem->start_addr && size == mem->memory_size) { 308 return mem; 309 } 310 } 311 312 return NULL; 313 } 314 315 /* 316 * Calculate and align the start address and the size of the section. 317 * Return the size. If the size is 0, the aligned section is empty. 318 */ 319 static hwaddr kvm_align_section(MemoryRegionSection *section, 320 hwaddr *start) 321 { 322 hwaddr size = int128_get64(section->size); 323 hwaddr delta, aligned; 324 325 /* kvm works in page size chunks, but the function may be called 326 with sub-page size and unaligned start address. Pad the start 327 address to next and truncate size to previous page boundary. */ 328 aligned = ROUND_UP(section->offset_within_address_space, 329 qemu_real_host_page_size()); 330 delta = aligned - section->offset_within_address_space; 331 *start = aligned; 332 if (delta > size) { 333 return 0; 334 } 335 336 return (size - delta) & qemu_real_host_page_mask(); 337 } 338 339 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 340 hwaddr *phys_addr) 341 { 342 KVMMemoryListener *kml = &s->memory_listener; 343 int i, ret = 0; 344 345 kvm_slots_lock(); 346 for (i = 0; i < s->nr_slots; i++) { 347 KVMSlot *mem = &kml->slots[i]; 348 349 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 350 *phys_addr = mem->start_addr + (ram - mem->ram); 351 ret = 1; 352 break; 353 } 354 } 355 kvm_slots_unlock(); 356 357 return ret; 358 } 359 360 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 361 { 362 KVMState *s = kvm_state; 363 struct kvm_userspace_memory_region mem; 364 int ret; 365 366 mem.slot = slot->slot | (kml->as_id << 16); 367 mem.guest_phys_addr = slot->start_addr; 368 mem.userspace_addr = (unsigned long)slot->ram; 369 mem.flags = slot->flags; 370 371 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 372 /* Set the slot size to 0 before setting the slot to the desired 373 * value. This is needed based on KVM commit 75d61fbc. */ 374 mem.memory_size = 0; 375 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 376 if (ret < 0) { 377 goto err; 378 } 379 } 380 mem.memory_size = slot->memory_size; 381 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 382 slot->old_flags = mem.flags; 383 err: 384 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 385 mem.memory_size, mem.userspace_addr, ret); 386 if (ret < 0) { 387 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 388 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 389 __func__, mem.slot, slot->start_addr, 390 (uint64_t)mem.memory_size, strerror(errno)); 391 } 392 return ret; 393 } 394 395 static int do_kvm_destroy_vcpu(CPUState *cpu) 396 { 397 KVMState *s = kvm_state; 398 long mmap_size; 399 struct KVMParkedVcpu *vcpu = NULL; 400 int ret = 0; 401 402 DPRINTF("kvm_destroy_vcpu\n"); 403 404 ret = kvm_arch_destroy_vcpu(cpu); 405 if (ret < 0) { 406 goto err; 407 } 408 409 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 410 if (mmap_size < 0) { 411 ret = mmap_size; 412 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 413 goto err; 414 } 415 416 ret = munmap(cpu->kvm_run, mmap_size); 417 if (ret < 0) { 418 goto err; 419 } 420 421 if (cpu->kvm_dirty_gfns) { 422 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 423 if (ret < 0) { 424 goto err; 425 } 426 } 427 428 vcpu = g_malloc0(sizeof(*vcpu)); 429 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 430 vcpu->kvm_fd = cpu->kvm_fd; 431 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 432 err: 433 return ret; 434 } 435 436 void kvm_destroy_vcpu(CPUState *cpu) 437 { 438 if (do_kvm_destroy_vcpu(cpu) < 0) { 439 error_report("kvm_destroy_vcpu failed"); 440 exit(EXIT_FAILURE); 441 } 442 } 443 444 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 445 { 446 struct KVMParkedVcpu *cpu; 447 448 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 449 if (cpu->vcpu_id == vcpu_id) { 450 int kvm_fd; 451 452 QLIST_REMOVE(cpu, node); 453 kvm_fd = cpu->kvm_fd; 454 g_free(cpu); 455 return kvm_fd; 456 } 457 } 458 459 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 460 } 461 462 int kvm_init_vcpu(CPUState *cpu, Error **errp) 463 { 464 KVMState *s = kvm_state; 465 long mmap_size; 466 int ret; 467 468 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 469 470 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 471 if (ret < 0) { 472 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 473 kvm_arch_vcpu_id(cpu)); 474 goto err; 475 } 476 477 cpu->kvm_fd = ret; 478 cpu->kvm_state = s; 479 cpu->vcpu_dirty = true; 480 cpu->dirty_pages = 0; 481 cpu->throttle_us_per_full = 0; 482 483 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 484 if (mmap_size < 0) { 485 ret = mmap_size; 486 error_setg_errno(errp, -mmap_size, 487 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 488 goto err; 489 } 490 491 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 492 cpu->kvm_fd, 0); 493 if (cpu->kvm_run == MAP_FAILED) { 494 ret = -errno; 495 error_setg_errno(errp, ret, 496 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 497 kvm_arch_vcpu_id(cpu)); 498 goto err; 499 } 500 501 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 502 s->coalesced_mmio_ring = 503 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 504 } 505 506 if (s->kvm_dirty_ring_size) { 507 /* Use MAP_SHARED to share pages with the kernel */ 508 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 509 PROT_READ | PROT_WRITE, MAP_SHARED, 510 cpu->kvm_fd, 511 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 512 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 513 ret = -errno; 514 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 515 goto err; 516 } 517 } 518 519 ret = kvm_arch_init_vcpu(cpu); 520 if (ret < 0) { 521 error_setg_errno(errp, -ret, 522 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 523 kvm_arch_vcpu_id(cpu)); 524 } 525 err: 526 return ret; 527 } 528 529 /* 530 * dirty pages logging control 531 */ 532 533 static int kvm_mem_flags(MemoryRegion *mr) 534 { 535 bool readonly = mr->readonly || memory_region_is_romd(mr); 536 int flags = 0; 537 538 if (memory_region_get_dirty_log_mask(mr) != 0) { 539 flags |= KVM_MEM_LOG_DIRTY_PAGES; 540 } 541 if (readonly && kvm_readonly_mem_allowed) { 542 flags |= KVM_MEM_READONLY; 543 } 544 return flags; 545 } 546 547 /* Called with KVMMemoryListener.slots_lock held */ 548 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 549 MemoryRegion *mr) 550 { 551 mem->flags = kvm_mem_flags(mr); 552 553 /* If nothing changed effectively, no need to issue ioctl */ 554 if (mem->flags == mem->old_flags) { 555 return 0; 556 } 557 558 kvm_slot_init_dirty_bitmap(mem); 559 return kvm_set_user_memory_region(kml, mem, false); 560 } 561 562 static int kvm_section_update_flags(KVMMemoryListener *kml, 563 MemoryRegionSection *section) 564 { 565 hwaddr start_addr, size, slot_size; 566 KVMSlot *mem; 567 int ret = 0; 568 569 size = kvm_align_section(section, &start_addr); 570 if (!size) { 571 return 0; 572 } 573 574 kvm_slots_lock(); 575 576 while (size && !ret) { 577 slot_size = MIN(kvm_max_slot_size, size); 578 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 579 if (!mem) { 580 /* We don't have a slot if we want to trap every access. */ 581 goto out; 582 } 583 584 ret = kvm_slot_update_flags(kml, mem, section->mr); 585 start_addr += slot_size; 586 size -= slot_size; 587 } 588 589 out: 590 kvm_slots_unlock(); 591 return ret; 592 } 593 594 static void kvm_log_start(MemoryListener *listener, 595 MemoryRegionSection *section, 596 int old, int new) 597 { 598 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 599 int r; 600 601 if (old != 0) { 602 return; 603 } 604 605 r = kvm_section_update_flags(kml, section); 606 if (r < 0) { 607 abort(); 608 } 609 } 610 611 static void kvm_log_stop(MemoryListener *listener, 612 MemoryRegionSection *section, 613 int old, int new) 614 { 615 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 616 int r; 617 618 if (new != 0) { 619 return; 620 } 621 622 r = kvm_section_update_flags(kml, section); 623 if (r < 0) { 624 abort(); 625 } 626 } 627 628 /* get kvm's dirty pages bitmap and update qemu's */ 629 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 630 { 631 ram_addr_t start = slot->ram_start_offset; 632 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 633 634 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 635 } 636 637 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 638 { 639 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 640 } 641 642 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 643 644 /* Allocate the dirty bitmap for a slot */ 645 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 646 { 647 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 648 return; 649 } 650 651 /* 652 * XXX bad kernel interface alert 653 * For dirty bitmap, kernel allocates array of size aligned to 654 * bits-per-long. But for case when the kernel is 64bits and 655 * the userspace is 32bits, userspace can't align to the same 656 * bits-per-long, since sizeof(long) is different between kernel 657 * and user space. This way, userspace will provide buffer which 658 * may be 4 bytes less than the kernel will use, resulting in 659 * userspace memory corruption (which is not detectable by valgrind 660 * too, in most cases). 661 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 662 * a hope that sizeof(long) won't become >8 any time soon. 663 * 664 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 665 * And mem->memory_size is aligned to it (otherwise this mem can't 666 * be registered to KVM). 667 */ 668 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 669 /*HOST_LONG_BITS*/ 64) / 8; 670 mem->dirty_bmap = g_malloc0(bitmap_size); 671 mem->dirty_bmap_size = bitmap_size; 672 } 673 674 /* 675 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 676 * succeeded, false otherwise 677 */ 678 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 679 { 680 struct kvm_dirty_log d = {}; 681 int ret; 682 683 d.dirty_bitmap = slot->dirty_bmap; 684 d.slot = slot->slot | (slot->as_id << 16); 685 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 686 687 if (ret == -ENOENT) { 688 /* kernel does not have dirty bitmap in this slot */ 689 ret = 0; 690 } 691 if (ret) { 692 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 693 __func__, ret); 694 } 695 return ret == 0; 696 } 697 698 /* Should be with all slots_lock held for the address spaces. */ 699 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 700 uint32_t slot_id, uint64_t offset) 701 { 702 KVMMemoryListener *kml; 703 KVMSlot *mem; 704 705 if (as_id >= s->nr_as) { 706 return; 707 } 708 709 kml = s->as[as_id].ml; 710 mem = &kml->slots[slot_id]; 711 712 if (!mem->memory_size || offset >= 713 (mem->memory_size / qemu_real_host_page_size())) { 714 return; 715 } 716 717 set_bit(offset, mem->dirty_bmap); 718 } 719 720 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 721 { 722 /* 723 * Read the flags before the value. Pairs with barrier in 724 * KVM's kvm_dirty_ring_push() function. 725 */ 726 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 727 } 728 729 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 730 { 731 /* 732 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 733 * sees the full content of the ring: 734 * 735 * CPU0 CPU1 CPU2 736 * ------------------------------------------------------------------------------ 737 * fill gfn0 738 * store-rel flags for gfn0 739 * load-acq flags for gfn0 740 * store-rel RESET for gfn0 741 * ioctl(RESET_RINGS) 742 * load-acq flags for gfn0 743 * check if flags have RESET 744 * 745 * The synchronization goes from CPU2 to CPU0 to CPU1. 746 */ 747 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 748 } 749 750 /* 751 * Should be with all slots_lock held for the address spaces. It returns the 752 * dirty page we've collected on this dirty ring. 753 */ 754 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 755 { 756 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 757 uint32_t ring_size = s->kvm_dirty_ring_size; 758 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 759 760 assert(dirty_gfns && ring_size); 761 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 762 763 while (true) { 764 cur = &dirty_gfns[fetch % ring_size]; 765 if (!dirty_gfn_is_dirtied(cur)) { 766 break; 767 } 768 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 769 cur->offset); 770 dirty_gfn_set_collected(cur); 771 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 772 fetch++; 773 count++; 774 } 775 cpu->kvm_fetch_index = fetch; 776 cpu->dirty_pages += count; 777 778 return count; 779 } 780 781 /* Must be with slots_lock held */ 782 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 783 { 784 int ret; 785 uint64_t total = 0; 786 int64_t stamp; 787 788 stamp = get_clock(); 789 790 if (cpu) { 791 total = kvm_dirty_ring_reap_one(s, cpu); 792 } else { 793 CPU_FOREACH(cpu) { 794 total += kvm_dirty_ring_reap_one(s, cpu); 795 } 796 } 797 798 if (total) { 799 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 800 assert(ret == total); 801 } 802 803 stamp = get_clock() - stamp; 804 805 if (total) { 806 trace_kvm_dirty_ring_reap(total, stamp / 1000); 807 } 808 809 return total; 810 } 811 812 /* 813 * Currently for simplicity, we must hold BQL before calling this. We can 814 * consider to drop the BQL if we're clear with all the race conditions. 815 */ 816 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 817 { 818 uint64_t total; 819 820 /* 821 * We need to lock all kvm slots for all address spaces here, 822 * because: 823 * 824 * (1) We need to mark dirty for dirty bitmaps in multiple slots 825 * and for tons of pages, so it's better to take the lock here 826 * once rather than once per page. And more importantly, 827 * 828 * (2) We must _NOT_ publish dirty bits to the other threads 829 * (e.g., the migration thread) via the kvm memory slot dirty 830 * bitmaps before correctly re-protect those dirtied pages. 831 * Otherwise we can have potential risk of data corruption if 832 * the page data is read in the other thread before we do 833 * reset below. 834 */ 835 kvm_slots_lock(); 836 total = kvm_dirty_ring_reap_locked(s, cpu); 837 kvm_slots_unlock(); 838 839 return total; 840 } 841 842 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 843 { 844 /* No need to do anything */ 845 } 846 847 /* 848 * Kick all vcpus out in a synchronized way. When returned, we 849 * guarantee that every vcpu has been kicked and at least returned to 850 * userspace once. 851 */ 852 static void kvm_cpu_synchronize_kick_all(void) 853 { 854 CPUState *cpu; 855 856 CPU_FOREACH(cpu) { 857 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 858 } 859 } 860 861 /* 862 * Flush all the existing dirty pages to the KVM slot buffers. When 863 * this call returns, we guarantee that all the touched dirty pages 864 * before calling this function have been put into the per-kvmslot 865 * dirty bitmap. 866 * 867 * This function must be called with BQL held. 868 */ 869 static void kvm_dirty_ring_flush(void) 870 { 871 trace_kvm_dirty_ring_flush(0); 872 /* 873 * The function needs to be serialized. Since this function 874 * should always be with BQL held, serialization is guaranteed. 875 * However, let's be sure of it. 876 */ 877 assert(qemu_mutex_iothread_locked()); 878 /* 879 * First make sure to flush the hardware buffers by kicking all 880 * vcpus out in a synchronous way. 881 */ 882 kvm_cpu_synchronize_kick_all(); 883 kvm_dirty_ring_reap(kvm_state, NULL); 884 trace_kvm_dirty_ring_flush(1); 885 } 886 887 /** 888 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 889 * 890 * This function will first try to fetch dirty bitmap from the kernel, 891 * and then updates qemu's dirty bitmap. 892 * 893 * NOTE: caller must be with kml->slots_lock held. 894 * 895 * @kml: the KVM memory listener object 896 * @section: the memory section to sync the dirty bitmap with 897 */ 898 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 899 MemoryRegionSection *section) 900 { 901 KVMState *s = kvm_state; 902 KVMSlot *mem; 903 hwaddr start_addr, size; 904 hwaddr slot_size; 905 906 size = kvm_align_section(section, &start_addr); 907 while (size) { 908 slot_size = MIN(kvm_max_slot_size, size); 909 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 910 if (!mem) { 911 /* We don't have a slot if we want to trap every access. */ 912 return; 913 } 914 if (kvm_slot_get_dirty_log(s, mem)) { 915 kvm_slot_sync_dirty_pages(mem); 916 } 917 start_addr += slot_size; 918 size -= slot_size; 919 } 920 } 921 922 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 923 #define KVM_CLEAR_LOG_SHIFT 6 924 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 925 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 926 927 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 928 uint64_t size) 929 { 930 KVMState *s = kvm_state; 931 uint64_t end, bmap_start, start_delta, bmap_npages; 932 struct kvm_clear_dirty_log d; 933 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 934 int ret; 935 936 /* 937 * We need to extend either the start or the size or both to 938 * satisfy the KVM interface requirement. Firstly, do the start 939 * page alignment on 64 host pages 940 */ 941 bmap_start = start & KVM_CLEAR_LOG_MASK; 942 start_delta = start - bmap_start; 943 bmap_start /= psize; 944 945 /* 946 * The kernel interface has restriction on the size too, that either: 947 * 948 * (1) the size is 64 host pages aligned (just like the start), or 949 * (2) the size fills up until the end of the KVM memslot. 950 */ 951 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 952 << KVM_CLEAR_LOG_SHIFT; 953 end = mem->memory_size / psize; 954 if (bmap_npages > end - bmap_start) { 955 bmap_npages = end - bmap_start; 956 } 957 start_delta /= psize; 958 959 /* 960 * Prepare the bitmap to clear dirty bits. Here we must guarantee 961 * that we won't clear any unknown dirty bits otherwise we might 962 * accidentally clear some set bits which are not yet synced from 963 * the kernel into QEMU's bitmap, then we'll lose track of the 964 * guest modifications upon those pages (which can directly lead 965 * to guest data loss or panic after migration). 966 * 967 * Layout of the KVMSlot.dirty_bmap: 968 * 969 * |<-------- bmap_npages -----------..>| 970 * [1] 971 * start_delta size 972 * |----------------|-------------|------------------|------------| 973 * ^ ^ ^ ^ 974 * | | | | 975 * start bmap_start (start) end 976 * of memslot of memslot 977 * 978 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 979 */ 980 981 assert(bmap_start % BITS_PER_LONG == 0); 982 /* We should never do log_clear before log_sync */ 983 assert(mem->dirty_bmap); 984 if (start_delta || bmap_npages - size / psize) { 985 /* Slow path - we need to manipulate a temp bitmap */ 986 bmap_clear = bitmap_new(bmap_npages); 987 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 988 bmap_start, start_delta + size / psize); 989 /* 990 * We need to fill the holes at start because that was not 991 * specified by the caller and we extended the bitmap only for 992 * 64 pages alignment 993 */ 994 bitmap_clear(bmap_clear, 0, start_delta); 995 d.dirty_bitmap = bmap_clear; 996 } else { 997 /* 998 * Fast path - both start and size align well with BITS_PER_LONG 999 * (or the end of memory slot) 1000 */ 1001 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 1002 } 1003 1004 d.first_page = bmap_start; 1005 /* It should never overflow. If it happens, say something */ 1006 assert(bmap_npages <= UINT32_MAX); 1007 d.num_pages = bmap_npages; 1008 d.slot = mem->slot | (as_id << 16); 1009 1010 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 1011 if (ret < 0 && ret != -ENOENT) { 1012 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 1013 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 1014 __func__, d.slot, (uint64_t)d.first_page, 1015 (uint32_t)d.num_pages, ret); 1016 } else { 1017 ret = 0; 1018 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 1019 } 1020 1021 /* 1022 * After we have updated the remote dirty bitmap, we update the 1023 * cached bitmap as well for the memslot, then if another user 1024 * clears the same region we know we shouldn't clear it again on 1025 * the remote otherwise it's data loss as well. 1026 */ 1027 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 1028 size / psize); 1029 /* This handles the NULL case well */ 1030 g_free(bmap_clear); 1031 return ret; 1032 } 1033 1034 1035 /** 1036 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 1037 * 1038 * NOTE: this will be a no-op if we haven't enabled manual dirty log 1039 * protection in the host kernel because in that case this operation 1040 * will be done within log_sync(). 1041 * 1042 * @kml: the kvm memory listener 1043 * @section: the memory range to clear dirty bitmap 1044 */ 1045 static int kvm_physical_log_clear(KVMMemoryListener *kml, 1046 MemoryRegionSection *section) 1047 { 1048 KVMState *s = kvm_state; 1049 uint64_t start, size, offset, count; 1050 KVMSlot *mem; 1051 int ret = 0, i; 1052 1053 if (!s->manual_dirty_log_protect) { 1054 /* No need to do explicit clear */ 1055 return ret; 1056 } 1057 1058 start = section->offset_within_address_space; 1059 size = int128_get64(section->size); 1060 1061 if (!size) { 1062 /* Nothing more we can do... */ 1063 return ret; 1064 } 1065 1066 kvm_slots_lock(); 1067 1068 for (i = 0; i < s->nr_slots; i++) { 1069 mem = &kml->slots[i]; 1070 /* Discard slots that are empty or do not overlap the section */ 1071 if (!mem->memory_size || 1072 mem->start_addr > start + size - 1 || 1073 start > mem->start_addr + mem->memory_size - 1) { 1074 continue; 1075 } 1076 1077 if (start >= mem->start_addr) { 1078 /* The slot starts before section or is aligned to it. */ 1079 offset = start - mem->start_addr; 1080 count = MIN(mem->memory_size - offset, size); 1081 } else { 1082 /* The slot starts after section. */ 1083 offset = 0; 1084 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1085 } 1086 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1087 if (ret < 0) { 1088 break; 1089 } 1090 } 1091 1092 kvm_slots_unlock(); 1093 1094 return ret; 1095 } 1096 1097 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1098 MemoryRegionSection *secion, 1099 hwaddr start, hwaddr size) 1100 { 1101 KVMState *s = kvm_state; 1102 1103 if (s->coalesced_mmio) { 1104 struct kvm_coalesced_mmio_zone zone; 1105 1106 zone.addr = start; 1107 zone.size = size; 1108 zone.pad = 0; 1109 1110 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1111 } 1112 } 1113 1114 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1115 MemoryRegionSection *secion, 1116 hwaddr start, hwaddr size) 1117 { 1118 KVMState *s = kvm_state; 1119 1120 if (s->coalesced_mmio) { 1121 struct kvm_coalesced_mmio_zone zone; 1122 1123 zone.addr = start; 1124 zone.size = size; 1125 zone.pad = 0; 1126 1127 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1128 } 1129 } 1130 1131 static void kvm_coalesce_pio_add(MemoryListener *listener, 1132 MemoryRegionSection *section, 1133 hwaddr start, hwaddr size) 1134 { 1135 KVMState *s = kvm_state; 1136 1137 if (s->coalesced_pio) { 1138 struct kvm_coalesced_mmio_zone zone; 1139 1140 zone.addr = start; 1141 zone.size = size; 1142 zone.pio = 1; 1143 1144 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1145 } 1146 } 1147 1148 static void kvm_coalesce_pio_del(MemoryListener *listener, 1149 MemoryRegionSection *section, 1150 hwaddr start, hwaddr size) 1151 { 1152 KVMState *s = kvm_state; 1153 1154 if (s->coalesced_pio) { 1155 struct kvm_coalesced_mmio_zone zone; 1156 1157 zone.addr = start; 1158 zone.size = size; 1159 zone.pio = 1; 1160 1161 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1162 } 1163 } 1164 1165 static MemoryListener kvm_coalesced_pio_listener = { 1166 .name = "kvm-coalesced-pio", 1167 .coalesced_io_add = kvm_coalesce_pio_add, 1168 .coalesced_io_del = kvm_coalesce_pio_del, 1169 }; 1170 1171 int kvm_check_extension(KVMState *s, unsigned int extension) 1172 { 1173 int ret; 1174 1175 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1176 if (ret < 0) { 1177 ret = 0; 1178 } 1179 1180 return ret; 1181 } 1182 1183 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1184 { 1185 int ret; 1186 1187 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1188 if (ret < 0) { 1189 /* VM wide version not implemented, use global one instead */ 1190 ret = kvm_check_extension(s, extension); 1191 } 1192 1193 return ret; 1194 } 1195 1196 typedef struct HWPoisonPage { 1197 ram_addr_t ram_addr; 1198 QLIST_ENTRY(HWPoisonPage) list; 1199 } HWPoisonPage; 1200 1201 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1202 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1203 1204 static void kvm_unpoison_all(void *param) 1205 { 1206 HWPoisonPage *page, *next_page; 1207 1208 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1209 QLIST_REMOVE(page, list); 1210 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1211 g_free(page); 1212 } 1213 } 1214 1215 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1216 { 1217 HWPoisonPage *page; 1218 1219 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1220 if (page->ram_addr == ram_addr) { 1221 return; 1222 } 1223 } 1224 page = g_new(HWPoisonPage, 1); 1225 page->ram_addr = ram_addr; 1226 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1227 } 1228 1229 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1230 { 1231 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1232 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1233 * endianness, but the memory core hands them in target endianness. 1234 * For example, PPC is always treated as big-endian even if running 1235 * on KVM and on PPC64LE. Correct here. 1236 */ 1237 switch (size) { 1238 case 2: 1239 val = bswap16(val); 1240 break; 1241 case 4: 1242 val = bswap32(val); 1243 break; 1244 } 1245 #endif 1246 return val; 1247 } 1248 1249 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1250 bool assign, uint32_t size, bool datamatch) 1251 { 1252 int ret; 1253 struct kvm_ioeventfd iofd = { 1254 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1255 .addr = addr, 1256 .len = size, 1257 .flags = 0, 1258 .fd = fd, 1259 }; 1260 1261 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1262 datamatch); 1263 if (!kvm_enabled()) { 1264 return -ENOSYS; 1265 } 1266 1267 if (datamatch) { 1268 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1269 } 1270 if (!assign) { 1271 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1272 } 1273 1274 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1275 1276 if (ret < 0) { 1277 return -errno; 1278 } 1279 1280 return 0; 1281 } 1282 1283 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1284 bool assign, uint32_t size, bool datamatch) 1285 { 1286 struct kvm_ioeventfd kick = { 1287 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1288 .addr = addr, 1289 .flags = KVM_IOEVENTFD_FLAG_PIO, 1290 .len = size, 1291 .fd = fd, 1292 }; 1293 int r; 1294 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1295 if (!kvm_enabled()) { 1296 return -ENOSYS; 1297 } 1298 if (datamatch) { 1299 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1300 } 1301 if (!assign) { 1302 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1303 } 1304 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1305 if (r < 0) { 1306 return r; 1307 } 1308 return 0; 1309 } 1310 1311 1312 static int kvm_check_many_ioeventfds(void) 1313 { 1314 /* Userspace can use ioeventfd for io notification. This requires a host 1315 * that supports eventfd(2) and an I/O thread; since eventfd does not 1316 * support SIGIO it cannot interrupt the vcpu. 1317 * 1318 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1319 * can avoid creating too many ioeventfds. 1320 */ 1321 #if defined(CONFIG_EVENTFD) 1322 int ioeventfds[7]; 1323 int i, ret = 0; 1324 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1325 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1326 if (ioeventfds[i] < 0) { 1327 break; 1328 } 1329 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1330 if (ret < 0) { 1331 close(ioeventfds[i]); 1332 break; 1333 } 1334 } 1335 1336 /* Decide whether many devices are supported or not */ 1337 ret = i == ARRAY_SIZE(ioeventfds); 1338 1339 while (i-- > 0) { 1340 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1341 close(ioeventfds[i]); 1342 } 1343 return ret; 1344 #else 1345 return 0; 1346 #endif 1347 } 1348 1349 static const KVMCapabilityInfo * 1350 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1351 { 1352 while (list->name) { 1353 if (!kvm_check_extension(s, list->value)) { 1354 return list; 1355 } 1356 list++; 1357 } 1358 return NULL; 1359 } 1360 1361 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1362 { 1363 g_assert( 1364 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1365 ); 1366 kvm_max_slot_size = max_slot_size; 1367 } 1368 1369 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1370 MemoryRegionSection *section, bool add) 1371 { 1372 KVMSlot *mem; 1373 int err; 1374 MemoryRegion *mr = section->mr; 1375 bool writable = !mr->readonly && !mr->rom_device; 1376 hwaddr start_addr, size, slot_size, mr_offset; 1377 ram_addr_t ram_start_offset; 1378 void *ram; 1379 1380 if (!memory_region_is_ram(mr)) { 1381 if (writable || !kvm_readonly_mem_allowed) { 1382 return; 1383 } else if (!mr->romd_mode) { 1384 /* If the memory device is not in romd_mode, then we actually want 1385 * to remove the kvm memory slot so all accesses will trap. */ 1386 add = false; 1387 } 1388 } 1389 1390 size = kvm_align_section(section, &start_addr); 1391 if (!size) { 1392 return; 1393 } 1394 1395 /* The offset of the kvmslot within the memory region */ 1396 mr_offset = section->offset_within_region + start_addr - 1397 section->offset_within_address_space; 1398 1399 /* use aligned delta to align the ram address and offset */ 1400 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1401 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1402 1403 kvm_slots_lock(); 1404 1405 if (!add) { 1406 do { 1407 slot_size = MIN(kvm_max_slot_size, size); 1408 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1409 if (!mem) { 1410 goto out; 1411 } 1412 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1413 /* 1414 * NOTE: We should be aware of the fact that here we're only 1415 * doing a best effort to sync dirty bits. No matter whether 1416 * we're using dirty log or dirty ring, we ignored two facts: 1417 * 1418 * (1) dirty bits can reside in hardware buffers (PML) 1419 * 1420 * (2) after we collected dirty bits here, pages can be dirtied 1421 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1422 * remove the slot. 1423 * 1424 * Not easy. Let's cross the fingers until it's fixed. 1425 */ 1426 if (kvm_state->kvm_dirty_ring_size) { 1427 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1428 } else { 1429 kvm_slot_get_dirty_log(kvm_state, mem); 1430 } 1431 kvm_slot_sync_dirty_pages(mem); 1432 } 1433 1434 /* unregister the slot */ 1435 g_free(mem->dirty_bmap); 1436 mem->dirty_bmap = NULL; 1437 mem->memory_size = 0; 1438 mem->flags = 0; 1439 err = kvm_set_user_memory_region(kml, mem, false); 1440 if (err) { 1441 fprintf(stderr, "%s: error unregistering slot: %s\n", 1442 __func__, strerror(-err)); 1443 abort(); 1444 } 1445 start_addr += slot_size; 1446 size -= slot_size; 1447 } while (size); 1448 goto out; 1449 } 1450 1451 /* register the new slot */ 1452 do { 1453 slot_size = MIN(kvm_max_slot_size, size); 1454 mem = kvm_alloc_slot(kml); 1455 mem->as_id = kml->as_id; 1456 mem->memory_size = slot_size; 1457 mem->start_addr = start_addr; 1458 mem->ram_start_offset = ram_start_offset; 1459 mem->ram = ram; 1460 mem->flags = kvm_mem_flags(mr); 1461 kvm_slot_init_dirty_bitmap(mem); 1462 err = kvm_set_user_memory_region(kml, mem, true); 1463 if (err) { 1464 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1465 strerror(-err)); 1466 abort(); 1467 } 1468 start_addr += slot_size; 1469 ram_start_offset += slot_size; 1470 ram += slot_size; 1471 size -= slot_size; 1472 } while (size); 1473 1474 out: 1475 kvm_slots_unlock(); 1476 } 1477 1478 static void *kvm_dirty_ring_reaper_thread(void *data) 1479 { 1480 KVMState *s = data; 1481 struct KVMDirtyRingReaper *r = &s->reaper; 1482 1483 rcu_register_thread(); 1484 1485 trace_kvm_dirty_ring_reaper("init"); 1486 1487 while (true) { 1488 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1489 trace_kvm_dirty_ring_reaper("wait"); 1490 /* 1491 * TODO: provide a smarter timeout rather than a constant? 1492 */ 1493 sleep(1); 1494 1495 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1496 if (dirtylimit_in_service()) { 1497 continue; 1498 } 1499 1500 trace_kvm_dirty_ring_reaper("wakeup"); 1501 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1502 1503 qemu_mutex_lock_iothread(); 1504 kvm_dirty_ring_reap(s, NULL); 1505 qemu_mutex_unlock_iothread(); 1506 1507 r->reaper_iteration++; 1508 } 1509 1510 trace_kvm_dirty_ring_reaper("exit"); 1511 1512 rcu_unregister_thread(); 1513 1514 return NULL; 1515 } 1516 1517 static int kvm_dirty_ring_reaper_init(KVMState *s) 1518 { 1519 struct KVMDirtyRingReaper *r = &s->reaper; 1520 1521 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1522 kvm_dirty_ring_reaper_thread, 1523 s, QEMU_THREAD_JOINABLE); 1524 1525 return 0; 1526 } 1527 1528 static void kvm_region_add(MemoryListener *listener, 1529 MemoryRegionSection *section) 1530 { 1531 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1532 1533 memory_region_ref(section->mr); 1534 kvm_set_phys_mem(kml, section, true); 1535 } 1536 1537 static void kvm_region_del(MemoryListener *listener, 1538 MemoryRegionSection *section) 1539 { 1540 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1541 1542 kvm_set_phys_mem(kml, section, false); 1543 memory_region_unref(section->mr); 1544 } 1545 1546 static void kvm_log_sync(MemoryListener *listener, 1547 MemoryRegionSection *section) 1548 { 1549 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1550 1551 kvm_slots_lock(); 1552 kvm_physical_sync_dirty_bitmap(kml, section); 1553 kvm_slots_unlock(); 1554 } 1555 1556 static void kvm_log_sync_global(MemoryListener *l) 1557 { 1558 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1559 KVMState *s = kvm_state; 1560 KVMSlot *mem; 1561 int i; 1562 1563 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1564 kvm_dirty_ring_flush(); 1565 1566 /* 1567 * TODO: make this faster when nr_slots is big while there are 1568 * only a few used slots (small VMs). 1569 */ 1570 kvm_slots_lock(); 1571 for (i = 0; i < s->nr_slots; i++) { 1572 mem = &kml->slots[i]; 1573 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1574 kvm_slot_sync_dirty_pages(mem); 1575 /* 1576 * This is not needed by KVM_GET_DIRTY_LOG because the 1577 * ioctl will unconditionally overwrite the whole region. 1578 * However kvm dirty ring has no such side effect. 1579 */ 1580 kvm_slot_reset_dirty_pages(mem); 1581 } 1582 } 1583 kvm_slots_unlock(); 1584 } 1585 1586 static void kvm_log_clear(MemoryListener *listener, 1587 MemoryRegionSection *section) 1588 { 1589 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1590 int r; 1591 1592 r = kvm_physical_log_clear(kml, section); 1593 if (r < 0) { 1594 error_report_once("%s: kvm log clear failed: mr=%s " 1595 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1596 section->mr->name, section->offset_within_region, 1597 int128_get64(section->size)); 1598 abort(); 1599 } 1600 } 1601 1602 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1603 MemoryRegionSection *section, 1604 bool match_data, uint64_t data, 1605 EventNotifier *e) 1606 { 1607 int fd = event_notifier_get_fd(e); 1608 int r; 1609 1610 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1611 data, true, int128_get64(section->size), 1612 match_data); 1613 if (r < 0) { 1614 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1615 __func__, strerror(-r), -r); 1616 abort(); 1617 } 1618 } 1619 1620 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1621 MemoryRegionSection *section, 1622 bool match_data, uint64_t data, 1623 EventNotifier *e) 1624 { 1625 int fd = event_notifier_get_fd(e); 1626 int r; 1627 1628 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1629 data, false, int128_get64(section->size), 1630 match_data); 1631 if (r < 0) { 1632 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1633 __func__, strerror(-r), -r); 1634 abort(); 1635 } 1636 } 1637 1638 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1639 MemoryRegionSection *section, 1640 bool match_data, uint64_t data, 1641 EventNotifier *e) 1642 { 1643 int fd = event_notifier_get_fd(e); 1644 int r; 1645 1646 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1647 data, true, int128_get64(section->size), 1648 match_data); 1649 if (r < 0) { 1650 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1651 __func__, strerror(-r), -r); 1652 abort(); 1653 } 1654 } 1655 1656 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1657 MemoryRegionSection *section, 1658 bool match_data, uint64_t data, 1659 EventNotifier *e) 1660 1661 { 1662 int fd = event_notifier_get_fd(e); 1663 int r; 1664 1665 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1666 data, false, int128_get64(section->size), 1667 match_data); 1668 if (r < 0) { 1669 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1670 __func__, strerror(-r), -r); 1671 abort(); 1672 } 1673 } 1674 1675 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1676 AddressSpace *as, int as_id, const char *name) 1677 { 1678 int i; 1679 1680 kml->slots = g_new0(KVMSlot, s->nr_slots); 1681 kml->as_id = as_id; 1682 1683 for (i = 0; i < s->nr_slots; i++) { 1684 kml->slots[i].slot = i; 1685 } 1686 1687 kml->listener.region_add = kvm_region_add; 1688 kml->listener.region_del = kvm_region_del; 1689 kml->listener.log_start = kvm_log_start; 1690 kml->listener.log_stop = kvm_log_stop; 1691 kml->listener.priority = 10; 1692 kml->listener.name = name; 1693 1694 if (s->kvm_dirty_ring_size) { 1695 kml->listener.log_sync_global = kvm_log_sync_global; 1696 } else { 1697 kml->listener.log_sync = kvm_log_sync; 1698 kml->listener.log_clear = kvm_log_clear; 1699 } 1700 1701 memory_listener_register(&kml->listener, as); 1702 1703 for (i = 0; i < s->nr_as; ++i) { 1704 if (!s->as[i].as) { 1705 s->as[i].as = as; 1706 s->as[i].ml = kml; 1707 break; 1708 } 1709 } 1710 } 1711 1712 static MemoryListener kvm_io_listener = { 1713 .name = "kvm-io", 1714 .eventfd_add = kvm_io_ioeventfd_add, 1715 .eventfd_del = kvm_io_ioeventfd_del, 1716 .priority = 10, 1717 }; 1718 1719 int kvm_set_irq(KVMState *s, int irq, int level) 1720 { 1721 struct kvm_irq_level event; 1722 int ret; 1723 1724 assert(kvm_async_interrupts_enabled()); 1725 1726 event.level = level; 1727 event.irq = irq; 1728 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1729 if (ret < 0) { 1730 perror("kvm_set_irq"); 1731 abort(); 1732 } 1733 1734 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1735 } 1736 1737 #ifdef KVM_CAP_IRQ_ROUTING 1738 typedef struct KVMMSIRoute { 1739 struct kvm_irq_routing_entry kroute; 1740 QTAILQ_ENTRY(KVMMSIRoute) entry; 1741 } KVMMSIRoute; 1742 1743 static void set_gsi(KVMState *s, unsigned int gsi) 1744 { 1745 set_bit(gsi, s->used_gsi_bitmap); 1746 } 1747 1748 static void clear_gsi(KVMState *s, unsigned int gsi) 1749 { 1750 clear_bit(gsi, s->used_gsi_bitmap); 1751 } 1752 1753 void kvm_init_irq_routing(KVMState *s) 1754 { 1755 int gsi_count, i; 1756 1757 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1758 if (gsi_count > 0) { 1759 /* Round up so we can search ints using ffs */ 1760 s->used_gsi_bitmap = bitmap_new(gsi_count); 1761 s->gsi_count = gsi_count; 1762 } 1763 1764 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1765 s->nr_allocated_irq_routes = 0; 1766 1767 if (!kvm_direct_msi_allowed) { 1768 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { 1769 QTAILQ_INIT(&s->msi_hashtab[i]); 1770 } 1771 } 1772 1773 kvm_arch_init_irq_routing(s); 1774 } 1775 1776 void kvm_irqchip_commit_routes(KVMState *s) 1777 { 1778 int ret; 1779 1780 if (kvm_gsi_direct_mapping()) { 1781 return; 1782 } 1783 1784 if (!kvm_gsi_routing_enabled()) { 1785 return; 1786 } 1787 1788 s->irq_routes->flags = 0; 1789 trace_kvm_irqchip_commit_routes(); 1790 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1791 assert(ret == 0); 1792 } 1793 1794 static void kvm_add_routing_entry(KVMState *s, 1795 struct kvm_irq_routing_entry *entry) 1796 { 1797 struct kvm_irq_routing_entry *new; 1798 int n, size; 1799 1800 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1801 n = s->nr_allocated_irq_routes * 2; 1802 if (n < 64) { 1803 n = 64; 1804 } 1805 size = sizeof(struct kvm_irq_routing); 1806 size += n * sizeof(*new); 1807 s->irq_routes = g_realloc(s->irq_routes, size); 1808 s->nr_allocated_irq_routes = n; 1809 } 1810 n = s->irq_routes->nr++; 1811 new = &s->irq_routes->entries[n]; 1812 1813 *new = *entry; 1814 1815 set_gsi(s, entry->gsi); 1816 } 1817 1818 static int kvm_update_routing_entry(KVMState *s, 1819 struct kvm_irq_routing_entry *new_entry) 1820 { 1821 struct kvm_irq_routing_entry *entry; 1822 int n; 1823 1824 for (n = 0; n < s->irq_routes->nr; n++) { 1825 entry = &s->irq_routes->entries[n]; 1826 if (entry->gsi != new_entry->gsi) { 1827 continue; 1828 } 1829 1830 if(!memcmp(entry, new_entry, sizeof *entry)) { 1831 return 0; 1832 } 1833 1834 *entry = *new_entry; 1835 1836 return 0; 1837 } 1838 1839 return -ESRCH; 1840 } 1841 1842 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1843 { 1844 struct kvm_irq_routing_entry e = {}; 1845 1846 assert(pin < s->gsi_count); 1847 1848 e.gsi = irq; 1849 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1850 e.flags = 0; 1851 e.u.irqchip.irqchip = irqchip; 1852 e.u.irqchip.pin = pin; 1853 kvm_add_routing_entry(s, &e); 1854 } 1855 1856 void kvm_irqchip_release_virq(KVMState *s, int virq) 1857 { 1858 struct kvm_irq_routing_entry *e; 1859 int i; 1860 1861 if (kvm_gsi_direct_mapping()) { 1862 return; 1863 } 1864 1865 for (i = 0; i < s->irq_routes->nr; i++) { 1866 e = &s->irq_routes->entries[i]; 1867 if (e->gsi == virq) { 1868 s->irq_routes->nr--; 1869 *e = s->irq_routes->entries[s->irq_routes->nr]; 1870 } 1871 } 1872 clear_gsi(s, virq); 1873 kvm_arch_release_virq_post(virq); 1874 trace_kvm_irqchip_release_virq(virq); 1875 } 1876 1877 void kvm_irqchip_add_change_notifier(Notifier *n) 1878 { 1879 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1880 } 1881 1882 void kvm_irqchip_remove_change_notifier(Notifier *n) 1883 { 1884 notifier_remove(n); 1885 } 1886 1887 void kvm_irqchip_change_notify(void) 1888 { 1889 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1890 } 1891 1892 static unsigned int kvm_hash_msi(uint32_t data) 1893 { 1894 /* This is optimized for IA32 MSI layout. However, no other arch shall 1895 * repeat the mistake of not providing a direct MSI injection API. */ 1896 return data & 0xff; 1897 } 1898 1899 static void kvm_flush_dynamic_msi_routes(KVMState *s) 1900 { 1901 KVMMSIRoute *route, *next; 1902 unsigned int hash; 1903 1904 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { 1905 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { 1906 kvm_irqchip_release_virq(s, route->kroute.gsi); 1907 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); 1908 g_free(route); 1909 } 1910 } 1911 } 1912 1913 static int kvm_irqchip_get_virq(KVMState *s) 1914 { 1915 int next_virq; 1916 1917 /* 1918 * PIC and IOAPIC share the first 16 GSI numbers, thus the available 1919 * GSI numbers are more than the number of IRQ route. Allocating a GSI 1920 * number can succeed even though a new route entry cannot be added. 1921 * When this happens, flush dynamic MSI entries to free IRQ route entries. 1922 */ 1923 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) { 1924 kvm_flush_dynamic_msi_routes(s); 1925 } 1926 1927 /* Return the lowest unused GSI in the bitmap */ 1928 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1929 if (next_virq >= s->gsi_count) { 1930 return -ENOSPC; 1931 } else { 1932 return next_virq; 1933 } 1934 } 1935 1936 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) 1937 { 1938 unsigned int hash = kvm_hash_msi(msg.data); 1939 KVMMSIRoute *route; 1940 1941 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { 1942 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && 1943 route->kroute.u.msi.address_hi == (msg.address >> 32) && 1944 route->kroute.u.msi.data == le32_to_cpu(msg.data)) { 1945 return route; 1946 } 1947 } 1948 return NULL; 1949 } 1950 1951 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1952 { 1953 struct kvm_msi msi; 1954 KVMMSIRoute *route; 1955 1956 if (kvm_direct_msi_allowed) { 1957 msi.address_lo = (uint32_t)msg.address; 1958 msi.address_hi = msg.address >> 32; 1959 msi.data = le32_to_cpu(msg.data); 1960 msi.flags = 0; 1961 memset(msi.pad, 0, sizeof(msi.pad)); 1962 1963 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1964 } 1965 1966 route = kvm_lookup_msi_route(s, msg); 1967 if (!route) { 1968 int virq; 1969 1970 virq = kvm_irqchip_get_virq(s); 1971 if (virq < 0) { 1972 return virq; 1973 } 1974 1975 route = g_new0(KVMMSIRoute, 1); 1976 route->kroute.gsi = virq; 1977 route->kroute.type = KVM_IRQ_ROUTING_MSI; 1978 route->kroute.flags = 0; 1979 route->kroute.u.msi.address_lo = (uint32_t)msg.address; 1980 route->kroute.u.msi.address_hi = msg.address >> 32; 1981 route->kroute.u.msi.data = le32_to_cpu(msg.data); 1982 1983 kvm_add_routing_entry(s, &route->kroute); 1984 kvm_irqchip_commit_routes(s); 1985 1986 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, 1987 entry); 1988 } 1989 1990 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); 1991 1992 return kvm_set_irq(s, route->kroute.gsi, 1); 1993 } 1994 1995 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 1996 { 1997 struct kvm_irq_routing_entry kroute = {}; 1998 int virq; 1999 KVMState *s = c->s; 2000 MSIMessage msg = {0, 0}; 2001 2002 if (pci_available && dev) { 2003 msg = pci_get_msi_message(dev, vector); 2004 } 2005 2006 if (kvm_gsi_direct_mapping()) { 2007 return kvm_arch_msi_data_to_gsi(msg.data); 2008 } 2009 2010 if (!kvm_gsi_routing_enabled()) { 2011 return -ENOSYS; 2012 } 2013 2014 virq = kvm_irqchip_get_virq(s); 2015 if (virq < 0) { 2016 return virq; 2017 } 2018 2019 kroute.gsi = virq; 2020 kroute.type = KVM_IRQ_ROUTING_MSI; 2021 kroute.flags = 0; 2022 kroute.u.msi.address_lo = (uint32_t)msg.address; 2023 kroute.u.msi.address_hi = msg.address >> 32; 2024 kroute.u.msi.data = le32_to_cpu(msg.data); 2025 if (pci_available && kvm_msi_devid_required()) { 2026 kroute.flags = KVM_MSI_VALID_DEVID; 2027 kroute.u.msi.devid = pci_requester_id(dev); 2028 } 2029 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2030 kvm_irqchip_release_virq(s, virq); 2031 return -EINVAL; 2032 } 2033 2034 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2035 vector, virq); 2036 2037 kvm_add_routing_entry(s, &kroute); 2038 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2039 c->changes++; 2040 2041 return virq; 2042 } 2043 2044 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2045 PCIDevice *dev) 2046 { 2047 struct kvm_irq_routing_entry kroute = {}; 2048 2049 if (kvm_gsi_direct_mapping()) { 2050 return 0; 2051 } 2052 2053 if (!kvm_irqchip_in_kernel()) { 2054 return -ENOSYS; 2055 } 2056 2057 kroute.gsi = virq; 2058 kroute.type = KVM_IRQ_ROUTING_MSI; 2059 kroute.flags = 0; 2060 kroute.u.msi.address_lo = (uint32_t)msg.address; 2061 kroute.u.msi.address_hi = msg.address >> 32; 2062 kroute.u.msi.data = le32_to_cpu(msg.data); 2063 if (pci_available && kvm_msi_devid_required()) { 2064 kroute.flags = KVM_MSI_VALID_DEVID; 2065 kroute.u.msi.devid = pci_requester_id(dev); 2066 } 2067 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2068 return -EINVAL; 2069 } 2070 2071 trace_kvm_irqchip_update_msi_route(virq); 2072 2073 return kvm_update_routing_entry(s, &kroute); 2074 } 2075 2076 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2077 EventNotifier *resample, int virq, 2078 bool assign) 2079 { 2080 int fd = event_notifier_get_fd(event); 2081 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2082 2083 struct kvm_irqfd irqfd = { 2084 .fd = fd, 2085 .gsi = virq, 2086 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2087 }; 2088 2089 if (rfd != -1) { 2090 assert(assign); 2091 if (kvm_irqchip_is_split()) { 2092 /* 2093 * When the slow irqchip (e.g. IOAPIC) is in the 2094 * userspace, KVM kernel resamplefd will not work because 2095 * the EOI of the interrupt will be delivered to userspace 2096 * instead, so the KVM kernel resamplefd kick will be 2097 * skipped. The userspace here mimics what the kernel 2098 * provides with resamplefd, remember the resamplefd and 2099 * kick it when we receive EOI of this IRQ. 2100 * 2101 * This is hackery because IOAPIC is mostly bypassed 2102 * (except EOI broadcasts) when irqfd is used. However 2103 * this can bring much performance back for split irqchip 2104 * with INTx IRQs (for VFIO, this gives 93% perf of the 2105 * full fast path, which is 46% perf boost comparing to 2106 * the INTx slow path). 2107 */ 2108 kvm_resample_fd_insert(virq, resample); 2109 } else { 2110 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2111 irqfd.resamplefd = rfd; 2112 } 2113 } else if (!assign) { 2114 if (kvm_irqchip_is_split()) { 2115 kvm_resample_fd_remove(virq); 2116 } 2117 } 2118 2119 if (!kvm_irqfds_enabled()) { 2120 return -ENOSYS; 2121 } 2122 2123 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2124 } 2125 2126 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2127 { 2128 struct kvm_irq_routing_entry kroute = {}; 2129 int virq; 2130 2131 if (!kvm_gsi_routing_enabled()) { 2132 return -ENOSYS; 2133 } 2134 2135 virq = kvm_irqchip_get_virq(s); 2136 if (virq < 0) { 2137 return virq; 2138 } 2139 2140 kroute.gsi = virq; 2141 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2142 kroute.flags = 0; 2143 kroute.u.adapter.summary_addr = adapter->summary_addr; 2144 kroute.u.adapter.ind_addr = adapter->ind_addr; 2145 kroute.u.adapter.summary_offset = adapter->summary_offset; 2146 kroute.u.adapter.ind_offset = adapter->ind_offset; 2147 kroute.u.adapter.adapter_id = adapter->adapter_id; 2148 2149 kvm_add_routing_entry(s, &kroute); 2150 2151 return virq; 2152 } 2153 2154 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2155 { 2156 struct kvm_irq_routing_entry kroute = {}; 2157 int virq; 2158 2159 if (!kvm_gsi_routing_enabled()) { 2160 return -ENOSYS; 2161 } 2162 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2163 return -ENOSYS; 2164 } 2165 virq = kvm_irqchip_get_virq(s); 2166 if (virq < 0) { 2167 return virq; 2168 } 2169 2170 kroute.gsi = virq; 2171 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2172 kroute.flags = 0; 2173 kroute.u.hv_sint.vcpu = vcpu; 2174 kroute.u.hv_sint.sint = sint; 2175 2176 kvm_add_routing_entry(s, &kroute); 2177 kvm_irqchip_commit_routes(s); 2178 2179 return virq; 2180 } 2181 2182 #else /* !KVM_CAP_IRQ_ROUTING */ 2183 2184 void kvm_init_irq_routing(KVMState *s) 2185 { 2186 } 2187 2188 void kvm_irqchip_release_virq(KVMState *s, int virq) 2189 { 2190 } 2191 2192 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2193 { 2194 abort(); 2195 } 2196 2197 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2198 { 2199 return -ENOSYS; 2200 } 2201 2202 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2203 { 2204 return -ENOSYS; 2205 } 2206 2207 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2208 { 2209 return -ENOSYS; 2210 } 2211 2212 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2213 EventNotifier *resample, int virq, 2214 bool assign) 2215 { 2216 abort(); 2217 } 2218 2219 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2220 { 2221 return -ENOSYS; 2222 } 2223 #endif /* !KVM_CAP_IRQ_ROUTING */ 2224 2225 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2226 EventNotifier *rn, int virq) 2227 { 2228 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2229 } 2230 2231 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2232 int virq) 2233 { 2234 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2235 } 2236 2237 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2238 EventNotifier *rn, qemu_irq irq) 2239 { 2240 gpointer key, gsi; 2241 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2242 2243 if (!found) { 2244 return -ENXIO; 2245 } 2246 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2247 } 2248 2249 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2250 qemu_irq irq) 2251 { 2252 gpointer key, gsi; 2253 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2254 2255 if (!found) { 2256 return -ENXIO; 2257 } 2258 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2259 } 2260 2261 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2262 { 2263 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2264 } 2265 2266 static void kvm_irqchip_create(KVMState *s) 2267 { 2268 int ret; 2269 2270 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2271 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2272 ; 2273 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2274 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2275 if (ret < 0) { 2276 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2277 exit(1); 2278 } 2279 } else { 2280 return; 2281 } 2282 2283 /* First probe and see if there's a arch-specific hook to create the 2284 * in-kernel irqchip for us */ 2285 ret = kvm_arch_irqchip_create(s); 2286 if (ret == 0) { 2287 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2288 error_report("Split IRQ chip mode not supported."); 2289 exit(1); 2290 } else { 2291 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2292 } 2293 } 2294 if (ret < 0) { 2295 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2296 exit(1); 2297 } 2298 2299 kvm_kernel_irqchip = true; 2300 /* If we have an in-kernel IRQ chip then we must have asynchronous 2301 * interrupt delivery (though the reverse is not necessarily true) 2302 */ 2303 kvm_async_interrupts_allowed = true; 2304 kvm_halt_in_kernel_allowed = true; 2305 2306 kvm_init_irq_routing(s); 2307 2308 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2309 } 2310 2311 /* Find number of supported CPUs using the recommended 2312 * procedure from the kernel API documentation to cope with 2313 * older kernels that may be missing capabilities. 2314 */ 2315 static int kvm_recommended_vcpus(KVMState *s) 2316 { 2317 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2318 return (ret) ? ret : 4; 2319 } 2320 2321 static int kvm_max_vcpus(KVMState *s) 2322 { 2323 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2324 return (ret) ? ret : kvm_recommended_vcpus(s); 2325 } 2326 2327 static int kvm_max_vcpu_id(KVMState *s) 2328 { 2329 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2330 return (ret) ? ret : kvm_max_vcpus(s); 2331 } 2332 2333 bool kvm_vcpu_id_is_valid(int vcpu_id) 2334 { 2335 KVMState *s = KVM_STATE(current_accel()); 2336 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2337 } 2338 2339 bool kvm_dirty_ring_enabled(void) 2340 { 2341 return kvm_state->kvm_dirty_ring_size ? true : false; 2342 } 2343 2344 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2345 strList *names, strList *targets, Error **errp); 2346 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2347 2348 uint32_t kvm_dirty_ring_size(void) 2349 { 2350 return kvm_state->kvm_dirty_ring_size; 2351 } 2352 2353 static int kvm_init(MachineState *ms) 2354 { 2355 MachineClass *mc = MACHINE_GET_CLASS(ms); 2356 static const char upgrade_note[] = 2357 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2358 "(see http://sourceforge.net/projects/kvm).\n"; 2359 struct { 2360 const char *name; 2361 int num; 2362 } num_cpus[] = { 2363 { "SMP", ms->smp.cpus }, 2364 { "hotpluggable", ms->smp.max_cpus }, 2365 { NULL, } 2366 }, *nc = num_cpus; 2367 int soft_vcpus_limit, hard_vcpus_limit; 2368 KVMState *s; 2369 const KVMCapabilityInfo *missing_cap; 2370 int ret; 2371 int type = 0; 2372 uint64_t dirty_log_manual_caps; 2373 2374 qemu_mutex_init(&kml_slots_lock); 2375 2376 s = KVM_STATE(ms->accelerator); 2377 2378 /* 2379 * On systems where the kernel can support different base page 2380 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2381 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2382 * page size for the system though. 2383 */ 2384 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2385 2386 s->sigmask_len = 8; 2387 2388 #ifdef KVM_CAP_SET_GUEST_DEBUG 2389 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2390 #endif 2391 QLIST_INIT(&s->kvm_parked_vcpus); 2392 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2393 if (s->fd == -1) { 2394 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2395 ret = -errno; 2396 goto err; 2397 } 2398 2399 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2400 if (ret < KVM_API_VERSION) { 2401 if (ret >= 0) { 2402 ret = -EINVAL; 2403 } 2404 fprintf(stderr, "kvm version too old\n"); 2405 goto err; 2406 } 2407 2408 if (ret > KVM_API_VERSION) { 2409 ret = -EINVAL; 2410 fprintf(stderr, "kvm version not supported\n"); 2411 goto err; 2412 } 2413 2414 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2415 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2416 2417 /* If unspecified, use the default value */ 2418 if (!s->nr_slots) { 2419 s->nr_slots = 32; 2420 } 2421 2422 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2423 if (s->nr_as <= 1) { 2424 s->nr_as = 1; 2425 } 2426 s->as = g_new0(struct KVMAs, s->nr_as); 2427 2428 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2429 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2430 "kvm-type", 2431 &error_abort); 2432 type = mc->kvm_type(ms, kvm_type); 2433 } else if (mc->kvm_type) { 2434 type = mc->kvm_type(ms, NULL); 2435 } 2436 2437 do { 2438 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2439 } while (ret == -EINTR); 2440 2441 if (ret < 0) { 2442 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2443 strerror(-ret)); 2444 2445 #ifdef TARGET_S390X 2446 if (ret == -EINVAL) { 2447 fprintf(stderr, 2448 "Host kernel setup problem detected. Please verify:\n"); 2449 fprintf(stderr, "- for kernels supporting the switch_amode or" 2450 " user_mode parameters, whether\n"); 2451 fprintf(stderr, 2452 " user space is running in primary address space\n"); 2453 fprintf(stderr, 2454 "- for kernels supporting the vm.allocate_pgste sysctl, " 2455 "whether it is enabled\n"); 2456 } 2457 #elif defined(TARGET_PPC) 2458 if (ret == -EINVAL) { 2459 fprintf(stderr, 2460 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2461 (type == 2) ? "pr" : "hv"); 2462 } 2463 #endif 2464 goto err; 2465 } 2466 2467 s->vmfd = ret; 2468 2469 /* check the vcpu limits */ 2470 soft_vcpus_limit = kvm_recommended_vcpus(s); 2471 hard_vcpus_limit = kvm_max_vcpus(s); 2472 2473 while (nc->name) { 2474 if (nc->num > soft_vcpus_limit) { 2475 warn_report("Number of %s cpus requested (%d) exceeds " 2476 "the recommended cpus supported by KVM (%d)", 2477 nc->name, nc->num, soft_vcpus_limit); 2478 2479 if (nc->num > hard_vcpus_limit) { 2480 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2481 "the maximum cpus supported by KVM (%d)\n", 2482 nc->name, nc->num, hard_vcpus_limit); 2483 exit(1); 2484 } 2485 } 2486 nc++; 2487 } 2488 2489 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2490 if (!missing_cap) { 2491 missing_cap = 2492 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2493 } 2494 if (missing_cap) { 2495 ret = -EINVAL; 2496 fprintf(stderr, "kvm does not support %s\n%s", 2497 missing_cap->name, upgrade_note); 2498 goto err; 2499 } 2500 2501 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2502 s->coalesced_pio = s->coalesced_mmio && 2503 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2504 2505 /* 2506 * Enable KVM dirty ring if supported, otherwise fall back to 2507 * dirty logging mode 2508 */ 2509 if (s->kvm_dirty_ring_size > 0) { 2510 uint64_t ring_bytes; 2511 2512 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn); 2513 2514 /* Read the max supported pages */ 2515 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING); 2516 if (ret > 0) { 2517 if (ring_bytes > ret) { 2518 error_report("KVM dirty ring size %" PRIu32 " too big " 2519 "(maximum is %ld). Please use a smaller value.", 2520 s->kvm_dirty_ring_size, 2521 (long)ret / sizeof(struct kvm_dirty_gfn)); 2522 ret = -EINVAL; 2523 goto err; 2524 } 2525 2526 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes); 2527 if (ret) { 2528 error_report("Enabling of KVM dirty ring failed: %s. " 2529 "Suggested minimum value is 1024.", strerror(-ret)); 2530 goto err; 2531 } 2532 2533 s->kvm_dirty_ring_bytes = ring_bytes; 2534 } else { 2535 warn_report("KVM dirty ring not available, using bitmap method"); 2536 s->kvm_dirty_ring_size = 0; 2537 } 2538 } 2539 2540 /* 2541 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2542 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2543 * page is wr-protected initially, which is against how kvm dirty ring is 2544 * usage - kvm dirty ring requires all pages are wr-protected at the very 2545 * beginning. Enabling this feature for dirty ring causes data corruption. 2546 * 2547 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2548 * we may expect a higher stall time when starting the migration. In the 2549 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2550 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2551 * guest pages. 2552 */ 2553 if (!s->kvm_dirty_ring_size) { 2554 dirty_log_manual_caps = 2555 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2556 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2557 KVM_DIRTY_LOG_INITIALLY_SET); 2558 s->manual_dirty_log_protect = dirty_log_manual_caps; 2559 if (dirty_log_manual_caps) { 2560 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2561 dirty_log_manual_caps); 2562 if (ret) { 2563 warn_report("Trying to enable capability %"PRIu64" of " 2564 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2565 "Falling back to the legacy mode. ", 2566 dirty_log_manual_caps); 2567 s->manual_dirty_log_protect = 0; 2568 } 2569 } 2570 } 2571 2572 #ifdef KVM_CAP_VCPU_EVENTS 2573 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2574 #endif 2575 2576 s->robust_singlestep = 2577 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2578 2579 #ifdef KVM_CAP_DEBUGREGS 2580 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2581 #endif 2582 2583 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2584 2585 #ifdef KVM_CAP_IRQ_ROUTING 2586 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); 2587 #endif 2588 2589 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2590 2591 s->irq_set_ioctl = KVM_IRQ_LINE; 2592 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2593 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2594 } 2595 2596 kvm_readonly_mem_allowed = 2597 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2598 2599 kvm_eventfds_allowed = 2600 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2601 2602 kvm_irqfds_allowed = 2603 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); 2604 2605 kvm_resamplefds_allowed = 2606 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2607 2608 kvm_vm_attributes_allowed = 2609 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2610 2611 kvm_ioeventfd_any_length_allowed = 2612 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2613 2614 #ifdef KVM_CAP_SET_GUEST_DEBUG 2615 kvm_has_guest_debug = 2616 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2617 #endif 2618 2619 kvm_sstep_flags = 0; 2620 if (kvm_has_guest_debug) { 2621 kvm_sstep_flags = SSTEP_ENABLE; 2622 2623 #if defined KVM_CAP_SET_GUEST_DEBUG2 2624 int guest_debug_flags = 2625 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2626 2627 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2628 kvm_sstep_flags |= SSTEP_NOIRQ; 2629 } 2630 #endif 2631 } 2632 2633 kvm_state = s; 2634 2635 ret = kvm_arch_init(ms, s); 2636 if (ret < 0) { 2637 goto err; 2638 } 2639 2640 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2641 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2642 } 2643 2644 qemu_register_reset(kvm_unpoison_all, NULL); 2645 2646 if (s->kernel_irqchip_allowed) { 2647 kvm_irqchip_create(s); 2648 } 2649 2650 if (kvm_eventfds_allowed) { 2651 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2652 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2653 } 2654 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2655 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2656 2657 kvm_memory_listener_register(s, &s->memory_listener, 2658 &address_space_memory, 0, "kvm-memory"); 2659 if (kvm_eventfds_allowed) { 2660 memory_listener_register(&kvm_io_listener, 2661 &address_space_io); 2662 } 2663 memory_listener_register(&kvm_coalesced_pio_listener, 2664 &address_space_io); 2665 2666 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2667 2668 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2669 if (!s->sync_mmu) { 2670 ret = ram_block_discard_disable(true); 2671 assert(!ret); 2672 } 2673 2674 if (s->kvm_dirty_ring_size) { 2675 ret = kvm_dirty_ring_reaper_init(s); 2676 if (ret) { 2677 goto err; 2678 } 2679 } 2680 2681 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2682 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2683 query_stats_schemas_cb); 2684 } 2685 2686 return 0; 2687 2688 err: 2689 assert(ret < 0); 2690 if (s->vmfd >= 0) { 2691 close(s->vmfd); 2692 } 2693 if (s->fd != -1) { 2694 close(s->fd); 2695 } 2696 g_free(s->memory_listener.slots); 2697 2698 return ret; 2699 } 2700 2701 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2702 { 2703 s->sigmask_len = sigmask_len; 2704 } 2705 2706 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2707 int size, uint32_t count) 2708 { 2709 int i; 2710 uint8_t *ptr = data; 2711 2712 for (i = 0; i < count; i++) { 2713 address_space_rw(&address_space_io, port, attrs, 2714 ptr, size, 2715 direction == KVM_EXIT_IO_OUT); 2716 ptr += size; 2717 } 2718 } 2719 2720 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2721 { 2722 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2723 run->internal.suberror); 2724 2725 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { 2726 int i; 2727 2728 for (i = 0; i < run->internal.ndata; ++i) { 2729 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2730 i, (uint64_t)run->internal.data[i]); 2731 } 2732 } 2733 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2734 fprintf(stderr, "emulation failure\n"); 2735 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2736 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2737 return EXCP_INTERRUPT; 2738 } 2739 } 2740 /* FIXME: Should trigger a qmp message to let management know 2741 * something went wrong. 2742 */ 2743 return -1; 2744 } 2745 2746 void kvm_flush_coalesced_mmio_buffer(void) 2747 { 2748 KVMState *s = kvm_state; 2749 2750 if (s->coalesced_flush_in_progress) { 2751 return; 2752 } 2753 2754 s->coalesced_flush_in_progress = true; 2755 2756 if (s->coalesced_mmio_ring) { 2757 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2758 while (ring->first != ring->last) { 2759 struct kvm_coalesced_mmio *ent; 2760 2761 ent = &ring->coalesced_mmio[ring->first]; 2762 2763 if (ent->pio == 1) { 2764 address_space_write(&address_space_io, ent->phys_addr, 2765 MEMTXATTRS_UNSPECIFIED, ent->data, 2766 ent->len); 2767 } else { 2768 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2769 } 2770 smp_wmb(); 2771 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2772 } 2773 } 2774 2775 s->coalesced_flush_in_progress = false; 2776 } 2777 2778 bool kvm_cpu_check_are_resettable(void) 2779 { 2780 return kvm_arch_cpu_check_are_resettable(); 2781 } 2782 2783 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2784 { 2785 if (!cpu->vcpu_dirty) { 2786 kvm_arch_get_registers(cpu); 2787 cpu->vcpu_dirty = true; 2788 } 2789 } 2790 2791 void kvm_cpu_synchronize_state(CPUState *cpu) 2792 { 2793 if (!cpu->vcpu_dirty) { 2794 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2795 } 2796 } 2797 2798 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2799 { 2800 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2801 cpu->vcpu_dirty = false; 2802 } 2803 2804 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2805 { 2806 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2807 } 2808 2809 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2810 { 2811 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2812 cpu->vcpu_dirty = false; 2813 } 2814 2815 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2816 { 2817 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2818 } 2819 2820 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2821 { 2822 cpu->vcpu_dirty = true; 2823 } 2824 2825 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2826 { 2827 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2828 } 2829 2830 #ifdef KVM_HAVE_MCE_INJECTION 2831 static __thread void *pending_sigbus_addr; 2832 static __thread int pending_sigbus_code; 2833 static __thread bool have_sigbus_pending; 2834 #endif 2835 2836 static void kvm_cpu_kick(CPUState *cpu) 2837 { 2838 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2839 } 2840 2841 static void kvm_cpu_kick_self(void) 2842 { 2843 if (kvm_immediate_exit) { 2844 kvm_cpu_kick(current_cpu); 2845 } else { 2846 qemu_cpu_kick_self(); 2847 } 2848 } 2849 2850 static void kvm_eat_signals(CPUState *cpu) 2851 { 2852 struct timespec ts = { 0, 0 }; 2853 siginfo_t siginfo; 2854 sigset_t waitset; 2855 sigset_t chkset; 2856 int r; 2857 2858 if (kvm_immediate_exit) { 2859 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2860 /* Write kvm_run->immediate_exit before the cpu->exit_request 2861 * write in kvm_cpu_exec. 2862 */ 2863 smp_wmb(); 2864 return; 2865 } 2866 2867 sigemptyset(&waitset); 2868 sigaddset(&waitset, SIG_IPI); 2869 2870 do { 2871 r = sigtimedwait(&waitset, &siginfo, &ts); 2872 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2873 perror("sigtimedwait"); 2874 exit(1); 2875 } 2876 2877 r = sigpending(&chkset); 2878 if (r == -1) { 2879 perror("sigpending"); 2880 exit(1); 2881 } 2882 } while (sigismember(&chkset, SIG_IPI)); 2883 } 2884 2885 int kvm_cpu_exec(CPUState *cpu) 2886 { 2887 struct kvm_run *run = cpu->kvm_run; 2888 int ret, run_ret; 2889 2890 DPRINTF("kvm_cpu_exec()\n"); 2891 2892 if (kvm_arch_process_async_events(cpu)) { 2893 qatomic_set(&cpu->exit_request, 0); 2894 return EXCP_HLT; 2895 } 2896 2897 qemu_mutex_unlock_iothread(); 2898 cpu_exec_start(cpu); 2899 2900 do { 2901 MemTxAttrs attrs; 2902 2903 if (cpu->vcpu_dirty) { 2904 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2905 cpu->vcpu_dirty = false; 2906 } 2907 2908 kvm_arch_pre_run(cpu, run); 2909 if (qatomic_read(&cpu->exit_request)) { 2910 DPRINTF("interrupt exit requested\n"); 2911 /* 2912 * KVM requires us to reenter the kernel after IO exits to complete 2913 * instruction emulation. This self-signal will ensure that we 2914 * leave ASAP again. 2915 */ 2916 kvm_cpu_kick_self(); 2917 } 2918 2919 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2920 * Matching barrier in kvm_eat_signals. 2921 */ 2922 smp_rmb(); 2923 2924 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2925 2926 attrs = kvm_arch_post_run(cpu, run); 2927 2928 #ifdef KVM_HAVE_MCE_INJECTION 2929 if (unlikely(have_sigbus_pending)) { 2930 qemu_mutex_lock_iothread(); 2931 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2932 pending_sigbus_addr); 2933 have_sigbus_pending = false; 2934 qemu_mutex_unlock_iothread(); 2935 } 2936 #endif 2937 2938 if (run_ret < 0) { 2939 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2940 DPRINTF("io window exit\n"); 2941 kvm_eat_signals(cpu); 2942 ret = EXCP_INTERRUPT; 2943 break; 2944 } 2945 fprintf(stderr, "error: kvm run failed %s\n", 2946 strerror(-run_ret)); 2947 #ifdef TARGET_PPC 2948 if (run_ret == -EBUSY) { 2949 fprintf(stderr, 2950 "This is probably because your SMT is enabled.\n" 2951 "VCPU can only run on primary threads with all " 2952 "secondary threads offline.\n"); 2953 } 2954 #endif 2955 ret = -1; 2956 break; 2957 } 2958 2959 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2960 switch (run->exit_reason) { 2961 case KVM_EXIT_IO: 2962 DPRINTF("handle_io\n"); 2963 /* Called outside BQL */ 2964 kvm_handle_io(run->io.port, attrs, 2965 (uint8_t *)run + run->io.data_offset, 2966 run->io.direction, 2967 run->io.size, 2968 run->io.count); 2969 ret = 0; 2970 break; 2971 case KVM_EXIT_MMIO: 2972 DPRINTF("handle_mmio\n"); 2973 /* Called outside BQL */ 2974 address_space_rw(&address_space_memory, 2975 run->mmio.phys_addr, attrs, 2976 run->mmio.data, 2977 run->mmio.len, 2978 run->mmio.is_write); 2979 ret = 0; 2980 break; 2981 case KVM_EXIT_IRQ_WINDOW_OPEN: 2982 DPRINTF("irq_window_open\n"); 2983 ret = EXCP_INTERRUPT; 2984 break; 2985 case KVM_EXIT_SHUTDOWN: 2986 DPRINTF("shutdown\n"); 2987 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2988 ret = EXCP_INTERRUPT; 2989 break; 2990 case KVM_EXIT_UNKNOWN: 2991 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2992 (uint64_t)run->hw.hardware_exit_reason); 2993 ret = -1; 2994 break; 2995 case KVM_EXIT_INTERNAL_ERROR: 2996 ret = kvm_handle_internal_error(cpu, run); 2997 break; 2998 case KVM_EXIT_DIRTY_RING_FULL: 2999 /* 3000 * We shouldn't continue if the dirty ring of this vcpu is 3001 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3002 */ 3003 trace_kvm_dirty_ring_full(cpu->cpu_index); 3004 qemu_mutex_lock_iothread(); 3005 /* 3006 * We throttle vCPU by making it sleep once it exit from kernel 3007 * due to dirty ring full. In the dirtylimit scenario, reaping 3008 * all vCPUs after a single vCPU dirty ring get full result in 3009 * the miss of sleep, so just reap the ring-fulled vCPU. 3010 */ 3011 if (dirtylimit_in_service()) { 3012 kvm_dirty_ring_reap(kvm_state, cpu); 3013 } else { 3014 kvm_dirty_ring_reap(kvm_state, NULL); 3015 } 3016 qemu_mutex_unlock_iothread(); 3017 dirtylimit_vcpu_execute(cpu); 3018 ret = 0; 3019 break; 3020 case KVM_EXIT_SYSTEM_EVENT: 3021 switch (run->system_event.type) { 3022 case KVM_SYSTEM_EVENT_SHUTDOWN: 3023 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3024 ret = EXCP_INTERRUPT; 3025 break; 3026 case KVM_SYSTEM_EVENT_RESET: 3027 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3028 ret = EXCP_INTERRUPT; 3029 break; 3030 case KVM_SYSTEM_EVENT_CRASH: 3031 kvm_cpu_synchronize_state(cpu); 3032 qemu_mutex_lock_iothread(); 3033 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3034 qemu_mutex_unlock_iothread(); 3035 ret = 0; 3036 break; 3037 default: 3038 DPRINTF("kvm_arch_handle_exit\n"); 3039 ret = kvm_arch_handle_exit(cpu, run); 3040 break; 3041 } 3042 break; 3043 default: 3044 DPRINTF("kvm_arch_handle_exit\n"); 3045 ret = kvm_arch_handle_exit(cpu, run); 3046 break; 3047 } 3048 } while (ret == 0); 3049 3050 cpu_exec_end(cpu); 3051 qemu_mutex_lock_iothread(); 3052 3053 if (ret < 0) { 3054 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3055 vm_stop(RUN_STATE_INTERNAL_ERROR); 3056 } 3057 3058 qatomic_set(&cpu->exit_request, 0); 3059 return ret; 3060 } 3061 3062 int kvm_ioctl(KVMState *s, int type, ...) 3063 { 3064 int ret; 3065 void *arg; 3066 va_list ap; 3067 3068 va_start(ap, type); 3069 arg = va_arg(ap, void *); 3070 va_end(ap); 3071 3072 trace_kvm_ioctl(type, arg); 3073 ret = ioctl(s->fd, type, arg); 3074 if (ret == -1) { 3075 ret = -errno; 3076 } 3077 return ret; 3078 } 3079 3080 int kvm_vm_ioctl(KVMState *s, int type, ...) 3081 { 3082 int ret; 3083 void *arg; 3084 va_list ap; 3085 3086 va_start(ap, type); 3087 arg = va_arg(ap, void *); 3088 va_end(ap); 3089 3090 trace_kvm_vm_ioctl(type, arg); 3091 ret = ioctl(s->vmfd, type, arg); 3092 if (ret == -1) { 3093 ret = -errno; 3094 } 3095 return ret; 3096 } 3097 3098 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3099 { 3100 int ret; 3101 void *arg; 3102 va_list ap; 3103 3104 va_start(ap, type); 3105 arg = va_arg(ap, void *); 3106 va_end(ap); 3107 3108 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3109 ret = ioctl(cpu->kvm_fd, type, arg); 3110 if (ret == -1) { 3111 ret = -errno; 3112 } 3113 return ret; 3114 } 3115 3116 int kvm_device_ioctl(int fd, int type, ...) 3117 { 3118 int ret; 3119 void *arg; 3120 va_list ap; 3121 3122 va_start(ap, type); 3123 arg = va_arg(ap, void *); 3124 va_end(ap); 3125 3126 trace_kvm_device_ioctl(fd, type, arg); 3127 ret = ioctl(fd, type, arg); 3128 if (ret == -1) { 3129 ret = -errno; 3130 } 3131 return ret; 3132 } 3133 3134 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3135 { 3136 int ret; 3137 struct kvm_device_attr attribute = { 3138 .group = group, 3139 .attr = attr, 3140 }; 3141 3142 if (!kvm_vm_attributes_allowed) { 3143 return 0; 3144 } 3145 3146 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3147 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3148 return ret ? 0 : 1; 3149 } 3150 3151 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3152 { 3153 struct kvm_device_attr attribute = { 3154 .group = group, 3155 .attr = attr, 3156 .flags = 0, 3157 }; 3158 3159 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3160 } 3161 3162 int kvm_device_access(int fd, int group, uint64_t attr, 3163 void *val, bool write, Error **errp) 3164 { 3165 struct kvm_device_attr kvmattr; 3166 int err; 3167 3168 kvmattr.flags = 0; 3169 kvmattr.group = group; 3170 kvmattr.attr = attr; 3171 kvmattr.addr = (uintptr_t)val; 3172 3173 err = kvm_device_ioctl(fd, 3174 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3175 &kvmattr); 3176 if (err < 0) { 3177 error_setg_errno(errp, -err, 3178 "KVM_%s_DEVICE_ATTR failed: Group %d " 3179 "attr 0x%016" PRIx64, 3180 write ? "SET" : "GET", group, attr); 3181 } 3182 return err; 3183 } 3184 3185 bool kvm_has_sync_mmu(void) 3186 { 3187 return kvm_state->sync_mmu; 3188 } 3189 3190 int kvm_has_vcpu_events(void) 3191 { 3192 return kvm_state->vcpu_events; 3193 } 3194 3195 int kvm_has_robust_singlestep(void) 3196 { 3197 return kvm_state->robust_singlestep; 3198 } 3199 3200 int kvm_has_debugregs(void) 3201 { 3202 return kvm_state->debugregs; 3203 } 3204 3205 int kvm_max_nested_state_length(void) 3206 { 3207 return kvm_state->max_nested_state_len; 3208 } 3209 3210 int kvm_has_many_ioeventfds(void) 3211 { 3212 if (!kvm_enabled()) { 3213 return 0; 3214 } 3215 return kvm_state->many_ioeventfds; 3216 } 3217 3218 int kvm_has_gsi_routing(void) 3219 { 3220 #ifdef KVM_CAP_IRQ_ROUTING 3221 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3222 #else 3223 return false; 3224 #endif 3225 } 3226 3227 int kvm_has_intx_set_mask(void) 3228 { 3229 return kvm_state->intx_set_mask; 3230 } 3231 3232 bool kvm_arm_supports_user_irq(void) 3233 { 3234 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3235 } 3236 3237 #ifdef KVM_CAP_SET_GUEST_DEBUG 3238 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, 3239 target_ulong pc) 3240 { 3241 struct kvm_sw_breakpoint *bp; 3242 3243 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3244 if (bp->pc == pc) { 3245 return bp; 3246 } 3247 } 3248 return NULL; 3249 } 3250 3251 int kvm_sw_breakpoints_active(CPUState *cpu) 3252 { 3253 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3254 } 3255 3256 struct kvm_set_guest_debug_data { 3257 struct kvm_guest_debug dbg; 3258 int err; 3259 }; 3260 3261 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3262 { 3263 struct kvm_set_guest_debug_data *dbg_data = 3264 (struct kvm_set_guest_debug_data *) data.host_ptr; 3265 3266 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3267 &dbg_data->dbg); 3268 } 3269 3270 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3271 { 3272 struct kvm_set_guest_debug_data data; 3273 3274 data.dbg.control = reinject_trap; 3275 3276 if (cpu->singlestep_enabled) { 3277 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3278 3279 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3280 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3281 } 3282 } 3283 kvm_arch_update_guest_debug(cpu, &data.dbg); 3284 3285 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3286 RUN_ON_CPU_HOST_PTR(&data)); 3287 return data.err; 3288 } 3289 3290 int kvm_insert_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len) 3291 { 3292 struct kvm_sw_breakpoint *bp; 3293 int err; 3294 3295 if (type == GDB_BREAKPOINT_SW) { 3296 bp = kvm_find_sw_breakpoint(cpu, addr); 3297 if (bp) { 3298 bp->use_count++; 3299 return 0; 3300 } 3301 3302 bp = g_new(struct kvm_sw_breakpoint, 1); 3303 bp->pc = addr; 3304 bp->use_count = 1; 3305 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3306 if (err) { 3307 g_free(bp); 3308 return err; 3309 } 3310 3311 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3312 } else { 3313 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3314 if (err) { 3315 return err; 3316 } 3317 } 3318 3319 CPU_FOREACH(cpu) { 3320 err = kvm_update_guest_debug(cpu, 0); 3321 if (err) { 3322 return err; 3323 } 3324 } 3325 return 0; 3326 } 3327 3328 int kvm_remove_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len) 3329 { 3330 struct kvm_sw_breakpoint *bp; 3331 int err; 3332 3333 if (type == GDB_BREAKPOINT_SW) { 3334 bp = kvm_find_sw_breakpoint(cpu, addr); 3335 if (!bp) { 3336 return -ENOENT; 3337 } 3338 3339 if (bp->use_count > 1) { 3340 bp->use_count--; 3341 return 0; 3342 } 3343 3344 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3345 if (err) { 3346 return err; 3347 } 3348 3349 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3350 g_free(bp); 3351 } else { 3352 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3353 if (err) { 3354 return err; 3355 } 3356 } 3357 3358 CPU_FOREACH(cpu) { 3359 err = kvm_update_guest_debug(cpu, 0); 3360 if (err) { 3361 return err; 3362 } 3363 } 3364 return 0; 3365 } 3366 3367 void kvm_remove_all_breakpoints(CPUState *cpu) 3368 { 3369 struct kvm_sw_breakpoint *bp, *next; 3370 KVMState *s = cpu->kvm_state; 3371 CPUState *tmpcpu; 3372 3373 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3374 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3375 /* Try harder to find a CPU that currently sees the breakpoint. */ 3376 CPU_FOREACH(tmpcpu) { 3377 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3378 break; 3379 } 3380 } 3381 } 3382 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3383 g_free(bp); 3384 } 3385 kvm_arch_remove_all_hw_breakpoints(); 3386 3387 CPU_FOREACH(cpu) { 3388 kvm_update_guest_debug(cpu, 0); 3389 } 3390 } 3391 3392 #else /* !KVM_CAP_SET_GUEST_DEBUG */ 3393 3394 static int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3395 { 3396 return -EINVAL; 3397 } 3398 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3399 3400 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3401 { 3402 KVMState *s = kvm_state; 3403 struct kvm_signal_mask *sigmask; 3404 int r; 3405 3406 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3407 3408 sigmask->len = s->sigmask_len; 3409 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3410 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3411 g_free(sigmask); 3412 3413 return r; 3414 } 3415 3416 static void kvm_ipi_signal(int sig) 3417 { 3418 if (current_cpu) { 3419 assert(kvm_immediate_exit); 3420 kvm_cpu_kick(current_cpu); 3421 } 3422 } 3423 3424 void kvm_init_cpu_signals(CPUState *cpu) 3425 { 3426 int r; 3427 sigset_t set; 3428 struct sigaction sigact; 3429 3430 memset(&sigact, 0, sizeof(sigact)); 3431 sigact.sa_handler = kvm_ipi_signal; 3432 sigaction(SIG_IPI, &sigact, NULL); 3433 3434 pthread_sigmask(SIG_BLOCK, NULL, &set); 3435 #if defined KVM_HAVE_MCE_INJECTION 3436 sigdelset(&set, SIGBUS); 3437 pthread_sigmask(SIG_SETMASK, &set, NULL); 3438 #endif 3439 sigdelset(&set, SIG_IPI); 3440 if (kvm_immediate_exit) { 3441 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3442 } else { 3443 r = kvm_set_signal_mask(cpu, &set); 3444 } 3445 if (r) { 3446 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3447 exit(1); 3448 } 3449 } 3450 3451 /* Called asynchronously in VCPU thread. */ 3452 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3453 { 3454 #ifdef KVM_HAVE_MCE_INJECTION 3455 if (have_sigbus_pending) { 3456 return 1; 3457 } 3458 have_sigbus_pending = true; 3459 pending_sigbus_addr = addr; 3460 pending_sigbus_code = code; 3461 qatomic_set(&cpu->exit_request, 1); 3462 return 0; 3463 #else 3464 return 1; 3465 #endif 3466 } 3467 3468 /* Called synchronously (via signalfd) in main thread. */ 3469 int kvm_on_sigbus(int code, void *addr) 3470 { 3471 #ifdef KVM_HAVE_MCE_INJECTION 3472 /* Action required MCE kills the process if SIGBUS is blocked. Because 3473 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3474 * we can only get action optional here. 3475 */ 3476 assert(code != BUS_MCEERR_AR); 3477 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3478 return 0; 3479 #else 3480 return 1; 3481 #endif 3482 } 3483 3484 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3485 { 3486 int ret; 3487 struct kvm_create_device create_dev; 3488 3489 create_dev.type = type; 3490 create_dev.fd = -1; 3491 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3492 3493 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3494 return -ENOTSUP; 3495 } 3496 3497 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3498 if (ret) { 3499 return ret; 3500 } 3501 3502 return test ? 0 : create_dev.fd; 3503 } 3504 3505 bool kvm_device_supported(int vmfd, uint64_t type) 3506 { 3507 struct kvm_create_device create_dev = { 3508 .type = type, 3509 .fd = -1, 3510 .flags = KVM_CREATE_DEVICE_TEST, 3511 }; 3512 3513 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3514 return false; 3515 } 3516 3517 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3518 } 3519 3520 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3521 { 3522 struct kvm_one_reg reg; 3523 int r; 3524 3525 reg.id = id; 3526 reg.addr = (uintptr_t) source; 3527 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3528 if (r) { 3529 trace_kvm_failed_reg_set(id, strerror(-r)); 3530 } 3531 return r; 3532 } 3533 3534 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3535 { 3536 struct kvm_one_reg reg; 3537 int r; 3538 3539 reg.id = id; 3540 reg.addr = (uintptr_t) target; 3541 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3542 if (r) { 3543 trace_kvm_failed_reg_get(id, strerror(-r)); 3544 } 3545 return r; 3546 } 3547 3548 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3549 hwaddr start_addr, hwaddr size) 3550 { 3551 KVMState *kvm = KVM_STATE(ms->accelerator); 3552 int i; 3553 3554 for (i = 0; i < kvm->nr_as; ++i) { 3555 if (kvm->as[i].as == as && kvm->as[i].ml) { 3556 size = MIN(kvm_max_slot_size, size); 3557 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3558 start_addr, size); 3559 } 3560 } 3561 3562 return false; 3563 } 3564 3565 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3566 const char *name, void *opaque, 3567 Error **errp) 3568 { 3569 KVMState *s = KVM_STATE(obj); 3570 int64_t value = s->kvm_shadow_mem; 3571 3572 visit_type_int(v, name, &value, errp); 3573 } 3574 3575 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3576 const char *name, void *opaque, 3577 Error **errp) 3578 { 3579 KVMState *s = KVM_STATE(obj); 3580 int64_t value; 3581 3582 if (s->fd != -1) { 3583 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3584 return; 3585 } 3586 3587 if (!visit_type_int(v, name, &value, errp)) { 3588 return; 3589 } 3590 3591 s->kvm_shadow_mem = value; 3592 } 3593 3594 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3595 const char *name, void *opaque, 3596 Error **errp) 3597 { 3598 KVMState *s = KVM_STATE(obj); 3599 OnOffSplit mode; 3600 3601 if (s->fd != -1) { 3602 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3603 return; 3604 } 3605 3606 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3607 return; 3608 } 3609 switch (mode) { 3610 case ON_OFF_SPLIT_ON: 3611 s->kernel_irqchip_allowed = true; 3612 s->kernel_irqchip_required = true; 3613 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3614 break; 3615 case ON_OFF_SPLIT_OFF: 3616 s->kernel_irqchip_allowed = false; 3617 s->kernel_irqchip_required = false; 3618 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3619 break; 3620 case ON_OFF_SPLIT_SPLIT: 3621 s->kernel_irqchip_allowed = true; 3622 s->kernel_irqchip_required = true; 3623 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3624 break; 3625 default: 3626 /* The value was checked in visit_type_OnOffSplit() above. If 3627 * we get here, then something is wrong in QEMU. 3628 */ 3629 abort(); 3630 } 3631 } 3632 3633 bool kvm_kernel_irqchip_allowed(void) 3634 { 3635 return kvm_state->kernel_irqchip_allowed; 3636 } 3637 3638 bool kvm_kernel_irqchip_required(void) 3639 { 3640 return kvm_state->kernel_irqchip_required; 3641 } 3642 3643 bool kvm_kernel_irqchip_split(void) 3644 { 3645 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3646 } 3647 3648 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3649 const char *name, void *opaque, 3650 Error **errp) 3651 { 3652 KVMState *s = KVM_STATE(obj); 3653 uint32_t value = s->kvm_dirty_ring_size; 3654 3655 visit_type_uint32(v, name, &value, errp); 3656 } 3657 3658 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3659 const char *name, void *opaque, 3660 Error **errp) 3661 { 3662 KVMState *s = KVM_STATE(obj); 3663 Error *error = NULL; 3664 uint32_t value; 3665 3666 if (s->fd != -1) { 3667 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3668 return; 3669 } 3670 3671 visit_type_uint32(v, name, &value, &error); 3672 if (error) { 3673 error_propagate(errp, error); 3674 return; 3675 } 3676 if (value & (value - 1)) { 3677 error_setg(errp, "dirty-ring-size must be a power of two."); 3678 return; 3679 } 3680 3681 s->kvm_dirty_ring_size = value; 3682 } 3683 3684 static void kvm_accel_instance_init(Object *obj) 3685 { 3686 KVMState *s = KVM_STATE(obj); 3687 3688 s->fd = -1; 3689 s->vmfd = -1; 3690 s->kvm_shadow_mem = -1; 3691 s->kernel_irqchip_allowed = true; 3692 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3693 /* KVM dirty ring is by default off */ 3694 s->kvm_dirty_ring_size = 0; 3695 } 3696 3697 /** 3698 * kvm_gdbstub_sstep_flags(): 3699 * 3700 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3701 * support is probed during kvm_init() 3702 */ 3703 static int kvm_gdbstub_sstep_flags(void) 3704 { 3705 return kvm_sstep_flags; 3706 } 3707 3708 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3709 { 3710 AccelClass *ac = ACCEL_CLASS(oc); 3711 ac->name = "KVM"; 3712 ac->init_machine = kvm_init; 3713 ac->has_memory = kvm_accel_has_memory; 3714 ac->allowed = &kvm_allowed; 3715 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3716 3717 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3718 NULL, kvm_set_kernel_irqchip, 3719 NULL, NULL); 3720 object_class_property_set_description(oc, "kernel-irqchip", 3721 "Configure KVM in-kernel irqchip"); 3722 3723 object_class_property_add(oc, "kvm-shadow-mem", "int", 3724 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3725 NULL, NULL); 3726 object_class_property_set_description(oc, "kvm-shadow-mem", 3727 "KVM shadow MMU size"); 3728 3729 object_class_property_add(oc, "dirty-ring-size", "uint32", 3730 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3731 NULL, NULL); 3732 object_class_property_set_description(oc, "dirty-ring-size", 3733 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3734 } 3735 3736 static const TypeInfo kvm_accel_type = { 3737 .name = TYPE_KVM_ACCEL, 3738 .parent = TYPE_ACCEL, 3739 .instance_init = kvm_accel_instance_init, 3740 .class_init = kvm_accel_class_init, 3741 .instance_size = sizeof(KVMState), 3742 }; 3743 3744 static void kvm_type_init(void) 3745 { 3746 type_register_static(&kvm_accel_type); 3747 } 3748 3749 type_init(kvm_type_init); 3750 3751 typedef struct StatsArgs { 3752 union StatsResultsType { 3753 StatsResultList **stats; 3754 StatsSchemaList **schema; 3755 } result; 3756 strList *names; 3757 Error **errp; 3758 } StatsArgs; 3759 3760 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3761 uint64_t *stats_data, 3762 StatsList *stats_list, 3763 Error **errp) 3764 { 3765 3766 Stats *stats; 3767 uint64List *val_list = NULL; 3768 3769 /* Only add stats that we understand. */ 3770 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3771 case KVM_STATS_TYPE_CUMULATIVE: 3772 case KVM_STATS_TYPE_INSTANT: 3773 case KVM_STATS_TYPE_PEAK: 3774 case KVM_STATS_TYPE_LINEAR_HIST: 3775 case KVM_STATS_TYPE_LOG_HIST: 3776 break; 3777 default: 3778 return stats_list; 3779 } 3780 3781 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3782 case KVM_STATS_UNIT_NONE: 3783 case KVM_STATS_UNIT_BYTES: 3784 case KVM_STATS_UNIT_CYCLES: 3785 case KVM_STATS_UNIT_SECONDS: 3786 case KVM_STATS_UNIT_BOOLEAN: 3787 break; 3788 default: 3789 return stats_list; 3790 } 3791 3792 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3793 case KVM_STATS_BASE_POW10: 3794 case KVM_STATS_BASE_POW2: 3795 break; 3796 default: 3797 return stats_list; 3798 } 3799 3800 /* Alloc and populate data list */ 3801 stats = g_new0(Stats, 1); 3802 stats->name = g_strdup(pdesc->name); 3803 stats->value = g_new0(StatsValue, 1);; 3804 3805 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3806 stats->value->u.boolean = *stats_data; 3807 stats->value->type = QTYPE_QBOOL; 3808 } else if (pdesc->size == 1) { 3809 stats->value->u.scalar = *stats_data; 3810 stats->value->type = QTYPE_QNUM; 3811 } else { 3812 int i; 3813 for (i = 0; i < pdesc->size; i++) { 3814 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3815 } 3816 stats->value->u.list = val_list; 3817 stats->value->type = QTYPE_QLIST; 3818 } 3819 3820 QAPI_LIST_PREPEND(stats_list, stats); 3821 return stats_list; 3822 } 3823 3824 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3825 StatsSchemaValueList *list, 3826 Error **errp) 3827 { 3828 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3829 schema_entry->value = g_new0(StatsSchemaValue, 1); 3830 3831 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3832 case KVM_STATS_TYPE_CUMULATIVE: 3833 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3834 break; 3835 case KVM_STATS_TYPE_INSTANT: 3836 schema_entry->value->type = STATS_TYPE_INSTANT; 3837 break; 3838 case KVM_STATS_TYPE_PEAK: 3839 schema_entry->value->type = STATS_TYPE_PEAK; 3840 break; 3841 case KVM_STATS_TYPE_LINEAR_HIST: 3842 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3843 schema_entry->value->bucket_size = pdesc->bucket_size; 3844 schema_entry->value->has_bucket_size = true; 3845 break; 3846 case KVM_STATS_TYPE_LOG_HIST: 3847 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3848 break; 3849 default: 3850 goto exit; 3851 } 3852 3853 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3854 case KVM_STATS_UNIT_NONE: 3855 break; 3856 case KVM_STATS_UNIT_BOOLEAN: 3857 schema_entry->value->has_unit = true; 3858 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3859 break; 3860 case KVM_STATS_UNIT_BYTES: 3861 schema_entry->value->has_unit = true; 3862 schema_entry->value->unit = STATS_UNIT_BYTES; 3863 break; 3864 case KVM_STATS_UNIT_CYCLES: 3865 schema_entry->value->has_unit = true; 3866 schema_entry->value->unit = STATS_UNIT_CYCLES; 3867 break; 3868 case KVM_STATS_UNIT_SECONDS: 3869 schema_entry->value->has_unit = true; 3870 schema_entry->value->unit = STATS_UNIT_SECONDS; 3871 break; 3872 default: 3873 goto exit; 3874 } 3875 3876 schema_entry->value->exponent = pdesc->exponent; 3877 if (pdesc->exponent) { 3878 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3879 case KVM_STATS_BASE_POW10: 3880 schema_entry->value->has_base = true; 3881 schema_entry->value->base = 10; 3882 break; 3883 case KVM_STATS_BASE_POW2: 3884 schema_entry->value->has_base = true; 3885 schema_entry->value->base = 2; 3886 break; 3887 default: 3888 goto exit; 3889 } 3890 } 3891 3892 schema_entry->value->name = g_strdup(pdesc->name); 3893 schema_entry->next = list; 3894 return schema_entry; 3895 exit: 3896 g_free(schema_entry->value); 3897 g_free(schema_entry); 3898 return list; 3899 } 3900 3901 /* Cached stats descriptors */ 3902 typedef struct StatsDescriptors { 3903 const char *ident; /* cache key, currently the StatsTarget */ 3904 struct kvm_stats_desc *kvm_stats_desc; 3905 struct kvm_stats_header kvm_stats_header; 3906 QTAILQ_ENTRY(StatsDescriptors) next; 3907 } StatsDescriptors; 3908 3909 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3910 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3911 3912 /* 3913 * Return the descriptors for 'target', that either have already been read 3914 * or are retrieved from 'stats_fd'. 3915 */ 3916 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3917 Error **errp) 3918 { 3919 StatsDescriptors *descriptors; 3920 const char *ident; 3921 struct kvm_stats_desc *kvm_stats_desc; 3922 struct kvm_stats_header *kvm_stats_header; 3923 size_t size_desc; 3924 ssize_t ret; 3925 3926 ident = StatsTarget_str(target); 3927 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3928 if (g_str_equal(descriptors->ident, ident)) { 3929 return descriptors; 3930 } 3931 } 3932 3933 descriptors = g_new0(StatsDescriptors, 1); 3934 3935 /* Read stats header */ 3936 kvm_stats_header = &descriptors->kvm_stats_header; 3937 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header)); 3938 if (ret != sizeof(*kvm_stats_header)) { 3939 error_setg(errp, "KVM stats: failed to read stats header: " 3940 "expected %zu actual %zu", 3941 sizeof(*kvm_stats_header), ret); 3942 g_free(descriptors); 3943 return NULL; 3944 } 3945 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3946 3947 /* Read stats descriptors */ 3948 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3949 ret = pread(stats_fd, kvm_stats_desc, 3950 size_desc * kvm_stats_header->num_desc, 3951 kvm_stats_header->desc_offset); 3952 3953 if (ret != size_desc * kvm_stats_header->num_desc) { 3954 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3955 "expected %zu actual %zu", 3956 size_desc * kvm_stats_header->num_desc, ret); 3957 g_free(descriptors); 3958 g_free(kvm_stats_desc); 3959 return NULL; 3960 } 3961 descriptors->kvm_stats_desc = kvm_stats_desc; 3962 descriptors->ident = ident; 3963 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3964 return descriptors; 3965 } 3966 3967 static void query_stats(StatsResultList **result, StatsTarget target, 3968 strList *names, int stats_fd, Error **errp) 3969 { 3970 struct kvm_stats_desc *kvm_stats_desc; 3971 struct kvm_stats_header *kvm_stats_header; 3972 StatsDescriptors *descriptors; 3973 g_autofree uint64_t *stats_data = NULL; 3974 struct kvm_stats_desc *pdesc; 3975 StatsList *stats_list = NULL; 3976 size_t size_desc, size_data = 0; 3977 ssize_t ret; 3978 int i; 3979 3980 descriptors = find_stats_descriptors(target, stats_fd, errp); 3981 if (!descriptors) { 3982 return; 3983 } 3984 3985 kvm_stats_header = &descriptors->kvm_stats_header; 3986 kvm_stats_desc = descriptors->kvm_stats_desc; 3987 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3988 3989 /* Tally the total data size; read schema data */ 3990 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3991 pdesc = (void *)kvm_stats_desc + i * size_desc; 3992 size_data += pdesc->size * sizeof(*stats_data); 3993 } 3994 3995 stats_data = g_malloc0(size_data); 3996 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 3997 3998 if (ret != size_data) { 3999 error_setg(errp, "KVM stats: failed to read data: " 4000 "expected %zu actual %zu", size_data, ret); 4001 return; 4002 } 4003 4004 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4005 uint64_t *stats; 4006 pdesc = (void *)kvm_stats_desc + i * size_desc; 4007 4008 /* Add entry to the list */ 4009 stats = (void *)stats_data + pdesc->offset; 4010 if (!apply_str_list_filter(pdesc->name, names)) { 4011 continue; 4012 } 4013 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4014 } 4015 4016 if (!stats_list) { 4017 return; 4018 } 4019 4020 switch (target) { 4021 case STATS_TARGET_VM: 4022 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4023 break; 4024 case STATS_TARGET_VCPU: 4025 add_stats_entry(result, STATS_PROVIDER_KVM, 4026 current_cpu->parent_obj.canonical_path, 4027 stats_list); 4028 break; 4029 default: 4030 g_assert_not_reached(); 4031 } 4032 } 4033 4034 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4035 int stats_fd, Error **errp) 4036 { 4037 struct kvm_stats_desc *kvm_stats_desc; 4038 struct kvm_stats_header *kvm_stats_header; 4039 StatsDescriptors *descriptors; 4040 struct kvm_stats_desc *pdesc; 4041 StatsSchemaValueList *stats_list = NULL; 4042 size_t size_desc; 4043 int i; 4044 4045 descriptors = find_stats_descriptors(target, stats_fd, errp); 4046 if (!descriptors) { 4047 return; 4048 } 4049 4050 kvm_stats_header = &descriptors->kvm_stats_header; 4051 kvm_stats_desc = descriptors->kvm_stats_desc; 4052 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4053 4054 /* Tally the total data size; read schema data */ 4055 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4056 pdesc = (void *)kvm_stats_desc + i * size_desc; 4057 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4058 } 4059 4060 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4061 } 4062 4063 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data) 4064 { 4065 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 4066 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 4067 Error *local_err = NULL; 4068 4069 if (stats_fd == -1) { 4070 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4071 error_propagate(kvm_stats_args->errp, local_err); 4072 return; 4073 } 4074 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4075 kvm_stats_args->names, stats_fd, kvm_stats_args->errp); 4076 close(stats_fd); 4077 } 4078 4079 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data) 4080 { 4081 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr; 4082 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 4083 Error *local_err = NULL; 4084 4085 if (stats_fd == -1) { 4086 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4087 error_propagate(kvm_stats_args->errp, local_err); 4088 return; 4089 } 4090 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4091 kvm_stats_args->errp); 4092 close(stats_fd); 4093 } 4094 4095 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4096 strList *names, strList *targets, Error **errp) 4097 { 4098 KVMState *s = kvm_state; 4099 CPUState *cpu; 4100 int stats_fd; 4101 4102 switch (target) { 4103 case STATS_TARGET_VM: 4104 { 4105 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4106 if (stats_fd == -1) { 4107 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4108 return; 4109 } 4110 query_stats(result, target, names, stats_fd, errp); 4111 close(stats_fd); 4112 break; 4113 } 4114 case STATS_TARGET_VCPU: 4115 { 4116 StatsArgs stats_args; 4117 stats_args.result.stats = result; 4118 stats_args.names = names; 4119 stats_args.errp = errp; 4120 CPU_FOREACH(cpu) { 4121 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4122 continue; 4123 } 4124 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4125 } 4126 break; 4127 } 4128 default: 4129 break; 4130 } 4131 } 4132 4133 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4134 { 4135 StatsArgs stats_args; 4136 KVMState *s = kvm_state; 4137 int stats_fd; 4138 4139 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4140 if (stats_fd == -1) { 4141 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4142 return; 4143 } 4144 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4145 close(stats_fd); 4146 4147 if (first_cpu) { 4148 stats_args.result.schema = result; 4149 stats_args.errp = errp; 4150 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args)); 4151 } 4152 } 4153