1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 //#define DEBUG_KVM 73 74 #ifdef DEBUG_KVM 75 #define DPRINTF(fmt, ...) \ 76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 77 #else 78 #define DPRINTF(fmt, ...) \ 79 do { } while (0) 80 #endif 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 KVMState *kvm_state; 89 bool kvm_kernel_irqchip; 90 bool kvm_split_irqchip; 91 bool kvm_async_interrupts_allowed; 92 bool kvm_halt_in_kernel_allowed; 93 bool kvm_eventfds_allowed; 94 bool kvm_resamplefds_allowed; 95 bool kvm_msi_via_irqfd_allowed; 96 bool kvm_gsi_routing_allowed; 97 bool kvm_gsi_direct_mapping; 98 bool kvm_allowed; 99 bool kvm_readonly_mem_allowed; 100 bool kvm_vm_attributes_allowed; 101 bool kvm_ioeventfd_any_length_allowed; 102 bool kvm_msi_use_devid; 103 bool kvm_has_guest_debug; 104 static int kvm_sstep_flags; 105 static bool kvm_immediate_exit; 106 static hwaddr kvm_max_slot_size = ~0; 107 108 static const KVMCapabilityInfo kvm_required_capabilites[] = { 109 KVM_CAP_INFO(USER_MEMORY), 110 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 111 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 112 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 113 KVM_CAP_LAST_INFO 114 }; 115 116 static NotifierList kvm_irqchip_change_notifiers = 117 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 118 119 struct KVMResampleFd { 120 int gsi; 121 EventNotifier *resample_event; 122 QLIST_ENTRY(KVMResampleFd) node; 123 }; 124 typedef struct KVMResampleFd KVMResampleFd; 125 126 /* 127 * Only used with split irqchip where we need to do the resample fd 128 * kick for the kernel from userspace. 129 */ 130 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 131 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 132 133 static QemuMutex kml_slots_lock; 134 135 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 136 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 137 138 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 139 140 static inline void kvm_resample_fd_remove(int gsi) 141 { 142 KVMResampleFd *rfd; 143 144 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 145 if (rfd->gsi == gsi) { 146 QLIST_REMOVE(rfd, node); 147 g_free(rfd); 148 break; 149 } 150 } 151 } 152 153 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 154 { 155 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 156 157 rfd->gsi = gsi; 158 rfd->resample_event = event; 159 160 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 161 } 162 163 void kvm_resample_fd_notify(int gsi) 164 { 165 KVMResampleFd *rfd; 166 167 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 168 if (rfd->gsi == gsi) { 169 event_notifier_set(rfd->resample_event); 170 trace_kvm_resample_fd_notify(gsi); 171 return; 172 } 173 } 174 } 175 176 unsigned int kvm_get_max_memslots(void) 177 { 178 KVMState *s = KVM_STATE(current_accel()); 179 180 return s->nr_slots; 181 } 182 183 unsigned int kvm_get_free_memslots(void) 184 { 185 unsigned int used_slots = 0; 186 KVMState *s = kvm_state; 187 int i; 188 189 kvm_slots_lock(); 190 for (i = 0; i < s->nr_as; i++) { 191 if (!s->as[i].ml) { 192 continue; 193 } 194 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 195 } 196 kvm_slots_unlock(); 197 198 return s->nr_slots - used_slots; 199 } 200 201 /* Called with KVMMemoryListener.slots_lock held */ 202 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 203 { 204 KVMState *s = kvm_state; 205 int i; 206 207 for (i = 0; i < s->nr_slots; i++) { 208 if (kml->slots[i].memory_size == 0) { 209 return &kml->slots[i]; 210 } 211 } 212 213 return NULL; 214 } 215 216 /* Called with KVMMemoryListener.slots_lock held */ 217 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 218 { 219 KVMSlot *slot = kvm_get_free_slot(kml); 220 221 if (slot) { 222 return slot; 223 } 224 225 fprintf(stderr, "%s: no free slot available\n", __func__); 226 abort(); 227 } 228 229 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 230 hwaddr start_addr, 231 hwaddr size) 232 { 233 KVMState *s = kvm_state; 234 int i; 235 236 for (i = 0; i < s->nr_slots; i++) { 237 KVMSlot *mem = &kml->slots[i]; 238 239 if (start_addr == mem->start_addr && size == mem->memory_size) { 240 return mem; 241 } 242 } 243 244 return NULL; 245 } 246 247 /* 248 * Calculate and align the start address and the size of the section. 249 * Return the size. If the size is 0, the aligned section is empty. 250 */ 251 static hwaddr kvm_align_section(MemoryRegionSection *section, 252 hwaddr *start) 253 { 254 hwaddr size = int128_get64(section->size); 255 hwaddr delta, aligned; 256 257 /* kvm works in page size chunks, but the function may be called 258 with sub-page size and unaligned start address. Pad the start 259 address to next and truncate size to previous page boundary. */ 260 aligned = ROUND_UP(section->offset_within_address_space, 261 qemu_real_host_page_size()); 262 delta = aligned - section->offset_within_address_space; 263 *start = aligned; 264 if (delta > size) { 265 return 0; 266 } 267 268 return (size - delta) & qemu_real_host_page_mask(); 269 } 270 271 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 272 hwaddr *phys_addr) 273 { 274 KVMMemoryListener *kml = &s->memory_listener; 275 int i, ret = 0; 276 277 kvm_slots_lock(); 278 for (i = 0; i < s->nr_slots; i++) { 279 KVMSlot *mem = &kml->slots[i]; 280 281 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 282 *phys_addr = mem->start_addr + (ram - mem->ram); 283 ret = 1; 284 break; 285 } 286 } 287 kvm_slots_unlock(); 288 289 return ret; 290 } 291 292 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 293 { 294 KVMState *s = kvm_state; 295 struct kvm_userspace_memory_region mem; 296 int ret; 297 298 mem.slot = slot->slot | (kml->as_id << 16); 299 mem.guest_phys_addr = slot->start_addr; 300 mem.userspace_addr = (unsigned long)slot->ram; 301 mem.flags = slot->flags; 302 303 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 304 /* Set the slot size to 0 before setting the slot to the desired 305 * value. This is needed based on KVM commit 75d61fbc. */ 306 mem.memory_size = 0; 307 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 308 if (ret < 0) { 309 goto err; 310 } 311 } 312 mem.memory_size = slot->memory_size; 313 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 314 slot->old_flags = mem.flags; 315 err: 316 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 317 mem.memory_size, mem.userspace_addr, ret); 318 if (ret < 0) { 319 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 320 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 321 __func__, mem.slot, slot->start_addr, 322 (uint64_t)mem.memory_size, strerror(errno)); 323 } 324 return ret; 325 } 326 327 static int do_kvm_destroy_vcpu(CPUState *cpu) 328 { 329 KVMState *s = kvm_state; 330 long mmap_size; 331 struct KVMParkedVcpu *vcpu = NULL; 332 int ret = 0; 333 334 DPRINTF("kvm_destroy_vcpu\n"); 335 336 ret = kvm_arch_destroy_vcpu(cpu); 337 if (ret < 0) { 338 goto err; 339 } 340 341 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 342 if (mmap_size < 0) { 343 ret = mmap_size; 344 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 345 goto err; 346 } 347 348 ret = munmap(cpu->kvm_run, mmap_size); 349 if (ret < 0) { 350 goto err; 351 } 352 353 if (cpu->kvm_dirty_gfns) { 354 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 355 if (ret < 0) { 356 goto err; 357 } 358 } 359 360 vcpu = g_malloc0(sizeof(*vcpu)); 361 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 362 vcpu->kvm_fd = cpu->kvm_fd; 363 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 364 err: 365 return ret; 366 } 367 368 void kvm_destroy_vcpu(CPUState *cpu) 369 { 370 if (do_kvm_destroy_vcpu(cpu) < 0) { 371 error_report("kvm_destroy_vcpu failed"); 372 exit(EXIT_FAILURE); 373 } 374 } 375 376 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 377 { 378 struct KVMParkedVcpu *cpu; 379 380 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 381 if (cpu->vcpu_id == vcpu_id) { 382 int kvm_fd; 383 384 QLIST_REMOVE(cpu, node); 385 kvm_fd = cpu->kvm_fd; 386 g_free(cpu); 387 return kvm_fd; 388 } 389 } 390 391 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 392 } 393 394 int kvm_init_vcpu(CPUState *cpu, Error **errp) 395 { 396 KVMState *s = kvm_state; 397 long mmap_size; 398 int ret; 399 400 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 401 402 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 403 if (ret < 0) { 404 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 405 kvm_arch_vcpu_id(cpu)); 406 goto err; 407 } 408 409 cpu->kvm_fd = ret; 410 cpu->kvm_state = s; 411 cpu->vcpu_dirty = true; 412 cpu->dirty_pages = 0; 413 cpu->throttle_us_per_full = 0; 414 415 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 416 if (mmap_size < 0) { 417 ret = mmap_size; 418 error_setg_errno(errp, -mmap_size, 419 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 420 goto err; 421 } 422 423 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 424 cpu->kvm_fd, 0); 425 if (cpu->kvm_run == MAP_FAILED) { 426 ret = -errno; 427 error_setg_errno(errp, ret, 428 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 429 kvm_arch_vcpu_id(cpu)); 430 goto err; 431 } 432 433 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 434 s->coalesced_mmio_ring = 435 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 436 } 437 438 if (s->kvm_dirty_ring_size) { 439 /* Use MAP_SHARED to share pages with the kernel */ 440 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 441 PROT_READ | PROT_WRITE, MAP_SHARED, 442 cpu->kvm_fd, 443 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 444 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 445 ret = -errno; 446 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 447 goto err; 448 } 449 } 450 451 ret = kvm_arch_init_vcpu(cpu); 452 if (ret < 0) { 453 error_setg_errno(errp, -ret, 454 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 455 kvm_arch_vcpu_id(cpu)); 456 } 457 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 458 459 err: 460 return ret; 461 } 462 463 /* 464 * dirty pages logging control 465 */ 466 467 static int kvm_mem_flags(MemoryRegion *mr) 468 { 469 bool readonly = mr->readonly || memory_region_is_romd(mr); 470 int flags = 0; 471 472 if (memory_region_get_dirty_log_mask(mr) != 0) { 473 flags |= KVM_MEM_LOG_DIRTY_PAGES; 474 } 475 if (readonly && kvm_readonly_mem_allowed) { 476 flags |= KVM_MEM_READONLY; 477 } 478 return flags; 479 } 480 481 /* Called with KVMMemoryListener.slots_lock held */ 482 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 483 MemoryRegion *mr) 484 { 485 mem->flags = kvm_mem_flags(mr); 486 487 /* If nothing changed effectively, no need to issue ioctl */ 488 if (mem->flags == mem->old_flags) { 489 return 0; 490 } 491 492 kvm_slot_init_dirty_bitmap(mem); 493 return kvm_set_user_memory_region(kml, mem, false); 494 } 495 496 static int kvm_section_update_flags(KVMMemoryListener *kml, 497 MemoryRegionSection *section) 498 { 499 hwaddr start_addr, size, slot_size; 500 KVMSlot *mem; 501 int ret = 0; 502 503 size = kvm_align_section(section, &start_addr); 504 if (!size) { 505 return 0; 506 } 507 508 kvm_slots_lock(); 509 510 while (size && !ret) { 511 slot_size = MIN(kvm_max_slot_size, size); 512 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 513 if (!mem) { 514 /* We don't have a slot if we want to trap every access. */ 515 goto out; 516 } 517 518 ret = kvm_slot_update_flags(kml, mem, section->mr); 519 start_addr += slot_size; 520 size -= slot_size; 521 } 522 523 out: 524 kvm_slots_unlock(); 525 return ret; 526 } 527 528 static void kvm_log_start(MemoryListener *listener, 529 MemoryRegionSection *section, 530 int old, int new) 531 { 532 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 533 int r; 534 535 if (old != 0) { 536 return; 537 } 538 539 r = kvm_section_update_flags(kml, section); 540 if (r < 0) { 541 abort(); 542 } 543 } 544 545 static void kvm_log_stop(MemoryListener *listener, 546 MemoryRegionSection *section, 547 int old, int new) 548 { 549 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 550 int r; 551 552 if (new != 0) { 553 return; 554 } 555 556 r = kvm_section_update_flags(kml, section); 557 if (r < 0) { 558 abort(); 559 } 560 } 561 562 /* get kvm's dirty pages bitmap and update qemu's */ 563 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 564 { 565 ram_addr_t start = slot->ram_start_offset; 566 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 567 568 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 569 } 570 571 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 572 { 573 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 574 } 575 576 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 577 578 /* Allocate the dirty bitmap for a slot */ 579 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 580 { 581 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 582 return; 583 } 584 585 /* 586 * XXX bad kernel interface alert 587 * For dirty bitmap, kernel allocates array of size aligned to 588 * bits-per-long. But for case when the kernel is 64bits and 589 * the userspace is 32bits, userspace can't align to the same 590 * bits-per-long, since sizeof(long) is different between kernel 591 * and user space. This way, userspace will provide buffer which 592 * may be 4 bytes less than the kernel will use, resulting in 593 * userspace memory corruption (which is not detectable by valgrind 594 * too, in most cases). 595 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 596 * a hope that sizeof(long) won't become >8 any time soon. 597 * 598 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 599 * And mem->memory_size is aligned to it (otherwise this mem can't 600 * be registered to KVM). 601 */ 602 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 603 /*HOST_LONG_BITS*/ 64) / 8; 604 mem->dirty_bmap = g_malloc0(bitmap_size); 605 mem->dirty_bmap_size = bitmap_size; 606 } 607 608 /* 609 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 610 * succeeded, false otherwise 611 */ 612 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 613 { 614 struct kvm_dirty_log d = {}; 615 int ret; 616 617 d.dirty_bitmap = slot->dirty_bmap; 618 d.slot = slot->slot | (slot->as_id << 16); 619 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 620 621 if (ret == -ENOENT) { 622 /* kernel does not have dirty bitmap in this slot */ 623 ret = 0; 624 } 625 if (ret) { 626 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 627 __func__, ret); 628 } 629 return ret == 0; 630 } 631 632 /* Should be with all slots_lock held for the address spaces. */ 633 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 634 uint32_t slot_id, uint64_t offset) 635 { 636 KVMMemoryListener *kml; 637 KVMSlot *mem; 638 639 if (as_id >= s->nr_as) { 640 return; 641 } 642 643 kml = s->as[as_id].ml; 644 mem = &kml->slots[slot_id]; 645 646 if (!mem->memory_size || offset >= 647 (mem->memory_size / qemu_real_host_page_size())) { 648 return; 649 } 650 651 set_bit(offset, mem->dirty_bmap); 652 } 653 654 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 655 { 656 /* 657 * Read the flags before the value. Pairs with barrier in 658 * KVM's kvm_dirty_ring_push() function. 659 */ 660 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 661 } 662 663 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 664 { 665 /* 666 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 667 * sees the full content of the ring: 668 * 669 * CPU0 CPU1 CPU2 670 * ------------------------------------------------------------------------------ 671 * fill gfn0 672 * store-rel flags for gfn0 673 * load-acq flags for gfn0 674 * store-rel RESET for gfn0 675 * ioctl(RESET_RINGS) 676 * load-acq flags for gfn0 677 * check if flags have RESET 678 * 679 * The synchronization goes from CPU2 to CPU0 to CPU1. 680 */ 681 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 682 } 683 684 /* 685 * Should be with all slots_lock held for the address spaces. It returns the 686 * dirty page we've collected on this dirty ring. 687 */ 688 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 689 { 690 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 691 uint32_t ring_size = s->kvm_dirty_ring_size; 692 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 693 694 /* 695 * It's possible that we race with vcpu creation code where the vcpu is 696 * put onto the vcpus list but not yet initialized the dirty ring 697 * structures. If so, skip it. 698 */ 699 if (!cpu->created) { 700 return 0; 701 } 702 703 assert(dirty_gfns && ring_size); 704 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 705 706 while (true) { 707 cur = &dirty_gfns[fetch % ring_size]; 708 if (!dirty_gfn_is_dirtied(cur)) { 709 break; 710 } 711 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 712 cur->offset); 713 dirty_gfn_set_collected(cur); 714 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 715 fetch++; 716 count++; 717 } 718 cpu->kvm_fetch_index = fetch; 719 cpu->dirty_pages += count; 720 721 return count; 722 } 723 724 /* Must be with slots_lock held */ 725 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 726 { 727 int ret; 728 uint64_t total = 0; 729 int64_t stamp; 730 731 stamp = get_clock(); 732 733 if (cpu) { 734 total = kvm_dirty_ring_reap_one(s, cpu); 735 } else { 736 CPU_FOREACH(cpu) { 737 total += kvm_dirty_ring_reap_one(s, cpu); 738 } 739 } 740 741 if (total) { 742 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 743 assert(ret == total); 744 } 745 746 stamp = get_clock() - stamp; 747 748 if (total) { 749 trace_kvm_dirty_ring_reap(total, stamp / 1000); 750 } 751 752 return total; 753 } 754 755 /* 756 * Currently for simplicity, we must hold BQL before calling this. We can 757 * consider to drop the BQL if we're clear with all the race conditions. 758 */ 759 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 760 { 761 uint64_t total; 762 763 /* 764 * We need to lock all kvm slots for all address spaces here, 765 * because: 766 * 767 * (1) We need to mark dirty for dirty bitmaps in multiple slots 768 * and for tons of pages, so it's better to take the lock here 769 * once rather than once per page. And more importantly, 770 * 771 * (2) We must _NOT_ publish dirty bits to the other threads 772 * (e.g., the migration thread) via the kvm memory slot dirty 773 * bitmaps before correctly re-protect those dirtied pages. 774 * Otherwise we can have potential risk of data corruption if 775 * the page data is read in the other thread before we do 776 * reset below. 777 */ 778 kvm_slots_lock(); 779 total = kvm_dirty_ring_reap_locked(s, cpu); 780 kvm_slots_unlock(); 781 782 return total; 783 } 784 785 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 786 { 787 /* No need to do anything */ 788 } 789 790 /* 791 * Kick all vcpus out in a synchronized way. When returned, we 792 * guarantee that every vcpu has been kicked and at least returned to 793 * userspace once. 794 */ 795 static void kvm_cpu_synchronize_kick_all(void) 796 { 797 CPUState *cpu; 798 799 CPU_FOREACH(cpu) { 800 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 801 } 802 } 803 804 /* 805 * Flush all the existing dirty pages to the KVM slot buffers. When 806 * this call returns, we guarantee that all the touched dirty pages 807 * before calling this function have been put into the per-kvmslot 808 * dirty bitmap. 809 * 810 * This function must be called with BQL held. 811 */ 812 static void kvm_dirty_ring_flush(void) 813 { 814 trace_kvm_dirty_ring_flush(0); 815 /* 816 * The function needs to be serialized. Since this function 817 * should always be with BQL held, serialization is guaranteed. 818 * However, let's be sure of it. 819 */ 820 assert(qemu_mutex_iothread_locked()); 821 /* 822 * First make sure to flush the hardware buffers by kicking all 823 * vcpus out in a synchronous way. 824 */ 825 kvm_cpu_synchronize_kick_all(); 826 kvm_dirty_ring_reap(kvm_state, NULL); 827 trace_kvm_dirty_ring_flush(1); 828 } 829 830 /** 831 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 832 * 833 * This function will first try to fetch dirty bitmap from the kernel, 834 * and then updates qemu's dirty bitmap. 835 * 836 * NOTE: caller must be with kml->slots_lock held. 837 * 838 * @kml: the KVM memory listener object 839 * @section: the memory section to sync the dirty bitmap with 840 */ 841 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 842 MemoryRegionSection *section) 843 { 844 KVMState *s = kvm_state; 845 KVMSlot *mem; 846 hwaddr start_addr, size; 847 hwaddr slot_size; 848 849 size = kvm_align_section(section, &start_addr); 850 while (size) { 851 slot_size = MIN(kvm_max_slot_size, size); 852 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 853 if (!mem) { 854 /* We don't have a slot if we want to trap every access. */ 855 return; 856 } 857 if (kvm_slot_get_dirty_log(s, mem)) { 858 kvm_slot_sync_dirty_pages(mem); 859 } 860 start_addr += slot_size; 861 size -= slot_size; 862 } 863 } 864 865 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 866 #define KVM_CLEAR_LOG_SHIFT 6 867 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 868 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 869 870 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 871 uint64_t size) 872 { 873 KVMState *s = kvm_state; 874 uint64_t end, bmap_start, start_delta, bmap_npages; 875 struct kvm_clear_dirty_log d; 876 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 877 int ret; 878 879 /* 880 * We need to extend either the start or the size or both to 881 * satisfy the KVM interface requirement. Firstly, do the start 882 * page alignment on 64 host pages 883 */ 884 bmap_start = start & KVM_CLEAR_LOG_MASK; 885 start_delta = start - bmap_start; 886 bmap_start /= psize; 887 888 /* 889 * The kernel interface has restriction on the size too, that either: 890 * 891 * (1) the size is 64 host pages aligned (just like the start), or 892 * (2) the size fills up until the end of the KVM memslot. 893 */ 894 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 895 << KVM_CLEAR_LOG_SHIFT; 896 end = mem->memory_size / psize; 897 if (bmap_npages > end - bmap_start) { 898 bmap_npages = end - bmap_start; 899 } 900 start_delta /= psize; 901 902 /* 903 * Prepare the bitmap to clear dirty bits. Here we must guarantee 904 * that we won't clear any unknown dirty bits otherwise we might 905 * accidentally clear some set bits which are not yet synced from 906 * the kernel into QEMU's bitmap, then we'll lose track of the 907 * guest modifications upon those pages (which can directly lead 908 * to guest data loss or panic after migration). 909 * 910 * Layout of the KVMSlot.dirty_bmap: 911 * 912 * |<-------- bmap_npages -----------..>| 913 * [1] 914 * start_delta size 915 * |----------------|-------------|------------------|------------| 916 * ^ ^ ^ ^ 917 * | | | | 918 * start bmap_start (start) end 919 * of memslot of memslot 920 * 921 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 922 */ 923 924 assert(bmap_start % BITS_PER_LONG == 0); 925 /* We should never do log_clear before log_sync */ 926 assert(mem->dirty_bmap); 927 if (start_delta || bmap_npages - size / psize) { 928 /* Slow path - we need to manipulate a temp bitmap */ 929 bmap_clear = bitmap_new(bmap_npages); 930 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 931 bmap_start, start_delta + size / psize); 932 /* 933 * We need to fill the holes at start because that was not 934 * specified by the caller and we extended the bitmap only for 935 * 64 pages alignment 936 */ 937 bitmap_clear(bmap_clear, 0, start_delta); 938 d.dirty_bitmap = bmap_clear; 939 } else { 940 /* 941 * Fast path - both start and size align well with BITS_PER_LONG 942 * (or the end of memory slot) 943 */ 944 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 945 } 946 947 d.first_page = bmap_start; 948 /* It should never overflow. If it happens, say something */ 949 assert(bmap_npages <= UINT32_MAX); 950 d.num_pages = bmap_npages; 951 d.slot = mem->slot | (as_id << 16); 952 953 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 954 if (ret < 0 && ret != -ENOENT) { 955 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 956 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 957 __func__, d.slot, (uint64_t)d.first_page, 958 (uint32_t)d.num_pages, ret); 959 } else { 960 ret = 0; 961 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 962 } 963 964 /* 965 * After we have updated the remote dirty bitmap, we update the 966 * cached bitmap as well for the memslot, then if another user 967 * clears the same region we know we shouldn't clear it again on 968 * the remote otherwise it's data loss as well. 969 */ 970 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 971 size / psize); 972 /* This handles the NULL case well */ 973 g_free(bmap_clear); 974 return ret; 975 } 976 977 978 /** 979 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 980 * 981 * NOTE: this will be a no-op if we haven't enabled manual dirty log 982 * protection in the host kernel because in that case this operation 983 * will be done within log_sync(). 984 * 985 * @kml: the kvm memory listener 986 * @section: the memory range to clear dirty bitmap 987 */ 988 static int kvm_physical_log_clear(KVMMemoryListener *kml, 989 MemoryRegionSection *section) 990 { 991 KVMState *s = kvm_state; 992 uint64_t start, size, offset, count; 993 KVMSlot *mem; 994 int ret = 0, i; 995 996 if (!s->manual_dirty_log_protect) { 997 /* No need to do explicit clear */ 998 return ret; 999 } 1000 1001 start = section->offset_within_address_space; 1002 size = int128_get64(section->size); 1003 1004 if (!size) { 1005 /* Nothing more we can do... */ 1006 return ret; 1007 } 1008 1009 kvm_slots_lock(); 1010 1011 for (i = 0; i < s->nr_slots; i++) { 1012 mem = &kml->slots[i]; 1013 /* Discard slots that are empty or do not overlap the section */ 1014 if (!mem->memory_size || 1015 mem->start_addr > start + size - 1 || 1016 start > mem->start_addr + mem->memory_size - 1) { 1017 continue; 1018 } 1019 1020 if (start >= mem->start_addr) { 1021 /* The slot starts before section or is aligned to it. */ 1022 offset = start - mem->start_addr; 1023 count = MIN(mem->memory_size - offset, size); 1024 } else { 1025 /* The slot starts after section. */ 1026 offset = 0; 1027 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1028 } 1029 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1030 if (ret < 0) { 1031 break; 1032 } 1033 } 1034 1035 kvm_slots_unlock(); 1036 1037 return ret; 1038 } 1039 1040 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1041 MemoryRegionSection *secion, 1042 hwaddr start, hwaddr size) 1043 { 1044 KVMState *s = kvm_state; 1045 1046 if (s->coalesced_mmio) { 1047 struct kvm_coalesced_mmio_zone zone; 1048 1049 zone.addr = start; 1050 zone.size = size; 1051 zone.pad = 0; 1052 1053 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1054 } 1055 } 1056 1057 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1058 MemoryRegionSection *secion, 1059 hwaddr start, hwaddr size) 1060 { 1061 KVMState *s = kvm_state; 1062 1063 if (s->coalesced_mmio) { 1064 struct kvm_coalesced_mmio_zone zone; 1065 1066 zone.addr = start; 1067 zone.size = size; 1068 zone.pad = 0; 1069 1070 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1071 } 1072 } 1073 1074 static void kvm_coalesce_pio_add(MemoryListener *listener, 1075 MemoryRegionSection *section, 1076 hwaddr start, hwaddr size) 1077 { 1078 KVMState *s = kvm_state; 1079 1080 if (s->coalesced_pio) { 1081 struct kvm_coalesced_mmio_zone zone; 1082 1083 zone.addr = start; 1084 zone.size = size; 1085 zone.pio = 1; 1086 1087 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1088 } 1089 } 1090 1091 static void kvm_coalesce_pio_del(MemoryListener *listener, 1092 MemoryRegionSection *section, 1093 hwaddr start, hwaddr size) 1094 { 1095 KVMState *s = kvm_state; 1096 1097 if (s->coalesced_pio) { 1098 struct kvm_coalesced_mmio_zone zone; 1099 1100 zone.addr = start; 1101 zone.size = size; 1102 zone.pio = 1; 1103 1104 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1105 } 1106 } 1107 1108 static MemoryListener kvm_coalesced_pio_listener = { 1109 .name = "kvm-coalesced-pio", 1110 .coalesced_io_add = kvm_coalesce_pio_add, 1111 .coalesced_io_del = kvm_coalesce_pio_del, 1112 .priority = MEMORY_LISTENER_PRIORITY_MIN, 1113 }; 1114 1115 int kvm_check_extension(KVMState *s, unsigned int extension) 1116 { 1117 int ret; 1118 1119 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1120 if (ret < 0) { 1121 ret = 0; 1122 } 1123 1124 return ret; 1125 } 1126 1127 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1128 { 1129 int ret; 1130 1131 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1132 if (ret < 0) { 1133 /* VM wide version not implemented, use global one instead */ 1134 ret = kvm_check_extension(s, extension); 1135 } 1136 1137 return ret; 1138 } 1139 1140 typedef struct HWPoisonPage { 1141 ram_addr_t ram_addr; 1142 QLIST_ENTRY(HWPoisonPage) list; 1143 } HWPoisonPage; 1144 1145 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1146 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1147 1148 static void kvm_unpoison_all(void *param) 1149 { 1150 HWPoisonPage *page, *next_page; 1151 1152 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1153 QLIST_REMOVE(page, list); 1154 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1155 g_free(page); 1156 } 1157 } 1158 1159 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1160 { 1161 HWPoisonPage *page; 1162 1163 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1164 if (page->ram_addr == ram_addr) { 1165 return; 1166 } 1167 } 1168 page = g_new(HWPoisonPage, 1); 1169 page->ram_addr = ram_addr; 1170 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1171 } 1172 1173 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1174 { 1175 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1176 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1177 * endianness, but the memory core hands them in target endianness. 1178 * For example, PPC is always treated as big-endian even if running 1179 * on KVM and on PPC64LE. Correct here. 1180 */ 1181 switch (size) { 1182 case 2: 1183 val = bswap16(val); 1184 break; 1185 case 4: 1186 val = bswap32(val); 1187 break; 1188 } 1189 #endif 1190 return val; 1191 } 1192 1193 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1194 bool assign, uint32_t size, bool datamatch) 1195 { 1196 int ret; 1197 struct kvm_ioeventfd iofd = { 1198 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1199 .addr = addr, 1200 .len = size, 1201 .flags = 0, 1202 .fd = fd, 1203 }; 1204 1205 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1206 datamatch); 1207 if (!kvm_enabled()) { 1208 return -ENOSYS; 1209 } 1210 1211 if (datamatch) { 1212 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1213 } 1214 if (!assign) { 1215 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1216 } 1217 1218 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1219 1220 if (ret < 0) { 1221 return -errno; 1222 } 1223 1224 return 0; 1225 } 1226 1227 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1228 bool assign, uint32_t size, bool datamatch) 1229 { 1230 struct kvm_ioeventfd kick = { 1231 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1232 .addr = addr, 1233 .flags = KVM_IOEVENTFD_FLAG_PIO, 1234 .len = size, 1235 .fd = fd, 1236 }; 1237 int r; 1238 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1239 if (!kvm_enabled()) { 1240 return -ENOSYS; 1241 } 1242 if (datamatch) { 1243 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1244 } 1245 if (!assign) { 1246 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1247 } 1248 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1249 if (r < 0) { 1250 return r; 1251 } 1252 return 0; 1253 } 1254 1255 1256 static int kvm_check_many_ioeventfds(void) 1257 { 1258 /* Userspace can use ioeventfd for io notification. This requires a host 1259 * that supports eventfd(2) and an I/O thread; since eventfd does not 1260 * support SIGIO it cannot interrupt the vcpu. 1261 * 1262 * Older kernels have a 6 device limit on the KVM io bus. Find out so we 1263 * can avoid creating too many ioeventfds. 1264 */ 1265 #if defined(CONFIG_EVENTFD) 1266 int ioeventfds[7]; 1267 int i, ret = 0; 1268 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { 1269 ioeventfds[i] = eventfd(0, EFD_CLOEXEC); 1270 if (ioeventfds[i] < 0) { 1271 break; 1272 } 1273 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); 1274 if (ret < 0) { 1275 close(ioeventfds[i]); 1276 break; 1277 } 1278 } 1279 1280 /* Decide whether many devices are supported or not */ 1281 ret = i == ARRAY_SIZE(ioeventfds); 1282 1283 while (i-- > 0) { 1284 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); 1285 close(ioeventfds[i]); 1286 } 1287 return ret; 1288 #else 1289 return 0; 1290 #endif 1291 } 1292 1293 static const KVMCapabilityInfo * 1294 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1295 { 1296 while (list->name) { 1297 if (!kvm_check_extension(s, list->value)) { 1298 return list; 1299 } 1300 list++; 1301 } 1302 return NULL; 1303 } 1304 1305 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1306 { 1307 g_assert( 1308 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1309 ); 1310 kvm_max_slot_size = max_slot_size; 1311 } 1312 1313 /* Called with KVMMemoryListener.slots_lock held */ 1314 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1315 MemoryRegionSection *section, bool add) 1316 { 1317 KVMSlot *mem; 1318 int err; 1319 MemoryRegion *mr = section->mr; 1320 bool writable = !mr->readonly && !mr->rom_device; 1321 hwaddr start_addr, size, slot_size, mr_offset; 1322 ram_addr_t ram_start_offset; 1323 void *ram; 1324 1325 if (!memory_region_is_ram(mr)) { 1326 if (writable || !kvm_readonly_mem_allowed) { 1327 return; 1328 } else if (!mr->romd_mode) { 1329 /* If the memory device is not in romd_mode, then we actually want 1330 * to remove the kvm memory slot so all accesses will trap. */ 1331 add = false; 1332 } 1333 } 1334 1335 size = kvm_align_section(section, &start_addr); 1336 if (!size) { 1337 return; 1338 } 1339 1340 /* The offset of the kvmslot within the memory region */ 1341 mr_offset = section->offset_within_region + start_addr - 1342 section->offset_within_address_space; 1343 1344 /* use aligned delta to align the ram address and offset */ 1345 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1346 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1347 1348 if (!add) { 1349 do { 1350 slot_size = MIN(kvm_max_slot_size, size); 1351 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1352 if (!mem) { 1353 return; 1354 } 1355 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1356 /* 1357 * NOTE: We should be aware of the fact that here we're only 1358 * doing a best effort to sync dirty bits. No matter whether 1359 * we're using dirty log or dirty ring, we ignored two facts: 1360 * 1361 * (1) dirty bits can reside in hardware buffers (PML) 1362 * 1363 * (2) after we collected dirty bits here, pages can be dirtied 1364 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1365 * remove the slot. 1366 * 1367 * Not easy. Let's cross the fingers until it's fixed. 1368 */ 1369 if (kvm_state->kvm_dirty_ring_size) { 1370 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1371 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1372 kvm_slot_sync_dirty_pages(mem); 1373 kvm_slot_get_dirty_log(kvm_state, mem); 1374 } 1375 } else { 1376 kvm_slot_get_dirty_log(kvm_state, mem); 1377 } 1378 kvm_slot_sync_dirty_pages(mem); 1379 } 1380 1381 /* unregister the slot */ 1382 g_free(mem->dirty_bmap); 1383 mem->dirty_bmap = NULL; 1384 mem->memory_size = 0; 1385 mem->flags = 0; 1386 err = kvm_set_user_memory_region(kml, mem, false); 1387 if (err) { 1388 fprintf(stderr, "%s: error unregistering slot: %s\n", 1389 __func__, strerror(-err)); 1390 abort(); 1391 } 1392 start_addr += slot_size; 1393 size -= slot_size; 1394 kml->nr_used_slots--; 1395 } while (size); 1396 return; 1397 } 1398 1399 /* register the new slot */ 1400 do { 1401 slot_size = MIN(kvm_max_slot_size, size); 1402 mem = kvm_alloc_slot(kml); 1403 mem->as_id = kml->as_id; 1404 mem->memory_size = slot_size; 1405 mem->start_addr = start_addr; 1406 mem->ram_start_offset = ram_start_offset; 1407 mem->ram = ram; 1408 mem->flags = kvm_mem_flags(mr); 1409 kvm_slot_init_dirty_bitmap(mem); 1410 err = kvm_set_user_memory_region(kml, mem, true); 1411 if (err) { 1412 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1413 strerror(-err)); 1414 abort(); 1415 } 1416 start_addr += slot_size; 1417 ram_start_offset += slot_size; 1418 ram += slot_size; 1419 size -= slot_size; 1420 kml->nr_used_slots++; 1421 } while (size); 1422 } 1423 1424 static void *kvm_dirty_ring_reaper_thread(void *data) 1425 { 1426 KVMState *s = data; 1427 struct KVMDirtyRingReaper *r = &s->reaper; 1428 1429 rcu_register_thread(); 1430 1431 trace_kvm_dirty_ring_reaper("init"); 1432 1433 while (true) { 1434 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1435 trace_kvm_dirty_ring_reaper("wait"); 1436 /* 1437 * TODO: provide a smarter timeout rather than a constant? 1438 */ 1439 sleep(1); 1440 1441 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1442 if (dirtylimit_in_service()) { 1443 continue; 1444 } 1445 1446 trace_kvm_dirty_ring_reaper("wakeup"); 1447 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1448 1449 qemu_mutex_lock_iothread(); 1450 kvm_dirty_ring_reap(s, NULL); 1451 qemu_mutex_unlock_iothread(); 1452 1453 r->reaper_iteration++; 1454 } 1455 1456 trace_kvm_dirty_ring_reaper("exit"); 1457 1458 rcu_unregister_thread(); 1459 1460 return NULL; 1461 } 1462 1463 static void kvm_dirty_ring_reaper_init(KVMState *s) 1464 { 1465 struct KVMDirtyRingReaper *r = &s->reaper; 1466 1467 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1468 kvm_dirty_ring_reaper_thread, 1469 s, QEMU_THREAD_JOINABLE); 1470 } 1471 1472 static int kvm_dirty_ring_init(KVMState *s) 1473 { 1474 uint32_t ring_size = s->kvm_dirty_ring_size; 1475 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1476 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1477 int ret; 1478 1479 s->kvm_dirty_ring_size = 0; 1480 s->kvm_dirty_ring_bytes = 0; 1481 1482 /* Bail if the dirty ring size isn't specified */ 1483 if (!ring_size) { 1484 return 0; 1485 } 1486 1487 /* 1488 * Read the max supported pages. Fall back to dirty logging mode 1489 * if the dirty ring isn't supported. 1490 */ 1491 ret = kvm_vm_check_extension(s, capability); 1492 if (ret <= 0) { 1493 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1494 ret = kvm_vm_check_extension(s, capability); 1495 } 1496 1497 if (ret <= 0) { 1498 warn_report("KVM dirty ring not available, using bitmap method"); 1499 return 0; 1500 } 1501 1502 if (ring_bytes > ret) { 1503 error_report("KVM dirty ring size %" PRIu32 " too big " 1504 "(maximum is %ld). Please use a smaller value.", 1505 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1506 return -EINVAL; 1507 } 1508 1509 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1510 if (ret) { 1511 error_report("Enabling of KVM dirty ring failed: %s. " 1512 "Suggested minimum value is 1024.", strerror(-ret)); 1513 return -EIO; 1514 } 1515 1516 /* Enable the backup bitmap if it is supported */ 1517 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1518 if (ret > 0) { 1519 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1520 if (ret) { 1521 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1522 "%s. ", strerror(-ret)); 1523 return -EIO; 1524 } 1525 1526 s->kvm_dirty_ring_with_bitmap = true; 1527 } 1528 1529 s->kvm_dirty_ring_size = ring_size; 1530 s->kvm_dirty_ring_bytes = ring_bytes; 1531 1532 return 0; 1533 } 1534 1535 static void kvm_region_add(MemoryListener *listener, 1536 MemoryRegionSection *section) 1537 { 1538 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1539 KVMMemoryUpdate *update; 1540 1541 update = g_new0(KVMMemoryUpdate, 1); 1542 update->section = *section; 1543 1544 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1545 } 1546 1547 static void kvm_region_del(MemoryListener *listener, 1548 MemoryRegionSection *section) 1549 { 1550 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1551 KVMMemoryUpdate *update; 1552 1553 update = g_new0(KVMMemoryUpdate, 1); 1554 update->section = *section; 1555 1556 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1557 } 1558 1559 static void kvm_region_commit(MemoryListener *listener) 1560 { 1561 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1562 listener); 1563 KVMMemoryUpdate *u1, *u2; 1564 bool need_inhibit = false; 1565 1566 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1567 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1568 return; 1569 } 1570 1571 /* 1572 * We have to be careful when regions to add overlap with ranges to remove. 1573 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1574 * is currently active. 1575 * 1576 * The lists are order by addresses, so it's easy to find overlaps. 1577 */ 1578 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1579 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1580 while (u1 && u2) { 1581 Range r1, r2; 1582 1583 range_init_nofail(&r1, u1->section.offset_within_address_space, 1584 int128_get64(u1->section.size)); 1585 range_init_nofail(&r2, u2->section.offset_within_address_space, 1586 int128_get64(u2->section.size)); 1587 1588 if (range_overlaps_range(&r1, &r2)) { 1589 need_inhibit = true; 1590 break; 1591 } 1592 if (range_lob(&r1) < range_lob(&r2)) { 1593 u1 = QSIMPLEQ_NEXT(u1, next); 1594 } else { 1595 u2 = QSIMPLEQ_NEXT(u2, next); 1596 } 1597 } 1598 1599 kvm_slots_lock(); 1600 if (need_inhibit) { 1601 accel_ioctl_inhibit_begin(); 1602 } 1603 1604 /* Remove all memslots before adding the new ones. */ 1605 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1606 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1607 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1608 1609 kvm_set_phys_mem(kml, &u1->section, false); 1610 memory_region_unref(u1->section.mr); 1611 1612 g_free(u1); 1613 } 1614 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1615 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1616 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1617 1618 memory_region_ref(u1->section.mr); 1619 kvm_set_phys_mem(kml, &u1->section, true); 1620 1621 g_free(u1); 1622 } 1623 1624 if (need_inhibit) { 1625 accel_ioctl_inhibit_end(); 1626 } 1627 kvm_slots_unlock(); 1628 } 1629 1630 static void kvm_log_sync(MemoryListener *listener, 1631 MemoryRegionSection *section) 1632 { 1633 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1634 1635 kvm_slots_lock(); 1636 kvm_physical_sync_dirty_bitmap(kml, section); 1637 kvm_slots_unlock(); 1638 } 1639 1640 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1641 { 1642 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1643 KVMState *s = kvm_state; 1644 KVMSlot *mem; 1645 int i; 1646 1647 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1648 kvm_dirty_ring_flush(); 1649 1650 /* 1651 * TODO: make this faster when nr_slots is big while there are 1652 * only a few used slots (small VMs). 1653 */ 1654 kvm_slots_lock(); 1655 for (i = 0; i < s->nr_slots; i++) { 1656 mem = &kml->slots[i]; 1657 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1658 kvm_slot_sync_dirty_pages(mem); 1659 1660 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1661 kvm_slot_get_dirty_log(s, mem)) { 1662 kvm_slot_sync_dirty_pages(mem); 1663 } 1664 1665 /* 1666 * This is not needed by KVM_GET_DIRTY_LOG because the 1667 * ioctl will unconditionally overwrite the whole region. 1668 * However kvm dirty ring has no such side effect. 1669 */ 1670 kvm_slot_reset_dirty_pages(mem); 1671 } 1672 } 1673 kvm_slots_unlock(); 1674 } 1675 1676 static void kvm_log_clear(MemoryListener *listener, 1677 MemoryRegionSection *section) 1678 { 1679 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1680 int r; 1681 1682 r = kvm_physical_log_clear(kml, section); 1683 if (r < 0) { 1684 error_report_once("%s: kvm log clear failed: mr=%s " 1685 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1686 section->mr->name, section->offset_within_region, 1687 int128_get64(section->size)); 1688 abort(); 1689 } 1690 } 1691 1692 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1693 MemoryRegionSection *section, 1694 bool match_data, uint64_t data, 1695 EventNotifier *e) 1696 { 1697 int fd = event_notifier_get_fd(e); 1698 int r; 1699 1700 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1701 data, true, int128_get64(section->size), 1702 match_data); 1703 if (r < 0) { 1704 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1705 __func__, strerror(-r), -r); 1706 abort(); 1707 } 1708 } 1709 1710 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1711 MemoryRegionSection *section, 1712 bool match_data, uint64_t data, 1713 EventNotifier *e) 1714 { 1715 int fd = event_notifier_get_fd(e); 1716 int r; 1717 1718 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1719 data, false, int128_get64(section->size), 1720 match_data); 1721 if (r < 0) { 1722 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1723 __func__, strerror(-r), -r); 1724 abort(); 1725 } 1726 } 1727 1728 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1729 MemoryRegionSection *section, 1730 bool match_data, uint64_t data, 1731 EventNotifier *e) 1732 { 1733 int fd = event_notifier_get_fd(e); 1734 int r; 1735 1736 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1737 data, true, int128_get64(section->size), 1738 match_data); 1739 if (r < 0) { 1740 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1741 __func__, strerror(-r), -r); 1742 abort(); 1743 } 1744 } 1745 1746 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1747 MemoryRegionSection *section, 1748 bool match_data, uint64_t data, 1749 EventNotifier *e) 1750 1751 { 1752 int fd = event_notifier_get_fd(e); 1753 int r; 1754 1755 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1756 data, false, int128_get64(section->size), 1757 match_data); 1758 if (r < 0) { 1759 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1760 __func__, strerror(-r), -r); 1761 abort(); 1762 } 1763 } 1764 1765 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1766 AddressSpace *as, int as_id, const char *name) 1767 { 1768 int i; 1769 1770 kml->slots = g_new0(KVMSlot, s->nr_slots); 1771 kml->as_id = as_id; 1772 1773 for (i = 0; i < s->nr_slots; i++) { 1774 kml->slots[i].slot = i; 1775 } 1776 1777 QSIMPLEQ_INIT(&kml->transaction_add); 1778 QSIMPLEQ_INIT(&kml->transaction_del); 1779 1780 kml->listener.region_add = kvm_region_add; 1781 kml->listener.region_del = kvm_region_del; 1782 kml->listener.commit = kvm_region_commit; 1783 kml->listener.log_start = kvm_log_start; 1784 kml->listener.log_stop = kvm_log_stop; 1785 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1786 kml->listener.name = name; 1787 1788 if (s->kvm_dirty_ring_size) { 1789 kml->listener.log_sync_global = kvm_log_sync_global; 1790 } else { 1791 kml->listener.log_sync = kvm_log_sync; 1792 kml->listener.log_clear = kvm_log_clear; 1793 } 1794 1795 memory_listener_register(&kml->listener, as); 1796 1797 for (i = 0; i < s->nr_as; ++i) { 1798 if (!s->as[i].as) { 1799 s->as[i].as = as; 1800 s->as[i].ml = kml; 1801 break; 1802 } 1803 } 1804 } 1805 1806 static MemoryListener kvm_io_listener = { 1807 .name = "kvm-io", 1808 .eventfd_add = kvm_io_ioeventfd_add, 1809 .eventfd_del = kvm_io_ioeventfd_del, 1810 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1811 }; 1812 1813 int kvm_set_irq(KVMState *s, int irq, int level) 1814 { 1815 struct kvm_irq_level event; 1816 int ret; 1817 1818 assert(kvm_async_interrupts_enabled()); 1819 1820 event.level = level; 1821 event.irq = irq; 1822 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1823 if (ret < 0) { 1824 perror("kvm_set_irq"); 1825 abort(); 1826 } 1827 1828 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1829 } 1830 1831 #ifdef KVM_CAP_IRQ_ROUTING 1832 typedef struct KVMMSIRoute { 1833 struct kvm_irq_routing_entry kroute; 1834 QTAILQ_ENTRY(KVMMSIRoute) entry; 1835 } KVMMSIRoute; 1836 1837 static void set_gsi(KVMState *s, unsigned int gsi) 1838 { 1839 set_bit(gsi, s->used_gsi_bitmap); 1840 } 1841 1842 static void clear_gsi(KVMState *s, unsigned int gsi) 1843 { 1844 clear_bit(gsi, s->used_gsi_bitmap); 1845 } 1846 1847 void kvm_init_irq_routing(KVMState *s) 1848 { 1849 int gsi_count; 1850 1851 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1852 if (gsi_count > 0) { 1853 /* Round up so we can search ints using ffs */ 1854 s->used_gsi_bitmap = bitmap_new(gsi_count); 1855 s->gsi_count = gsi_count; 1856 } 1857 1858 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1859 s->nr_allocated_irq_routes = 0; 1860 1861 kvm_arch_init_irq_routing(s); 1862 } 1863 1864 void kvm_irqchip_commit_routes(KVMState *s) 1865 { 1866 int ret; 1867 1868 if (kvm_gsi_direct_mapping()) { 1869 return; 1870 } 1871 1872 if (!kvm_gsi_routing_enabled()) { 1873 return; 1874 } 1875 1876 s->irq_routes->flags = 0; 1877 trace_kvm_irqchip_commit_routes(); 1878 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1879 assert(ret == 0); 1880 } 1881 1882 static void kvm_add_routing_entry(KVMState *s, 1883 struct kvm_irq_routing_entry *entry) 1884 { 1885 struct kvm_irq_routing_entry *new; 1886 int n, size; 1887 1888 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1889 n = s->nr_allocated_irq_routes * 2; 1890 if (n < 64) { 1891 n = 64; 1892 } 1893 size = sizeof(struct kvm_irq_routing); 1894 size += n * sizeof(*new); 1895 s->irq_routes = g_realloc(s->irq_routes, size); 1896 s->nr_allocated_irq_routes = n; 1897 } 1898 n = s->irq_routes->nr++; 1899 new = &s->irq_routes->entries[n]; 1900 1901 *new = *entry; 1902 1903 set_gsi(s, entry->gsi); 1904 } 1905 1906 static int kvm_update_routing_entry(KVMState *s, 1907 struct kvm_irq_routing_entry *new_entry) 1908 { 1909 struct kvm_irq_routing_entry *entry; 1910 int n; 1911 1912 for (n = 0; n < s->irq_routes->nr; n++) { 1913 entry = &s->irq_routes->entries[n]; 1914 if (entry->gsi != new_entry->gsi) { 1915 continue; 1916 } 1917 1918 if(!memcmp(entry, new_entry, sizeof *entry)) { 1919 return 0; 1920 } 1921 1922 *entry = *new_entry; 1923 1924 return 0; 1925 } 1926 1927 return -ESRCH; 1928 } 1929 1930 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1931 { 1932 struct kvm_irq_routing_entry e = {}; 1933 1934 assert(pin < s->gsi_count); 1935 1936 e.gsi = irq; 1937 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1938 e.flags = 0; 1939 e.u.irqchip.irqchip = irqchip; 1940 e.u.irqchip.pin = pin; 1941 kvm_add_routing_entry(s, &e); 1942 } 1943 1944 void kvm_irqchip_release_virq(KVMState *s, int virq) 1945 { 1946 struct kvm_irq_routing_entry *e; 1947 int i; 1948 1949 if (kvm_gsi_direct_mapping()) { 1950 return; 1951 } 1952 1953 for (i = 0; i < s->irq_routes->nr; i++) { 1954 e = &s->irq_routes->entries[i]; 1955 if (e->gsi == virq) { 1956 s->irq_routes->nr--; 1957 *e = s->irq_routes->entries[s->irq_routes->nr]; 1958 } 1959 } 1960 clear_gsi(s, virq); 1961 kvm_arch_release_virq_post(virq); 1962 trace_kvm_irqchip_release_virq(virq); 1963 } 1964 1965 void kvm_irqchip_add_change_notifier(Notifier *n) 1966 { 1967 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1968 } 1969 1970 void kvm_irqchip_remove_change_notifier(Notifier *n) 1971 { 1972 notifier_remove(n); 1973 } 1974 1975 void kvm_irqchip_change_notify(void) 1976 { 1977 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1978 } 1979 1980 static int kvm_irqchip_get_virq(KVMState *s) 1981 { 1982 int next_virq; 1983 1984 /* Return the lowest unused GSI in the bitmap */ 1985 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1986 if (next_virq >= s->gsi_count) { 1987 return -ENOSPC; 1988 } else { 1989 return next_virq; 1990 } 1991 } 1992 1993 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1994 { 1995 struct kvm_msi msi; 1996 1997 msi.address_lo = (uint32_t)msg.address; 1998 msi.address_hi = msg.address >> 32; 1999 msi.data = le32_to_cpu(msg.data); 2000 msi.flags = 0; 2001 memset(msi.pad, 0, sizeof(msi.pad)); 2002 2003 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 2004 } 2005 2006 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2007 { 2008 struct kvm_irq_routing_entry kroute = {}; 2009 int virq; 2010 KVMState *s = c->s; 2011 MSIMessage msg = {0, 0}; 2012 2013 if (pci_available && dev) { 2014 msg = pci_get_msi_message(dev, vector); 2015 } 2016 2017 if (kvm_gsi_direct_mapping()) { 2018 return kvm_arch_msi_data_to_gsi(msg.data); 2019 } 2020 2021 if (!kvm_gsi_routing_enabled()) { 2022 return -ENOSYS; 2023 } 2024 2025 virq = kvm_irqchip_get_virq(s); 2026 if (virq < 0) { 2027 return virq; 2028 } 2029 2030 kroute.gsi = virq; 2031 kroute.type = KVM_IRQ_ROUTING_MSI; 2032 kroute.flags = 0; 2033 kroute.u.msi.address_lo = (uint32_t)msg.address; 2034 kroute.u.msi.address_hi = msg.address >> 32; 2035 kroute.u.msi.data = le32_to_cpu(msg.data); 2036 if (pci_available && kvm_msi_devid_required()) { 2037 kroute.flags = KVM_MSI_VALID_DEVID; 2038 kroute.u.msi.devid = pci_requester_id(dev); 2039 } 2040 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2041 kvm_irqchip_release_virq(s, virq); 2042 return -EINVAL; 2043 } 2044 2045 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2046 vector, virq); 2047 2048 kvm_add_routing_entry(s, &kroute); 2049 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2050 c->changes++; 2051 2052 return virq; 2053 } 2054 2055 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2056 PCIDevice *dev) 2057 { 2058 struct kvm_irq_routing_entry kroute = {}; 2059 2060 if (kvm_gsi_direct_mapping()) { 2061 return 0; 2062 } 2063 2064 if (!kvm_irqchip_in_kernel()) { 2065 return -ENOSYS; 2066 } 2067 2068 kroute.gsi = virq; 2069 kroute.type = KVM_IRQ_ROUTING_MSI; 2070 kroute.flags = 0; 2071 kroute.u.msi.address_lo = (uint32_t)msg.address; 2072 kroute.u.msi.address_hi = msg.address >> 32; 2073 kroute.u.msi.data = le32_to_cpu(msg.data); 2074 if (pci_available && kvm_msi_devid_required()) { 2075 kroute.flags = KVM_MSI_VALID_DEVID; 2076 kroute.u.msi.devid = pci_requester_id(dev); 2077 } 2078 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2079 return -EINVAL; 2080 } 2081 2082 trace_kvm_irqchip_update_msi_route(virq); 2083 2084 return kvm_update_routing_entry(s, &kroute); 2085 } 2086 2087 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2088 EventNotifier *resample, int virq, 2089 bool assign) 2090 { 2091 int fd = event_notifier_get_fd(event); 2092 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2093 2094 struct kvm_irqfd irqfd = { 2095 .fd = fd, 2096 .gsi = virq, 2097 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2098 }; 2099 2100 if (rfd != -1) { 2101 assert(assign); 2102 if (kvm_irqchip_is_split()) { 2103 /* 2104 * When the slow irqchip (e.g. IOAPIC) is in the 2105 * userspace, KVM kernel resamplefd will not work because 2106 * the EOI of the interrupt will be delivered to userspace 2107 * instead, so the KVM kernel resamplefd kick will be 2108 * skipped. The userspace here mimics what the kernel 2109 * provides with resamplefd, remember the resamplefd and 2110 * kick it when we receive EOI of this IRQ. 2111 * 2112 * This is hackery because IOAPIC is mostly bypassed 2113 * (except EOI broadcasts) when irqfd is used. However 2114 * this can bring much performance back for split irqchip 2115 * with INTx IRQs (for VFIO, this gives 93% perf of the 2116 * full fast path, which is 46% perf boost comparing to 2117 * the INTx slow path). 2118 */ 2119 kvm_resample_fd_insert(virq, resample); 2120 } else { 2121 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2122 irqfd.resamplefd = rfd; 2123 } 2124 } else if (!assign) { 2125 if (kvm_irqchip_is_split()) { 2126 kvm_resample_fd_remove(virq); 2127 } 2128 } 2129 2130 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2131 } 2132 2133 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2134 { 2135 struct kvm_irq_routing_entry kroute = {}; 2136 int virq; 2137 2138 if (!kvm_gsi_routing_enabled()) { 2139 return -ENOSYS; 2140 } 2141 2142 virq = kvm_irqchip_get_virq(s); 2143 if (virq < 0) { 2144 return virq; 2145 } 2146 2147 kroute.gsi = virq; 2148 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2149 kroute.flags = 0; 2150 kroute.u.adapter.summary_addr = adapter->summary_addr; 2151 kroute.u.adapter.ind_addr = adapter->ind_addr; 2152 kroute.u.adapter.summary_offset = adapter->summary_offset; 2153 kroute.u.adapter.ind_offset = adapter->ind_offset; 2154 kroute.u.adapter.adapter_id = adapter->adapter_id; 2155 2156 kvm_add_routing_entry(s, &kroute); 2157 2158 return virq; 2159 } 2160 2161 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2162 { 2163 struct kvm_irq_routing_entry kroute = {}; 2164 int virq; 2165 2166 if (!kvm_gsi_routing_enabled()) { 2167 return -ENOSYS; 2168 } 2169 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2170 return -ENOSYS; 2171 } 2172 virq = kvm_irqchip_get_virq(s); 2173 if (virq < 0) { 2174 return virq; 2175 } 2176 2177 kroute.gsi = virq; 2178 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2179 kroute.flags = 0; 2180 kroute.u.hv_sint.vcpu = vcpu; 2181 kroute.u.hv_sint.sint = sint; 2182 2183 kvm_add_routing_entry(s, &kroute); 2184 kvm_irqchip_commit_routes(s); 2185 2186 return virq; 2187 } 2188 2189 #else /* !KVM_CAP_IRQ_ROUTING */ 2190 2191 void kvm_init_irq_routing(KVMState *s) 2192 { 2193 } 2194 2195 void kvm_irqchip_release_virq(KVMState *s, int virq) 2196 { 2197 } 2198 2199 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2200 { 2201 abort(); 2202 } 2203 2204 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2205 { 2206 return -ENOSYS; 2207 } 2208 2209 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2210 { 2211 return -ENOSYS; 2212 } 2213 2214 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2215 { 2216 return -ENOSYS; 2217 } 2218 2219 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2220 EventNotifier *resample, int virq, 2221 bool assign) 2222 { 2223 abort(); 2224 } 2225 2226 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2227 { 2228 return -ENOSYS; 2229 } 2230 #endif /* !KVM_CAP_IRQ_ROUTING */ 2231 2232 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2233 EventNotifier *rn, int virq) 2234 { 2235 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2236 } 2237 2238 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2239 int virq) 2240 { 2241 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2242 } 2243 2244 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2245 EventNotifier *rn, qemu_irq irq) 2246 { 2247 gpointer key, gsi; 2248 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2249 2250 if (!found) { 2251 return -ENXIO; 2252 } 2253 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2254 } 2255 2256 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2257 qemu_irq irq) 2258 { 2259 gpointer key, gsi; 2260 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2261 2262 if (!found) { 2263 return -ENXIO; 2264 } 2265 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2266 } 2267 2268 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2269 { 2270 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2271 } 2272 2273 static void kvm_irqchip_create(KVMState *s) 2274 { 2275 int ret; 2276 2277 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2278 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2279 ; 2280 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2281 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2282 if (ret < 0) { 2283 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2284 exit(1); 2285 } 2286 } else { 2287 return; 2288 } 2289 2290 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2291 fprintf(stderr, "kvm: irqfd not implemented\n"); 2292 exit(1); 2293 } 2294 2295 /* First probe and see if there's a arch-specific hook to create the 2296 * in-kernel irqchip for us */ 2297 ret = kvm_arch_irqchip_create(s); 2298 if (ret == 0) { 2299 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2300 error_report("Split IRQ chip mode not supported."); 2301 exit(1); 2302 } else { 2303 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2304 } 2305 } 2306 if (ret < 0) { 2307 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2308 exit(1); 2309 } 2310 2311 kvm_kernel_irqchip = true; 2312 /* If we have an in-kernel IRQ chip then we must have asynchronous 2313 * interrupt delivery (though the reverse is not necessarily true) 2314 */ 2315 kvm_async_interrupts_allowed = true; 2316 kvm_halt_in_kernel_allowed = true; 2317 2318 kvm_init_irq_routing(s); 2319 2320 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2321 } 2322 2323 /* Find number of supported CPUs using the recommended 2324 * procedure from the kernel API documentation to cope with 2325 * older kernels that may be missing capabilities. 2326 */ 2327 static int kvm_recommended_vcpus(KVMState *s) 2328 { 2329 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2330 return (ret) ? ret : 4; 2331 } 2332 2333 static int kvm_max_vcpus(KVMState *s) 2334 { 2335 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2336 return (ret) ? ret : kvm_recommended_vcpus(s); 2337 } 2338 2339 static int kvm_max_vcpu_id(KVMState *s) 2340 { 2341 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2342 return (ret) ? ret : kvm_max_vcpus(s); 2343 } 2344 2345 bool kvm_vcpu_id_is_valid(int vcpu_id) 2346 { 2347 KVMState *s = KVM_STATE(current_accel()); 2348 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2349 } 2350 2351 bool kvm_dirty_ring_enabled(void) 2352 { 2353 return kvm_state->kvm_dirty_ring_size ? true : false; 2354 } 2355 2356 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2357 strList *names, strList *targets, Error **errp); 2358 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2359 2360 uint32_t kvm_dirty_ring_size(void) 2361 { 2362 return kvm_state->kvm_dirty_ring_size; 2363 } 2364 2365 static int kvm_init(MachineState *ms) 2366 { 2367 MachineClass *mc = MACHINE_GET_CLASS(ms); 2368 static const char upgrade_note[] = 2369 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2370 "(see http://sourceforge.net/projects/kvm).\n"; 2371 const struct { 2372 const char *name; 2373 int num; 2374 } num_cpus[] = { 2375 { "SMP", ms->smp.cpus }, 2376 { "hotpluggable", ms->smp.max_cpus }, 2377 { /* end of list */ } 2378 }, *nc = num_cpus; 2379 int soft_vcpus_limit, hard_vcpus_limit; 2380 KVMState *s; 2381 const KVMCapabilityInfo *missing_cap; 2382 int ret; 2383 int type; 2384 uint64_t dirty_log_manual_caps; 2385 2386 qemu_mutex_init(&kml_slots_lock); 2387 2388 s = KVM_STATE(ms->accelerator); 2389 2390 /* 2391 * On systems where the kernel can support different base page 2392 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2393 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2394 * page size for the system though. 2395 */ 2396 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2397 2398 s->sigmask_len = 8; 2399 accel_blocker_init(); 2400 2401 #ifdef KVM_CAP_SET_GUEST_DEBUG 2402 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2403 #endif 2404 QLIST_INIT(&s->kvm_parked_vcpus); 2405 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2406 if (s->fd == -1) { 2407 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2408 ret = -errno; 2409 goto err; 2410 } 2411 2412 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2413 if (ret < KVM_API_VERSION) { 2414 if (ret >= 0) { 2415 ret = -EINVAL; 2416 } 2417 fprintf(stderr, "kvm version too old\n"); 2418 goto err; 2419 } 2420 2421 if (ret > KVM_API_VERSION) { 2422 ret = -EINVAL; 2423 fprintf(stderr, "kvm version not supported\n"); 2424 goto err; 2425 } 2426 2427 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2428 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2429 2430 /* If unspecified, use the default value */ 2431 if (!s->nr_slots) { 2432 s->nr_slots = 32; 2433 } 2434 2435 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2436 if (s->nr_as <= 1) { 2437 s->nr_as = 1; 2438 } 2439 s->as = g_new0(struct KVMAs, s->nr_as); 2440 2441 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2442 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2443 "kvm-type", 2444 &error_abort); 2445 type = mc->kvm_type(ms, kvm_type); 2446 } else if (mc->kvm_type) { 2447 type = mc->kvm_type(ms, NULL); 2448 } else { 2449 type = kvm_arch_get_default_type(ms); 2450 } 2451 2452 if (type < 0) { 2453 ret = -EINVAL; 2454 goto err; 2455 } 2456 2457 do { 2458 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2459 } while (ret == -EINTR); 2460 2461 if (ret < 0) { 2462 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2463 strerror(-ret)); 2464 2465 #ifdef TARGET_S390X 2466 if (ret == -EINVAL) { 2467 fprintf(stderr, 2468 "Host kernel setup problem detected. Please verify:\n"); 2469 fprintf(stderr, "- for kernels supporting the switch_amode or" 2470 " user_mode parameters, whether\n"); 2471 fprintf(stderr, 2472 " user space is running in primary address space\n"); 2473 fprintf(stderr, 2474 "- for kernels supporting the vm.allocate_pgste sysctl, " 2475 "whether it is enabled\n"); 2476 } 2477 #elif defined(TARGET_PPC) 2478 if (ret == -EINVAL) { 2479 fprintf(stderr, 2480 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2481 (type == 2) ? "pr" : "hv"); 2482 } 2483 #endif 2484 goto err; 2485 } 2486 2487 s->vmfd = ret; 2488 2489 /* check the vcpu limits */ 2490 soft_vcpus_limit = kvm_recommended_vcpus(s); 2491 hard_vcpus_limit = kvm_max_vcpus(s); 2492 2493 while (nc->name) { 2494 if (nc->num > soft_vcpus_limit) { 2495 warn_report("Number of %s cpus requested (%d) exceeds " 2496 "the recommended cpus supported by KVM (%d)", 2497 nc->name, nc->num, soft_vcpus_limit); 2498 2499 if (nc->num > hard_vcpus_limit) { 2500 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2501 "the maximum cpus supported by KVM (%d)\n", 2502 nc->name, nc->num, hard_vcpus_limit); 2503 exit(1); 2504 } 2505 } 2506 nc++; 2507 } 2508 2509 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2510 if (!missing_cap) { 2511 missing_cap = 2512 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2513 } 2514 if (missing_cap) { 2515 ret = -EINVAL; 2516 fprintf(stderr, "kvm does not support %s\n%s", 2517 missing_cap->name, upgrade_note); 2518 goto err; 2519 } 2520 2521 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2522 s->coalesced_pio = s->coalesced_mmio && 2523 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2524 2525 /* 2526 * Enable KVM dirty ring if supported, otherwise fall back to 2527 * dirty logging mode 2528 */ 2529 ret = kvm_dirty_ring_init(s); 2530 if (ret < 0) { 2531 goto err; 2532 } 2533 2534 /* 2535 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2536 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2537 * page is wr-protected initially, which is against how kvm dirty ring is 2538 * usage - kvm dirty ring requires all pages are wr-protected at the very 2539 * beginning. Enabling this feature for dirty ring causes data corruption. 2540 * 2541 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2542 * we may expect a higher stall time when starting the migration. In the 2543 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2544 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2545 * guest pages. 2546 */ 2547 if (!s->kvm_dirty_ring_size) { 2548 dirty_log_manual_caps = 2549 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2550 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2551 KVM_DIRTY_LOG_INITIALLY_SET); 2552 s->manual_dirty_log_protect = dirty_log_manual_caps; 2553 if (dirty_log_manual_caps) { 2554 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2555 dirty_log_manual_caps); 2556 if (ret) { 2557 warn_report("Trying to enable capability %"PRIu64" of " 2558 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2559 "Falling back to the legacy mode. ", 2560 dirty_log_manual_caps); 2561 s->manual_dirty_log_protect = 0; 2562 } 2563 } 2564 } 2565 2566 #ifdef KVM_CAP_VCPU_EVENTS 2567 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2568 #endif 2569 2570 s->robust_singlestep = 2571 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2572 2573 #ifdef KVM_CAP_DEBUGREGS 2574 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2575 #endif 2576 2577 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2578 2579 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); 2580 2581 s->irq_set_ioctl = KVM_IRQ_LINE; 2582 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2583 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2584 } 2585 2586 kvm_readonly_mem_allowed = 2587 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2588 2589 kvm_eventfds_allowed = 2590 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2591 2592 kvm_resamplefds_allowed = 2593 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2594 2595 kvm_vm_attributes_allowed = 2596 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2597 2598 kvm_ioeventfd_any_length_allowed = 2599 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2600 2601 #ifdef KVM_CAP_SET_GUEST_DEBUG 2602 kvm_has_guest_debug = 2603 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2604 #endif 2605 2606 kvm_sstep_flags = 0; 2607 if (kvm_has_guest_debug) { 2608 kvm_sstep_flags = SSTEP_ENABLE; 2609 2610 #if defined KVM_CAP_SET_GUEST_DEBUG2 2611 int guest_debug_flags = 2612 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2613 2614 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2615 kvm_sstep_flags |= SSTEP_NOIRQ; 2616 } 2617 #endif 2618 } 2619 2620 kvm_state = s; 2621 2622 ret = kvm_arch_init(ms, s); 2623 if (ret < 0) { 2624 goto err; 2625 } 2626 2627 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2628 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2629 } 2630 2631 qemu_register_reset(kvm_unpoison_all, NULL); 2632 2633 if (s->kernel_irqchip_allowed) { 2634 kvm_irqchip_create(s); 2635 } 2636 2637 if (kvm_eventfds_allowed) { 2638 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2639 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2640 } 2641 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2642 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2643 2644 kvm_memory_listener_register(s, &s->memory_listener, 2645 &address_space_memory, 0, "kvm-memory"); 2646 if (kvm_eventfds_allowed) { 2647 memory_listener_register(&kvm_io_listener, 2648 &address_space_io); 2649 } 2650 memory_listener_register(&kvm_coalesced_pio_listener, 2651 &address_space_io); 2652 2653 s->many_ioeventfds = kvm_check_many_ioeventfds(); 2654 2655 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2656 if (!s->sync_mmu) { 2657 ret = ram_block_discard_disable(true); 2658 assert(!ret); 2659 } 2660 2661 if (s->kvm_dirty_ring_size) { 2662 kvm_dirty_ring_reaper_init(s); 2663 } 2664 2665 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2666 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2667 query_stats_schemas_cb); 2668 } 2669 2670 return 0; 2671 2672 err: 2673 assert(ret < 0); 2674 if (s->vmfd >= 0) { 2675 close(s->vmfd); 2676 } 2677 if (s->fd != -1) { 2678 close(s->fd); 2679 } 2680 g_free(s->as); 2681 g_free(s->memory_listener.slots); 2682 2683 return ret; 2684 } 2685 2686 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2687 { 2688 s->sigmask_len = sigmask_len; 2689 } 2690 2691 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2692 int size, uint32_t count) 2693 { 2694 int i; 2695 uint8_t *ptr = data; 2696 2697 for (i = 0; i < count; i++) { 2698 address_space_rw(&address_space_io, port, attrs, 2699 ptr, size, 2700 direction == KVM_EXIT_IO_OUT); 2701 ptr += size; 2702 } 2703 } 2704 2705 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2706 { 2707 int i; 2708 2709 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2710 run->internal.suberror); 2711 2712 for (i = 0; i < run->internal.ndata; ++i) { 2713 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2714 i, (uint64_t)run->internal.data[i]); 2715 } 2716 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2717 fprintf(stderr, "emulation failure\n"); 2718 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2719 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2720 return EXCP_INTERRUPT; 2721 } 2722 } 2723 /* FIXME: Should trigger a qmp message to let management know 2724 * something went wrong. 2725 */ 2726 return -1; 2727 } 2728 2729 void kvm_flush_coalesced_mmio_buffer(void) 2730 { 2731 KVMState *s = kvm_state; 2732 2733 if (!s || s->coalesced_flush_in_progress) { 2734 return; 2735 } 2736 2737 s->coalesced_flush_in_progress = true; 2738 2739 if (s->coalesced_mmio_ring) { 2740 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2741 while (ring->first != ring->last) { 2742 struct kvm_coalesced_mmio *ent; 2743 2744 ent = &ring->coalesced_mmio[ring->first]; 2745 2746 if (ent->pio == 1) { 2747 address_space_write(&address_space_io, ent->phys_addr, 2748 MEMTXATTRS_UNSPECIFIED, ent->data, 2749 ent->len); 2750 } else { 2751 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2752 } 2753 smp_wmb(); 2754 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2755 } 2756 } 2757 2758 s->coalesced_flush_in_progress = false; 2759 } 2760 2761 bool kvm_cpu_check_are_resettable(void) 2762 { 2763 return kvm_arch_cpu_check_are_resettable(); 2764 } 2765 2766 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2767 { 2768 if (!cpu->vcpu_dirty) { 2769 int ret = kvm_arch_get_registers(cpu); 2770 if (ret) { 2771 error_report("Failed to get registers: %s", strerror(-ret)); 2772 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2773 vm_stop(RUN_STATE_INTERNAL_ERROR); 2774 } 2775 2776 cpu->vcpu_dirty = true; 2777 } 2778 } 2779 2780 void kvm_cpu_synchronize_state(CPUState *cpu) 2781 { 2782 if (!cpu->vcpu_dirty) { 2783 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2784 } 2785 } 2786 2787 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2788 { 2789 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2790 if (ret) { 2791 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2792 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2793 vm_stop(RUN_STATE_INTERNAL_ERROR); 2794 } 2795 2796 cpu->vcpu_dirty = false; 2797 } 2798 2799 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2800 { 2801 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2802 } 2803 2804 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2805 { 2806 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2807 if (ret) { 2808 error_report("Failed to put registers after init: %s", strerror(-ret)); 2809 exit(1); 2810 } 2811 2812 cpu->vcpu_dirty = false; 2813 } 2814 2815 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2816 { 2817 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2818 } 2819 2820 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2821 { 2822 cpu->vcpu_dirty = true; 2823 } 2824 2825 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2826 { 2827 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2828 } 2829 2830 #ifdef KVM_HAVE_MCE_INJECTION 2831 static __thread void *pending_sigbus_addr; 2832 static __thread int pending_sigbus_code; 2833 static __thread bool have_sigbus_pending; 2834 #endif 2835 2836 static void kvm_cpu_kick(CPUState *cpu) 2837 { 2838 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2839 } 2840 2841 static void kvm_cpu_kick_self(void) 2842 { 2843 if (kvm_immediate_exit) { 2844 kvm_cpu_kick(current_cpu); 2845 } else { 2846 qemu_cpu_kick_self(); 2847 } 2848 } 2849 2850 static void kvm_eat_signals(CPUState *cpu) 2851 { 2852 struct timespec ts = { 0, 0 }; 2853 siginfo_t siginfo; 2854 sigset_t waitset; 2855 sigset_t chkset; 2856 int r; 2857 2858 if (kvm_immediate_exit) { 2859 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2860 /* Write kvm_run->immediate_exit before the cpu->exit_request 2861 * write in kvm_cpu_exec. 2862 */ 2863 smp_wmb(); 2864 return; 2865 } 2866 2867 sigemptyset(&waitset); 2868 sigaddset(&waitset, SIG_IPI); 2869 2870 do { 2871 r = sigtimedwait(&waitset, &siginfo, &ts); 2872 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2873 perror("sigtimedwait"); 2874 exit(1); 2875 } 2876 2877 r = sigpending(&chkset); 2878 if (r == -1) { 2879 perror("sigpending"); 2880 exit(1); 2881 } 2882 } while (sigismember(&chkset, SIG_IPI)); 2883 } 2884 2885 int kvm_cpu_exec(CPUState *cpu) 2886 { 2887 struct kvm_run *run = cpu->kvm_run; 2888 int ret, run_ret; 2889 2890 DPRINTF("kvm_cpu_exec()\n"); 2891 2892 if (kvm_arch_process_async_events(cpu)) { 2893 qatomic_set(&cpu->exit_request, 0); 2894 return EXCP_HLT; 2895 } 2896 2897 qemu_mutex_unlock_iothread(); 2898 cpu_exec_start(cpu); 2899 2900 do { 2901 MemTxAttrs attrs; 2902 2903 if (cpu->vcpu_dirty) { 2904 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2905 if (ret) { 2906 error_report("Failed to put registers after init: %s", 2907 strerror(-ret)); 2908 ret = -1; 2909 break; 2910 } 2911 2912 cpu->vcpu_dirty = false; 2913 } 2914 2915 kvm_arch_pre_run(cpu, run); 2916 if (qatomic_read(&cpu->exit_request)) { 2917 DPRINTF("interrupt exit requested\n"); 2918 /* 2919 * KVM requires us to reenter the kernel after IO exits to complete 2920 * instruction emulation. This self-signal will ensure that we 2921 * leave ASAP again. 2922 */ 2923 kvm_cpu_kick_self(); 2924 } 2925 2926 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2927 * Matching barrier in kvm_eat_signals. 2928 */ 2929 smp_rmb(); 2930 2931 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2932 2933 attrs = kvm_arch_post_run(cpu, run); 2934 2935 #ifdef KVM_HAVE_MCE_INJECTION 2936 if (unlikely(have_sigbus_pending)) { 2937 qemu_mutex_lock_iothread(); 2938 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2939 pending_sigbus_addr); 2940 have_sigbus_pending = false; 2941 qemu_mutex_unlock_iothread(); 2942 } 2943 #endif 2944 2945 if (run_ret < 0) { 2946 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2947 DPRINTF("io window exit\n"); 2948 kvm_eat_signals(cpu); 2949 ret = EXCP_INTERRUPT; 2950 break; 2951 } 2952 fprintf(stderr, "error: kvm run failed %s\n", 2953 strerror(-run_ret)); 2954 #ifdef TARGET_PPC 2955 if (run_ret == -EBUSY) { 2956 fprintf(stderr, 2957 "This is probably because your SMT is enabled.\n" 2958 "VCPU can only run on primary threads with all " 2959 "secondary threads offline.\n"); 2960 } 2961 #endif 2962 ret = -1; 2963 break; 2964 } 2965 2966 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2967 switch (run->exit_reason) { 2968 case KVM_EXIT_IO: 2969 DPRINTF("handle_io\n"); 2970 /* Called outside BQL */ 2971 kvm_handle_io(run->io.port, attrs, 2972 (uint8_t *)run + run->io.data_offset, 2973 run->io.direction, 2974 run->io.size, 2975 run->io.count); 2976 ret = 0; 2977 break; 2978 case KVM_EXIT_MMIO: 2979 DPRINTF("handle_mmio\n"); 2980 /* Called outside BQL */ 2981 address_space_rw(&address_space_memory, 2982 run->mmio.phys_addr, attrs, 2983 run->mmio.data, 2984 run->mmio.len, 2985 run->mmio.is_write); 2986 ret = 0; 2987 break; 2988 case KVM_EXIT_IRQ_WINDOW_OPEN: 2989 DPRINTF("irq_window_open\n"); 2990 ret = EXCP_INTERRUPT; 2991 break; 2992 case KVM_EXIT_SHUTDOWN: 2993 DPRINTF("shutdown\n"); 2994 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2995 ret = EXCP_INTERRUPT; 2996 break; 2997 case KVM_EXIT_UNKNOWN: 2998 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2999 (uint64_t)run->hw.hardware_exit_reason); 3000 ret = -1; 3001 break; 3002 case KVM_EXIT_INTERNAL_ERROR: 3003 ret = kvm_handle_internal_error(cpu, run); 3004 break; 3005 case KVM_EXIT_DIRTY_RING_FULL: 3006 /* 3007 * We shouldn't continue if the dirty ring of this vcpu is 3008 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 3009 */ 3010 trace_kvm_dirty_ring_full(cpu->cpu_index); 3011 qemu_mutex_lock_iothread(); 3012 /* 3013 * We throttle vCPU by making it sleep once it exit from kernel 3014 * due to dirty ring full. In the dirtylimit scenario, reaping 3015 * all vCPUs after a single vCPU dirty ring get full result in 3016 * the miss of sleep, so just reap the ring-fulled vCPU. 3017 */ 3018 if (dirtylimit_in_service()) { 3019 kvm_dirty_ring_reap(kvm_state, cpu); 3020 } else { 3021 kvm_dirty_ring_reap(kvm_state, NULL); 3022 } 3023 qemu_mutex_unlock_iothread(); 3024 dirtylimit_vcpu_execute(cpu); 3025 ret = 0; 3026 break; 3027 case KVM_EXIT_SYSTEM_EVENT: 3028 switch (run->system_event.type) { 3029 case KVM_SYSTEM_EVENT_SHUTDOWN: 3030 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 3031 ret = EXCP_INTERRUPT; 3032 break; 3033 case KVM_SYSTEM_EVENT_RESET: 3034 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 3035 ret = EXCP_INTERRUPT; 3036 break; 3037 case KVM_SYSTEM_EVENT_CRASH: 3038 kvm_cpu_synchronize_state(cpu); 3039 qemu_mutex_lock_iothread(); 3040 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3041 qemu_mutex_unlock_iothread(); 3042 ret = 0; 3043 break; 3044 default: 3045 DPRINTF("kvm_arch_handle_exit\n"); 3046 ret = kvm_arch_handle_exit(cpu, run); 3047 break; 3048 } 3049 break; 3050 default: 3051 DPRINTF("kvm_arch_handle_exit\n"); 3052 ret = kvm_arch_handle_exit(cpu, run); 3053 break; 3054 } 3055 } while (ret == 0); 3056 3057 cpu_exec_end(cpu); 3058 qemu_mutex_lock_iothread(); 3059 3060 if (ret < 0) { 3061 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3062 vm_stop(RUN_STATE_INTERNAL_ERROR); 3063 } 3064 3065 qatomic_set(&cpu->exit_request, 0); 3066 return ret; 3067 } 3068 3069 int kvm_ioctl(KVMState *s, int type, ...) 3070 { 3071 int ret; 3072 void *arg; 3073 va_list ap; 3074 3075 va_start(ap, type); 3076 arg = va_arg(ap, void *); 3077 va_end(ap); 3078 3079 trace_kvm_ioctl(type, arg); 3080 ret = ioctl(s->fd, type, arg); 3081 if (ret == -1) { 3082 ret = -errno; 3083 } 3084 return ret; 3085 } 3086 3087 int kvm_vm_ioctl(KVMState *s, int type, ...) 3088 { 3089 int ret; 3090 void *arg; 3091 va_list ap; 3092 3093 va_start(ap, type); 3094 arg = va_arg(ap, void *); 3095 va_end(ap); 3096 3097 trace_kvm_vm_ioctl(type, arg); 3098 accel_ioctl_begin(); 3099 ret = ioctl(s->vmfd, type, arg); 3100 accel_ioctl_end(); 3101 if (ret == -1) { 3102 ret = -errno; 3103 } 3104 return ret; 3105 } 3106 3107 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3108 { 3109 int ret; 3110 void *arg; 3111 va_list ap; 3112 3113 va_start(ap, type); 3114 arg = va_arg(ap, void *); 3115 va_end(ap); 3116 3117 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3118 accel_cpu_ioctl_begin(cpu); 3119 ret = ioctl(cpu->kvm_fd, type, arg); 3120 accel_cpu_ioctl_end(cpu); 3121 if (ret == -1) { 3122 ret = -errno; 3123 } 3124 return ret; 3125 } 3126 3127 int kvm_device_ioctl(int fd, int type, ...) 3128 { 3129 int ret; 3130 void *arg; 3131 va_list ap; 3132 3133 va_start(ap, type); 3134 arg = va_arg(ap, void *); 3135 va_end(ap); 3136 3137 trace_kvm_device_ioctl(fd, type, arg); 3138 accel_ioctl_begin(); 3139 ret = ioctl(fd, type, arg); 3140 accel_ioctl_end(); 3141 if (ret == -1) { 3142 ret = -errno; 3143 } 3144 return ret; 3145 } 3146 3147 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3148 { 3149 int ret; 3150 struct kvm_device_attr attribute = { 3151 .group = group, 3152 .attr = attr, 3153 }; 3154 3155 if (!kvm_vm_attributes_allowed) { 3156 return 0; 3157 } 3158 3159 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3160 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3161 return ret ? 0 : 1; 3162 } 3163 3164 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3165 { 3166 struct kvm_device_attr attribute = { 3167 .group = group, 3168 .attr = attr, 3169 .flags = 0, 3170 }; 3171 3172 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3173 } 3174 3175 int kvm_device_access(int fd, int group, uint64_t attr, 3176 void *val, bool write, Error **errp) 3177 { 3178 struct kvm_device_attr kvmattr; 3179 int err; 3180 3181 kvmattr.flags = 0; 3182 kvmattr.group = group; 3183 kvmattr.attr = attr; 3184 kvmattr.addr = (uintptr_t)val; 3185 3186 err = kvm_device_ioctl(fd, 3187 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3188 &kvmattr); 3189 if (err < 0) { 3190 error_setg_errno(errp, -err, 3191 "KVM_%s_DEVICE_ATTR failed: Group %d " 3192 "attr 0x%016" PRIx64, 3193 write ? "SET" : "GET", group, attr); 3194 } 3195 return err; 3196 } 3197 3198 bool kvm_has_sync_mmu(void) 3199 { 3200 return kvm_state->sync_mmu; 3201 } 3202 3203 int kvm_has_vcpu_events(void) 3204 { 3205 return kvm_state->vcpu_events; 3206 } 3207 3208 int kvm_has_robust_singlestep(void) 3209 { 3210 return kvm_state->robust_singlestep; 3211 } 3212 3213 int kvm_has_debugregs(void) 3214 { 3215 return kvm_state->debugregs; 3216 } 3217 3218 int kvm_max_nested_state_length(void) 3219 { 3220 return kvm_state->max_nested_state_len; 3221 } 3222 3223 int kvm_has_many_ioeventfds(void) 3224 { 3225 if (!kvm_enabled()) { 3226 return 0; 3227 } 3228 return kvm_state->many_ioeventfds; 3229 } 3230 3231 int kvm_has_gsi_routing(void) 3232 { 3233 #ifdef KVM_CAP_IRQ_ROUTING 3234 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3235 #else 3236 return false; 3237 #endif 3238 } 3239 3240 int kvm_has_intx_set_mask(void) 3241 { 3242 return kvm_state->intx_set_mask; 3243 } 3244 3245 bool kvm_arm_supports_user_irq(void) 3246 { 3247 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3248 } 3249 3250 #ifdef KVM_CAP_SET_GUEST_DEBUG 3251 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3252 { 3253 struct kvm_sw_breakpoint *bp; 3254 3255 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3256 if (bp->pc == pc) { 3257 return bp; 3258 } 3259 } 3260 return NULL; 3261 } 3262 3263 int kvm_sw_breakpoints_active(CPUState *cpu) 3264 { 3265 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3266 } 3267 3268 struct kvm_set_guest_debug_data { 3269 struct kvm_guest_debug dbg; 3270 int err; 3271 }; 3272 3273 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3274 { 3275 struct kvm_set_guest_debug_data *dbg_data = 3276 (struct kvm_set_guest_debug_data *) data.host_ptr; 3277 3278 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3279 &dbg_data->dbg); 3280 } 3281 3282 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3283 { 3284 struct kvm_set_guest_debug_data data; 3285 3286 data.dbg.control = reinject_trap; 3287 3288 if (cpu->singlestep_enabled) { 3289 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3290 3291 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3292 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3293 } 3294 } 3295 kvm_arch_update_guest_debug(cpu, &data.dbg); 3296 3297 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3298 RUN_ON_CPU_HOST_PTR(&data)); 3299 return data.err; 3300 } 3301 3302 bool kvm_supports_guest_debug(void) 3303 { 3304 /* probed during kvm_init() */ 3305 return kvm_has_guest_debug; 3306 } 3307 3308 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3309 { 3310 struct kvm_sw_breakpoint *bp; 3311 int err; 3312 3313 if (type == GDB_BREAKPOINT_SW) { 3314 bp = kvm_find_sw_breakpoint(cpu, addr); 3315 if (bp) { 3316 bp->use_count++; 3317 return 0; 3318 } 3319 3320 bp = g_new(struct kvm_sw_breakpoint, 1); 3321 bp->pc = addr; 3322 bp->use_count = 1; 3323 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3324 if (err) { 3325 g_free(bp); 3326 return err; 3327 } 3328 3329 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3330 } else { 3331 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3332 if (err) { 3333 return err; 3334 } 3335 } 3336 3337 CPU_FOREACH(cpu) { 3338 err = kvm_update_guest_debug(cpu, 0); 3339 if (err) { 3340 return err; 3341 } 3342 } 3343 return 0; 3344 } 3345 3346 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3347 { 3348 struct kvm_sw_breakpoint *bp; 3349 int err; 3350 3351 if (type == GDB_BREAKPOINT_SW) { 3352 bp = kvm_find_sw_breakpoint(cpu, addr); 3353 if (!bp) { 3354 return -ENOENT; 3355 } 3356 3357 if (bp->use_count > 1) { 3358 bp->use_count--; 3359 return 0; 3360 } 3361 3362 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3363 if (err) { 3364 return err; 3365 } 3366 3367 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3368 g_free(bp); 3369 } else { 3370 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3371 if (err) { 3372 return err; 3373 } 3374 } 3375 3376 CPU_FOREACH(cpu) { 3377 err = kvm_update_guest_debug(cpu, 0); 3378 if (err) { 3379 return err; 3380 } 3381 } 3382 return 0; 3383 } 3384 3385 void kvm_remove_all_breakpoints(CPUState *cpu) 3386 { 3387 struct kvm_sw_breakpoint *bp, *next; 3388 KVMState *s = cpu->kvm_state; 3389 CPUState *tmpcpu; 3390 3391 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3392 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3393 /* Try harder to find a CPU that currently sees the breakpoint. */ 3394 CPU_FOREACH(tmpcpu) { 3395 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3396 break; 3397 } 3398 } 3399 } 3400 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3401 g_free(bp); 3402 } 3403 kvm_arch_remove_all_hw_breakpoints(); 3404 3405 CPU_FOREACH(cpu) { 3406 kvm_update_guest_debug(cpu, 0); 3407 } 3408 } 3409 3410 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3411 3412 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3413 { 3414 KVMState *s = kvm_state; 3415 struct kvm_signal_mask *sigmask; 3416 int r; 3417 3418 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3419 3420 sigmask->len = s->sigmask_len; 3421 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3422 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3423 g_free(sigmask); 3424 3425 return r; 3426 } 3427 3428 static void kvm_ipi_signal(int sig) 3429 { 3430 if (current_cpu) { 3431 assert(kvm_immediate_exit); 3432 kvm_cpu_kick(current_cpu); 3433 } 3434 } 3435 3436 void kvm_init_cpu_signals(CPUState *cpu) 3437 { 3438 int r; 3439 sigset_t set; 3440 struct sigaction sigact; 3441 3442 memset(&sigact, 0, sizeof(sigact)); 3443 sigact.sa_handler = kvm_ipi_signal; 3444 sigaction(SIG_IPI, &sigact, NULL); 3445 3446 pthread_sigmask(SIG_BLOCK, NULL, &set); 3447 #if defined KVM_HAVE_MCE_INJECTION 3448 sigdelset(&set, SIGBUS); 3449 pthread_sigmask(SIG_SETMASK, &set, NULL); 3450 #endif 3451 sigdelset(&set, SIG_IPI); 3452 if (kvm_immediate_exit) { 3453 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3454 } else { 3455 r = kvm_set_signal_mask(cpu, &set); 3456 } 3457 if (r) { 3458 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3459 exit(1); 3460 } 3461 } 3462 3463 /* Called asynchronously in VCPU thread. */ 3464 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3465 { 3466 #ifdef KVM_HAVE_MCE_INJECTION 3467 if (have_sigbus_pending) { 3468 return 1; 3469 } 3470 have_sigbus_pending = true; 3471 pending_sigbus_addr = addr; 3472 pending_sigbus_code = code; 3473 qatomic_set(&cpu->exit_request, 1); 3474 return 0; 3475 #else 3476 return 1; 3477 #endif 3478 } 3479 3480 /* Called synchronously (via signalfd) in main thread. */ 3481 int kvm_on_sigbus(int code, void *addr) 3482 { 3483 #ifdef KVM_HAVE_MCE_INJECTION 3484 /* Action required MCE kills the process if SIGBUS is blocked. Because 3485 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3486 * we can only get action optional here. 3487 */ 3488 assert(code != BUS_MCEERR_AR); 3489 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3490 return 0; 3491 #else 3492 return 1; 3493 #endif 3494 } 3495 3496 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3497 { 3498 int ret; 3499 struct kvm_create_device create_dev; 3500 3501 create_dev.type = type; 3502 create_dev.fd = -1; 3503 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3504 3505 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3506 return -ENOTSUP; 3507 } 3508 3509 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3510 if (ret) { 3511 return ret; 3512 } 3513 3514 return test ? 0 : create_dev.fd; 3515 } 3516 3517 bool kvm_device_supported(int vmfd, uint64_t type) 3518 { 3519 struct kvm_create_device create_dev = { 3520 .type = type, 3521 .fd = -1, 3522 .flags = KVM_CREATE_DEVICE_TEST, 3523 }; 3524 3525 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3526 return false; 3527 } 3528 3529 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3530 } 3531 3532 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3533 { 3534 struct kvm_one_reg reg; 3535 int r; 3536 3537 reg.id = id; 3538 reg.addr = (uintptr_t) source; 3539 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3540 if (r) { 3541 trace_kvm_failed_reg_set(id, strerror(-r)); 3542 } 3543 return r; 3544 } 3545 3546 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3547 { 3548 struct kvm_one_reg reg; 3549 int r; 3550 3551 reg.id = id; 3552 reg.addr = (uintptr_t) target; 3553 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3554 if (r) { 3555 trace_kvm_failed_reg_get(id, strerror(-r)); 3556 } 3557 return r; 3558 } 3559 3560 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3561 hwaddr start_addr, hwaddr size) 3562 { 3563 KVMState *kvm = KVM_STATE(ms->accelerator); 3564 int i; 3565 3566 for (i = 0; i < kvm->nr_as; ++i) { 3567 if (kvm->as[i].as == as && kvm->as[i].ml) { 3568 size = MIN(kvm_max_slot_size, size); 3569 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3570 start_addr, size); 3571 } 3572 } 3573 3574 return false; 3575 } 3576 3577 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3578 const char *name, void *opaque, 3579 Error **errp) 3580 { 3581 KVMState *s = KVM_STATE(obj); 3582 int64_t value = s->kvm_shadow_mem; 3583 3584 visit_type_int(v, name, &value, errp); 3585 } 3586 3587 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3588 const char *name, void *opaque, 3589 Error **errp) 3590 { 3591 KVMState *s = KVM_STATE(obj); 3592 int64_t value; 3593 3594 if (s->fd != -1) { 3595 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3596 return; 3597 } 3598 3599 if (!visit_type_int(v, name, &value, errp)) { 3600 return; 3601 } 3602 3603 s->kvm_shadow_mem = value; 3604 } 3605 3606 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3607 const char *name, void *opaque, 3608 Error **errp) 3609 { 3610 KVMState *s = KVM_STATE(obj); 3611 OnOffSplit mode; 3612 3613 if (s->fd != -1) { 3614 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3615 return; 3616 } 3617 3618 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3619 return; 3620 } 3621 switch (mode) { 3622 case ON_OFF_SPLIT_ON: 3623 s->kernel_irqchip_allowed = true; 3624 s->kernel_irqchip_required = true; 3625 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3626 break; 3627 case ON_OFF_SPLIT_OFF: 3628 s->kernel_irqchip_allowed = false; 3629 s->kernel_irqchip_required = false; 3630 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3631 break; 3632 case ON_OFF_SPLIT_SPLIT: 3633 s->kernel_irqchip_allowed = true; 3634 s->kernel_irqchip_required = true; 3635 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3636 break; 3637 default: 3638 /* The value was checked in visit_type_OnOffSplit() above. If 3639 * we get here, then something is wrong in QEMU. 3640 */ 3641 abort(); 3642 } 3643 } 3644 3645 bool kvm_kernel_irqchip_allowed(void) 3646 { 3647 return kvm_state->kernel_irqchip_allowed; 3648 } 3649 3650 bool kvm_kernel_irqchip_required(void) 3651 { 3652 return kvm_state->kernel_irqchip_required; 3653 } 3654 3655 bool kvm_kernel_irqchip_split(void) 3656 { 3657 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3658 } 3659 3660 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3661 const char *name, void *opaque, 3662 Error **errp) 3663 { 3664 KVMState *s = KVM_STATE(obj); 3665 uint32_t value = s->kvm_dirty_ring_size; 3666 3667 visit_type_uint32(v, name, &value, errp); 3668 } 3669 3670 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3671 const char *name, void *opaque, 3672 Error **errp) 3673 { 3674 KVMState *s = KVM_STATE(obj); 3675 uint32_t value; 3676 3677 if (s->fd != -1) { 3678 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3679 return; 3680 } 3681 3682 if (!visit_type_uint32(v, name, &value, errp)) { 3683 return; 3684 } 3685 if (value & (value - 1)) { 3686 error_setg(errp, "dirty-ring-size must be a power of two."); 3687 return; 3688 } 3689 3690 s->kvm_dirty_ring_size = value; 3691 } 3692 3693 static void kvm_accel_instance_init(Object *obj) 3694 { 3695 KVMState *s = KVM_STATE(obj); 3696 3697 s->fd = -1; 3698 s->vmfd = -1; 3699 s->kvm_shadow_mem = -1; 3700 s->kernel_irqchip_allowed = true; 3701 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3702 /* KVM dirty ring is by default off */ 3703 s->kvm_dirty_ring_size = 0; 3704 s->kvm_dirty_ring_with_bitmap = false; 3705 s->kvm_eager_split_size = 0; 3706 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3707 s->notify_window = 0; 3708 s->xen_version = 0; 3709 s->xen_gnttab_max_frames = 64; 3710 s->xen_evtchn_max_pirq = 256; 3711 } 3712 3713 /** 3714 * kvm_gdbstub_sstep_flags(): 3715 * 3716 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3717 * support is probed during kvm_init() 3718 */ 3719 static int kvm_gdbstub_sstep_flags(void) 3720 { 3721 return kvm_sstep_flags; 3722 } 3723 3724 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3725 { 3726 AccelClass *ac = ACCEL_CLASS(oc); 3727 ac->name = "KVM"; 3728 ac->init_machine = kvm_init; 3729 ac->has_memory = kvm_accel_has_memory; 3730 ac->allowed = &kvm_allowed; 3731 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3732 3733 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3734 NULL, kvm_set_kernel_irqchip, 3735 NULL, NULL); 3736 object_class_property_set_description(oc, "kernel-irqchip", 3737 "Configure KVM in-kernel irqchip"); 3738 3739 object_class_property_add(oc, "kvm-shadow-mem", "int", 3740 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3741 NULL, NULL); 3742 object_class_property_set_description(oc, "kvm-shadow-mem", 3743 "KVM shadow MMU size"); 3744 3745 object_class_property_add(oc, "dirty-ring-size", "uint32", 3746 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3747 NULL, NULL); 3748 object_class_property_set_description(oc, "dirty-ring-size", 3749 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3750 3751 kvm_arch_accel_class_init(oc); 3752 } 3753 3754 static const TypeInfo kvm_accel_type = { 3755 .name = TYPE_KVM_ACCEL, 3756 .parent = TYPE_ACCEL, 3757 .instance_init = kvm_accel_instance_init, 3758 .class_init = kvm_accel_class_init, 3759 .instance_size = sizeof(KVMState), 3760 }; 3761 3762 static void kvm_type_init(void) 3763 { 3764 type_register_static(&kvm_accel_type); 3765 } 3766 3767 type_init(kvm_type_init); 3768 3769 typedef struct StatsArgs { 3770 union StatsResultsType { 3771 StatsResultList **stats; 3772 StatsSchemaList **schema; 3773 } result; 3774 strList *names; 3775 Error **errp; 3776 } StatsArgs; 3777 3778 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3779 uint64_t *stats_data, 3780 StatsList *stats_list, 3781 Error **errp) 3782 { 3783 3784 Stats *stats; 3785 uint64List *val_list = NULL; 3786 3787 /* Only add stats that we understand. */ 3788 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3789 case KVM_STATS_TYPE_CUMULATIVE: 3790 case KVM_STATS_TYPE_INSTANT: 3791 case KVM_STATS_TYPE_PEAK: 3792 case KVM_STATS_TYPE_LINEAR_HIST: 3793 case KVM_STATS_TYPE_LOG_HIST: 3794 break; 3795 default: 3796 return stats_list; 3797 } 3798 3799 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3800 case KVM_STATS_UNIT_NONE: 3801 case KVM_STATS_UNIT_BYTES: 3802 case KVM_STATS_UNIT_CYCLES: 3803 case KVM_STATS_UNIT_SECONDS: 3804 case KVM_STATS_UNIT_BOOLEAN: 3805 break; 3806 default: 3807 return stats_list; 3808 } 3809 3810 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3811 case KVM_STATS_BASE_POW10: 3812 case KVM_STATS_BASE_POW2: 3813 break; 3814 default: 3815 return stats_list; 3816 } 3817 3818 /* Alloc and populate data list */ 3819 stats = g_new0(Stats, 1); 3820 stats->name = g_strdup(pdesc->name); 3821 stats->value = g_new0(StatsValue, 1);; 3822 3823 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3824 stats->value->u.boolean = *stats_data; 3825 stats->value->type = QTYPE_QBOOL; 3826 } else if (pdesc->size == 1) { 3827 stats->value->u.scalar = *stats_data; 3828 stats->value->type = QTYPE_QNUM; 3829 } else { 3830 int i; 3831 for (i = 0; i < pdesc->size; i++) { 3832 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3833 } 3834 stats->value->u.list = val_list; 3835 stats->value->type = QTYPE_QLIST; 3836 } 3837 3838 QAPI_LIST_PREPEND(stats_list, stats); 3839 return stats_list; 3840 } 3841 3842 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3843 StatsSchemaValueList *list, 3844 Error **errp) 3845 { 3846 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3847 schema_entry->value = g_new0(StatsSchemaValue, 1); 3848 3849 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3850 case KVM_STATS_TYPE_CUMULATIVE: 3851 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3852 break; 3853 case KVM_STATS_TYPE_INSTANT: 3854 schema_entry->value->type = STATS_TYPE_INSTANT; 3855 break; 3856 case KVM_STATS_TYPE_PEAK: 3857 schema_entry->value->type = STATS_TYPE_PEAK; 3858 break; 3859 case KVM_STATS_TYPE_LINEAR_HIST: 3860 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3861 schema_entry->value->bucket_size = pdesc->bucket_size; 3862 schema_entry->value->has_bucket_size = true; 3863 break; 3864 case KVM_STATS_TYPE_LOG_HIST: 3865 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3866 break; 3867 default: 3868 goto exit; 3869 } 3870 3871 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3872 case KVM_STATS_UNIT_NONE: 3873 break; 3874 case KVM_STATS_UNIT_BOOLEAN: 3875 schema_entry->value->has_unit = true; 3876 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3877 break; 3878 case KVM_STATS_UNIT_BYTES: 3879 schema_entry->value->has_unit = true; 3880 schema_entry->value->unit = STATS_UNIT_BYTES; 3881 break; 3882 case KVM_STATS_UNIT_CYCLES: 3883 schema_entry->value->has_unit = true; 3884 schema_entry->value->unit = STATS_UNIT_CYCLES; 3885 break; 3886 case KVM_STATS_UNIT_SECONDS: 3887 schema_entry->value->has_unit = true; 3888 schema_entry->value->unit = STATS_UNIT_SECONDS; 3889 break; 3890 default: 3891 goto exit; 3892 } 3893 3894 schema_entry->value->exponent = pdesc->exponent; 3895 if (pdesc->exponent) { 3896 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3897 case KVM_STATS_BASE_POW10: 3898 schema_entry->value->has_base = true; 3899 schema_entry->value->base = 10; 3900 break; 3901 case KVM_STATS_BASE_POW2: 3902 schema_entry->value->has_base = true; 3903 schema_entry->value->base = 2; 3904 break; 3905 default: 3906 goto exit; 3907 } 3908 } 3909 3910 schema_entry->value->name = g_strdup(pdesc->name); 3911 schema_entry->next = list; 3912 return schema_entry; 3913 exit: 3914 g_free(schema_entry->value); 3915 g_free(schema_entry); 3916 return list; 3917 } 3918 3919 /* Cached stats descriptors */ 3920 typedef struct StatsDescriptors { 3921 const char *ident; /* cache key, currently the StatsTarget */ 3922 struct kvm_stats_desc *kvm_stats_desc; 3923 struct kvm_stats_header kvm_stats_header; 3924 QTAILQ_ENTRY(StatsDescriptors) next; 3925 } StatsDescriptors; 3926 3927 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3928 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3929 3930 /* 3931 * Return the descriptors for 'target', that either have already been read 3932 * or are retrieved from 'stats_fd'. 3933 */ 3934 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3935 Error **errp) 3936 { 3937 StatsDescriptors *descriptors; 3938 const char *ident; 3939 struct kvm_stats_desc *kvm_stats_desc; 3940 struct kvm_stats_header *kvm_stats_header; 3941 size_t size_desc; 3942 ssize_t ret; 3943 3944 ident = StatsTarget_str(target); 3945 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3946 if (g_str_equal(descriptors->ident, ident)) { 3947 return descriptors; 3948 } 3949 } 3950 3951 descriptors = g_new0(StatsDescriptors, 1); 3952 3953 /* Read stats header */ 3954 kvm_stats_header = &descriptors->kvm_stats_header; 3955 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 3956 if (ret != sizeof(*kvm_stats_header)) { 3957 error_setg(errp, "KVM stats: failed to read stats header: " 3958 "expected %zu actual %zu", 3959 sizeof(*kvm_stats_header), ret); 3960 g_free(descriptors); 3961 return NULL; 3962 } 3963 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3964 3965 /* Read stats descriptors */ 3966 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3967 ret = pread(stats_fd, kvm_stats_desc, 3968 size_desc * kvm_stats_header->num_desc, 3969 kvm_stats_header->desc_offset); 3970 3971 if (ret != size_desc * kvm_stats_header->num_desc) { 3972 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3973 "expected %zu actual %zu", 3974 size_desc * kvm_stats_header->num_desc, ret); 3975 g_free(descriptors); 3976 g_free(kvm_stats_desc); 3977 return NULL; 3978 } 3979 descriptors->kvm_stats_desc = kvm_stats_desc; 3980 descriptors->ident = ident; 3981 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3982 return descriptors; 3983 } 3984 3985 static void query_stats(StatsResultList **result, StatsTarget target, 3986 strList *names, int stats_fd, CPUState *cpu, 3987 Error **errp) 3988 { 3989 struct kvm_stats_desc *kvm_stats_desc; 3990 struct kvm_stats_header *kvm_stats_header; 3991 StatsDescriptors *descriptors; 3992 g_autofree uint64_t *stats_data = NULL; 3993 struct kvm_stats_desc *pdesc; 3994 StatsList *stats_list = NULL; 3995 size_t size_desc, size_data = 0; 3996 ssize_t ret; 3997 int i; 3998 3999 descriptors = find_stats_descriptors(target, stats_fd, errp); 4000 if (!descriptors) { 4001 return; 4002 } 4003 4004 kvm_stats_header = &descriptors->kvm_stats_header; 4005 kvm_stats_desc = descriptors->kvm_stats_desc; 4006 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4007 4008 /* Tally the total data size; read schema data */ 4009 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4010 pdesc = (void *)kvm_stats_desc + i * size_desc; 4011 size_data += pdesc->size * sizeof(*stats_data); 4012 } 4013 4014 stats_data = g_malloc0(size_data); 4015 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 4016 4017 if (ret != size_data) { 4018 error_setg(errp, "KVM stats: failed to read data: " 4019 "expected %zu actual %zu", size_data, ret); 4020 return; 4021 } 4022 4023 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4024 uint64_t *stats; 4025 pdesc = (void *)kvm_stats_desc + i * size_desc; 4026 4027 /* Add entry to the list */ 4028 stats = (void *)stats_data + pdesc->offset; 4029 if (!apply_str_list_filter(pdesc->name, names)) { 4030 continue; 4031 } 4032 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 4033 } 4034 4035 if (!stats_list) { 4036 return; 4037 } 4038 4039 switch (target) { 4040 case STATS_TARGET_VM: 4041 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 4042 break; 4043 case STATS_TARGET_VCPU: 4044 add_stats_entry(result, STATS_PROVIDER_KVM, 4045 cpu->parent_obj.canonical_path, 4046 stats_list); 4047 break; 4048 default: 4049 g_assert_not_reached(); 4050 } 4051 } 4052 4053 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4054 int stats_fd, Error **errp) 4055 { 4056 struct kvm_stats_desc *kvm_stats_desc; 4057 struct kvm_stats_header *kvm_stats_header; 4058 StatsDescriptors *descriptors; 4059 struct kvm_stats_desc *pdesc; 4060 StatsSchemaValueList *stats_list = NULL; 4061 size_t size_desc; 4062 int i; 4063 4064 descriptors = find_stats_descriptors(target, stats_fd, errp); 4065 if (!descriptors) { 4066 return; 4067 } 4068 4069 kvm_stats_header = &descriptors->kvm_stats_header; 4070 kvm_stats_desc = descriptors->kvm_stats_desc; 4071 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4072 4073 /* Tally the total data size; read schema data */ 4074 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4075 pdesc = (void *)kvm_stats_desc + i * size_desc; 4076 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4077 } 4078 4079 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4080 } 4081 4082 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4083 { 4084 int stats_fd = cpu->kvm_vcpu_stats_fd; 4085 Error *local_err = NULL; 4086 4087 if (stats_fd == -1) { 4088 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4089 error_propagate(kvm_stats_args->errp, local_err); 4090 return; 4091 } 4092 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4093 kvm_stats_args->names, stats_fd, cpu, 4094 kvm_stats_args->errp); 4095 } 4096 4097 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4098 { 4099 int stats_fd = cpu->kvm_vcpu_stats_fd; 4100 Error *local_err = NULL; 4101 4102 if (stats_fd == -1) { 4103 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4104 error_propagate(kvm_stats_args->errp, local_err); 4105 return; 4106 } 4107 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4108 kvm_stats_args->errp); 4109 } 4110 4111 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4112 strList *names, strList *targets, Error **errp) 4113 { 4114 KVMState *s = kvm_state; 4115 CPUState *cpu; 4116 int stats_fd; 4117 4118 switch (target) { 4119 case STATS_TARGET_VM: 4120 { 4121 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4122 if (stats_fd == -1) { 4123 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4124 return; 4125 } 4126 query_stats(result, target, names, stats_fd, NULL, errp); 4127 close(stats_fd); 4128 break; 4129 } 4130 case STATS_TARGET_VCPU: 4131 { 4132 StatsArgs stats_args; 4133 stats_args.result.stats = result; 4134 stats_args.names = names; 4135 stats_args.errp = errp; 4136 CPU_FOREACH(cpu) { 4137 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4138 continue; 4139 } 4140 query_stats_vcpu(cpu, &stats_args); 4141 } 4142 break; 4143 } 4144 default: 4145 break; 4146 } 4147 } 4148 4149 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4150 { 4151 StatsArgs stats_args; 4152 KVMState *s = kvm_state; 4153 int stats_fd; 4154 4155 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4156 if (stats_fd == -1) { 4157 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4158 return; 4159 } 4160 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4161 close(stats_fd); 4162 4163 if (first_cpu) { 4164 stats_args.result.schema = result; 4165 stats_args.errp = errp; 4166 query_stats_schema_vcpu(first_cpu, &stats_args); 4167 } 4168 } 4169