1 /* 2 * QEMU KVM support 3 * 4 * Copyright IBM, Corp. 2008 5 * Red Hat, Inc. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * Glauber Costa <gcosta@redhat.com> 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 * 14 */ 15 16 #include "qemu/osdep.h" 17 #include <sys/ioctl.h> 18 #include <poll.h> 19 20 #include <linux/kvm.h> 21 22 #include "qemu/atomic.h" 23 #include "qemu/option.h" 24 #include "qemu/config-file.h" 25 #include "qemu/error-report.h" 26 #include "qapi/error.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/s390x/adapter.h" 30 #include "exec/gdbstub.h" 31 #include "sysemu/kvm_int.h" 32 #include "sysemu/runstate.h" 33 #include "sysemu/cpus.h" 34 #include "sysemu/accel-blocker.h" 35 #include "qemu/bswap.h" 36 #include "exec/memory.h" 37 #include "exec/ram_addr.h" 38 #include "qemu/event_notifier.h" 39 #include "qemu/main-loop.h" 40 #include "trace.h" 41 #include "hw/irq.h" 42 #include "qapi/visitor.h" 43 #include "qapi/qapi-types-common.h" 44 #include "qapi/qapi-visit-common.h" 45 #include "sysemu/reset.h" 46 #include "qemu/guest-random.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm-cpus.h" 49 #include "sysemu/dirtylimit.h" 50 #include "qemu/range.h" 51 52 #include "hw/boards.h" 53 #include "sysemu/stats.h" 54 55 /* This check must be after config-host.h is included */ 56 #ifdef CONFIG_EVENTFD 57 #include <sys/eventfd.h> 58 #endif 59 60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We 61 * need to use the real host PAGE_SIZE, as that's what KVM will use. 62 */ 63 #ifdef PAGE_SIZE 64 #undef PAGE_SIZE 65 #endif 66 #define PAGE_SIZE qemu_real_host_page_size() 67 68 #ifndef KVM_GUESTDBG_BLOCKIRQ 69 #define KVM_GUESTDBG_BLOCKIRQ 0 70 #endif 71 72 //#define DEBUG_KVM 73 74 #ifdef DEBUG_KVM 75 #define DPRINTF(fmt, ...) \ 76 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 77 #else 78 #define DPRINTF(fmt, ...) \ 79 do { } while (0) 80 #endif 81 82 struct KVMParkedVcpu { 83 unsigned long vcpu_id; 84 int kvm_fd; 85 QLIST_ENTRY(KVMParkedVcpu) node; 86 }; 87 88 KVMState *kvm_state; 89 bool kvm_kernel_irqchip; 90 bool kvm_split_irqchip; 91 bool kvm_async_interrupts_allowed; 92 bool kvm_halt_in_kernel_allowed; 93 bool kvm_eventfds_allowed; 94 bool kvm_resamplefds_allowed; 95 bool kvm_msi_via_irqfd_allowed; 96 bool kvm_gsi_routing_allowed; 97 bool kvm_gsi_direct_mapping; 98 bool kvm_allowed; 99 bool kvm_readonly_mem_allowed; 100 bool kvm_vm_attributes_allowed; 101 bool kvm_ioeventfd_any_length_allowed; 102 bool kvm_msi_use_devid; 103 bool kvm_has_guest_debug; 104 static int kvm_sstep_flags; 105 static bool kvm_immediate_exit; 106 static hwaddr kvm_max_slot_size = ~0; 107 108 static const KVMCapabilityInfo kvm_required_capabilites[] = { 109 KVM_CAP_INFO(USER_MEMORY), 110 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), 111 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), 112 KVM_CAP_INFO(INTERNAL_ERROR_DATA), 113 KVM_CAP_LAST_INFO 114 }; 115 116 static NotifierList kvm_irqchip_change_notifiers = 117 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); 118 119 struct KVMResampleFd { 120 int gsi; 121 EventNotifier *resample_event; 122 QLIST_ENTRY(KVMResampleFd) node; 123 }; 124 typedef struct KVMResampleFd KVMResampleFd; 125 126 /* 127 * Only used with split irqchip where we need to do the resample fd 128 * kick for the kernel from userspace. 129 */ 130 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = 131 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); 132 133 static QemuMutex kml_slots_lock; 134 135 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock) 136 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock) 137 138 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); 139 140 static inline void kvm_resample_fd_remove(int gsi) 141 { 142 KVMResampleFd *rfd; 143 144 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 145 if (rfd->gsi == gsi) { 146 QLIST_REMOVE(rfd, node); 147 g_free(rfd); 148 break; 149 } 150 } 151 } 152 153 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) 154 { 155 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); 156 157 rfd->gsi = gsi; 158 rfd->resample_event = event; 159 160 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); 161 } 162 163 void kvm_resample_fd_notify(int gsi) 164 { 165 KVMResampleFd *rfd; 166 167 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { 168 if (rfd->gsi == gsi) { 169 event_notifier_set(rfd->resample_event); 170 trace_kvm_resample_fd_notify(gsi); 171 return; 172 } 173 } 174 } 175 176 unsigned int kvm_get_max_memslots(void) 177 { 178 KVMState *s = KVM_STATE(current_accel()); 179 180 return s->nr_slots; 181 } 182 183 unsigned int kvm_get_free_memslots(void) 184 { 185 unsigned int used_slots = 0; 186 KVMState *s = kvm_state; 187 int i; 188 189 kvm_slots_lock(); 190 for (i = 0; i < s->nr_as; i++) { 191 if (!s->as[i].ml) { 192 continue; 193 } 194 used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); 195 } 196 kvm_slots_unlock(); 197 198 return s->nr_slots - used_slots; 199 } 200 201 /* Called with KVMMemoryListener.slots_lock held */ 202 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) 203 { 204 KVMState *s = kvm_state; 205 int i; 206 207 for (i = 0; i < s->nr_slots; i++) { 208 if (kml->slots[i].memory_size == 0) { 209 return &kml->slots[i]; 210 } 211 } 212 213 return NULL; 214 } 215 216 /* Called with KVMMemoryListener.slots_lock held */ 217 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) 218 { 219 KVMSlot *slot = kvm_get_free_slot(kml); 220 221 if (slot) { 222 return slot; 223 } 224 225 fprintf(stderr, "%s: no free slot available\n", __func__); 226 abort(); 227 } 228 229 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, 230 hwaddr start_addr, 231 hwaddr size) 232 { 233 KVMState *s = kvm_state; 234 int i; 235 236 for (i = 0; i < s->nr_slots; i++) { 237 KVMSlot *mem = &kml->slots[i]; 238 239 if (start_addr == mem->start_addr && size == mem->memory_size) { 240 return mem; 241 } 242 } 243 244 return NULL; 245 } 246 247 /* 248 * Calculate and align the start address and the size of the section. 249 * Return the size. If the size is 0, the aligned section is empty. 250 */ 251 static hwaddr kvm_align_section(MemoryRegionSection *section, 252 hwaddr *start) 253 { 254 hwaddr size = int128_get64(section->size); 255 hwaddr delta, aligned; 256 257 /* kvm works in page size chunks, but the function may be called 258 with sub-page size and unaligned start address. Pad the start 259 address to next and truncate size to previous page boundary. */ 260 aligned = ROUND_UP(section->offset_within_address_space, 261 qemu_real_host_page_size()); 262 delta = aligned - section->offset_within_address_space; 263 *start = aligned; 264 if (delta > size) { 265 return 0; 266 } 267 268 return (size - delta) & qemu_real_host_page_mask(); 269 } 270 271 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, 272 hwaddr *phys_addr) 273 { 274 KVMMemoryListener *kml = &s->memory_listener; 275 int i, ret = 0; 276 277 kvm_slots_lock(); 278 for (i = 0; i < s->nr_slots; i++) { 279 KVMSlot *mem = &kml->slots[i]; 280 281 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { 282 *phys_addr = mem->start_addr + (ram - mem->ram); 283 ret = 1; 284 break; 285 } 286 } 287 kvm_slots_unlock(); 288 289 return ret; 290 } 291 292 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) 293 { 294 KVMState *s = kvm_state; 295 struct kvm_userspace_memory_region mem; 296 int ret; 297 298 mem.slot = slot->slot | (kml->as_id << 16); 299 mem.guest_phys_addr = slot->start_addr; 300 mem.userspace_addr = (unsigned long)slot->ram; 301 mem.flags = slot->flags; 302 303 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { 304 /* Set the slot size to 0 before setting the slot to the desired 305 * value. This is needed based on KVM commit 75d61fbc. */ 306 mem.memory_size = 0; 307 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 308 if (ret < 0) { 309 goto err; 310 } 311 } 312 mem.memory_size = slot->memory_size; 313 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); 314 slot->old_flags = mem.flags; 315 err: 316 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, 317 mem.memory_size, mem.userspace_addr, ret); 318 if (ret < 0) { 319 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," 320 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", 321 __func__, mem.slot, slot->start_addr, 322 (uint64_t)mem.memory_size, strerror(errno)); 323 } 324 return ret; 325 } 326 327 static int do_kvm_destroy_vcpu(CPUState *cpu) 328 { 329 KVMState *s = kvm_state; 330 long mmap_size; 331 struct KVMParkedVcpu *vcpu = NULL; 332 int ret = 0; 333 334 DPRINTF("kvm_destroy_vcpu\n"); 335 336 ret = kvm_arch_destroy_vcpu(cpu); 337 if (ret < 0) { 338 goto err; 339 } 340 341 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 342 if (mmap_size < 0) { 343 ret = mmap_size; 344 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); 345 goto err; 346 } 347 348 ret = munmap(cpu->kvm_run, mmap_size); 349 if (ret < 0) { 350 goto err; 351 } 352 353 if (cpu->kvm_dirty_gfns) { 354 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); 355 if (ret < 0) { 356 goto err; 357 } 358 } 359 360 vcpu = g_malloc0(sizeof(*vcpu)); 361 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); 362 vcpu->kvm_fd = cpu->kvm_fd; 363 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); 364 err: 365 return ret; 366 } 367 368 void kvm_destroy_vcpu(CPUState *cpu) 369 { 370 if (do_kvm_destroy_vcpu(cpu) < 0) { 371 error_report("kvm_destroy_vcpu failed"); 372 exit(EXIT_FAILURE); 373 } 374 } 375 376 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) 377 { 378 struct KVMParkedVcpu *cpu; 379 380 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { 381 if (cpu->vcpu_id == vcpu_id) { 382 int kvm_fd; 383 384 QLIST_REMOVE(cpu, node); 385 kvm_fd = cpu->kvm_fd; 386 g_free(cpu); 387 return kvm_fd; 388 } 389 } 390 391 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); 392 } 393 394 int kvm_init_vcpu(CPUState *cpu, Error **errp) 395 { 396 KVMState *s = kvm_state; 397 long mmap_size; 398 int ret; 399 400 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); 401 402 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); 403 if (ret < 0) { 404 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", 405 kvm_arch_vcpu_id(cpu)); 406 goto err; 407 } 408 409 cpu->kvm_fd = ret; 410 cpu->kvm_state = s; 411 cpu->vcpu_dirty = true; 412 cpu->dirty_pages = 0; 413 cpu->throttle_us_per_full = 0; 414 415 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); 416 if (mmap_size < 0) { 417 ret = mmap_size; 418 error_setg_errno(errp, -mmap_size, 419 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); 420 goto err; 421 } 422 423 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, 424 cpu->kvm_fd, 0); 425 if (cpu->kvm_run == MAP_FAILED) { 426 ret = -errno; 427 error_setg_errno(errp, ret, 428 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", 429 kvm_arch_vcpu_id(cpu)); 430 goto err; 431 } 432 433 if (s->coalesced_mmio && !s->coalesced_mmio_ring) { 434 s->coalesced_mmio_ring = 435 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; 436 } 437 438 if (s->kvm_dirty_ring_size) { 439 /* Use MAP_SHARED to share pages with the kernel */ 440 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, 441 PROT_READ | PROT_WRITE, MAP_SHARED, 442 cpu->kvm_fd, 443 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); 444 if (cpu->kvm_dirty_gfns == MAP_FAILED) { 445 ret = -errno; 446 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); 447 goto err; 448 } 449 } 450 451 ret = kvm_arch_init_vcpu(cpu); 452 if (ret < 0) { 453 error_setg_errno(errp, -ret, 454 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", 455 kvm_arch_vcpu_id(cpu)); 456 } 457 cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); 458 459 err: 460 return ret; 461 } 462 463 /* 464 * dirty pages logging control 465 */ 466 467 static int kvm_mem_flags(MemoryRegion *mr) 468 { 469 bool readonly = mr->readonly || memory_region_is_romd(mr); 470 int flags = 0; 471 472 if (memory_region_get_dirty_log_mask(mr) != 0) { 473 flags |= KVM_MEM_LOG_DIRTY_PAGES; 474 } 475 if (readonly && kvm_readonly_mem_allowed) { 476 flags |= KVM_MEM_READONLY; 477 } 478 return flags; 479 } 480 481 /* Called with KVMMemoryListener.slots_lock held */ 482 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, 483 MemoryRegion *mr) 484 { 485 mem->flags = kvm_mem_flags(mr); 486 487 /* If nothing changed effectively, no need to issue ioctl */ 488 if (mem->flags == mem->old_flags) { 489 return 0; 490 } 491 492 kvm_slot_init_dirty_bitmap(mem); 493 return kvm_set_user_memory_region(kml, mem, false); 494 } 495 496 static int kvm_section_update_flags(KVMMemoryListener *kml, 497 MemoryRegionSection *section) 498 { 499 hwaddr start_addr, size, slot_size; 500 KVMSlot *mem; 501 int ret = 0; 502 503 size = kvm_align_section(section, &start_addr); 504 if (!size) { 505 return 0; 506 } 507 508 kvm_slots_lock(); 509 510 while (size && !ret) { 511 slot_size = MIN(kvm_max_slot_size, size); 512 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 513 if (!mem) { 514 /* We don't have a slot if we want to trap every access. */ 515 goto out; 516 } 517 518 ret = kvm_slot_update_flags(kml, mem, section->mr); 519 start_addr += slot_size; 520 size -= slot_size; 521 } 522 523 out: 524 kvm_slots_unlock(); 525 return ret; 526 } 527 528 static void kvm_log_start(MemoryListener *listener, 529 MemoryRegionSection *section, 530 int old, int new) 531 { 532 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 533 int r; 534 535 if (old != 0) { 536 return; 537 } 538 539 r = kvm_section_update_flags(kml, section); 540 if (r < 0) { 541 abort(); 542 } 543 } 544 545 static void kvm_log_stop(MemoryListener *listener, 546 MemoryRegionSection *section, 547 int old, int new) 548 { 549 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 550 int r; 551 552 if (new != 0) { 553 return; 554 } 555 556 r = kvm_section_update_flags(kml, section); 557 if (r < 0) { 558 abort(); 559 } 560 } 561 562 /* get kvm's dirty pages bitmap and update qemu's */ 563 static void kvm_slot_sync_dirty_pages(KVMSlot *slot) 564 { 565 ram_addr_t start = slot->ram_start_offset; 566 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); 567 568 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); 569 } 570 571 static void kvm_slot_reset_dirty_pages(KVMSlot *slot) 572 { 573 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); 574 } 575 576 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) 577 578 /* Allocate the dirty bitmap for a slot */ 579 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) 580 { 581 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { 582 return; 583 } 584 585 /* 586 * XXX bad kernel interface alert 587 * For dirty bitmap, kernel allocates array of size aligned to 588 * bits-per-long. But for case when the kernel is 64bits and 589 * the userspace is 32bits, userspace can't align to the same 590 * bits-per-long, since sizeof(long) is different between kernel 591 * and user space. This way, userspace will provide buffer which 592 * may be 4 bytes less than the kernel will use, resulting in 593 * userspace memory corruption (which is not detectable by valgrind 594 * too, in most cases). 595 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in 596 * a hope that sizeof(long) won't become >8 any time soon. 597 * 598 * Note: the granule of kvm dirty log is qemu_real_host_page_size. 599 * And mem->memory_size is aligned to it (otherwise this mem can't 600 * be registered to KVM). 601 */ 602 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), 603 /*HOST_LONG_BITS*/ 64) / 8; 604 mem->dirty_bmap = g_malloc0(bitmap_size); 605 mem->dirty_bmap_size = bitmap_size; 606 } 607 608 /* 609 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if 610 * succeeded, false otherwise 611 */ 612 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) 613 { 614 struct kvm_dirty_log d = {}; 615 int ret; 616 617 d.dirty_bitmap = slot->dirty_bmap; 618 d.slot = slot->slot | (slot->as_id << 16); 619 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); 620 621 if (ret == -ENOENT) { 622 /* kernel does not have dirty bitmap in this slot */ 623 ret = 0; 624 } 625 if (ret) { 626 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", 627 __func__, ret); 628 } 629 return ret == 0; 630 } 631 632 /* Should be with all slots_lock held for the address spaces. */ 633 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, 634 uint32_t slot_id, uint64_t offset) 635 { 636 KVMMemoryListener *kml; 637 KVMSlot *mem; 638 639 if (as_id >= s->nr_as) { 640 return; 641 } 642 643 kml = s->as[as_id].ml; 644 mem = &kml->slots[slot_id]; 645 646 if (!mem->memory_size || offset >= 647 (mem->memory_size / qemu_real_host_page_size())) { 648 return; 649 } 650 651 set_bit(offset, mem->dirty_bmap); 652 } 653 654 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) 655 { 656 /* 657 * Read the flags before the value. Pairs with barrier in 658 * KVM's kvm_dirty_ring_push() function. 659 */ 660 return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; 661 } 662 663 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) 664 { 665 /* 666 * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS 667 * sees the full content of the ring: 668 * 669 * CPU0 CPU1 CPU2 670 * ------------------------------------------------------------------------------ 671 * fill gfn0 672 * store-rel flags for gfn0 673 * load-acq flags for gfn0 674 * store-rel RESET for gfn0 675 * ioctl(RESET_RINGS) 676 * load-acq flags for gfn0 677 * check if flags have RESET 678 * 679 * The synchronization goes from CPU2 to CPU0 to CPU1. 680 */ 681 qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); 682 } 683 684 /* 685 * Should be with all slots_lock held for the address spaces. It returns the 686 * dirty page we've collected on this dirty ring. 687 */ 688 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) 689 { 690 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; 691 uint32_t ring_size = s->kvm_dirty_ring_size; 692 uint32_t count = 0, fetch = cpu->kvm_fetch_index; 693 694 /* 695 * It's possible that we race with vcpu creation code where the vcpu is 696 * put onto the vcpus list but not yet initialized the dirty ring 697 * structures. If so, skip it. 698 */ 699 if (!cpu->created) { 700 return 0; 701 } 702 703 assert(dirty_gfns && ring_size); 704 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); 705 706 while (true) { 707 cur = &dirty_gfns[fetch % ring_size]; 708 if (!dirty_gfn_is_dirtied(cur)) { 709 break; 710 } 711 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, 712 cur->offset); 713 dirty_gfn_set_collected(cur); 714 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); 715 fetch++; 716 count++; 717 } 718 cpu->kvm_fetch_index = fetch; 719 cpu->dirty_pages += count; 720 721 return count; 722 } 723 724 /* Must be with slots_lock held */ 725 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) 726 { 727 int ret; 728 uint64_t total = 0; 729 int64_t stamp; 730 731 stamp = get_clock(); 732 733 if (cpu) { 734 total = kvm_dirty_ring_reap_one(s, cpu); 735 } else { 736 CPU_FOREACH(cpu) { 737 total += kvm_dirty_ring_reap_one(s, cpu); 738 } 739 } 740 741 if (total) { 742 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); 743 assert(ret == total); 744 } 745 746 stamp = get_clock() - stamp; 747 748 if (total) { 749 trace_kvm_dirty_ring_reap(total, stamp / 1000); 750 } 751 752 return total; 753 } 754 755 /* 756 * Currently for simplicity, we must hold BQL before calling this. We can 757 * consider to drop the BQL if we're clear with all the race conditions. 758 */ 759 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) 760 { 761 uint64_t total; 762 763 /* 764 * We need to lock all kvm slots for all address spaces here, 765 * because: 766 * 767 * (1) We need to mark dirty for dirty bitmaps in multiple slots 768 * and for tons of pages, so it's better to take the lock here 769 * once rather than once per page. And more importantly, 770 * 771 * (2) We must _NOT_ publish dirty bits to the other threads 772 * (e.g., the migration thread) via the kvm memory slot dirty 773 * bitmaps before correctly re-protect those dirtied pages. 774 * Otherwise we can have potential risk of data corruption if 775 * the page data is read in the other thread before we do 776 * reset below. 777 */ 778 kvm_slots_lock(); 779 total = kvm_dirty_ring_reap_locked(s, cpu); 780 kvm_slots_unlock(); 781 782 return total; 783 } 784 785 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) 786 { 787 /* No need to do anything */ 788 } 789 790 /* 791 * Kick all vcpus out in a synchronized way. When returned, we 792 * guarantee that every vcpu has been kicked and at least returned to 793 * userspace once. 794 */ 795 static void kvm_cpu_synchronize_kick_all(void) 796 { 797 CPUState *cpu; 798 799 CPU_FOREACH(cpu) { 800 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); 801 } 802 } 803 804 /* 805 * Flush all the existing dirty pages to the KVM slot buffers. When 806 * this call returns, we guarantee that all the touched dirty pages 807 * before calling this function have been put into the per-kvmslot 808 * dirty bitmap. 809 * 810 * This function must be called with BQL held. 811 */ 812 static void kvm_dirty_ring_flush(void) 813 { 814 trace_kvm_dirty_ring_flush(0); 815 /* 816 * The function needs to be serialized. Since this function 817 * should always be with BQL held, serialization is guaranteed. 818 * However, let's be sure of it. 819 */ 820 assert(qemu_mutex_iothread_locked()); 821 /* 822 * First make sure to flush the hardware buffers by kicking all 823 * vcpus out in a synchronous way. 824 */ 825 kvm_cpu_synchronize_kick_all(); 826 kvm_dirty_ring_reap(kvm_state, NULL); 827 trace_kvm_dirty_ring_flush(1); 828 } 829 830 /** 831 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space 832 * 833 * This function will first try to fetch dirty bitmap from the kernel, 834 * and then updates qemu's dirty bitmap. 835 * 836 * NOTE: caller must be with kml->slots_lock held. 837 * 838 * @kml: the KVM memory listener object 839 * @section: the memory section to sync the dirty bitmap with 840 */ 841 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, 842 MemoryRegionSection *section) 843 { 844 KVMState *s = kvm_state; 845 KVMSlot *mem; 846 hwaddr start_addr, size; 847 hwaddr slot_size; 848 849 size = kvm_align_section(section, &start_addr); 850 while (size) { 851 slot_size = MIN(kvm_max_slot_size, size); 852 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 853 if (!mem) { 854 /* We don't have a slot if we want to trap every access. */ 855 return; 856 } 857 if (kvm_slot_get_dirty_log(s, mem)) { 858 kvm_slot_sync_dirty_pages(mem); 859 } 860 start_addr += slot_size; 861 size -= slot_size; 862 } 863 } 864 865 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ 866 #define KVM_CLEAR_LOG_SHIFT 6 867 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) 868 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN) 869 870 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, 871 uint64_t size) 872 { 873 KVMState *s = kvm_state; 874 uint64_t end, bmap_start, start_delta, bmap_npages; 875 struct kvm_clear_dirty_log d; 876 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); 877 int ret; 878 879 /* 880 * We need to extend either the start or the size or both to 881 * satisfy the KVM interface requirement. Firstly, do the start 882 * page alignment on 64 host pages 883 */ 884 bmap_start = start & KVM_CLEAR_LOG_MASK; 885 start_delta = start - bmap_start; 886 bmap_start /= psize; 887 888 /* 889 * The kernel interface has restriction on the size too, that either: 890 * 891 * (1) the size is 64 host pages aligned (just like the start), or 892 * (2) the size fills up until the end of the KVM memslot. 893 */ 894 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) 895 << KVM_CLEAR_LOG_SHIFT; 896 end = mem->memory_size / psize; 897 if (bmap_npages > end - bmap_start) { 898 bmap_npages = end - bmap_start; 899 } 900 start_delta /= psize; 901 902 /* 903 * Prepare the bitmap to clear dirty bits. Here we must guarantee 904 * that we won't clear any unknown dirty bits otherwise we might 905 * accidentally clear some set bits which are not yet synced from 906 * the kernel into QEMU's bitmap, then we'll lose track of the 907 * guest modifications upon those pages (which can directly lead 908 * to guest data loss or panic after migration). 909 * 910 * Layout of the KVMSlot.dirty_bmap: 911 * 912 * |<-------- bmap_npages -----------..>| 913 * [1] 914 * start_delta size 915 * |----------------|-------------|------------------|------------| 916 * ^ ^ ^ ^ 917 * | | | | 918 * start bmap_start (start) end 919 * of memslot of memslot 920 * 921 * [1] bmap_npages can be aligned to either 64 pages or the end of slot 922 */ 923 924 assert(bmap_start % BITS_PER_LONG == 0); 925 /* We should never do log_clear before log_sync */ 926 assert(mem->dirty_bmap); 927 if (start_delta || bmap_npages - size / psize) { 928 /* Slow path - we need to manipulate a temp bitmap */ 929 bmap_clear = bitmap_new(bmap_npages); 930 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, 931 bmap_start, start_delta + size / psize); 932 /* 933 * We need to fill the holes at start because that was not 934 * specified by the caller and we extended the bitmap only for 935 * 64 pages alignment 936 */ 937 bitmap_clear(bmap_clear, 0, start_delta); 938 d.dirty_bitmap = bmap_clear; 939 } else { 940 /* 941 * Fast path - both start and size align well with BITS_PER_LONG 942 * (or the end of memory slot) 943 */ 944 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); 945 } 946 947 d.first_page = bmap_start; 948 /* It should never overflow. If it happens, say something */ 949 assert(bmap_npages <= UINT32_MAX); 950 d.num_pages = bmap_npages; 951 d.slot = mem->slot | (as_id << 16); 952 953 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); 954 if (ret < 0 && ret != -ENOENT) { 955 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " 956 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", 957 __func__, d.slot, (uint64_t)d.first_page, 958 (uint32_t)d.num_pages, ret); 959 } else { 960 ret = 0; 961 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); 962 } 963 964 /* 965 * After we have updated the remote dirty bitmap, we update the 966 * cached bitmap as well for the memslot, then if another user 967 * clears the same region we know we shouldn't clear it again on 968 * the remote otherwise it's data loss as well. 969 */ 970 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, 971 size / psize); 972 /* This handles the NULL case well */ 973 g_free(bmap_clear); 974 return ret; 975 } 976 977 978 /** 979 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range 980 * 981 * NOTE: this will be a no-op if we haven't enabled manual dirty log 982 * protection in the host kernel because in that case this operation 983 * will be done within log_sync(). 984 * 985 * @kml: the kvm memory listener 986 * @section: the memory range to clear dirty bitmap 987 */ 988 static int kvm_physical_log_clear(KVMMemoryListener *kml, 989 MemoryRegionSection *section) 990 { 991 KVMState *s = kvm_state; 992 uint64_t start, size, offset, count; 993 KVMSlot *mem; 994 int ret = 0, i; 995 996 if (!s->manual_dirty_log_protect) { 997 /* No need to do explicit clear */ 998 return ret; 999 } 1000 1001 start = section->offset_within_address_space; 1002 size = int128_get64(section->size); 1003 1004 if (!size) { 1005 /* Nothing more we can do... */ 1006 return ret; 1007 } 1008 1009 kvm_slots_lock(); 1010 1011 for (i = 0; i < s->nr_slots; i++) { 1012 mem = &kml->slots[i]; 1013 /* Discard slots that are empty or do not overlap the section */ 1014 if (!mem->memory_size || 1015 mem->start_addr > start + size - 1 || 1016 start > mem->start_addr + mem->memory_size - 1) { 1017 continue; 1018 } 1019 1020 if (start >= mem->start_addr) { 1021 /* The slot starts before section or is aligned to it. */ 1022 offset = start - mem->start_addr; 1023 count = MIN(mem->memory_size - offset, size); 1024 } else { 1025 /* The slot starts after section. */ 1026 offset = 0; 1027 count = MIN(mem->memory_size, size - (mem->start_addr - start)); 1028 } 1029 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); 1030 if (ret < 0) { 1031 break; 1032 } 1033 } 1034 1035 kvm_slots_unlock(); 1036 1037 return ret; 1038 } 1039 1040 static void kvm_coalesce_mmio_region(MemoryListener *listener, 1041 MemoryRegionSection *secion, 1042 hwaddr start, hwaddr size) 1043 { 1044 KVMState *s = kvm_state; 1045 1046 if (s->coalesced_mmio) { 1047 struct kvm_coalesced_mmio_zone zone; 1048 1049 zone.addr = start; 1050 zone.size = size; 1051 zone.pad = 0; 1052 1053 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1054 } 1055 } 1056 1057 static void kvm_uncoalesce_mmio_region(MemoryListener *listener, 1058 MemoryRegionSection *secion, 1059 hwaddr start, hwaddr size) 1060 { 1061 KVMState *s = kvm_state; 1062 1063 if (s->coalesced_mmio) { 1064 struct kvm_coalesced_mmio_zone zone; 1065 1066 zone.addr = start; 1067 zone.size = size; 1068 zone.pad = 0; 1069 1070 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1071 } 1072 } 1073 1074 static void kvm_coalesce_pio_add(MemoryListener *listener, 1075 MemoryRegionSection *section, 1076 hwaddr start, hwaddr size) 1077 { 1078 KVMState *s = kvm_state; 1079 1080 if (s->coalesced_pio) { 1081 struct kvm_coalesced_mmio_zone zone; 1082 1083 zone.addr = start; 1084 zone.size = size; 1085 zone.pio = 1; 1086 1087 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); 1088 } 1089 } 1090 1091 static void kvm_coalesce_pio_del(MemoryListener *listener, 1092 MemoryRegionSection *section, 1093 hwaddr start, hwaddr size) 1094 { 1095 KVMState *s = kvm_state; 1096 1097 if (s->coalesced_pio) { 1098 struct kvm_coalesced_mmio_zone zone; 1099 1100 zone.addr = start; 1101 zone.size = size; 1102 zone.pio = 1; 1103 1104 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); 1105 } 1106 } 1107 1108 static MemoryListener kvm_coalesced_pio_listener = { 1109 .name = "kvm-coalesced-pio", 1110 .coalesced_io_add = kvm_coalesce_pio_add, 1111 .coalesced_io_del = kvm_coalesce_pio_del, 1112 .priority = MEMORY_LISTENER_PRIORITY_MIN, 1113 }; 1114 1115 int kvm_check_extension(KVMState *s, unsigned int extension) 1116 { 1117 int ret; 1118 1119 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1120 if (ret < 0) { 1121 ret = 0; 1122 } 1123 1124 return ret; 1125 } 1126 1127 int kvm_vm_check_extension(KVMState *s, unsigned int extension) 1128 { 1129 int ret; 1130 1131 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); 1132 if (ret < 0) { 1133 /* VM wide version not implemented, use global one instead */ 1134 ret = kvm_check_extension(s, extension); 1135 } 1136 1137 return ret; 1138 } 1139 1140 typedef struct HWPoisonPage { 1141 ram_addr_t ram_addr; 1142 QLIST_ENTRY(HWPoisonPage) list; 1143 } HWPoisonPage; 1144 1145 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = 1146 QLIST_HEAD_INITIALIZER(hwpoison_page_list); 1147 1148 static void kvm_unpoison_all(void *param) 1149 { 1150 HWPoisonPage *page, *next_page; 1151 1152 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { 1153 QLIST_REMOVE(page, list); 1154 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); 1155 g_free(page); 1156 } 1157 } 1158 1159 void kvm_hwpoison_page_add(ram_addr_t ram_addr) 1160 { 1161 HWPoisonPage *page; 1162 1163 QLIST_FOREACH(page, &hwpoison_page_list, list) { 1164 if (page->ram_addr == ram_addr) { 1165 return; 1166 } 1167 } 1168 page = g_new(HWPoisonPage, 1); 1169 page->ram_addr = ram_addr; 1170 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); 1171 } 1172 1173 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) 1174 { 1175 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN 1176 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN 1177 * endianness, but the memory core hands them in target endianness. 1178 * For example, PPC is always treated as big-endian even if running 1179 * on KVM and on PPC64LE. Correct here. 1180 */ 1181 switch (size) { 1182 case 2: 1183 val = bswap16(val); 1184 break; 1185 case 4: 1186 val = bswap32(val); 1187 break; 1188 } 1189 #endif 1190 return val; 1191 } 1192 1193 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, 1194 bool assign, uint32_t size, bool datamatch) 1195 { 1196 int ret; 1197 struct kvm_ioeventfd iofd = { 1198 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1199 .addr = addr, 1200 .len = size, 1201 .flags = 0, 1202 .fd = fd, 1203 }; 1204 1205 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, 1206 datamatch); 1207 if (!kvm_enabled()) { 1208 return -ENOSYS; 1209 } 1210 1211 if (datamatch) { 1212 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1213 } 1214 if (!assign) { 1215 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1216 } 1217 1218 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); 1219 1220 if (ret < 0) { 1221 return -errno; 1222 } 1223 1224 return 0; 1225 } 1226 1227 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, 1228 bool assign, uint32_t size, bool datamatch) 1229 { 1230 struct kvm_ioeventfd kick = { 1231 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, 1232 .addr = addr, 1233 .flags = KVM_IOEVENTFD_FLAG_PIO, 1234 .len = size, 1235 .fd = fd, 1236 }; 1237 int r; 1238 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); 1239 if (!kvm_enabled()) { 1240 return -ENOSYS; 1241 } 1242 if (datamatch) { 1243 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; 1244 } 1245 if (!assign) { 1246 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1247 } 1248 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1249 if (r < 0) { 1250 return r; 1251 } 1252 return 0; 1253 } 1254 1255 1256 static const KVMCapabilityInfo * 1257 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) 1258 { 1259 while (list->name) { 1260 if (!kvm_check_extension(s, list->value)) { 1261 return list; 1262 } 1263 list++; 1264 } 1265 return NULL; 1266 } 1267 1268 void kvm_set_max_memslot_size(hwaddr max_slot_size) 1269 { 1270 g_assert( 1271 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size 1272 ); 1273 kvm_max_slot_size = max_slot_size; 1274 } 1275 1276 /* Called with KVMMemoryListener.slots_lock held */ 1277 static void kvm_set_phys_mem(KVMMemoryListener *kml, 1278 MemoryRegionSection *section, bool add) 1279 { 1280 KVMSlot *mem; 1281 int err; 1282 MemoryRegion *mr = section->mr; 1283 bool writable = !mr->readonly && !mr->rom_device; 1284 hwaddr start_addr, size, slot_size, mr_offset; 1285 ram_addr_t ram_start_offset; 1286 void *ram; 1287 1288 if (!memory_region_is_ram(mr)) { 1289 if (writable || !kvm_readonly_mem_allowed) { 1290 return; 1291 } else if (!mr->romd_mode) { 1292 /* If the memory device is not in romd_mode, then we actually want 1293 * to remove the kvm memory slot so all accesses will trap. */ 1294 add = false; 1295 } 1296 } 1297 1298 size = kvm_align_section(section, &start_addr); 1299 if (!size) { 1300 return; 1301 } 1302 1303 /* The offset of the kvmslot within the memory region */ 1304 mr_offset = section->offset_within_region + start_addr - 1305 section->offset_within_address_space; 1306 1307 /* use aligned delta to align the ram address and offset */ 1308 ram = memory_region_get_ram_ptr(mr) + mr_offset; 1309 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; 1310 1311 if (!add) { 1312 do { 1313 slot_size = MIN(kvm_max_slot_size, size); 1314 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); 1315 if (!mem) { 1316 return; 1317 } 1318 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1319 /* 1320 * NOTE: We should be aware of the fact that here we're only 1321 * doing a best effort to sync dirty bits. No matter whether 1322 * we're using dirty log or dirty ring, we ignored two facts: 1323 * 1324 * (1) dirty bits can reside in hardware buffers (PML) 1325 * 1326 * (2) after we collected dirty bits here, pages can be dirtied 1327 * again before we do the final KVM_SET_USER_MEMORY_REGION to 1328 * remove the slot. 1329 * 1330 * Not easy. Let's cross the fingers until it's fixed. 1331 */ 1332 if (kvm_state->kvm_dirty_ring_size) { 1333 kvm_dirty_ring_reap_locked(kvm_state, NULL); 1334 if (kvm_state->kvm_dirty_ring_with_bitmap) { 1335 kvm_slot_sync_dirty_pages(mem); 1336 kvm_slot_get_dirty_log(kvm_state, mem); 1337 } 1338 } else { 1339 kvm_slot_get_dirty_log(kvm_state, mem); 1340 } 1341 kvm_slot_sync_dirty_pages(mem); 1342 } 1343 1344 /* unregister the slot */ 1345 g_free(mem->dirty_bmap); 1346 mem->dirty_bmap = NULL; 1347 mem->memory_size = 0; 1348 mem->flags = 0; 1349 err = kvm_set_user_memory_region(kml, mem, false); 1350 if (err) { 1351 fprintf(stderr, "%s: error unregistering slot: %s\n", 1352 __func__, strerror(-err)); 1353 abort(); 1354 } 1355 start_addr += slot_size; 1356 size -= slot_size; 1357 kml->nr_used_slots--; 1358 } while (size); 1359 return; 1360 } 1361 1362 /* register the new slot */ 1363 do { 1364 slot_size = MIN(kvm_max_slot_size, size); 1365 mem = kvm_alloc_slot(kml); 1366 mem->as_id = kml->as_id; 1367 mem->memory_size = slot_size; 1368 mem->start_addr = start_addr; 1369 mem->ram_start_offset = ram_start_offset; 1370 mem->ram = ram; 1371 mem->flags = kvm_mem_flags(mr); 1372 kvm_slot_init_dirty_bitmap(mem); 1373 err = kvm_set_user_memory_region(kml, mem, true); 1374 if (err) { 1375 fprintf(stderr, "%s: error registering slot: %s\n", __func__, 1376 strerror(-err)); 1377 abort(); 1378 } 1379 start_addr += slot_size; 1380 ram_start_offset += slot_size; 1381 ram += slot_size; 1382 size -= slot_size; 1383 kml->nr_used_slots++; 1384 } while (size); 1385 } 1386 1387 static void *kvm_dirty_ring_reaper_thread(void *data) 1388 { 1389 KVMState *s = data; 1390 struct KVMDirtyRingReaper *r = &s->reaper; 1391 1392 rcu_register_thread(); 1393 1394 trace_kvm_dirty_ring_reaper("init"); 1395 1396 while (true) { 1397 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; 1398 trace_kvm_dirty_ring_reaper("wait"); 1399 /* 1400 * TODO: provide a smarter timeout rather than a constant? 1401 */ 1402 sleep(1); 1403 1404 /* keep sleeping so that dirtylimit not be interfered by reaper */ 1405 if (dirtylimit_in_service()) { 1406 continue; 1407 } 1408 1409 trace_kvm_dirty_ring_reaper("wakeup"); 1410 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; 1411 1412 qemu_mutex_lock_iothread(); 1413 kvm_dirty_ring_reap(s, NULL); 1414 qemu_mutex_unlock_iothread(); 1415 1416 r->reaper_iteration++; 1417 } 1418 1419 trace_kvm_dirty_ring_reaper("exit"); 1420 1421 rcu_unregister_thread(); 1422 1423 return NULL; 1424 } 1425 1426 static void kvm_dirty_ring_reaper_init(KVMState *s) 1427 { 1428 struct KVMDirtyRingReaper *r = &s->reaper; 1429 1430 qemu_thread_create(&r->reaper_thr, "kvm-reaper", 1431 kvm_dirty_ring_reaper_thread, 1432 s, QEMU_THREAD_JOINABLE); 1433 } 1434 1435 static int kvm_dirty_ring_init(KVMState *s) 1436 { 1437 uint32_t ring_size = s->kvm_dirty_ring_size; 1438 uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); 1439 unsigned int capability = KVM_CAP_DIRTY_LOG_RING; 1440 int ret; 1441 1442 s->kvm_dirty_ring_size = 0; 1443 s->kvm_dirty_ring_bytes = 0; 1444 1445 /* Bail if the dirty ring size isn't specified */ 1446 if (!ring_size) { 1447 return 0; 1448 } 1449 1450 /* 1451 * Read the max supported pages. Fall back to dirty logging mode 1452 * if the dirty ring isn't supported. 1453 */ 1454 ret = kvm_vm_check_extension(s, capability); 1455 if (ret <= 0) { 1456 capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; 1457 ret = kvm_vm_check_extension(s, capability); 1458 } 1459 1460 if (ret <= 0) { 1461 warn_report("KVM dirty ring not available, using bitmap method"); 1462 return 0; 1463 } 1464 1465 if (ring_bytes > ret) { 1466 error_report("KVM dirty ring size %" PRIu32 " too big " 1467 "(maximum is %ld). Please use a smaller value.", 1468 ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); 1469 return -EINVAL; 1470 } 1471 1472 ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); 1473 if (ret) { 1474 error_report("Enabling of KVM dirty ring failed: %s. " 1475 "Suggested minimum value is 1024.", strerror(-ret)); 1476 return -EIO; 1477 } 1478 1479 /* Enable the backup bitmap if it is supported */ 1480 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); 1481 if (ret > 0) { 1482 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); 1483 if (ret) { 1484 error_report("Enabling of KVM dirty ring's backup bitmap failed: " 1485 "%s. ", strerror(-ret)); 1486 return -EIO; 1487 } 1488 1489 s->kvm_dirty_ring_with_bitmap = true; 1490 } 1491 1492 s->kvm_dirty_ring_size = ring_size; 1493 s->kvm_dirty_ring_bytes = ring_bytes; 1494 1495 return 0; 1496 } 1497 1498 static void kvm_region_add(MemoryListener *listener, 1499 MemoryRegionSection *section) 1500 { 1501 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1502 KVMMemoryUpdate *update; 1503 1504 update = g_new0(KVMMemoryUpdate, 1); 1505 update->section = *section; 1506 1507 QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); 1508 } 1509 1510 static void kvm_region_del(MemoryListener *listener, 1511 MemoryRegionSection *section) 1512 { 1513 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1514 KVMMemoryUpdate *update; 1515 1516 update = g_new0(KVMMemoryUpdate, 1); 1517 update->section = *section; 1518 1519 QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); 1520 } 1521 1522 static void kvm_region_commit(MemoryListener *listener) 1523 { 1524 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, 1525 listener); 1526 KVMMemoryUpdate *u1, *u2; 1527 bool need_inhibit = false; 1528 1529 if (QSIMPLEQ_EMPTY(&kml->transaction_add) && 1530 QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1531 return; 1532 } 1533 1534 /* 1535 * We have to be careful when regions to add overlap with ranges to remove. 1536 * We have to simulate atomic KVM memslot updates by making sure no ioctl() 1537 * is currently active. 1538 * 1539 * The lists are order by addresses, so it's easy to find overlaps. 1540 */ 1541 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1542 u2 = QSIMPLEQ_FIRST(&kml->transaction_add); 1543 while (u1 && u2) { 1544 Range r1, r2; 1545 1546 range_init_nofail(&r1, u1->section.offset_within_address_space, 1547 int128_get64(u1->section.size)); 1548 range_init_nofail(&r2, u2->section.offset_within_address_space, 1549 int128_get64(u2->section.size)); 1550 1551 if (range_overlaps_range(&r1, &r2)) { 1552 need_inhibit = true; 1553 break; 1554 } 1555 if (range_lob(&r1) < range_lob(&r2)) { 1556 u1 = QSIMPLEQ_NEXT(u1, next); 1557 } else { 1558 u2 = QSIMPLEQ_NEXT(u2, next); 1559 } 1560 } 1561 1562 kvm_slots_lock(); 1563 if (need_inhibit) { 1564 accel_ioctl_inhibit_begin(); 1565 } 1566 1567 /* Remove all memslots before adding the new ones. */ 1568 while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { 1569 u1 = QSIMPLEQ_FIRST(&kml->transaction_del); 1570 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); 1571 1572 kvm_set_phys_mem(kml, &u1->section, false); 1573 memory_region_unref(u1->section.mr); 1574 1575 g_free(u1); 1576 } 1577 while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { 1578 u1 = QSIMPLEQ_FIRST(&kml->transaction_add); 1579 QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); 1580 1581 memory_region_ref(u1->section.mr); 1582 kvm_set_phys_mem(kml, &u1->section, true); 1583 1584 g_free(u1); 1585 } 1586 1587 if (need_inhibit) { 1588 accel_ioctl_inhibit_end(); 1589 } 1590 kvm_slots_unlock(); 1591 } 1592 1593 static void kvm_log_sync(MemoryListener *listener, 1594 MemoryRegionSection *section) 1595 { 1596 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1597 1598 kvm_slots_lock(); 1599 kvm_physical_sync_dirty_bitmap(kml, section); 1600 kvm_slots_unlock(); 1601 } 1602 1603 static void kvm_log_sync_global(MemoryListener *l, bool last_stage) 1604 { 1605 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); 1606 KVMState *s = kvm_state; 1607 KVMSlot *mem; 1608 int i; 1609 1610 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ 1611 kvm_dirty_ring_flush(); 1612 1613 /* 1614 * TODO: make this faster when nr_slots is big while there are 1615 * only a few used slots (small VMs). 1616 */ 1617 kvm_slots_lock(); 1618 for (i = 0; i < s->nr_slots; i++) { 1619 mem = &kml->slots[i]; 1620 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { 1621 kvm_slot_sync_dirty_pages(mem); 1622 1623 if (s->kvm_dirty_ring_with_bitmap && last_stage && 1624 kvm_slot_get_dirty_log(s, mem)) { 1625 kvm_slot_sync_dirty_pages(mem); 1626 } 1627 1628 /* 1629 * This is not needed by KVM_GET_DIRTY_LOG because the 1630 * ioctl will unconditionally overwrite the whole region. 1631 * However kvm dirty ring has no such side effect. 1632 */ 1633 kvm_slot_reset_dirty_pages(mem); 1634 } 1635 } 1636 kvm_slots_unlock(); 1637 } 1638 1639 static void kvm_log_clear(MemoryListener *listener, 1640 MemoryRegionSection *section) 1641 { 1642 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); 1643 int r; 1644 1645 r = kvm_physical_log_clear(kml, section); 1646 if (r < 0) { 1647 error_report_once("%s: kvm log clear failed: mr=%s " 1648 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, 1649 section->mr->name, section->offset_within_region, 1650 int128_get64(section->size)); 1651 abort(); 1652 } 1653 } 1654 1655 static void kvm_mem_ioeventfd_add(MemoryListener *listener, 1656 MemoryRegionSection *section, 1657 bool match_data, uint64_t data, 1658 EventNotifier *e) 1659 { 1660 int fd = event_notifier_get_fd(e); 1661 int r; 1662 1663 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1664 data, true, int128_get64(section->size), 1665 match_data); 1666 if (r < 0) { 1667 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1668 __func__, strerror(-r), -r); 1669 abort(); 1670 } 1671 } 1672 1673 static void kvm_mem_ioeventfd_del(MemoryListener *listener, 1674 MemoryRegionSection *section, 1675 bool match_data, uint64_t data, 1676 EventNotifier *e) 1677 { 1678 int fd = event_notifier_get_fd(e); 1679 int r; 1680 1681 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, 1682 data, false, int128_get64(section->size), 1683 match_data); 1684 if (r < 0) { 1685 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1686 __func__, strerror(-r), -r); 1687 abort(); 1688 } 1689 } 1690 1691 static void kvm_io_ioeventfd_add(MemoryListener *listener, 1692 MemoryRegionSection *section, 1693 bool match_data, uint64_t data, 1694 EventNotifier *e) 1695 { 1696 int fd = event_notifier_get_fd(e); 1697 int r; 1698 1699 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1700 data, true, int128_get64(section->size), 1701 match_data); 1702 if (r < 0) { 1703 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", 1704 __func__, strerror(-r), -r); 1705 abort(); 1706 } 1707 } 1708 1709 static void kvm_io_ioeventfd_del(MemoryListener *listener, 1710 MemoryRegionSection *section, 1711 bool match_data, uint64_t data, 1712 EventNotifier *e) 1713 1714 { 1715 int fd = event_notifier_get_fd(e); 1716 int r; 1717 1718 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, 1719 data, false, int128_get64(section->size), 1720 match_data); 1721 if (r < 0) { 1722 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", 1723 __func__, strerror(-r), -r); 1724 abort(); 1725 } 1726 } 1727 1728 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, 1729 AddressSpace *as, int as_id, const char *name) 1730 { 1731 int i; 1732 1733 kml->slots = g_new0(KVMSlot, s->nr_slots); 1734 kml->as_id = as_id; 1735 1736 for (i = 0; i < s->nr_slots; i++) { 1737 kml->slots[i].slot = i; 1738 } 1739 1740 QSIMPLEQ_INIT(&kml->transaction_add); 1741 QSIMPLEQ_INIT(&kml->transaction_del); 1742 1743 kml->listener.region_add = kvm_region_add; 1744 kml->listener.region_del = kvm_region_del; 1745 kml->listener.commit = kvm_region_commit; 1746 kml->listener.log_start = kvm_log_start; 1747 kml->listener.log_stop = kvm_log_stop; 1748 kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; 1749 kml->listener.name = name; 1750 1751 if (s->kvm_dirty_ring_size) { 1752 kml->listener.log_sync_global = kvm_log_sync_global; 1753 } else { 1754 kml->listener.log_sync = kvm_log_sync; 1755 kml->listener.log_clear = kvm_log_clear; 1756 } 1757 1758 memory_listener_register(&kml->listener, as); 1759 1760 for (i = 0; i < s->nr_as; ++i) { 1761 if (!s->as[i].as) { 1762 s->as[i].as = as; 1763 s->as[i].ml = kml; 1764 break; 1765 } 1766 } 1767 } 1768 1769 static MemoryListener kvm_io_listener = { 1770 .name = "kvm-io", 1771 .eventfd_add = kvm_io_ioeventfd_add, 1772 .eventfd_del = kvm_io_ioeventfd_del, 1773 .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, 1774 }; 1775 1776 int kvm_set_irq(KVMState *s, int irq, int level) 1777 { 1778 struct kvm_irq_level event; 1779 int ret; 1780 1781 assert(kvm_async_interrupts_enabled()); 1782 1783 event.level = level; 1784 event.irq = irq; 1785 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); 1786 if (ret < 0) { 1787 perror("kvm_set_irq"); 1788 abort(); 1789 } 1790 1791 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; 1792 } 1793 1794 #ifdef KVM_CAP_IRQ_ROUTING 1795 typedef struct KVMMSIRoute { 1796 struct kvm_irq_routing_entry kroute; 1797 QTAILQ_ENTRY(KVMMSIRoute) entry; 1798 } KVMMSIRoute; 1799 1800 static void set_gsi(KVMState *s, unsigned int gsi) 1801 { 1802 set_bit(gsi, s->used_gsi_bitmap); 1803 } 1804 1805 static void clear_gsi(KVMState *s, unsigned int gsi) 1806 { 1807 clear_bit(gsi, s->used_gsi_bitmap); 1808 } 1809 1810 void kvm_init_irq_routing(KVMState *s) 1811 { 1812 int gsi_count; 1813 1814 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; 1815 if (gsi_count > 0) { 1816 /* Round up so we can search ints using ffs */ 1817 s->used_gsi_bitmap = bitmap_new(gsi_count); 1818 s->gsi_count = gsi_count; 1819 } 1820 1821 s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); 1822 s->nr_allocated_irq_routes = 0; 1823 1824 kvm_arch_init_irq_routing(s); 1825 } 1826 1827 void kvm_irqchip_commit_routes(KVMState *s) 1828 { 1829 int ret; 1830 1831 if (kvm_gsi_direct_mapping()) { 1832 return; 1833 } 1834 1835 if (!kvm_gsi_routing_enabled()) { 1836 return; 1837 } 1838 1839 s->irq_routes->flags = 0; 1840 trace_kvm_irqchip_commit_routes(); 1841 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); 1842 assert(ret == 0); 1843 } 1844 1845 static void kvm_add_routing_entry(KVMState *s, 1846 struct kvm_irq_routing_entry *entry) 1847 { 1848 struct kvm_irq_routing_entry *new; 1849 int n, size; 1850 1851 if (s->irq_routes->nr == s->nr_allocated_irq_routes) { 1852 n = s->nr_allocated_irq_routes * 2; 1853 if (n < 64) { 1854 n = 64; 1855 } 1856 size = sizeof(struct kvm_irq_routing); 1857 size += n * sizeof(*new); 1858 s->irq_routes = g_realloc(s->irq_routes, size); 1859 s->nr_allocated_irq_routes = n; 1860 } 1861 n = s->irq_routes->nr++; 1862 new = &s->irq_routes->entries[n]; 1863 1864 *new = *entry; 1865 1866 set_gsi(s, entry->gsi); 1867 } 1868 1869 static int kvm_update_routing_entry(KVMState *s, 1870 struct kvm_irq_routing_entry *new_entry) 1871 { 1872 struct kvm_irq_routing_entry *entry; 1873 int n; 1874 1875 for (n = 0; n < s->irq_routes->nr; n++) { 1876 entry = &s->irq_routes->entries[n]; 1877 if (entry->gsi != new_entry->gsi) { 1878 continue; 1879 } 1880 1881 if(!memcmp(entry, new_entry, sizeof *entry)) { 1882 return 0; 1883 } 1884 1885 *entry = *new_entry; 1886 1887 return 0; 1888 } 1889 1890 return -ESRCH; 1891 } 1892 1893 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) 1894 { 1895 struct kvm_irq_routing_entry e = {}; 1896 1897 assert(pin < s->gsi_count); 1898 1899 e.gsi = irq; 1900 e.type = KVM_IRQ_ROUTING_IRQCHIP; 1901 e.flags = 0; 1902 e.u.irqchip.irqchip = irqchip; 1903 e.u.irqchip.pin = pin; 1904 kvm_add_routing_entry(s, &e); 1905 } 1906 1907 void kvm_irqchip_release_virq(KVMState *s, int virq) 1908 { 1909 struct kvm_irq_routing_entry *e; 1910 int i; 1911 1912 if (kvm_gsi_direct_mapping()) { 1913 return; 1914 } 1915 1916 for (i = 0; i < s->irq_routes->nr; i++) { 1917 e = &s->irq_routes->entries[i]; 1918 if (e->gsi == virq) { 1919 s->irq_routes->nr--; 1920 *e = s->irq_routes->entries[s->irq_routes->nr]; 1921 } 1922 } 1923 clear_gsi(s, virq); 1924 kvm_arch_release_virq_post(virq); 1925 trace_kvm_irqchip_release_virq(virq); 1926 } 1927 1928 void kvm_irqchip_add_change_notifier(Notifier *n) 1929 { 1930 notifier_list_add(&kvm_irqchip_change_notifiers, n); 1931 } 1932 1933 void kvm_irqchip_remove_change_notifier(Notifier *n) 1934 { 1935 notifier_remove(n); 1936 } 1937 1938 void kvm_irqchip_change_notify(void) 1939 { 1940 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); 1941 } 1942 1943 static int kvm_irqchip_get_virq(KVMState *s) 1944 { 1945 int next_virq; 1946 1947 /* Return the lowest unused GSI in the bitmap */ 1948 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); 1949 if (next_virq >= s->gsi_count) { 1950 return -ENOSPC; 1951 } else { 1952 return next_virq; 1953 } 1954 } 1955 1956 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 1957 { 1958 struct kvm_msi msi; 1959 1960 msi.address_lo = (uint32_t)msg.address; 1961 msi.address_hi = msg.address >> 32; 1962 msi.data = le32_to_cpu(msg.data); 1963 msi.flags = 0; 1964 memset(msi.pad, 0, sizeof(msi.pad)); 1965 1966 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); 1967 } 1968 1969 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 1970 { 1971 struct kvm_irq_routing_entry kroute = {}; 1972 int virq; 1973 KVMState *s = c->s; 1974 MSIMessage msg = {0, 0}; 1975 1976 if (pci_available && dev) { 1977 msg = pci_get_msi_message(dev, vector); 1978 } 1979 1980 if (kvm_gsi_direct_mapping()) { 1981 return kvm_arch_msi_data_to_gsi(msg.data); 1982 } 1983 1984 if (!kvm_gsi_routing_enabled()) { 1985 return -ENOSYS; 1986 } 1987 1988 virq = kvm_irqchip_get_virq(s); 1989 if (virq < 0) { 1990 return virq; 1991 } 1992 1993 kroute.gsi = virq; 1994 kroute.type = KVM_IRQ_ROUTING_MSI; 1995 kroute.flags = 0; 1996 kroute.u.msi.address_lo = (uint32_t)msg.address; 1997 kroute.u.msi.address_hi = msg.address >> 32; 1998 kroute.u.msi.data = le32_to_cpu(msg.data); 1999 if (pci_available && kvm_msi_devid_required()) { 2000 kroute.flags = KVM_MSI_VALID_DEVID; 2001 kroute.u.msi.devid = pci_requester_id(dev); 2002 } 2003 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2004 kvm_irqchip_release_virq(s, virq); 2005 return -EINVAL; 2006 } 2007 2008 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", 2009 vector, virq); 2010 2011 kvm_add_routing_entry(s, &kroute); 2012 kvm_arch_add_msi_route_post(&kroute, vector, dev); 2013 c->changes++; 2014 2015 return virq; 2016 } 2017 2018 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, 2019 PCIDevice *dev) 2020 { 2021 struct kvm_irq_routing_entry kroute = {}; 2022 2023 if (kvm_gsi_direct_mapping()) { 2024 return 0; 2025 } 2026 2027 if (!kvm_irqchip_in_kernel()) { 2028 return -ENOSYS; 2029 } 2030 2031 kroute.gsi = virq; 2032 kroute.type = KVM_IRQ_ROUTING_MSI; 2033 kroute.flags = 0; 2034 kroute.u.msi.address_lo = (uint32_t)msg.address; 2035 kroute.u.msi.address_hi = msg.address >> 32; 2036 kroute.u.msi.data = le32_to_cpu(msg.data); 2037 if (pci_available && kvm_msi_devid_required()) { 2038 kroute.flags = KVM_MSI_VALID_DEVID; 2039 kroute.u.msi.devid = pci_requester_id(dev); 2040 } 2041 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { 2042 return -EINVAL; 2043 } 2044 2045 trace_kvm_irqchip_update_msi_route(virq); 2046 2047 return kvm_update_routing_entry(s, &kroute); 2048 } 2049 2050 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2051 EventNotifier *resample, int virq, 2052 bool assign) 2053 { 2054 int fd = event_notifier_get_fd(event); 2055 int rfd = resample ? event_notifier_get_fd(resample) : -1; 2056 2057 struct kvm_irqfd irqfd = { 2058 .fd = fd, 2059 .gsi = virq, 2060 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, 2061 }; 2062 2063 if (rfd != -1) { 2064 assert(assign); 2065 if (kvm_irqchip_is_split()) { 2066 /* 2067 * When the slow irqchip (e.g. IOAPIC) is in the 2068 * userspace, KVM kernel resamplefd will not work because 2069 * the EOI of the interrupt will be delivered to userspace 2070 * instead, so the KVM kernel resamplefd kick will be 2071 * skipped. The userspace here mimics what the kernel 2072 * provides with resamplefd, remember the resamplefd and 2073 * kick it when we receive EOI of this IRQ. 2074 * 2075 * This is hackery because IOAPIC is mostly bypassed 2076 * (except EOI broadcasts) when irqfd is used. However 2077 * this can bring much performance back for split irqchip 2078 * with INTx IRQs (for VFIO, this gives 93% perf of the 2079 * full fast path, which is 46% perf boost comparing to 2080 * the INTx slow path). 2081 */ 2082 kvm_resample_fd_insert(virq, resample); 2083 } else { 2084 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; 2085 irqfd.resamplefd = rfd; 2086 } 2087 } else if (!assign) { 2088 if (kvm_irqchip_is_split()) { 2089 kvm_resample_fd_remove(virq); 2090 } 2091 } 2092 2093 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); 2094 } 2095 2096 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2097 { 2098 struct kvm_irq_routing_entry kroute = {}; 2099 int virq; 2100 2101 if (!kvm_gsi_routing_enabled()) { 2102 return -ENOSYS; 2103 } 2104 2105 virq = kvm_irqchip_get_virq(s); 2106 if (virq < 0) { 2107 return virq; 2108 } 2109 2110 kroute.gsi = virq; 2111 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; 2112 kroute.flags = 0; 2113 kroute.u.adapter.summary_addr = adapter->summary_addr; 2114 kroute.u.adapter.ind_addr = adapter->ind_addr; 2115 kroute.u.adapter.summary_offset = adapter->summary_offset; 2116 kroute.u.adapter.ind_offset = adapter->ind_offset; 2117 kroute.u.adapter.adapter_id = adapter->adapter_id; 2118 2119 kvm_add_routing_entry(s, &kroute); 2120 2121 return virq; 2122 } 2123 2124 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2125 { 2126 struct kvm_irq_routing_entry kroute = {}; 2127 int virq; 2128 2129 if (!kvm_gsi_routing_enabled()) { 2130 return -ENOSYS; 2131 } 2132 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { 2133 return -ENOSYS; 2134 } 2135 virq = kvm_irqchip_get_virq(s); 2136 if (virq < 0) { 2137 return virq; 2138 } 2139 2140 kroute.gsi = virq; 2141 kroute.type = KVM_IRQ_ROUTING_HV_SINT; 2142 kroute.flags = 0; 2143 kroute.u.hv_sint.vcpu = vcpu; 2144 kroute.u.hv_sint.sint = sint; 2145 2146 kvm_add_routing_entry(s, &kroute); 2147 kvm_irqchip_commit_routes(s); 2148 2149 return virq; 2150 } 2151 2152 #else /* !KVM_CAP_IRQ_ROUTING */ 2153 2154 void kvm_init_irq_routing(KVMState *s) 2155 { 2156 } 2157 2158 void kvm_irqchip_release_virq(KVMState *s, int virq) 2159 { 2160 } 2161 2162 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) 2163 { 2164 abort(); 2165 } 2166 2167 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) 2168 { 2169 return -ENOSYS; 2170 } 2171 2172 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) 2173 { 2174 return -ENOSYS; 2175 } 2176 2177 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) 2178 { 2179 return -ENOSYS; 2180 } 2181 2182 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, 2183 EventNotifier *resample, int virq, 2184 bool assign) 2185 { 2186 abort(); 2187 } 2188 2189 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) 2190 { 2191 return -ENOSYS; 2192 } 2193 #endif /* !KVM_CAP_IRQ_ROUTING */ 2194 2195 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2196 EventNotifier *rn, int virq) 2197 { 2198 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); 2199 } 2200 2201 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, 2202 int virq) 2203 { 2204 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); 2205 } 2206 2207 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, 2208 EventNotifier *rn, qemu_irq irq) 2209 { 2210 gpointer key, gsi; 2211 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2212 2213 if (!found) { 2214 return -ENXIO; 2215 } 2216 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); 2217 } 2218 2219 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, 2220 qemu_irq irq) 2221 { 2222 gpointer key, gsi; 2223 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); 2224 2225 if (!found) { 2226 return -ENXIO; 2227 } 2228 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); 2229 } 2230 2231 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) 2232 { 2233 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); 2234 } 2235 2236 static void kvm_irqchip_create(KVMState *s) 2237 { 2238 int ret; 2239 2240 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); 2241 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { 2242 ; 2243 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { 2244 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); 2245 if (ret < 0) { 2246 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); 2247 exit(1); 2248 } 2249 } else { 2250 return; 2251 } 2252 2253 if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { 2254 fprintf(stderr, "kvm: irqfd not implemented\n"); 2255 exit(1); 2256 } 2257 2258 /* First probe and see if there's a arch-specific hook to create the 2259 * in-kernel irqchip for us */ 2260 ret = kvm_arch_irqchip_create(s); 2261 if (ret == 0) { 2262 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { 2263 error_report("Split IRQ chip mode not supported."); 2264 exit(1); 2265 } else { 2266 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); 2267 } 2268 } 2269 if (ret < 0) { 2270 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); 2271 exit(1); 2272 } 2273 2274 kvm_kernel_irqchip = true; 2275 /* If we have an in-kernel IRQ chip then we must have asynchronous 2276 * interrupt delivery (though the reverse is not necessarily true) 2277 */ 2278 kvm_async_interrupts_allowed = true; 2279 kvm_halt_in_kernel_allowed = true; 2280 2281 kvm_init_irq_routing(s); 2282 2283 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); 2284 } 2285 2286 /* Find number of supported CPUs using the recommended 2287 * procedure from the kernel API documentation to cope with 2288 * older kernels that may be missing capabilities. 2289 */ 2290 static int kvm_recommended_vcpus(KVMState *s) 2291 { 2292 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); 2293 return (ret) ? ret : 4; 2294 } 2295 2296 static int kvm_max_vcpus(KVMState *s) 2297 { 2298 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); 2299 return (ret) ? ret : kvm_recommended_vcpus(s); 2300 } 2301 2302 static int kvm_max_vcpu_id(KVMState *s) 2303 { 2304 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); 2305 return (ret) ? ret : kvm_max_vcpus(s); 2306 } 2307 2308 bool kvm_vcpu_id_is_valid(int vcpu_id) 2309 { 2310 KVMState *s = KVM_STATE(current_accel()); 2311 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); 2312 } 2313 2314 bool kvm_dirty_ring_enabled(void) 2315 { 2316 return kvm_state->kvm_dirty_ring_size ? true : false; 2317 } 2318 2319 static void query_stats_cb(StatsResultList **result, StatsTarget target, 2320 strList *names, strList *targets, Error **errp); 2321 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); 2322 2323 uint32_t kvm_dirty_ring_size(void) 2324 { 2325 return kvm_state->kvm_dirty_ring_size; 2326 } 2327 2328 static int kvm_init(MachineState *ms) 2329 { 2330 MachineClass *mc = MACHINE_GET_CLASS(ms); 2331 static const char upgrade_note[] = 2332 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" 2333 "(see http://sourceforge.net/projects/kvm).\n"; 2334 const struct { 2335 const char *name; 2336 int num; 2337 } num_cpus[] = { 2338 { "SMP", ms->smp.cpus }, 2339 { "hotpluggable", ms->smp.max_cpus }, 2340 { /* end of list */ } 2341 }, *nc = num_cpus; 2342 int soft_vcpus_limit, hard_vcpus_limit; 2343 KVMState *s; 2344 const KVMCapabilityInfo *missing_cap; 2345 int ret; 2346 int type; 2347 uint64_t dirty_log_manual_caps; 2348 2349 qemu_mutex_init(&kml_slots_lock); 2350 2351 s = KVM_STATE(ms->accelerator); 2352 2353 /* 2354 * On systems where the kernel can support different base page 2355 * sizes, host page size may be different from TARGET_PAGE_SIZE, 2356 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum 2357 * page size for the system though. 2358 */ 2359 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); 2360 2361 s->sigmask_len = 8; 2362 accel_blocker_init(); 2363 2364 #ifdef KVM_CAP_SET_GUEST_DEBUG 2365 QTAILQ_INIT(&s->kvm_sw_breakpoints); 2366 #endif 2367 QLIST_INIT(&s->kvm_parked_vcpus); 2368 s->fd = qemu_open_old("/dev/kvm", O_RDWR); 2369 if (s->fd == -1) { 2370 fprintf(stderr, "Could not access KVM kernel module: %m\n"); 2371 ret = -errno; 2372 goto err; 2373 } 2374 2375 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); 2376 if (ret < KVM_API_VERSION) { 2377 if (ret >= 0) { 2378 ret = -EINVAL; 2379 } 2380 fprintf(stderr, "kvm version too old\n"); 2381 goto err; 2382 } 2383 2384 if (ret > KVM_API_VERSION) { 2385 ret = -EINVAL; 2386 fprintf(stderr, "kvm version not supported\n"); 2387 goto err; 2388 } 2389 2390 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); 2391 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2392 2393 /* If unspecified, use the default value */ 2394 if (!s->nr_slots) { 2395 s->nr_slots = 32; 2396 } 2397 2398 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); 2399 if (s->nr_as <= 1) { 2400 s->nr_as = 1; 2401 } 2402 s->as = g_new0(struct KVMAs, s->nr_as); 2403 2404 if (object_property_find(OBJECT(current_machine), "kvm-type")) { 2405 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), 2406 "kvm-type", 2407 &error_abort); 2408 type = mc->kvm_type(ms, kvm_type); 2409 } else if (mc->kvm_type) { 2410 type = mc->kvm_type(ms, NULL); 2411 } else { 2412 type = kvm_arch_get_default_type(ms); 2413 } 2414 2415 if (type < 0) { 2416 ret = -EINVAL; 2417 goto err; 2418 } 2419 2420 do { 2421 ret = kvm_ioctl(s, KVM_CREATE_VM, type); 2422 } while (ret == -EINTR); 2423 2424 if (ret < 0) { 2425 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, 2426 strerror(-ret)); 2427 2428 #ifdef TARGET_S390X 2429 if (ret == -EINVAL) { 2430 fprintf(stderr, 2431 "Host kernel setup problem detected. Please verify:\n"); 2432 fprintf(stderr, "- for kernels supporting the switch_amode or" 2433 " user_mode parameters, whether\n"); 2434 fprintf(stderr, 2435 " user space is running in primary address space\n"); 2436 fprintf(stderr, 2437 "- for kernels supporting the vm.allocate_pgste sysctl, " 2438 "whether it is enabled\n"); 2439 } 2440 #elif defined(TARGET_PPC) 2441 if (ret == -EINVAL) { 2442 fprintf(stderr, 2443 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", 2444 (type == 2) ? "pr" : "hv"); 2445 } 2446 #endif 2447 goto err; 2448 } 2449 2450 s->vmfd = ret; 2451 2452 /* check the vcpu limits */ 2453 soft_vcpus_limit = kvm_recommended_vcpus(s); 2454 hard_vcpus_limit = kvm_max_vcpus(s); 2455 2456 while (nc->name) { 2457 if (nc->num > soft_vcpus_limit) { 2458 warn_report("Number of %s cpus requested (%d) exceeds " 2459 "the recommended cpus supported by KVM (%d)", 2460 nc->name, nc->num, soft_vcpus_limit); 2461 2462 if (nc->num > hard_vcpus_limit) { 2463 fprintf(stderr, "Number of %s cpus requested (%d) exceeds " 2464 "the maximum cpus supported by KVM (%d)\n", 2465 nc->name, nc->num, hard_vcpus_limit); 2466 exit(1); 2467 } 2468 } 2469 nc++; 2470 } 2471 2472 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); 2473 if (!missing_cap) { 2474 missing_cap = 2475 kvm_check_extension_list(s, kvm_arch_required_capabilities); 2476 } 2477 if (missing_cap) { 2478 ret = -EINVAL; 2479 fprintf(stderr, "kvm does not support %s\n%s", 2480 missing_cap->name, upgrade_note); 2481 goto err; 2482 } 2483 2484 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); 2485 s->coalesced_pio = s->coalesced_mmio && 2486 kvm_check_extension(s, KVM_CAP_COALESCED_PIO); 2487 2488 /* 2489 * Enable KVM dirty ring if supported, otherwise fall back to 2490 * dirty logging mode 2491 */ 2492 ret = kvm_dirty_ring_init(s); 2493 if (ret < 0) { 2494 goto err; 2495 } 2496 2497 /* 2498 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is 2499 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no 2500 * page is wr-protected initially, which is against how kvm dirty ring is 2501 * usage - kvm dirty ring requires all pages are wr-protected at the very 2502 * beginning. Enabling this feature for dirty ring causes data corruption. 2503 * 2504 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, 2505 * we may expect a higher stall time when starting the migration. In the 2506 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: 2507 * instead of clearing dirty bit, it can be a way to explicitly wr-protect 2508 * guest pages. 2509 */ 2510 if (!s->kvm_dirty_ring_size) { 2511 dirty_log_manual_caps = 2512 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); 2513 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | 2514 KVM_DIRTY_LOG_INITIALLY_SET); 2515 s->manual_dirty_log_protect = dirty_log_manual_caps; 2516 if (dirty_log_manual_caps) { 2517 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, 2518 dirty_log_manual_caps); 2519 if (ret) { 2520 warn_report("Trying to enable capability %"PRIu64" of " 2521 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " 2522 "Falling back to the legacy mode. ", 2523 dirty_log_manual_caps); 2524 s->manual_dirty_log_protect = 0; 2525 } 2526 } 2527 } 2528 2529 #ifdef KVM_CAP_VCPU_EVENTS 2530 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); 2531 #endif 2532 2533 s->robust_singlestep = 2534 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); 2535 2536 #ifdef KVM_CAP_DEBUGREGS 2537 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); 2538 #endif 2539 2540 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); 2541 2542 s->irq_set_ioctl = KVM_IRQ_LINE; 2543 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { 2544 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; 2545 } 2546 2547 kvm_readonly_mem_allowed = 2548 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); 2549 2550 kvm_eventfds_allowed = 2551 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); 2552 2553 kvm_resamplefds_allowed = 2554 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); 2555 2556 kvm_vm_attributes_allowed = 2557 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); 2558 2559 kvm_ioeventfd_any_length_allowed = 2560 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0); 2561 2562 #ifdef KVM_CAP_SET_GUEST_DEBUG 2563 kvm_has_guest_debug = 2564 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); 2565 #endif 2566 2567 kvm_sstep_flags = 0; 2568 if (kvm_has_guest_debug) { 2569 kvm_sstep_flags = SSTEP_ENABLE; 2570 2571 #if defined KVM_CAP_SET_GUEST_DEBUG2 2572 int guest_debug_flags = 2573 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); 2574 2575 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { 2576 kvm_sstep_flags |= SSTEP_NOIRQ; 2577 } 2578 #endif 2579 } 2580 2581 kvm_state = s; 2582 2583 ret = kvm_arch_init(ms, s); 2584 if (ret < 0) { 2585 goto err; 2586 } 2587 2588 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { 2589 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 2590 } 2591 2592 qemu_register_reset(kvm_unpoison_all, NULL); 2593 2594 if (s->kernel_irqchip_allowed) { 2595 kvm_irqchip_create(s); 2596 } 2597 2598 if (kvm_eventfds_allowed) { 2599 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; 2600 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; 2601 } 2602 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; 2603 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; 2604 2605 kvm_memory_listener_register(s, &s->memory_listener, 2606 &address_space_memory, 0, "kvm-memory"); 2607 if (kvm_eventfds_allowed) { 2608 memory_listener_register(&kvm_io_listener, 2609 &address_space_io); 2610 } 2611 memory_listener_register(&kvm_coalesced_pio_listener, 2612 &address_space_io); 2613 2614 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); 2615 if (!s->sync_mmu) { 2616 ret = ram_block_discard_disable(true); 2617 assert(!ret); 2618 } 2619 2620 if (s->kvm_dirty_ring_size) { 2621 kvm_dirty_ring_reaper_init(s); 2622 } 2623 2624 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { 2625 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, 2626 query_stats_schemas_cb); 2627 } 2628 2629 return 0; 2630 2631 err: 2632 assert(ret < 0); 2633 if (s->vmfd >= 0) { 2634 close(s->vmfd); 2635 } 2636 if (s->fd != -1) { 2637 close(s->fd); 2638 } 2639 g_free(s->as); 2640 g_free(s->memory_listener.slots); 2641 2642 return ret; 2643 } 2644 2645 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) 2646 { 2647 s->sigmask_len = sigmask_len; 2648 } 2649 2650 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, 2651 int size, uint32_t count) 2652 { 2653 int i; 2654 uint8_t *ptr = data; 2655 2656 for (i = 0; i < count; i++) { 2657 address_space_rw(&address_space_io, port, attrs, 2658 ptr, size, 2659 direction == KVM_EXIT_IO_OUT); 2660 ptr += size; 2661 } 2662 } 2663 2664 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) 2665 { 2666 int i; 2667 2668 fprintf(stderr, "KVM internal error. Suberror: %d\n", 2669 run->internal.suberror); 2670 2671 for (i = 0; i < run->internal.ndata; ++i) { 2672 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", 2673 i, (uint64_t)run->internal.data[i]); 2674 } 2675 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { 2676 fprintf(stderr, "emulation failure\n"); 2677 if (!kvm_arch_stop_on_emulation_error(cpu)) { 2678 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2679 return EXCP_INTERRUPT; 2680 } 2681 } 2682 /* FIXME: Should trigger a qmp message to let management know 2683 * something went wrong. 2684 */ 2685 return -1; 2686 } 2687 2688 void kvm_flush_coalesced_mmio_buffer(void) 2689 { 2690 KVMState *s = kvm_state; 2691 2692 if (!s || s->coalesced_flush_in_progress) { 2693 return; 2694 } 2695 2696 s->coalesced_flush_in_progress = true; 2697 2698 if (s->coalesced_mmio_ring) { 2699 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; 2700 while (ring->first != ring->last) { 2701 struct kvm_coalesced_mmio *ent; 2702 2703 ent = &ring->coalesced_mmio[ring->first]; 2704 2705 if (ent->pio == 1) { 2706 address_space_write(&address_space_io, ent->phys_addr, 2707 MEMTXATTRS_UNSPECIFIED, ent->data, 2708 ent->len); 2709 } else { 2710 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); 2711 } 2712 smp_wmb(); 2713 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; 2714 } 2715 } 2716 2717 s->coalesced_flush_in_progress = false; 2718 } 2719 2720 bool kvm_cpu_check_are_resettable(void) 2721 { 2722 return kvm_arch_cpu_check_are_resettable(); 2723 } 2724 2725 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) 2726 { 2727 if (!cpu->vcpu_dirty) { 2728 int ret = kvm_arch_get_registers(cpu); 2729 if (ret) { 2730 error_report("Failed to get registers: %s", strerror(-ret)); 2731 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2732 vm_stop(RUN_STATE_INTERNAL_ERROR); 2733 } 2734 2735 cpu->vcpu_dirty = true; 2736 } 2737 } 2738 2739 void kvm_cpu_synchronize_state(CPUState *cpu) 2740 { 2741 if (!cpu->vcpu_dirty) { 2742 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); 2743 } 2744 } 2745 2746 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) 2747 { 2748 int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); 2749 if (ret) { 2750 error_report("Failed to put registers after reset: %s", strerror(-ret)); 2751 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 2752 vm_stop(RUN_STATE_INTERNAL_ERROR); 2753 } 2754 2755 cpu->vcpu_dirty = false; 2756 } 2757 2758 void kvm_cpu_synchronize_post_reset(CPUState *cpu) 2759 { 2760 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); 2761 } 2762 2763 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) 2764 { 2765 int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); 2766 if (ret) { 2767 error_report("Failed to put registers after init: %s", strerror(-ret)); 2768 exit(1); 2769 } 2770 2771 cpu->vcpu_dirty = false; 2772 } 2773 2774 void kvm_cpu_synchronize_post_init(CPUState *cpu) 2775 { 2776 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); 2777 } 2778 2779 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) 2780 { 2781 cpu->vcpu_dirty = true; 2782 } 2783 2784 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) 2785 { 2786 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); 2787 } 2788 2789 #ifdef KVM_HAVE_MCE_INJECTION 2790 static __thread void *pending_sigbus_addr; 2791 static __thread int pending_sigbus_code; 2792 static __thread bool have_sigbus_pending; 2793 #endif 2794 2795 static void kvm_cpu_kick(CPUState *cpu) 2796 { 2797 qatomic_set(&cpu->kvm_run->immediate_exit, 1); 2798 } 2799 2800 static void kvm_cpu_kick_self(void) 2801 { 2802 if (kvm_immediate_exit) { 2803 kvm_cpu_kick(current_cpu); 2804 } else { 2805 qemu_cpu_kick_self(); 2806 } 2807 } 2808 2809 static void kvm_eat_signals(CPUState *cpu) 2810 { 2811 struct timespec ts = { 0, 0 }; 2812 siginfo_t siginfo; 2813 sigset_t waitset; 2814 sigset_t chkset; 2815 int r; 2816 2817 if (kvm_immediate_exit) { 2818 qatomic_set(&cpu->kvm_run->immediate_exit, 0); 2819 /* Write kvm_run->immediate_exit before the cpu->exit_request 2820 * write in kvm_cpu_exec. 2821 */ 2822 smp_wmb(); 2823 return; 2824 } 2825 2826 sigemptyset(&waitset); 2827 sigaddset(&waitset, SIG_IPI); 2828 2829 do { 2830 r = sigtimedwait(&waitset, &siginfo, &ts); 2831 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { 2832 perror("sigtimedwait"); 2833 exit(1); 2834 } 2835 2836 r = sigpending(&chkset); 2837 if (r == -1) { 2838 perror("sigpending"); 2839 exit(1); 2840 } 2841 } while (sigismember(&chkset, SIG_IPI)); 2842 } 2843 2844 int kvm_cpu_exec(CPUState *cpu) 2845 { 2846 struct kvm_run *run = cpu->kvm_run; 2847 int ret, run_ret; 2848 2849 DPRINTF("kvm_cpu_exec()\n"); 2850 2851 if (kvm_arch_process_async_events(cpu)) { 2852 qatomic_set(&cpu->exit_request, 0); 2853 return EXCP_HLT; 2854 } 2855 2856 qemu_mutex_unlock_iothread(); 2857 cpu_exec_start(cpu); 2858 2859 do { 2860 MemTxAttrs attrs; 2861 2862 if (cpu->vcpu_dirty) { 2863 ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); 2864 if (ret) { 2865 error_report("Failed to put registers after init: %s", 2866 strerror(-ret)); 2867 ret = -1; 2868 break; 2869 } 2870 2871 cpu->vcpu_dirty = false; 2872 } 2873 2874 kvm_arch_pre_run(cpu, run); 2875 if (qatomic_read(&cpu->exit_request)) { 2876 DPRINTF("interrupt exit requested\n"); 2877 /* 2878 * KVM requires us to reenter the kernel after IO exits to complete 2879 * instruction emulation. This self-signal will ensure that we 2880 * leave ASAP again. 2881 */ 2882 kvm_cpu_kick_self(); 2883 } 2884 2885 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. 2886 * Matching barrier in kvm_eat_signals. 2887 */ 2888 smp_rmb(); 2889 2890 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); 2891 2892 attrs = kvm_arch_post_run(cpu, run); 2893 2894 #ifdef KVM_HAVE_MCE_INJECTION 2895 if (unlikely(have_sigbus_pending)) { 2896 qemu_mutex_lock_iothread(); 2897 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, 2898 pending_sigbus_addr); 2899 have_sigbus_pending = false; 2900 qemu_mutex_unlock_iothread(); 2901 } 2902 #endif 2903 2904 if (run_ret < 0) { 2905 if (run_ret == -EINTR || run_ret == -EAGAIN) { 2906 DPRINTF("io window exit\n"); 2907 kvm_eat_signals(cpu); 2908 ret = EXCP_INTERRUPT; 2909 break; 2910 } 2911 fprintf(stderr, "error: kvm run failed %s\n", 2912 strerror(-run_ret)); 2913 #ifdef TARGET_PPC 2914 if (run_ret == -EBUSY) { 2915 fprintf(stderr, 2916 "This is probably because your SMT is enabled.\n" 2917 "VCPU can only run on primary threads with all " 2918 "secondary threads offline.\n"); 2919 } 2920 #endif 2921 ret = -1; 2922 break; 2923 } 2924 2925 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); 2926 switch (run->exit_reason) { 2927 case KVM_EXIT_IO: 2928 DPRINTF("handle_io\n"); 2929 /* Called outside BQL */ 2930 kvm_handle_io(run->io.port, attrs, 2931 (uint8_t *)run + run->io.data_offset, 2932 run->io.direction, 2933 run->io.size, 2934 run->io.count); 2935 ret = 0; 2936 break; 2937 case KVM_EXIT_MMIO: 2938 DPRINTF("handle_mmio\n"); 2939 /* Called outside BQL */ 2940 address_space_rw(&address_space_memory, 2941 run->mmio.phys_addr, attrs, 2942 run->mmio.data, 2943 run->mmio.len, 2944 run->mmio.is_write); 2945 ret = 0; 2946 break; 2947 case KVM_EXIT_IRQ_WINDOW_OPEN: 2948 DPRINTF("irq_window_open\n"); 2949 ret = EXCP_INTERRUPT; 2950 break; 2951 case KVM_EXIT_SHUTDOWN: 2952 DPRINTF("shutdown\n"); 2953 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2954 ret = EXCP_INTERRUPT; 2955 break; 2956 case KVM_EXIT_UNKNOWN: 2957 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", 2958 (uint64_t)run->hw.hardware_exit_reason); 2959 ret = -1; 2960 break; 2961 case KVM_EXIT_INTERNAL_ERROR: 2962 ret = kvm_handle_internal_error(cpu, run); 2963 break; 2964 case KVM_EXIT_DIRTY_RING_FULL: 2965 /* 2966 * We shouldn't continue if the dirty ring of this vcpu is 2967 * still full. Got kicked by KVM_RESET_DIRTY_RINGS. 2968 */ 2969 trace_kvm_dirty_ring_full(cpu->cpu_index); 2970 qemu_mutex_lock_iothread(); 2971 /* 2972 * We throttle vCPU by making it sleep once it exit from kernel 2973 * due to dirty ring full. In the dirtylimit scenario, reaping 2974 * all vCPUs after a single vCPU dirty ring get full result in 2975 * the miss of sleep, so just reap the ring-fulled vCPU. 2976 */ 2977 if (dirtylimit_in_service()) { 2978 kvm_dirty_ring_reap(kvm_state, cpu); 2979 } else { 2980 kvm_dirty_ring_reap(kvm_state, NULL); 2981 } 2982 qemu_mutex_unlock_iothread(); 2983 dirtylimit_vcpu_execute(cpu); 2984 ret = 0; 2985 break; 2986 case KVM_EXIT_SYSTEM_EVENT: 2987 switch (run->system_event.type) { 2988 case KVM_SYSTEM_EVENT_SHUTDOWN: 2989 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2990 ret = EXCP_INTERRUPT; 2991 break; 2992 case KVM_SYSTEM_EVENT_RESET: 2993 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 2994 ret = EXCP_INTERRUPT; 2995 break; 2996 case KVM_SYSTEM_EVENT_CRASH: 2997 kvm_cpu_synchronize_state(cpu); 2998 qemu_mutex_lock_iothread(); 2999 qemu_system_guest_panicked(cpu_get_crash_info(cpu)); 3000 qemu_mutex_unlock_iothread(); 3001 ret = 0; 3002 break; 3003 default: 3004 DPRINTF("kvm_arch_handle_exit\n"); 3005 ret = kvm_arch_handle_exit(cpu, run); 3006 break; 3007 } 3008 break; 3009 default: 3010 DPRINTF("kvm_arch_handle_exit\n"); 3011 ret = kvm_arch_handle_exit(cpu, run); 3012 break; 3013 } 3014 } while (ret == 0); 3015 3016 cpu_exec_end(cpu); 3017 qemu_mutex_lock_iothread(); 3018 3019 if (ret < 0) { 3020 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); 3021 vm_stop(RUN_STATE_INTERNAL_ERROR); 3022 } 3023 3024 qatomic_set(&cpu->exit_request, 0); 3025 return ret; 3026 } 3027 3028 int kvm_ioctl(KVMState *s, int type, ...) 3029 { 3030 int ret; 3031 void *arg; 3032 va_list ap; 3033 3034 va_start(ap, type); 3035 arg = va_arg(ap, void *); 3036 va_end(ap); 3037 3038 trace_kvm_ioctl(type, arg); 3039 ret = ioctl(s->fd, type, arg); 3040 if (ret == -1) { 3041 ret = -errno; 3042 } 3043 return ret; 3044 } 3045 3046 int kvm_vm_ioctl(KVMState *s, int type, ...) 3047 { 3048 int ret; 3049 void *arg; 3050 va_list ap; 3051 3052 va_start(ap, type); 3053 arg = va_arg(ap, void *); 3054 va_end(ap); 3055 3056 trace_kvm_vm_ioctl(type, arg); 3057 accel_ioctl_begin(); 3058 ret = ioctl(s->vmfd, type, arg); 3059 accel_ioctl_end(); 3060 if (ret == -1) { 3061 ret = -errno; 3062 } 3063 return ret; 3064 } 3065 3066 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) 3067 { 3068 int ret; 3069 void *arg; 3070 va_list ap; 3071 3072 va_start(ap, type); 3073 arg = va_arg(ap, void *); 3074 va_end(ap); 3075 3076 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); 3077 accel_cpu_ioctl_begin(cpu); 3078 ret = ioctl(cpu->kvm_fd, type, arg); 3079 accel_cpu_ioctl_end(cpu); 3080 if (ret == -1) { 3081 ret = -errno; 3082 } 3083 return ret; 3084 } 3085 3086 int kvm_device_ioctl(int fd, int type, ...) 3087 { 3088 int ret; 3089 void *arg; 3090 va_list ap; 3091 3092 va_start(ap, type); 3093 arg = va_arg(ap, void *); 3094 va_end(ap); 3095 3096 trace_kvm_device_ioctl(fd, type, arg); 3097 accel_ioctl_begin(); 3098 ret = ioctl(fd, type, arg); 3099 accel_ioctl_end(); 3100 if (ret == -1) { 3101 ret = -errno; 3102 } 3103 return ret; 3104 } 3105 3106 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) 3107 { 3108 int ret; 3109 struct kvm_device_attr attribute = { 3110 .group = group, 3111 .attr = attr, 3112 }; 3113 3114 if (!kvm_vm_attributes_allowed) { 3115 return 0; 3116 } 3117 3118 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); 3119 /* kvm returns 0 on success for HAS_DEVICE_ATTR */ 3120 return ret ? 0 : 1; 3121 } 3122 3123 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 3124 { 3125 struct kvm_device_attr attribute = { 3126 .group = group, 3127 .attr = attr, 3128 .flags = 0, 3129 }; 3130 3131 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; 3132 } 3133 3134 int kvm_device_access(int fd, int group, uint64_t attr, 3135 void *val, bool write, Error **errp) 3136 { 3137 struct kvm_device_attr kvmattr; 3138 int err; 3139 3140 kvmattr.flags = 0; 3141 kvmattr.group = group; 3142 kvmattr.attr = attr; 3143 kvmattr.addr = (uintptr_t)val; 3144 3145 err = kvm_device_ioctl(fd, 3146 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 3147 &kvmattr); 3148 if (err < 0) { 3149 error_setg_errno(errp, -err, 3150 "KVM_%s_DEVICE_ATTR failed: Group %d " 3151 "attr 0x%016" PRIx64, 3152 write ? "SET" : "GET", group, attr); 3153 } 3154 return err; 3155 } 3156 3157 bool kvm_has_sync_mmu(void) 3158 { 3159 return kvm_state->sync_mmu; 3160 } 3161 3162 int kvm_has_vcpu_events(void) 3163 { 3164 return kvm_state->vcpu_events; 3165 } 3166 3167 int kvm_has_robust_singlestep(void) 3168 { 3169 return kvm_state->robust_singlestep; 3170 } 3171 3172 int kvm_has_debugregs(void) 3173 { 3174 return kvm_state->debugregs; 3175 } 3176 3177 int kvm_max_nested_state_length(void) 3178 { 3179 return kvm_state->max_nested_state_len; 3180 } 3181 3182 int kvm_has_gsi_routing(void) 3183 { 3184 #ifdef KVM_CAP_IRQ_ROUTING 3185 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); 3186 #else 3187 return false; 3188 #endif 3189 } 3190 3191 bool kvm_arm_supports_user_irq(void) 3192 { 3193 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); 3194 } 3195 3196 #ifdef KVM_CAP_SET_GUEST_DEBUG 3197 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) 3198 { 3199 struct kvm_sw_breakpoint *bp; 3200 3201 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { 3202 if (bp->pc == pc) { 3203 return bp; 3204 } 3205 } 3206 return NULL; 3207 } 3208 3209 int kvm_sw_breakpoints_active(CPUState *cpu) 3210 { 3211 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); 3212 } 3213 3214 struct kvm_set_guest_debug_data { 3215 struct kvm_guest_debug dbg; 3216 int err; 3217 }; 3218 3219 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) 3220 { 3221 struct kvm_set_guest_debug_data *dbg_data = 3222 (struct kvm_set_guest_debug_data *) data.host_ptr; 3223 3224 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, 3225 &dbg_data->dbg); 3226 } 3227 3228 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) 3229 { 3230 struct kvm_set_guest_debug_data data; 3231 3232 data.dbg.control = reinject_trap; 3233 3234 if (cpu->singlestep_enabled) { 3235 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; 3236 3237 if (cpu->singlestep_enabled & SSTEP_NOIRQ) { 3238 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; 3239 } 3240 } 3241 kvm_arch_update_guest_debug(cpu, &data.dbg); 3242 3243 run_on_cpu(cpu, kvm_invoke_set_guest_debug, 3244 RUN_ON_CPU_HOST_PTR(&data)); 3245 return data.err; 3246 } 3247 3248 bool kvm_supports_guest_debug(void) 3249 { 3250 /* probed during kvm_init() */ 3251 return kvm_has_guest_debug; 3252 } 3253 3254 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3255 { 3256 struct kvm_sw_breakpoint *bp; 3257 int err; 3258 3259 if (type == GDB_BREAKPOINT_SW) { 3260 bp = kvm_find_sw_breakpoint(cpu, addr); 3261 if (bp) { 3262 bp->use_count++; 3263 return 0; 3264 } 3265 3266 bp = g_new(struct kvm_sw_breakpoint, 1); 3267 bp->pc = addr; 3268 bp->use_count = 1; 3269 err = kvm_arch_insert_sw_breakpoint(cpu, bp); 3270 if (err) { 3271 g_free(bp); 3272 return err; 3273 } 3274 3275 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3276 } else { 3277 err = kvm_arch_insert_hw_breakpoint(addr, len, type); 3278 if (err) { 3279 return err; 3280 } 3281 } 3282 3283 CPU_FOREACH(cpu) { 3284 err = kvm_update_guest_debug(cpu, 0); 3285 if (err) { 3286 return err; 3287 } 3288 } 3289 return 0; 3290 } 3291 3292 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) 3293 { 3294 struct kvm_sw_breakpoint *bp; 3295 int err; 3296 3297 if (type == GDB_BREAKPOINT_SW) { 3298 bp = kvm_find_sw_breakpoint(cpu, addr); 3299 if (!bp) { 3300 return -ENOENT; 3301 } 3302 3303 if (bp->use_count > 1) { 3304 bp->use_count--; 3305 return 0; 3306 } 3307 3308 err = kvm_arch_remove_sw_breakpoint(cpu, bp); 3309 if (err) { 3310 return err; 3311 } 3312 3313 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); 3314 g_free(bp); 3315 } else { 3316 err = kvm_arch_remove_hw_breakpoint(addr, len, type); 3317 if (err) { 3318 return err; 3319 } 3320 } 3321 3322 CPU_FOREACH(cpu) { 3323 err = kvm_update_guest_debug(cpu, 0); 3324 if (err) { 3325 return err; 3326 } 3327 } 3328 return 0; 3329 } 3330 3331 void kvm_remove_all_breakpoints(CPUState *cpu) 3332 { 3333 struct kvm_sw_breakpoint *bp, *next; 3334 KVMState *s = cpu->kvm_state; 3335 CPUState *tmpcpu; 3336 3337 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { 3338 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { 3339 /* Try harder to find a CPU that currently sees the breakpoint. */ 3340 CPU_FOREACH(tmpcpu) { 3341 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { 3342 break; 3343 } 3344 } 3345 } 3346 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); 3347 g_free(bp); 3348 } 3349 kvm_arch_remove_all_hw_breakpoints(); 3350 3351 CPU_FOREACH(cpu) { 3352 kvm_update_guest_debug(cpu, 0); 3353 } 3354 } 3355 3356 #endif /* !KVM_CAP_SET_GUEST_DEBUG */ 3357 3358 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) 3359 { 3360 KVMState *s = kvm_state; 3361 struct kvm_signal_mask *sigmask; 3362 int r; 3363 3364 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); 3365 3366 sigmask->len = s->sigmask_len; 3367 memcpy(sigmask->sigset, sigset, sizeof(*sigset)); 3368 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); 3369 g_free(sigmask); 3370 3371 return r; 3372 } 3373 3374 static void kvm_ipi_signal(int sig) 3375 { 3376 if (current_cpu) { 3377 assert(kvm_immediate_exit); 3378 kvm_cpu_kick(current_cpu); 3379 } 3380 } 3381 3382 void kvm_init_cpu_signals(CPUState *cpu) 3383 { 3384 int r; 3385 sigset_t set; 3386 struct sigaction sigact; 3387 3388 memset(&sigact, 0, sizeof(sigact)); 3389 sigact.sa_handler = kvm_ipi_signal; 3390 sigaction(SIG_IPI, &sigact, NULL); 3391 3392 pthread_sigmask(SIG_BLOCK, NULL, &set); 3393 #if defined KVM_HAVE_MCE_INJECTION 3394 sigdelset(&set, SIGBUS); 3395 pthread_sigmask(SIG_SETMASK, &set, NULL); 3396 #endif 3397 sigdelset(&set, SIG_IPI); 3398 if (kvm_immediate_exit) { 3399 r = pthread_sigmask(SIG_SETMASK, &set, NULL); 3400 } else { 3401 r = kvm_set_signal_mask(cpu, &set); 3402 } 3403 if (r) { 3404 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); 3405 exit(1); 3406 } 3407 } 3408 3409 /* Called asynchronously in VCPU thread. */ 3410 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 3411 { 3412 #ifdef KVM_HAVE_MCE_INJECTION 3413 if (have_sigbus_pending) { 3414 return 1; 3415 } 3416 have_sigbus_pending = true; 3417 pending_sigbus_addr = addr; 3418 pending_sigbus_code = code; 3419 qatomic_set(&cpu->exit_request, 1); 3420 return 0; 3421 #else 3422 return 1; 3423 #endif 3424 } 3425 3426 /* Called synchronously (via signalfd) in main thread. */ 3427 int kvm_on_sigbus(int code, void *addr) 3428 { 3429 #ifdef KVM_HAVE_MCE_INJECTION 3430 /* Action required MCE kills the process if SIGBUS is blocked. Because 3431 * that's what happens in the I/O thread, where we handle MCE via signalfd, 3432 * we can only get action optional here. 3433 */ 3434 assert(code != BUS_MCEERR_AR); 3435 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); 3436 return 0; 3437 #else 3438 return 1; 3439 #endif 3440 } 3441 3442 int kvm_create_device(KVMState *s, uint64_t type, bool test) 3443 { 3444 int ret; 3445 struct kvm_create_device create_dev; 3446 3447 create_dev.type = type; 3448 create_dev.fd = -1; 3449 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 3450 3451 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { 3452 return -ENOTSUP; 3453 } 3454 3455 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); 3456 if (ret) { 3457 return ret; 3458 } 3459 3460 return test ? 0 : create_dev.fd; 3461 } 3462 3463 bool kvm_device_supported(int vmfd, uint64_t type) 3464 { 3465 struct kvm_create_device create_dev = { 3466 .type = type, 3467 .fd = -1, 3468 .flags = KVM_CREATE_DEVICE_TEST, 3469 }; 3470 3471 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { 3472 return false; 3473 } 3474 3475 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); 3476 } 3477 3478 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) 3479 { 3480 struct kvm_one_reg reg; 3481 int r; 3482 3483 reg.id = id; 3484 reg.addr = (uintptr_t) source; 3485 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 3486 if (r) { 3487 trace_kvm_failed_reg_set(id, strerror(-r)); 3488 } 3489 return r; 3490 } 3491 3492 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) 3493 { 3494 struct kvm_one_reg reg; 3495 int r; 3496 3497 reg.id = id; 3498 reg.addr = (uintptr_t) target; 3499 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 3500 if (r) { 3501 trace_kvm_failed_reg_get(id, strerror(-r)); 3502 } 3503 return r; 3504 } 3505 3506 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, 3507 hwaddr start_addr, hwaddr size) 3508 { 3509 KVMState *kvm = KVM_STATE(ms->accelerator); 3510 int i; 3511 3512 for (i = 0; i < kvm->nr_as; ++i) { 3513 if (kvm->as[i].as == as && kvm->as[i].ml) { 3514 size = MIN(kvm_max_slot_size, size); 3515 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, 3516 start_addr, size); 3517 } 3518 } 3519 3520 return false; 3521 } 3522 3523 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, 3524 const char *name, void *opaque, 3525 Error **errp) 3526 { 3527 KVMState *s = KVM_STATE(obj); 3528 int64_t value = s->kvm_shadow_mem; 3529 3530 visit_type_int(v, name, &value, errp); 3531 } 3532 3533 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, 3534 const char *name, void *opaque, 3535 Error **errp) 3536 { 3537 KVMState *s = KVM_STATE(obj); 3538 int64_t value; 3539 3540 if (s->fd != -1) { 3541 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3542 return; 3543 } 3544 3545 if (!visit_type_int(v, name, &value, errp)) { 3546 return; 3547 } 3548 3549 s->kvm_shadow_mem = value; 3550 } 3551 3552 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, 3553 const char *name, void *opaque, 3554 Error **errp) 3555 { 3556 KVMState *s = KVM_STATE(obj); 3557 OnOffSplit mode; 3558 3559 if (s->fd != -1) { 3560 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3561 return; 3562 } 3563 3564 if (!visit_type_OnOffSplit(v, name, &mode, errp)) { 3565 return; 3566 } 3567 switch (mode) { 3568 case ON_OFF_SPLIT_ON: 3569 s->kernel_irqchip_allowed = true; 3570 s->kernel_irqchip_required = true; 3571 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3572 break; 3573 case ON_OFF_SPLIT_OFF: 3574 s->kernel_irqchip_allowed = false; 3575 s->kernel_irqchip_required = false; 3576 s->kernel_irqchip_split = ON_OFF_AUTO_OFF; 3577 break; 3578 case ON_OFF_SPLIT_SPLIT: 3579 s->kernel_irqchip_allowed = true; 3580 s->kernel_irqchip_required = true; 3581 s->kernel_irqchip_split = ON_OFF_AUTO_ON; 3582 break; 3583 default: 3584 /* The value was checked in visit_type_OnOffSplit() above. If 3585 * we get here, then something is wrong in QEMU. 3586 */ 3587 abort(); 3588 } 3589 } 3590 3591 bool kvm_kernel_irqchip_allowed(void) 3592 { 3593 return kvm_state->kernel_irqchip_allowed; 3594 } 3595 3596 bool kvm_kernel_irqchip_required(void) 3597 { 3598 return kvm_state->kernel_irqchip_required; 3599 } 3600 3601 bool kvm_kernel_irqchip_split(void) 3602 { 3603 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; 3604 } 3605 3606 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, 3607 const char *name, void *opaque, 3608 Error **errp) 3609 { 3610 KVMState *s = KVM_STATE(obj); 3611 uint32_t value = s->kvm_dirty_ring_size; 3612 3613 visit_type_uint32(v, name, &value, errp); 3614 } 3615 3616 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, 3617 const char *name, void *opaque, 3618 Error **errp) 3619 { 3620 KVMState *s = KVM_STATE(obj); 3621 uint32_t value; 3622 3623 if (s->fd != -1) { 3624 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 3625 return; 3626 } 3627 3628 if (!visit_type_uint32(v, name, &value, errp)) { 3629 return; 3630 } 3631 if (value & (value - 1)) { 3632 error_setg(errp, "dirty-ring-size must be a power of two."); 3633 return; 3634 } 3635 3636 s->kvm_dirty_ring_size = value; 3637 } 3638 3639 static void kvm_accel_instance_init(Object *obj) 3640 { 3641 KVMState *s = KVM_STATE(obj); 3642 3643 s->fd = -1; 3644 s->vmfd = -1; 3645 s->kvm_shadow_mem = -1; 3646 s->kernel_irqchip_allowed = true; 3647 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; 3648 /* KVM dirty ring is by default off */ 3649 s->kvm_dirty_ring_size = 0; 3650 s->kvm_dirty_ring_with_bitmap = false; 3651 s->kvm_eager_split_size = 0; 3652 s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; 3653 s->notify_window = 0; 3654 s->xen_version = 0; 3655 s->xen_gnttab_max_frames = 64; 3656 s->xen_evtchn_max_pirq = 256; 3657 } 3658 3659 /** 3660 * kvm_gdbstub_sstep_flags(): 3661 * 3662 * Returns: SSTEP_* flags that KVM supports for guest debug. The 3663 * support is probed during kvm_init() 3664 */ 3665 static int kvm_gdbstub_sstep_flags(void) 3666 { 3667 return kvm_sstep_flags; 3668 } 3669 3670 static void kvm_accel_class_init(ObjectClass *oc, void *data) 3671 { 3672 AccelClass *ac = ACCEL_CLASS(oc); 3673 ac->name = "KVM"; 3674 ac->init_machine = kvm_init; 3675 ac->has_memory = kvm_accel_has_memory; 3676 ac->allowed = &kvm_allowed; 3677 ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; 3678 3679 object_class_property_add(oc, "kernel-irqchip", "on|off|split", 3680 NULL, kvm_set_kernel_irqchip, 3681 NULL, NULL); 3682 object_class_property_set_description(oc, "kernel-irqchip", 3683 "Configure KVM in-kernel irqchip"); 3684 3685 object_class_property_add(oc, "kvm-shadow-mem", "int", 3686 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, 3687 NULL, NULL); 3688 object_class_property_set_description(oc, "kvm-shadow-mem", 3689 "KVM shadow MMU size"); 3690 3691 object_class_property_add(oc, "dirty-ring-size", "uint32", 3692 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, 3693 NULL, NULL); 3694 object_class_property_set_description(oc, "dirty-ring-size", 3695 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); 3696 3697 kvm_arch_accel_class_init(oc); 3698 } 3699 3700 static const TypeInfo kvm_accel_type = { 3701 .name = TYPE_KVM_ACCEL, 3702 .parent = TYPE_ACCEL, 3703 .instance_init = kvm_accel_instance_init, 3704 .class_init = kvm_accel_class_init, 3705 .instance_size = sizeof(KVMState), 3706 }; 3707 3708 static void kvm_type_init(void) 3709 { 3710 type_register_static(&kvm_accel_type); 3711 } 3712 3713 type_init(kvm_type_init); 3714 3715 typedef struct StatsArgs { 3716 union StatsResultsType { 3717 StatsResultList **stats; 3718 StatsSchemaList **schema; 3719 } result; 3720 strList *names; 3721 Error **errp; 3722 } StatsArgs; 3723 3724 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, 3725 uint64_t *stats_data, 3726 StatsList *stats_list, 3727 Error **errp) 3728 { 3729 3730 Stats *stats; 3731 uint64List *val_list = NULL; 3732 3733 /* Only add stats that we understand. */ 3734 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3735 case KVM_STATS_TYPE_CUMULATIVE: 3736 case KVM_STATS_TYPE_INSTANT: 3737 case KVM_STATS_TYPE_PEAK: 3738 case KVM_STATS_TYPE_LINEAR_HIST: 3739 case KVM_STATS_TYPE_LOG_HIST: 3740 break; 3741 default: 3742 return stats_list; 3743 } 3744 3745 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3746 case KVM_STATS_UNIT_NONE: 3747 case KVM_STATS_UNIT_BYTES: 3748 case KVM_STATS_UNIT_CYCLES: 3749 case KVM_STATS_UNIT_SECONDS: 3750 case KVM_STATS_UNIT_BOOLEAN: 3751 break; 3752 default: 3753 return stats_list; 3754 } 3755 3756 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3757 case KVM_STATS_BASE_POW10: 3758 case KVM_STATS_BASE_POW2: 3759 break; 3760 default: 3761 return stats_list; 3762 } 3763 3764 /* Alloc and populate data list */ 3765 stats = g_new0(Stats, 1); 3766 stats->name = g_strdup(pdesc->name); 3767 stats->value = g_new0(StatsValue, 1);; 3768 3769 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { 3770 stats->value->u.boolean = *stats_data; 3771 stats->value->type = QTYPE_QBOOL; 3772 } else if (pdesc->size == 1) { 3773 stats->value->u.scalar = *stats_data; 3774 stats->value->type = QTYPE_QNUM; 3775 } else { 3776 int i; 3777 for (i = 0; i < pdesc->size; i++) { 3778 QAPI_LIST_PREPEND(val_list, stats_data[i]); 3779 } 3780 stats->value->u.list = val_list; 3781 stats->value->type = QTYPE_QLIST; 3782 } 3783 3784 QAPI_LIST_PREPEND(stats_list, stats); 3785 return stats_list; 3786 } 3787 3788 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, 3789 StatsSchemaValueList *list, 3790 Error **errp) 3791 { 3792 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); 3793 schema_entry->value = g_new0(StatsSchemaValue, 1); 3794 3795 switch (pdesc->flags & KVM_STATS_TYPE_MASK) { 3796 case KVM_STATS_TYPE_CUMULATIVE: 3797 schema_entry->value->type = STATS_TYPE_CUMULATIVE; 3798 break; 3799 case KVM_STATS_TYPE_INSTANT: 3800 schema_entry->value->type = STATS_TYPE_INSTANT; 3801 break; 3802 case KVM_STATS_TYPE_PEAK: 3803 schema_entry->value->type = STATS_TYPE_PEAK; 3804 break; 3805 case KVM_STATS_TYPE_LINEAR_HIST: 3806 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; 3807 schema_entry->value->bucket_size = pdesc->bucket_size; 3808 schema_entry->value->has_bucket_size = true; 3809 break; 3810 case KVM_STATS_TYPE_LOG_HIST: 3811 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; 3812 break; 3813 default: 3814 goto exit; 3815 } 3816 3817 switch (pdesc->flags & KVM_STATS_UNIT_MASK) { 3818 case KVM_STATS_UNIT_NONE: 3819 break; 3820 case KVM_STATS_UNIT_BOOLEAN: 3821 schema_entry->value->has_unit = true; 3822 schema_entry->value->unit = STATS_UNIT_BOOLEAN; 3823 break; 3824 case KVM_STATS_UNIT_BYTES: 3825 schema_entry->value->has_unit = true; 3826 schema_entry->value->unit = STATS_UNIT_BYTES; 3827 break; 3828 case KVM_STATS_UNIT_CYCLES: 3829 schema_entry->value->has_unit = true; 3830 schema_entry->value->unit = STATS_UNIT_CYCLES; 3831 break; 3832 case KVM_STATS_UNIT_SECONDS: 3833 schema_entry->value->has_unit = true; 3834 schema_entry->value->unit = STATS_UNIT_SECONDS; 3835 break; 3836 default: 3837 goto exit; 3838 } 3839 3840 schema_entry->value->exponent = pdesc->exponent; 3841 if (pdesc->exponent) { 3842 switch (pdesc->flags & KVM_STATS_BASE_MASK) { 3843 case KVM_STATS_BASE_POW10: 3844 schema_entry->value->has_base = true; 3845 schema_entry->value->base = 10; 3846 break; 3847 case KVM_STATS_BASE_POW2: 3848 schema_entry->value->has_base = true; 3849 schema_entry->value->base = 2; 3850 break; 3851 default: 3852 goto exit; 3853 } 3854 } 3855 3856 schema_entry->value->name = g_strdup(pdesc->name); 3857 schema_entry->next = list; 3858 return schema_entry; 3859 exit: 3860 g_free(schema_entry->value); 3861 g_free(schema_entry); 3862 return list; 3863 } 3864 3865 /* Cached stats descriptors */ 3866 typedef struct StatsDescriptors { 3867 const char *ident; /* cache key, currently the StatsTarget */ 3868 struct kvm_stats_desc *kvm_stats_desc; 3869 struct kvm_stats_header kvm_stats_header; 3870 QTAILQ_ENTRY(StatsDescriptors) next; 3871 } StatsDescriptors; 3872 3873 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = 3874 QTAILQ_HEAD_INITIALIZER(stats_descriptors); 3875 3876 /* 3877 * Return the descriptors for 'target', that either have already been read 3878 * or are retrieved from 'stats_fd'. 3879 */ 3880 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, 3881 Error **errp) 3882 { 3883 StatsDescriptors *descriptors; 3884 const char *ident; 3885 struct kvm_stats_desc *kvm_stats_desc; 3886 struct kvm_stats_header *kvm_stats_header; 3887 size_t size_desc; 3888 ssize_t ret; 3889 3890 ident = StatsTarget_str(target); 3891 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { 3892 if (g_str_equal(descriptors->ident, ident)) { 3893 return descriptors; 3894 } 3895 } 3896 3897 descriptors = g_new0(StatsDescriptors, 1); 3898 3899 /* Read stats header */ 3900 kvm_stats_header = &descriptors->kvm_stats_header; 3901 ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); 3902 if (ret != sizeof(*kvm_stats_header)) { 3903 error_setg(errp, "KVM stats: failed to read stats header: " 3904 "expected %zu actual %zu", 3905 sizeof(*kvm_stats_header), ret); 3906 g_free(descriptors); 3907 return NULL; 3908 } 3909 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3910 3911 /* Read stats descriptors */ 3912 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); 3913 ret = pread(stats_fd, kvm_stats_desc, 3914 size_desc * kvm_stats_header->num_desc, 3915 kvm_stats_header->desc_offset); 3916 3917 if (ret != size_desc * kvm_stats_header->num_desc) { 3918 error_setg(errp, "KVM stats: failed to read stats descriptors: " 3919 "expected %zu actual %zu", 3920 size_desc * kvm_stats_header->num_desc, ret); 3921 g_free(descriptors); 3922 g_free(kvm_stats_desc); 3923 return NULL; 3924 } 3925 descriptors->kvm_stats_desc = kvm_stats_desc; 3926 descriptors->ident = ident; 3927 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); 3928 return descriptors; 3929 } 3930 3931 static void query_stats(StatsResultList **result, StatsTarget target, 3932 strList *names, int stats_fd, CPUState *cpu, 3933 Error **errp) 3934 { 3935 struct kvm_stats_desc *kvm_stats_desc; 3936 struct kvm_stats_header *kvm_stats_header; 3937 StatsDescriptors *descriptors; 3938 g_autofree uint64_t *stats_data = NULL; 3939 struct kvm_stats_desc *pdesc; 3940 StatsList *stats_list = NULL; 3941 size_t size_desc, size_data = 0; 3942 ssize_t ret; 3943 int i; 3944 3945 descriptors = find_stats_descriptors(target, stats_fd, errp); 3946 if (!descriptors) { 3947 return; 3948 } 3949 3950 kvm_stats_header = &descriptors->kvm_stats_header; 3951 kvm_stats_desc = descriptors->kvm_stats_desc; 3952 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 3953 3954 /* Tally the total data size; read schema data */ 3955 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3956 pdesc = (void *)kvm_stats_desc + i * size_desc; 3957 size_data += pdesc->size * sizeof(*stats_data); 3958 } 3959 3960 stats_data = g_malloc0(size_data); 3961 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); 3962 3963 if (ret != size_data) { 3964 error_setg(errp, "KVM stats: failed to read data: " 3965 "expected %zu actual %zu", size_data, ret); 3966 return; 3967 } 3968 3969 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 3970 uint64_t *stats; 3971 pdesc = (void *)kvm_stats_desc + i * size_desc; 3972 3973 /* Add entry to the list */ 3974 stats = (void *)stats_data + pdesc->offset; 3975 if (!apply_str_list_filter(pdesc->name, names)) { 3976 continue; 3977 } 3978 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); 3979 } 3980 3981 if (!stats_list) { 3982 return; 3983 } 3984 3985 switch (target) { 3986 case STATS_TARGET_VM: 3987 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); 3988 break; 3989 case STATS_TARGET_VCPU: 3990 add_stats_entry(result, STATS_PROVIDER_KVM, 3991 cpu->parent_obj.canonical_path, 3992 stats_list); 3993 break; 3994 default: 3995 g_assert_not_reached(); 3996 } 3997 } 3998 3999 static void query_stats_schema(StatsSchemaList **result, StatsTarget target, 4000 int stats_fd, Error **errp) 4001 { 4002 struct kvm_stats_desc *kvm_stats_desc; 4003 struct kvm_stats_header *kvm_stats_header; 4004 StatsDescriptors *descriptors; 4005 struct kvm_stats_desc *pdesc; 4006 StatsSchemaValueList *stats_list = NULL; 4007 size_t size_desc; 4008 int i; 4009 4010 descriptors = find_stats_descriptors(target, stats_fd, errp); 4011 if (!descriptors) { 4012 return; 4013 } 4014 4015 kvm_stats_header = &descriptors->kvm_stats_header; 4016 kvm_stats_desc = descriptors->kvm_stats_desc; 4017 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; 4018 4019 /* Tally the total data size; read schema data */ 4020 for (i = 0; i < kvm_stats_header->num_desc; ++i) { 4021 pdesc = (void *)kvm_stats_desc + i * size_desc; 4022 stats_list = add_kvmschema_entry(pdesc, stats_list, errp); 4023 } 4024 4025 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); 4026 } 4027 4028 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4029 { 4030 int stats_fd = cpu->kvm_vcpu_stats_fd; 4031 Error *local_err = NULL; 4032 4033 if (stats_fd == -1) { 4034 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4035 error_propagate(kvm_stats_args->errp, local_err); 4036 return; 4037 } 4038 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, 4039 kvm_stats_args->names, stats_fd, cpu, 4040 kvm_stats_args->errp); 4041 } 4042 4043 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) 4044 { 4045 int stats_fd = cpu->kvm_vcpu_stats_fd; 4046 Error *local_err = NULL; 4047 4048 if (stats_fd == -1) { 4049 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); 4050 error_propagate(kvm_stats_args->errp, local_err); 4051 return; 4052 } 4053 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, 4054 kvm_stats_args->errp); 4055 } 4056 4057 static void query_stats_cb(StatsResultList **result, StatsTarget target, 4058 strList *names, strList *targets, Error **errp) 4059 { 4060 KVMState *s = kvm_state; 4061 CPUState *cpu; 4062 int stats_fd; 4063 4064 switch (target) { 4065 case STATS_TARGET_VM: 4066 { 4067 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4068 if (stats_fd == -1) { 4069 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4070 return; 4071 } 4072 query_stats(result, target, names, stats_fd, NULL, errp); 4073 close(stats_fd); 4074 break; 4075 } 4076 case STATS_TARGET_VCPU: 4077 { 4078 StatsArgs stats_args; 4079 stats_args.result.stats = result; 4080 stats_args.names = names; 4081 stats_args.errp = errp; 4082 CPU_FOREACH(cpu) { 4083 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { 4084 continue; 4085 } 4086 query_stats_vcpu(cpu, &stats_args); 4087 } 4088 break; 4089 } 4090 default: 4091 break; 4092 } 4093 } 4094 4095 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) 4096 { 4097 StatsArgs stats_args; 4098 KVMState *s = kvm_state; 4099 int stats_fd; 4100 4101 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); 4102 if (stats_fd == -1) { 4103 error_setg_errno(errp, errno, "KVM stats: ioctl failed"); 4104 return; 4105 } 4106 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); 4107 close(stats_fd); 4108 4109 if (first_cpu) { 4110 stats_args.result.schema = result; 4111 stats_args.errp = errp; 4112 query_stats_schema_vcpu(first_cpu, &stats_args); 4113 } 4114 } 4115