xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 5d9ec1f4c78ed25720b4fd01ddcddb00db50fa6c)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 //#define DEBUG_KVM
73 
74 #ifdef DEBUG_KVM
75 #define DPRINTF(fmt, ...) \
76     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...) \
79     do { } while (0)
80 #endif
81 
82 struct KVMParkedVcpu {
83     unsigned long vcpu_id;
84     int kvm_fd;
85     QLIST_ENTRY(KVMParkedVcpu) node;
86 };
87 
88 KVMState *kvm_state;
89 bool kvm_kernel_irqchip;
90 bool kvm_split_irqchip;
91 bool kvm_async_interrupts_allowed;
92 bool kvm_halt_in_kernel_allowed;
93 bool kvm_eventfds_allowed;
94 bool kvm_resamplefds_allowed;
95 bool kvm_msi_via_irqfd_allowed;
96 bool kvm_gsi_routing_allowed;
97 bool kvm_gsi_direct_mapping;
98 bool kvm_allowed;
99 bool kvm_readonly_mem_allowed;
100 bool kvm_vm_attributes_allowed;
101 bool kvm_ioeventfd_any_length_allowed;
102 bool kvm_msi_use_devid;
103 bool kvm_has_guest_debug;
104 static int kvm_sstep_flags;
105 static bool kvm_immediate_exit;
106 static hwaddr kvm_max_slot_size = ~0;
107 
108 static const KVMCapabilityInfo kvm_required_capabilites[] = {
109     KVM_CAP_INFO(USER_MEMORY),
110     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
111     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
112     KVM_CAP_INFO(INTERNAL_ERROR_DATA),
113     KVM_CAP_LAST_INFO
114 };
115 
116 static NotifierList kvm_irqchip_change_notifiers =
117     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
118 
119 struct KVMResampleFd {
120     int gsi;
121     EventNotifier *resample_event;
122     QLIST_ENTRY(KVMResampleFd) node;
123 };
124 typedef struct KVMResampleFd KVMResampleFd;
125 
126 /*
127  * Only used with split irqchip where we need to do the resample fd
128  * kick for the kernel from userspace.
129  */
130 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
131     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
132 
133 static QemuMutex kml_slots_lock;
134 
135 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
136 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
137 
138 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
139 
140 static inline void kvm_resample_fd_remove(int gsi)
141 {
142     KVMResampleFd *rfd;
143 
144     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
145         if (rfd->gsi == gsi) {
146             QLIST_REMOVE(rfd, node);
147             g_free(rfd);
148             break;
149         }
150     }
151 }
152 
153 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
154 {
155     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
156 
157     rfd->gsi = gsi;
158     rfd->resample_event = event;
159 
160     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
161 }
162 
163 void kvm_resample_fd_notify(int gsi)
164 {
165     KVMResampleFd *rfd;
166 
167     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
168         if (rfd->gsi == gsi) {
169             event_notifier_set(rfd->resample_event);
170             trace_kvm_resample_fd_notify(gsi);
171             return;
172         }
173     }
174 }
175 
176 unsigned int kvm_get_max_memslots(void)
177 {
178     KVMState *s = KVM_STATE(current_accel());
179 
180     return s->nr_slots;
181 }
182 
183 unsigned int kvm_get_free_memslots(void)
184 {
185     unsigned int used_slots = 0;
186     KVMState *s = kvm_state;
187     int i;
188 
189     kvm_slots_lock();
190     for (i = 0; i < s->nr_as; i++) {
191         if (!s->as[i].ml) {
192             continue;
193         }
194         used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
195     }
196     kvm_slots_unlock();
197 
198     return s->nr_slots - used_slots;
199 }
200 
201 /* Called with KVMMemoryListener.slots_lock held */
202 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
203 {
204     KVMState *s = kvm_state;
205     int i;
206 
207     for (i = 0; i < s->nr_slots; i++) {
208         if (kml->slots[i].memory_size == 0) {
209             return &kml->slots[i];
210         }
211     }
212 
213     return NULL;
214 }
215 
216 /* Called with KVMMemoryListener.slots_lock held */
217 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
218 {
219     KVMSlot *slot = kvm_get_free_slot(kml);
220 
221     if (slot) {
222         return slot;
223     }
224 
225     fprintf(stderr, "%s: no free slot available\n", __func__);
226     abort();
227 }
228 
229 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
230                                          hwaddr start_addr,
231                                          hwaddr size)
232 {
233     KVMState *s = kvm_state;
234     int i;
235 
236     for (i = 0; i < s->nr_slots; i++) {
237         KVMSlot *mem = &kml->slots[i];
238 
239         if (start_addr == mem->start_addr && size == mem->memory_size) {
240             return mem;
241         }
242     }
243 
244     return NULL;
245 }
246 
247 /*
248  * Calculate and align the start address and the size of the section.
249  * Return the size. If the size is 0, the aligned section is empty.
250  */
251 static hwaddr kvm_align_section(MemoryRegionSection *section,
252                                 hwaddr *start)
253 {
254     hwaddr size = int128_get64(section->size);
255     hwaddr delta, aligned;
256 
257     /* kvm works in page size chunks, but the function may be called
258        with sub-page size and unaligned start address. Pad the start
259        address to next and truncate size to previous page boundary. */
260     aligned = ROUND_UP(section->offset_within_address_space,
261                        qemu_real_host_page_size());
262     delta = aligned - section->offset_within_address_space;
263     *start = aligned;
264     if (delta > size) {
265         return 0;
266     }
267 
268     return (size - delta) & qemu_real_host_page_mask();
269 }
270 
271 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
272                                        hwaddr *phys_addr)
273 {
274     KVMMemoryListener *kml = &s->memory_listener;
275     int i, ret = 0;
276 
277     kvm_slots_lock();
278     for (i = 0; i < s->nr_slots; i++) {
279         KVMSlot *mem = &kml->slots[i];
280 
281         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
282             *phys_addr = mem->start_addr + (ram - mem->ram);
283             ret = 1;
284             break;
285         }
286     }
287     kvm_slots_unlock();
288 
289     return ret;
290 }
291 
292 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
293 {
294     KVMState *s = kvm_state;
295     struct kvm_userspace_memory_region mem;
296     int ret;
297 
298     mem.slot = slot->slot | (kml->as_id << 16);
299     mem.guest_phys_addr = slot->start_addr;
300     mem.userspace_addr = (unsigned long)slot->ram;
301     mem.flags = slot->flags;
302 
303     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
304         /* Set the slot size to 0 before setting the slot to the desired
305          * value. This is needed based on KVM commit 75d61fbc. */
306         mem.memory_size = 0;
307         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
308         if (ret < 0) {
309             goto err;
310         }
311     }
312     mem.memory_size = slot->memory_size;
313     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
314     slot->old_flags = mem.flags;
315 err:
316     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
317                               mem.memory_size, mem.userspace_addr, ret);
318     if (ret < 0) {
319         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
320                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
321                      __func__, mem.slot, slot->start_addr,
322                      (uint64_t)mem.memory_size, strerror(errno));
323     }
324     return ret;
325 }
326 
327 static int do_kvm_destroy_vcpu(CPUState *cpu)
328 {
329     KVMState *s = kvm_state;
330     long mmap_size;
331     struct KVMParkedVcpu *vcpu = NULL;
332     int ret = 0;
333 
334     DPRINTF("kvm_destroy_vcpu\n");
335 
336     ret = kvm_arch_destroy_vcpu(cpu);
337     if (ret < 0) {
338         goto err;
339     }
340 
341     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
342     if (mmap_size < 0) {
343         ret = mmap_size;
344         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
345         goto err;
346     }
347 
348     ret = munmap(cpu->kvm_run, mmap_size);
349     if (ret < 0) {
350         goto err;
351     }
352 
353     if (cpu->kvm_dirty_gfns) {
354         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
355         if (ret < 0) {
356             goto err;
357         }
358     }
359 
360     vcpu = g_malloc0(sizeof(*vcpu));
361     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
362     vcpu->kvm_fd = cpu->kvm_fd;
363     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
364 err:
365     return ret;
366 }
367 
368 void kvm_destroy_vcpu(CPUState *cpu)
369 {
370     if (do_kvm_destroy_vcpu(cpu) < 0) {
371         error_report("kvm_destroy_vcpu failed");
372         exit(EXIT_FAILURE);
373     }
374 }
375 
376 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
377 {
378     struct KVMParkedVcpu *cpu;
379 
380     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
381         if (cpu->vcpu_id == vcpu_id) {
382             int kvm_fd;
383 
384             QLIST_REMOVE(cpu, node);
385             kvm_fd = cpu->kvm_fd;
386             g_free(cpu);
387             return kvm_fd;
388         }
389     }
390 
391     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
392 }
393 
394 int kvm_init_vcpu(CPUState *cpu, Error **errp)
395 {
396     KVMState *s = kvm_state;
397     long mmap_size;
398     int ret;
399 
400     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
401 
402     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
403     if (ret < 0) {
404         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
405                          kvm_arch_vcpu_id(cpu));
406         goto err;
407     }
408 
409     cpu->kvm_fd = ret;
410     cpu->kvm_state = s;
411     cpu->vcpu_dirty = true;
412     cpu->dirty_pages = 0;
413     cpu->throttle_us_per_full = 0;
414 
415     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
416     if (mmap_size < 0) {
417         ret = mmap_size;
418         error_setg_errno(errp, -mmap_size,
419                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
420         goto err;
421     }
422 
423     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
424                         cpu->kvm_fd, 0);
425     if (cpu->kvm_run == MAP_FAILED) {
426         ret = -errno;
427         error_setg_errno(errp, ret,
428                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
429                          kvm_arch_vcpu_id(cpu));
430         goto err;
431     }
432 
433     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
434         s->coalesced_mmio_ring =
435             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
436     }
437 
438     if (s->kvm_dirty_ring_size) {
439         /* Use MAP_SHARED to share pages with the kernel */
440         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
441                                    PROT_READ | PROT_WRITE, MAP_SHARED,
442                                    cpu->kvm_fd,
443                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
444         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
445             ret = -errno;
446             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
447             goto err;
448         }
449     }
450 
451     ret = kvm_arch_init_vcpu(cpu);
452     if (ret < 0) {
453         error_setg_errno(errp, -ret,
454                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
455                          kvm_arch_vcpu_id(cpu));
456     }
457     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
458 
459 err:
460     return ret;
461 }
462 
463 /*
464  * dirty pages logging control
465  */
466 
467 static int kvm_mem_flags(MemoryRegion *mr)
468 {
469     bool readonly = mr->readonly || memory_region_is_romd(mr);
470     int flags = 0;
471 
472     if (memory_region_get_dirty_log_mask(mr) != 0) {
473         flags |= KVM_MEM_LOG_DIRTY_PAGES;
474     }
475     if (readonly && kvm_readonly_mem_allowed) {
476         flags |= KVM_MEM_READONLY;
477     }
478     return flags;
479 }
480 
481 /* Called with KVMMemoryListener.slots_lock held */
482 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
483                                  MemoryRegion *mr)
484 {
485     mem->flags = kvm_mem_flags(mr);
486 
487     /* If nothing changed effectively, no need to issue ioctl */
488     if (mem->flags == mem->old_flags) {
489         return 0;
490     }
491 
492     kvm_slot_init_dirty_bitmap(mem);
493     return kvm_set_user_memory_region(kml, mem, false);
494 }
495 
496 static int kvm_section_update_flags(KVMMemoryListener *kml,
497                                     MemoryRegionSection *section)
498 {
499     hwaddr start_addr, size, slot_size;
500     KVMSlot *mem;
501     int ret = 0;
502 
503     size = kvm_align_section(section, &start_addr);
504     if (!size) {
505         return 0;
506     }
507 
508     kvm_slots_lock();
509 
510     while (size && !ret) {
511         slot_size = MIN(kvm_max_slot_size, size);
512         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
513         if (!mem) {
514             /* We don't have a slot if we want to trap every access. */
515             goto out;
516         }
517 
518         ret = kvm_slot_update_flags(kml, mem, section->mr);
519         start_addr += slot_size;
520         size -= slot_size;
521     }
522 
523 out:
524     kvm_slots_unlock();
525     return ret;
526 }
527 
528 static void kvm_log_start(MemoryListener *listener,
529                           MemoryRegionSection *section,
530                           int old, int new)
531 {
532     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
533     int r;
534 
535     if (old != 0) {
536         return;
537     }
538 
539     r = kvm_section_update_flags(kml, section);
540     if (r < 0) {
541         abort();
542     }
543 }
544 
545 static void kvm_log_stop(MemoryListener *listener,
546                           MemoryRegionSection *section,
547                           int old, int new)
548 {
549     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
550     int r;
551 
552     if (new != 0) {
553         return;
554     }
555 
556     r = kvm_section_update_flags(kml, section);
557     if (r < 0) {
558         abort();
559     }
560 }
561 
562 /* get kvm's dirty pages bitmap and update qemu's */
563 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
564 {
565     ram_addr_t start = slot->ram_start_offset;
566     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
567 
568     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
569 }
570 
571 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
572 {
573     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
574 }
575 
576 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
577 
578 /* Allocate the dirty bitmap for a slot  */
579 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
580 {
581     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
582         return;
583     }
584 
585     /*
586      * XXX bad kernel interface alert
587      * For dirty bitmap, kernel allocates array of size aligned to
588      * bits-per-long.  But for case when the kernel is 64bits and
589      * the userspace is 32bits, userspace can't align to the same
590      * bits-per-long, since sizeof(long) is different between kernel
591      * and user space.  This way, userspace will provide buffer which
592      * may be 4 bytes less than the kernel will use, resulting in
593      * userspace memory corruption (which is not detectable by valgrind
594      * too, in most cases).
595      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
596      * a hope that sizeof(long) won't become >8 any time soon.
597      *
598      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
599      * And mem->memory_size is aligned to it (otherwise this mem can't
600      * be registered to KVM).
601      */
602     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
603                                         /*HOST_LONG_BITS*/ 64) / 8;
604     mem->dirty_bmap = g_malloc0(bitmap_size);
605     mem->dirty_bmap_size = bitmap_size;
606 }
607 
608 /*
609  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
610  * succeeded, false otherwise
611  */
612 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
613 {
614     struct kvm_dirty_log d = {};
615     int ret;
616 
617     d.dirty_bitmap = slot->dirty_bmap;
618     d.slot = slot->slot | (slot->as_id << 16);
619     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
620 
621     if (ret == -ENOENT) {
622         /* kernel does not have dirty bitmap in this slot */
623         ret = 0;
624     }
625     if (ret) {
626         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
627                           __func__, ret);
628     }
629     return ret == 0;
630 }
631 
632 /* Should be with all slots_lock held for the address spaces. */
633 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
634                                      uint32_t slot_id, uint64_t offset)
635 {
636     KVMMemoryListener *kml;
637     KVMSlot *mem;
638 
639     if (as_id >= s->nr_as) {
640         return;
641     }
642 
643     kml = s->as[as_id].ml;
644     mem = &kml->slots[slot_id];
645 
646     if (!mem->memory_size || offset >=
647         (mem->memory_size / qemu_real_host_page_size())) {
648         return;
649     }
650 
651     set_bit(offset, mem->dirty_bmap);
652 }
653 
654 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
655 {
656     /*
657      * Read the flags before the value.  Pairs with barrier in
658      * KVM's kvm_dirty_ring_push() function.
659      */
660     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
661 }
662 
663 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
664 {
665     /*
666      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
667      * sees the full content of the ring:
668      *
669      * CPU0                     CPU1                         CPU2
670      * ------------------------------------------------------------------------------
671      *                                                       fill gfn0
672      *                                                       store-rel flags for gfn0
673      * load-acq flags for gfn0
674      * store-rel RESET for gfn0
675      *                          ioctl(RESET_RINGS)
676      *                            load-acq flags for gfn0
677      *                            check if flags have RESET
678      *
679      * The synchronization goes from CPU2 to CPU0 to CPU1.
680      */
681     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
682 }
683 
684 /*
685  * Should be with all slots_lock held for the address spaces.  It returns the
686  * dirty page we've collected on this dirty ring.
687  */
688 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
689 {
690     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
691     uint32_t ring_size = s->kvm_dirty_ring_size;
692     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
693 
694     /*
695      * It's possible that we race with vcpu creation code where the vcpu is
696      * put onto the vcpus list but not yet initialized the dirty ring
697      * structures.  If so, skip it.
698      */
699     if (!cpu->created) {
700         return 0;
701     }
702 
703     assert(dirty_gfns && ring_size);
704     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
705 
706     while (true) {
707         cur = &dirty_gfns[fetch % ring_size];
708         if (!dirty_gfn_is_dirtied(cur)) {
709             break;
710         }
711         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
712                                  cur->offset);
713         dirty_gfn_set_collected(cur);
714         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
715         fetch++;
716         count++;
717     }
718     cpu->kvm_fetch_index = fetch;
719     cpu->dirty_pages += count;
720 
721     return count;
722 }
723 
724 /* Must be with slots_lock held */
725 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
726 {
727     int ret;
728     uint64_t total = 0;
729     int64_t stamp;
730 
731     stamp = get_clock();
732 
733     if (cpu) {
734         total = kvm_dirty_ring_reap_one(s, cpu);
735     } else {
736         CPU_FOREACH(cpu) {
737             total += kvm_dirty_ring_reap_one(s, cpu);
738         }
739     }
740 
741     if (total) {
742         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
743         assert(ret == total);
744     }
745 
746     stamp = get_clock() - stamp;
747 
748     if (total) {
749         trace_kvm_dirty_ring_reap(total, stamp / 1000);
750     }
751 
752     return total;
753 }
754 
755 /*
756  * Currently for simplicity, we must hold BQL before calling this.  We can
757  * consider to drop the BQL if we're clear with all the race conditions.
758  */
759 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
760 {
761     uint64_t total;
762 
763     /*
764      * We need to lock all kvm slots for all address spaces here,
765      * because:
766      *
767      * (1) We need to mark dirty for dirty bitmaps in multiple slots
768      *     and for tons of pages, so it's better to take the lock here
769      *     once rather than once per page.  And more importantly,
770      *
771      * (2) We must _NOT_ publish dirty bits to the other threads
772      *     (e.g., the migration thread) via the kvm memory slot dirty
773      *     bitmaps before correctly re-protect those dirtied pages.
774      *     Otherwise we can have potential risk of data corruption if
775      *     the page data is read in the other thread before we do
776      *     reset below.
777      */
778     kvm_slots_lock();
779     total = kvm_dirty_ring_reap_locked(s, cpu);
780     kvm_slots_unlock();
781 
782     return total;
783 }
784 
785 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
786 {
787     /* No need to do anything */
788 }
789 
790 /*
791  * Kick all vcpus out in a synchronized way.  When returned, we
792  * guarantee that every vcpu has been kicked and at least returned to
793  * userspace once.
794  */
795 static void kvm_cpu_synchronize_kick_all(void)
796 {
797     CPUState *cpu;
798 
799     CPU_FOREACH(cpu) {
800         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
801     }
802 }
803 
804 /*
805  * Flush all the existing dirty pages to the KVM slot buffers.  When
806  * this call returns, we guarantee that all the touched dirty pages
807  * before calling this function have been put into the per-kvmslot
808  * dirty bitmap.
809  *
810  * This function must be called with BQL held.
811  */
812 static void kvm_dirty_ring_flush(void)
813 {
814     trace_kvm_dirty_ring_flush(0);
815     /*
816      * The function needs to be serialized.  Since this function
817      * should always be with BQL held, serialization is guaranteed.
818      * However, let's be sure of it.
819      */
820     assert(qemu_mutex_iothread_locked());
821     /*
822      * First make sure to flush the hardware buffers by kicking all
823      * vcpus out in a synchronous way.
824      */
825     kvm_cpu_synchronize_kick_all();
826     kvm_dirty_ring_reap(kvm_state, NULL);
827     trace_kvm_dirty_ring_flush(1);
828 }
829 
830 /**
831  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
832  *
833  * This function will first try to fetch dirty bitmap from the kernel,
834  * and then updates qemu's dirty bitmap.
835  *
836  * NOTE: caller must be with kml->slots_lock held.
837  *
838  * @kml: the KVM memory listener object
839  * @section: the memory section to sync the dirty bitmap with
840  */
841 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
842                                            MemoryRegionSection *section)
843 {
844     KVMState *s = kvm_state;
845     KVMSlot *mem;
846     hwaddr start_addr, size;
847     hwaddr slot_size;
848 
849     size = kvm_align_section(section, &start_addr);
850     while (size) {
851         slot_size = MIN(kvm_max_slot_size, size);
852         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
853         if (!mem) {
854             /* We don't have a slot if we want to trap every access. */
855             return;
856         }
857         if (kvm_slot_get_dirty_log(s, mem)) {
858             kvm_slot_sync_dirty_pages(mem);
859         }
860         start_addr += slot_size;
861         size -= slot_size;
862     }
863 }
864 
865 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
866 #define KVM_CLEAR_LOG_SHIFT  6
867 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
868 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
869 
870 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
871                                   uint64_t size)
872 {
873     KVMState *s = kvm_state;
874     uint64_t end, bmap_start, start_delta, bmap_npages;
875     struct kvm_clear_dirty_log d;
876     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
877     int ret;
878 
879     /*
880      * We need to extend either the start or the size or both to
881      * satisfy the KVM interface requirement.  Firstly, do the start
882      * page alignment on 64 host pages
883      */
884     bmap_start = start & KVM_CLEAR_LOG_MASK;
885     start_delta = start - bmap_start;
886     bmap_start /= psize;
887 
888     /*
889      * The kernel interface has restriction on the size too, that either:
890      *
891      * (1) the size is 64 host pages aligned (just like the start), or
892      * (2) the size fills up until the end of the KVM memslot.
893      */
894     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
895         << KVM_CLEAR_LOG_SHIFT;
896     end = mem->memory_size / psize;
897     if (bmap_npages > end - bmap_start) {
898         bmap_npages = end - bmap_start;
899     }
900     start_delta /= psize;
901 
902     /*
903      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
904      * that we won't clear any unknown dirty bits otherwise we might
905      * accidentally clear some set bits which are not yet synced from
906      * the kernel into QEMU's bitmap, then we'll lose track of the
907      * guest modifications upon those pages (which can directly lead
908      * to guest data loss or panic after migration).
909      *
910      * Layout of the KVMSlot.dirty_bmap:
911      *
912      *                   |<-------- bmap_npages -----------..>|
913      *                                                     [1]
914      *                     start_delta         size
915      *  |----------------|-------------|------------------|------------|
916      *  ^                ^             ^                               ^
917      *  |                |             |                               |
918      * start          bmap_start     (start)                         end
919      * of memslot                                             of memslot
920      *
921      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
922      */
923 
924     assert(bmap_start % BITS_PER_LONG == 0);
925     /* We should never do log_clear before log_sync */
926     assert(mem->dirty_bmap);
927     if (start_delta || bmap_npages - size / psize) {
928         /* Slow path - we need to manipulate a temp bitmap */
929         bmap_clear = bitmap_new(bmap_npages);
930         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
931                                     bmap_start, start_delta + size / psize);
932         /*
933          * We need to fill the holes at start because that was not
934          * specified by the caller and we extended the bitmap only for
935          * 64 pages alignment
936          */
937         bitmap_clear(bmap_clear, 0, start_delta);
938         d.dirty_bitmap = bmap_clear;
939     } else {
940         /*
941          * Fast path - both start and size align well with BITS_PER_LONG
942          * (or the end of memory slot)
943          */
944         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
945     }
946 
947     d.first_page = bmap_start;
948     /* It should never overflow.  If it happens, say something */
949     assert(bmap_npages <= UINT32_MAX);
950     d.num_pages = bmap_npages;
951     d.slot = mem->slot | (as_id << 16);
952 
953     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
954     if (ret < 0 && ret != -ENOENT) {
955         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
956                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
957                      __func__, d.slot, (uint64_t)d.first_page,
958                      (uint32_t)d.num_pages, ret);
959     } else {
960         ret = 0;
961         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
962     }
963 
964     /*
965      * After we have updated the remote dirty bitmap, we update the
966      * cached bitmap as well for the memslot, then if another user
967      * clears the same region we know we shouldn't clear it again on
968      * the remote otherwise it's data loss as well.
969      */
970     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
971                  size / psize);
972     /* This handles the NULL case well */
973     g_free(bmap_clear);
974     return ret;
975 }
976 
977 
978 /**
979  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
980  *
981  * NOTE: this will be a no-op if we haven't enabled manual dirty log
982  * protection in the host kernel because in that case this operation
983  * will be done within log_sync().
984  *
985  * @kml:     the kvm memory listener
986  * @section: the memory range to clear dirty bitmap
987  */
988 static int kvm_physical_log_clear(KVMMemoryListener *kml,
989                                   MemoryRegionSection *section)
990 {
991     KVMState *s = kvm_state;
992     uint64_t start, size, offset, count;
993     KVMSlot *mem;
994     int ret = 0, i;
995 
996     if (!s->manual_dirty_log_protect) {
997         /* No need to do explicit clear */
998         return ret;
999     }
1000 
1001     start = section->offset_within_address_space;
1002     size = int128_get64(section->size);
1003 
1004     if (!size) {
1005         /* Nothing more we can do... */
1006         return ret;
1007     }
1008 
1009     kvm_slots_lock();
1010 
1011     for (i = 0; i < s->nr_slots; i++) {
1012         mem = &kml->slots[i];
1013         /* Discard slots that are empty or do not overlap the section */
1014         if (!mem->memory_size ||
1015             mem->start_addr > start + size - 1 ||
1016             start > mem->start_addr + mem->memory_size - 1) {
1017             continue;
1018         }
1019 
1020         if (start >= mem->start_addr) {
1021             /* The slot starts before section or is aligned to it.  */
1022             offset = start - mem->start_addr;
1023             count = MIN(mem->memory_size - offset, size);
1024         } else {
1025             /* The slot starts after section.  */
1026             offset = 0;
1027             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1028         }
1029         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1030         if (ret < 0) {
1031             break;
1032         }
1033     }
1034 
1035     kvm_slots_unlock();
1036 
1037     return ret;
1038 }
1039 
1040 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1041                                      MemoryRegionSection *secion,
1042                                      hwaddr start, hwaddr size)
1043 {
1044     KVMState *s = kvm_state;
1045 
1046     if (s->coalesced_mmio) {
1047         struct kvm_coalesced_mmio_zone zone;
1048 
1049         zone.addr = start;
1050         zone.size = size;
1051         zone.pad = 0;
1052 
1053         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1054     }
1055 }
1056 
1057 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1058                                        MemoryRegionSection *secion,
1059                                        hwaddr start, hwaddr size)
1060 {
1061     KVMState *s = kvm_state;
1062 
1063     if (s->coalesced_mmio) {
1064         struct kvm_coalesced_mmio_zone zone;
1065 
1066         zone.addr = start;
1067         zone.size = size;
1068         zone.pad = 0;
1069 
1070         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1071     }
1072 }
1073 
1074 static void kvm_coalesce_pio_add(MemoryListener *listener,
1075                                 MemoryRegionSection *section,
1076                                 hwaddr start, hwaddr size)
1077 {
1078     KVMState *s = kvm_state;
1079 
1080     if (s->coalesced_pio) {
1081         struct kvm_coalesced_mmio_zone zone;
1082 
1083         zone.addr = start;
1084         zone.size = size;
1085         zone.pio = 1;
1086 
1087         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1088     }
1089 }
1090 
1091 static void kvm_coalesce_pio_del(MemoryListener *listener,
1092                                 MemoryRegionSection *section,
1093                                 hwaddr start, hwaddr size)
1094 {
1095     KVMState *s = kvm_state;
1096 
1097     if (s->coalesced_pio) {
1098         struct kvm_coalesced_mmio_zone zone;
1099 
1100         zone.addr = start;
1101         zone.size = size;
1102         zone.pio = 1;
1103 
1104         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1105      }
1106 }
1107 
1108 static MemoryListener kvm_coalesced_pio_listener = {
1109     .name = "kvm-coalesced-pio",
1110     .coalesced_io_add = kvm_coalesce_pio_add,
1111     .coalesced_io_del = kvm_coalesce_pio_del,
1112     .priority = MEMORY_LISTENER_PRIORITY_MIN,
1113 };
1114 
1115 int kvm_check_extension(KVMState *s, unsigned int extension)
1116 {
1117     int ret;
1118 
1119     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1120     if (ret < 0) {
1121         ret = 0;
1122     }
1123 
1124     return ret;
1125 }
1126 
1127 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1128 {
1129     int ret;
1130 
1131     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1132     if (ret < 0) {
1133         /* VM wide version not implemented, use global one instead */
1134         ret = kvm_check_extension(s, extension);
1135     }
1136 
1137     return ret;
1138 }
1139 
1140 typedef struct HWPoisonPage {
1141     ram_addr_t ram_addr;
1142     QLIST_ENTRY(HWPoisonPage) list;
1143 } HWPoisonPage;
1144 
1145 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1146     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1147 
1148 static void kvm_unpoison_all(void *param)
1149 {
1150     HWPoisonPage *page, *next_page;
1151 
1152     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1153         QLIST_REMOVE(page, list);
1154         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1155         g_free(page);
1156     }
1157 }
1158 
1159 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1160 {
1161     HWPoisonPage *page;
1162 
1163     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1164         if (page->ram_addr == ram_addr) {
1165             return;
1166         }
1167     }
1168     page = g_new(HWPoisonPage, 1);
1169     page->ram_addr = ram_addr;
1170     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1171 }
1172 
1173 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1174 {
1175 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1176     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1177      * endianness, but the memory core hands them in target endianness.
1178      * For example, PPC is always treated as big-endian even if running
1179      * on KVM and on PPC64LE.  Correct here.
1180      */
1181     switch (size) {
1182     case 2:
1183         val = bswap16(val);
1184         break;
1185     case 4:
1186         val = bswap32(val);
1187         break;
1188     }
1189 #endif
1190     return val;
1191 }
1192 
1193 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1194                                   bool assign, uint32_t size, bool datamatch)
1195 {
1196     int ret;
1197     struct kvm_ioeventfd iofd = {
1198         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1199         .addr = addr,
1200         .len = size,
1201         .flags = 0,
1202         .fd = fd,
1203     };
1204 
1205     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1206                                  datamatch);
1207     if (!kvm_enabled()) {
1208         return -ENOSYS;
1209     }
1210 
1211     if (datamatch) {
1212         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1213     }
1214     if (!assign) {
1215         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1216     }
1217 
1218     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1219 
1220     if (ret < 0) {
1221         return -errno;
1222     }
1223 
1224     return 0;
1225 }
1226 
1227 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1228                                  bool assign, uint32_t size, bool datamatch)
1229 {
1230     struct kvm_ioeventfd kick = {
1231         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1232         .addr = addr,
1233         .flags = KVM_IOEVENTFD_FLAG_PIO,
1234         .len = size,
1235         .fd = fd,
1236     };
1237     int r;
1238     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1239     if (!kvm_enabled()) {
1240         return -ENOSYS;
1241     }
1242     if (datamatch) {
1243         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1244     }
1245     if (!assign) {
1246         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1247     }
1248     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1249     if (r < 0) {
1250         return r;
1251     }
1252     return 0;
1253 }
1254 
1255 
1256 static const KVMCapabilityInfo *
1257 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1258 {
1259     while (list->name) {
1260         if (!kvm_check_extension(s, list->value)) {
1261             return list;
1262         }
1263         list++;
1264     }
1265     return NULL;
1266 }
1267 
1268 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1269 {
1270     g_assert(
1271         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1272     );
1273     kvm_max_slot_size = max_slot_size;
1274 }
1275 
1276 /* Called with KVMMemoryListener.slots_lock held */
1277 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1278                              MemoryRegionSection *section, bool add)
1279 {
1280     KVMSlot *mem;
1281     int err;
1282     MemoryRegion *mr = section->mr;
1283     bool writable = !mr->readonly && !mr->rom_device;
1284     hwaddr start_addr, size, slot_size, mr_offset;
1285     ram_addr_t ram_start_offset;
1286     void *ram;
1287 
1288     if (!memory_region_is_ram(mr)) {
1289         if (writable || !kvm_readonly_mem_allowed) {
1290             return;
1291         } else if (!mr->romd_mode) {
1292             /* If the memory device is not in romd_mode, then we actually want
1293              * to remove the kvm memory slot so all accesses will trap. */
1294             add = false;
1295         }
1296     }
1297 
1298     size = kvm_align_section(section, &start_addr);
1299     if (!size) {
1300         return;
1301     }
1302 
1303     /* The offset of the kvmslot within the memory region */
1304     mr_offset = section->offset_within_region + start_addr -
1305         section->offset_within_address_space;
1306 
1307     /* use aligned delta to align the ram address and offset */
1308     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1309     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1310 
1311     if (!add) {
1312         do {
1313             slot_size = MIN(kvm_max_slot_size, size);
1314             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1315             if (!mem) {
1316                 return;
1317             }
1318             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1319                 /*
1320                  * NOTE: We should be aware of the fact that here we're only
1321                  * doing a best effort to sync dirty bits.  No matter whether
1322                  * we're using dirty log or dirty ring, we ignored two facts:
1323                  *
1324                  * (1) dirty bits can reside in hardware buffers (PML)
1325                  *
1326                  * (2) after we collected dirty bits here, pages can be dirtied
1327                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1328                  * remove the slot.
1329                  *
1330                  * Not easy.  Let's cross the fingers until it's fixed.
1331                  */
1332                 if (kvm_state->kvm_dirty_ring_size) {
1333                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1334                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1335                         kvm_slot_sync_dirty_pages(mem);
1336                         kvm_slot_get_dirty_log(kvm_state, mem);
1337                     }
1338                 } else {
1339                     kvm_slot_get_dirty_log(kvm_state, mem);
1340                 }
1341                 kvm_slot_sync_dirty_pages(mem);
1342             }
1343 
1344             /* unregister the slot */
1345             g_free(mem->dirty_bmap);
1346             mem->dirty_bmap = NULL;
1347             mem->memory_size = 0;
1348             mem->flags = 0;
1349             err = kvm_set_user_memory_region(kml, mem, false);
1350             if (err) {
1351                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1352                         __func__, strerror(-err));
1353                 abort();
1354             }
1355             start_addr += slot_size;
1356             size -= slot_size;
1357             kml->nr_used_slots--;
1358         } while (size);
1359         return;
1360     }
1361 
1362     /* register the new slot */
1363     do {
1364         slot_size = MIN(kvm_max_slot_size, size);
1365         mem = kvm_alloc_slot(kml);
1366         mem->as_id = kml->as_id;
1367         mem->memory_size = slot_size;
1368         mem->start_addr = start_addr;
1369         mem->ram_start_offset = ram_start_offset;
1370         mem->ram = ram;
1371         mem->flags = kvm_mem_flags(mr);
1372         kvm_slot_init_dirty_bitmap(mem);
1373         err = kvm_set_user_memory_region(kml, mem, true);
1374         if (err) {
1375             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1376                     strerror(-err));
1377             abort();
1378         }
1379         start_addr += slot_size;
1380         ram_start_offset += slot_size;
1381         ram += slot_size;
1382         size -= slot_size;
1383         kml->nr_used_slots++;
1384     } while (size);
1385 }
1386 
1387 static void *kvm_dirty_ring_reaper_thread(void *data)
1388 {
1389     KVMState *s = data;
1390     struct KVMDirtyRingReaper *r = &s->reaper;
1391 
1392     rcu_register_thread();
1393 
1394     trace_kvm_dirty_ring_reaper("init");
1395 
1396     while (true) {
1397         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1398         trace_kvm_dirty_ring_reaper("wait");
1399         /*
1400          * TODO: provide a smarter timeout rather than a constant?
1401          */
1402         sleep(1);
1403 
1404         /* keep sleeping so that dirtylimit not be interfered by reaper */
1405         if (dirtylimit_in_service()) {
1406             continue;
1407         }
1408 
1409         trace_kvm_dirty_ring_reaper("wakeup");
1410         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1411 
1412         qemu_mutex_lock_iothread();
1413         kvm_dirty_ring_reap(s, NULL);
1414         qemu_mutex_unlock_iothread();
1415 
1416         r->reaper_iteration++;
1417     }
1418 
1419     trace_kvm_dirty_ring_reaper("exit");
1420 
1421     rcu_unregister_thread();
1422 
1423     return NULL;
1424 }
1425 
1426 static void kvm_dirty_ring_reaper_init(KVMState *s)
1427 {
1428     struct KVMDirtyRingReaper *r = &s->reaper;
1429 
1430     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1431                        kvm_dirty_ring_reaper_thread,
1432                        s, QEMU_THREAD_JOINABLE);
1433 }
1434 
1435 static int kvm_dirty_ring_init(KVMState *s)
1436 {
1437     uint32_t ring_size = s->kvm_dirty_ring_size;
1438     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1439     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1440     int ret;
1441 
1442     s->kvm_dirty_ring_size = 0;
1443     s->kvm_dirty_ring_bytes = 0;
1444 
1445     /* Bail if the dirty ring size isn't specified */
1446     if (!ring_size) {
1447         return 0;
1448     }
1449 
1450     /*
1451      * Read the max supported pages. Fall back to dirty logging mode
1452      * if the dirty ring isn't supported.
1453      */
1454     ret = kvm_vm_check_extension(s, capability);
1455     if (ret <= 0) {
1456         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1457         ret = kvm_vm_check_extension(s, capability);
1458     }
1459 
1460     if (ret <= 0) {
1461         warn_report("KVM dirty ring not available, using bitmap method");
1462         return 0;
1463     }
1464 
1465     if (ring_bytes > ret) {
1466         error_report("KVM dirty ring size %" PRIu32 " too big "
1467                      "(maximum is %ld).  Please use a smaller value.",
1468                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1469         return -EINVAL;
1470     }
1471 
1472     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1473     if (ret) {
1474         error_report("Enabling of KVM dirty ring failed: %s. "
1475                      "Suggested minimum value is 1024.", strerror(-ret));
1476         return -EIO;
1477     }
1478 
1479     /* Enable the backup bitmap if it is supported */
1480     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1481     if (ret > 0) {
1482         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1483         if (ret) {
1484             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1485                          "%s. ", strerror(-ret));
1486             return -EIO;
1487         }
1488 
1489         s->kvm_dirty_ring_with_bitmap = true;
1490     }
1491 
1492     s->kvm_dirty_ring_size = ring_size;
1493     s->kvm_dirty_ring_bytes = ring_bytes;
1494 
1495     return 0;
1496 }
1497 
1498 static void kvm_region_add(MemoryListener *listener,
1499                            MemoryRegionSection *section)
1500 {
1501     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1502     KVMMemoryUpdate *update;
1503 
1504     update = g_new0(KVMMemoryUpdate, 1);
1505     update->section = *section;
1506 
1507     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1508 }
1509 
1510 static void kvm_region_del(MemoryListener *listener,
1511                            MemoryRegionSection *section)
1512 {
1513     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1514     KVMMemoryUpdate *update;
1515 
1516     update = g_new0(KVMMemoryUpdate, 1);
1517     update->section = *section;
1518 
1519     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1520 }
1521 
1522 static void kvm_region_commit(MemoryListener *listener)
1523 {
1524     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1525                                           listener);
1526     KVMMemoryUpdate *u1, *u2;
1527     bool need_inhibit = false;
1528 
1529     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1530         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1531         return;
1532     }
1533 
1534     /*
1535      * We have to be careful when regions to add overlap with ranges to remove.
1536      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1537      * is currently active.
1538      *
1539      * The lists are order by addresses, so it's easy to find overlaps.
1540      */
1541     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1542     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1543     while (u1 && u2) {
1544         Range r1, r2;
1545 
1546         range_init_nofail(&r1, u1->section.offset_within_address_space,
1547                           int128_get64(u1->section.size));
1548         range_init_nofail(&r2, u2->section.offset_within_address_space,
1549                           int128_get64(u2->section.size));
1550 
1551         if (range_overlaps_range(&r1, &r2)) {
1552             need_inhibit = true;
1553             break;
1554         }
1555         if (range_lob(&r1) < range_lob(&r2)) {
1556             u1 = QSIMPLEQ_NEXT(u1, next);
1557         } else {
1558             u2 = QSIMPLEQ_NEXT(u2, next);
1559         }
1560     }
1561 
1562     kvm_slots_lock();
1563     if (need_inhibit) {
1564         accel_ioctl_inhibit_begin();
1565     }
1566 
1567     /* Remove all memslots before adding the new ones. */
1568     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1569         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1570         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1571 
1572         kvm_set_phys_mem(kml, &u1->section, false);
1573         memory_region_unref(u1->section.mr);
1574 
1575         g_free(u1);
1576     }
1577     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1578         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1579         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1580 
1581         memory_region_ref(u1->section.mr);
1582         kvm_set_phys_mem(kml, &u1->section, true);
1583 
1584         g_free(u1);
1585     }
1586 
1587     if (need_inhibit) {
1588         accel_ioctl_inhibit_end();
1589     }
1590     kvm_slots_unlock();
1591 }
1592 
1593 static void kvm_log_sync(MemoryListener *listener,
1594                          MemoryRegionSection *section)
1595 {
1596     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1597 
1598     kvm_slots_lock();
1599     kvm_physical_sync_dirty_bitmap(kml, section);
1600     kvm_slots_unlock();
1601 }
1602 
1603 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1604 {
1605     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1606     KVMState *s = kvm_state;
1607     KVMSlot *mem;
1608     int i;
1609 
1610     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1611     kvm_dirty_ring_flush();
1612 
1613     /*
1614      * TODO: make this faster when nr_slots is big while there are
1615      * only a few used slots (small VMs).
1616      */
1617     kvm_slots_lock();
1618     for (i = 0; i < s->nr_slots; i++) {
1619         mem = &kml->slots[i];
1620         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1621             kvm_slot_sync_dirty_pages(mem);
1622 
1623             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1624                 kvm_slot_get_dirty_log(s, mem)) {
1625                 kvm_slot_sync_dirty_pages(mem);
1626             }
1627 
1628             /*
1629              * This is not needed by KVM_GET_DIRTY_LOG because the
1630              * ioctl will unconditionally overwrite the whole region.
1631              * However kvm dirty ring has no such side effect.
1632              */
1633             kvm_slot_reset_dirty_pages(mem);
1634         }
1635     }
1636     kvm_slots_unlock();
1637 }
1638 
1639 static void kvm_log_clear(MemoryListener *listener,
1640                           MemoryRegionSection *section)
1641 {
1642     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1643     int r;
1644 
1645     r = kvm_physical_log_clear(kml, section);
1646     if (r < 0) {
1647         error_report_once("%s: kvm log clear failed: mr=%s "
1648                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1649                           section->mr->name, section->offset_within_region,
1650                           int128_get64(section->size));
1651         abort();
1652     }
1653 }
1654 
1655 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1656                                   MemoryRegionSection *section,
1657                                   bool match_data, uint64_t data,
1658                                   EventNotifier *e)
1659 {
1660     int fd = event_notifier_get_fd(e);
1661     int r;
1662 
1663     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1664                                data, true, int128_get64(section->size),
1665                                match_data);
1666     if (r < 0) {
1667         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1668                 __func__, strerror(-r), -r);
1669         abort();
1670     }
1671 }
1672 
1673 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1674                                   MemoryRegionSection *section,
1675                                   bool match_data, uint64_t data,
1676                                   EventNotifier *e)
1677 {
1678     int fd = event_notifier_get_fd(e);
1679     int r;
1680 
1681     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1682                                data, false, int128_get64(section->size),
1683                                match_data);
1684     if (r < 0) {
1685         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1686                 __func__, strerror(-r), -r);
1687         abort();
1688     }
1689 }
1690 
1691 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1692                                  MemoryRegionSection *section,
1693                                  bool match_data, uint64_t data,
1694                                  EventNotifier *e)
1695 {
1696     int fd = event_notifier_get_fd(e);
1697     int r;
1698 
1699     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1700                               data, true, int128_get64(section->size),
1701                               match_data);
1702     if (r < 0) {
1703         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1704                 __func__, strerror(-r), -r);
1705         abort();
1706     }
1707 }
1708 
1709 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1710                                  MemoryRegionSection *section,
1711                                  bool match_data, uint64_t data,
1712                                  EventNotifier *e)
1713 
1714 {
1715     int fd = event_notifier_get_fd(e);
1716     int r;
1717 
1718     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1719                               data, false, int128_get64(section->size),
1720                               match_data);
1721     if (r < 0) {
1722         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1723                 __func__, strerror(-r), -r);
1724         abort();
1725     }
1726 }
1727 
1728 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1729                                   AddressSpace *as, int as_id, const char *name)
1730 {
1731     int i;
1732 
1733     kml->slots = g_new0(KVMSlot, s->nr_slots);
1734     kml->as_id = as_id;
1735 
1736     for (i = 0; i < s->nr_slots; i++) {
1737         kml->slots[i].slot = i;
1738     }
1739 
1740     QSIMPLEQ_INIT(&kml->transaction_add);
1741     QSIMPLEQ_INIT(&kml->transaction_del);
1742 
1743     kml->listener.region_add = kvm_region_add;
1744     kml->listener.region_del = kvm_region_del;
1745     kml->listener.commit = kvm_region_commit;
1746     kml->listener.log_start = kvm_log_start;
1747     kml->listener.log_stop = kvm_log_stop;
1748     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1749     kml->listener.name = name;
1750 
1751     if (s->kvm_dirty_ring_size) {
1752         kml->listener.log_sync_global = kvm_log_sync_global;
1753     } else {
1754         kml->listener.log_sync = kvm_log_sync;
1755         kml->listener.log_clear = kvm_log_clear;
1756     }
1757 
1758     memory_listener_register(&kml->listener, as);
1759 
1760     for (i = 0; i < s->nr_as; ++i) {
1761         if (!s->as[i].as) {
1762             s->as[i].as = as;
1763             s->as[i].ml = kml;
1764             break;
1765         }
1766     }
1767 }
1768 
1769 static MemoryListener kvm_io_listener = {
1770     .name = "kvm-io",
1771     .eventfd_add = kvm_io_ioeventfd_add,
1772     .eventfd_del = kvm_io_ioeventfd_del,
1773     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1774 };
1775 
1776 int kvm_set_irq(KVMState *s, int irq, int level)
1777 {
1778     struct kvm_irq_level event;
1779     int ret;
1780 
1781     assert(kvm_async_interrupts_enabled());
1782 
1783     event.level = level;
1784     event.irq = irq;
1785     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1786     if (ret < 0) {
1787         perror("kvm_set_irq");
1788         abort();
1789     }
1790 
1791     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1792 }
1793 
1794 #ifdef KVM_CAP_IRQ_ROUTING
1795 typedef struct KVMMSIRoute {
1796     struct kvm_irq_routing_entry kroute;
1797     QTAILQ_ENTRY(KVMMSIRoute) entry;
1798 } KVMMSIRoute;
1799 
1800 static void set_gsi(KVMState *s, unsigned int gsi)
1801 {
1802     set_bit(gsi, s->used_gsi_bitmap);
1803 }
1804 
1805 static void clear_gsi(KVMState *s, unsigned int gsi)
1806 {
1807     clear_bit(gsi, s->used_gsi_bitmap);
1808 }
1809 
1810 void kvm_init_irq_routing(KVMState *s)
1811 {
1812     int gsi_count;
1813 
1814     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1815     if (gsi_count > 0) {
1816         /* Round up so we can search ints using ffs */
1817         s->used_gsi_bitmap = bitmap_new(gsi_count);
1818         s->gsi_count = gsi_count;
1819     }
1820 
1821     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1822     s->nr_allocated_irq_routes = 0;
1823 
1824     kvm_arch_init_irq_routing(s);
1825 }
1826 
1827 void kvm_irqchip_commit_routes(KVMState *s)
1828 {
1829     int ret;
1830 
1831     if (kvm_gsi_direct_mapping()) {
1832         return;
1833     }
1834 
1835     if (!kvm_gsi_routing_enabled()) {
1836         return;
1837     }
1838 
1839     s->irq_routes->flags = 0;
1840     trace_kvm_irqchip_commit_routes();
1841     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1842     assert(ret == 0);
1843 }
1844 
1845 static void kvm_add_routing_entry(KVMState *s,
1846                                   struct kvm_irq_routing_entry *entry)
1847 {
1848     struct kvm_irq_routing_entry *new;
1849     int n, size;
1850 
1851     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1852         n = s->nr_allocated_irq_routes * 2;
1853         if (n < 64) {
1854             n = 64;
1855         }
1856         size = sizeof(struct kvm_irq_routing);
1857         size += n * sizeof(*new);
1858         s->irq_routes = g_realloc(s->irq_routes, size);
1859         s->nr_allocated_irq_routes = n;
1860     }
1861     n = s->irq_routes->nr++;
1862     new = &s->irq_routes->entries[n];
1863 
1864     *new = *entry;
1865 
1866     set_gsi(s, entry->gsi);
1867 }
1868 
1869 static int kvm_update_routing_entry(KVMState *s,
1870                                     struct kvm_irq_routing_entry *new_entry)
1871 {
1872     struct kvm_irq_routing_entry *entry;
1873     int n;
1874 
1875     for (n = 0; n < s->irq_routes->nr; n++) {
1876         entry = &s->irq_routes->entries[n];
1877         if (entry->gsi != new_entry->gsi) {
1878             continue;
1879         }
1880 
1881         if(!memcmp(entry, new_entry, sizeof *entry)) {
1882             return 0;
1883         }
1884 
1885         *entry = *new_entry;
1886 
1887         return 0;
1888     }
1889 
1890     return -ESRCH;
1891 }
1892 
1893 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1894 {
1895     struct kvm_irq_routing_entry e = {};
1896 
1897     assert(pin < s->gsi_count);
1898 
1899     e.gsi = irq;
1900     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1901     e.flags = 0;
1902     e.u.irqchip.irqchip = irqchip;
1903     e.u.irqchip.pin = pin;
1904     kvm_add_routing_entry(s, &e);
1905 }
1906 
1907 void kvm_irqchip_release_virq(KVMState *s, int virq)
1908 {
1909     struct kvm_irq_routing_entry *e;
1910     int i;
1911 
1912     if (kvm_gsi_direct_mapping()) {
1913         return;
1914     }
1915 
1916     for (i = 0; i < s->irq_routes->nr; i++) {
1917         e = &s->irq_routes->entries[i];
1918         if (e->gsi == virq) {
1919             s->irq_routes->nr--;
1920             *e = s->irq_routes->entries[s->irq_routes->nr];
1921         }
1922     }
1923     clear_gsi(s, virq);
1924     kvm_arch_release_virq_post(virq);
1925     trace_kvm_irqchip_release_virq(virq);
1926 }
1927 
1928 void kvm_irqchip_add_change_notifier(Notifier *n)
1929 {
1930     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1931 }
1932 
1933 void kvm_irqchip_remove_change_notifier(Notifier *n)
1934 {
1935     notifier_remove(n);
1936 }
1937 
1938 void kvm_irqchip_change_notify(void)
1939 {
1940     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1941 }
1942 
1943 static int kvm_irqchip_get_virq(KVMState *s)
1944 {
1945     int next_virq;
1946 
1947     /* Return the lowest unused GSI in the bitmap */
1948     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1949     if (next_virq >= s->gsi_count) {
1950         return -ENOSPC;
1951     } else {
1952         return next_virq;
1953     }
1954 }
1955 
1956 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1957 {
1958     struct kvm_msi msi;
1959 
1960     msi.address_lo = (uint32_t)msg.address;
1961     msi.address_hi = msg.address >> 32;
1962     msi.data = le32_to_cpu(msg.data);
1963     msi.flags = 0;
1964     memset(msi.pad, 0, sizeof(msi.pad));
1965 
1966     return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1967 }
1968 
1969 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1970 {
1971     struct kvm_irq_routing_entry kroute = {};
1972     int virq;
1973     KVMState *s = c->s;
1974     MSIMessage msg = {0, 0};
1975 
1976     if (pci_available && dev) {
1977         msg = pci_get_msi_message(dev, vector);
1978     }
1979 
1980     if (kvm_gsi_direct_mapping()) {
1981         return kvm_arch_msi_data_to_gsi(msg.data);
1982     }
1983 
1984     if (!kvm_gsi_routing_enabled()) {
1985         return -ENOSYS;
1986     }
1987 
1988     virq = kvm_irqchip_get_virq(s);
1989     if (virq < 0) {
1990         return virq;
1991     }
1992 
1993     kroute.gsi = virq;
1994     kroute.type = KVM_IRQ_ROUTING_MSI;
1995     kroute.flags = 0;
1996     kroute.u.msi.address_lo = (uint32_t)msg.address;
1997     kroute.u.msi.address_hi = msg.address >> 32;
1998     kroute.u.msi.data = le32_to_cpu(msg.data);
1999     if (pci_available && kvm_msi_devid_required()) {
2000         kroute.flags = KVM_MSI_VALID_DEVID;
2001         kroute.u.msi.devid = pci_requester_id(dev);
2002     }
2003     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2004         kvm_irqchip_release_virq(s, virq);
2005         return -EINVAL;
2006     }
2007 
2008     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2009                                     vector, virq);
2010 
2011     kvm_add_routing_entry(s, &kroute);
2012     kvm_arch_add_msi_route_post(&kroute, vector, dev);
2013     c->changes++;
2014 
2015     return virq;
2016 }
2017 
2018 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2019                                  PCIDevice *dev)
2020 {
2021     struct kvm_irq_routing_entry kroute = {};
2022 
2023     if (kvm_gsi_direct_mapping()) {
2024         return 0;
2025     }
2026 
2027     if (!kvm_irqchip_in_kernel()) {
2028         return -ENOSYS;
2029     }
2030 
2031     kroute.gsi = virq;
2032     kroute.type = KVM_IRQ_ROUTING_MSI;
2033     kroute.flags = 0;
2034     kroute.u.msi.address_lo = (uint32_t)msg.address;
2035     kroute.u.msi.address_hi = msg.address >> 32;
2036     kroute.u.msi.data = le32_to_cpu(msg.data);
2037     if (pci_available && kvm_msi_devid_required()) {
2038         kroute.flags = KVM_MSI_VALID_DEVID;
2039         kroute.u.msi.devid = pci_requester_id(dev);
2040     }
2041     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2042         return -EINVAL;
2043     }
2044 
2045     trace_kvm_irqchip_update_msi_route(virq);
2046 
2047     return kvm_update_routing_entry(s, &kroute);
2048 }
2049 
2050 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2051                                     EventNotifier *resample, int virq,
2052                                     bool assign)
2053 {
2054     int fd = event_notifier_get_fd(event);
2055     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2056 
2057     struct kvm_irqfd irqfd = {
2058         .fd = fd,
2059         .gsi = virq,
2060         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2061     };
2062 
2063     if (rfd != -1) {
2064         assert(assign);
2065         if (kvm_irqchip_is_split()) {
2066             /*
2067              * When the slow irqchip (e.g. IOAPIC) is in the
2068              * userspace, KVM kernel resamplefd will not work because
2069              * the EOI of the interrupt will be delivered to userspace
2070              * instead, so the KVM kernel resamplefd kick will be
2071              * skipped.  The userspace here mimics what the kernel
2072              * provides with resamplefd, remember the resamplefd and
2073              * kick it when we receive EOI of this IRQ.
2074              *
2075              * This is hackery because IOAPIC is mostly bypassed
2076              * (except EOI broadcasts) when irqfd is used.  However
2077              * this can bring much performance back for split irqchip
2078              * with INTx IRQs (for VFIO, this gives 93% perf of the
2079              * full fast path, which is 46% perf boost comparing to
2080              * the INTx slow path).
2081              */
2082             kvm_resample_fd_insert(virq, resample);
2083         } else {
2084             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2085             irqfd.resamplefd = rfd;
2086         }
2087     } else if (!assign) {
2088         if (kvm_irqchip_is_split()) {
2089             kvm_resample_fd_remove(virq);
2090         }
2091     }
2092 
2093     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2094 }
2095 
2096 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2097 {
2098     struct kvm_irq_routing_entry kroute = {};
2099     int virq;
2100 
2101     if (!kvm_gsi_routing_enabled()) {
2102         return -ENOSYS;
2103     }
2104 
2105     virq = kvm_irqchip_get_virq(s);
2106     if (virq < 0) {
2107         return virq;
2108     }
2109 
2110     kroute.gsi = virq;
2111     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2112     kroute.flags = 0;
2113     kroute.u.adapter.summary_addr = adapter->summary_addr;
2114     kroute.u.adapter.ind_addr = adapter->ind_addr;
2115     kroute.u.adapter.summary_offset = adapter->summary_offset;
2116     kroute.u.adapter.ind_offset = adapter->ind_offset;
2117     kroute.u.adapter.adapter_id = adapter->adapter_id;
2118 
2119     kvm_add_routing_entry(s, &kroute);
2120 
2121     return virq;
2122 }
2123 
2124 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2125 {
2126     struct kvm_irq_routing_entry kroute = {};
2127     int virq;
2128 
2129     if (!kvm_gsi_routing_enabled()) {
2130         return -ENOSYS;
2131     }
2132     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2133         return -ENOSYS;
2134     }
2135     virq = kvm_irqchip_get_virq(s);
2136     if (virq < 0) {
2137         return virq;
2138     }
2139 
2140     kroute.gsi = virq;
2141     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2142     kroute.flags = 0;
2143     kroute.u.hv_sint.vcpu = vcpu;
2144     kroute.u.hv_sint.sint = sint;
2145 
2146     kvm_add_routing_entry(s, &kroute);
2147     kvm_irqchip_commit_routes(s);
2148 
2149     return virq;
2150 }
2151 
2152 #else /* !KVM_CAP_IRQ_ROUTING */
2153 
2154 void kvm_init_irq_routing(KVMState *s)
2155 {
2156 }
2157 
2158 void kvm_irqchip_release_virq(KVMState *s, int virq)
2159 {
2160 }
2161 
2162 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2163 {
2164     abort();
2165 }
2166 
2167 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2168 {
2169     return -ENOSYS;
2170 }
2171 
2172 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2173 {
2174     return -ENOSYS;
2175 }
2176 
2177 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2178 {
2179     return -ENOSYS;
2180 }
2181 
2182 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2183                                     EventNotifier *resample, int virq,
2184                                     bool assign)
2185 {
2186     abort();
2187 }
2188 
2189 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2190 {
2191     return -ENOSYS;
2192 }
2193 #endif /* !KVM_CAP_IRQ_ROUTING */
2194 
2195 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2196                                        EventNotifier *rn, int virq)
2197 {
2198     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2199 }
2200 
2201 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2202                                           int virq)
2203 {
2204     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2205 }
2206 
2207 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2208                                    EventNotifier *rn, qemu_irq irq)
2209 {
2210     gpointer key, gsi;
2211     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2212 
2213     if (!found) {
2214         return -ENXIO;
2215     }
2216     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2217 }
2218 
2219 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2220                                       qemu_irq irq)
2221 {
2222     gpointer key, gsi;
2223     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2224 
2225     if (!found) {
2226         return -ENXIO;
2227     }
2228     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2229 }
2230 
2231 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2232 {
2233     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2234 }
2235 
2236 static void kvm_irqchip_create(KVMState *s)
2237 {
2238     int ret;
2239 
2240     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2241     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2242         ;
2243     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2244         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2245         if (ret < 0) {
2246             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2247             exit(1);
2248         }
2249     } else {
2250         return;
2251     }
2252 
2253     if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2254         fprintf(stderr, "kvm: irqfd not implemented\n");
2255         exit(1);
2256     }
2257 
2258     /* First probe and see if there's a arch-specific hook to create the
2259      * in-kernel irqchip for us */
2260     ret = kvm_arch_irqchip_create(s);
2261     if (ret == 0) {
2262         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2263             error_report("Split IRQ chip mode not supported.");
2264             exit(1);
2265         } else {
2266             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2267         }
2268     }
2269     if (ret < 0) {
2270         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2271         exit(1);
2272     }
2273 
2274     kvm_kernel_irqchip = true;
2275     /* If we have an in-kernel IRQ chip then we must have asynchronous
2276      * interrupt delivery (though the reverse is not necessarily true)
2277      */
2278     kvm_async_interrupts_allowed = true;
2279     kvm_halt_in_kernel_allowed = true;
2280 
2281     kvm_init_irq_routing(s);
2282 
2283     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2284 }
2285 
2286 /* Find number of supported CPUs using the recommended
2287  * procedure from the kernel API documentation to cope with
2288  * older kernels that may be missing capabilities.
2289  */
2290 static int kvm_recommended_vcpus(KVMState *s)
2291 {
2292     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2293     return (ret) ? ret : 4;
2294 }
2295 
2296 static int kvm_max_vcpus(KVMState *s)
2297 {
2298     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2299     return (ret) ? ret : kvm_recommended_vcpus(s);
2300 }
2301 
2302 static int kvm_max_vcpu_id(KVMState *s)
2303 {
2304     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2305     return (ret) ? ret : kvm_max_vcpus(s);
2306 }
2307 
2308 bool kvm_vcpu_id_is_valid(int vcpu_id)
2309 {
2310     KVMState *s = KVM_STATE(current_accel());
2311     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2312 }
2313 
2314 bool kvm_dirty_ring_enabled(void)
2315 {
2316     return kvm_state->kvm_dirty_ring_size ? true : false;
2317 }
2318 
2319 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2320                            strList *names, strList *targets, Error **errp);
2321 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2322 
2323 uint32_t kvm_dirty_ring_size(void)
2324 {
2325     return kvm_state->kvm_dirty_ring_size;
2326 }
2327 
2328 static int kvm_init(MachineState *ms)
2329 {
2330     MachineClass *mc = MACHINE_GET_CLASS(ms);
2331     static const char upgrade_note[] =
2332         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2333         "(see http://sourceforge.net/projects/kvm).\n";
2334     const struct {
2335         const char *name;
2336         int num;
2337     } num_cpus[] = {
2338         { "SMP",          ms->smp.cpus },
2339         { "hotpluggable", ms->smp.max_cpus },
2340         { /* end of list */ }
2341     }, *nc = num_cpus;
2342     int soft_vcpus_limit, hard_vcpus_limit;
2343     KVMState *s;
2344     const KVMCapabilityInfo *missing_cap;
2345     int ret;
2346     int type;
2347     uint64_t dirty_log_manual_caps;
2348 
2349     qemu_mutex_init(&kml_slots_lock);
2350 
2351     s = KVM_STATE(ms->accelerator);
2352 
2353     /*
2354      * On systems where the kernel can support different base page
2355      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2356      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2357      * page size for the system though.
2358      */
2359     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2360 
2361     s->sigmask_len = 8;
2362     accel_blocker_init();
2363 
2364 #ifdef KVM_CAP_SET_GUEST_DEBUG
2365     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2366 #endif
2367     QLIST_INIT(&s->kvm_parked_vcpus);
2368     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2369     if (s->fd == -1) {
2370         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2371         ret = -errno;
2372         goto err;
2373     }
2374 
2375     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2376     if (ret < KVM_API_VERSION) {
2377         if (ret >= 0) {
2378             ret = -EINVAL;
2379         }
2380         fprintf(stderr, "kvm version too old\n");
2381         goto err;
2382     }
2383 
2384     if (ret > KVM_API_VERSION) {
2385         ret = -EINVAL;
2386         fprintf(stderr, "kvm version not supported\n");
2387         goto err;
2388     }
2389 
2390     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2391     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2392 
2393     /* If unspecified, use the default value */
2394     if (!s->nr_slots) {
2395         s->nr_slots = 32;
2396     }
2397 
2398     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2399     if (s->nr_as <= 1) {
2400         s->nr_as = 1;
2401     }
2402     s->as = g_new0(struct KVMAs, s->nr_as);
2403 
2404     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2405         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2406                                                             "kvm-type",
2407                                                             &error_abort);
2408         type = mc->kvm_type(ms, kvm_type);
2409     } else if (mc->kvm_type) {
2410         type = mc->kvm_type(ms, NULL);
2411     } else {
2412         type = kvm_arch_get_default_type(ms);
2413     }
2414 
2415     if (type < 0) {
2416         ret = -EINVAL;
2417         goto err;
2418     }
2419 
2420     do {
2421         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2422     } while (ret == -EINTR);
2423 
2424     if (ret < 0) {
2425         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2426                 strerror(-ret));
2427 
2428 #ifdef TARGET_S390X
2429         if (ret == -EINVAL) {
2430             fprintf(stderr,
2431                     "Host kernel setup problem detected. Please verify:\n");
2432             fprintf(stderr, "- for kernels supporting the switch_amode or"
2433                     " user_mode parameters, whether\n");
2434             fprintf(stderr,
2435                     "  user space is running in primary address space\n");
2436             fprintf(stderr,
2437                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2438                     "whether it is enabled\n");
2439         }
2440 #elif defined(TARGET_PPC)
2441         if (ret == -EINVAL) {
2442             fprintf(stderr,
2443                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2444                     (type == 2) ? "pr" : "hv");
2445         }
2446 #endif
2447         goto err;
2448     }
2449 
2450     s->vmfd = ret;
2451 
2452     /* check the vcpu limits */
2453     soft_vcpus_limit = kvm_recommended_vcpus(s);
2454     hard_vcpus_limit = kvm_max_vcpus(s);
2455 
2456     while (nc->name) {
2457         if (nc->num > soft_vcpus_limit) {
2458             warn_report("Number of %s cpus requested (%d) exceeds "
2459                         "the recommended cpus supported by KVM (%d)",
2460                         nc->name, nc->num, soft_vcpus_limit);
2461 
2462             if (nc->num > hard_vcpus_limit) {
2463                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2464                         "the maximum cpus supported by KVM (%d)\n",
2465                         nc->name, nc->num, hard_vcpus_limit);
2466                 exit(1);
2467             }
2468         }
2469         nc++;
2470     }
2471 
2472     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2473     if (!missing_cap) {
2474         missing_cap =
2475             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2476     }
2477     if (missing_cap) {
2478         ret = -EINVAL;
2479         fprintf(stderr, "kvm does not support %s\n%s",
2480                 missing_cap->name, upgrade_note);
2481         goto err;
2482     }
2483 
2484     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2485     s->coalesced_pio = s->coalesced_mmio &&
2486                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2487 
2488     /*
2489      * Enable KVM dirty ring if supported, otherwise fall back to
2490      * dirty logging mode
2491      */
2492     ret = kvm_dirty_ring_init(s);
2493     if (ret < 0) {
2494         goto err;
2495     }
2496 
2497     /*
2498      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2499      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2500      * page is wr-protected initially, which is against how kvm dirty ring is
2501      * usage - kvm dirty ring requires all pages are wr-protected at the very
2502      * beginning.  Enabling this feature for dirty ring causes data corruption.
2503      *
2504      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2505      * we may expect a higher stall time when starting the migration.  In the
2506      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2507      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2508      * guest pages.
2509      */
2510     if (!s->kvm_dirty_ring_size) {
2511         dirty_log_manual_caps =
2512             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2513         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2514                                   KVM_DIRTY_LOG_INITIALLY_SET);
2515         s->manual_dirty_log_protect = dirty_log_manual_caps;
2516         if (dirty_log_manual_caps) {
2517             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2518                                     dirty_log_manual_caps);
2519             if (ret) {
2520                 warn_report("Trying to enable capability %"PRIu64" of "
2521                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2522                             "Falling back to the legacy mode. ",
2523                             dirty_log_manual_caps);
2524                 s->manual_dirty_log_protect = 0;
2525             }
2526         }
2527     }
2528 
2529 #ifdef KVM_CAP_VCPU_EVENTS
2530     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2531 #endif
2532 
2533     s->robust_singlestep =
2534         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2535 
2536 #ifdef KVM_CAP_DEBUGREGS
2537     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2538 #endif
2539 
2540     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2541 
2542     s->irq_set_ioctl = KVM_IRQ_LINE;
2543     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2544         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2545     }
2546 
2547     kvm_readonly_mem_allowed =
2548         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2549 
2550     kvm_eventfds_allowed =
2551         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2552 
2553     kvm_resamplefds_allowed =
2554         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2555 
2556     kvm_vm_attributes_allowed =
2557         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2558 
2559     kvm_ioeventfd_any_length_allowed =
2560         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2561 
2562 #ifdef KVM_CAP_SET_GUEST_DEBUG
2563     kvm_has_guest_debug =
2564         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2565 #endif
2566 
2567     kvm_sstep_flags = 0;
2568     if (kvm_has_guest_debug) {
2569         kvm_sstep_flags = SSTEP_ENABLE;
2570 
2571 #if defined KVM_CAP_SET_GUEST_DEBUG2
2572         int guest_debug_flags =
2573             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2574 
2575         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2576             kvm_sstep_flags |= SSTEP_NOIRQ;
2577         }
2578 #endif
2579     }
2580 
2581     kvm_state = s;
2582 
2583     ret = kvm_arch_init(ms, s);
2584     if (ret < 0) {
2585         goto err;
2586     }
2587 
2588     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2589         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2590     }
2591 
2592     qemu_register_reset(kvm_unpoison_all, NULL);
2593 
2594     if (s->kernel_irqchip_allowed) {
2595         kvm_irqchip_create(s);
2596     }
2597 
2598     if (kvm_eventfds_allowed) {
2599         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2600         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2601     }
2602     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2603     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2604 
2605     kvm_memory_listener_register(s, &s->memory_listener,
2606                                  &address_space_memory, 0, "kvm-memory");
2607     if (kvm_eventfds_allowed) {
2608         memory_listener_register(&kvm_io_listener,
2609                                  &address_space_io);
2610     }
2611     memory_listener_register(&kvm_coalesced_pio_listener,
2612                              &address_space_io);
2613 
2614     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2615     if (!s->sync_mmu) {
2616         ret = ram_block_discard_disable(true);
2617         assert(!ret);
2618     }
2619 
2620     if (s->kvm_dirty_ring_size) {
2621         kvm_dirty_ring_reaper_init(s);
2622     }
2623 
2624     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2625         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2626                             query_stats_schemas_cb);
2627     }
2628 
2629     return 0;
2630 
2631 err:
2632     assert(ret < 0);
2633     if (s->vmfd >= 0) {
2634         close(s->vmfd);
2635     }
2636     if (s->fd != -1) {
2637         close(s->fd);
2638     }
2639     g_free(s->as);
2640     g_free(s->memory_listener.slots);
2641 
2642     return ret;
2643 }
2644 
2645 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2646 {
2647     s->sigmask_len = sigmask_len;
2648 }
2649 
2650 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2651                           int size, uint32_t count)
2652 {
2653     int i;
2654     uint8_t *ptr = data;
2655 
2656     for (i = 0; i < count; i++) {
2657         address_space_rw(&address_space_io, port, attrs,
2658                          ptr, size,
2659                          direction == KVM_EXIT_IO_OUT);
2660         ptr += size;
2661     }
2662 }
2663 
2664 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2665 {
2666     int i;
2667 
2668     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2669             run->internal.suberror);
2670 
2671     for (i = 0; i < run->internal.ndata; ++i) {
2672         fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2673                 i, (uint64_t)run->internal.data[i]);
2674     }
2675     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2676         fprintf(stderr, "emulation failure\n");
2677         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2678             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2679             return EXCP_INTERRUPT;
2680         }
2681     }
2682     /* FIXME: Should trigger a qmp message to let management know
2683      * something went wrong.
2684      */
2685     return -1;
2686 }
2687 
2688 void kvm_flush_coalesced_mmio_buffer(void)
2689 {
2690     KVMState *s = kvm_state;
2691 
2692     if (!s || s->coalesced_flush_in_progress) {
2693         return;
2694     }
2695 
2696     s->coalesced_flush_in_progress = true;
2697 
2698     if (s->coalesced_mmio_ring) {
2699         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2700         while (ring->first != ring->last) {
2701             struct kvm_coalesced_mmio *ent;
2702 
2703             ent = &ring->coalesced_mmio[ring->first];
2704 
2705             if (ent->pio == 1) {
2706                 address_space_write(&address_space_io, ent->phys_addr,
2707                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2708                                     ent->len);
2709             } else {
2710                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2711             }
2712             smp_wmb();
2713             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2714         }
2715     }
2716 
2717     s->coalesced_flush_in_progress = false;
2718 }
2719 
2720 bool kvm_cpu_check_are_resettable(void)
2721 {
2722     return kvm_arch_cpu_check_are_resettable();
2723 }
2724 
2725 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2726 {
2727     if (!cpu->vcpu_dirty) {
2728         int ret = kvm_arch_get_registers(cpu);
2729         if (ret) {
2730             error_report("Failed to get registers: %s", strerror(-ret));
2731             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2732             vm_stop(RUN_STATE_INTERNAL_ERROR);
2733         }
2734 
2735         cpu->vcpu_dirty = true;
2736     }
2737 }
2738 
2739 void kvm_cpu_synchronize_state(CPUState *cpu)
2740 {
2741     if (!cpu->vcpu_dirty) {
2742         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2743     }
2744 }
2745 
2746 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2747 {
2748     int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2749     if (ret) {
2750         error_report("Failed to put registers after reset: %s", strerror(-ret));
2751         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2752         vm_stop(RUN_STATE_INTERNAL_ERROR);
2753     }
2754 
2755     cpu->vcpu_dirty = false;
2756 }
2757 
2758 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2759 {
2760     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2761 }
2762 
2763 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2764 {
2765     int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2766     if (ret) {
2767         error_report("Failed to put registers after init: %s", strerror(-ret));
2768         exit(1);
2769     }
2770 
2771     cpu->vcpu_dirty = false;
2772 }
2773 
2774 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2775 {
2776     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2777 }
2778 
2779 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2780 {
2781     cpu->vcpu_dirty = true;
2782 }
2783 
2784 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2785 {
2786     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2787 }
2788 
2789 #ifdef KVM_HAVE_MCE_INJECTION
2790 static __thread void *pending_sigbus_addr;
2791 static __thread int pending_sigbus_code;
2792 static __thread bool have_sigbus_pending;
2793 #endif
2794 
2795 static void kvm_cpu_kick(CPUState *cpu)
2796 {
2797     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2798 }
2799 
2800 static void kvm_cpu_kick_self(void)
2801 {
2802     if (kvm_immediate_exit) {
2803         kvm_cpu_kick(current_cpu);
2804     } else {
2805         qemu_cpu_kick_self();
2806     }
2807 }
2808 
2809 static void kvm_eat_signals(CPUState *cpu)
2810 {
2811     struct timespec ts = { 0, 0 };
2812     siginfo_t siginfo;
2813     sigset_t waitset;
2814     sigset_t chkset;
2815     int r;
2816 
2817     if (kvm_immediate_exit) {
2818         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2819         /* Write kvm_run->immediate_exit before the cpu->exit_request
2820          * write in kvm_cpu_exec.
2821          */
2822         smp_wmb();
2823         return;
2824     }
2825 
2826     sigemptyset(&waitset);
2827     sigaddset(&waitset, SIG_IPI);
2828 
2829     do {
2830         r = sigtimedwait(&waitset, &siginfo, &ts);
2831         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2832             perror("sigtimedwait");
2833             exit(1);
2834         }
2835 
2836         r = sigpending(&chkset);
2837         if (r == -1) {
2838             perror("sigpending");
2839             exit(1);
2840         }
2841     } while (sigismember(&chkset, SIG_IPI));
2842 }
2843 
2844 int kvm_cpu_exec(CPUState *cpu)
2845 {
2846     struct kvm_run *run = cpu->kvm_run;
2847     int ret, run_ret;
2848 
2849     DPRINTF("kvm_cpu_exec()\n");
2850 
2851     if (kvm_arch_process_async_events(cpu)) {
2852         qatomic_set(&cpu->exit_request, 0);
2853         return EXCP_HLT;
2854     }
2855 
2856     qemu_mutex_unlock_iothread();
2857     cpu_exec_start(cpu);
2858 
2859     do {
2860         MemTxAttrs attrs;
2861 
2862         if (cpu->vcpu_dirty) {
2863             ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2864             if (ret) {
2865                 error_report("Failed to put registers after init: %s",
2866                              strerror(-ret));
2867                 ret = -1;
2868                 break;
2869             }
2870 
2871             cpu->vcpu_dirty = false;
2872         }
2873 
2874         kvm_arch_pre_run(cpu, run);
2875         if (qatomic_read(&cpu->exit_request)) {
2876             DPRINTF("interrupt exit requested\n");
2877             /*
2878              * KVM requires us to reenter the kernel after IO exits to complete
2879              * instruction emulation. This self-signal will ensure that we
2880              * leave ASAP again.
2881              */
2882             kvm_cpu_kick_self();
2883         }
2884 
2885         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2886          * Matching barrier in kvm_eat_signals.
2887          */
2888         smp_rmb();
2889 
2890         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2891 
2892         attrs = kvm_arch_post_run(cpu, run);
2893 
2894 #ifdef KVM_HAVE_MCE_INJECTION
2895         if (unlikely(have_sigbus_pending)) {
2896             qemu_mutex_lock_iothread();
2897             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2898                                     pending_sigbus_addr);
2899             have_sigbus_pending = false;
2900             qemu_mutex_unlock_iothread();
2901         }
2902 #endif
2903 
2904         if (run_ret < 0) {
2905             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2906                 DPRINTF("io window exit\n");
2907                 kvm_eat_signals(cpu);
2908                 ret = EXCP_INTERRUPT;
2909                 break;
2910             }
2911             fprintf(stderr, "error: kvm run failed %s\n",
2912                     strerror(-run_ret));
2913 #ifdef TARGET_PPC
2914             if (run_ret == -EBUSY) {
2915                 fprintf(stderr,
2916                         "This is probably because your SMT is enabled.\n"
2917                         "VCPU can only run on primary threads with all "
2918                         "secondary threads offline.\n");
2919             }
2920 #endif
2921             ret = -1;
2922             break;
2923         }
2924 
2925         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2926         switch (run->exit_reason) {
2927         case KVM_EXIT_IO:
2928             DPRINTF("handle_io\n");
2929             /* Called outside BQL */
2930             kvm_handle_io(run->io.port, attrs,
2931                           (uint8_t *)run + run->io.data_offset,
2932                           run->io.direction,
2933                           run->io.size,
2934                           run->io.count);
2935             ret = 0;
2936             break;
2937         case KVM_EXIT_MMIO:
2938             DPRINTF("handle_mmio\n");
2939             /* Called outside BQL */
2940             address_space_rw(&address_space_memory,
2941                              run->mmio.phys_addr, attrs,
2942                              run->mmio.data,
2943                              run->mmio.len,
2944                              run->mmio.is_write);
2945             ret = 0;
2946             break;
2947         case KVM_EXIT_IRQ_WINDOW_OPEN:
2948             DPRINTF("irq_window_open\n");
2949             ret = EXCP_INTERRUPT;
2950             break;
2951         case KVM_EXIT_SHUTDOWN:
2952             DPRINTF("shutdown\n");
2953             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2954             ret = EXCP_INTERRUPT;
2955             break;
2956         case KVM_EXIT_UNKNOWN:
2957             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2958                     (uint64_t)run->hw.hardware_exit_reason);
2959             ret = -1;
2960             break;
2961         case KVM_EXIT_INTERNAL_ERROR:
2962             ret = kvm_handle_internal_error(cpu, run);
2963             break;
2964         case KVM_EXIT_DIRTY_RING_FULL:
2965             /*
2966              * We shouldn't continue if the dirty ring of this vcpu is
2967              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2968              */
2969             trace_kvm_dirty_ring_full(cpu->cpu_index);
2970             qemu_mutex_lock_iothread();
2971             /*
2972              * We throttle vCPU by making it sleep once it exit from kernel
2973              * due to dirty ring full. In the dirtylimit scenario, reaping
2974              * all vCPUs after a single vCPU dirty ring get full result in
2975              * the miss of sleep, so just reap the ring-fulled vCPU.
2976              */
2977             if (dirtylimit_in_service()) {
2978                 kvm_dirty_ring_reap(kvm_state, cpu);
2979             } else {
2980                 kvm_dirty_ring_reap(kvm_state, NULL);
2981             }
2982             qemu_mutex_unlock_iothread();
2983             dirtylimit_vcpu_execute(cpu);
2984             ret = 0;
2985             break;
2986         case KVM_EXIT_SYSTEM_EVENT:
2987             switch (run->system_event.type) {
2988             case KVM_SYSTEM_EVENT_SHUTDOWN:
2989                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2990                 ret = EXCP_INTERRUPT;
2991                 break;
2992             case KVM_SYSTEM_EVENT_RESET:
2993                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2994                 ret = EXCP_INTERRUPT;
2995                 break;
2996             case KVM_SYSTEM_EVENT_CRASH:
2997                 kvm_cpu_synchronize_state(cpu);
2998                 qemu_mutex_lock_iothread();
2999                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3000                 qemu_mutex_unlock_iothread();
3001                 ret = 0;
3002                 break;
3003             default:
3004                 DPRINTF("kvm_arch_handle_exit\n");
3005                 ret = kvm_arch_handle_exit(cpu, run);
3006                 break;
3007             }
3008             break;
3009         default:
3010             DPRINTF("kvm_arch_handle_exit\n");
3011             ret = kvm_arch_handle_exit(cpu, run);
3012             break;
3013         }
3014     } while (ret == 0);
3015 
3016     cpu_exec_end(cpu);
3017     qemu_mutex_lock_iothread();
3018 
3019     if (ret < 0) {
3020         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3021         vm_stop(RUN_STATE_INTERNAL_ERROR);
3022     }
3023 
3024     qatomic_set(&cpu->exit_request, 0);
3025     return ret;
3026 }
3027 
3028 int kvm_ioctl(KVMState *s, int type, ...)
3029 {
3030     int ret;
3031     void *arg;
3032     va_list ap;
3033 
3034     va_start(ap, type);
3035     arg = va_arg(ap, void *);
3036     va_end(ap);
3037 
3038     trace_kvm_ioctl(type, arg);
3039     ret = ioctl(s->fd, type, arg);
3040     if (ret == -1) {
3041         ret = -errno;
3042     }
3043     return ret;
3044 }
3045 
3046 int kvm_vm_ioctl(KVMState *s, int type, ...)
3047 {
3048     int ret;
3049     void *arg;
3050     va_list ap;
3051 
3052     va_start(ap, type);
3053     arg = va_arg(ap, void *);
3054     va_end(ap);
3055 
3056     trace_kvm_vm_ioctl(type, arg);
3057     accel_ioctl_begin();
3058     ret = ioctl(s->vmfd, type, arg);
3059     accel_ioctl_end();
3060     if (ret == -1) {
3061         ret = -errno;
3062     }
3063     return ret;
3064 }
3065 
3066 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3067 {
3068     int ret;
3069     void *arg;
3070     va_list ap;
3071 
3072     va_start(ap, type);
3073     arg = va_arg(ap, void *);
3074     va_end(ap);
3075 
3076     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3077     accel_cpu_ioctl_begin(cpu);
3078     ret = ioctl(cpu->kvm_fd, type, arg);
3079     accel_cpu_ioctl_end(cpu);
3080     if (ret == -1) {
3081         ret = -errno;
3082     }
3083     return ret;
3084 }
3085 
3086 int kvm_device_ioctl(int fd, int type, ...)
3087 {
3088     int ret;
3089     void *arg;
3090     va_list ap;
3091 
3092     va_start(ap, type);
3093     arg = va_arg(ap, void *);
3094     va_end(ap);
3095 
3096     trace_kvm_device_ioctl(fd, type, arg);
3097     accel_ioctl_begin();
3098     ret = ioctl(fd, type, arg);
3099     accel_ioctl_end();
3100     if (ret == -1) {
3101         ret = -errno;
3102     }
3103     return ret;
3104 }
3105 
3106 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3107 {
3108     int ret;
3109     struct kvm_device_attr attribute = {
3110         .group = group,
3111         .attr = attr,
3112     };
3113 
3114     if (!kvm_vm_attributes_allowed) {
3115         return 0;
3116     }
3117 
3118     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3119     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3120     return ret ? 0 : 1;
3121 }
3122 
3123 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3124 {
3125     struct kvm_device_attr attribute = {
3126         .group = group,
3127         .attr = attr,
3128         .flags = 0,
3129     };
3130 
3131     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3132 }
3133 
3134 int kvm_device_access(int fd, int group, uint64_t attr,
3135                       void *val, bool write, Error **errp)
3136 {
3137     struct kvm_device_attr kvmattr;
3138     int err;
3139 
3140     kvmattr.flags = 0;
3141     kvmattr.group = group;
3142     kvmattr.attr = attr;
3143     kvmattr.addr = (uintptr_t)val;
3144 
3145     err = kvm_device_ioctl(fd,
3146                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3147                            &kvmattr);
3148     if (err < 0) {
3149         error_setg_errno(errp, -err,
3150                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3151                          "attr 0x%016" PRIx64,
3152                          write ? "SET" : "GET", group, attr);
3153     }
3154     return err;
3155 }
3156 
3157 bool kvm_has_sync_mmu(void)
3158 {
3159     return kvm_state->sync_mmu;
3160 }
3161 
3162 int kvm_has_vcpu_events(void)
3163 {
3164     return kvm_state->vcpu_events;
3165 }
3166 
3167 int kvm_has_robust_singlestep(void)
3168 {
3169     return kvm_state->robust_singlestep;
3170 }
3171 
3172 int kvm_has_debugregs(void)
3173 {
3174     return kvm_state->debugregs;
3175 }
3176 
3177 int kvm_max_nested_state_length(void)
3178 {
3179     return kvm_state->max_nested_state_len;
3180 }
3181 
3182 int kvm_has_gsi_routing(void)
3183 {
3184 #ifdef KVM_CAP_IRQ_ROUTING
3185     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3186 #else
3187     return false;
3188 #endif
3189 }
3190 
3191 bool kvm_arm_supports_user_irq(void)
3192 {
3193     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3194 }
3195 
3196 #ifdef KVM_CAP_SET_GUEST_DEBUG
3197 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3198 {
3199     struct kvm_sw_breakpoint *bp;
3200 
3201     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3202         if (bp->pc == pc) {
3203             return bp;
3204         }
3205     }
3206     return NULL;
3207 }
3208 
3209 int kvm_sw_breakpoints_active(CPUState *cpu)
3210 {
3211     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3212 }
3213 
3214 struct kvm_set_guest_debug_data {
3215     struct kvm_guest_debug dbg;
3216     int err;
3217 };
3218 
3219 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3220 {
3221     struct kvm_set_guest_debug_data *dbg_data =
3222         (struct kvm_set_guest_debug_data *) data.host_ptr;
3223 
3224     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3225                                    &dbg_data->dbg);
3226 }
3227 
3228 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3229 {
3230     struct kvm_set_guest_debug_data data;
3231 
3232     data.dbg.control = reinject_trap;
3233 
3234     if (cpu->singlestep_enabled) {
3235         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3236 
3237         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3238             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3239         }
3240     }
3241     kvm_arch_update_guest_debug(cpu, &data.dbg);
3242 
3243     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3244                RUN_ON_CPU_HOST_PTR(&data));
3245     return data.err;
3246 }
3247 
3248 bool kvm_supports_guest_debug(void)
3249 {
3250     /* probed during kvm_init() */
3251     return kvm_has_guest_debug;
3252 }
3253 
3254 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3255 {
3256     struct kvm_sw_breakpoint *bp;
3257     int err;
3258 
3259     if (type == GDB_BREAKPOINT_SW) {
3260         bp = kvm_find_sw_breakpoint(cpu, addr);
3261         if (bp) {
3262             bp->use_count++;
3263             return 0;
3264         }
3265 
3266         bp = g_new(struct kvm_sw_breakpoint, 1);
3267         bp->pc = addr;
3268         bp->use_count = 1;
3269         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3270         if (err) {
3271             g_free(bp);
3272             return err;
3273         }
3274 
3275         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3276     } else {
3277         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3278         if (err) {
3279             return err;
3280         }
3281     }
3282 
3283     CPU_FOREACH(cpu) {
3284         err = kvm_update_guest_debug(cpu, 0);
3285         if (err) {
3286             return err;
3287         }
3288     }
3289     return 0;
3290 }
3291 
3292 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3293 {
3294     struct kvm_sw_breakpoint *bp;
3295     int err;
3296 
3297     if (type == GDB_BREAKPOINT_SW) {
3298         bp = kvm_find_sw_breakpoint(cpu, addr);
3299         if (!bp) {
3300             return -ENOENT;
3301         }
3302 
3303         if (bp->use_count > 1) {
3304             bp->use_count--;
3305             return 0;
3306         }
3307 
3308         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3309         if (err) {
3310             return err;
3311         }
3312 
3313         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3314         g_free(bp);
3315     } else {
3316         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3317         if (err) {
3318             return err;
3319         }
3320     }
3321 
3322     CPU_FOREACH(cpu) {
3323         err = kvm_update_guest_debug(cpu, 0);
3324         if (err) {
3325             return err;
3326         }
3327     }
3328     return 0;
3329 }
3330 
3331 void kvm_remove_all_breakpoints(CPUState *cpu)
3332 {
3333     struct kvm_sw_breakpoint *bp, *next;
3334     KVMState *s = cpu->kvm_state;
3335     CPUState *tmpcpu;
3336 
3337     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3338         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3339             /* Try harder to find a CPU that currently sees the breakpoint. */
3340             CPU_FOREACH(tmpcpu) {
3341                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3342                     break;
3343                 }
3344             }
3345         }
3346         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3347         g_free(bp);
3348     }
3349     kvm_arch_remove_all_hw_breakpoints();
3350 
3351     CPU_FOREACH(cpu) {
3352         kvm_update_guest_debug(cpu, 0);
3353     }
3354 }
3355 
3356 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3357 
3358 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3359 {
3360     KVMState *s = kvm_state;
3361     struct kvm_signal_mask *sigmask;
3362     int r;
3363 
3364     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3365 
3366     sigmask->len = s->sigmask_len;
3367     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3368     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3369     g_free(sigmask);
3370 
3371     return r;
3372 }
3373 
3374 static void kvm_ipi_signal(int sig)
3375 {
3376     if (current_cpu) {
3377         assert(kvm_immediate_exit);
3378         kvm_cpu_kick(current_cpu);
3379     }
3380 }
3381 
3382 void kvm_init_cpu_signals(CPUState *cpu)
3383 {
3384     int r;
3385     sigset_t set;
3386     struct sigaction sigact;
3387 
3388     memset(&sigact, 0, sizeof(sigact));
3389     sigact.sa_handler = kvm_ipi_signal;
3390     sigaction(SIG_IPI, &sigact, NULL);
3391 
3392     pthread_sigmask(SIG_BLOCK, NULL, &set);
3393 #if defined KVM_HAVE_MCE_INJECTION
3394     sigdelset(&set, SIGBUS);
3395     pthread_sigmask(SIG_SETMASK, &set, NULL);
3396 #endif
3397     sigdelset(&set, SIG_IPI);
3398     if (kvm_immediate_exit) {
3399         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3400     } else {
3401         r = kvm_set_signal_mask(cpu, &set);
3402     }
3403     if (r) {
3404         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3405         exit(1);
3406     }
3407 }
3408 
3409 /* Called asynchronously in VCPU thread.  */
3410 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3411 {
3412 #ifdef KVM_HAVE_MCE_INJECTION
3413     if (have_sigbus_pending) {
3414         return 1;
3415     }
3416     have_sigbus_pending = true;
3417     pending_sigbus_addr = addr;
3418     pending_sigbus_code = code;
3419     qatomic_set(&cpu->exit_request, 1);
3420     return 0;
3421 #else
3422     return 1;
3423 #endif
3424 }
3425 
3426 /* Called synchronously (via signalfd) in main thread.  */
3427 int kvm_on_sigbus(int code, void *addr)
3428 {
3429 #ifdef KVM_HAVE_MCE_INJECTION
3430     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3431      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3432      * we can only get action optional here.
3433      */
3434     assert(code != BUS_MCEERR_AR);
3435     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3436     return 0;
3437 #else
3438     return 1;
3439 #endif
3440 }
3441 
3442 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3443 {
3444     int ret;
3445     struct kvm_create_device create_dev;
3446 
3447     create_dev.type = type;
3448     create_dev.fd = -1;
3449     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3450 
3451     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3452         return -ENOTSUP;
3453     }
3454 
3455     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3456     if (ret) {
3457         return ret;
3458     }
3459 
3460     return test ? 0 : create_dev.fd;
3461 }
3462 
3463 bool kvm_device_supported(int vmfd, uint64_t type)
3464 {
3465     struct kvm_create_device create_dev = {
3466         .type = type,
3467         .fd = -1,
3468         .flags = KVM_CREATE_DEVICE_TEST,
3469     };
3470 
3471     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3472         return false;
3473     }
3474 
3475     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3476 }
3477 
3478 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3479 {
3480     struct kvm_one_reg reg;
3481     int r;
3482 
3483     reg.id = id;
3484     reg.addr = (uintptr_t) source;
3485     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3486     if (r) {
3487         trace_kvm_failed_reg_set(id, strerror(-r));
3488     }
3489     return r;
3490 }
3491 
3492 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3493 {
3494     struct kvm_one_reg reg;
3495     int r;
3496 
3497     reg.id = id;
3498     reg.addr = (uintptr_t) target;
3499     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3500     if (r) {
3501         trace_kvm_failed_reg_get(id, strerror(-r));
3502     }
3503     return r;
3504 }
3505 
3506 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3507                                  hwaddr start_addr, hwaddr size)
3508 {
3509     KVMState *kvm = KVM_STATE(ms->accelerator);
3510     int i;
3511 
3512     for (i = 0; i < kvm->nr_as; ++i) {
3513         if (kvm->as[i].as == as && kvm->as[i].ml) {
3514             size = MIN(kvm_max_slot_size, size);
3515             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3516                                                     start_addr, size);
3517         }
3518     }
3519 
3520     return false;
3521 }
3522 
3523 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3524                                    const char *name, void *opaque,
3525                                    Error **errp)
3526 {
3527     KVMState *s = KVM_STATE(obj);
3528     int64_t value = s->kvm_shadow_mem;
3529 
3530     visit_type_int(v, name, &value, errp);
3531 }
3532 
3533 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3534                                    const char *name, void *opaque,
3535                                    Error **errp)
3536 {
3537     KVMState *s = KVM_STATE(obj);
3538     int64_t value;
3539 
3540     if (s->fd != -1) {
3541         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3542         return;
3543     }
3544 
3545     if (!visit_type_int(v, name, &value, errp)) {
3546         return;
3547     }
3548 
3549     s->kvm_shadow_mem = value;
3550 }
3551 
3552 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3553                                    const char *name, void *opaque,
3554                                    Error **errp)
3555 {
3556     KVMState *s = KVM_STATE(obj);
3557     OnOffSplit mode;
3558 
3559     if (s->fd != -1) {
3560         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3561         return;
3562     }
3563 
3564     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3565         return;
3566     }
3567     switch (mode) {
3568     case ON_OFF_SPLIT_ON:
3569         s->kernel_irqchip_allowed = true;
3570         s->kernel_irqchip_required = true;
3571         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3572         break;
3573     case ON_OFF_SPLIT_OFF:
3574         s->kernel_irqchip_allowed = false;
3575         s->kernel_irqchip_required = false;
3576         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3577         break;
3578     case ON_OFF_SPLIT_SPLIT:
3579         s->kernel_irqchip_allowed = true;
3580         s->kernel_irqchip_required = true;
3581         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3582         break;
3583     default:
3584         /* The value was checked in visit_type_OnOffSplit() above. If
3585          * we get here, then something is wrong in QEMU.
3586          */
3587         abort();
3588     }
3589 }
3590 
3591 bool kvm_kernel_irqchip_allowed(void)
3592 {
3593     return kvm_state->kernel_irqchip_allowed;
3594 }
3595 
3596 bool kvm_kernel_irqchip_required(void)
3597 {
3598     return kvm_state->kernel_irqchip_required;
3599 }
3600 
3601 bool kvm_kernel_irqchip_split(void)
3602 {
3603     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3604 }
3605 
3606 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3607                                     const char *name, void *opaque,
3608                                     Error **errp)
3609 {
3610     KVMState *s = KVM_STATE(obj);
3611     uint32_t value = s->kvm_dirty_ring_size;
3612 
3613     visit_type_uint32(v, name, &value, errp);
3614 }
3615 
3616 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3617                                     const char *name, void *opaque,
3618                                     Error **errp)
3619 {
3620     KVMState *s = KVM_STATE(obj);
3621     uint32_t value;
3622 
3623     if (s->fd != -1) {
3624         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3625         return;
3626     }
3627 
3628     if (!visit_type_uint32(v, name, &value, errp)) {
3629         return;
3630     }
3631     if (value & (value - 1)) {
3632         error_setg(errp, "dirty-ring-size must be a power of two.");
3633         return;
3634     }
3635 
3636     s->kvm_dirty_ring_size = value;
3637 }
3638 
3639 static void kvm_accel_instance_init(Object *obj)
3640 {
3641     KVMState *s = KVM_STATE(obj);
3642 
3643     s->fd = -1;
3644     s->vmfd = -1;
3645     s->kvm_shadow_mem = -1;
3646     s->kernel_irqchip_allowed = true;
3647     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3648     /* KVM dirty ring is by default off */
3649     s->kvm_dirty_ring_size = 0;
3650     s->kvm_dirty_ring_with_bitmap = false;
3651     s->kvm_eager_split_size = 0;
3652     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3653     s->notify_window = 0;
3654     s->xen_version = 0;
3655     s->xen_gnttab_max_frames = 64;
3656     s->xen_evtchn_max_pirq = 256;
3657 }
3658 
3659 /**
3660  * kvm_gdbstub_sstep_flags():
3661  *
3662  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3663  * support is probed during kvm_init()
3664  */
3665 static int kvm_gdbstub_sstep_flags(void)
3666 {
3667     return kvm_sstep_flags;
3668 }
3669 
3670 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3671 {
3672     AccelClass *ac = ACCEL_CLASS(oc);
3673     ac->name = "KVM";
3674     ac->init_machine = kvm_init;
3675     ac->has_memory = kvm_accel_has_memory;
3676     ac->allowed = &kvm_allowed;
3677     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3678 
3679     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3680         NULL, kvm_set_kernel_irqchip,
3681         NULL, NULL);
3682     object_class_property_set_description(oc, "kernel-irqchip",
3683         "Configure KVM in-kernel irqchip");
3684 
3685     object_class_property_add(oc, "kvm-shadow-mem", "int",
3686         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3687         NULL, NULL);
3688     object_class_property_set_description(oc, "kvm-shadow-mem",
3689         "KVM shadow MMU size");
3690 
3691     object_class_property_add(oc, "dirty-ring-size", "uint32",
3692         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3693         NULL, NULL);
3694     object_class_property_set_description(oc, "dirty-ring-size",
3695         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3696 
3697     kvm_arch_accel_class_init(oc);
3698 }
3699 
3700 static const TypeInfo kvm_accel_type = {
3701     .name = TYPE_KVM_ACCEL,
3702     .parent = TYPE_ACCEL,
3703     .instance_init = kvm_accel_instance_init,
3704     .class_init = kvm_accel_class_init,
3705     .instance_size = sizeof(KVMState),
3706 };
3707 
3708 static void kvm_type_init(void)
3709 {
3710     type_register_static(&kvm_accel_type);
3711 }
3712 
3713 type_init(kvm_type_init);
3714 
3715 typedef struct StatsArgs {
3716     union StatsResultsType {
3717         StatsResultList **stats;
3718         StatsSchemaList **schema;
3719     } result;
3720     strList *names;
3721     Error **errp;
3722 } StatsArgs;
3723 
3724 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3725                                     uint64_t *stats_data,
3726                                     StatsList *stats_list,
3727                                     Error **errp)
3728 {
3729 
3730     Stats *stats;
3731     uint64List *val_list = NULL;
3732 
3733     /* Only add stats that we understand.  */
3734     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3735     case KVM_STATS_TYPE_CUMULATIVE:
3736     case KVM_STATS_TYPE_INSTANT:
3737     case KVM_STATS_TYPE_PEAK:
3738     case KVM_STATS_TYPE_LINEAR_HIST:
3739     case KVM_STATS_TYPE_LOG_HIST:
3740         break;
3741     default:
3742         return stats_list;
3743     }
3744 
3745     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3746     case KVM_STATS_UNIT_NONE:
3747     case KVM_STATS_UNIT_BYTES:
3748     case KVM_STATS_UNIT_CYCLES:
3749     case KVM_STATS_UNIT_SECONDS:
3750     case KVM_STATS_UNIT_BOOLEAN:
3751         break;
3752     default:
3753         return stats_list;
3754     }
3755 
3756     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3757     case KVM_STATS_BASE_POW10:
3758     case KVM_STATS_BASE_POW2:
3759         break;
3760     default:
3761         return stats_list;
3762     }
3763 
3764     /* Alloc and populate data list */
3765     stats = g_new0(Stats, 1);
3766     stats->name = g_strdup(pdesc->name);
3767     stats->value = g_new0(StatsValue, 1);;
3768 
3769     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3770         stats->value->u.boolean = *stats_data;
3771         stats->value->type = QTYPE_QBOOL;
3772     } else if (pdesc->size == 1) {
3773         stats->value->u.scalar = *stats_data;
3774         stats->value->type = QTYPE_QNUM;
3775     } else {
3776         int i;
3777         for (i = 0; i < pdesc->size; i++) {
3778             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3779         }
3780         stats->value->u.list = val_list;
3781         stats->value->type = QTYPE_QLIST;
3782     }
3783 
3784     QAPI_LIST_PREPEND(stats_list, stats);
3785     return stats_list;
3786 }
3787 
3788 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3789                                                  StatsSchemaValueList *list,
3790                                                  Error **errp)
3791 {
3792     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3793     schema_entry->value = g_new0(StatsSchemaValue, 1);
3794 
3795     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3796     case KVM_STATS_TYPE_CUMULATIVE:
3797         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3798         break;
3799     case KVM_STATS_TYPE_INSTANT:
3800         schema_entry->value->type = STATS_TYPE_INSTANT;
3801         break;
3802     case KVM_STATS_TYPE_PEAK:
3803         schema_entry->value->type = STATS_TYPE_PEAK;
3804         break;
3805     case KVM_STATS_TYPE_LINEAR_HIST:
3806         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3807         schema_entry->value->bucket_size = pdesc->bucket_size;
3808         schema_entry->value->has_bucket_size = true;
3809         break;
3810     case KVM_STATS_TYPE_LOG_HIST:
3811         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3812         break;
3813     default:
3814         goto exit;
3815     }
3816 
3817     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3818     case KVM_STATS_UNIT_NONE:
3819         break;
3820     case KVM_STATS_UNIT_BOOLEAN:
3821         schema_entry->value->has_unit = true;
3822         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3823         break;
3824     case KVM_STATS_UNIT_BYTES:
3825         schema_entry->value->has_unit = true;
3826         schema_entry->value->unit = STATS_UNIT_BYTES;
3827         break;
3828     case KVM_STATS_UNIT_CYCLES:
3829         schema_entry->value->has_unit = true;
3830         schema_entry->value->unit = STATS_UNIT_CYCLES;
3831         break;
3832     case KVM_STATS_UNIT_SECONDS:
3833         schema_entry->value->has_unit = true;
3834         schema_entry->value->unit = STATS_UNIT_SECONDS;
3835         break;
3836     default:
3837         goto exit;
3838     }
3839 
3840     schema_entry->value->exponent = pdesc->exponent;
3841     if (pdesc->exponent) {
3842         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3843         case KVM_STATS_BASE_POW10:
3844             schema_entry->value->has_base = true;
3845             schema_entry->value->base = 10;
3846             break;
3847         case KVM_STATS_BASE_POW2:
3848             schema_entry->value->has_base = true;
3849             schema_entry->value->base = 2;
3850             break;
3851         default:
3852             goto exit;
3853         }
3854     }
3855 
3856     schema_entry->value->name = g_strdup(pdesc->name);
3857     schema_entry->next = list;
3858     return schema_entry;
3859 exit:
3860     g_free(schema_entry->value);
3861     g_free(schema_entry);
3862     return list;
3863 }
3864 
3865 /* Cached stats descriptors */
3866 typedef struct StatsDescriptors {
3867     const char *ident; /* cache key, currently the StatsTarget */
3868     struct kvm_stats_desc *kvm_stats_desc;
3869     struct kvm_stats_header kvm_stats_header;
3870     QTAILQ_ENTRY(StatsDescriptors) next;
3871 } StatsDescriptors;
3872 
3873 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3874     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3875 
3876 /*
3877  * Return the descriptors for 'target', that either have already been read
3878  * or are retrieved from 'stats_fd'.
3879  */
3880 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3881                                                 Error **errp)
3882 {
3883     StatsDescriptors *descriptors;
3884     const char *ident;
3885     struct kvm_stats_desc *kvm_stats_desc;
3886     struct kvm_stats_header *kvm_stats_header;
3887     size_t size_desc;
3888     ssize_t ret;
3889 
3890     ident = StatsTarget_str(target);
3891     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3892         if (g_str_equal(descriptors->ident, ident)) {
3893             return descriptors;
3894         }
3895     }
3896 
3897     descriptors = g_new0(StatsDescriptors, 1);
3898 
3899     /* Read stats header */
3900     kvm_stats_header = &descriptors->kvm_stats_header;
3901     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
3902     if (ret != sizeof(*kvm_stats_header)) {
3903         error_setg(errp, "KVM stats: failed to read stats header: "
3904                    "expected %zu actual %zu",
3905                    sizeof(*kvm_stats_header), ret);
3906         g_free(descriptors);
3907         return NULL;
3908     }
3909     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3910 
3911     /* Read stats descriptors */
3912     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3913     ret = pread(stats_fd, kvm_stats_desc,
3914                 size_desc * kvm_stats_header->num_desc,
3915                 kvm_stats_header->desc_offset);
3916 
3917     if (ret != size_desc * kvm_stats_header->num_desc) {
3918         error_setg(errp, "KVM stats: failed to read stats descriptors: "
3919                    "expected %zu actual %zu",
3920                    size_desc * kvm_stats_header->num_desc, ret);
3921         g_free(descriptors);
3922         g_free(kvm_stats_desc);
3923         return NULL;
3924     }
3925     descriptors->kvm_stats_desc = kvm_stats_desc;
3926     descriptors->ident = ident;
3927     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3928     return descriptors;
3929 }
3930 
3931 static void query_stats(StatsResultList **result, StatsTarget target,
3932                         strList *names, int stats_fd, CPUState *cpu,
3933                         Error **errp)
3934 {
3935     struct kvm_stats_desc *kvm_stats_desc;
3936     struct kvm_stats_header *kvm_stats_header;
3937     StatsDescriptors *descriptors;
3938     g_autofree uint64_t *stats_data = NULL;
3939     struct kvm_stats_desc *pdesc;
3940     StatsList *stats_list = NULL;
3941     size_t size_desc, size_data = 0;
3942     ssize_t ret;
3943     int i;
3944 
3945     descriptors = find_stats_descriptors(target, stats_fd, errp);
3946     if (!descriptors) {
3947         return;
3948     }
3949 
3950     kvm_stats_header = &descriptors->kvm_stats_header;
3951     kvm_stats_desc = descriptors->kvm_stats_desc;
3952     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3953 
3954     /* Tally the total data size; read schema data */
3955     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3956         pdesc = (void *)kvm_stats_desc + i * size_desc;
3957         size_data += pdesc->size * sizeof(*stats_data);
3958     }
3959 
3960     stats_data = g_malloc0(size_data);
3961     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3962 
3963     if (ret != size_data) {
3964         error_setg(errp, "KVM stats: failed to read data: "
3965                    "expected %zu actual %zu", size_data, ret);
3966         return;
3967     }
3968 
3969     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3970         uint64_t *stats;
3971         pdesc = (void *)kvm_stats_desc + i * size_desc;
3972 
3973         /* Add entry to the list */
3974         stats = (void *)stats_data + pdesc->offset;
3975         if (!apply_str_list_filter(pdesc->name, names)) {
3976             continue;
3977         }
3978         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
3979     }
3980 
3981     if (!stats_list) {
3982         return;
3983     }
3984 
3985     switch (target) {
3986     case STATS_TARGET_VM:
3987         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
3988         break;
3989     case STATS_TARGET_VCPU:
3990         add_stats_entry(result, STATS_PROVIDER_KVM,
3991                         cpu->parent_obj.canonical_path,
3992                         stats_list);
3993         break;
3994     default:
3995         g_assert_not_reached();
3996     }
3997 }
3998 
3999 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4000                                int stats_fd, Error **errp)
4001 {
4002     struct kvm_stats_desc *kvm_stats_desc;
4003     struct kvm_stats_header *kvm_stats_header;
4004     StatsDescriptors *descriptors;
4005     struct kvm_stats_desc *pdesc;
4006     StatsSchemaValueList *stats_list = NULL;
4007     size_t size_desc;
4008     int i;
4009 
4010     descriptors = find_stats_descriptors(target, stats_fd, errp);
4011     if (!descriptors) {
4012         return;
4013     }
4014 
4015     kvm_stats_header = &descriptors->kvm_stats_header;
4016     kvm_stats_desc = descriptors->kvm_stats_desc;
4017     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4018 
4019     /* Tally the total data size; read schema data */
4020     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4021         pdesc = (void *)kvm_stats_desc + i * size_desc;
4022         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4023     }
4024 
4025     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4026 }
4027 
4028 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4029 {
4030     int stats_fd = cpu->kvm_vcpu_stats_fd;
4031     Error *local_err = NULL;
4032 
4033     if (stats_fd == -1) {
4034         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4035         error_propagate(kvm_stats_args->errp, local_err);
4036         return;
4037     }
4038     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4039                 kvm_stats_args->names, stats_fd, cpu,
4040                 kvm_stats_args->errp);
4041 }
4042 
4043 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4044 {
4045     int stats_fd = cpu->kvm_vcpu_stats_fd;
4046     Error *local_err = NULL;
4047 
4048     if (stats_fd == -1) {
4049         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4050         error_propagate(kvm_stats_args->errp, local_err);
4051         return;
4052     }
4053     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4054                        kvm_stats_args->errp);
4055 }
4056 
4057 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4058                            strList *names, strList *targets, Error **errp)
4059 {
4060     KVMState *s = kvm_state;
4061     CPUState *cpu;
4062     int stats_fd;
4063 
4064     switch (target) {
4065     case STATS_TARGET_VM:
4066     {
4067         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4068         if (stats_fd == -1) {
4069             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4070             return;
4071         }
4072         query_stats(result, target, names, stats_fd, NULL, errp);
4073         close(stats_fd);
4074         break;
4075     }
4076     case STATS_TARGET_VCPU:
4077     {
4078         StatsArgs stats_args;
4079         stats_args.result.stats = result;
4080         stats_args.names = names;
4081         stats_args.errp = errp;
4082         CPU_FOREACH(cpu) {
4083             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4084                 continue;
4085             }
4086             query_stats_vcpu(cpu, &stats_args);
4087         }
4088         break;
4089     }
4090     default:
4091         break;
4092     }
4093 }
4094 
4095 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4096 {
4097     StatsArgs stats_args;
4098     KVMState *s = kvm_state;
4099     int stats_fd;
4100 
4101     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4102     if (stats_fd == -1) {
4103         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4104         return;
4105     }
4106     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4107     close(stats_fd);
4108 
4109     if (first_cpu) {
4110         stats_args.result.schema = result;
4111         stats_args.errp = errp;
4112         query_stats_schema_vcpu(first_cpu, &stats_args);
4113     }
4114 }
4115