xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 126e7f780367b0263d9a112729736d6a0bd6d441)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 //#define DEBUG_KVM
73 
74 #ifdef DEBUG_KVM
75 #define DPRINTF(fmt, ...) \
76     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...) \
79     do { } while (0)
80 #endif
81 
82 struct KVMParkedVcpu {
83     unsigned long vcpu_id;
84     int kvm_fd;
85     QLIST_ENTRY(KVMParkedVcpu) node;
86 };
87 
88 KVMState *kvm_state;
89 bool kvm_kernel_irqchip;
90 bool kvm_split_irqchip;
91 bool kvm_async_interrupts_allowed;
92 bool kvm_halt_in_kernel_allowed;
93 bool kvm_resamplefds_allowed;
94 bool kvm_msi_via_irqfd_allowed;
95 bool kvm_gsi_routing_allowed;
96 bool kvm_gsi_direct_mapping;
97 bool kvm_allowed;
98 bool kvm_readonly_mem_allowed;
99 bool kvm_vm_attributes_allowed;
100 bool kvm_msi_use_devid;
101 bool kvm_has_guest_debug;
102 static int kvm_sstep_flags;
103 static bool kvm_immediate_exit;
104 static hwaddr kvm_max_slot_size = ~0;
105 
106 static const KVMCapabilityInfo kvm_required_capabilites[] = {
107     KVM_CAP_INFO(USER_MEMORY),
108     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
109     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
110     KVM_CAP_INFO(INTERNAL_ERROR_DATA),
111     KVM_CAP_INFO(IOEVENTFD),
112     KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
113     KVM_CAP_LAST_INFO
114 };
115 
116 static NotifierList kvm_irqchip_change_notifiers =
117     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
118 
119 struct KVMResampleFd {
120     int gsi;
121     EventNotifier *resample_event;
122     QLIST_ENTRY(KVMResampleFd) node;
123 };
124 typedef struct KVMResampleFd KVMResampleFd;
125 
126 /*
127  * Only used with split irqchip where we need to do the resample fd
128  * kick for the kernel from userspace.
129  */
130 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
131     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
132 
133 static QemuMutex kml_slots_lock;
134 
135 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
136 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
137 
138 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
139 
140 static inline void kvm_resample_fd_remove(int gsi)
141 {
142     KVMResampleFd *rfd;
143 
144     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
145         if (rfd->gsi == gsi) {
146             QLIST_REMOVE(rfd, node);
147             g_free(rfd);
148             break;
149         }
150     }
151 }
152 
153 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
154 {
155     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
156 
157     rfd->gsi = gsi;
158     rfd->resample_event = event;
159 
160     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
161 }
162 
163 void kvm_resample_fd_notify(int gsi)
164 {
165     KVMResampleFd *rfd;
166 
167     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
168         if (rfd->gsi == gsi) {
169             event_notifier_set(rfd->resample_event);
170             trace_kvm_resample_fd_notify(gsi);
171             return;
172         }
173     }
174 }
175 
176 unsigned int kvm_get_max_memslots(void)
177 {
178     KVMState *s = KVM_STATE(current_accel());
179 
180     return s->nr_slots;
181 }
182 
183 unsigned int kvm_get_free_memslots(void)
184 {
185     unsigned int used_slots = 0;
186     KVMState *s = kvm_state;
187     int i;
188 
189     kvm_slots_lock();
190     for (i = 0; i < s->nr_as; i++) {
191         if (!s->as[i].ml) {
192             continue;
193         }
194         used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
195     }
196     kvm_slots_unlock();
197 
198     return s->nr_slots - used_slots;
199 }
200 
201 /* Called with KVMMemoryListener.slots_lock held */
202 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
203 {
204     KVMState *s = kvm_state;
205     int i;
206 
207     for (i = 0; i < s->nr_slots; i++) {
208         if (kml->slots[i].memory_size == 0) {
209             return &kml->slots[i];
210         }
211     }
212 
213     return NULL;
214 }
215 
216 /* Called with KVMMemoryListener.slots_lock held */
217 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
218 {
219     KVMSlot *slot = kvm_get_free_slot(kml);
220 
221     if (slot) {
222         return slot;
223     }
224 
225     fprintf(stderr, "%s: no free slot available\n", __func__);
226     abort();
227 }
228 
229 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
230                                          hwaddr start_addr,
231                                          hwaddr size)
232 {
233     KVMState *s = kvm_state;
234     int i;
235 
236     for (i = 0; i < s->nr_slots; i++) {
237         KVMSlot *mem = &kml->slots[i];
238 
239         if (start_addr == mem->start_addr && size == mem->memory_size) {
240             return mem;
241         }
242     }
243 
244     return NULL;
245 }
246 
247 /*
248  * Calculate and align the start address and the size of the section.
249  * Return the size. If the size is 0, the aligned section is empty.
250  */
251 static hwaddr kvm_align_section(MemoryRegionSection *section,
252                                 hwaddr *start)
253 {
254     hwaddr size = int128_get64(section->size);
255     hwaddr delta, aligned;
256 
257     /* kvm works in page size chunks, but the function may be called
258        with sub-page size and unaligned start address. Pad the start
259        address to next and truncate size to previous page boundary. */
260     aligned = ROUND_UP(section->offset_within_address_space,
261                        qemu_real_host_page_size());
262     delta = aligned - section->offset_within_address_space;
263     *start = aligned;
264     if (delta > size) {
265         return 0;
266     }
267 
268     return (size - delta) & qemu_real_host_page_mask();
269 }
270 
271 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
272                                        hwaddr *phys_addr)
273 {
274     KVMMemoryListener *kml = &s->memory_listener;
275     int i, ret = 0;
276 
277     kvm_slots_lock();
278     for (i = 0; i < s->nr_slots; i++) {
279         KVMSlot *mem = &kml->slots[i];
280 
281         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
282             *phys_addr = mem->start_addr + (ram - mem->ram);
283             ret = 1;
284             break;
285         }
286     }
287     kvm_slots_unlock();
288 
289     return ret;
290 }
291 
292 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
293 {
294     KVMState *s = kvm_state;
295     struct kvm_userspace_memory_region mem;
296     int ret;
297 
298     mem.slot = slot->slot | (kml->as_id << 16);
299     mem.guest_phys_addr = slot->start_addr;
300     mem.userspace_addr = (unsigned long)slot->ram;
301     mem.flags = slot->flags;
302 
303     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
304         /* Set the slot size to 0 before setting the slot to the desired
305          * value. This is needed based on KVM commit 75d61fbc. */
306         mem.memory_size = 0;
307         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
308         if (ret < 0) {
309             goto err;
310         }
311     }
312     mem.memory_size = slot->memory_size;
313     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
314     slot->old_flags = mem.flags;
315 err:
316     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
317                               mem.memory_size, mem.userspace_addr, ret);
318     if (ret < 0) {
319         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
320                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
321                      __func__, mem.slot, slot->start_addr,
322                      (uint64_t)mem.memory_size, strerror(errno));
323     }
324     return ret;
325 }
326 
327 static int do_kvm_destroy_vcpu(CPUState *cpu)
328 {
329     KVMState *s = kvm_state;
330     long mmap_size;
331     struct KVMParkedVcpu *vcpu = NULL;
332     int ret = 0;
333 
334     DPRINTF("kvm_destroy_vcpu\n");
335 
336     ret = kvm_arch_destroy_vcpu(cpu);
337     if (ret < 0) {
338         goto err;
339     }
340 
341     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
342     if (mmap_size < 0) {
343         ret = mmap_size;
344         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
345         goto err;
346     }
347 
348     ret = munmap(cpu->kvm_run, mmap_size);
349     if (ret < 0) {
350         goto err;
351     }
352 
353     if (cpu->kvm_dirty_gfns) {
354         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
355         if (ret < 0) {
356             goto err;
357         }
358     }
359 
360     vcpu = g_malloc0(sizeof(*vcpu));
361     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
362     vcpu->kvm_fd = cpu->kvm_fd;
363     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
364 err:
365     return ret;
366 }
367 
368 void kvm_destroy_vcpu(CPUState *cpu)
369 {
370     if (do_kvm_destroy_vcpu(cpu) < 0) {
371         error_report("kvm_destroy_vcpu failed");
372         exit(EXIT_FAILURE);
373     }
374 }
375 
376 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
377 {
378     struct KVMParkedVcpu *cpu;
379 
380     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
381         if (cpu->vcpu_id == vcpu_id) {
382             int kvm_fd;
383 
384             QLIST_REMOVE(cpu, node);
385             kvm_fd = cpu->kvm_fd;
386             g_free(cpu);
387             return kvm_fd;
388         }
389     }
390 
391     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
392 }
393 
394 int kvm_init_vcpu(CPUState *cpu, Error **errp)
395 {
396     KVMState *s = kvm_state;
397     long mmap_size;
398     int ret;
399 
400     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
401 
402     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
403     if (ret < 0) {
404         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
405                          kvm_arch_vcpu_id(cpu));
406         goto err;
407     }
408 
409     cpu->kvm_fd = ret;
410     cpu->kvm_state = s;
411     cpu->vcpu_dirty = true;
412     cpu->dirty_pages = 0;
413     cpu->throttle_us_per_full = 0;
414 
415     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
416     if (mmap_size < 0) {
417         ret = mmap_size;
418         error_setg_errno(errp, -mmap_size,
419                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
420         goto err;
421     }
422 
423     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
424                         cpu->kvm_fd, 0);
425     if (cpu->kvm_run == MAP_FAILED) {
426         ret = -errno;
427         error_setg_errno(errp, ret,
428                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
429                          kvm_arch_vcpu_id(cpu));
430         goto err;
431     }
432 
433     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
434         s->coalesced_mmio_ring =
435             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
436     }
437 
438     if (s->kvm_dirty_ring_size) {
439         /* Use MAP_SHARED to share pages with the kernel */
440         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
441                                    PROT_READ | PROT_WRITE, MAP_SHARED,
442                                    cpu->kvm_fd,
443                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
444         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
445             ret = -errno;
446             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
447             goto err;
448         }
449     }
450 
451     ret = kvm_arch_init_vcpu(cpu);
452     if (ret < 0) {
453         error_setg_errno(errp, -ret,
454                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
455                          kvm_arch_vcpu_id(cpu));
456     }
457     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
458 
459 err:
460     return ret;
461 }
462 
463 /*
464  * dirty pages logging control
465  */
466 
467 static int kvm_mem_flags(MemoryRegion *mr)
468 {
469     bool readonly = mr->readonly || memory_region_is_romd(mr);
470     int flags = 0;
471 
472     if (memory_region_get_dirty_log_mask(mr) != 0) {
473         flags |= KVM_MEM_LOG_DIRTY_PAGES;
474     }
475     if (readonly && kvm_readonly_mem_allowed) {
476         flags |= KVM_MEM_READONLY;
477     }
478     return flags;
479 }
480 
481 /* Called with KVMMemoryListener.slots_lock held */
482 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
483                                  MemoryRegion *mr)
484 {
485     mem->flags = kvm_mem_flags(mr);
486 
487     /* If nothing changed effectively, no need to issue ioctl */
488     if (mem->flags == mem->old_flags) {
489         return 0;
490     }
491 
492     kvm_slot_init_dirty_bitmap(mem);
493     return kvm_set_user_memory_region(kml, mem, false);
494 }
495 
496 static int kvm_section_update_flags(KVMMemoryListener *kml,
497                                     MemoryRegionSection *section)
498 {
499     hwaddr start_addr, size, slot_size;
500     KVMSlot *mem;
501     int ret = 0;
502 
503     size = kvm_align_section(section, &start_addr);
504     if (!size) {
505         return 0;
506     }
507 
508     kvm_slots_lock();
509 
510     while (size && !ret) {
511         slot_size = MIN(kvm_max_slot_size, size);
512         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
513         if (!mem) {
514             /* We don't have a slot if we want to trap every access. */
515             goto out;
516         }
517 
518         ret = kvm_slot_update_flags(kml, mem, section->mr);
519         start_addr += slot_size;
520         size -= slot_size;
521     }
522 
523 out:
524     kvm_slots_unlock();
525     return ret;
526 }
527 
528 static void kvm_log_start(MemoryListener *listener,
529                           MemoryRegionSection *section,
530                           int old, int new)
531 {
532     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
533     int r;
534 
535     if (old != 0) {
536         return;
537     }
538 
539     r = kvm_section_update_flags(kml, section);
540     if (r < 0) {
541         abort();
542     }
543 }
544 
545 static void kvm_log_stop(MemoryListener *listener,
546                           MemoryRegionSection *section,
547                           int old, int new)
548 {
549     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
550     int r;
551 
552     if (new != 0) {
553         return;
554     }
555 
556     r = kvm_section_update_flags(kml, section);
557     if (r < 0) {
558         abort();
559     }
560 }
561 
562 /* get kvm's dirty pages bitmap and update qemu's */
563 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
564 {
565     ram_addr_t start = slot->ram_start_offset;
566     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
567 
568     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
569 }
570 
571 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
572 {
573     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
574 }
575 
576 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
577 
578 /* Allocate the dirty bitmap for a slot  */
579 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
580 {
581     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
582         return;
583     }
584 
585     /*
586      * XXX bad kernel interface alert
587      * For dirty bitmap, kernel allocates array of size aligned to
588      * bits-per-long.  But for case when the kernel is 64bits and
589      * the userspace is 32bits, userspace can't align to the same
590      * bits-per-long, since sizeof(long) is different between kernel
591      * and user space.  This way, userspace will provide buffer which
592      * may be 4 bytes less than the kernel will use, resulting in
593      * userspace memory corruption (which is not detectable by valgrind
594      * too, in most cases).
595      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
596      * a hope that sizeof(long) won't become >8 any time soon.
597      *
598      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
599      * And mem->memory_size is aligned to it (otherwise this mem can't
600      * be registered to KVM).
601      */
602     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
603                                         /*HOST_LONG_BITS*/ 64) / 8;
604     mem->dirty_bmap = g_malloc0(bitmap_size);
605     mem->dirty_bmap_size = bitmap_size;
606 }
607 
608 /*
609  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
610  * succeeded, false otherwise
611  */
612 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
613 {
614     struct kvm_dirty_log d = {};
615     int ret;
616 
617     d.dirty_bitmap = slot->dirty_bmap;
618     d.slot = slot->slot | (slot->as_id << 16);
619     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
620 
621     if (ret == -ENOENT) {
622         /* kernel does not have dirty bitmap in this slot */
623         ret = 0;
624     }
625     if (ret) {
626         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
627                           __func__, ret);
628     }
629     return ret == 0;
630 }
631 
632 /* Should be with all slots_lock held for the address spaces. */
633 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
634                                      uint32_t slot_id, uint64_t offset)
635 {
636     KVMMemoryListener *kml;
637     KVMSlot *mem;
638 
639     if (as_id >= s->nr_as) {
640         return;
641     }
642 
643     kml = s->as[as_id].ml;
644     mem = &kml->slots[slot_id];
645 
646     if (!mem->memory_size || offset >=
647         (mem->memory_size / qemu_real_host_page_size())) {
648         return;
649     }
650 
651     set_bit(offset, mem->dirty_bmap);
652 }
653 
654 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
655 {
656     /*
657      * Read the flags before the value.  Pairs with barrier in
658      * KVM's kvm_dirty_ring_push() function.
659      */
660     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
661 }
662 
663 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
664 {
665     /*
666      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
667      * sees the full content of the ring:
668      *
669      * CPU0                     CPU1                         CPU2
670      * ------------------------------------------------------------------------------
671      *                                                       fill gfn0
672      *                                                       store-rel flags for gfn0
673      * load-acq flags for gfn0
674      * store-rel RESET for gfn0
675      *                          ioctl(RESET_RINGS)
676      *                            load-acq flags for gfn0
677      *                            check if flags have RESET
678      *
679      * The synchronization goes from CPU2 to CPU0 to CPU1.
680      */
681     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
682 }
683 
684 /*
685  * Should be with all slots_lock held for the address spaces.  It returns the
686  * dirty page we've collected on this dirty ring.
687  */
688 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
689 {
690     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
691     uint32_t ring_size = s->kvm_dirty_ring_size;
692     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
693 
694     /*
695      * It's possible that we race with vcpu creation code where the vcpu is
696      * put onto the vcpus list but not yet initialized the dirty ring
697      * structures.  If so, skip it.
698      */
699     if (!cpu->created) {
700         return 0;
701     }
702 
703     assert(dirty_gfns && ring_size);
704     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
705 
706     while (true) {
707         cur = &dirty_gfns[fetch % ring_size];
708         if (!dirty_gfn_is_dirtied(cur)) {
709             break;
710         }
711         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
712                                  cur->offset);
713         dirty_gfn_set_collected(cur);
714         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
715         fetch++;
716         count++;
717     }
718     cpu->kvm_fetch_index = fetch;
719     cpu->dirty_pages += count;
720 
721     return count;
722 }
723 
724 /* Must be with slots_lock held */
725 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
726 {
727     int ret;
728     uint64_t total = 0;
729     int64_t stamp;
730 
731     stamp = get_clock();
732 
733     if (cpu) {
734         total = kvm_dirty_ring_reap_one(s, cpu);
735     } else {
736         CPU_FOREACH(cpu) {
737             total += kvm_dirty_ring_reap_one(s, cpu);
738         }
739     }
740 
741     if (total) {
742         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
743         assert(ret == total);
744     }
745 
746     stamp = get_clock() - stamp;
747 
748     if (total) {
749         trace_kvm_dirty_ring_reap(total, stamp / 1000);
750     }
751 
752     return total;
753 }
754 
755 /*
756  * Currently for simplicity, we must hold BQL before calling this.  We can
757  * consider to drop the BQL if we're clear with all the race conditions.
758  */
759 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
760 {
761     uint64_t total;
762 
763     /*
764      * We need to lock all kvm slots for all address spaces here,
765      * because:
766      *
767      * (1) We need to mark dirty for dirty bitmaps in multiple slots
768      *     and for tons of pages, so it's better to take the lock here
769      *     once rather than once per page.  And more importantly,
770      *
771      * (2) We must _NOT_ publish dirty bits to the other threads
772      *     (e.g., the migration thread) via the kvm memory slot dirty
773      *     bitmaps before correctly re-protect those dirtied pages.
774      *     Otherwise we can have potential risk of data corruption if
775      *     the page data is read in the other thread before we do
776      *     reset below.
777      */
778     kvm_slots_lock();
779     total = kvm_dirty_ring_reap_locked(s, cpu);
780     kvm_slots_unlock();
781 
782     return total;
783 }
784 
785 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
786 {
787     /* No need to do anything */
788 }
789 
790 /*
791  * Kick all vcpus out in a synchronized way.  When returned, we
792  * guarantee that every vcpu has been kicked and at least returned to
793  * userspace once.
794  */
795 static void kvm_cpu_synchronize_kick_all(void)
796 {
797     CPUState *cpu;
798 
799     CPU_FOREACH(cpu) {
800         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
801     }
802 }
803 
804 /*
805  * Flush all the existing dirty pages to the KVM slot buffers.  When
806  * this call returns, we guarantee that all the touched dirty pages
807  * before calling this function have been put into the per-kvmslot
808  * dirty bitmap.
809  *
810  * This function must be called with BQL held.
811  */
812 static void kvm_dirty_ring_flush(void)
813 {
814     trace_kvm_dirty_ring_flush(0);
815     /*
816      * The function needs to be serialized.  Since this function
817      * should always be with BQL held, serialization is guaranteed.
818      * However, let's be sure of it.
819      */
820     assert(qemu_mutex_iothread_locked());
821     /*
822      * First make sure to flush the hardware buffers by kicking all
823      * vcpus out in a synchronous way.
824      */
825     kvm_cpu_synchronize_kick_all();
826     kvm_dirty_ring_reap(kvm_state, NULL);
827     trace_kvm_dirty_ring_flush(1);
828 }
829 
830 /**
831  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
832  *
833  * This function will first try to fetch dirty bitmap from the kernel,
834  * and then updates qemu's dirty bitmap.
835  *
836  * NOTE: caller must be with kml->slots_lock held.
837  *
838  * @kml: the KVM memory listener object
839  * @section: the memory section to sync the dirty bitmap with
840  */
841 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
842                                            MemoryRegionSection *section)
843 {
844     KVMState *s = kvm_state;
845     KVMSlot *mem;
846     hwaddr start_addr, size;
847     hwaddr slot_size;
848 
849     size = kvm_align_section(section, &start_addr);
850     while (size) {
851         slot_size = MIN(kvm_max_slot_size, size);
852         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
853         if (!mem) {
854             /* We don't have a slot if we want to trap every access. */
855             return;
856         }
857         if (kvm_slot_get_dirty_log(s, mem)) {
858             kvm_slot_sync_dirty_pages(mem);
859         }
860         start_addr += slot_size;
861         size -= slot_size;
862     }
863 }
864 
865 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
866 #define KVM_CLEAR_LOG_SHIFT  6
867 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
868 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
869 
870 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
871                                   uint64_t size)
872 {
873     KVMState *s = kvm_state;
874     uint64_t end, bmap_start, start_delta, bmap_npages;
875     struct kvm_clear_dirty_log d;
876     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
877     int ret;
878 
879     /*
880      * We need to extend either the start or the size or both to
881      * satisfy the KVM interface requirement.  Firstly, do the start
882      * page alignment on 64 host pages
883      */
884     bmap_start = start & KVM_CLEAR_LOG_MASK;
885     start_delta = start - bmap_start;
886     bmap_start /= psize;
887 
888     /*
889      * The kernel interface has restriction on the size too, that either:
890      *
891      * (1) the size is 64 host pages aligned (just like the start), or
892      * (2) the size fills up until the end of the KVM memslot.
893      */
894     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
895         << KVM_CLEAR_LOG_SHIFT;
896     end = mem->memory_size / psize;
897     if (bmap_npages > end - bmap_start) {
898         bmap_npages = end - bmap_start;
899     }
900     start_delta /= psize;
901 
902     /*
903      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
904      * that we won't clear any unknown dirty bits otherwise we might
905      * accidentally clear some set bits which are not yet synced from
906      * the kernel into QEMU's bitmap, then we'll lose track of the
907      * guest modifications upon those pages (which can directly lead
908      * to guest data loss or panic after migration).
909      *
910      * Layout of the KVMSlot.dirty_bmap:
911      *
912      *                   |<-------- bmap_npages -----------..>|
913      *                                                     [1]
914      *                     start_delta         size
915      *  |----------------|-------------|------------------|------------|
916      *  ^                ^             ^                               ^
917      *  |                |             |                               |
918      * start          bmap_start     (start)                         end
919      * of memslot                                             of memslot
920      *
921      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
922      */
923 
924     assert(bmap_start % BITS_PER_LONG == 0);
925     /* We should never do log_clear before log_sync */
926     assert(mem->dirty_bmap);
927     if (start_delta || bmap_npages - size / psize) {
928         /* Slow path - we need to manipulate a temp bitmap */
929         bmap_clear = bitmap_new(bmap_npages);
930         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
931                                     bmap_start, start_delta + size / psize);
932         /*
933          * We need to fill the holes at start because that was not
934          * specified by the caller and we extended the bitmap only for
935          * 64 pages alignment
936          */
937         bitmap_clear(bmap_clear, 0, start_delta);
938         d.dirty_bitmap = bmap_clear;
939     } else {
940         /*
941          * Fast path - both start and size align well with BITS_PER_LONG
942          * (or the end of memory slot)
943          */
944         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
945     }
946 
947     d.first_page = bmap_start;
948     /* It should never overflow.  If it happens, say something */
949     assert(bmap_npages <= UINT32_MAX);
950     d.num_pages = bmap_npages;
951     d.slot = mem->slot | (as_id << 16);
952 
953     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
954     if (ret < 0 && ret != -ENOENT) {
955         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
956                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
957                      __func__, d.slot, (uint64_t)d.first_page,
958                      (uint32_t)d.num_pages, ret);
959     } else {
960         ret = 0;
961         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
962     }
963 
964     /*
965      * After we have updated the remote dirty bitmap, we update the
966      * cached bitmap as well for the memslot, then if another user
967      * clears the same region we know we shouldn't clear it again on
968      * the remote otherwise it's data loss as well.
969      */
970     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
971                  size / psize);
972     /* This handles the NULL case well */
973     g_free(bmap_clear);
974     return ret;
975 }
976 
977 
978 /**
979  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
980  *
981  * NOTE: this will be a no-op if we haven't enabled manual dirty log
982  * protection in the host kernel because in that case this operation
983  * will be done within log_sync().
984  *
985  * @kml:     the kvm memory listener
986  * @section: the memory range to clear dirty bitmap
987  */
988 static int kvm_physical_log_clear(KVMMemoryListener *kml,
989                                   MemoryRegionSection *section)
990 {
991     KVMState *s = kvm_state;
992     uint64_t start, size, offset, count;
993     KVMSlot *mem;
994     int ret = 0, i;
995 
996     if (!s->manual_dirty_log_protect) {
997         /* No need to do explicit clear */
998         return ret;
999     }
1000 
1001     start = section->offset_within_address_space;
1002     size = int128_get64(section->size);
1003 
1004     if (!size) {
1005         /* Nothing more we can do... */
1006         return ret;
1007     }
1008 
1009     kvm_slots_lock();
1010 
1011     for (i = 0; i < s->nr_slots; i++) {
1012         mem = &kml->slots[i];
1013         /* Discard slots that are empty or do not overlap the section */
1014         if (!mem->memory_size ||
1015             mem->start_addr > start + size - 1 ||
1016             start > mem->start_addr + mem->memory_size - 1) {
1017             continue;
1018         }
1019 
1020         if (start >= mem->start_addr) {
1021             /* The slot starts before section or is aligned to it.  */
1022             offset = start - mem->start_addr;
1023             count = MIN(mem->memory_size - offset, size);
1024         } else {
1025             /* The slot starts after section.  */
1026             offset = 0;
1027             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1028         }
1029         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1030         if (ret < 0) {
1031             break;
1032         }
1033     }
1034 
1035     kvm_slots_unlock();
1036 
1037     return ret;
1038 }
1039 
1040 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1041                                      MemoryRegionSection *secion,
1042                                      hwaddr start, hwaddr size)
1043 {
1044     KVMState *s = kvm_state;
1045 
1046     if (s->coalesced_mmio) {
1047         struct kvm_coalesced_mmio_zone zone;
1048 
1049         zone.addr = start;
1050         zone.size = size;
1051         zone.pad = 0;
1052 
1053         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1054     }
1055 }
1056 
1057 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1058                                        MemoryRegionSection *secion,
1059                                        hwaddr start, hwaddr size)
1060 {
1061     KVMState *s = kvm_state;
1062 
1063     if (s->coalesced_mmio) {
1064         struct kvm_coalesced_mmio_zone zone;
1065 
1066         zone.addr = start;
1067         zone.size = size;
1068         zone.pad = 0;
1069 
1070         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1071     }
1072 }
1073 
1074 static void kvm_coalesce_pio_add(MemoryListener *listener,
1075                                 MemoryRegionSection *section,
1076                                 hwaddr start, hwaddr size)
1077 {
1078     KVMState *s = kvm_state;
1079 
1080     if (s->coalesced_pio) {
1081         struct kvm_coalesced_mmio_zone zone;
1082 
1083         zone.addr = start;
1084         zone.size = size;
1085         zone.pio = 1;
1086 
1087         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1088     }
1089 }
1090 
1091 static void kvm_coalesce_pio_del(MemoryListener *listener,
1092                                 MemoryRegionSection *section,
1093                                 hwaddr start, hwaddr size)
1094 {
1095     KVMState *s = kvm_state;
1096 
1097     if (s->coalesced_pio) {
1098         struct kvm_coalesced_mmio_zone zone;
1099 
1100         zone.addr = start;
1101         zone.size = size;
1102         zone.pio = 1;
1103 
1104         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1105      }
1106 }
1107 
1108 static MemoryListener kvm_coalesced_pio_listener = {
1109     .name = "kvm-coalesced-pio",
1110     .coalesced_io_add = kvm_coalesce_pio_add,
1111     .coalesced_io_del = kvm_coalesce_pio_del,
1112     .priority = MEMORY_LISTENER_PRIORITY_MIN,
1113 };
1114 
1115 int kvm_check_extension(KVMState *s, unsigned int extension)
1116 {
1117     int ret;
1118 
1119     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1120     if (ret < 0) {
1121         ret = 0;
1122     }
1123 
1124     return ret;
1125 }
1126 
1127 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1128 {
1129     int ret;
1130 
1131     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1132     if (ret < 0) {
1133         /* VM wide version not implemented, use global one instead */
1134         ret = kvm_check_extension(s, extension);
1135     }
1136 
1137     return ret;
1138 }
1139 
1140 typedef struct HWPoisonPage {
1141     ram_addr_t ram_addr;
1142     QLIST_ENTRY(HWPoisonPage) list;
1143 } HWPoisonPage;
1144 
1145 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1146     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1147 
1148 static void kvm_unpoison_all(void *param)
1149 {
1150     HWPoisonPage *page, *next_page;
1151 
1152     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1153         QLIST_REMOVE(page, list);
1154         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1155         g_free(page);
1156     }
1157 }
1158 
1159 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1160 {
1161     HWPoisonPage *page;
1162 
1163     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1164         if (page->ram_addr == ram_addr) {
1165             return;
1166         }
1167     }
1168     page = g_new(HWPoisonPage, 1);
1169     page->ram_addr = ram_addr;
1170     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1171 }
1172 
1173 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1174 {
1175 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1176     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1177      * endianness, but the memory core hands them in target endianness.
1178      * For example, PPC is always treated as big-endian even if running
1179      * on KVM and on PPC64LE.  Correct here.
1180      */
1181     switch (size) {
1182     case 2:
1183         val = bswap16(val);
1184         break;
1185     case 4:
1186         val = bswap32(val);
1187         break;
1188     }
1189 #endif
1190     return val;
1191 }
1192 
1193 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1194                                   bool assign, uint32_t size, bool datamatch)
1195 {
1196     int ret;
1197     struct kvm_ioeventfd iofd = {
1198         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1199         .addr = addr,
1200         .len = size,
1201         .flags = 0,
1202         .fd = fd,
1203     };
1204 
1205     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1206                                  datamatch);
1207     if (!kvm_enabled()) {
1208         return -ENOSYS;
1209     }
1210 
1211     if (datamatch) {
1212         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1213     }
1214     if (!assign) {
1215         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1216     }
1217 
1218     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1219 
1220     if (ret < 0) {
1221         return -errno;
1222     }
1223 
1224     return 0;
1225 }
1226 
1227 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1228                                  bool assign, uint32_t size, bool datamatch)
1229 {
1230     struct kvm_ioeventfd kick = {
1231         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1232         .addr = addr,
1233         .flags = KVM_IOEVENTFD_FLAG_PIO,
1234         .len = size,
1235         .fd = fd,
1236     };
1237     int r;
1238     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1239     if (!kvm_enabled()) {
1240         return -ENOSYS;
1241     }
1242     if (datamatch) {
1243         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1244     }
1245     if (!assign) {
1246         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1247     }
1248     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1249     if (r < 0) {
1250         return r;
1251     }
1252     return 0;
1253 }
1254 
1255 
1256 static const KVMCapabilityInfo *
1257 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1258 {
1259     while (list->name) {
1260         if (!kvm_check_extension(s, list->value)) {
1261             return list;
1262         }
1263         list++;
1264     }
1265     return NULL;
1266 }
1267 
1268 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1269 {
1270     g_assert(
1271         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1272     );
1273     kvm_max_slot_size = max_slot_size;
1274 }
1275 
1276 /* Called with KVMMemoryListener.slots_lock held */
1277 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1278                              MemoryRegionSection *section, bool add)
1279 {
1280     KVMSlot *mem;
1281     int err;
1282     MemoryRegion *mr = section->mr;
1283     bool writable = !mr->readonly && !mr->rom_device;
1284     hwaddr start_addr, size, slot_size, mr_offset;
1285     ram_addr_t ram_start_offset;
1286     void *ram;
1287 
1288     if (!memory_region_is_ram(mr)) {
1289         if (writable || !kvm_readonly_mem_allowed) {
1290             return;
1291         } else if (!mr->romd_mode) {
1292             /* If the memory device is not in romd_mode, then we actually want
1293              * to remove the kvm memory slot so all accesses will trap. */
1294             add = false;
1295         }
1296     }
1297 
1298     size = kvm_align_section(section, &start_addr);
1299     if (!size) {
1300         return;
1301     }
1302 
1303     /* The offset of the kvmslot within the memory region */
1304     mr_offset = section->offset_within_region + start_addr -
1305         section->offset_within_address_space;
1306 
1307     /* use aligned delta to align the ram address and offset */
1308     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1309     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1310 
1311     if (!add) {
1312         do {
1313             slot_size = MIN(kvm_max_slot_size, size);
1314             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1315             if (!mem) {
1316                 return;
1317             }
1318             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1319                 /*
1320                  * NOTE: We should be aware of the fact that here we're only
1321                  * doing a best effort to sync dirty bits.  No matter whether
1322                  * we're using dirty log or dirty ring, we ignored two facts:
1323                  *
1324                  * (1) dirty bits can reside in hardware buffers (PML)
1325                  *
1326                  * (2) after we collected dirty bits here, pages can be dirtied
1327                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1328                  * remove the slot.
1329                  *
1330                  * Not easy.  Let's cross the fingers until it's fixed.
1331                  */
1332                 if (kvm_state->kvm_dirty_ring_size) {
1333                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1334                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1335                         kvm_slot_sync_dirty_pages(mem);
1336                         kvm_slot_get_dirty_log(kvm_state, mem);
1337                     }
1338                 } else {
1339                     kvm_slot_get_dirty_log(kvm_state, mem);
1340                 }
1341                 kvm_slot_sync_dirty_pages(mem);
1342             }
1343 
1344             /* unregister the slot */
1345             g_free(mem->dirty_bmap);
1346             mem->dirty_bmap = NULL;
1347             mem->memory_size = 0;
1348             mem->flags = 0;
1349             err = kvm_set_user_memory_region(kml, mem, false);
1350             if (err) {
1351                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1352                         __func__, strerror(-err));
1353                 abort();
1354             }
1355             start_addr += slot_size;
1356             size -= slot_size;
1357             kml->nr_used_slots--;
1358         } while (size);
1359         return;
1360     }
1361 
1362     /* register the new slot */
1363     do {
1364         slot_size = MIN(kvm_max_slot_size, size);
1365         mem = kvm_alloc_slot(kml);
1366         mem->as_id = kml->as_id;
1367         mem->memory_size = slot_size;
1368         mem->start_addr = start_addr;
1369         mem->ram_start_offset = ram_start_offset;
1370         mem->ram = ram;
1371         mem->flags = kvm_mem_flags(mr);
1372         kvm_slot_init_dirty_bitmap(mem);
1373         err = kvm_set_user_memory_region(kml, mem, true);
1374         if (err) {
1375             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1376                     strerror(-err));
1377             abort();
1378         }
1379         start_addr += slot_size;
1380         ram_start_offset += slot_size;
1381         ram += slot_size;
1382         size -= slot_size;
1383         kml->nr_used_slots++;
1384     } while (size);
1385 }
1386 
1387 static void *kvm_dirty_ring_reaper_thread(void *data)
1388 {
1389     KVMState *s = data;
1390     struct KVMDirtyRingReaper *r = &s->reaper;
1391 
1392     rcu_register_thread();
1393 
1394     trace_kvm_dirty_ring_reaper("init");
1395 
1396     while (true) {
1397         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1398         trace_kvm_dirty_ring_reaper("wait");
1399         /*
1400          * TODO: provide a smarter timeout rather than a constant?
1401          */
1402         sleep(1);
1403 
1404         /* keep sleeping so that dirtylimit not be interfered by reaper */
1405         if (dirtylimit_in_service()) {
1406             continue;
1407         }
1408 
1409         trace_kvm_dirty_ring_reaper("wakeup");
1410         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1411 
1412         qemu_mutex_lock_iothread();
1413         kvm_dirty_ring_reap(s, NULL);
1414         qemu_mutex_unlock_iothread();
1415 
1416         r->reaper_iteration++;
1417     }
1418 
1419     trace_kvm_dirty_ring_reaper("exit");
1420 
1421     rcu_unregister_thread();
1422 
1423     return NULL;
1424 }
1425 
1426 static void kvm_dirty_ring_reaper_init(KVMState *s)
1427 {
1428     struct KVMDirtyRingReaper *r = &s->reaper;
1429 
1430     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1431                        kvm_dirty_ring_reaper_thread,
1432                        s, QEMU_THREAD_JOINABLE);
1433 }
1434 
1435 static int kvm_dirty_ring_init(KVMState *s)
1436 {
1437     uint32_t ring_size = s->kvm_dirty_ring_size;
1438     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1439     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1440     int ret;
1441 
1442     s->kvm_dirty_ring_size = 0;
1443     s->kvm_dirty_ring_bytes = 0;
1444 
1445     /* Bail if the dirty ring size isn't specified */
1446     if (!ring_size) {
1447         return 0;
1448     }
1449 
1450     /*
1451      * Read the max supported pages. Fall back to dirty logging mode
1452      * if the dirty ring isn't supported.
1453      */
1454     ret = kvm_vm_check_extension(s, capability);
1455     if (ret <= 0) {
1456         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1457         ret = kvm_vm_check_extension(s, capability);
1458     }
1459 
1460     if (ret <= 0) {
1461         warn_report("KVM dirty ring not available, using bitmap method");
1462         return 0;
1463     }
1464 
1465     if (ring_bytes > ret) {
1466         error_report("KVM dirty ring size %" PRIu32 " too big "
1467                      "(maximum is %ld).  Please use a smaller value.",
1468                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1469         return -EINVAL;
1470     }
1471 
1472     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1473     if (ret) {
1474         error_report("Enabling of KVM dirty ring failed: %s. "
1475                      "Suggested minimum value is 1024.", strerror(-ret));
1476         return -EIO;
1477     }
1478 
1479     /* Enable the backup bitmap if it is supported */
1480     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1481     if (ret > 0) {
1482         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1483         if (ret) {
1484             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1485                          "%s. ", strerror(-ret));
1486             return -EIO;
1487         }
1488 
1489         s->kvm_dirty_ring_with_bitmap = true;
1490     }
1491 
1492     s->kvm_dirty_ring_size = ring_size;
1493     s->kvm_dirty_ring_bytes = ring_bytes;
1494 
1495     return 0;
1496 }
1497 
1498 static void kvm_region_add(MemoryListener *listener,
1499                            MemoryRegionSection *section)
1500 {
1501     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1502     KVMMemoryUpdate *update;
1503 
1504     update = g_new0(KVMMemoryUpdate, 1);
1505     update->section = *section;
1506 
1507     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1508 }
1509 
1510 static void kvm_region_del(MemoryListener *listener,
1511                            MemoryRegionSection *section)
1512 {
1513     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1514     KVMMemoryUpdate *update;
1515 
1516     update = g_new0(KVMMemoryUpdate, 1);
1517     update->section = *section;
1518 
1519     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1520 }
1521 
1522 static void kvm_region_commit(MemoryListener *listener)
1523 {
1524     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1525                                           listener);
1526     KVMMemoryUpdate *u1, *u2;
1527     bool need_inhibit = false;
1528 
1529     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1530         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1531         return;
1532     }
1533 
1534     /*
1535      * We have to be careful when regions to add overlap with ranges to remove.
1536      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1537      * is currently active.
1538      *
1539      * The lists are order by addresses, so it's easy to find overlaps.
1540      */
1541     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1542     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1543     while (u1 && u2) {
1544         Range r1, r2;
1545 
1546         range_init_nofail(&r1, u1->section.offset_within_address_space,
1547                           int128_get64(u1->section.size));
1548         range_init_nofail(&r2, u2->section.offset_within_address_space,
1549                           int128_get64(u2->section.size));
1550 
1551         if (range_overlaps_range(&r1, &r2)) {
1552             need_inhibit = true;
1553             break;
1554         }
1555         if (range_lob(&r1) < range_lob(&r2)) {
1556             u1 = QSIMPLEQ_NEXT(u1, next);
1557         } else {
1558             u2 = QSIMPLEQ_NEXT(u2, next);
1559         }
1560     }
1561 
1562     kvm_slots_lock();
1563     if (need_inhibit) {
1564         accel_ioctl_inhibit_begin();
1565     }
1566 
1567     /* Remove all memslots before adding the new ones. */
1568     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1569         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1570         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1571 
1572         kvm_set_phys_mem(kml, &u1->section, false);
1573         memory_region_unref(u1->section.mr);
1574 
1575         g_free(u1);
1576     }
1577     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1578         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1579         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1580 
1581         memory_region_ref(u1->section.mr);
1582         kvm_set_phys_mem(kml, &u1->section, true);
1583 
1584         g_free(u1);
1585     }
1586 
1587     if (need_inhibit) {
1588         accel_ioctl_inhibit_end();
1589     }
1590     kvm_slots_unlock();
1591 }
1592 
1593 static void kvm_log_sync(MemoryListener *listener,
1594                          MemoryRegionSection *section)
1595 {
1596     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1597 
1598     kvm_slots_lock();
1599     kvm_physical_sync_dirty_bitmap(kml, section);
1600     kvm_slots_unlock();
1601 }
1602 
1603 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1604 {
1605     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1606     KVMState *s = kvm_state;
1607     KVMSlot *mem;
1608     int i;
1609 
1610     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1611     kvm_dirty_ring_flush();
1612 
1613     /*
1614      * TODO: make this faster when nr_slots is big while there are
1615      * only a few used slots (small VMs).
1616      */
1617     kvm_slots_lock();
1618     for (i = 0; i < s->nr_slots; i++) {
1619         mem = &kml->slots[i];
1620         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1621             kvm_slot_sync_dirty_pages(mem);
1622 
1623             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1624                 kvm_slot_get_dirty_log(s, mem)) {
1625                 kvm_slot_sync_dirty_pages(mem);
1626             }
1627 
1628             /*
1629              * This is not needed by KVM_GET_DIRTY_LOG because the
1630              * ioctl will unconditionally overwrite the whole region.
1631              * However kvm dirty ring has no such side effect.
1632              */
1633             kvm_slot_reset_dirty_pages(mem);
1634         }
1635     }
1636     kvm_slots_unlock();
1637 }
1638 
1639 static void kvm_log_clear(MemoryListener *listener,
1640                           MemoryRegionSection *section)
1641 {
1642     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1643     int r;
1644 
1645     r = kvm_physical_log_clear(kml, section);
1646     if (r < 0) {
1647         error_report_once("%s: kvm log clear failed: mr=%s "
1648                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1649                           section->mr->name, section->offset_within_region,
1650                           int128_get64(section->size));
1651         abort();
1652     }
1653 }
1654 
1655 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1656                                   MemoryRegionSection *section,
1657                                   bool match_data, uint64_t data,
1658                                   EventNotifier *e)
1659 {
1660     int fd = event_notifier_get_fd(e);
1661     int r;
1662 
1663     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1664                                data, true, int128_get64(section->size),
1665                                match_data);
1666     if (r < 0) {
1667         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1668                 __func__, strerror(-r), -r);
1669         abort();
1670     }
1671 }
1672 
1673 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1674                                   MemoryRegionSection *section,
1675                                   bool match_data, uint64_t data,
1676                                   EventNotifier *e)
1677 {
1678     int fd = event_notifier_get_fd(e);
1679     int r;
1680 
1681     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1682                                data, false, int128_get64(section->size),
1683                                match_data);
1684     if (r < 0) {
1685         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1686                 __func__, strerror(-r), -r);
1687         abort();
1688     }
1689 }
1690 
1691 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1692                                  MemoryRegionSection *section,
1693                                  bool match_data, uint64_t data,
1694                                  EventNotifier *e)
1695 {
1696     int fd = event_notifier_get_fd(e);
1697     int r;
1698 
1699     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1700                               data, true, int128_get64(section->size),
1701                               match_data);
1702     if (r < 0) {
1703         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1704                 __func__, strerror(-r), -r);
1705         abort();
1706     }
1707 }
1708 
1709 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1710                                  MemoryRegionSection *section,
1711                                  bool match_data, uint64_t data,
1712                                  EventNotifier *e)
1713 
1714 {
1715     int fd = event_notifier_get_fd(e);
1716     int r;
1717 
1718     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1719                               data, false, int128_get64(section->size),
1720                               match_data);
1721     if (r < 0) {
1722         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1723                 __func__, strerror(-r), -r);
1724         abort();
1725     }
1726 }
1727 
1728 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1729                                   AddressSpace *as, int as_id, const char *name)
1730 {
1731     int i;
1732 
1733     kml->slots = g_new0(KVMSlot, s->nr_slots);
1734     kml->as_id = as_id;
1735 
1736     for (i = 0; i < s->nr_slots; i++) {
1737         kml->slots[i].slot = i;
1738     }
1739 
1740     QSIMPLEQ_INIT(&kml->transaction_add);
1741     QSIMPLEQ_INIT(&kml->transaction_del);
1742 
1743     kml->listener.region_add = kvm_region_add;
1744     kml->listener.region_del = kvm_region_del;
1745     kml->listener.commit = kvm_region_commit;
1746     kml->listener.log_start = kvm_log_start;
1747     kml->listener.log_stop = kvm_log_stop;
1748     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1749     kml->listener.name = name;
1750 
1751     if (s->kvm_dirty_ring_size) {
1752         kml->listener.log_sync_global = kvm_log_sync_global;
1753     } else {
1754         kml->listener.log_sync = kvm_log_sync;
1755         kml->listener.log_clear = kvm_log_clear;
1756     }
1757 
1758     memory_listener_register(&kml->listener, as);
1759 
1760     for (i = 0; i < s->nr_as; ++i) {
1761         if (!s->as[i].as) {
1762             s->as[i].as = as;
1763             s->as[i].ml = kml;
1764             break;
1765         }
1766     }
1767 }
1768 
1769 static MemoryListener kvm_io_listener = {
1770     .name = "kvm-io",
1771     .eventfd_add = kvm_io_ioeventfd_add,
1772     .eventfd_del = kvm_io_ioeventfd_del,
1773     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1774 };
1775 
1776 int kvm_set_irq(KVMState *s, int irq, int level)
1777 {
1778     struct kvm_irq_level event;
1779     int ret;
1780 
1781     assert(kvm_async_interrupts_enabled());
1782 
1783     event.level = level;
1784     event.irq = irq;
1785     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1786     if (ret < 0) {
1787         perror("kvm_set_irq");
1788         abort();
1789     }
1790 
1791     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1792 }
1793 
1794 #ifdef KVM_CAP_IRQ_ROUTING
1795 typedef struct KVMMSIRoute {
1796     struct kvm_irq_routing_entry kroute;
1797     QTAILQ_ENTRY(KVMMSIRoute) entry;
1798 } KVMMSIRoute;
1799 
1800 static void set_gsi(KVMState *s, unsigned int gsi)
1801 {
1802     set_bit(gsi, s->used_gsi_bitmap);
1803 }
1804 
1805 static void clear_gsi(KVMState *s, unsigned int gsi)
1806 {
1807     clear_bit(gsi, s->used_gsi_bitmap);
1808 }
1809 
1810 void kvm_init_irq_routing(KVMState *s)
1811 {
1812     int gsi_count;
1813 
1814     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1815     if (gsi_count > 0) {
1816         /* Round up so we can search ints using ffs */
1817         s->used_gsi_bitmap = bitmap_new(gsi_count);
1818         s->gsi_count = gsi_count;
1819     }
1820 
1821     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1822     s->nr_allocated_irq_routes = 0;
1823 
1824     kvm_arch_init_irq_routing(s);
1825 }
1826 
1827 void kvm_irqchip_commit_routes(KVMState *s)
1828 {
1829     int ret;
1830 
1831     if (kvm_gsi_direct_mapping()) {
1832         return;
1833     }
1834 
1835     if (!kvm_gsi_routing_enabled()) {
1836         return;
1837     }
1838 
1839     s->irq_routes->flags = 0;
1840     trace_kvm_irqchip_commit_routes();
1841     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1842     assert(ret == 0);
1843 }
1844 
1845 static void kvm_add_routing_entry(KVMState *s,
1846                                   struct kvm_irq_routing_entry *entry)
1847 {
1848     struct kvm_irq_routing_entry *new;
1849     int n, size;
1850 
1851     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1852         n = s->nr_allocated_irq_routes * 2;
1853         if (n < 64) {
1854             n = 64;
1855         }
1856         size = sizeof(struct kvm_irq_routing);
1857         size += n * sizeof(*new);
1858         s->irq_routes = g_realloc(s->irq_routes, size);
1859         s->nr_allocated_irq_routes = n;
1860     }
1861     n = s->irq_routes->nr++;
1862     new = &s->irq_routes->entries[n];
1863 
1864     *new = *entry;
1865 
1866     set_gsi(s, entry->gsi);
1867 }
1868 
1869 static int kvm_update_routing_entry(KVMState *s,
1870                                     struct kvm_irq_routing_entry *new_entry)
1871 {
1872     struct kvm_irq_routing_entry *entry;
1873     int n;
1874 
1875     for (n = 0; n < s->irq_routes->nr; n++) {
1876         entry = &s->irq_routes->entries[n];
1877         if (entry->gsi != new_entry->gsi) {
1878             continue;
1879         }
1880 
1881         if(!memcmp(entry, new_entry, sizeof *entry)) {
1882             return 0;
1883         }
1884 
1885         *entry = *new_entry;
1886 
1887         return 0;
1888     }
1889 
1890     return -ESRCH;
1891 }
1892 
1893 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1894 {
1895     struct kvm_irq_routing_entry e = {};
1896 
1897     assert(pin < s->gsi_count);
1898 
1899     e.gsi = irq;
1900     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1901     e.flags = 0;
1902     e.u.irqchip.irqchip = irqchip;
1903     e.u.irqchip.pin = pin;
1904     kvm_add_routing_entry(s, &e);
1905 }
1906 
1907 void kvm_irqchip_release_virq(KVMState *s, int virq)
1908 {
1909     struct kvm_irq_routing_entry *e;
1910     int i;
1911 
1912     if (kvm_gsi_direct_mapping()) {
1913         return;
1914     }
1915 
1916     for (i = 0; i < s->irq_routes->nr; i++) {
1917         e = &s->irq_routes->entries[i];
1918         if (e->gsi == virq) {
1919             s->irq_routes->nr--;
1920             *e = s->irq_routes->entries[s->irq_routes->nr];
1921         }
1922     }
1923     clear_gsi(s, virq);
1924     kvm_arch_release_virq_post(virq);
1925     trace_kvm_irqchip_release_virq(virq);
1926 }
1927 
1928 void kvm_irqchip_add_change_notifier(Notifier *n)
1929 {
1930     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1931 }
1932 
1933 void kvm_irqchip_remove_change_notifier(Notifier *n)
1934 {
1935     notifier_remove(n);
1936 }
1937 
1938 void kvm_irqchip_change_notify(void)
1939 {
1940     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1941 }
1942 
1943 static int kvm_irqchip_get_virq(KVMState *s)
1944 {
1945     int next_virq;
1946 
1947     /* Return the lowest unused GSI in the bitmap */
1948     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1949     if (next_virq >= s->gsi_count) {
1950         return -ENOSPC;
1951     } else {
1952         return next_virq;
1953     }
1954 }
1955 
1956 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1957 {
1958     struct kvm_msi msi;
1959 
1960     msi.address_lo = (uint32_t)msg.address;
1961     msi.address_hi = msg.address >> 32;
1962     msi.data = le32_to_cpu(msg.data);
1963     msi.flags = 0;
1964     memset(msi.pad, 0, sizeof(msi.pad));
1965 
1966     return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1967 }
1968 
1969 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1970 {
1971     struct kvm_irq_routing_entry kroute = {};
1972     int virq;
1973     KVMState *s = c->s;
1974     MSIMessage msg = {0, 0};
1975 
1976     if (pci_available && dev) {
1977         msg = pci_get_msi_message(dev, vector);
1978     }
1979 
1980     if (kvm_gsi_direct_mapping()) {
1981         return kvm_arch_msi_data_to_gsi(msg.data);
1982     }
1983 
1984     if (!kvm_gsi_routing_enabled()) {
1985         return -ENOSYS;
1986     }
1987 
1988     virq = kvm_irqchip_get_virq(s);
1989     if (virq < 0) {
1990         return virq;
1991     }
1992 
1993     kroute.gsi = virq;
1994     kroute.type = KVM_IRQ_ROUTING_MSI;
1995     kroute.flags = 0;
1996     kroute.u.msi.address_lo = (uint32_t)msg.address;
1997     kroute.u.msi.address_hi = msg.address >> 32;
1998     kroute.u.msi.data = le32_to_cpu(msg.data);
1999     if (pci_available && kvm_msi_devid_required()) {
2000         kroute.flags = KVM_MSI_VALID_DEVID;
2001         kroute.u.msi.devid = pci_requester_id(dev);
2002     }
2003     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2004         kvm_irqchip_release_virq(s, virq);
2005         return -EINVAL;
2006     }
2007 
2008     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2009                                     vector, virq);
2010 
2011     kvm_add_routing_entry(s, &kroute);
2012     kvm_arch_add_msi_route_post(&kroute, vector, dev);
2013     c->changes++;
2014 
2015     return virq;
2016 }
2017 
2018 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2019                                  PCIDevice *dev)
2020 {
2021     struct kvm_irq_routing_entry kroute = {};
2022 
2023     if (kvm_gsi_direct_mapping()) {
2024         return 0;
2025     }
2026 
2027     if (!kvm_irqchip_in_kernel()) {
2028         return -ENOSYS;
2029     }
2030 
2031     kroute.gsi = virq;
2032     kroute.type = KVM_IRQ_ROUTING_MSI;
2033     kroute.flags = 0;
2034     kroute.u.msi.address_lo = (uint32_t)msg.address;
2035     kroute.u.msi.address_hi = msg.address >> 32;
2036     kroute.u.msi.data = le32_to_cpu(msg.data);
2037     if (pci_available && kvm_msi_devid_required()) {
2038         kroute.flags = KVM_MSI_VALID_DEVID;
2039         kroute.u.msi.devid = pci_requester_id(dev);
2040     }
2041     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2042         return -EINVAL;
2043     }
2044 
2045     trace_kvm_irqchip_update_msi_route(virq);
2046 
2047     return kvm_update_routing_entry(s, &kroute);
2048 }
2049 
2050 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2051                                     EventNotifier *resample, int virq,
2052                                     bool assign)
2053 {
2054     int fd = event_notifier_get_fd(event);
2055     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2056 
2057     struct kvm_irqfd irqfd = {
2058         .fd = fd,
2059         .gsi = virq,
2060         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2061     };
2062 
2063     if (rfd != -1) {
2064         assert(assign);
2065         if (kvm_irqchip_is_split()) {
2066             /*
2067              * When the slow irqchip (e.g. IOAPIC) is in the
2068              * userspace, KVM kernel resamplefd will not work because
2069              * the EOI of the interrupt will be delivered to userspace
2070              * instead, so the KVM kernel resamplefd kick will be
2071              * skipped.  The userspace here mimics what the kernel
2072              * provides with resamplefd, remember the resamplefd and
2073              * kick it when we receive EOI of this IRQ.
2074              *
2075              * This is hackery because IOAPIC is mostly bypassed
2076              * (except EOI broadcasts) when irqfd is used.  However
2077              * this can bring much performance back for split irqchip
2078              * with INTx IRQs (for VFIO, this gives 93% perf of the
2079              * full fast path, which is 46% perf boost comparing to
2080              * the INTx slow path).
2081              */
2082             kvm_resample_fd_insert(virq, resample);
2083         } else {
2084             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2085             irqfd.resamplefd = rfd;
2086         }
2087     } else if (!assign) {
2088         if (kvm_irqchip_is_split()) {
2089             kvm_resample_fd_remove(virq);
2090         }
2091     }
2092 
2093     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2094 }
2095 
2096 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2097 {
2098     struct kvm_irq_routing_entry kroute = {};
2099     int virq;
2100 
2101     if (!kvm_gsi_routing_enabled()) {
2102         return -ENOSYS;
2103     }
2104 
2105     virq = kvm_irqchip_get_virq(s);
2106     if (virq < 0) {
2107         return virq;
2108     }
2109 
2110     kroute.gsi = virq;
2111     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2112     kroute.flags = 0;
2113     kroute.u.adapter.summary_addr = adapter->summary_addr;
2114     kroute.u.adapter.ind_addr = adapter->ind_addr;
2115     kroute.u.adapter.summary_offset = adapter->summary_offset;
2116     kroute.u.adapter.ind_offset = adapter->ind_offset;
2117     kroute.u.adapter.adapter_id = adapter->adapter_id;
2118 
2119     kvm_add_routing_entry(s, &kroute);
2120 
2121     return virq;
2122 }
2123 
2124 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2125 {
2126     struct kvm_irq_routing_entry kroute = {};
2127     int virq;
2128 
2129     if (!kvm_gsi_routing_enabled()) {
2130         return -ENOSYS;
2131     }
2132     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2133         return -ENOSYS;
2134     }
2135     virq = kvm_irqchip_get_virq(s);
2136     if (virq < 0) {
2137         return virq;
2138     }
2139 
2140     kroute.gsi = virq;
2141     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2142     kroute.flags = 0;
2143     kroute.u.hv_sint.vcpu = vcpu;
2144     kroute.u.hv_sint.sint = sint;
2145 
2146     kvm_add_routing_entry(s, &kroute);
2147     kvm_irqchip_commit_routes(s);
2148 
2149     return virq;
2150 }
2151 
2152 #else /* !KVM_CAP_IRQ_ROUTING */
2153 
2154 void kvm_init_irq_routing(KVMState *s)
2155 {
2156 }
2157 
2158 void kvm_irqchip_release_virq(KVMState *s, int virq)
2159 {
2160 }
2161 
2162 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2163 {
2164     abort();
2165 }
2166 
2167 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2168 {
2169     return -ENOSYS;
2170 }
2171 
2172 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2173 {
2174     return -ENOSYS;
2175 }
2176 
2177 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2178 {
2179     return -ENOSYS;
2180 }
2181 
2182 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2183                                     EventNotifier *resample, int virq,
2184                                     bool assign)
2185 {
2186     abort();
2187 }
2188 
2189 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2190 {
2191     return -ENOSYS;
2192 }
2193 #endif /* !KVM_CAP_IRQ_ROUTING */
2194 
2195 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2196                                        EventNotifier *rn, int virq)
2197 {
2198     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2199 }
2200 
2201 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2202                                           int virq)
2203 {
2204     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2205 }
2206 
2207 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2208                                    EventNotifier *rn, qemu_irq irq)
2209 {
2210     gpointer key, gsi;
2211     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2212 
2213     if (!found) {
2214         return -ENXIO;
2215     }
2216     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2217 }
2218 
2219 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2220                                       qemu_irq irq)
2221 {
2222     gpointer key, gsi;
2223     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2224 
2225     if (!found) {
2226         return -ENXIO;
2227     }
2228     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2229 }
2230 
2231 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2232 {
2233     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2234 }
2235 
2236 static void kvm_irqchip_create(KVMState *s)
2237 {
2238     int ret;
2239 
2240     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2241     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2242         ;
2243     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2244         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2245         if (ret < 0) {
2246             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2247             exit(1);
2248         }
2249     } else {
2250         return;
2251     }
2252 
2253     if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2254         fprintf(stderr, "kvm: irqfd not implemented\n");
2255         exit(1);
2256     }
2257 
2258     /* First probe and see if there's a arch-specific hook to create the
2259      * in-kernel irqchip for us */
2260     ret = kvm_arch_irqchip_create(s);
2261     if (ret == 0) {
2262         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2263             error_report("Split IRQ chip mode not supported.");
2264             exit(1);
2265         } else {
2266             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2267         }
2268     }
2269     if (ret < 0) {
2270         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2271         exit(1);
2272     }
2273 
2274     kvm_kernel_irqchip = true;
2275     /* If we have an in-kernel IRQ chip then we must have asynchronous
2276      * interrupt delivery (though the reverse is not necessarily true)
2277      */
2278     kvm_async_interrupts_allowed = true;
2279     kvm_halt_in_kernel_allowed = true;
2280 
2281     kvm_init_irq_routing(s);
2282 
2283     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2284 }
2285 
2286 /* Find number of supported CPUs using the recommended
2287  * procedure from the kernel API documentation to cope with
2288  * older kernels that may be missing capabilities.
2289  */
2290 static int kvm_recommended_vcpus(KVMState *s)
2291 {
2292     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2293     return (ret) ? ret : 4;
2294 }
2295 
2296 static int kvm_max_vcpus(KVMState *s)
2297 {
2298     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2299     return (ret) ? ret : kvm_recommended_vcpus(s);
2300 }
2301 
2302 static int kvm_max_vcpu_id(KVMState *s)
2303 {
2304     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2305     return (ret) ? ret : kvm_max_vcpus(s);
2306 }
2307 
2308 bool kvm_vcpu_id_is_valid(int vcpu_id)
2309 {
2310     KVMState *s = KVM_STATE(current_accel());
2311     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2312 }
2313 
2314 bool kvm_dirty_ring_enabled(void)
2315 {
2316     return kvm_state->kvm_dirty_ring_size ? true : false;
2317 }
2318 
2319 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2320                            strList *names, strList *targets, Error **errp);
2321 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2322 
2323 uint32_t kvm_dirty_ring_size(void)
2324 {
2325     return kvm_state->kvm_dirty_ring_size;
2326 }
2327 
2328 static int kvm_init(MachineState *ms)
2329 {
2330     MachineClass *mc = MACHINE_GET_CLASS(ms);
2331     static const char upgrade_note[] =
2332         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2333         "(see http://sourceforge.net/projects/kvm).\n";
2334     const struct {
2335         const char *name;
2336         int num;
2337     } num_cpus[] = {
2338         { "SMP",          ms->smp.cpus },
2339         { "hotpluggable", ms->smp.max_cpus },
2340         { /* end of list */ }
2341     }, *nc = num_cpus;
2342     int soft_vcpus_limit, hard_vcpus_limit;
2343     KVMState *s;
2344     const KVMCapabilityInfo *missing_cap;
2345     int ret;
2346     int type;
2347     uint64_t dirty_log_manual_caps;
2348 
2349     qemu_mutex_init(&kml_slots_lock);
2350 
2351     s = KVM_STATE(ms->accelerator);
2352 
2353     /*
2354      * On systems where the kernel can support different base page
2355      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2356      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2357      * page size for the system though.
2358      */
2359     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2360 
2361     s->sigmask_len = 8;
2362     accel_blocker_init();
2363 
2364 #ifdef KVM_CAP_SET_GUEST_DEBUG
2365     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2366 #endif
2367     QLIST_INIT(&s->kvm_parked_vcpus);
2368     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2369     if (s->fd == -1) {
2370         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2371         ret = -errno;
2372         goto err;
2373     }
2374 
2375     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2376     if (ret < KVM_API_VERSION) {
2377         if (ret >= 0) {
2378             ret = -EINVAL;
2379         }
2380         fprintf(stderr, "kvm version too old\n");
2381         goto err;
2382     }
2383 
2384     if (ret > KVM_API_VERSION) {
2385         ret = -EINVAL;
2386         fprintf(stderr, "kvm version not supported\n");
2387         goto err;
2388     }
2389 
2390     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2391     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2392 
2393     /* If unspecified, use the default value */
2394     if (!s->nr_slots) {
2395         s->nr_slots = 32;
2396     }
2397 
2398     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2399     if (s->nr_as <= 1) {
2400         s->nr_as = 1;
2401     }
2402     s->as = g_new0(struct KVMAs, s->nr_as);
2403 
2404     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2405         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2406                                                             "kvm-type",
2407                                                             &error_abort);
2408         type = mc->kvm_type(ms, kvm_type);
2409     } else if (mc->kvm_type) {
2410         type = mc->kvm_type(ms, NULL);
2411     } else {
2412         type = kvm_arch_get_default_type(ms);
2413     }
2414 
2415     if (type < 0) {
2416         ret = -EINVAL;
2417         goto err;
2418     }
2419 
2420     do {
2421         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2422     } while (ret == -EINTR);
2423 
2424     if (ret < 0) {
2425         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2426                 strerror(-ret));
2427 
2428 #ifdef TARGET_S390X
2429         if (ret == -EINVAL) {
2430             fprintf(stderr,
2431                     "Host kernel setup problem detected. Please verify:\n");
2432             fprintf(stderr, "- for kernels supporting the switch_amode or"
2433                     " user_mode parameters, whether\n");
2434             fprintf(stderr,
2435                     "  user space is running in primary address space\n");
2436             fprintf(stderr,
2437                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2438                     "whether it is enabled\n");
2439         }
2440 #elif defined(TARGET_PPC)
2441         if (ret == -EINVAL) {
2442             fprintf(stderr,
2443                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2444                     (type == 2) ? "pr" : "hv");
2445         }
2446 #endif
2447         goto err;
2448     }
2449 
2450     s->vmfd = ret;
2451 
2452     /* check the vcpu limits */
2453     soft_vcpus_limit = kvm_recommended_vcpus(s);
2454     hard_vcpus_limit = kvm_max_vcpus(s);
2455 
2456     while (nc->name) {
2457         if (nc->num > soft_vcpus_limit) {
2458             warn_report("Number of %s cpus requested (%d) exceeds "
2459                         "the recommended cpus supported by KVM (%d)",
2460                         nc->name, nc->num, soft_vcpus_limit);
2461 
2462             if (nc->num > hard_vcpus_limit) {
2463                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2464                         "the maximum cpus supported by KVM (%d)\n",
2465                         nc->name, nc->num, hard_vcpus_limit);
2466                 exit(1);
2467             }
2468         }
2469         nc++;
2470     }
2471 
2472     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2473     if (!missing_cap) {
2474         missing_cap =
2475             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2476     }
2477     if (missing_cap) {
2478         ret = -EINVAL;
2479         fprintf(stderr, "kvm does not support %s\n%s",
2480                 missing_cap->name, upgrade_note);
2481         goto err;
2482     }
2483 
2484     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2485     s->coalesced_pio = s->coalesced_mmio &&
2486                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2487 
2488     /*
2489      * Enable KVM dirty ring if supported, otherwise fall back to
2490      * dirty logging mode
2491      */
2492     ret = kvm_dirty_ring_init(s);
2493     if (ret < 0) {
2494         goto err;
2495     }
2496 
2497     /*
2498      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2499      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2500      * page is wr-protected initially, which is against how kvm dirty ring is
2501      * usage - kvm dirty ring requires all pages are wr-protected at the very
2502      * beginning.  Enabling this feature for dirty ring causes data corruption.
2503      *
2504      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2505      * we may expect a higher stall time when starting the migration.  In the
2506      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2507      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2508      * guest pages.
2509      */
2510     if (!s->kvm_dirty_ring_size) {
2511         dirty_log_manual_caps =
2512             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2513         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2514                                   KVM_DIRTY_LOG_INITIALLY_SET);
2515         s->manual_dirty_log_protect = dirty_log_manual_caps;
2516         if (dirty_log_manual_caps) {
2517             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2518                                     dirty_log_manual_caps);
2519             if (ret) {
2520                 warn_report("Trying to enable capability %"PRIu64" of "
2521                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2522                             "Falling back to the legacy mode. ",
2523                             dirty_log_manual_caps);
2524                 s->manual_dirty_log_protect = 0;
2525             }
2526         }
2527     }
2528 
2529 #ifdef KVM_CAP_VCPU_EVENTS
2530     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2531 #endif
2532 
2533     s->robust_singlestep =
2534         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2535 
2536 #ifdef KVM_CAP_DEBUGREGS
2537     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2538 #endif
2539 
2540     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2541 
2542     s->irq_set_ioctl = KVM_IRQ_LINE;
2543     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2544         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2545     }
2546 
2547     kvm_readonly_mem_allowed =
2548         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2549 
2550     kvm_resamplefds_allowed =
2551         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2552 
2553     kvm_vm_attributes_allowed =
2554         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2555 
2556 #ifdef KVM_CAP_SET_GUEST_DEBUG
2557     kvm_has_guest_debug =
2558         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2559 #endif
2560 
2561     kvm_sstep_flags = 0;
2562     if (kvm_has_guest_debug) {
2563         kvm_sstep_flags = SSTEP_ENABLE;
2564 
2565 #if defined KVM_CAP_SET_GUEST_DEBUG2
2566         int guest_debug_flags =
2567             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2568 
2569         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2570             kvm_sstep_flags |= SSTEP_NOIRQ;
2571         }
2572 #endif
2573     }
2574 
2575     kvm_state = s;
2576 
2577     ret = kvm_arch_init(ms, s);
2578     if (ret < 0) {
2579         goto err;
2580     }
2581 
2582     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2583         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2584     }
2585 
2586     qemu_register_reset(kvm_unpoison_all, NULL);
2587 
2588     if (s->kernel_irqchip_allowed) {
2589         kvm_irqchip_create(s);
2590     }
2591 
2592     s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2593     s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2594     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2595     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2596 
2597     kvm_memory_listener_register(s, &s->memory_listener,
2598                                  &address_space_memory, 0, "kvm-memory");
2599     memory_listener_register(&kvm_io_listener,
2600                              &address_space_io);
2601     memory_listener_register(&kvm_coalesced_pio_listener,
2602                              &address_space_io);
2603 
2604     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2605     if (!s->sync_mmu) {
2606         ret = ram_block_discard_disable(true);
2607         assert(!ret);
2608     }
2609 
2610     if (s->kvm_dirty_ring_size) {
2611         kvm_dirty_ring_reaper_init(s);
2612     }
2613 
2614     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2615         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2616                             query_stats_schemas_cb);
2617     }
2618 
2619     return 0;
2620 
2621 err:
2622     assert(ret < 0);
2623     if (s->vmfd >= 0) {
2624         close(s->vmfd);
2625     }
2626     if (s->fd != -1) {
2627         close(s->fd);
2628     }
2629     g_free(s->as);
2630     g_free(s->memory_listener.slots);
2631 
2632     return ret;
2633 }
2634 
2635 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2636 {
2637     s->sigmask_len = sigmask_len;
2638 }
2639 
2640 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2641                           int size, uint32_t count)
2642 {
2643     int i;
2644     uint8_t *ptr = data;
2645 
2646     for (i = 0; i < count; i++) {
2647         address_space_rw(&address_space_io, port, attrs,
2648                          ptr, size,
2649                          direction == KVM_EXIT_IO_OUT);
2650         ptr += size;
2651     }
2652 }
2653 
2654 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2655 {
2656     int i;
2657 
2658     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2659             run->internal.suberror);
2660 
2661     for (i = 0; i < run->internal.ndata; ++i) {
2662         fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2663                 i, (uint64_t)run->internal.data[i]);
2664     }
2665     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2666         fprintf(stderr, "emulation failure\n");
2667         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2668             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2669             return EXCP_INTERRUPT;
2670         }
2671     }
2672     /* FIXME: Should trigger a qmp message to let management know
2673      * something went wrong.
2674      */
2675     return -1;
2676 }
2677 
2678 void kvm_flush_coalesced_mmio_buffer(void)
2679 {
2680     KVMState *s = kvm_state;
2681 
2682     if (!s || s->coalesced_flush_in_progress) {
2683         return;
2684     }
2685 
2686     s->coalesced_flush_in_progress = true;
2687 
2688     if (s->coalesced_mmio_ring) {
2689         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2690         while (ring->first != ring->last) {
2691             struct kvm_coalesced_mmio *ent;
2692 
2693             ent = &ring->coalesced_mmio[ring->first];
2694 
2695             if (ent->pio == 1) {
2696                 address_space_write(&address_space_io, ent->phys_addr,
2697                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2698                                     ent->len);
2699             } else {
2700                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2701             }
2702             smp_wmb();
2703             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2704         }
2705     }
2706 
2707     s->coalesced_flush_in_progress = false;
2708 }
2709 
2710 bool kvm_cpu_check_are_resettable(void)
2711 {
2712     return kvm_arch_cpu_check_are_resettable();
2713 }
2714 
2715 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2716 {
2717     if (!cpu->vcpu_dirty) {
2718         int ret = kvm_arch_get_registers(cpu);
2719         if (ret) {
2720             error_report("Failed to get registers: %s", strerror(-ret));
2721             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2722             vm_stop(RUN_STATE_INTERNAL_ERROR);
2723         }
2724 
2725         cpu->vcpu_dirty = true;
2726     }
2727 }
2728 
2729 void kvm_cpu_synchronize_state(CPUState *cpu)
2730 {
2731     if (!cpu->vcpu_dirty) {
2732         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2733     }
2734 }
2735 
2736 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2737 {
2738     int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2739     if (ret) {
2740         error_report("Failed to put registers after reset: %s", strerror(-ret));
2741         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2742         vm_stop(RUN_STATE_INTERNAL_ERROR);
2743     }
2744 
2745     cpu->vcpu_dirty = false;
2746 }
2747 
2748 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2749 {
2750     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2751 }
2752 
2753 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2754 {
2755     int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2756     if (ret) {
2757         error_report("Failed to put registers after init: %s", strerror(-ret));
2758         exit(1);
2759     }
2760 
2761     cpu->vcpu_dirty = false;
2762 }
2763 
2764 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2765 {
2766     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2767 }
2768 
2769 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2770 {
2771     cpu->vcpu_dirty = true;
2772 }
2773 
2774 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2775 {
2776     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2777 }
2778 
2779 #ifdef KVM_HAVE_MCE_INJECTION
2780 static __thread void *pending_sigbus_addr;
2781 static __thread int pending_sigbus_code;
2782 static __thread bool have_sigbus_pending;
2783 #endif
2784 
2785 static void kvm_cpu_kick(CPUState *cpu)
2786 {
2787     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2788 }
2789 
2790 static void kvm_cpu_kick_self(void)
2791 {
2792     if (kvm_immediate_exit) {
2793         kvm_cpu_kick(current_cpu);
2794     } else {
2795         qemu_cpu_kick_self();
2796     }
2797 }
2798 
2799 static void kvm_eat_signals(CPUState *cpu)
2800 {
2801     struct timespec ts = { 0, 0 };
2802     siginfo_t siginfo;
2803     sigset_t waitset;
2804     sigset_t chkset;
2805     int r;
2806 
2807     if (kvm_immediate_exit) {
2808         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2809         /* Write kvm_run->immediate_exit before the cpu->exit_request
2810          * write in kvm_cpu_exec.
2811          */
2812         smp_wmb();
2813         return;
2814     }
2815 
2816     sigemptyset(&waitset);
2817     sigaddset(&waitset, SIG_IPI);
2818 
2819     do {
2820         r = sigtimedwait(&waitset, &siginfo, &ts);
2821         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2822             perror("sigtimedwait");
2823             exit(1);
2824         }
2825 
2826         r = sigpending(&chkset);
2827         if (r == -1) {
2828             perror("sigpending");
2829             exit(1);
2830         }
2831     } while (sigismember(&chkset, SIG_IPI));
2832 }
2833 
2834 int kvm_cpu_exec(CPUState *cpu)
2835 {
2836     struct kvm_run *run = cpu->kvm_run;
2837     int ret, run_ret;
2838 
2839     DPRINTF("kvm_cpu_exec()\n");
2840 
2841     if (kvm_arch_process_async_events(cpu)) {
2842         qatomic_set(&cpu->exit_request, 0);
2843         return EXCP_HLT;
2844     }
2845 
2846     qemu_mutex_unlock_iothread();
2847     cpu_exec_start(cpu);
2848 
2849     do {
2850         MemTxAttrs attrs;
2851 
2852         if (cpu->vcpu_dirty) {
2853             ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2854             if (ret) {
2855                 error_report("Failed to put registers after init: %s",
2856                              strerror(-ret));
2857                 ret = -1;
2858                 break;
2859             }
2860 
2861             cpu->vcpu_dirty = false;
2862         }
2863 
2864         kvm_arch_pre_run(cpu, run);
2865         if (qatomic_read(&cpu->exit_request)) {
2866             DPRINTF("interrupt exit requested\n");
2867             /*
2868              * KVM requires us to reenter the kernel after IO exits to complete
2869              * instruction emulation. This self-signal will ensure that we
2870              * leave ASAP again.
2871              */
2872             kvm_cpu_kick_self();
2873         }
2874 
2875         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2876          * Matching barrier in kvm_eat_signals.
2877          */
2878         smp_rmb();
2879 
2880         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2881 
2882         attrs = kvm_arch_post_run(cpu, run);
2883 
2884 #ifdef KVM_HAVE_MCE_INJECTION
2885         if (unlikely(have_sigbus_pending)) {
2886             qemu_mutex_lock_iothread();
2887             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2888                                     pending_sigbus_addr);
2889             have_sigbus_pending = false;
2890             qemu_mutex_unlock_iothread();
2891         }
2892 #endif
2893 
2894         if (run_ret < 0) {
2895             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2896                 DPRINTF("io window exit\n");
2897                 kvm_eat_signals(cpu);
2898                 ret = EXCP_INTERRUPT;
2899                 break;
2900             }
2901             fprintf(stderr, "error: kvm run failed %s\n",
2902                     strerror(-run_ret));
2903 #ifdef TARGET_PPC
2904             if (run_ret == -EBUSY) {
2905                 fprintf(stderr,
2906                         "This is probably because your SMT is enabled.\n"
2907                         "VCPU can only run on primary threads with all "
2908                         "secondary threads offline.\n");
2909             }
2910 #endif
2911             ret = -1;
2912             break;
2913         }
2914 
2915         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2916         switch (run->exit_reason) {
2917         case KVM_EXIT_IO:
2918             DPRINTF("handle_io\n");
2919             /* Called outside BQL */
2920             kvm_handle_io(run->io.port, attrs,
2921                           (uint8_t *)run + run->io.data_offset,
2922                           run->io.direction,
2923                           run->io.size,
2924                           run->io.count);
2925             ret = 0;
2926             break;
2927         case KVM_EXIT_MMIO:
2928             DPRINTF("handle_mmio\n");
2929             /* Called outside BQL */
2930             address_space_rw(&address_space_memory,
2931                              run->mmio.phys_addr, attrs,
2932                              run->mmio.data,
2933                              run->mmio.len,
2934                              run->mmio.is_write);
2935             ret = 0;
2936             break;
2937         case KVM_EXIT_IRQ_WINDOW_OPEN:
2938             DPRINTF("irq_window_open\n");
2939             ret = EXCP_INTERRUPT;
2940             break;
2941         case KVM_EXIT_SHUTDOWN:
2942             DPRINTF("shutdown\n");
2943             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2944             ret = EXCP_INTERRUPT;
2945             break;
2946         case KVM_EXIT_UNKNOWN:
2947             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2948                     (uint64_t)run->hw.hardware_exit_reason);
2949             ret = -1;
2950             break;
2951         case KVM_EXIT_INTERNAL_ERROR:
2952             ret = kvm_handle_internal_error(cpu, run);
2953             break;
2954         case KVM_EXIT_DIRTY_RING_FULL:
2955             /*
2956              * We shouldn't continue if the dirty ring of this vcpu is
2957              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2958              */
2959             trace_kvm_dirty_ring_full(cpu->cpu_index);
2960             qemu_mutex_lock_iothread();
2961             /*
2962              * We throttle vCPU by making it sleep once it exit from kernel
2963              * due to dirty ring full. In the dirtylimit scenario, reaping
2964              * all vCPUs after a single vCPU dirty ring get full result in
2965              * the miss of sleep, so just reap the ring-fulled vCPU.
2966              */
2967             if (dirtylimit_in_service()) {
2968                 kvm_dirty_ring_reap(kvm_state, cpu);
2969             } else {
2970                 kvm_dirty_ring_reap(kvm_state, NULL);
2971             }
2972             qemu_mutex_unlock_iothread();
2973             dirtylimit_vcpu_execute(cpu);
2974             ret = 0;
2975             break;
2976         case KVM_EXIT_SYSTEM_EVENT:
2977             switch (run->system_event.type) {
2978             case KVM_SYSTEM_EVENT_SHUTDOWN:
2979                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2980                 ret = EXCP_INTERRUPT;
2981                 break;
2982             case KVM_SYSTEM_EVENT_RESET:
2983                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2984                 ret = EXCP_INTERRUPT;
2985                 break;
2986             case KVM_SYSTEM_EVENT_CRASH:
2987                 kvm_cpu_synchronize_state(cpu);
2988                 qemu_mutex_lock_iothread();
2989                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2990                 qemu_mutex_unlock_iothread();
2991                 ret = 0;
2992                 break;
2993             default:
2994                 DPRINTF("kvm_arch_handle_exit\n");
2995                 ret = kvm_arch_handle_exit(cpu, run);
2996                 break;
2997             }
2998             break;
2999         default:
3000             DPRINTF("kvm_arch_handle_exit\n");
3001             ret = kvm_arch_handle_exit(cpu, run);
3002             break;
3003         }
3004     } while (ret == 0);
3005 
3006     cpu_exec_end(cpu);
3007     qemu_mutex_lock_iothread();
3008 
3009     if (ret < 0) {
3010         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3011         vm_stop(RUN_STATE_INTERNAL_ERROR);
3012     }
3013 
3014     qatomic_set(&cpu->exit_request, 0);
3015     return ret;
3016 }
3017 
3018 int kvm_ioctl(KVMState *s, int type, ...)
3019 {
3020     int ret;
3021     void *arg;
3022     va_list ap;
3023 
3024     va_start(ap, type);
3025     arg = va_arg(ap, void *);
3026     va_end(ap);
3027 
3028     trace_kvm_ioctl(type, arg);
3029     ret = ioctl(s->fd, type, arg);
3030     if (ret == -1) {
3031         ret = -errno;
3032     }
3033     return ret;
3034 }
3035 
3036 int kvm_vm_ioctl(KVMState *s, int type, ...)
3037 {
3038     int ret;
3039     void *arg;
3040     va_list ap;
3041 
3042     va_start(ap, type);
3043     arg = va_arg(ap, void *);
3044     va_end(ap);
3045 
3046     trace_kvm_vm_ioctl(type, arg);
3047     accel_ioctl_begin();
3048     ret = ioctl(s->vmfd, type, arg);
3049     accel_ioctl_end();
3050     if (ret == -1) {
3051         ret = -errno;
3052     }
3053     return ret;
3054 }
3055 
3056 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3057 {
3058     int ret;
3059     void *arg;
3060     va_list ap;
3061 
3062     va_start(ap, type);
3063     arg = va_arg(ap, void *);
3064     va_end(ap);
3065 
3066     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3067     accel_cpu_ioctl_begin(cpu);
3068     ret = ioctl(cpu->kvm_fd, type, arg);
3069     accel_cpu_ioctl_end(cpu);
3070     if (ret == -1) {
3071         ret = -errno;
3072     }
3073     return ret;
3074 }
3075 
3076 int kvm_device_ioctl(int fd, int type, ...)
3077 {
3078     int ret;
3079     void *arg;
3080     va_list ap;
3081 
3082     va_start(ap, type);
3083     arg = va_arg(ap, void *);
3084     va_end(ap);
3085 
3086     trace_kvm_device_ioctl(fd, type, arg);
3087     accel_ioctl_begin();
3088     ret = ioctl(fd, type, arg);
3089     accel_ioctl_end();
3090     if (ret == -1) {
3091         ret = -errno;
3092     }
3093     return ret;
3094 }
3095 
3096 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3097 {
3098     int ret;
3099     struct kvm_device_attr attribute = {
3100         .group = group,
3101         .attr = attr,
3102     };
3103 
3104     if (!kvm_vm_attributes_allowed) {
3105         return 0;
3106     }
3107 
3108     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3109     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3110     return ret ? 0 : 1;
3111 }
3112 
3113 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3114 {
3115     struct kvm_device_attr attribute = {
3116         .group = group,
3117         .attr = attr,
3118         .flags = 0,
3119     };
3120 
3121     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3122 }
3123 
3124 int kvm_device_access(int fd, int group, uint64_t attr,
3125                       void *val, bool write, Error **errp)
3126 {
3127     struct kvm_device_attr kvmattr;
3128     int err;
3129 
3130     kvmattr.flags = 0;
3131     kvmattr.group = group;
3132     kvmattr.attr = attr;
3133     kvmattr.addr = (uintptr_t)val;
3134 
3135     err = kvm_device_ioctl(fd,
3136                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3137                            &kvmattr);
3138     if (err < 0) {
3139         error_setg_errno(errp, -err,
3140                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3141                          "attr 0x%016" PRIx64,
3142                          write ? "SET" : "GET", group, attr);
3143     }
3144     return err;
3145 }
3146 
3147 bool kvm_has_sync_mmu(void)
3148 {
3149     return kvm_state->sync_mmu;
3150 }
3151 
3152 int kvm_has_vcpu_events(void)
3153 {
3154     return kvm_state->vcpu_events;
3155 }
3156 
3157 int kvm_has_robust_singlestep(void)
3158 {
3159     return kvm_state->robust_singlestep;
3160 }
3161 
3162 int kvm_has_debugregs(void)
3163 {
3164     return kvm_state->debugregs;
3165 }
3166 
3167 int kvm_max_nested_state_length(void)
3168 {
3169     return kvm_state->max_nested_state_len;
3170 }
3171 
3172 int kvm_has_gsi_routing(void)
3173 {
3174 #ifdef KVM_CAP_IRQ_ROUTING
3175     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3176 #else
3177     return false;
3178 #endif
3179 }
3180 
3181 bool kvm_arm_supports_user_irq(void)
3182 {
3183     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3184 }
3185 
3186 #ifdef KVM_CAP_SET_GUEST_DEBUG
3187 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3188 {
3189     struct kvm_sw_breakpoint *bp;
3190 
3191     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3192         if (bp->pc == pc) {
3193             return bp;
3194         }
3195     }
3196     return NULL;
3197 }
3198 
3199 int kvm_sw_breakpoints_active(CPUState *cpu)
3200 {
3201     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3202 }
3203 
3204 struct kvm_set_guest_debug_data {
3205     struct kvm_guest_debug dbg;
3206     int err;
3207 };
3208 
3209 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3210 {
3211     struct kvm_set_guest_debug_data *dbg_data =
3212         (struct kvm_set_guest_debug_data *) data.host_ptr;
3213 
3214     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3215                                    &dbg_data->dbg);
3216 }
3217 
3218 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3219 {
3220     struct kvm_set_guest_debug_data data;
3221 
3222     data.dbg.control = reinject_trap;
3223 
3224     if (cpu->singlestep_enabled) {
3225         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3226 
3227         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3228             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3229         }
3230     }
3231     kvm_arch_update_guest_debug(cpu, &data.dbg);
3232 
3233     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3234                RUN_ON_CPU_HOST_PTR(&data));
3235     return data.err;
3236 }
3237 
3238 bool kvm_supports_guest_debug(void)
3239 {
3240     /* probed during kvm_init() */
3241     return kvm_has_guest_debug;
3242 }
3243 
3244 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3245 {
3246     struct kvm_sw_breakpoint *bp;
3247     int err;
3248 
3249     if (type == GDB_BREAKPOINT_SW) {
3250         bp = kvm_find_sw_breakpoint(cpu, addr);
3251         if (bp) {
3252             bp->use_count++;
3253             return 0;
3254         }
3255 
3256         bp = g_new(struct kvm_sw_breakpoint, 1);
3257         bp->pc = addr;
3258         bp->use_count = 1;
3259         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3260         if (err) {
3261             g_free(bp);
3262             return err;
3263         }
3264 
3265         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3266     } else {
3267         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3268         if (err) {
3269             return err;
3270         }
3271     }
3272 
3273     CPU_FOREACH(cpu) {
3274         err = kvm_update_guest_debug(cpu, 0);
3275         if (err) {
3276             return err;
3277         }
3278     }
3279     return 0;
3280 }
3281 
3282 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3283 {
3284     struct kvm_sw_breakpoint *bp;
3285     int err;
3286 
3287     if (type == GDB_BREAKPOINT_SW) {
3288         bp = kvm_find_sw_breakpoint(cpu, addr);
3289         if (!bp) {
3290             return -ENOENT;
3291         }
3292 
3293         if (bp->use_count > 1) {
3294             bp->use_count--;
3295             return 0;
3296         }
3297 
3298         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3299         if (err) {
3300             return err;
3301         }
3302 
3303         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3304         g_free(bp);
3305     } else {
3306         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3307         if (err) {
3308             return err;
3309         }
3310     }
3311 
3312     CPU_FOREACH(cpu) {
3313         err = kvm_update_guest_debug(cpu, 0);
3314         if (err) {
3315             return err;
3316         }
3317     }
3318     return 0;
3319 }
3320 
3321 void kvm_remove_all_breakpoints(CPUState *cpu)
3322 {
3323     struct kvm_sw_breakpoint *bp, *next;
3324     KVMState *s = cpu->kvm_state;
3325     CPUState *tmpcpu;
3326 
3327     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3328         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3329             /* Try harder to find a CPU that currently sees the breakpoint. */
3330             CPU_FOREACH(tmpcpu) {
3331                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3332                     break;
3333                 }
3334             }
3335         }
3336         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3337         g_free(bp);
3338     }
3339     kvm_arch_remove_all_hw_breakpoints();
3340 
3341     CPU_FOREACH(cpu) {
3342         kvm_update_guest_debug(cpu, 0);
3343     }
3344 }
3345 
3346 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3347 
3348 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3349 {
3350     KVMState *s = kvm_state;
3351     struct kvm_signal_mask *sigmask;
3352     int r;
3353 
3354     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3355 
3356     sigmask->len = s->sigmask_len;
3357     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3358     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3359     g_free(sigmask);
3360 
3361     return r;
3362 }
3363 
3364 static void kvm_ipi_signal(int sig)
3365 {
3366     if (current_cpu) {
3367         assert(kvm_immediate_exit);
3368         kvm_cpu_kick(current_cpu);
3369     }
3370 }
3371 
3372 void kvm_init_cpu_signals(CPUState *cpu)
3373 {
3374     int r;
3375     sigset_t set;
3376     struct sigaction sigact;
3377 
3378     memset(&sigact, 0, sizeof(sigact));
3379     sigact.sa_handler = kvm_ipi_signal;
3380     sigaction(SIG_IPI, &sigact, NULL);
3381 
3382     pthread_sigmask(SIG_BLOCK, NULL, &set);
3383 #if defined KVM_HAVE_MCE_INJECTION
3384     sigdelset(&set, SIGBUS);
3385     pthread_sigmask(SIG_SETMASK, &set, NULL);
3386 #endif
3387     sigdelset(&set, SIG_IPI);
3388     if (kvm_immediate_exit) {
3389         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3390     } else {
3391         r = kvm_set_signal_mask(cpu, &set);
3392     }
3393     if (r) {
3394         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3395         exit(1);
3396     }
3397 }
3398 
3399 /* Called asynchronously in VCPU thread.  */
3400 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3401 {
3402 #ifdef KVM_HAVE_MCE_INJECTION
3403     if (have_sigbus_pending) {
3404         return 1;
3405     }
3406     have_sigbus_pending = true;
3407     pending_sigbus_addr = addr;
3408     pending_sigbus_code = code;
3409     qatomic_set(&cpu->exit_request, 1);
3410     return 0;
3411 #else
3412     return 1;
3413 #endif
3414 }
3415 
3416 /* Called synchronously (via signalfd) in main thread.  */
3417 int kvm_on_sigbus(int code, void *addr)
3418 {
3419 #ifdef KVM_HAVE_MCE_INJECTION
3420     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3421      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3422      * we can only get action optional here.
3423      */
3424     assert(code != BUS_MCEERR_AR);
3425     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3426     return 0;
3427 #else
3428     return 1;
3429 #endif
3430 }
3431 
3432 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3433 {
3434     int ret;
3435     struct kvm_create_device create_dev;
3436 
3437     create_dev.type = type;
3438     create_dev.fd = -1;
3439     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3440 
3441     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3442         return -ENOTSUP;
3443     }
3444 
3445     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3446     if (ret) {
3447         return ret;
3448     }
3449 
3450     return test ? 0 : create_dev.fd;
3451 }
3452 
3453 bool kvm_device_supported(int vmfd, uint64_t type)
3454 {
3455     struct kvm_create_device create_dev = {
3456         .type = type,
3457         .fd = -1,
3458         .flags = KVM_CREATE_DEVICE_TEST,
3459     };
3460 
3461     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3462         return false;
3463     }
3464 
3465     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3466 }
3467 
3468 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3469 {
3470     struct kvm_one_reg reg;
3471     int r;
3472 
3473     reg.id = id;
3474     reg.addr = (uintptr_t) source;
3475     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3476     if (r) {
3477         trace_kvm_failed_reg_set(id, strerror(-r));
3478     }
3479     return r;
3480 }
3481 
3482 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3483 {
3484     struct kvm_one_reg reg;
3485     int r;
3486 
3487     reg.id = id;
3488     reg.addr = (uintptr_t) target;
3489     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3490     if (r) {
3491         trace_kvm_failed_reg_get(id, strerror(-r));
3492     }
3493     return r;
3494 }
3495 
3496 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3497                                  hwaddr start_addr, hwaddr size)
3498 {
3499     KVMState *kvm = KVM_STATE(ms->accelerator);
3500     int i;
3501 
3502     for (i = 0; i < kvm->nr_as; ++i) {
3503         if (kvm->as[i].as == as && kvm->as[i].ml) {
3504             size = MIN(kvm_max_slot_size, size);
3505             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3506                                                     start_addr, size);
3507         }
3508     }
3509 
3510     return false;
3511 }
3512 
3513 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3514                                    const char *name, void *opaque,
3515                                    Error **errp)
3516 {
3517     KVMState *s = KVM_STATE(obj);
3518     int64_t value = s->kvm_shadow_mem;
3519 
3520     visit_type_int(v, name, &value, errp);
3521 }
3522 
3523 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3524                                    const char *name, void *opaque,
3525                                    Error **errp)
3526 {
3527     KVMState *s = KVM_STATE(obj);
3528     int64_t value;
3529 
3530     if (s->fd != -1) {
3531         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3532         return;
3533     }
3534 
3535     if (!visit_type_int(v, name, &value, errp)) {
3536         return;
3537     }
3538 
3539     s->kvm_shadow_mem = value;
3540 }
3541 
3542 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3543                                    const char *name, void *opaque,
3544                                    Error **errp)
3545 {
3546     KVMState *s = KVM_STATE(obj);
3547     OnOffSplit mode;
3548 
3549     if (s->fd != -1) {
3550         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3551         return;
3552     }
3553 
3554     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3555         return;
3556     }
3557     switch (mode) {
3558     case ON_OFF_SPLIT_ON:
3559         s->kernel_irqchip_allowed = true;
3560         s->kernel_irqchip_required = true;
3561         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3562         break;
3563     case ON_OFF_SPLIT_OFF:
3564         s->kernel_irqchip_allowed = false;
3565         s->kernel_irqchip_required = false;
3566         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3567         break;
3568     case ON_OFF_SPLIT_SPLIT:
3569         s->kernel_irqchip_allowed = true;
3570         s->kernel_irqchip_required = true;
3571         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3572         break;
3573     default:
3574         /* The value was checked in visit_type_OnOffSplit() above. If
3575          * we get here, then something is wrong in QEMU.
3576          */
3577         abort();
3578     }
3579 }
3580 
3581 bool kvm_kernel_irqchip_allowed(void)
3582 {
3583     return kvm_state->kernel_irqchip_allowed;
3584 }
3585 
3586 bool kvm_kernel_irqchip_required(void)
3587 {
3588     return kvm_state->kernel_irqchip_required;
3589 }
3590 
3591 bool kvm_kernel_irqchip_split(void)
3592 {
3593     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3594 }
3595 
3596 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3597                                     const char *name, void *opaque,
3598                                     Error **errp)
3599 {
3600     KVMState *s = KVM_STATE(obj);
3601     uint32_t value = s->kvm_dirty_ring_size;
3602 
3603     visit_type_uint32(v, name, &value, errp);
3604 }
3605 
3606 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3607                                     const char *name, void *opaque,
3608                                     Error **errp)
3609 {
3610     KVMState *s = KVM_STATE(obj);
3611     uint32_t value;
3612 
3613     if (s->fd != -1) {
3614         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3615         return;
3616     }
3617 
3618     if (!visit_type_uint32(v, name, &value, errp)) {
3619         return;
3620     }
3621     if (value & (value - 1)) {
3622         error_setg(errp, "dirty-ring-size must be a power of two.");
3623         return;
3624     }
3625 
3626     s->kvm_dirty_ring_size = value;
3627 }
3628 
3629 static void kvm_accel_instance_init(Object *obj)
3630 {
3631     KVMState *s = KVM_STATE(obj);
3632 
3633     s->fd = -1;
3634     s->vmfd = -1;
3635     s->kvm_shadow_mem = -1;
3636     s->kernel_irqchip_allowed = true;
3637     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3638     /* KVM dirty ring is by default off */
3639     s->kvm_dirty_ring_size = 0;
3640     s->kvm_dirty_ring_with_bitmap = false;
3641     s->kvm_eager_split_size = 0;
3642     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3643     s->notify_window = 0;
3644     s->xen_version = 0;
3645     s->xen_gnttab_max_frames = 64;
3646     s->xen_evtchn_max_pirq = 256;
3647 }
3648 
3649 /**
3650  * kvm_gdbstub_sstep_flags():
3651  *
3652  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3653  * support is probed during kvm_init()
3654  */
3655 static int kvm_gdbstub_sstep_flags(void)
3656 {
3657     return kvm_sstep_flags;
3658 }
3659 
3660 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3661 {
3662     AccelClass *ac = ACCEL_CLASS(oc);
3663     ac->name = "KVM";
3664     ac->init_machine = kvm_init;
3665     ac->has_memory = kvm_accel_has_memory;
3666     ac->allowed = &kvm_allowed;
3667     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3668 
3669     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3670         NULL, kvm_set_kernel_irqchip,
3671         NULL, NULL);
3672     object_class_property_set_description(oc, "kernel-irqchip",
3673         "Configure KVM in-kernel irqchip");
3674 
3675     object_class_property_add(oc, "kvm-shadow-mem", "int",
3676         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3677         NULL, NULL);
3678     object_class_property_set_description(oc, "kvm-shadow-mem",
3679         "KVM shadow MMU size");
3680 
3681     object_class_property_add(oc, "dirty-ring-size", "uint32",
3682         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3683         NULL, NULL);
3684     object_class_property_set_description(oc, "dirty-ring-size",
3685         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3686 
3687     kvm_arch_accel_class_init(oc);
3688 }
3689 
3690 static const TypeInfo kvm_accel_type = {
3691     .name = TYPE_KVM_ACCEL,
3692     .parent = TYPE_ACCEL,
3693     .instance_init = kvm_accel_instance_init,
3694     .class_init = kvm_accel_class_init,
3695     .instance_size = sizeof(KVMState),
3696 };
3697 
3698 static void kvm_type_init(void)
3699 {
3700     type_register_static(&kvm_accel_type);
3701 }
3702 
3703 type_init(kvm_type_init);
3704 
3705 typedef struct StatsArgs {
3706     union StatsResultsType {
3707         StatsResultList **stats;
3708         StatsSchemaList **schema;
3709     } result;
3710     strList *names;
3711     Error **errp;
3712 } StatsArgs;
3713 
3714 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3715                                     uint64_t *stats_data,
3716                                     StatsList *stats_list,
3717                                     Error **errp)
3718 {
3719 
3720     Stats *stats;
3721     uint64List *val_list = NULL;
3722 
3723     /* Only add stats that we understand.  */
3724     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3725     case KVM_STATS_TYPE_CUMULATIVE:
3726     case KVM_STATS_TYPE_INSTANT:
3727     case KVM_STATS_TYPE_PEAK:
3728     case KVM_STATS_TYPE_LINEAR_HIST:
3729     case KVM_STATS_TYPE_LOG_HIST:
3730         break;
3731     default:
3732         return stats_list;
3733     }
3734 
3735     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3736     case KVM_STATS_UNIT_NONE:
3737     case KVM_STATS_UNIT_BYTES:
3738     case KVM_STATS_UNIT_CYCLES:
3739     case KVM_STATS_UNIT_SECONDS:
3740     case KVM_STATS_UNIT_BOOLEAN:
3741         break;
3742     default:
3743         return stats_list;
3744     }
3745 
3746     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3747     case KVM_STATS_BASE_POW10:
3748     case KVM_STATS_BASE_POW2:
3749         break;
3750     default:
3751         return stats_list;
3752     }
3753 
3754     /* Alloc and populate data list */
3755     stats = g_new0(Stats, 1);
3756     stats->name = g_strdup(pdesc->name);
3757     stats->value = g_new0(StatsValue, 1);;
3758 
3759     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3760         stats->value->u.boolean = *stats_data;
3761         stats->value->type = QTYPE_QBOOL;
3762     } else if (pdesc->size == 1) {
3763         stats->value->u.scalar = *stats_data;
3764         stats->value->type = QTYPE_QNUM;
3765     } else {
3766         int i;
3767         for (i = 0; i < pdesc->size; i++) {
3768             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3769         }
3770         stats->value->u.list = val_list;
3771         stats->value->type = QTYPE_QLIST;
3772     }
3773 
3774     QAPI_LIST_PREPEND(stats_list, stats);
3775     return stats_list;
3776 }
3777 
3778 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3779                                                  StatsSchemaValueList *list,
3780                                                  Error **errp)
3781 {
3782     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3783     schema_entry->value = g_new0(StatsSchemaValue, 1);
3784 
3785     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3786     case KVM_STATS_TYPE_CUMULATIVE:
3787         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3788         break;
3789     case KVM_STATS_TYPE_INSTANT:
3790         schema_entry->value->type = STATS_TYPE_INSTANT;
3791         break;
3792     case KVM_STATS_TYPE_PEAK:
3793         schema_entry->value->type = STATS_TYPE_PEAK;
3794         break;
3795     case KVM_STATS_TYPE_LINEAR_HIST:
3796         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3797         schema_entry->value->bucket_size = pdesc->bucket_size;
3798         schema_entry->value->has_bucket_size = true;
3799         break;
3800     case KVM_STATS_TYPE_LOG_HIST:
3801         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3802         break;
3803     default:
3804         goto exit;
3805     }
3806 
3807     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3808     case KVM_STATS_UNIT_NONE:
3809         break;
3810     case KVM_STATS_UNIT_BOOLEAN:
3811         schema_entry->value->has_unit = true;
3812         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3813         break;
3814     case KVM_STATS_UNIT_BYTES:
3815         schema_entry->value->has_unit = true;
3816         schema_entry->value->unit = STATS_UNIT_BYTES;
3817         break;
3818     case KVM_STATS_UNIT_CYCLES:
3819         schema_entry->value->has_unit = true;
3820         schema_entry->value->unit = STATS_UNIT_CYCLES;
3821         break;
3822     case KVM_STATS_UNIT_SECONDS:
3823         schema_entry->value->has_unit = true;
3824         schema_entry->value->unit = STATS_UNIT_SECONDS;
3825         break;
3826     default:
3827         goto exit;
3828     }
3829 
3830     schema_entry->value->exponent = pdesc->exponent;
3831     if (pdesc->exponent) {
3832         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3833         case KVM_STATS_BASE_POW10:
3834             schema_entry->value->has_base = true;
3835             schema_entry->value->base = 10;
3836             break;
3837         case KVM_STATS_BASE_POW2:
3838             schema_entry->value->has_base = true;
3839             schema_entry->value->base = 2;
3840             break;
3841         default:
3842             goto exit;
3843         }
3844     }
3845 
3846     schema_entry->value->name = g_strdup(pdesc->name);
3847     schema_entry->next = list;
3848     return schema_entry;
3849 exit:
3850     g_free(schema_entry->value);
3851     g_free(schema_entry);
3852     return list;
3853 }
3854 
3855 /* Cached stats descriptors */
3856 typedef struct StatsDescriptors {
3857     const char *ident; /* cache key, currently the StatsTarget */
3858     struct kvm_stats_desc *kvm_stats_desc;
3859     struct kvm_stats_header kvm_stats_header;
3860     QTAILQ_ENTRY(StatsDescriptors) next;
3861 } StatsDescriptors;
3862 
3863 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3864     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3865 
3866 /*
3867  * Return the descriptors for 'target', that either have already been read
3868  * or are retrieved from 'stats_fd'.
3869  */
3870 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3871                                                 Error **errp)
3872 {
3873     StatsDescriptors *descriptors;
3874     const char *ident;
3875     struct kvm_stats_desc *kvm_stats_desc;
3876     struct kvm_stats_header *kvm_stats_header;
3877     size_t size_desc;
3878     ssize_t ret;
3879 
3880     ident = StatsTarget_str(target);
3881     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3882         if (g_str_equal(descriptors->ident, ident)) {
3883             return descriptors;
3884         }
3885     }
3886 
3887     descriptors = g_new0(StatsDescriptors, 1);
3888 
3889     /* Read stats header */
3890     kvm_stats_header = &descriptors->kvm_stats_header;
3891     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
3892     if (ret != sizeof(*kvm_stats_header)) {
3893         error_setg(errp, "KVM stats: failed to read stats header: "
3894                    "expected %zu actual %zu",
3895                    sizeof(*kvm_stats_header), ret);
3896         g_free(descriptors);
3897         return NULL;
3898     }
3899     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3900 
3901     /* Read stats descriptors */
3902     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3903     ret = pread(stats_fd, kvm_stats_desc,
3904                 size_desc * kvm_stats_header->num_desc,
3905                 kvm_stats_header->desc_offset);
3906 
3907     if (ret != size_desc * kvm_stats_header->num_desc) {
3908         error_setg(errp, "KVM stats: failed to read stats descriptors: "
3909                    "expected %zu actual %zu",
3910                    size_desc * kvm_stats_header->num_desc, ret);
3911         g_free(descriptors);
3912         g_free(kvm_stats_desc);
3913         return NULL;
3914     }
3915     descriptors->kvm_stats_desc = kvm_stats_desc;
3916     descriptors->ident = ident;
3917     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3918     return descriptors;
3919 }
3920 
3921 static void query_stats(StatsResultList **result, StatsTarget target,
3922                         strList *names, int stats_fd, CPUState *cpu,
3923                         Error **errp)
3924 {
3925     struct kvm_stats_desc *kvm_stats_desc;
3926     struct kvm_stats_header *kvm_stats_header;
3927     StatsDescriptors *descriptors;
3928     g_autofree uint64_t *stats_data = NULL;
3929     struct kvm_stats_desc *pdesc;
3930     StatsList *stats_list = NULL;
3931     size_t size_desc, size_data = 0;
3932     ssize_t ret;
3933     int i;
3934 
3935     descriptors = find_stats_descriptors(target, stats_fd, errp);
3936     if (!descriptors) {
3937         return;
3938     }
3939 
3940     kvm_stats_header = &descriptors->kvm_stats_header;
3941     kvm_stats_desc = descriptors->kvm_stats_desc;
3942     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3943 
3944     /* Tally the total data size; read schema data */
3945     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3946         pdesc = (void *)kvm_stats_desc + i * size_desc;
3947         size_data += pdesc->size * sizeof(*stats_data);
3948     }
3949 
3950     stats_data = g_malloc0(size_data);
3951     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3952 
3953     if (ret != size_data) {
3954         error_setg(errp, "KVM stats: failed to read data: "
3955                    "expected %zu actual %zu", size_data, ret);
3956         return;
3957     }
3958 
3959     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3960         uint64_t *stats;
3961         pdesc = (void *)kvm_stats_desc + i * size_desc;
3962 
3963         /* Add entry to the list */
3964         stats = (void *)stats_data + pdesc->offset;
3965         if (!apply_str_list_filter(pdesc->name, names)) {
3966             continue;
3967         }
3968         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
3969     }
3970 
3971     if (!stats_list) {
3972         return;
3973     }
3974 
3975     switch (target) {
3976     case STATS_TARGET_VM:
3977         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
3978         break;
3979     case STATS_TARGET_VCPU:
3980         add_stats_entry(result, STATS_PROVIDER_KVM,
3981                         cpu->parent_obj.canonical_path,
3982                         stats_list);
3983         break;
3984     default:
3985         g_assert_not_reached();
3986     }
3987 }
3988 
3989 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
3990                                int stats_fd, Error **errp)
3991 {
3992     struct kvm_stats_desc *kvm_stats_desc;
3993     struct kvm_stats_header *kvm_stats_header;
3994     StatsDescriptors *descriptors;
3995     struct kvm_stats_desc *pdesc;
3996     StatsSchemaValueList *stats_list = NULL;
3997     size_t size_desc;
3998     int i;
3999 
4000     descriptors = find_stats_descriptors(target, stats_fd, errp);
4001     if (!descriptors) {
4002         return;
4003     }
4004 
4005     kvm_stats_header = &descriptors->kvm_stats_header;
4006     kvm_stats_desc = descriptors->kvm_stats_desc;
4007     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4008 
4009     /* Tally the total data size; read schema data */
4010     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4011         pdesc = (void *)kvm_stats_desc + i * size_desc;
4012         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4013     }
4014 
4015     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4016 }
4017 
4018 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4019 {
4020     int stats_fd = cpu->kvm_vcpu_stats_fd;
4021     Error *local_err = NULL;
4022 
4023     if (stats_fd == -1) {
4024         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4025         error_propagate(kvm_stats_args->errp, local_err);
4026         return;
4027     }
4028     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4029                 kvm_stats_args->names, stats_fd, cpu,
4030                 kvm_stats_args->errp);
4031 }
4032 
4033 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4034 {
4035     int stats_fd = cpu->kvm_vcpu_stats_fd;
4036     Error *local_err = NULL;
4037 
4038     if (stats_fd == -1) {
4039         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4040         error_propagate(kvm_stats_args->errp, local_err);
4041         return;
4042     }
4043     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4044                        kvm_stats_args->errp);
4045 }
4046 
4047 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4048                            strList *names, strList *targets, Error **errp)
4049 {
4050     KVMState *s = kvm_state;
4051     CPUState *cpu;
4052     int stats_fd;
4053 
4054     switch (target) {
4055     case STATS_TARGET_VM:
4056     {
4057         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4058         if (stats_fd == -1) {
4059             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4060             return;
4061         }
4062         query_stats(result, target, names, stats_fd, NULL, errp);
4063         close(stats_fd);
4064         break;
4065     }
4066     case STATS_TARGET_VCPU:
4067     {
4068         StatsArgs stats_args;
4069         stats_args.result.stats = result;
4070         stats_args.names = names;
4071         stats_args.errp = errp;
4072         CPU_FOREACH(cpu) {
4073             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4074                 continue;
4075             }
4076             query_stats_vcpu(cpu, &stats_args);
4077         }
4078         break;
4079     }
4080     default:
4081         break;
4082     }
4083 }
4084 
4085 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4086 {
4087     StatsArgs stats_args;
4088     KVMState *s = kvm_state;
4089     int stats_fd;
4090 
4091     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4092     if (stats_fd == -1) {
4093         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4094         return;
4095     }
4096     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4097     close(stats_fd);
4098 
4099     if (first_cpu) {
4100         stats_args.result.schema = result;
4101         stats_args.errp = errp;
4102         query_stats_schema_vcpu(first_cpu, &stats_args);
4103     }
4104 }
4105