xref: /openbmc/qemu/accel/kvm/kvm-all.c (revision 0885f1221e0add5529dada1e7948d2c00189cb8b)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright IBM, Corp. 2008
5  *           Red Hat, Inc. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *  Glauber Costa     <gcosta@redhat.com>
10  *
11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
12  * See the COPYING file in the top-level directory.
13  *
14  */
15 
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
19 
20 #include <linux/kvm.h>
21 
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/accel-blocker.h"
35 #include "qemu/bswap.h"
36 #include "exec/memory.h"
37 #include "exec/ram_addr.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
49 #include "sysemu/dirtylimit.h"
50 #include "qemu/range.h"
51 
52 #include "hw/boards.h"
53 #include "sysemu/stats.h"
54 
55 /* This check must be after config-host.h is included */
56 #ifdef CONFIG_EVENTFD
57 #include <sys/eventfd.h>
58 #endif
59 
60 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
61  * need to use the real host PAGE_SIZE, as that's what KVM will use.
62  */
63 #ifdef PAGE_SIZE
64 #undef PAGE_SIZE
65 #endif
66 #define PAGE_SIZE qemu_real_host_page_size()
67 
68 #ifndef KVM_GUESTDBG_BLOCKIRQ
69 #define KVM_GUESTDBG_BLOCKIRQ 0
70 #endif
71 
72 //#define DEBUG_KVM
73 
74 #ifdef DEBUG_KVM
75 #define DPRINTF(fmt, ...) \
76     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
77 #else
78 #define DPRINTF(fmt, ...) \
79     do { } while (0)
80 #endif
81 
82 struct KVMParkedVcpu {
83     unsigned long vcpu_id;
84     int kvm_fd;
85     QLIST_ENTRY(KVMParkedVcpu) node;
86 };
87 
88 KVMState *kvm_state;
89 bool kvm_kernel_irqchip;
90 bool kvm_split_irqchip;
91 bool kvm_async_interrupts_allowed;
92 bool kvm_halt_in_kernel_allowed;
93 bool kvm_resamplefds_allowed;
94 bool kvm_msi_via_irqfd_allowed;
95 bool kvm_gsi_routing_allowed;
96 bool kvm_gsi_direct_mapping;
97 bool kvm_allowed;
98 bool kvm_readonly_mem_allowed;
99 bool kvm_vm_attributes_allowed;
100 bool kvm_msi_use_devid;
101 bool kvm_has_guest_debug;
102 static int kvm_sstep_flags;
103 static bool kvm_immediate_exit;
104 static hwaddr kvm_max_slot_size = ~0;
105 
106 static const KVMCapabilityInfo kvm_required_capabilites[] = {
107     KVM_CAP_INFO(USER_MEMORY),
108     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
109     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
110     KVM_CAP_INFO(INTERNAL_ERROR_DATA),
111     KVM_CAP_INFO(IOEVENTFD),
112     KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH),
113     KVM_CAP_LAST_INFO
114 };
115 
116 static NotifierList kvm_irqchip_change_notifiers =
117     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
118 
119 struct KVMResampleFd {
120     int gsi;
121     EventNotifier *resample_event;
122     QLIST_ENTRY(KVMResampleFd) node;
123 };
124 typedef struct KVMResampleFd KVMResampleFd;
125 
126 /*
127  * Only used with split irqchip where we need to do the resample fd
128  * kick for the kernel from userspace.
129  */
130 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
131     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
132 
133 static QemuMutex kml_slots_lock;
134 
135 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
136 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
137 
138 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
139 
140 static inline void kvm_resample_fd_remove(int gsi)
141 {
142     KVMResampleFd *rfd;
143 
144     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
145         if (rfd->gsi == gsi) {
146             QLIST_REMOVE(rfd, node);
147             g_free(rfd);
148             break;
149         }
150     }
151 }
152 
153 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
154 {
155     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
156 
157     rfd->gsi = gsi;
158     rfd->resample_event = event;
159 
160     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
161 }
162 
163 void kvm_resample_fd_notify(int gsi)
164 {
165     KVMResampleFd *rfd;
166 
167     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
168         if (rfd->gsi == gsi) {
169             event_notifier_set(rfd->resample_event);
170             trace_kvm_resample_fd_notify(gsi);
171             return;
172         }
173     }
174 }
175 
176 unsigned int kvm_get_max_memslots(void)
177 {
178     KVMState *s = KVM_STATE(current_accel());
179 
180     return s->nr_slots;
181 }
182 
183 unsigned int kvm_get_free_memslots(void)
184 {
185     unsigned int used_slots = 0;
186     KVMState *s = kvm_state;
187     int i;
188 
189     kvm_slots_lock();
190     for (i = 0; i < s->nr_as; i++) {
191         if (!s->as[i].ml) {
192             continue;
193         }
194         used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots);
195     }
196     kvm_slots_unlock();
197 
198     return s->nr_slots - used_slots;
199 }
200 
201 /* Called with KVMMemoryListener.slots_lock held */
202 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
203 {
204     KVMState *s = kvm_state;
205     int i;
206 
207     for (i = 0; i < s->nr_slots; i++) {
208         if (kml->slots[i].memory_size == 0) {
209             return &kml->slots[i];
210         }
211     }
212 
213     return NULL;
214 }
215 
216 /* Called with KVMMemoryListener.slots_lock held */
217 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
218 {
219     KVMSlot *slot = kvm_get_free_slot(kml);
220 
221     if (slot) {
222         return slot;
223     }
224 
225     fprintf(stderr, "%s: no free slot available\n", __func__);
226     abort();
227 }
228 
229 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
230                                          hwaddr start_addr,
231                                          hwaddr size)
232 {
233     KVMState *s = kvm_state;
234     int i;
235 
236     for (i = 0; i < s->nr_slots; i++) {
237         KVMSlot *mem = &kml->slots[i];
238 
239         if (start_addr == mem->start_addr && size == mem->memory_size) {
240             return mem;
241         }
242     }
243 
244     return NULL;
245 }
246 
247 /*
248  * Calculate and align the start address and the size of the section.
249  * Return the size. If the size is 0, the aligned section is empty.
250  */
251 static hwaddr kvm_align_section(MemoryRegionSection *section,
252                                 hwaddr *start)
253 {
254     hwaddr size = int128_get64(section->size);
255     hwaddr delta, aligned;
256 
257     /* kvm works in page size chunks, but the function may be called
258        with sub-page size and unaligned start address. Pad the start
259        address to next and truncate size to previous page boundary. */
260     aligned = ROUND_UP(section->offset_within_address_space,
261                        qemu_real_host_page_size());
262     delta = aligned - section->offset_within_address_space;
263     *start = aligned;
264     if (delta > size) {
265         return 0;
266     }
267 
268     return (size - delta) & qemu_real_host_page_mask();
269 }
270 
271 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
272                                        hwaddr *phys_addr)
273 {
274     KVMMemoryListener *kml = &s->memory_listener;
275     int i, ret = 0;
276 
277     kvm_slots_lock();
278     for (i = 0; i < s->nr_slots; i++) {
279         KVMSlot *mem = &kml->slots[i];
280 
281         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
282             *phys_addr = mem->start_addr + (ram - mem->ram);
283             ret = 1;
284             break;
285         }
286     }
287     kvm_slots_unlock();
288 
289     return ret;
290 }
291 
292 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
293 {
294     KVMState *s = kvm_state;
295     struct kvm_userspace_memory_region mem;
296     int ret;
297 
298     mem.slot = slot->slot | (kml->as_id << 16);
299     mem.guest_phys_addr = slot->start_addr;
300     mem.userspace_addr = (unsigned long)slot->ram;
301     mem.flags = slot->flags;
302 
303     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
304         /* Set the slot size to 0 before setting the slot to the desired
305          * value. This is needed based on KVM commit 75d61fbc. */
306         mem.memory_size = 0;
307         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
308         if (ret < 0) {
309             goto err;
310         }
311     }
312     mem.memory_size = slot->memory_size;
313     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
314     slot->old_flags = mem.flags;
315 err:
316     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
317                               mem.memory_size, mem.userspace_addr, ret);
318     if (ret < 0) {
319         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
320                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
321                      __func__, mem.slot, slot->start_addr,
322                      (uint64_t)mem.memory_size, strerror(errno));
323     }
324     return ret;
325 }
326 
327 static int do_kvm_destroy_vcpu(CPUState *cpu)
328 {
329     KVMState *s = kvm_state;
330     long mmap_size;
331     struct KVMParkedVcpu *vcpu = NULL;
332     int ret = 0;
333 
334     DPRINTF("kvm_destroy_vcpu\n");
335 
336     ret = kvm_arch_destroy_vcpu(cpu);
337     if (ret < 0) {
338         goto err;
339     }
340 
341     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
342     if (mmap_size < 0) {
343         ret = mmap_size;
344         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
345         goto err;
346     }
347 
348     ret = munmap(cpu->kvm_run, mmap_size);
349     if (ret < 0) {
350         goto err;
351     }
352 
353     if (cpu->kvm_dirty_gfns) {
354         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
355         if (ret < 0) {
356             goto err;
357         }
358     }
359 
360     vcpu = g_malloc0(sizeof(*vcpu));
361     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
362     vcpu->kvm_fd = cpu->kvm_fd;
363     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
364 err:
365     return ret;
366 }
367 
368 void kvm_destroy_vcpu(CPUState *cpu)
369 {
370     if (do_kvm_destroy_vcpu(cpu) < 0) {
371         error_report("kvm_destroy_vcpu failed");
372         exit(EXIT_FAILURE);
373     }
374 }
375 
376 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
377 {
378     struct KVMParkedVcpu *cpu;
379 
380     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
381         if (cpu->vcpu_id == vcpu_id) {
382             int kvm_fd;
383 
384             QLIST_REMOVE(cpu, node);
385             kvm_fd = cpu->kvm_fd;
386             g_free(cpu);
387             return kvm_fd;
388         }
389     }
390 
391     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
392 }
393 
394 int kvm_init_vcpu(CPUState *cpu, Error **errp)
395 {
396     KVMState *s = kvm_state;
397     long mmap_size;
398     int ret;
399 
400     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
401 
402     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
403     if (ret < 0) {
404         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
405                          kvm_arch_vcpu_id(cpu));
406         goto err;
407     }
408 
409     cpu->kvm_fd = ret;
410     cpu->kvm_state = s;
411     cpu->vcpu_dirty = true;
412     cpu->dirty_pages = 0;
413     cpu->throttle_us_per_full = 0;
414 
415     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
416     if (mmap_size < 0) {
417         ret = mmap_size;
418         error_setg_errno(errp, -mmap_size,
419                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
420         goto err;
421     }
422 
423     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
424                         cpu->kvm_fd, 0);
425     if (cpu->kvm_run == MAP_FAILED) {
426         ret = -errno;
427         error_setg_errno(errp, ret,
428                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
429                          kvm_arch_vcpu_id(cpu));
430         goto err;
431     }
432 
433     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
434         s->coalesced_mmio_ring =
435             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
436     }
437 
438     if (s->kvm_dirty_ring_size) {
439         /* Use MAP_SHARED to share pages with the kernel */
440         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
441                                    PROT_READ | PROT_WRITE, MAP_SHARED,
442                                    cpu->kvm_fd,
443                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
444         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
445             ret = -errno;
446             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
447             goto err;
448         }
449     }
450 
451     ret = kvm_arch_init_vcpu(cpu);
452     if (ret < 0) {
453         error_setg_errno(errp, -ret,
454                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
455                          kvm_arch_vcpu_id(cpu));
456     }
457     cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
458 
459 err:
460     return ret;
461 }
462 
463 /*
464  * dirty pages logging control
465  */
466 
467 static int kvm_mem_flags(MemoryRegion *mr)
468 {
469     bool readonly = mr->readonly || memory_region_is_romd(mr);
470     int flags = 0;
471 
472     if (memory_region_get_dirty_log_mask(mr) != 0) {
473         flags |= KVM_MEM_LOG_DIRTY_PAGES;
474     }
475     if (readonly && kvm_readonly_mem_allowed) {
476         flags |= KVM_MEM_READONLY;
477     }
478     return flags;
479 }
480 
481 /* Called with KVMMemoryListener.slots_lock held */
482 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
483                                  MemoryRegion *mr)
484 {
485     mem->flags = kvm_mem_flags(mr);
486 
487     /* If nothing changed effectively, no need to issue ioctl */
488     if (mem->flags == mem->old_flags) {
489         return 0;
490     }
491 
492     kvm_slot_init_dirty_bitmap(mem);
493     return kvm_set_user_memory_region(kml, mem, false);
494 }
495 
496 static int kvm_section_update_flags(KVMMemoryListener *kml,
497                                     MemoryRegionSection *section)
498 {
499     hwaddr start_addr, size, slot_size;
500     KVMSlot *mem;
501     int ret = 0;
502 
503     size = kvm_align_section(section, &start_addr);
504     if (!size) {
505         return 0;
506     }
507 
508     kvm_slots_lock();
509 
510     while (size && !ret) {
511         slot_size = MIN(kvm_max_slot_size, size);
512         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
513         if (!mem) {
514             /* We don't have a slot if we want to trap every access. */
515             goto out;
516         }
517 
518         ret = kvm_slot_update_flags(kml, mem, section->mr);
519         start_addr += slot_size;
520         size -= slot_size;
521     }
522 
523 out:
524     kvm_slots_unlock();
525     return ret;
526 }
527 
528 static void kvm_log_start(MemoryListener *listener,
529                           MemoryRegionSection *section,
530                           int old, int new)
531 {
532     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
533     int r;
534 
535     if (old != 0) {
536         return;
537     }
538 
539     r = kvm_section_update_flags(kml, section);
540     if (r < 0) {
541         abort();
542     }
543 }
544 
545 static void kvm_log_stop(MemoryListener *listener,
546                           MemoryRegionSection *section,
547                           int old, int new)
548 {
549     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
550     int r;
551 
552     if (new != 0) {
553         return;
554     }
555 
556     r = kvm_section_update_flags(kml, section);
557     if (r < 0) {
558         abort();
559     }
560 }
561 
562 /* get kvm's dirty pages bitmap and update qemu's */
563 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
564 {
565     ram_addr_t start = slot->ram_start_offset;
566     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
567 
568     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
569 }
570 
571 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
572 {
573     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
574 }
575 
576 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
577 
578 /* Allocate the dirty bitmap for a slot  */
579 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
580 {
581     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
582         return;
583     }
584 
585     /*
586      * XXX bad kernel interface alert
587      * For dirty bitmap, kernel allocates array of size aligned to
588      * bits-per-long.  But for case when the kernel is 64bits and
589      * the userspace is 32bits, userspace can't align to the same
590      * bits-per-long, since sizeof(long) is different between kernel
591      * and user space.  This way, userspace will provide buffer which
592      * may be 4 bytes less than the kernel will use, resulting in
593      * userspace memory corruption (which is not detectable by valgrind
594      * too, in most cases).
595      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
596      * a hope that sizeof(long) won't become >8 any time soon.
597      *
598      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
599      * And mem->memory_size is aligned to it (otherwise this mem can't
600      * be registered to KVM).
601      */
602     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
603                                         /*HOST_LONG_BITS*/ 64) / 8;
604     mem->dirty_bmap = g_malloc0(bitmap_size);
605     mem->dirty_bmap_size = bitmap_size;
606 }
607 
608 /*
609  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
610  * succeeded, false otherwise
611  */
612 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
613 {
614     struct kvm_dirty_log d = {};
615     int ret;
616 
617     d.dirty_bitmap = slot->dirty_bmap;
618     d.slot = slot->slot | (slot->as_id << 16);
619     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
620 
621     if (ret == -ENOENT) {
622         /* kernel does not have dirty bitmap in this slot */
623         ret = 0;
624     }
625     if (ret) {
626         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
627                           __func__, ret);
628     }
629     return ret == 0;
630 }
631 
632 /* Should be with all slots_lock held for the address spaces. */
633 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
634                                      uint32_t slot_id, uint64_t offset)
635 {
636     KVMMemoryListener *kml;
637     KVMSlot *mem;
638 
639     if (as_id >= s->nr_as) {
640         return;
641     }
642 
643     kml = s->as[as_id].ml;
644     mem = &kml->slots[slot_id];
645 
646     if (!mem->memory_size || offset >=
647         (mem->memory_size / qemu_real_host_page_size())) {
648         return;
649     }
650 
651     set_bit(offset, mem->dirty_bmap);
652 }
653 
654 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
655 {
656     /*
657      * Read the flags before the value.  Pairs with barrier in
658      * KVM's kvm_dirty_ring_push() function.
659      */
660     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
661 }
662 
663 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
664 {
665     /*
666      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
667      * sees the full content of the ring:
668      *
669      * CPU0                     CPU1                         CPU2
670      * ------------------------------------------------------------------------------
671      *                                                       fill gfn0
672      *                                                       store-rel flags for gfn0
673      * load-acq flags for gfn0
674      * store-rel RESET for gfn0
675      *                          ioctl(RESET_RINGS)
676      *                            load-acq flags for gfn0
677      *                            check if flags have RESET
678      *
679      * The synchronization goes from CPU2 to CPU0 to CPU1.
680      */
681     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
682 }
683 
684 /*
685  * Should be with all slots_lock held for the address spaces.  It returns the
686  * dirty page we've collected on this dirty ring.
687  */
688 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
689 {
690     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
691     uint32_t ring_size = s->kvm_dirty_ring_size;
692     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
693 
694     /*
695      * It's possible that we race with vcpu creation code where the vcpu is
696      * put onto the vcpus list but not yet initialized the dirty ring
697      * structures.  If so, skip it.
698      */
699     if (!cpu->created) {
700         return 0;
701     }
702 
703     assert(dirty_gfns && ring_size);
704     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
705 
706     while (true) {
707         cur = &dirty_gfns[fetch % ring_size];
708         if (!dirty_gfn_is_dirtied(cur)) {
709             break;
710         }
711         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
712                                  cur->offset);
713         dirty_gfn_set_collected(cur);
714         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
715         fetch++;
716         count++;
717     }
718     cpu->kvm_fetch_index = fetch;
719     cpu->dirty_pages += count;
720 
721     return count;
722 }
723 
724 /* Must be with slots_lock held */
725 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
726 {
727     int ret;
728     uint64_t total = 0;
729     int64_t stamp;
730 
731     stamp = get_clock();
732 
733     if (cpu) {
734         total = kvm_dirty_ring_reap_one(s, cpu);
735     } else {
736         CPU_FOREACH(cpu) {
737             total += kvm_dirty_ring_reap_one(s, cpu);
738         }
739     }
740 
741     if (total) {
742         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
743         assert(ret == total);
744     }
745 
746     stamp = get_clock() - stamp;
747 
748     if (total) {
749         trace_kvm_dirty_ring_reap(total, stamp / 1000);
750     }
751 
752     return total;
753 }
754 
755 /*
756  * Currently for simplicity, we must hold BQL before calling this.  We can
757  * consider to drop the BQL if we're clear with all the race conditions.
758  */
759 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
760 {
761     uint64_t total;
762 
763     /*
764      * We need to lock all kvm slots for all address spaces here,
765      * because:
766      *
767      * (1) We need to mark dirty for dirty bitmaps in multiple slots
768      *     and for tons of pages, so it's better to take the lock here
769      *     once rather than once per page.  And more importantly,
770      *
771      * (2) We must _NOT_ publish dirty bits to the other threads
772      *     (e.g., the migration thread) via the kvm memory slot dirty
773      *     bitmaps before correctly re-protect those dirtied pages.
774      *     Otherwise we can have potential risk of data corruption if
775      *     the page data is read in the other thread before we do
776      *     reset below.
777      */
778     kvm_slots_lock();
779     total = kvm_dirty_ring_reap_locked(s, cpu);
780     kvm_slots_unlock();
781 
782     return total;
783 }
784 
785 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
786 {
787     /* No need to do anything */
788 }
789 
790 /*
791  * Kick all vcpus out in a synchronized way.  When returned, we
792  * guarantee that every vcpu has been kicked and at least returned to
793  * userspace once.
794  */
795 static void kvm_cpu_synchronize_kick_all(void)
796 {
797     CPUState *cpu;
798 
799     CPU_FOREACH(cpu) {
800         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
801     }
802 }
803 
804 /*
805  * Flush all the existing dirty pages to the KVM slot buffers.  When
806  * this call returns, we guarantee that all the touched dirty pages
807  * before calling this function have been put into the per-kvmslot
808  * dirty bitmap.
809  *
810  * This function must be called with BQL held.
811  */
812 static void kvm_dirty_ring_flush(void)
813 {
814     trace_kvm_dirty_ring_flush(0);
815     /*
816      * The function needs to be serialized.  Since this function
817      * should always be with BQL held, serialization is guaranteed.
818      * However, let's be sure of it.
819      */
820     assert(qemu_mutex_iothread_locked());
821     /*
822      * First make sure to flush the hardware buffers by kicking all
823      * vcpus out in a synchronous way.
824      */
825     kvm_cpu_synchronize_kick_all();
826     kvm_dirty_ring_reap(kvm_state, NULL);
827     trace_kvm_dirty_ring_flush(1);
828 }
829 
830 /**
831  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
832  *
833  * This function will first try to fetch dirty bitmap from the kernel,
834  * and then updates qemu's dirty bitmap.
835  *
836  * NOTE: caller must be with kml->slots_lock held.
837  *
838  * @kml: the KVM memory listener object
839  * @section: the memory section to sync the dirty bitmap with
840  */
841 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
842                                            MemoryRegionSection *section)
843 {
844     KVMState *s = kvm_state;
845     KVMSlot *mem;
846     hwaddr start_addr, size;
847     hwaddr slot_size;
848 
849     size = kvm_align_section(section, &start_addr);
850     while (size) {
851         slot_size = MIN(kvm_max_slot_size, size);
852         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
853         if (!mem) {
854             /* We don't have a slot if we want to trap every access. */
855             return;
856         }
857         if (kvm_slot_get_dirty_log(s, mem)) {
858             kvm_slot_sync_dirty_pages(mem);
859         }
860         start_addr += slot_size;
861         size -= slot_size;
862     }
863 }
864 
865 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
866 #define KVM_CLEAR_LOG_SHIFT  6
867 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
868 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
869 
870 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
871                                   uint64_t size)
872 {
873     KVMState *s = kvm_state;
874     uint64_t end, bmap_start, start_delta, bmap_npages;
875     struct kvm_clear_dirty_log d;
876     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
877     int ret;
878 
879     /*
880      * We need to extend either the start or the size or both to
881      * satisfy the KVM interface requirement.  Firstly, do the start
882      * page alignment on 64 host pages
883      */
884     bmap_start = start & KVM_CLEAR_LOG_MASK;
885     start_delta = start - bmap_start;
886     bmap_start /= psize;
887 
888     /*
889      * The kernel interface has restriction on the size too, that either:
890      *
891      * (1) the size is 64 host pages aligned (just like the start), or
892      * (2) the size fills up until the end of the KVM memslot.
893      */
894     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
895         << KVM_CLEAR_LOG_SHIFT;
896     end = mem->memory_size / psize;
897     if (bmap_npages > end - bmap_start) {
898         bmap_npages = end - bmap_start;
899     }
900     start_delta /= psize;
901 
902     /*
903      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
904      * that we won't clear any unknown dirty bits otherwise we might
905      * accidentally clear some set bits which are not yet synced from
906      * the kernel into QEMU's bitmap, then we'll lose track of the
907      * guest modifications upon those pages (which can directly lead
908      * to guest data loss or panic after migration).
909      *
910      * Layout of the KVMSlot.dirty_bmap:
911      *
912      *                   |<-------- bmap_npages -----------..>|
913      *                                                     [1]
914      *                     start_delta         size
915      *  |----------------|-------------|------------------|------------|
916      *  ^                ^             ^                               ^
917      *  |                |             |                               |
918      * start          bmap_start     (start)                         end
919      * of memslot                                             of memslot
920      *
921      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
922      */
923 
924     assert(bmap_start % BITS_PER_LONG == 0);
925     /* We should never do log_clear before log_sync */
926     assert(mem->dirty_bmap);
927     if (start_delta || bmap_npages - size / psize) {
928         /* Slow path - we need to manipulate a temp bitmap */
929         bmap_clear = bitmap_new(bmap_npages);
930         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
931                                     bmap_start, start_delta + size / psize);
932         /*
933          * We need to fill the holes at start because that was not
934          * specified by the caller and we extended the bitmap only for
935          * 64 pages alignment
936          */
937         bitmap_clear(bmap_clear, 0, start_delta);
938         d.dirty_bitmap = bmap_clear;
939     } else {
940         /*
941          * Fast path - both start and size align well with BITS_PER_LONG
942          * (or the end of memory slot)
943          */
944         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
945     }
946 
947     d.first_page = bmap_start;
948     /* It should never overflow.  If it happens, say something */
949     assert(bmap_npages <= UINT32_MAX);
950     d.num_pages = bmap_npages;
951     d.slot = mem->slot | (as_id << 16);
952 
953     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
954     if (ret < 0 && ret != -ENOENT) {
955         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
956                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
957                      __func__, d.slot, (uint64_t)d.first_page,
958                      (uint32_t)d.num_pages, ret);
959     } else {
960         ret = 0;
961         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
962     }
963 
964     /*
965      * After we have updated the remote dirty bitmap, we update the
966      * cached bitmap as well for the memslot, then if another user
967      * clears the same region we know we shouldn't clear it again on
968      * the remote otherwise it's data loss as well.
969      */
970     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
971                  size / psize);
972     /* This handles the NULL case well */
973     g_free(bmap_clear);
974     return ret;
975 }
976 
977 
978 /**
979  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
980  *
981  * NOTE: this will be a no-op if we haven't enabled manual dirty log
982  * protection in the host kernel because in that case this operation
983  * will be done within log_sync().
984  *
985  * @kml:     the kvm memory listener
986  * @section: the memory range to clear dirty bitmap
987  */
988 static int kvm_physical_log_clear(KVMMemoryListener *kml,
989                                   MemoryRegionSection *section)
990 {
991     KVMState *s = kvm_state;
992     uint64_t start, size, offset, count;
993     KVMSlot *mem;
994     int ret = 0, i;
995 
996     if (!s->manual_dirty_log_protect) {
997         /* No need to do explicit clear */
998         return ret;
999     }
1000 
1001     start = section->offset_within_address_space;
1002     size = int128_get64(section->size);
1003 
1004     if (!size) {
1005         /* Nothing more we can do... */
1006         return ret;
1007     }
1008 
1009     kvm_slots_lock();
1010 
1011     for (i = 0; i < s->nr_slots; i++) {
1012         mem = &kml->slots[i];
1013         /* Discard slots that are empty or do not overlap the section */
1014         if (!mem->memory_size ||
1015             mem->start_addr > start + size - 1 ||
1016             start > mem->start_addr + mem->memory_size - 1) {
1017             continue;
1018         }
1019 
1020         if (start >= mem->start_addr) {
1021             /* The slot starts before section or is aligned to it.  */
1022             offset = start - mem->start_addr;
1023             count = MIN(mem->memory_size - offset, size);
1024         } else {
1025             /* The slot starts after section.  */
1026             offset = 0;
1027             count = MIN(mem->memory_size, size - (mem->start_addr - start));
1028         }
1029         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1030         if (ret < 0) {
1031             break;
1032         }
1033     }
1034 
1035     kvm_slots_unlock();
1036 
1037     return ret;
1038 }
1039 
1040 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1041                                      MemoryRegionSection *secion,
1042                                      hwaddr start, hwaddr size)
1043 {
1044     KVMState *s = kvm_state;
1045 
1046     if (s->coalesced_mmio) {
1047         struct kvm_coalesced_mmio_zone zone;
1048 
1049         zone.addr = start;
1050         zone.size = size;
1051         zone.pad = 0;
1052 
1053         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1054     }
1055 }
1056 
1057 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1058                                        MemoryRegionSection *secion,
1059                                        hwaddr start, hwaddr size)
1060 {
1061     KVMState *s = kvm_state;
1062 
1063     if (s->coalesced_mmio) {
1064         struct kvm_coalesced_mmio_zone zone;
1065 
1066         zone.addr = start;
1067         zone.size = size;
1068         zone.pad = 0;
1069 
1070         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1071     }
1072 }
1073 
1074 static void kvm_coalesce_pio_add(MemoryListener *listener,
1075                                 MemoryRegionSection *section,
1076                                 hwaddr start, hwaddr size)
1077 {
1078     KVMState *s = kvm_state;
1079 
1080     if (s->coalesced_pio) {
1081         struct kvm_coalesced_mmio_zone zone;
1082 
1083         zone.addr = start;
1084         zone.size = size;
1085         zone.pio = 1;
1086 
1087         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1088     }
1089 }
1090 
1091 static void kvm_coalesce_pio_del(MemoryListener *listener,
1092                                 MemoryRegionSection *section,
1093                                 hwaddr start, hwaddr size)
1094 {
1095     KVMState *s = kvm_state;
1096 
1097     if (s->coalesced_pio) {
1098         struct kvm_coalesced_mmio_zone zone;
1099 
1100         zone.addr = start;
1101         zone.size = size;
1102         zone.pio = 1;
1103 
1104         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1105      }
1106 }
1107 
1108 int kvm_check_extension(KVMState *s, unsigned int extension)
1109 {
1110     int ret;
1111 
1112     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1113     if (ret < 0) {
1114         ret = 0;
1115     }
1116 
1117     return ret;
1118 }
1119 
1120 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1121 {
1122     int ret;
1123 
1124     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1125     if (ret < 0) {
1126         /* VM wide version not implemented, use global one instead */
1127         ret = kvm_check_extension(s, extension);
1128     }
1129 
1130     return ret;
1131 }
1132 
1133 typedef struct HWPoisonPage {
1134     ram_addr_t ram_addr;
1135     QLIST_ENTRY(HWPoisonPage) list;
1136 } HWPoisonPage;
1137 
1138 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1139     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1140 
1141 static void kvm_unpoison_all(void *param)
1142 {
1143     HWPoisonPage *page, *next_page;
1144 
1145     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1146         QLIST_REMOVE(page, list);
1147         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1148         g_free(page);
1149     }
1150 }
1151 
1152 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1153 {
1154     HWPoisonPage *page;
1155 
1156     QLIST_FOREACH(page, &hwpoison_page_list, list) {
1157         if (page->ram_addr == ram_addr) {
1158             return;
1159         }
1160     }
1161     page = g_new(HWPoisonPage, 1);
1162     page->ram_addr = ram_addr;
1163     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1164 }
1165 
1166 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1167 {
1168 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1169     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1170      * endianness, but the memory core hands them in target endianness.
1171      * For example, PPC is always treated as big-endian even if running
1172      * on KVM and on PPC64LE.  Correct here.
1173      */
1174     switch (size) {
1175     case 2:
1176         val = bswap16(val);
1177         break;
1178     case 4:
1179         val = bswap32(val);
1180         break;
1181     }
1182 #endif
1183     return val;
1184 }
1185 
1186 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1187                                   bool assign, uint32_t size, bool datamatch)
1188 {
1189     int ret;
1190     struct kvm_ioeventfd iofd = {
1191         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1192         .addr = addr,
1193         .len = size,
1194         .flags = 0,
1195         .fd = fd,
1196     };
1197 
1198     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1199                                  datamatch);
1200     if (!kvm_enabled()) {
1201         return -ENOSYS;
1202     }
1203 
1204     if (datamatch) {
1205         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1206     }
1207     if (!assign) {
1208         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1209     }
1210 
1211     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1212 
1213     if (ret < 0) {
1214         return -errno;
1215     }
1216 
1217     return 0;
1218 }
1219 
1220 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1221                                  bool assign, uint32_t size, bool datamatch)
1222 {
1223     struct kvm_ioeventfd kick = {
1224         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1225         .addr = addr,
1226         .flags = KVM_IOEVENTFD_FLAG_PIO,
1227         .len = size,
1228         .fd = fd,
1229     };
1230     int r;
1231     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1232     if (!kvm_enabled()) {
1233         return -ENOSYS;
1234     }
1235     if (datamatch) {
1236         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1237     }
1238     if (!assign) {
1239         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1240     }
1241     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1242     if (r < 0) {
1243         return r;
1244     }
1245     return 0;
1246 }
1247 
1248 
1249 static const KVMCapabilityInfo *
1250 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1251 {
1252     while (list->name) {
1253         if (!kvm_check_extension(s, list->value)) {
1254             return list;
1255         }
1256         list++;
1257     }
1258     return NULL;
1259 }
1260 
1261 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1262 {
1263     g_assert(
1264         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1265     );
1266     kvm_max_slot_size = max_slot_size;
1267 }
1268 
1269 /* Called with KVMMemoryListener.slots_lock held */
1270 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1271                              MemoryRegionSection *section, bool add)
1272 {
1273     KVMSlot *mem;
1274     int err;
1275     MemoryRegion *mr = section->mr;
1276     bool writable = !mr->readonly && !mr->rom_device;
1277     hwaddr start_addr, size, slot_size, mr_offset;
1278     ram_addr_t ram_start_offset;
1279     void *ram;
1280 
1281     if (!memory_region_is_ram(mr)) {
1282         if (writable || !kvm_readonly_mem_allowed) {
1283             return;
1284         } else if (!mr->romd_mode) {
1285             /* If the memory device is not in romd_mode, then we actually want
1286              * to remove the kvm memory slot so all accesses will trap. */
1287             add = false;
1288         }
1289     }
1290 
1291     size = kvm_align_section(section, &start_addr);
1292     if (!size) {
1293         return;
1294     }
1295 
1296     /* The offset of the kvmslot within the memory region */
1297     mr_offset = section->offset_within_region + start_addr -
1298         section->offset_within_address_space;
1299 
1300     /* use aligned delta to align the ram address and offset */
1301     ram = memory_region_get_ram_ptr(mr) + mr_offset;
1302     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1303 
1304     if (!add) {
1305         do {
1306             slot_size = MIN(kvm_max_slot_size, size);
1307             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1308             if (!mem) {
1309                 return;
1310             }
1311             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1312                 /*
1313                  * NOTE: We should be aware of the fact that here we're only
1314                  * doing a best effort to sync dirty bits.  No matter whether
1315                  * we're using dirty log or dirty ring, we ignored two facts:
1316                  *
1317                  * (1) dirty bits can reside in hardware buffers (PML)
1318                  *
1319                  * (2) after we collected dirty bits here, pages can be dirtied
1320                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
1321                  * remove the slot.
1322                  *
1323                  * Not easy.  Let's cross the fingers until it's fixed.
1324                  */
1325                 if (kvm_state->kvm_dirty_ring_size) {
1326                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
1327                     if (kvm_state->kvm_dirty_ring_with_bitmap) {
1328                         kvm_slot_sync_dirty_pages(mem);
1329                         kvm_slot_get_dirty_log(kvm_state, mem);
1330                     }
1331                 } else {
1332                     kvm_slot_get_dirty_log(kvm_state, mem);
1333                 }
1334                 kvm_slot_sync_dirty_pages(mem);
1335             }
1336 
1337             /* unregister the slot */
1338             g_free(mem->dirty_bmap);
1339             mem->dirty_bmap = NULL;
1340             mem->memory_size = 0;
1341             mem->flags = 0;
1342             err = kvm_set_user_memory_region(kml, mem, false);
1343             if (err) {
1344                 fprintf(stderr, "%s: error unregistering slot: %s\n",
1345                         __func__, strerror(-err));
1346                 abort();
1347             }
1348             start_addr += slot_size;
1349             size -= slot_size;
1350             kml->nr_used_slots--;
1351         } while (size);
1352         return;
1353     }
1354 
1355     /* register the new slot */
1356     do {
1357         slot_size = MIN(kvm_max_slot_size, size);
1358         mem = kvm_alloc_slot(kml);
1359         mem->as_id = kml->as_id;
1360         mem->memory_size = slot_size;
1361         mem->start_addr = start_addr;
1362         mem->ram_start_offset = ram_start_offset;
1363         mem->ram = ram;
1364         mem->flags = kvm_mem_flags(mr);
1365         kvm_slot_init_dirty_bitmap(mem);
1366         err = kvm_set_user_memory_region(kml, mem, true);
1367         if (err) {
1368             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1369                     strerror(-err));
1370             abort();
1371         }
1372         start_addr += slot_size;
1373         ram_start_offset += slot_size;
1374         ram += slot_size;
1375         size -= slot_size;
1376         kml->nr_used_slots++;
1377     } while (size);
1378 }
1379 
1380 static void *kvm_dirty_ring_reaper_thread(void *data)
1381 {
1382     KVMState *s = data;
1383     struct KVMDirtyRingReaper *r = &s->reaper;
1384 
1385     rcu_register_thread();
1386 
1387     trace_kvm_dirty_ring_reaper("init");
1388 
1389     while (true) {
1390         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1391         trace_kvm_dirty_ring_reaper("wait");
1392         /*
1393          * TODO: provide a smarter timeout rather than a constant?
1394          */
1395         sleep(1);
1396 
1397         /* keep sleeping so that dirtylimit not be interfered by reaper */
1398         if (dirtylimit_in_service()) {
1399             continue;
1400         }
1401 
1402         trace_kvm_dirty_ring_reaper("wakeup");
1403         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1404 
1405         qemu_mutex_lock_iothread();
1406         kvm_dirty_ring_reap(s, NULL);
1407         qemu_mutex_unlock_iothread();
1408 
1409         r->reaper_iteration++;
1410     }
1411 
1412     trace_kvm_dirty_ring_reaper("exit");
1413 
1414     rcu_unregister_thread();
1415 
1416     return NULL;
1417 }
1418 
1419 static void kvm_dirty_ring_reaper_init(KVMState *s)
1420 {
1421     struct KVMDirtyRingReaper *r = &s->reaper;
1422 
1423     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1424                        kvm_dirty_ring_reaper_thread,
1425                        s, QEMU_THREAD_JOINABLE);
1426 }
1427 
1428 static int kvm_dirty_ring_init(KVMState *s)
1429 {
1430     uint32_t ring_size = s->kvm_dirty_ring_size;
1431     uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn);
1432     unsigned int capability = KVM_CAP_DIRTY_LOG_RING;
1433     int ret;
1434 
1435     s->kvm_dirty_ring_size = 0;
1436     s->kvm_dirty_ring_bytes = 0;
1437 
1438     /* Bail if the dirty ring size isn't specified */
1439     if (!ring_size) {
1440         return 0;
1441     }
1442 
1443     /*
1444      * Read the max supported pages. Fall back to dirty logging mode
1445      * if the dirty ring isn't supported.
1446      */
1447     ret = kvm_vm_check_extension(s, capability);
1448     if (ret <= 0) {
1449         capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL;
1450         ret = kvm_vm_check_extension(s, capability);
1451     }
1452 
1453     if (ret <= 0) {
1454         warn_report("KVM dirty ring not available, using bitmap method");
1455         return 0;
1456     }
1457 
1458     if (ring_bytes > ret) {
1459         error_report("KVM dirty ring size %" PRIu32 " too big "
1460                      "(maximum is %ld).  Please use a smaller value.",
1461                      ring_size, (long)ret / sizeof(struct kvm_dirty_gfn));
1462         return -EINVAL;
1463     }
1464 
1465     ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes);
1466     if (ret) {
1467         error_report("Enabling of KVM dirty ring failed: %s. "
1468                      "Suggested minimum value is 1024.", strerror(-ret));
1469         return -EIO;
1470     }
1471 
1472     /* Enable the backup bitmap if it is supported */
1473     ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP);
1474     if (ret > 0) {
1475         ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0);
1476         if (ret) {
1477             error_report("Enabling of KVM dirty ring's backup bitmap failed: "
1478                          "%s. ", strerror(-ret));
1479             return -EIO;
1480         }
1481 
1482         s->kvm_dirty_ring_with_bitmap = true;
1483     }
1484 
1485     s->kvm_dirty_ring_size = ring_size;
1486     s->kvm_dirty_ring_bytes = ring_bytes;
1487 
1488     return 0;
1489 }
1490 
1491 static void kvm_region_add(MemoryListener *listener,
1492                            MemoryRegionSection *section)
1493 {
1494     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1495     KVMMemoryUpdate *update;
1496 
1497     update = g_new0(KVMMemoryUpdate, 1);
1498     update->section = *section;
1499 
1500     QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next);
1501 }
1502 
1503 static void kvm_region_del(MemoryListener *listener,
1504                            MemoryRegionSection *section)
1505 {
1506     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1507     KVMMemoryUpdate *update;
1508 
1509     update = g_new0(KVMMemoryUpdate, 1);
1510     update->section = *section;
1511 
1512     QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next);
1513 }
1514 
1515 static void kvm_region_commit(MemoryListener *listener)
1516 {
1517     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener,
1518                                           listener);
1519     KVMMemoryUpdate *u1, *u2;
1520     bool need_inhibit = false;
1521 
1522     if (QSIMPLEQ_EMPTY(&kml->transaction_add) &&
1523         QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1524         return;
1525     }
1526 
1527     /*
1528      * We have to be careful when regions to add overlap with ranges to remove.
1529      * We have to simulate atomic KVM memslot updates by making sure no ioctl()
1530      * is currently active.
1531      *
1532      * The lists are order by addresses, so it's easy to find overlaps.
1533      */
1534     u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1535     u2 = QSIMPLEQ_FIRST(&kml->transaction_add);
1536     while (u1 && u2) {
1537         Range r1, r2;
1538 
1539         range_init_nofail(&r1, u1->section.offset_within_address_space,
1540                           int128_get64(u1->section.size));
1541         range_init_nofail(&r2, u2->section.offset_within_address_space,
1542                           int128_get64(u2->section.size));
1543 
1544         if (range_overlaps_range(&r1, &r2)) {
1545             need_inhibit = true;
1546             break;
1547         }
1548         if (range_lob(&r1) < range_lob(&r2)) {
1549             u1 = QSIMPLEQ_NEXT(u1, next);
1550         } else {
1551             u2 = QSIMPLEQ_NEXT(u2, next);
1552         }
1553     }
1554 
1555     kvm_slots_lock();
1556     if (need_inhibit) {
1557         accel_ioctl_inhibit_begin();
1558     }
1559 
1560     /* Remove all memslots before adding the new ones. */
1561     while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) {
1562         u1 = QSIMPLEQ_FIRST(&kml->transaction_del);
1563         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next);
1564 
1565         kvm_set_phys_mem(kml, &u1->section, false);
1566         memory_region_unref(u1->section.mr);
1567 
1568         g_free(u1);
1569     }
1570     while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) {
1571         u1 = QSIMPLEQ_FIRST(&kml->transaction_add);
1572         QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next);
1573 
1574         memory_region_ref(u1->section.mr);
1575         kvm_set_phys_mem(kml, &u1->section, true);
1576 
1577         g_free(u1);
1578     }
1579 
1580     if (need_inhibit) {
1581         accel_ioctl_inhibit_end();
1582     }
1583     kvm_slots_unlock();
1584 }
1585 
1586 static void kvm_log_sync(MemoryListener *listener,
1587                          MemoryRegionSection *section)
1588 {
1589     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1590 
1591     kvm_slots_lock();
1592     kvm_physical_sync_dirty_bitmap(kml, section);
1593     kvm_slots_unlock();
1594 }
1595 
1596 static void kvm_log_sync_global(MemoryListener *l, bool last_stage)
1597 {
1598     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1599     KVMState *s = kvm_state;
1600     KVMSlot *mem;
1601     int i;
1602 
1603     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1604     kvm_dirty_ring_flush();
1605 
1606     /*
1607      * TODO: make this faster when nr_slots is big while there are
1608      * only a few used slots (small VMs).
1609      */
1610     kvm_slots_lock();
1611     for (i = 0; i < s->nr_slots; i++) {
1612         mem = &kml->slots[i];
1613         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1614             kvm_slot_sync_dirty_pages(mem);
1615 
1616             if (s->kvm_dirty_ring_with_bitmap && last_stage &&
1617                 kvm_slot_get_dirty_log(s, mem)) {
1618                 kvm_slot_sync_dirty_pages(mem);
1619             }
1620 
1621             /*
1622              * This is not needed by KVM_GET_DIRTY_LOG because the
1623              * ioctl will unconditionally overwrite the whole region.
1624              * However kvm dirty ring has no such side effect.
1625              */
1626             kvm_slot_reset_dirty_pages(mem);
1627         }
1628     }
1629     kvm_slots_unlock();
1630 }
1631 
1632 static void kvm_log_clear(MemoryListener *listener,
1633                           MemoryRegionSection *section)
1634 {
1635     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1636     int r;
1637 
1638     r = kvm_physical_log_clear(kml, section);
1639     if (r < 0) {
1640         error_report_once("%s: kvm log clear failed: mr=%s "
1641                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1642                           section->mr->name, section->offset_within_region,
1643                           int128_get64(section->size));
1644         abort();
1645     }
1646 }
1647 
1648 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1649                                   MemoryRegionSection *section,
1650                                   bool match_data, uint64_t data,
1651                                   EventNotifier *e)
1652 {
1653     int fd = event_notifier_get_fd(e);
1654     int r;
1655 
1656     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1657                                data, true, int128_get64(section->size),
1658                                match_data);
1659     if (r < 0) {
1660         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1661                 __func__, strerror(-r), -r);
1662         abort();
1663     }
1664 }
1665 
1666 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1667                                   MemoryRegionSection *section,
1668                                   bool match_data, uint64_t data,
1669                                   EventNotifier *e)
1670 {
1671     int fd = event_notifier_get_fd(e);
1672     int r;
1673 
1674     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1675                                data, false, int128_get64(section->size),
1676                                match_data);
1677     if (r < 0) {
1678         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1679                 __func__, strerror(-r), -r);
1680         abort();
1681     }
1682 }
1683 
1684 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1685                                  MemoryRegionSection *section,
1686                                  bool match_data, uint64_t data,
1687                                  EventNotifier *e)
1688 {
1689     int fd = event_notifier_get_fd(e);
1690     int r;
1691 
1692     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1693                               data, true, int128_get64(section->size),
1694                               match_data);
1695     if (r < 0) {
1696         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1697                 __func__, strerror(-r), -r);
1698         abort();
1699     }
1700 }
1701 
1702 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1703                                  MemoryRegionSection *section,
1704                                  bool match_data, uint64_t data,
1705                                  EventNotifier *e)
1706 
1707 {
1708     int fd = event_notifier_get_fd(e);
1709     int r;
1710 
1711     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1712                               data, false, int128_get64(section->size),
1713                               match_data);
1714     if (r < 0) {
1715         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1716                 __func__, strerror(-r), -r);
1717         abort();
1718     }
1719 }
1720 
1721 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1722                                   AddressSpace *as, int as_id, const char *name)
1723 {
1724     int i;
1725 
1726     kml->slots = g_new0(KVMSlot, s->nr_slots);
1727     kml->as_id = as_id;
1728 
1729     for (i = 0; i < s->nr_slots; i++) {
1730         kml->slots[i].slot = i;
1731     }
1732 
1733     QSIMPLEQ_INIT(&kml->transaction_add);
1734     QSIMPLEQ_INIT(&kml->transaction_del);
1735 
1736     kml->listener.region_add = kvm_region_add;
1737     kml->listener.region_del = kvm_region_del;
1738     kml->listener.commit = kvm_region_commit;
1739     kml->listener.log_start = kvm_log_start;
1740     kml->listener.log_stop = kvm_log_stop;
1741     kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL;
1742     kml->listener.name = name;
1743 
1744     if (s->kvm_dirty_ring_size) {
1745         kml->listener.log_sync_global = kvm_log_sync_global;
1746     } else {
1747         kml->listener.log_sync = kvm_log_sync;
1748         kml->listener.log_clear = kvm_log_clear;
1749     }
1750 
1751     memory_listener_register(&kml->listener, as);
1752 
1753     for (i = 0; i < s->nr_as; ++i) {
1754         if (!s->as[i].as) {
1755             s->as[i].as = as;
1756             s->as[i].ml = kml;
1757             break;
1758         }
1759     }
1760 }
1761 
1762 static MemoryListener kvm_io_listener = {
1763     .name = "kvm-io",
1764     .coalesced_io_add = kvm_coalesce_pio_add,
1765     .coalesced_io_del = kvm_coalesce_pio_del,
1766     .eventfd_add = kvm_io_ioeventfd_add,
1767     .eventfd_del = kvm_io_ioeventfd_del,
1768     .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
1769 };
1770 
1771 int kvm_set_irq(KVMState *s, int irq, int level)
1772 {
1773     struct kvm_irq_level event;
1774     int ret;
1775 
1776     assert(kvm_async_interrupts_enabled());
1777 
1778     event.level = level;
1779     event.irq = irq;
1780     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1781     if (ret < 0) {
1782         perror("kvm_set_irq");
1783         abort();
1784     }
1785 
1786     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1787 }
1788 
1789 #ifdef KVM_CAP_IRQ_ROUTING
1790 typedef struct KVMMSIRoute {
1791     struct kvm_irq_routing_entry kroute;
1792     QTAILQ_ENTRY(KVMMSIRoute) entry;
1793 } KVMMSIRoute;
1794 
1795 static void set_gsi(KVMState *s, unsigned int gsi)
1796 {
1797     set_bit(gsi, s->used_gsi_bitmap);
1798 }
1799 
1800 static void clear_gsi(KVMState *s, unsigned int gsi)
1801 {
1802     clear_bit(gsi, s->used_gsi_bitmap);
1803 }
1804 
1805 void kvm_init_irq_routing(KVMState *s)
1806 {
1807     int gsi_count;
1808 
1809     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1810     if (gsi_count > 0) {
1811         /* Round up so we can search ints using ffs */
1812         s->used_gsi_bitmap = bitmap_new(gsi_count);
1813         s->gsi_count = gsi_count;
1814     }
1815 
1816     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1817     s->nr_allocated_irq_routes = 0;
1818 
1819     kvm_arch_init_irq_routing(s);
1820 }
1821 
1822 void kvm_irqchip_commit_routes(KVMState *s)
1823 {
1824     int ret;
1825 
1826     if (kvm_gsi_direct_mapping()) {
1827         return;
1828     }
1829 
1830     if (!kvm_gsi_routing_enabled()) {
1831         return;
1832     }
1833 
1834     s->irq_routes->flags = 0;
1835     trace_kvm_irqchip_commit_routes();
1836     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1837     assert(ret == 0);
1838 }
1839 
1840 static void kvm_add_routing_entry(KVMState *s,
1841                                   struct kvm_irq_routing_entry *entry)
1842 {
1843     struct kvm_irq_routing_entry *new;
1844     int n, size;
1845 
1846     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1847         n = s->nr_allocated_irq_routes * 2;
1848         if (n < 64) {
1849             n = 64;
1850         }
1851         size = sizeof(struct kvm_irq_routing);
1852         size += n * sizeof(*new);
1853         s->irq_routes = g_realloc(s->irq_routes, size);
1854         s->nr_allocated_irq_routes = n;
1855     }
1856     n = s->irq_routes->nr++;
1857     new = &s->irq_routes->entries[n];
1858 
1859     *new = *entry;
1860 
1861     set_gsi(s, entry->gsi);
1862 }
1863 
1864 static int kvm_update_routing_entry(KVMState *s,
1865                                     struct kvm_irq_routing_entry *new_entry)
1866 {
1867     struct kvm_irq_routing_entry *entry;
1868     int n;
1869 
1870     for (n = 0; n < s->irq_routes->nr; n++) {
1871         entry = &s->irq_routes->entries[n];
1872         if (entry->gsi != new_entry->gsi) {
1873             continue;
1874         }
1875 
1876         if(!memcmp(entry, new_entry, sizeof *entry)) {
1877             return 0;
1878         }
1879 
1880         *entry = *new_entry;
1881 
1882         return 0;
1883     }
1884 
1885     return -ESRCH;
1886 }
1887 
1888 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1889 {
1890     struct kvm_irq_routing_entry e = {};
1891 
1892     assert(pin < s->gsi_count);
1893 
1894     e.gsi = irq;
1895     e.type = KVM_IRQ_ROUTING_IRQCHIP;
1896     e.flags = 0;
1897     e.u.irqchip.irqchip = irqchip;
1898     e.u.irqchip.pin = pin;
1899     kvm_add_routing_entry(s, &e);
1900 }
1901 
1902 void kvm_irqchip_release_virq(KVMState *s, int virq)
1903 {
1904     struct kvm_irq_routing_entry *e;
1905     int i;
1906 
1907     if (kvm_gsi_direct_mapping()) {
1908         return;
1909     }
1910 
1911     for (i = 0; i < s->irq_routes->nr; i++) {
1912         e = &s->irq_routes->entries[i];
1913         if (e->gsi == virq) {
1914             s->irq_routes->nr--;
1915             *e = s->irq_routes->entries[s->irq_routes->nr];
1916         }
1917     }
1918     clear_gsi(s, virq);
1919     kvm_arch_release_virq_post(virq);
1920     trace_kvm_irqchip_release_virq(virq);
1921 }
1922 
1923 void kvm_irqchip_add_change_notifier(Notifier *n)
1924 {
1925     notifier_list_add(&kvm_irqchip_change_notifiers, n);
1926 }
1927 
1928 void kvm_irqchip_remove_change_notifier(Notifier *n)
1929 {
1930     notifier_remove(n);
1931 }
1932 
1933 void kvm_irqchip_change_notify(void)
1934 {
1935     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1936 }
1937 
1938 static int kvm_irqchip_get_virq(KVMState *s)
1939 {
1940     int next_virq;
1941 
1942     /* Return the lowest unused GSI in the bitmap */
1943     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1944     if (next_virq >= s->gsi_count) {
1945         return -ENOSPC;
1946     } else {
1947         return next_virq;
1948     }
1949 }
1950 
1951 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1952 {
1953     struct kvm_msi msi;
1954 
1955     msi.address_lo = (uint32_t)msg.address;
1956     msi.address_hi = msg.address >> 32;
1957     msi.data = le32_to_cpu(msg.data);
1958     msi.flags = 0;
1959     memset(msi.pad, 0, sizeof(msi.pad));
1960 
1961     return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1962 }
1963 
1964 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1965 {
1966     struct kvm_irq_routing_entry kroute = {};
1967     int virq;
1968     KVMState *s = c->s;
1969     MSIMessage msg = {0, 0};
1970 
1971     if (pci_available && dev) {
1972         msg = pci_get_msi_message(dev, vector);
1973     }
1974 
1975     if (kvm_gsi_direct_mapping()) {
1976         return kvm_arch_msi_data_to_gsi(msg.data);
1977     }
1978 
1979     if (!kvm_gsi_routing_enabled()) {
1980         return -ENOSYS;
1981     }
1982 
1983     virq = kvm_irqchip_get_virq(s);
1984     if (virq < 0) {
1985         return virq;
1986     }
1987 
1988     kroute.gsi = virq;
1989     kroute.type = KVM_IRQ_ROUTING_MSI;
1990     kroute.flags = 0;
1991     kroute.u.msi.address_lo = (uint32_t)msg.address;
1992     kroute.u.msi.address_hi = msg.address >> 32;
1993     kroute.u.msi.data = le32_to_cpu(msg.data);
1994     if (pci_available && kvm_msi_devid_required()) {
1995         kroute.flags = KVM_MSI_VALID_DEVID;
1996         kroute.u.msi.devid = pci_requester_id(dev);
1997     }
1998     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1999         kvm_irqchip_release_virq(s, virq);
2000         return -EINVAL;
2001     }
2002 
2003     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2004                                     vector, virq);
2005 
2006     kvm_add_routing_entry(s, &kroute);
2007     kvm_arch_add_msi_route_post(&kroute, vector, dev);
2008     c->changes++;
2009 
2010     return virq;
2011 }
2012 
2013 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2014                                  PCIDevice *dev)
2015 {
2016     struct kvm_irq_routing_entry kroute = {};
2017 
2018     if (kvm_gsi_direct_mapping()) {
2019         return 0;
2020     }
2021 
2022     if (!kvm_irqchip_in_kernel()) {
2023         return -ENOSYS;
2024     }
2025 
2026     kroute.gsi = virq;
2027     kroute.type = KVM_IRQ_ROUTING_MSI;
2028     kroute.flags = 0;
2029     kroute.u.msi.address_lo = (uint32_t)msg.address;
2030     kroute.u.msi.address_hi = msg.address >> 32;
2031     kroute.u.msi.data = le32_to_cpu(msg.data);
2032     if (pci_available && kvm_msi_devid_required()) {
2033         kroute.flags = KVM_MSI_VALID_DEVID;
2034         kroute.u.msi.devid = pci_requester_id(dev);
2035     }
2036     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2037         return -EINVAL;
2038     }
2039 
2040     trace_kvm_irqchip_update_msi_route(virq);
2041 
2042     return kvm_update_routing_entry(s, &kroute);
2043 }
2044 
2045 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2046                                     EventNotifier *resample, int virq,
2047                                     bool assign)
2048 {
2049     int fd = event_notifier_get_fd(event);
2050     int rfd = resample ? event_notifier_get_fd(resample) : -1;
2051 
2052     struct kvm_irqfd irqfd = {
2053         .fd = fd,
2054         .gsi = virq,
2055         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2056     };
2057 
2058     if (rfd != -1) {
2059         assert(assign);
2060         if (kvm_irqchip_is_split()) {
2061             /*
2062              * When the slow irqchip (e.g. IOAPIC) is in the
2063              * userspace, KVM kernel resamplefd will not work because
2064              * the EOI of the interrupt will be delivered to userspace
2065              * instead, so the KVM kernel resamplefd kick will be
2066              * skipped.  The userspace here mimics what the kernel
2067              * provides with resamplefd, remember the resamplefd and
2068              * kick it when we receive EOI of this IRQ.
2069              *
2070              * This is hackery because IOAPIC is mostly bypassed
2071              * (except EOI broadcasts) when irqfd is used.  However
2072              * this can bring much performance back for split irqchip
2073              * with INTx IRQs (for VFIO, this gives 93% perf of the
2074              * full fast path, which is 46% perf boost comparing to
2075              * the INTx slow path).
2076              */
2077             kvm_resample_fd_insert(virq, resample);
2078         } else {
2079             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2080             irqfd.resamplefd = rfd;
2081         }
2082     } else if (!assign) {
2083         if (kvm_irqchip_is_split()) {
2084             kvm_resample_fd_remove(virq);
2085         }
2086     }
2087 
2088     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2089 }
2090 
2091 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2092 {
2093     struct kvm_irq_routing_entry kroute = {};
2094     int virq;
2095 
2096     if (!kvm_gsi_routing_enabled()) {
2097         return -ENOSYS;
2098     }
2099 
2100     virq = kvm_irqchip_get_virq(s);
2101     if (virq < 0) {
2102         return virq;
2103     }
2104 
2105     kroute.gsi = virq;
2106     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2107     kroute.flags = 0;
2108     kroute.u.adapter.summary_addr = adapter->summary_addr;
2109     kroute.u.adapter.ind_addr = adapter->ind_addr;
2110     kroute.u.adapter.summary_offset = adapter->summary_offset;
2111     kroute.u.adapter.ind_offset = adapter->ind_offset;
2112     kroute.u.adapter.adapter_id = adapter->adapter_id;
2113 
2114     kvm_add_routing_entry(s, &kroute);
2115 
2116     return virq;
2117 }
2118 
2119 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2120 {
2121     struct kvm_irq_routing_entry kroute = {};
2122     int virq;
2123 
2124     if (!kvm_gsi_routing_enabled()) {
2125         return -ENOSYS;
2126     }
2127     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2128         return -ENOSYS;
2129     }
2130     virq = kvm_irqchip_get_virq(s);
2131     if (virq < 0) {
2132         return virq;
2133     }
2134 
2135     kroute.gsi = virq;
2136     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2137     kroute.flags = 0;
2138     kroute.u.hv_sint.vcpu = vcpu;
2139     kroute.u.hv_sint.sint = sint;
2140 
2141     kvm_add_routing_entry(s, &kroute);
2142     kvm_irqchip_commit_routes(s);
2143 
2144     return virq;
2145 }
2146 
2147 #else /* !KVM_CAP_IRQ_ROUTING */
2148 
2149 void kvm_init_irq_routing(KVMState *s)
2150 {
2151 }
2152 
2153 void kvm_irqchip_release_virq(KVMState *s, int virq)
2154 {
2155 }
2156 
2157 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2158 {
2159     abort();
2160 }
2161 
2162 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2163 {
2164     return -ENOSYS;
2165 }
2166 
2167 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2168 {
2169     return -ENOSYS;
2170 }
2171 
2172 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2173 {
2174     return -ENOSYS;
2175 }
2176 
2177 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2178                                     EventNotifier *resample, int virq,
2179                                     bool assign)
2180 {
2181     abort();
2182 }
2183 
2184 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2185 {
2186     return -ENOSYS;
2187 }
2188 #endif /* !KVM_CAP_IRQ_ROUTING */
2189 
2190 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2191                                        EventNotifier *rn, int virq)
2192 {
2193     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2194 }
2195 
2196 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2197                                           int virq)
2198 {
2199     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2200 }
2201 
2202 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2203                                    EventNotifier *rn, qemu_irq irq)
2204 {
2205     gpointer key, gsi;
2206     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2207 
2208     if (!found) {
2209         return -ENXIO;
2210     }
2211     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2212 }
2213 
2214 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2215                                       qemu_irq irq)
2216 {
2217     gpointer key, gsi;
2218     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2219 
2220     if (!found) {
2221         return -ENXIO;
2222     }
2223     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2224 }
2225 
2226 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2227 {
2228     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2229 }
2230 
2231 static void kvm_irqchip_create(KVMState *s)
2232 {
2233     int ret;
2234 
2235     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2236     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2237         ;
2238     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2239         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2240         if (ret < 0) {
2241             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2242             exit(1);
2243         }
2244     } else {
2245         return;
2246     }
2247 
2248     if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) {
2249         fprintf(stderr, "kvm: irqfd not implemented\n");
2250         exit(1);
2251     }
2252 
2253     /* First probe and see if there's a arch-specific hook to create the
2254      * in-kernel irqchip for us */
2255     ret = kvm_arch_irqchip_create(s);
2256     if (ret == 0) {
2257         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2258             error_report("Split IRQ chip mode not supported.");
2259             exit(1);
2260         } else {
2261             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2262         }
2263     }
2264     if (ret < 0) {
2265         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2266         exit(1);
2267     }
2268 
2269     kvm_kernel_irqchip = true;
2270     /* If we have an in-kernel IRQ chip then we must have asynchronous
2271      * interrupt delivery (though the reverse is not necessarily true)
2272      */
2273     kvm_async_interrupts_allowed = true;
2274     kvm_halt_in_kernel_allowed = true;
2275 
2276     kvm_init_irq_routing(s);
2277 
2278     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2279 }
2280 
2281 /* Find number of supported CPUs using the recommended
2282  * procedure from the kernel API documentation to cope with
2283  * older kernels that may be missing capabilities.
2284  */
2285 static int kvm_recommended_vcpus(KVMState *s)
2286 {
2287     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2288     return (ret) ? ret : 4;
2289 }
2290 
2291 static int kvm_max_vcpus(KVMState *s)
2292 {
2293     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2294     return (ret) ? ret : kvm_recommended_vcpus(s);
2295 }
2296 
2297 static int kvm_max_vcpu_id(KVMState *s)
2298 {
2299     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2300     return (ret) ? ret : kvm_max_vcpus(s);
2301 }
2302 
2303 bool kvm_vcpu_id_is_valid(int vcpu_id)
2304 {
2305     KVMState *s = KVM_STATE(current_accel());
2306     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2307 }
2308 
2309 bool kvm_dirty_ring_enabled(void)
2310 {
2311     return kvm_state->kvm_dirty_ring_size ? true : false;
2312 }
2313 
2314 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2315                            strList *names, strList *targets, Error **errp);
2316 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2317 
2318 uint32_t kvm_dirty_ring_size(void)
2319 {
2320     return kvm_state->kvm_dirty_ring_size;
2321 }
2322 
2323 static int kvm_init(MachineState *ms)
2324 {
2325     MachineClass *mc = MACHINE_GET_CLASS(ms);
2326     static const char upgrade_note[] =
2327         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2328         "(see http://sourceforge.net/projects/kvm).\n";
2329     const struct {
2330         const char *name;
2331         int num;
2332     } num_cpus[] = {
2333         { "SMP",          ms->smp.cpus },
2334         { "hotpluggable", ms->smp.max_cpus },
2335         { /* end of list */ }
2336     }, *nc = num_cpus;
2337     int soft_vcpus_limit, hard_vcpus_limit;
2338     KVMState *s;
2339     const KVMCapabilityInfo *missing_cap;
2340     int ret;
2341     int type;
2342     uint64_t dirty_log_manual_caps;
2343 
2344     qemu_mutex_init(&kml_slots_lock);
2345 
2346     s = KVM_STATE(ms->accelerator);
2347 
2348     /*
2349      * On systems where the kernel can support different base page
2350      * sizes, host page size may be different from TARGET_PAGE_SIZE,
2351      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2352      * page size for the system though.
2353      */
2354     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2355 
2356     s->sigmask_len = 8;
2357     accel_blocker_init();
2358 
2359 #ifdef KVM_CAP_SET_GUEST_DEBUG
2360     QTAILQ_INIT(&s->kvm_sw_breakpoints);
2361 #endif
2362     QLIST_INIT(&s->kvm_parked_vcpus);
2363     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2364     if (s->fd == -1) {
2365         fprintf(stderr, "Could not access KVM kernel module: %m\n");
2366         ret = -errno;
2367         goto err;
2368     }
2369 
2370     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2371     if (ret < KVM_API_VERSION) {
2372         if (ret >= 0) {
2373             ret = -EINVAL;
2374         }
2375         fprintf(stderr, "kvm version too old\n");
2376         goto err;
2377     }
2378 
2379     if (ret > KVM_API_VERSION) {
2380         ret = -EINVAL;
2381         fprintf(stderr, "kvm version not supported\n");
2382         goto err;
2383     }
2384 
2385     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2386     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2387 
2388     /* If unspecified, use the default value */
2389     if (!s->nr_slots) {
2390         s->nr_slots = 32;
2391     }
2392 
2393     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2394     if (s->nr_as <= 1) {
2395         s->nr_as = 1;
2396     }
2397     s->as = g_new0(struct KVMAs, s->nr_as);
2398 
2399     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2400         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2401                                                             "kvm-type",
2402                                                             &error_abort);
2403         type = mc->kvm_type(ms, kvm_type);
2404     } else if (mc->kvm_type) {
2405         type = mc->kvm_type(ms, NULL);
2406     } else {
2407         type = kvm_arch_get_default_type(ms);
2408     }
2409 
2410     if (type < 0) {
2411         ret = -EINVAL;
2412         goto err;
2413     }
2414 
2415     do {
2416         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2417     } while (ret == -EINTR);
2418 
2419     if (ret < 0) {
2420         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2421                 strerror(-ret));
2422 
2423 #ifdef TARGET_S390X
2424         if (ret == -EINVAL) {
2425             fprintf(stderr,
2426                     "Host kernel setup problem detected. Please verify:\n");
2427             fprintf(stderr, "- for kernels supporting the switch_amode or"
2428                     " user_mode parameters, whether\n");
2429             fprintf(stderr,
2430                     "  user space is running in primary address space\n");
2431             fprintf(stderr,
2432                     "- for kernels supporting the vm.allocate_pgste sysctl, "
2433                     "whether it is enabled\n");
2434         }
2435 #elif defined(TARGET_PPC)
2436         if (ret == -EINVAL) {
2437             fprintf(stderr,
2438                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2439                     (type == 2) ? "pr" : "hv");
2440         }
2441 #endif
2442         goto err;
2443     }
2444 
2445     s->vmfd = ret;
2446 
2447     /* check the vcpu limits */
2448     soft_vcpus_limit = kvm_recommended_vcpus(s);
2449     hard_vcpus_limit = kvm_max_vcpus(s);
2450 
2451     while (nc->name) {
2452         if (nc->num > soft_vcpus_limit) {
2453             warn_report("Number of %s cpus requested (%d) exceeds "
2454                         "the recommended cpus supported by KVM (%d)",
2455                         nc->name, nc->num, soft_vcpus_limit);
2456 
2457             if (nc->num > hard_vcpus_limit) {
2458                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2459                         "the maximum cpus supported by KVM (%d)\n",
2460                         nc->name, nc->num, hard_vcpus_limit);
2461                 exit(1);
2462             }
2463         }
2464         nc++;
2465     }
2466 
2467     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2468     if (!missing_cap) {
2469         missing_cap =
2470             kvm_check_extension_list(s, kvm_arch_required_capabilities);
2471     }
2472     if (missing_cap) {
2473         ret = -EINVAL;
2474         fprintf(stderr, "kvm does not support %s\n%s",
2475                 missing_cap->name, upgrade_note);
2476         goto err;
2477     }
2478 
2479     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2480     s->coalesced_pio = s->coalesced_mmio &&
2481                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2482 
2483     /*
2484      * Enable KVM dirty ring if supported, otherwise fall back to
2485      * dirty logging mode
2486      */
2487     ret = kvm_dirty_ring_init(s);
2488     if (ret < 0) {
2489         goto err;
2490     }
2491 
2492     /*
2493      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2494      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2495      * page is wr-protected initially, which is against how kvm dirty ring is
2496      * usage - kvm dirty ring requires all pages are wr-protected at the very
2497      * beginning.  Enabling this feature for dirty ring causes data corruption.
2498      *
2499      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2500      * we may expect a higher stall time when starting the migration.  In the
2501      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2502      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2503      * guest pages.
2504      */
2505     if (!s->kvm_dirty_ring_size) {
2506         dirty_log_manual_caps =
2507             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2508         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2509                                   KVM_DIRTY_LOG_INITIALLY_SET);
2510         s->manual_dirty_log_protect = dirty_log_manual_caps;
2511         if (dirty_log_manual_caps) {
2512             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2513                                     dirty_log_manual_caps);
2514             if (ret) {
2515                 warn_report("Trying to enable capability %"PRIu64" of "
2516                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2517                             "Falling back to the legacy mode. ",
2518                             dirty_log_manual_caps);
2519                 s->manual_dirty_log_protect = 0;
2520             }
2521         }
2522     }
2523 
2524 #ifdef KVM_CAP_VCPU_EVENTS
2525     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2526 #endif
2527     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2528 
2529     s->irq_set_ioctl = KVM_IRQ_LINE;
2530     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2531         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2532     }
2533 
2534     kvm_readonly_mem_allowed =
2535         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2536 
2537     kvm_resamplefds_allowed =
2538         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2539 
2540     kvm_vm_attributes_allowed =
2541         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2542 
2543 #ifdef KVM_CAP_SET_GUEST_DEBUG
2544     kvm_has_guest_debug =
2545         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2546 #endif
2547 
2548     kvm_sstep_flags = 0;
2549     if (kvm_has_guest_debug) {
2550         kvm_sstep_flags = SSTEP_ENABLE;
2551 
2552 #if defined KVM_CAP_SET_GUEST_DEBUG2
2553         int guest_debug_flags =
2554             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2555 
2556         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2557             kvm_sstep_flags |= SSTEP_NOIRQ;
2558         }
2559 #endif
2560     }
2561 
2562     kvm_state = s;
2563 
2564     ret = kvm_arch_init(ms, s);
2565     if (ret < 0) {
2566         goto err;
2567     }
2568 
2569     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2570         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2571     }
2572 
2573     qemu_register_reset(kvm_unpoison_all, NULL);
2574 
2575     if (s->kernel_irqchip_allowed) {
2576         kvm_irqchip_create(s);
2577     }
2578 
2579     s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2580     s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2581     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2582     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2583 
2584     kvm_memory_listener_register(s, &s->memory_listener,
2585                                  &address_space_memory, 0, "kvm-memory");
2586     memory_listener_register(&kvm_io_listener,
2587                              &address_space_io);
2588 
2589     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2590     if (!s->sync_mmu) {
2591         ret = ram_block_discard_disable(true);
2592         assert(!ret);
2593     }
2594 
2595     if (s->kvm_dirty_ring_size) {
2596         kvm_dirty_ring_reaper_init(s);
2597     }
2598 
2599     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2600         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2601                             query_stats_schemas_cb);
2602     }
2603 
2604     return 0;
2605 
2606 err:
2607     assert(ret < 0);
2608     if (s->vmfd >= 0) {
2609         close(s->vmfd);
2610     }
2611     if (s->fd != -1) {
2612         close(s->fd);
2613     }
2614     g_free(s->as);
2615     g_free(s->memory_listener.slots);
2616 
2617     return ret;
2618 }
2619 
2620 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2621 {
2622     s->sigmask_len = sigmask_len;
2623 }
2624 
2625 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2626                           int size, uint32_t count)
2627 {
2628     int i;
2629     uint8_t *ptr = data;
2630 
2631     for (i = 0; i < count; i++) {
2632         address_space_rw(&address_space_io, port, attrs,
2633                          ptr, size,
2634                          direction == KVM_EXIT_IO_OUT);
2635         ptr += size;
2636     }
2637 }
2638 
2639 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2640 {
2641     int i;
2642 
2643     fprintf(stderr, "KVM internal error. Suberror: %d\n",
2644             run->internal.suberror);
2645 
2646     for (i = 0; i < run->internal.ndata; ++i) {
2647         fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2648                 i, (uint64_t)run->internal.data[i]);
2649     }
2650     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2651         fprintf(stderr, "emulation failure\n");
2652         if (!kvm_arch_stop_on_emulation_error(cpu)) {
2653             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2654             return EXCP_INTERRUPT;
2655         }
2656     }
2657     /* FIXME: Should trigger a qmp message to let management know
2658      * something went wrong.
2659      */
2660     return -1;
2661 }
2662 
2663 void kvm_flush_coalesced_mmio_buffer(void)
2664 {
2665     KVMState *s = kvm_state;
2666 
2667     if (!s || s->coalesced_flush_in_progress) {
2668         return;
2669     }
2670 
2671     s->coalesced_flush_in_progress = true;
2672 
2673     if (s->coalesced_mmio_ring) {
2674         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2675         while (ring->first != ring->last) {
2676             struct kvm_coalesced_mmio *ent;
2677 
2678             ent = &ring->coalesced_mmio[ring->first];
2679 
2680             if (ent->pio == 1) {
2681                 address_space_write(&address_space_io, ent->phys_addr,
2682                                     MEMTXATTRS_UNSPECIFIED, ent->data,
2683                                     ent->len);
2684             } else {
2685                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2686             }
2687             smp_wmb();
2688             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2689         }
2690     }
2691 
2692     s->coalesced_flush_in_progress = false;
2693 }
2694 
2695 bool kvm_cpu_check_are_resettable(void)
2696 {
2697     return kvm_arch_cpu_check_are_resettable();
2698 }
2699 
2700 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2701 {
2702     if (!cpu->vcpu_dirty) {
2703         int ret = kvm_arch_get_registers(cpu);
2704         if (ret) {
2705             error_report("Failed to get registers: %s", strerror(-ret));
2706             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2707             vm_stop(RUN_STATE_INTERNAL_ERROR);
2708         }
2709 
2710         cpu->vcpu_dirty = true;
2711     }
2712 }
2713 
2714 void kvm_cpu_synchronize_state(CPUState *cpu)
2715 {
2716     if (!cpu->vcpu_dirty) {
2717         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2718     }
2719 }
2720 
2721 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2722 {
2723     int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2724     if (ret) {
2725         error_report("Failed to put registers after reset: %s", strerror(-ret));
2726         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2727         vm_stop(RUN_STATE_INTERNAL_ERROR);
2728     }
2729 
2730     cpu->vcpu_dirty = false;
2731 }
2732 
2733 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2734 {
2735     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2736 }
2737 
2738 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2739 {
2740     int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2741     if (ret) {
2742         error_report("Failed to put registers after init: %s", strerror(-ret));
2743         exit(1);
2744     }
2745 
2746     cpu->vcpu_dirty = false;
2747 }
2748 
2749 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2750 {
2751     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2752 }
2753 
2754 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2755 {
2756     cpu->vcpu_dirty = true;
2757 }
2758 
2759 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2760 {
2761     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2762 }
2763 
2764 #ifdef KVM_HAVE_MCE_INJECTION
2765 static __thread void *pending_sigbus_addr;
2766 static __thread int pending_sigbus_code;
2767 static __thread bool have_sigbus_pending;
2768 #endif
2769 
2770 static void kvm_cpu_kick(CPUState *cpu)
2771 {
2772     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2773 }
2774 
2775 static void kvm_cpu_kick_self(void)
2776 {
2777     if (kvm_immediate_exit) {
2778         kvm_cpu_kick(current_cpu);
2779     } else {
2780         qemu_cpu_kick_self();
2781     }
2782 }
2783 
2784 static void kvm_eat_signals(CPUState *cpu)
2785 {
2786     struct timespec ts = { 0, 0 };
2787     siginfo_t siginfo;
2788     sigset_t waitset;
2789     sigset_t chkset;
2790     int r;
2791 
2792     if (kvm_immediate_exit) {
2793         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2794         /* Write kvm_run->immediate_exit before the cpu->exit_request
2795          * write in kvm_cpu_exec.
2796          */
2797         smp_wmb();
2798         return;
2799     }
2800 
2801     sigemptyset(&waitset);
2802     sigaddset(&waitset, SIG_IPI);
2803 
2804     do {
2805         r = sigtimedwait(&waitset, &siginfo, &ts);
2806         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2807             perror("sigtimedwait");
2808             exit(1);
2809         }
2810 
2811         r = sigpending(&chkset);
2812         if (r == -1) {
2813             perror("sigpending");
2814             exit(1);
2815         }
2816     } while (sigismember(&chkset, SIG_IPI));
2817 }
2818 
2819 int kvm_cpu_exec(CPUState *cpu)
2820 {
2821     struct kvm_run *run = cpu->kvm_run;
2822     int ret, run_ret;
2823 
2824     DPRINTF("kvm_cpu_exec()\n");
2825 
2826     if (kvm_arch_process_async_events(cpu)) {
2827         qatomic_set(&cpu->exit_request, 0);
2828         return EXCP_HLT;
2829     }
2830 
2831     qemu_mutex_unlock_iothread();
2832     cpu_exec_start(cpu);
2833 
2834     do {
2835         MemTxAttrs attrs;
2836 
2837         if (cpu->vcpu_dirty) {
2838             ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2839             if (ret) {
2840                 error_report("Failed to put registers after init: %s",
2841                              strerror(-ret));
2842                 ret = -1;
2843                 break;
2844             }
2845 
2846             cpu->vcpu_dirty = false;
2847         }
2848 
2849         kvm_arch_pre_run(cpu, run);
2850         if (qatomic_read(&cpu->exit_request)) {
2851             DPRINTF("interrupt exit requested\n");
2852             /*
2853              * KVM requires us to reenter the kernel after IO exits to complete
2854              * instruction emulation. This self-signal will ensure that we
2855              * leave ASAP again.
2856              */
2857             kvm_cpu_kick_self();
2858         }
2859 
2860         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2861          * Matching barrier in kvm_eat_signals.
2862          */
2863         smp_rmb();
2864 
2865         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2866 
2867         attrs = kvm_arch_post_run(cpu, run);
2868 
2869 #ifdef KVM_HAVE_MCE_INJECTION
2870         if (unlikely(have_sigbus_pending)) {
2871             qemu_mutex_lock_iothread();
2872             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2873                                     pending_sigbus_addr);
2874             have_sigbus_pending = false;
2875             qemu_mutex_unlock_iothread();
2876         }
2877 #endif
2878 
2879         if (run_ret < 0) {
2880             if (run_ret == -EINTR || run_ret == -EAGAIN) {
2881                 DPRINTF("io window exit\n");
2882                 kvm_eat_signals(cpu);
2883                 ret = EXCP_INTERRUPT;
2884                 break;
2885             }
2886             fprintf(stderr, "error: kvm run failed %s\n",
2887                     strerror(-run_ret));
2888 #ifdef TARGET_PPC
2889             if (run_ret == -EBUSY) {
2890                 fprintf(stderr,
2891                         "This is probably because your SMT is enabled.\n"
2892                         "VCPU can only run on primary threads with all "
2893                         "secondary threads offline.\n");
2894             }
2895 #endif
2896             ret = -1;
2897             break;
2898         }
2899 
2900         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2901         switch (run->exit_reason) {
2902         case KVM_EXIT_IO:
2903             DPRINTF("handle_io\n");
2904             /* Called outside BQL */
2905             kvm_handle_io(run->io.port, attrs,
2906                           (uint8_t *)run + run->io.data_offset,
2907                           run->io.direction,
2908                           run->io.size,
2909                           run->io.count);
2910             ret = 0;
2911             break;
2912         case KVM_EXIT_MMIO:
2913             DPRINTF("handle_mmio\n");
2914             /* Called outside BQL */
2915             address_space_rw(&address_space_memory,
2916                              run->mmio.phys_addr, attrs,
2917                              run->mmio.data,
2918                              run->mmio.len,
2919                              run->mmio.is_write);
2920             ret = 0;
2921             break;
2922         case KVM_EXIT_IRQ_WINDOW_OPEN:
2923             DPRINTF("irq_window_open\n");
2924             ret = EXCP_INTERRUPT;
2925             break;
2926         case KVM_EXIT_SHUTDOWN:
2927             DPRINTF("shutdown\n");
2928             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2929             ret = EXCP_INTERRUPT;
2930             break;
2931         case KVM_EXIT_UNKNOWN:
2932             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2933                     (uint64_t)run->hw.hardware_exit_reason);
2934             ret = -1;
2935             break;
2936         case KVM_EXIT_INTERNAL_ERROR:
2937             ret = kvm_handle_internal_error(cpu, run);
2938             break;
2939         case KVM_EXIT_DIRTY_RING_FULL:
2940             /*
2941              * We shouldn't continue if the dirty ring of this vcpu is
2942              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2943              */
2944             trace_kvm_dirty_ring_full(cpu->cpu_index);
2945             qemu_mutex_lock_iothread();
2946             /*
2947              * We throttle vCPU by making it sleep once it exit from kernel
2948              * due to dirty ring full. In the dirtylimit scenario, reaping
2949              * all vCPUs after a single vCPU dirty ring get full result in
2950              * the miss of sleep, so just reap the ring-fulled vCPU.
2951              */
2952             if (dirtylimit_in_service()) {
2953                 kvm_dirty_ring_reap(kvm_state, cpu);
2954             } else {
2955                 kvm_dirty_ring_reap(kvm_state, NULL);
2956             }
2957             qemu_mutex_unlock_iothread();
2958             dirtylimit_vcpu_execute(cpu);
2959             ret = 0;
2960             break;
2961         case KVM_EXIT_SYSTEM_EVENT:
2962             switch (run->system_event.type) {
2963             case KVM_SYSTEM_EVENT_SHUTDOWN:
2964                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2965                 ret = EXCP_INTERRUPT;
2966                 break;
2967             case KVM_SYSTEM_EVENT_RESET:
2968                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2969                 ret = EXCP_INTERRUPT;
2970                 break;
2971             case KVM_SYSTEM_EVENT_CRASH:
2972                 kvm_cpu_synchronize_state(cpu);
2973                 qemu_mutex_lock_iothread();
2974                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2975                 qemu_mutex_unlock_iothread();
2976                 ret = 0;
2977                 break;
2978             default:
2979                 DPRINTF("kvm_arch_handle_exit\n");
2980                 ret = kvm_arch_handle_exit(cpu, run);
2981                 break;
2982             }
2983             break;
2984         default:
2985             DPRINTF("kvm_arch_handle_exit\n");
2986             ret = kvm_arch_handle_exit(cpu, run);
2987             break;
2988         }
2989     } while (ret == 0);
2990 
2991     cpu_exec_end(cpu);
2992     qemu_mutex_lock_iothread();
2993 
2994     if (ret < 0) {
2995         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2996         vm_stop(RUN_STATE_INTERNAL_ERROR);
2997     }
2998 
2999     qatomic_set(&cpu->exit_request, 0);
3000     return ret;
3001 }
3002 
3003 int kvm_ioctl(KVMState *s, int type, ...)
3004 {
3005     int ret;
3006     void *arg;
3007     va_list ap;
3008 
3009     va_start(ap, type);
3010     arg = va_arg(ap, void *);
3011     va_end(ap);
3012 
3013     trace_kvm_ioctl(type, arg);
3014     ret = ioctl(s->fd, type, arg);
3015     if (ret == -1) {
3016         ret = -errno;
3017     }
3018     return ret;
3019 }
3020 
3021 int kvm_vm_ioctl(KVMState *s, int type, ...)
3022 {
3023     int ret;
3024     void *arg;
3025     va_list ap;
3026 
3027     va_start(ap, type);
3028     arg = va_arg(ap, void *);
3029     va_end(ap);
3030 
3031     trace_kvm_vm_ioctl(type, arg);
3032     accel_ioctl_begin();
3033     ret = ioctl(s->vmfd, type, arg);
3034     accel_ioctl_end();
3035     if (ret == -1) {
3036         ret = -errno;
3037     }
3038     return ret;
3039 }
3040 
3041 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3042 {
3043     int ret;
3044     void *arg;
3045     va_list ap;
3046 
3047     va_start(ap, type);
3048     arg = va_arg(ap, void *);
3049     va_end(ap);
3050 
3051     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3052     accel_cpu_ioctl_begin(cpu);
3053     ret = ioctl(cpu->kvm_fd, type, arg);
3054     accel_cpu_ioctl_end(cpu);
3055     if (ret == -1) {
3056         ret = -errno;
3057     }
3058     return ret;
3059 }
3060 
3061 int kvm_device_ioctl(int fd, int type, ...)
3062 {
3063     int ret;
3064     void *arg;
3065     va_list ap;
3066 
3067     va_start(ap, type);
3068     arg = va_arg(ap, void *);
3069     va_end(ap);
3070 
3071     trace_kvm_device_ioctl(fd, type, arg);
3072     accel_ioctl_begin();
3073     ret = ioctl(fd, type, arg);
3074     accel_ioctl_end();
3075     if (ret == -1) {
3076         ret = -errno;
3077     }
3078     return ret;
3079 }
3080 
3081 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3082 {
3083     int ret;
3084     struct kvm_device_attr attribute = {
3085         .group = group,
3086         .attr = attr,
3087     };
3088 
3089     if (!kvm_vm_attributes_allowed) {
3090         return 0;
3091     }
3092 
3093     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3094     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3095     return ret ? 0 : 1;
3096 }
3097 
3098 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3099 {
3100     struct kvm_device_attr attribute = {
3101         .group = group,
3102         .attr = attr,
3103         .flags = 0,
3104     };
3105 
3106     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3107 }
3108 
3109 int kvm_device_access(int fd, int group, uint64_t attr,
3110                       void *val, bool write, Error **errp)
3111 {
3112     struct kvm_device_attr kvmattr;
3113     int err;
3114 
3115     kvmattr.flags = 0;
3116     kvmattr.group = group;
3117     kvmattr.attr = attr;
3118     kvmattr.addr = (uintptr_t)val;
3119 
3120     err = kvm_device_ioctl(fd,
3121                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3122                            &kvmattr);
3123     if (err < 0) {
3124         error_setg_errno(errp, -err,
3125                          "KVM_%s_DEVICE_ATTR failed: Group %d "
3126                          "attr 0x%016" PRIx64,
3127                          write ? "SET" : "GET", group, attr);
3128     }
3129     return err;
3130 }
3131 
3132 bool kvm_has_sync_mmu(void)
3133 {
3134     return kvm_state->sync_mmu;
3135 }
3136 
3137 int kvm_has_vcpu_events(void)
3138 {
3139     return kvm_state->vcpu_events;
3140 }
3141 
3142 int kvm_max_nested_state_length(void)
3143 {
3144     return kvm_state->max_nested_state_len;
3145 }
3146 
3147 int kvm_has_gsi_routing(void)
3148 {
3149 #ifdef KVM_CAP_IRQ_ROUTING
3150     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3151 #else
3152     return false;
3153 #endif
3154 }
3155 
3156 bool kvm_arm_supports_user_irq(void)
3157 {
3158     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3159 }
3160 
3161 #ifdef KVM_CAP_SET_GUEST_DEBUG
3162 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc)
3163 {
3164     struct kvm_sw_breakpoint *bp;
3165 
3166     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3167         if (bp->pc == pc) {
3168             return bp;
3169         }
3170     }
3171     return NULL;
3172 }
3173 
3174 int kvm_sw_breakpoints_active(CPUState *cpu)
3175 {
3176     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3177 }
3178 
3179 struct kvm_set_guest_debug_data {
3180     struct kvm_guest_debug dbg;
3181     int err;
3182 };
3183 
3184 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3185 {
3186     struct kvm_set_guest_debug_data *dbg_data =
3187         (struct kvm_set_guest_debug_data *) data.host_ptr;
3188 
3189     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3190                                    &dbg_data->dbg);
3191 }
3192 
3193 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3194 {
3195     struct kvm_set_guest_debug_data data;
3196 
3197     data.dbg.control = reinject_trap;
3198 
3199     if (cpu->singlestep_enabled) {
3200         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3201 
3202         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3203             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3204         }
3205     }
3206     kvm_arch_update_guest_debug(cpu, &data.dbg);
3207 
3208     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3209                RUN_ON_CPU_HOST_PTR(&data));
3210     return data.err;
3211 }
3212 
3213 bool kvm_supports_guest_debug(void)
3214 {
3215     /* probed during kvm_init() */
3216     return kvm_has_guest_debug;
3217 }
3218 
3219 int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3220 {
3221     struct kvm_sw_breakpoint *bp;
3222     int err;
3223 
3224     if (type == GDB_BREAKPOINT_SW) {
3225         bp = kvm_find_sw_breakpoint(cpu, addr);
3226         if (bp) {
3227             bp->use_count++;
3228             return 0;
3229         }
3230 
3231         bp = g_new(struct kvm_sw_breakpoint, 1);
3232         bp->pc = addr;
3233         bp->use_count = 1;
3234         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3235         if (err) {
3236             g_free(bp);
3237             return err;
3238         }
3239 
3240         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3241     } else {
3242         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3243         if (err) {
3244             return err;
3245         }
3246     }
3247 
3248     CPU_FOREACH(cpu) {
3249         err = kvm_update_guest_debug(cpu, 0);
3250         if (err) {
3251             return err;
3252         }
3253     }
3254     return 0;
3255 }
3256 
3257 int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
3258 {
3259     struct kvm_sw_breakpoint *bp;
3260     int err;
3261 
3262     if (type == GDB_BREAKPOINT_SW) {
3263         bp = kvm_find_sw_breakpoint(cpu, addr);
3264         if (!bp) {
3265             return -ENOENT;
3266         }
3267 
3268         if (bp->use_count > 1) {
3269             bp->use_count--;
3270             return 0;
3271         }
3272 
3273         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3274         if (err) {
3275             return err;
3276         }
3277 
3278         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3279         g_free(bp);
3280     } else {
3281         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3282         if (err) {
3283             return err;
3284         }
3285     }
3286 
3287     CPU_FOREACH(cpu) {
3288         err = kvm_update_guest_debug(cpu, 0);
3289         if (err) {
3290             return err;
3291         }
3292     }
3293     return 0;
3294 }
3295 
3296 void kvm_remove_all_breakpoints(CPUState *cpu)
3297 {
3298     struct kvm_sw_breakpoint *bp, *next;
3299     KVMState *s = cpu->kvm_state;
3300     CPUState *tmpcpu;
3301 
3302     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3303         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3304             /* Try harder to find a CPU that currently sees the breakpoint. */
3305             CPU_FOREACH(tmpcpu) {
3306                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3307                     break;
3308                 }
3309             }
3310         }
3311         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3312         g_free(bp);
3313     }
3314     kvm_arch_remove_all_hw_breakpoints();
3315 
3316     CPU_FOREACH(cpu) {
3317         kvm_update_guest_debug(cpu, 0);
3318     }
3319 }
3320 
3321 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3322 
3323 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3324 {
3325     KVMState *s = kvm_state;
3326     struct kvm_signal_mask *sigmask;
3327     int r;
3328 
3329     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3330 
3331     sigmask->len = s->sigmask_len;
3332     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3333     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3334     g_free(sigmask);
3335 
3336     return r;
3337 }
3338 
3339 static void kvm_ipi_signal(int sig)
3340 {
3341     if (current_cpu) {
3342         assert(kvm_immediate_exit);
3343         kvm_cpu_kick(current_cpu);
3344     }
3345 }
3346 
3347 void kvm_init_cpu_signals(CPUState *cpu)
3348 {
3349     int r;
3350     sigset_t set;
3351     struct sigaction sigact;
3352 
3353     memset(&sigact, 0, sizeof(sigact));
3354     sigact.sa_handler = kvm_ipi_signal;
3355     sigaction(SIG_IPI, &sigact, NULL);
3356 
3357     pthread_sigmask(SIG_BLOCK, NULL, &set);
3358 #if defined KVM_HAVE_MCE_INJECTION
3359     sigdelset(&set, SIGBUS);
3360     pthread_sigmask(SIG_SETMASK, &set, NULL);
3361 #endif
3362     sigdelset(&set, SIG_IPI);
3363     if (kvm_immediate_exit) {
3364         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3365     } else {
3366         r = kvm_set_signal_mask(cpu, &set);
3367     }
3368     if (r) {
3369         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3370         exit(1);
3371     }
3372 }
3373 
3374 /* Called asynchronously in VCPU thread.  */
3375 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3376 {
3377 #ifdef KVM_HAVE_MCE_INJECTION
3378     if (have_sigbus_pending) {
3379         return 1;
3380     }
3381     have_sigbus_pending = true;
3382     pending_sigbus_addr = addr;
3383     pending_sigbus_code = code;
3384     qatomic_set(&cpu->exit_request, 1);
3385     return 0;
3386 #else
3387     return 1;
3388 #endif
3389 }
3390 
3391 /* Called synchronously (via signalfd) in main thread.  */
3392 int kvm_on_sigbus(int code, void *addr)
3393 {
3394 #ifdef KVM_HAVE_MCE_INJECTION
3395     /* Action required MCE kills the process if SIGBUS is blocked.  Because
3396      * that's what happens in the I/O thread, where we handle MCE via signalfd,
3397      * we can only get action optional here.
3398      */
3399     assert(code != BUS_MCEERR_AR);
3400     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3401     return 0;
3402 #else
3403     return 1;
3404 #endif
3405 }
3406 
3407 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3408 {
3409     int ret;
3410     struct kvm_create_device create_dev;
3411 
3412     create_dev.type = type;
3413     create_dev.fd = -1;
3414     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3415 
3416     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3417         return -ENOTSUP;
3418     }
3419 
3420     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3421     if (ret) {
3422         return ret;
3423     }
3424 
3425     return test ? 0 : create_dev.fd;
3426 }
3427 
3428 bool kvm_device_supported(int vmfd, uint64_t type)
3429 {
3430     struct kvm_create_device create_dev = {
3431         .type = type,
3432         .fd = -1,
3433         .flags = KVM_CREATE_DEVICE_TEST,
3434     };
3435 
3436     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3437         return false;
3438     }
3439 
3440     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3441 }
3442 
3443 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3444 {
3445     struct kvm_one_reg reg;
3446     int r;
3447 
3448     reg.id = id;
3449     reg.addr = (uintptr_t) source;
3450     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3451     if (r) {
3452         trace_kvm_failed_reg_set(id, strerror(-r));
3453     }
3454     return r;
3455 }
3456 
3457 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3458 {
3459     struct kvm_one_reg reg;
3460     int r;
3461 
3462     reg.id = id;
3463     reg.addr = (uintptr_t) target;
3464     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3465     if (r) {
3466         trace_kvm_failed_reg_get(id, strerror(-r));
3467     }
3468     return r;
3469 }
3470 
3471 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3472                                  hwaddr start_addr, hwaddr size)
3473 {
3474     KVMState *kvm = KVM_STATE(ms->accelerator);
3475     int i;
3476 
3477     for (i = 0; i < kvm->nr_as; ++i) {
3478         if (kvm->as[i].as == as && kvm->as[i].ml) {
3479             size = MIN(kvm_max_slot_size, size);
3480             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3481                                                     start_addr, size);
3482         }
3483     }
3484 
3485     return false;
3486 }
3487 
3488 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3489                                    const char *name, void *opaque,
3490                                    Error **errp)
3491 {
3492     KVMState *s = KVM_STATE(obj);
3493     int64_t value = s->kvm_shadow_mem;
3494 
3495     visit_type_int(v, name, &value, errp);
3496 }
3497 
3498 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3499                                    const char *name, void *opaque,
3500                                    Error **errp)
3501 {
3502     KVMState *s = KVM_STATE(obj);
3503     int64_t value;
3504 
3505     if (s->fd != -1) {
3506         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3507         return;
3508     }
3509 
3510     if (!visit_type_int(v, name, &value, errp)) {
3511         return;
3512     }
3513 
3514     s->kvm_shadow_mem = value;
3515 }
3516 
3517 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3518                                    const char *name, void *opaque,
3519                                    Error **errp)
3520 {
3521     KVMState *s = KVM_STATE(obj);
3522     OnOffSplit mode;
3523 
3524     if (s->fd != -1) {
3525         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3526         return;
3527     }
3528 
3529     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3530         return;
3531     }
3532     switch (mode) {
3533     case ON_OFF_SPLIT_ON:
3534         s->kernel_irqchip_allowed = true;
3535         s->kernel_irqchip_required = true;
3536         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3537         break;
3538     case ON_OFF_SPLIT_OFF:
3539         s->kernel_irqchip_allowed = false;
3540         s->kernel_irqchip_required = false;
3541         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3542         break;
3543     case ON_OFF_SPLIT_SPLIT:
3544         s->kernel_irqchip_allowed = true;
3545         s->kernel_irqchip_required = true;
3546         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3547         break;
3548     default:
3549         /* The value was checked in visit_type_OnOffSplit() above. If
3550          * we get here, then something is wrong in QEMU.
3551          */
3552         abort();
3553     }
3554 }
3555 
3556 bool kvm_kernel_irqchip_allowed(void)
3557 {
3558     return kvm_state->kernel_irqchip_allowed;
3559 }
3560 
3561 bool kvm_kernel_irqchip_required(void)
3562 {
3563     return kvm_state->kernel_irqchip_required;
3564 }
3565 
3566 bool kvm_kernel_irqchip_split(void)
3567 {
3568     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3569 }
3570 
3571 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3572                                     const char *name, void *opaque,
3573                                     Error **errp)
3574 {
3575     KVMState *s = KVM_STATE(obj);
3576     uint32_t value = s->kvm_dirty_ring_size;
3577 
3578     visit_type_uint32(v, name, &value, errp);
3579 }
3580 
3581 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3582                                     const char *name, void *opaque,
3583                                     Error **errp)
3584 {
3585     KVMState *s = KVM_STATE(obj);
3586     uint32_t value;
3587 
3588     if (s->fd != -1) {
3589         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3590         return;
3591     }
3592 
3593     if (!visit_type_uint32(v, name, &value, errp)) {
3594         return;
3595     }
3596     if (value & (value - 1)) {
3597         error_setg(errp, "dirty-ring-size must be a power of two.");
3598         return;
3599     }
3600 
3601     s->kvm_dirty_ring_size = value;
3602 }
3603 
3604 static void kvm_accel_instance_init(Object *obj)
3605 {
3606     KVMState *s = KVM_STATE(obj);
3607 
3608     s->fd = -1;
3609     s->vmfd = -1;
3610     s->kvm_shadow_mem = -1;
3611     s->kernel_irqchip_allowed = true;
3612     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3613     /* KVM dirty ring is by default off */
3614     s->kvm_dirty_ring_size = 0;
3615     s->kvm_dirty_ring_with_bitmap = false;
3616     s->kvm_eager_split_size = 0;
3617     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3618     s->notify_window = 0;
3619     s->xen_version = 0;
3620     s->xen_gnttab_max_frames = 64;
3621     s->xen_evtchn_max_pirq = 256;
3622 }
3623 
3624 /**
3625  * kvm_gdbstub_sstep_flags():
3626  *
3627  * Returns: SSTEP_* flags that KVM supports for guest debug. The
3628  * support is probed during kvm_init()
3629  */
3630 static int kvm_gdbstub_sstep_flags(void)
3631 {
3632     return kvm_sstep_flags;
3633 }
3634 
3635 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3636 {
3637     AccelClass *ac = ACCEL_CLASS(oc);
3638     ac->name = "KVM";
3639     ac->init_machine = kvm_init;
3640     ac->has_memory = kvm_accel_has_memory;
3641     ac->allowed = &kvm_allowed;
3642     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3643 
3644     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3645         NULL, kvm_set_kernel_irqchip,
3646         NULL, NULL);
3647     object_class_property_set_description(oc, "kernel-irqchip",
3648         "Configure KVM in-kernel irqchip");
3649 
3650     object_class_property_add(oc, "kvm-shadow-mem", "int",
3651         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3652         NULL, NULL);
3653     object_class_property_set_description(oc, "kvm-shadow-mem",
3654         "KVM shadow MMU size");
3655 
3656     object_class_property_add(oc, "dirty-ring-size", "uint32",
3657         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3658         NULL, NULL);
3659     object_class_property_set_description(oc, "dirty-ring-size",
3660         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3661 
3662     kvm_arch_accel_class_init(oc);
3663 }
3664 
3665 static const TypeInfo kvm_accel_type = {
3666     .name = TYPE_KVM_ACCEL,
3667     .parent = TYPE_ACCEL,
3668     .instance_init = kvm_accel_instance_init,
3669     .class_init = kvm_accel_class_init,
3670     .instance_size = sizeof(KVMState),
3671 };
3672 
3673 static void kvm_type_init(void)
3674 {
3675     type_register_static(&kvm_accel_type);
3676 }
3677 
3678 type_init(kvm_type_init);
3679 
3680 typedef struct StatsArgs {
3681     union StatsResultsType {
3682         StatsResultList **stats;
3683         StatsSchemaList **schema;
3684     } result;
3685     strList *names;
3686     Error **errp;
3687 } StatsArgs;
3688 
3689 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3690                                     uint64_t *stats_data,
3691                                     StatsList *stats_list,
3692                                     Error **errp)
3693 {
3694 
3695     Stats *stats;
3696     uint64List *val_list = NULL;
3697 
3698     /* Only add stats that we understand.  */
3699     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3700     case KVM_STATS_TYPE_CUMULATIVE:
3701     case KVM_STATS_TYPE_INSTANT:
3702     case KVM_STATS_TYPE_PEAK:
3703     case KVM_STATS_TYPE_LINEAR_HIST:
3704     case KVM_STATS_TYPE_LOG_HIST:
3705         break;
3706     default:
3707         return stats_list;
3708     }
3709 
3710     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3711     case KVM_STATS_UNIT_NONE:
3712     case KVM_STATS_UNIT_BYTES:
3713     case KVM_STATS_UNIT_CYCLES:
3714     case KVM_STATS_UNIT_SECONDS:
3715     case KVM_STATS_UNIT_BOOLEAN:
3716         break;
3717     default:
3718         return stats_list;
3719     }
3720 
3721     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3722     case KVM_STATS_BASE_POW10:
3723     case KVM_STATS_BASE_POW2:
3724         break;
3725     default:
3726         return stats_list;
3727     }
3728 
3729     /* Alloc and populate data list */
3730     stats = g_new0(Stats, 1);
3731     stats->name = g_strdup(pdesc->name);
3732     stats->value = g_new0(StatsValue, 1);;
3733 
3734     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3735         stats->value->u.boolean = *stats_data;
3736         stats->value->type = QTYPE_QBOOL;
3737     } else if (pdesc->size == 1) {
3738         stats->value->u.scalar = *stats_data;
3739         stats->value->type = QTYPE_QNUM;
3740     } else {
3741         int i;
3742         for (i = 0; i < pdesc->size; i++) {
3743             QAPI_LIST_PREPEND(val_list, stats_data[i]);
3744         }
3745         stats->value->u.list = val_list;
3746         stats->value->type = QTYPE_QLIST;
3747     }
3748 
3749     QAPI_LIST_PREPEND(stats_list, stats);
3750     return stats_list;
3751 }
3752 
3753 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3754                                                  StatsSchemaValueList *list,
3755                                                  Error **errp)
3756 {
3757     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3758     schema_entry->value = g_new0(StatsSchemaValue, 1);
3759 
3760     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3761     case KVM_STATS_TYPE_CUMULATIVE:
3762         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3763         break;
3764     case KVM_STATS_TYPE_INSTANT:
3765         schema_entry->value->type = STATS_TYPE_INSTANT;
3766         break;
3767     case KVM_STATS_TYPE_PEAK:
3768         schema_entry->value->type = STATS_TYPE_PEAK;
3769         break;
3770     case KVM_STATS_TYPE_LINEAR_HIST:
3771         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3772         schema_entry->value->bucket_size = pdesc->bucket_size;
3773         schema_entry->value->has_bucket_size = true;
3774         break;
3775     case KVM_STATS_TYPE_LOG_HIST:
3776         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3777         break;
3778     default:
3779         goto exit;
3780     }
3781 
3782     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3783     case KVM_STATS_UNIT_NONE:
3784         break;
3785     case KVM_STATS_UNIT_BOOLEAN:
3786         schema_entry->value->has_unit = true;
3787         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3788         break;
3789     case KVM_STATS_UNIT_BYTES:
3790         schema_entry->value->has_unit = true;
3791         schema_entry->value->unit = STATS_UNIT_BYTES;
3792         break;
3793     case KVM_STATS_UNIT_CYCLES:
3794         schema_entry->value->has_unit = true;
3795         schema_entry->value->unit = STATS_UNIT_CYCLES;
3796         break;
3797     case KVM_STATS_UNIT_SECONDS:
3798         schema_entry->value->has_unit = true;
3799         schema_entry->value->unit = STATS_UNIT_SECONDS;
3800         break;
3801     default:
3802         goto exit;
3803     }
3804 
3805     schema_entry->value->exponent = pdesc->exponent;
3806     if (pdesc->exponent) {
3807         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3808         case KVM_STATS_BASE_POW10:
3809             schema_entry->value->has_base = true;
3810             schema_entry->value->base = 10;
3811             break;
3812         case KVM_STATS_BASE_POW2:
3813             schema_entry->value->has_base = true;
3814             schema_entry->value->base = 2;
3815             break;
3816         default:
3817             goto exit;
3818         }
3819     }
3820 
3821     schema_entry->value->name = g_strdup(pdesc->name);
3822     schema_entry->next = list;
3823     return schema_entry;
3824 exit:
3825     g_free(schema_entry->value);
3826     g_free(schema_entry);
3827     return list;
3828 }
3829 
3830 /* Cached stats descriptors */
3831 typedef struct StatsDescriptors {
3832     const char *ident; /* cache key, currently the StatsTarget */
3833     struct kvm_stats_desc *kvm_stats_desc;
3834     struct kvm_stats_header kvm_stats_header;
3835     QTAILQ_ENTRY(StatsDescriptors) next;
3836 } StatsDescriptors;
3837 
3838 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3839     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3840 
3841 /*
3842  * Return the descriptors for 'target', that either have already been read
3843  * or are retrieved from 'stats_fd'.
3844  */
3845 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3846                                                 Error **errp)
3847 {
3848     StatsDescriptors *descriptors;
3849     const char *ident;
3850     struct kvm_stats_desc *kvm_stats_desc;
3851     struct kvm_stats_header *kvm_stats_header;
3852     size_t size_desc;
3853     ssize_t ret;
3854 
3855     ident = StatsTarget_str(target);
3856     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3857         if (g_str_equal(descriptors->ident, ident)) {
3858             return descriptors;
3859         }
3860     }
3861 
3862     descriptors = g_new0(StatsDescriptors, 1);
3863 
3864     /* Read stats header */
3865     kvm_stats_header = &descriptors->kvm_stats_header;
3866     ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0);
3867     if (ret != sizeof(*kvm_stats_header)) {
3868         error_setg(errp, "KVM stats: failed to read stats header: "
3869                    "expected %zu actual %zu",
3870                    sizeof(*kvm_stats_header), ret);
3871         g_free(descriptors);
3872         return NULL;
3873     }
3874     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3875 
3876     /* Read stats descriptors */
3877     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3878     ret = pread(stats_fd, kvm_stats_desc,
3879                 size_desc * kvm_stats_header->num_desc,
3880                 kvm_stats_header->desc_offset);
3881 
3882     if (ret != size_desc * kvm_stats_header->num_desc) {
3883         error_setg(errp, "KVM stats: failed to read stats descriptors: "
3884                    "expected %zu actual %zu",
3885                    size_desc * kvm_stats_header->num_desc, ret);
3886         g_free(descriptors);
3887         g_free(kvm_stats_desc);
3888         return NULL;
3889     }
3890     descriptors->kvm_stats_desc = kvm_stats_desc;
3891     descriptors->ident = ident;
3892     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3893     return descriptors;
3894 }
3895 
3896 static void query_stats(StatsResultList **result, StatsTarget target,
3897                         strList *names, int stats_fd, CPUState *cpu,
3898                         Error **errp)
3899 {
3900     struct kvm_stats_desc *kvm_stats_desc;
3901     struct kvm_stats_header *kvm_stats_header;
3902     StatsDescriptors *descriptors;
3903     g_autofree uint64_t *stats_data = NULL;
3904     struct kvm_stats_desc *pdesc;
3905     StatsList *stats_list = NULL;
3906     size_t size_desc, size_data = 0;
3907     ssize_t ret;
3908     int i;
3909 
3910     descriptors = find_stats_descriptors(target, stats_fd, errp);
3911     if (!descriptors) {
3912         return;
3913     }
3914 
3915     kvm_stats_header = &descriptors->kvm_stats_header;
3916     kvm_stats_desc = descriptors->kvm_stats_desc;
3917     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3918 
3919     /* Tally the total data size; read schema data */
3920     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3921         pdesc = (void *)kvm_stats_desc + i * size_desc;
3922         size_data += pdesc->size * sizeof(*stats_data);
3923     }
3924 
3925     stats_data = g_malloc0(size_data);
3926     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3927 
3928     if (ret != size_data) {
3929         error_setg(errp, "KVM stats: failed to read data: "
3930                    "expected %zu actual %zu", size_data, ret);
3931         return;
3932     }
3933 
3934     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3935         uint64_t *stats;
3936         pdesc = (void *)kvm_stats_desc + i * size_desc;
3937 
3938         /* Add entry to the list */
3939         stats = (void *)stats_data + pdesc->offset;
3940         if (!apply_str_list_filter(pdesc->name, names)) {
3941             continue;
3942         }
3943         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
3944     }
3945 
3946     if (!stats_list) {
3947         return;
3948     }
3949 
3950     switch (target) {
3951     case STATS_TARGET_VM:
3952         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
3953         break;
3954     case STATS_TARGET_VCPU:
3955         add_stats_entry(result, STATS_PROVIDER_KVM,
3956                         cpu->parent_obj.canonical_path,
3957                         stats_list);
3958         break;
3959     default:
3960         g_assert_not_reached();
3961     }
3962 }
3963 
3964 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
3965                                int stats_fd, Error **errp)
3966 {
3967     struct kvm_stats_desc *kvm_stats_desc;
3968     struct kvm_stats_header *kvm_stats_header;
3969     StatsDescriptors *descriptors;
3970     struct kvm_stats_desc *pdesc;
3971     StatsSchemaValueList *stats_list = NULL;
3972     size_t size_desc;
3973     int i;
3974 
3975     descriptors = find_stats_descriptors(target, stats_fd, errp);
3976     if (!descriptors) {
3977         return;
3978     }
3979 
3980     kvm_stats_header = &descriptors->kvm_stats_header;
3981     kvm_stats_desc = descriptors->kvm_stats_desc;
3982     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3983 
3984     /* Tally the total data size; read schema data */
3985     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3986         pdesc = (void *)kvm_stats_desc + i * size_desc;
3987         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
3988     }
3989 
3990     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
3991 }
3992 
3993 static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
3994 {
3995     int stats_fd = cpu->kvm_vcpu_stats_fd;
3996     Error *local_err = NULL;
3997 
3998     if (stats_fd == -1) {
3999         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4000         error_propagate(kvm_stats_args->errp, local_err);
4001         return;
4002     }
4003     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4004                 kvm_stats_args->names, stats_fd, cpu,
4005                 kvm_stats_args->errp);
4006 }
4007 
4008 static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args)
4009 {
4010     int stats_fd = cpu->kvm_vcpu_stats_fd;
4011     Error *local_err = NULL;
4012 
4013     if (stats_fd == -1) {
4014         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4015         error_propagate(kvm_stats_args->errp, local_err);
4016         return;
4017     }
4018     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4019                        kvm_stats_args->errp);
4020 }
4021 
4022 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4023                            strList *names, strList *targets, Error **errp)
4024 {
4025     KVMState *s = kvm_state;
4026     CPUState *cpu;
4027     int stats_fd;
4028 
4029     switch (target) {
4030     case STATS_TARGET_VM:
4031     {
4032         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4033         if (stats_fd == -1) {
4034             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4035             return;
4036         }
4037         query_stats(result, target, names, stats_fd, NULL, errp);
4038         close(stats_fd);
4039         break;
4040     }
4041     case STATS_TARGET_VCPU:
4042     {
4043         StatsArgs stats_args;
4044         stats_args.result.stats = result;
4045         stats_args.names = names;
4046         stats_args.errp = errp;
4047         CPU_FOREACH(cpu) {
4048             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4049                 continue;
4050             }
4051             query_stats_vcpu(cpu, &stats_args);
4052         }
4053         break;
4054     }
4055     default:
4056         break;
4057     }
4058 }
4059 
4060 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4061 {
4062     StatsArgs stats_args;
4063     KVMState *s = kvm_state;
4064     int stats_fd;
4065 
4066     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4067     if (stats_fd == -1) {
4068         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4069         return;
4070     }
4071     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4072     close(stats_fd);
4073 
4074     if (first_cpu) {
4075         stats_args.result.schema = result;
4076         stats_args.errp = errp;
4077         query_stats_schema_vcpu(first_cpu, &stats_args);
4078     }
4079 }
4080