1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 #include <linux/io.h> 55 #include <linux/lockdep.h> 56 57 #include <asm/processor.h> 58 #include <asm/ioctl.h> 59 #include <linux/uaccess.h> 60 #include <asm/pgtable.h> 61 62 #include "coalesced_mmio.h" 63 #include "async_pf.h" 64 #include "vfio.h" 65 66 #define CREATE_TRACE_POINTS 67 #include <trace/events/kvm.h> 68 69 /* Worst case buffer size needed for holding an integer. */ 70 #define ITOA_MAX_LEN 12 71 72 MODULE_AUTHOR("Qumranet"); 73 MODULE_LICENSE("GPL"); 74 75 /* Architectures should define their poll value according to the halt latency */ 76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 77 module_param(halt_poll_ns, uint, 0644); 78 EXPORT_SYMBOL_GPL(halt_poll_ns); 79 80 /* Default doubles per-vcpu halt_poll_ns. */ 81 unsigned int halt_poll_ns_grow = 2; 82 module_param(halt_poll_ns_grow, uint, 0644); 83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 84 85 /* The start value to grow halt_poll_ns from */ 86 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 87 module_param(halt_poll_ns_grow_start, uint, 0644); 88 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 89 90 /* Default resets per-vcpu halt_poll_ns . */ 91 unsigned int halt_poll_ns_shrink; 92 module_param(halt_poll_ns_shrink, uint, 0644); 93 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 94 95 /* 96 * Ordering of locks: 97 * 98 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 99 */ 100 101 DEFINE_SPINLOCK(kvm_lock); 102 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 103 LIST_HEAD(vm_list); 104 105 static cpumask_var_t cpus_hardware_enabled; 106 static int kvm_usage_count; 107 static atomic_t hardware_enable_failed; 108 109 struct kmem_cache *kvm_vcpu_cache; 110 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 114 struct dentry *kvm_debugfs_dir; 115 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 116 117 static int kvm_debugfs_num_entries; 118 static const struct file_operations *stat_fops_per_vm[]; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 128 unsigned long arg) { return -EINVAL; } 129 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 130 #endif 131 static int hardware_enable_all(void); 132 static void hardware_disable_all(void); 133 134 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 135 136 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 137 138 __visible bool kvm_rebooting; 139 EXPORT_SYMBOL_GPL(kvm_rebooting); 140 141 static bool largepages_enabled = true; 142 143 #define KVM_EVENT_CREATE_VM 0 144 #define KVM_EVENT_DESTROY_VM 1 145 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 146 static unsigned long long kvm_createvm_count; 147 static unsigned long long kvm_active_vms; 148 149 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 150 unsigned long start, unsigned long end, bool blockable) 151 { 152 return 0; 153 } 154 155 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 156 { 157 if (pfn_valid(pfn)) 158 return PageReserved(pfn_to_page(pfn)); 159 160 return true; 161 } 162 163 /* 164 * Switches to specified vcpu, until a matching vcpu_put() 165 */ 166 void vcpu_load(struct kvm_vcpu *vcpu) 167 { 168 int cpu = get_cpu(); 169 preempt_notifier_register(&vcpu->preempt_notifier); 170 kvm_arch_vcpu_load(vcpu, cpu); 171 put_cpu(); 172 } 173 EXPORT_SYMBOL_GPL(vcpu_load); 174 175 void vcpu_put(struct kvm_vcpu *vcpu) 176 { 177 preempt_disable(); 178 kvm_arch_vcpu_put(vcpu); 179 preempt_notifier_unregister(&vcpu->preempt_notifier); 180 preempt_enable(); 181 } 182 EXPORT_SYMBOL_GPL(vcpu_put); 183 184 /* TODO: merge with kvm_arch_vcpu_should_kick */ 185 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 186 { 187 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 188 189 /* 190 * We need to wait for the VCPU to reenable interrupts and get out of 191 * READING_SHADOW_PAGE_TABLES mode. 192 */ 193 if (req & KVM_REQUEST_WAIT) 194 return mode != OUTSIDE_GUEST_MODE; 195 196 /* 197 * Need to kick a running VCPU, but otherwise there is nothing to do. 198 */ 199 return mode == IN_GUEST_MODE; 200 } 201 202 static void ack_flush(void *_completed) 203 { 204 } 205 206 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 207 { 208 if (unlikely(!cpus)) 209 cpus = cpu_online_mask; 210 211 if (cpumask_empty(cpus)) 212 return false; 213 214 smp_call_function_many(cpus, ack_flush, NULL, wait); 215 return true; 216 } 217 218 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 219 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 220 { 221 int i, cpu, me; 222 struct kvm_vcpu *vcpu; 223 bool called; 224 225 me = get_cpu(); 226 227 kvm_for_each_vcpu(i, vcpu, kvm) { 228 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 229 continue; 230 231 kvm_make_request(req, vcpu); 232 cpu = vcpu->cpu; 233 234 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 235 continue; 236 237 if (tmp != NULL && cpu != -1 && cpu != me && 238 kvm_request_needs_ipi(vcpu, req)) 239 __cpumask_set_cpu(cpu, tmp); 240 } 241 242 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 243 put_cpu(); 244 245 return called; 246 } 247 248 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 249 { 250 cpumask_var_t cpus; 251 bool called; 252 253 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 254 255 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 256 257 free_cpumask_var(cpus); 258 return called; 259 } 260 261 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 262 void kvm_flush_remote_tlbs(struct kvm *kvm) 263 { 264 /* 265 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 266 * kvm_make_all_cpus_request. 267 */ 268 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 269 270 /* 271 * We want to publish modifications to the page tables before reading 272 * mode. Pairs with a memory barrier in arch-specific code. 273 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 274 * and smp_mb in walk_shadow_page_lockless_begin/end. 275 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 276 * 277 * There is already an smp_mb__after_atomic() before 278 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 279 * barrier here. 280 */ 281 if (!kvm_arch_flush_remote_tlb(kvm) 282 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 283 ++kvm->stat.remote_tlb_flush; 284 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 285 } 286 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 287 #endif 288 289 void kvm_reload_remote_mmus(struct kvm *kvm) 290 { 291 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 292 } 293 294 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 295 { 296 struct page *page; 297 int r; 298 299 mutex_init(&vcpu->mutex); 300 vcpu->cpu = -1; 301 vcpu->kvm = kvm; 302 vcpu->vcpu_id = id; 303 vcpu->pid = NULL; 304 init_swait_queue_head(&vcpu->wq); 305 kvm_async_pf_vcpu_init(vcpu); 306 307 vcpu->pre_pcpu = -1; 308 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 309 310 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 311 if (!page) { 312 r = -ENOMEM; 313 goto fail; 314 } 315 vcpu->run = page_address(page); 316 317 kvm_vcpu_set_in_spin_loop(vcpu, false); 318 kvm_vcpu_set_dy_eligible(vcpu, false); 319 vcpu->preempted = false; 320 321 r = kvm_arch_vcpu_init(vcpu); 322 if (r < 0) 323 goto fail_free_run; 324 return 0; 325 326 fail_free_run: 327 free_page((unsigned long)vcpu->run); 328 fail: 329 return r; 330 } 331 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 332 333 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 334 { 335 /* 336 * no need for rcu_read_lock as VCPU_RUN is the only place that 337 * will change the vcpu->pid pointer and on uninit all file 338 * descriptors are already gone. 339 */ 340 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 341 kvm_arch_vcpu_uninit(vcpu); 342 free_page((unsigned long)vcpu->run); 343 } 344 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 345 346 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 347 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 348 { 349 return container_of(mn, struct kvm, mmu_notifier); 350 } 351 352 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 353 struct mm_struct *mm, 354 unsigned long address, 355 pte_t pte) 356 { 357 struct kvm *kvm = mmu_notifier_to_kvm(mn); 358 int idx; 359 360 idx = srcu_read_lock(&kvm->srcu); 361 spin_lock(&kvm->mmu_lock); 362 kvm->mmu_notifier_seq++; 363 364 if (kvm_set_spte_hva(kvm, address, pte)) 365 kvm_flush_remote_tlbs(kvm); 366 367 spin_unlock(&kvm->mmu_lock); 368 srcu_read_unlock(&kvm->srcu, idx); 369 } 370 371 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 372 const struct mmu_notifier_range *range) 373 { 374 struct kvm *kvm = mmu_notifier_to_kvm(mn); 375 int need_tlb_flush = 0, idx; 376 int ret; 377 378 idx = srcu_read_lock(&kvm->srcu); 379 spin_lock(&kvm->mmu_lock); 380 /* 381 * The count increase must become visible at unlock time as no 382 * spte can be established without taking the mmu_lock and 383 * count is also read inside the mmu_lock critical section. 384 */ 385 kvm->mmu_notifier_count++; 386 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 387 need_tlb_flush |= kvm->tlbs_dirty; 388 /* we've to flush the tlb before the pages can be freed */ 389 if (need_tlb_flush) 390 kvm_flush_remote_tlbs(kvm); 391 392 spin_unlock(&kvm->mmu_lock); 393 394 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 395 range->end, 396 mmu_notifier_range_blockable(range)); 397 398 srcu_read_unlock(&kvm->srcu, idx); 399 400 return ret; 401 } 402 403 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 404 const struct mmu_notifier_range *range) 405 { 406 struct kvm *kvm = mmu_notifier_to_kvm(mn); 407 408 spin_lock(&kvm->mmu_lock); 409 /* 410 * This sequence increase will notify the kvm page fault that 411 * the page that is going to be mapped in the spte could have 412 * been freed. 413 */ 414 kvm->mmu_notifier_seq++; 415 smp_wmb(); 416 /* 417 * The above sequence increase must be visible before the 418 * below count decrease, which is ensured by the smp_wmb above 419 * in conjunction with the smp_rmb in mmu_notifier_retry(). 420 */ 421 kvm->mmu_notifier_count--; 422 spin_unlock(&kvm->mmu_lock); 423 424 BUG_ON(kvm->mmu_notifier_count < 0); 425 } 426 427 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 428 struct mm_struct *mm, 429 unsigned long start, 430 unsigned long end) 431 { 432 struct kvm *kvm = mmu_notifier_to_kvm(mn); 433 int young, idx; 434 435 idx = srcu_read_lock(&kvm->srcu); 436 spin_lock(&kvm->mmu_lock); 437 438 young = kvm_age_hva(kvm, start, end); 439 if (young) 440 kvm_flush_remote_tlbs(kvm); 441 442 spin_unlock(&kvm->mmu_lock); 443 srcu_read_unlock(&kvm->srcu, idx); 444 445 return young; 446 } 447 448 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 449 struct mm_struct *mm, 450 unsigned long start, 451 unsigned long end) 452 { 453 struct kvm *kvm = mmu_notifier_to_kvm(mn); 454 int young, idx; 455 456 idx = srcu_read_lock(&kvm->srcu); 457 spin_lock(&kvm->mmu_lock); 458 /* 459 * Even though we do not flush TLB, this will still adversely 460 * affect performance on pre-Haswell Intel EPT, where there is 461 * no EPT Access Bit to clear so that we have to tear down EPT 462 * tables instead. If we find this unacceptable, we can always 463 * add a parameter to kvm_age_hva so that it effectively doesn't 464 * do anything on clear_young. 465 * 466 * Also note that currently we never issue secondary TLB flushes 467 * from clear_young, leaving this job up to the regular system 468 * cadence. If we find this inaccurate, we might come up with a 469 * more sophisticated heuristic later. 470 */ 471 young = kvm_age_hva(kvm, start, end); 472 spin_unlock(&kvm->mmu_lock); 473 srcu_read_unlock(&kvm->srcu, idx); 474 475 return young; 476 } 477 478 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 479 struct mm_struct *mm, 480 unsigned long address) 481 { 482 struct kvm *kvm = mmu_notifier_to_kvm(mn); 483 int young, idx; 484 485 idx = srcu_read_lock(&kvm->srcu); 486 spin_lock(&kvm->mmu_lock); 487 young = kvm_test_age_hva(kvm, address); 488 spin_unlock(&kvm->mmu_lock); 489 srcu_read_unlock(&kvm->srcu, idx); 490 491 return young; 492 } 493 494 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 495 struct mm_struct *mm) 496 { 497 struct kvm *kvm = mmu_notifier_to_kvm(mn); 498 int idx; 499 500 idx = srcu_read_lock(&kvm->srcu); 501 kvm_arch_flush_shadow_all(kvm); 502 srcu_read_unlock(&kvm->srcu, idx); 503 } 504 505 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 506 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 507 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 508 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 509 .clear_young = kvm_mmu_notifier_clear_young, 510 .test_young = kvm_mmu_notifier_test_young, 511 .change_pte = kvm_mmu_notifier_change_pte, 512 .release = kvm_mmu_notifier_release, 513 }; 514 515 static int kvm_init_mmu_notifier(struct kvm *kvm) 516 { 517 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 518 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 519 } 520 521 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 522 523 static int kvm_init_mmu_notifier(struct kvm *kvm) 524 { 525 return 0; 526 } 527 528 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 529 530 static struct kvm_memslots *kvm_alloc_memslots(void) 531 { 532 int i; 533 struct kvm_memslots *slots; 534 535 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 536 if (!slots) 537 return NULL; 538 539 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 540 slots->id_to_index[i] = slots->memslots[i].id = i; 541 542 return slots; 543 } 544 545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 546 { 547 if (!memslot->dirty_bitmap) 548 return; 549 550 kvfree(memslot->dirty_bitmap); 551 memslot->dirty_bitmap = NULL; 552 } 553 554 /* 555 * Free any memory in @free but not in @dont. 556 */ 557 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 558 struct kvm_memory_slot *dont) 559 { 560 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 561 kvm_destroy_dirty_bitmap(free); 562 563 kvm_arch_free_memslot(kvm, free, dont); 564 565 free->npages = 0; 566 } 567 568 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 569 { 570 struct kvm_memory_slot *memslot; 571 572 if (!slots) 573 return; 574 575 kvm_for_each_memslot(memslot, slots) 576 kvm_free_memslot(kvm, memslot, NULL); 577 578 kvfree(slots); 579 } 580 581 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 582 { 583 int i; 584 585 if (!kvm->debugfs_dentry) 586 return; 587 588 debugfs_remove_recursive(kvm->debugfs_dentry); 589 590 if (kvm->debugfs_stat_data) { 591 for (i = 0; i < kvm_debugfs_num_entries; i++) 592 kfree(kvm->debugfs_stat_data[i]); 593 kfree(kvm->debugfs_stat_data); 594 } 595 } 596 597 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 598 { 599 char dir_name[ITOA_MAX_LEN * 2]; 600 struct kvm_stat_data *stat_data; 601 struct kvm_stats_debugfs_item *p; 602 603 if (!debugfs_initialized()) 604 return 0; 605 606 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 607 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 608 609 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 610 sizeof(*kvm->debugfs_stat_data), 611 GFP_KERNEL_ACCOUNT); 612 if (!kvm->debugfs_stat_data) 613 return -ENOMEM; 614 615 for (p = debugfs_entries; p->name; p++) { 616 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 617 if (!stat_data) 618 return -ENOMEM; 619 620 stat_data->kvm = kvm; 621 stat_data->offset = p->offset; 622 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 623 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 624 stat_data, stat_fops_per_vm[p->kind]); 625 } 626 return 0; 627 } 628 629 static struct kvm *kvm_create_vm(unsigned long type) 630 { 631 int r, i; 632 struct kvm *kvm = kvm_arch_alloc_vm(); 633 634 if (!kvm) 635 return ERR_PTR(-ENOMEM); 636 637 spin_lock_init(&kvm->mmu_lock); 638 mmgrab(current->mm); 639 kvm->mm = current->mm; 640 kvm_eventfd_init(kvm); 641 mutex_init(&kvm->lock); 642 mutex_init(&kvm->irq_lock); 643 mutex_init(&kvm->slots_lock); 644 refcount_set(&kvm->users_count, 1); 645 INIT_LIST_HEAD(&kvm->devices); 646 647 r = kvm_arch_init_vm(kvm, type); 648 if (r) 649 goto out_err_no_disable; 650 651 r = hardware_enable_all(); 652 if (r) 653 goto out_err_no_disable; 654 655 #ifdef CONFIG_HAVE_KVM_IRQFD 656 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 657 #endif 658 659 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 660 661 r = -ENOMEM; 662 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 663 struct kvm_memslots *slots = kvm_alloc_memslots(); 664 if (!slots) 665 goto out_err_no_srcu; 666 /* Generations must be different for each address space. */ 667 slots->generation = i; 668 rcu_assign_pointer(kvm->memslots[i], slots); 669 } 670 671 if (init_srcu_struct(&kvm->srcu)) 672 goto out_err_no_srcu; 673 if (init_srcu_struct(&kvm->irq_srcu)) 674 goto out_err_no_irq_srcu; 675 for (i = 0; i < KVM_NR_BUSES; i++) { 676 rcu_assign_pointer(kvm->buses[i], 677 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 678 if (!kvm->buses[i]) 679 goto out_err; 680 } 681 682 r = kvm_init_mmu_notifier(kvm); 683 if (r) 684 goto out_err; 685 686 spin_lock(&kvm_lock); 687 list_add(&kvm->vm_list, &vm_list); 688 spin_unlock(&kvm_lock); 689 690 preempt_notifier_inc(); 691 692 return kvm; 693 694 out_err: 695 cleanup_srcu_struct(&kvm->irq_srcu); 696 out_err_no_irq_srcu: 697 cleanup_srcu_struct(&kvm->srcu); 698 out_err_no_srcu: 699 hardware_disable_all(); 700 out_err_no_disable: 701 refcount_set(&kvm->users_count, 0); 702 for (i = 0; i < KVM_NR_BUSES; i++) 703 kfree(kvm_get_bus(kvm, i)); 704 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 705 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 706 kvm_arch_free_vm(kvm); 707 mmdrop(current->mm); 708 return ERR_PTR(r); 709 } 710 711 static void kvm_destroy_devices(struct kvm *kvm) 712 { 713 struct kvm_device *dev, *tmp; 714 715 /* 716 * We do not need to take the kvm->lock here, because nobody else 717 * has a reference to the struct kvm at this point and therefore 718 * cannot access the devices list anyhow. 719 */ 720 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 721 list_del(&dev->vm_node); 722 dev->ops->destroy(dev); 723 } 724 } 725 726 static void kvm_destroy_vm(struct kvm *kvm) 727 { 728 int i; 729 struct mm_struct *mm = kvm->mm; 730 731 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 732 kvm_destroy_vm_debugfs(kvm); 733 kvm_arch_sync_events(kvm); 734 spin_lock(&kvm_lock); 735 list_del(&kvm->vm_list); 736 spin_unlock(&kvm_lock); 737 kvm_free_irq_routing(kvm); 738 for (i = 0; i < KVM_NR_BUSES; i++) { 739 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 740 741 if (bus) 742 kvm_io_bus_destroy(bus); 743 kvm->buses[i] = NULL; 744 } 745 kvm_coalesced_mmio_free(kvm); 746 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 747 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 748 #else 749 kvm_arch_flush_shadow_all(kvm); 750 #endif 751 kvm_arch_destroy_vm(kvm); 752 kvm_destroy_devices(kvm); 753 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 754 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 755 cleanup_srcu_struct(&kvm->irq_srcu); 756 cleanup_srcu_struct(&kvm->srcu); 757 kvm_arch_free_vm(kvm); 758 preempt_notifier_dec(); 759 hardware_disable_all(); 760 mmdrop(mm); 761 } 762 763 void kvm_get_kvm(struct kvm *kvm) 764 { 765 refcount_inc(&kvm->users_count); 766 } 767 EXPORT_SYMBOL_GPL(kvm_get_kvm); 768 769 void kvm_put_kvm(struct kvm *kvm) 770 { 771 if (refcount_dec_and_test(&kvm->users_count)) 772 kvm_destroy_vm(kvm); 773 } 774 EXPORT_SYMBOL_GPL(kvm_put_kvm); 775 776 777 static int kvm_vm_release(struct inode *inode, struct file *filp) 778 { 779 struct kvm *kvm = filp->private_data; 780 781 kvm_irqfd_release(kvm); 782 783 kvm_put_kvm(kvm); 784 return 0; 785 } 786 787 /* 788 * Allocation size is twice as large as the actual dirty bitmap size. 789 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 790 */ 791 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 792 { 793 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 794 795 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 796 if (!memslot->dirty_bitmap) 797 return -ENOMEM; 798 799 return 0; 800 } 801 802 /* 803 * Insert memslot and re-sort memslots based on their GFN, 804 * so binary search could be used to lookup GFN. 805 * Sorting algorithm takes advantage of having initially 806 * sorted array and known changed memslot position. 807 */ 808 static void update_memslots(struct kvm_memslots *slots, 809 struct kvm_memory_slot *new, 810 enum kvm_mr_change change) 811 { 812 int id = new->id; 813 int i = slots->id_to_index[id]; 814 struct kvm_memory_slot *mslots = slots->memslots; 815 816 WARN_ON(mslots[i].id != id); 817 switch (change) { 818 case KVM_MR_CREATE: 819 slots->used_slots++; 820 WARN_ON(mslots[i].npages || !new->npages); 821 break; 822 case KVM_MR_DELETE: 823 slots->used_slots--; 824 WARN_ON(new->npages || !mslots[i].npages); 825 break; 826 default: 827 break; 828 } 829 830 while (i < KVM_MEM_SLOTS_NUM - 1 && 831 new->base_gfn <= mslots[i + 1].base_gfn) { 832 if (!mslots[i + 1].npages) 833 break; 834 mslots[i] = mslots[i + 1]; 835 slots->id_to_index[mslots[i].id] = i; 836 i++; 837 } 838 839 /* 840 * The ">=" is needed when creating a slot with base_gfn == 0, 841 * so that it moves before all those with base_gfn == npages == 0. 842 * 843 * On the other hand, if new->npages is zero, the above loop has 844 * already left i pointing to the beginning of the empty part of 845 * mslots, and the ">=" would move the hole backwards in this 846 * case---which is wrong. So skip the loop when deleting a slot. 847 */ 848 if (new->npages) { 849 while (i > 0 && 850 new->base_gfn >= mslots[i - 1].base_gfn) { 851 mslots[i] = mslots[i - 1]; 852 slots->id_to_index[mslots[i].id] = i; 853 i--; 854 } 855 } else 856 WARN_ON_ONCE(i != slots->used_slots); 857 858 mslots[i] = *new; 859 slots->id_to_index[mslots[i].id] = i; 860 } 861 862 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 863 { 864 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 865 866 #ifdef __KVM_HAVE_READONLY_MEM 867 valid_flags |= KVM_MEM_READONLY; 868 #endif 869 870 if (mem->flags & ~valid_flags) 871 return -EINVAL; 872 873 return 0; 874 } 875 876 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 877 int as_id, struct kvm_memslots *slots) 878 { 879 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 880 u64 gen = old_memslots->generation; 881 882 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 883 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 884 885 rcu_assign_pointer(kvm->memslots[as_id], slots); 886 synchronize_srcu_expedited(&kvm->srcu); 887 888 /* 889 * Increment the new memslot generation a second time, dropping the 890 * update in-progress flag and incrementing then generation based on 891 * the number of address spaces. This provides a unique and easily 892 * identifiable generation number while the memslots are in flux. 893 */ 894 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 895 896 /* 897 * Generations must be unique even across address spaces. We do not need 898 * a global counter for that, instead the generation space is evenly split 899 * across address spaces. For example, with two address spaces, address 900 * space 0 will use generations 0, 2, 4, ... while address space 1 will 901 * use generations 1, 3, 5, ... 902 */ 903 gen += KVM_ADDRESS_SPACE_NUM; 904 905 kvm_arch_memslots_updated(kvm, gen); 906 907 slots->generation = gen; 908 909 return old_memslots; 910 } 911 912 /* 913 * Allocate some memory and give it an address in the guest physical address 914 * space. 915 * 916 * Discontiguous memory is allowed, mostly for framebuffers. 917 * 918 * Must be called holding kvm->slots_lock for write. 919 */ 920 int __kvm_set_memory_region(struct kvm *kvm, 921 const struct kvm_userspace_memory_region *mem) 922 { 923 int r; 924 gfn_t base_gfn; 925 unsigned long npages; 926 struct kvm_memory_slot *slot; 927 struct kvm_memory_slot old, new; 928 struct kvm_memslots *slots = NULL, *old_memslots; 929 int as_id, id; 930 enum kvm_mr_change change; 931 932 r = check_memory_region_flags(mem); 933 if (r) 934 goto out; 935 936 r = -EINVAL; 937 as_id = mem->slot >> 16; 938 id = (u16)mem->slot; 939 940 /* General sanity checks */ 941 if (mem->memory_size & (PAGE_SIZE - 1)) 942 goto out; 943 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 944 goto out; 945 /* We can read the guest memory with __xxx_user() later on. */ 946 if ((id < KVM_USER_MEM_SLOTS) && 947 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 948 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 949 mem->memory_size))) 950 goto out; 951 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 952 goto out; 953 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 954 goto out; 955 956 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 957 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 958 npages = mem->memory_size >> PAGE_SHIFT; 959 960 if (npages > KVM_MEM_MAX_NR_PAGES) 961 goto out; 962 963 new = old = *slot; 964 965 new.id = id; 966 new.base_gfn = base_gfn; 967 new.npages = npages; 968 new.flags = mem->flags; 969 970 if (npages) { 971 if (!old.npages) 972 change = KVM_MR_CREATE; 973 else { /* Modify an existing slot. */ 974 if ((mem->userspace_addr != old.userspace_addr) || 975 (npages != old.npages) || 976 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 977 goto out; 978 979 if (base_gfn != old.base_gfn) 980 change = KVM_MR_MOVE; 981 else if (new.flags != old.flags) 982 change = KVM_MR_FLAGS_ONLY; 983 else { /* Nothing to change. */ 984 r = 0; 985 goto out; 986 } 987 } 988 } else { 989 if (!old.npages) 990 goto out; 991 992 change = KVM_MR_DELETE; 993 new.base_gfn = 0; 994 new.flags = 0; 995 } 996 997 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 998 /* Check for overlaps */ 999 r = -EEXIST; 1000 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 1001 if (slot->id == id) 1002 continue; 1003 if (!((base_gfn + npages <= slot->base_gfn) || 1004 (base_gfn >= slot->base_gfn + slot->npages))) 1005 goto out; 1006 } 1007 } 1008 1009 /* Free page dirty bitmap if unneeded */ 1010 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1011 new.dirty_bitmap = NULL; 1012 1013 r = -ENOMEM; 1014 if (change == KVM_MR_CREATE) { 1015 new.userspace_addr = mem->userspace_addr; 1016 1017 if (kvm_arch_create_memslot(kvm, &new, npages)) 1018 goto out_free; 1019 } 1020 1021 /* Allocate page dirty bitmap if needed */ 1022 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1023 if (kvm_create_dirty_bitmap(&new) < 0) 1024 goto out_free; 1025 } 1026 1027 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1028 if (!slots) 1029 goto out_free; 1030 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1031 1032 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1033 slot = id_to_memslot(slots, id); 1034 slot->flags |= KVM_MEMSLOT_INVALID; 1035 1036 old_memslots = install_new_memslots(kvm, as_id, slots); 1037 1038 /* From this point no new shadow pages pointing to a deleted, 1039 * or moved, memslot will be created. 1040 * 1041 * validation of sp->gfn happens in: 1042 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1043 * - kvm_is_visible_gfn (mmu_check_roots) 1044 */ 1045 kvm_arch_flush_shadow_memslot(kvm, slot); 1046 1047 /* 1048 * We can re-use the old_memslots from above, the only difference 1049 * from the currently installed memslots is the invalid flag. This 1050 * will get overwritten by update_memslots anyway. 1051 */ 1052 slots = old_memslots; 1053 } 1054 1055 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1056 if (r) 1057 goto out_slots; 1058 1059 /* actual memory is freed via old in kvm_free_memslot below */ 1060 if (change == KVM_MR_DELETE) { 1061 new.dirty_bitmap = NULL; 1062 memset(&new.arch, 0, sizeof(new.arch)); 1063 } 1064 1065 update_memslots(slots, &new, change); 1066 old_memslots = install_new_memslots(kvm, as_id, slots); 1067 1068 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1069 1070 kvm_free_memslot(kvm, &old, &new); 1071 kvfree(old_memslots); 1072 return 0; 1073 1074 out_slots: 1075 kvfree(slots); 1076 out_free: 1077 kvm_free_memslot(kvm, &new, &old); 1078 out: 1079 return r; 1080 } 1081 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1082 1083 int kvm_set_memory_region(struct kvm *kvm, 1084 const struct kvm_userspace_memory_region *mem) 1085 { 1086 int r; 1087 1088 mutex_lock(&kvm->slots_lock); 1089 r = __kvm_set_memory_region(kvm, mem); 1090 mutex_unlock(&kvm->slots_lock); 1091 return r; 1092 } 1093 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1094 1095 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1096 struct kvm_userspace_memory_region *mem) 1097 { 1098 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1099 return -EINVAL; 1100 1101 return kvm_set_memory_region(kvm, mem); 1102 } 1103 1104 int kvm_get_dirty_log(struct kvm *kvm, 1105 struct kvm_dirty_log *log, int *is_dirty) 1106 { 1107 struct kvm_memslots *slots; 1108 struct kvm_memory_slot *memslot; 1109 int i, as_id, id; 1110 unsigned long n; 1111 unsigned long any = 0; 1112 1113 as_id = log->slot >> 16; 1114 id = (u16)log->slot; 1115 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1116 return -EINVAL; 1117 1118 slots = __kvm_memslots(kvm, as_id); 1119 memslot = id_to_memslot(slots, id); 1120 if (!memslot->dirty_bitmap) 1121 return -ENOENT; 1122 1123 n = kvm_dirty_bitmap_bytes(memslot); 1124 1125 for (i = 0; !any && i < n/sizeof(long); ++i) 1126 any = memslot->dirty_bitmap[i]; 1127 1128 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1129 return -EFAULT; 1130 1131 if (any) 1132 *is_dirty = 1; 1133 return 0; 1134 } 1135 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1136 1137 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1138 /** 1139 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1140 * and reenable dirty page tracking for the corresponding pages. 1141 * @kvm: pointer to kvm instance 1142 * @log: slot id and address to which we copy the log 1143 * @flush: true if TLB flush is needed by caller 1144 * 1145 * We need to keep it in mind that VCPU threads can write to the bitmap 1146 * concurrently. So, to avoid losing track of dirty pages we keep the 1147 * following order: 1148 * 1149 * 1. Take a snapshot of the bit and clear it if needed. 1150 * 2. Write protect the corresponding page. 1151 * 3. Copy the snapshot to the userspace. 1152 * 4. Upon return caller flushes TLB's if needed. 1153 * 1154 * Between 2 and 4, the guest may write to the page using the remaining TLB 1155 * entry. This is not a problem because the page is reported dirty using 1156 * the snapshot taken before and step 4 ensures that writes done after 1157 * exiting to userspace will be logged for the next call. 1158 * 1159 */ 1160 int kvm_get_dirty_log_protect(struct kvm *kvm, 1161 struct kvm_dirty_log *log, bool *flush) 1162 { 1163 struct kvm_memslots *slots; 1164 struct kvm_memory_slot *memslot; 1165 int i, as_id, id; 1166 unsigned long n; 1167 unsigned long *dirty_bitmap; 1168 unsigned long *dirty_bitmap_buffer; 1169 1170 as_id = log->slot >> 16; 1171 id = (u16)log->slot; 1172 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1173 return -EINVAL; 1174 1175 slots = __kvm_memslots(kvm, as_id); 1176 memslot = id_to_memslot(slots, id); 1177 1178 dirty_bitmap = memslot->dirty_bitmap; 1179 if (!dirty_bitmap) 1180 return -ENOENT; 1181 1182 n = kvm_dirty_bitmap_bytes(memslot); 1183 *flush = false; 1184 if (kvm->manual_dirty_log_protect) { 1185 /* 1186 * Unlike kvm_get_dirty_log, we always return false in *flush, 1187 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1188 * is some code duplication between this function and 1189 * kvm_get_dirty_log, but hopefully all architecture 1190 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1191 * can be eliminated. 1192 */ 1193 dirty_bitmap_buffer = dirty_bitmap; 1194 } else { 1195 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1196 memset(dirty_bitmap_buffer, 0, n); 1197 1198 spin_lock(&kvm->mmu_lock); 1199 for (i = 0; i < n / sizeof(long); i++) { 1200 unsigned long mask; 1201 gfn_t offset; 1202 1203 if (!dirty_bitmap[i]) 1204 continue; 1205 1206 *flush = true; 1207 mask = xchg(&dirty_bitmap[i], 0); 1208 dirty_bitmap_buffer[i] = mask; 1209 1210 offset = i * BITS_PER_LONG; 1211 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1212 offset, mask); 1213 } 1214 spin_unlock(&kvm->mmu_lock); 1215 } 1216 1217 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1218 return -EFAULT; 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1222 1223 /** 1224 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1225 * and reenable dirty page tracking for the corresponding pages. 1226 * @kvm: pointer to kvm instance 1227 * @log: slot id and address from which to fetch the bitmap of dirty pages 1228 * @flush: true if TLB flush is needed by caller 1229 */ 1230 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1231 struct kvm_clear_dirty_log *log, bool *flush) 1232 { 1233 struct kvm_memslots *slots; 1234 struct kvm_memory_slot *memslot; 1235 int as_id, id; 1236 gfn_t offset; 1237 unsigned long i, n; 1238 unsigned long *dirty_bitmap; 1239 unsigned long *dirty_bitmap_buffer; 1240 1241 as_id = log->slot >> 16; 1242 id = (u16)log->slot; 1243 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1244 return -EINVAL; 1245 1246 if (log->first_page & 63) 1247 return -EINVAL; 1248 1249 slots = __kvm_memslots(kvm, as_id); 1250 memslot = id_to_memslot(slots, id); 1251 1252 dirty_bitmap = memslot->dirty_bitmap; 1253 if (!dirty_bitmap) 1254 return -ENOENT; 1255 1256 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1257 1258 if (log->first_page > memslot->npages || 1259 log->num_pages > memslot->npages - log->first_page || 1260 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1261 return -EINVAL; 1262 1263 *flush = false; 1264 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1265 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1266 return -EFAULT; 1267 1268 spin_lock(&kvm->mmu_lock); 1269 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1270 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1271 i++, offset += BITS_PER_LONG) { 1272 unsigned long mask = *dirty_bitmap_buffer++; 1273 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1274 if (!mask) 1275 continue; 1276 1277 mask &= atomic_long_fetch_andnot(mask, p); 1278 1279 /* 1280 * mask contains the bits that really have been cleared. This 1281 * never includes any bits beyond the length of the memslot (if 1282 * the length is not aligned to 64 pages), therefore it is not 1283 * a problem if userspace sets them in log->dirty_bitmap. 1284 */ 1285 if (mask) { 1286 *flush = true; 1287 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1288 offset, mask); 1289 } 1290 } 1291 spin_unlock(&kvm->mmu_lock); 1292 1293 return 0; 1294 } 1295 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1296 #endif 1297 1298 bool kvm_largepages_enabled(void) 1299 { 1300 return largepages_enabled; 1301 } 1302 1303 void kvm_disable_largepages(void) 1304 { 1305 largepages_enabled = false; 1306 } 1307 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1308 1309 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1310 { 1311 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1312 } 1313 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1314 1315 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1316 { 1317 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1318 } 1319 1320 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1321 { 1322 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1323 1324 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1325 memslot->flags & KVM_MEMSLOT_INVALID) 1326 return false; 1327 1328 return true; 1329 } 1330 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1331 1332 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1333 { 1334 struct vm_area_struct *vma; 1335 unsigned long addr, size; 1336 1337 size = PAGE_SIZE; 1338 1339 addr = gfn_to_hva(kvm, gfn); 1340 if (kvm_is_error_hva(addr)) 1341 return PAGE_SIZE; 1342 1343 down_read(¤t->mm->mmap_sem); 1344 vma = find_vma(current->mm, addr); 1345 if (!vma) 1346 goto out; 1347 1348 size = vma_kernel_pagesize(vma); 1349 1350 out: 1351 up_read(¤t->mm->mmap_sem); 1352 1353 return size; 1354 } 1355 1356 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1357 { 1358 return slot->flags & KVM_MEM_READONLY; 1359 } 1360 1361 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1362 gfn_t *nr_pages, bool write) 1363 { 1364 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1365 return KVM_HVA_ERR_BAD; 1366 1367 if (memslot_is_readonly(slot) && write) 1368 return KVM_HVA_ERR_RO_BAD; 1369 1370 if (nr_pages) 1371 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1372 1373 return __gfn_to_hva_memslot(slot, gfn); 1374 } 1375 1376 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1377 gfn_t *nr_pages) 1378 { 1379 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1380 } 1381 1382 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1383 gfn_t gfn) 1384 { 1385 return gfn_to_hva_many(slot, gfn, NULL); 1386 } 1387 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1388 1389 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1390 { 1391 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1392 } 1393 EXPORT_SYMBOL_GPL(gfn_to_hva); 1394 1395 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1396 { 1397 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1398 } 1399 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1400 1401 /* 1402 * Return the hva of a @gfn and the R/W attribute if possible. 1403 * 1404 * @slot: the kvm_memory_slot which contains @gfn 1405 * @gfn: the gfn to be translated 1406 * @writable: used to return the read/write attribute of the @slot if the hva 1407 * is valid and @writable is not NULL 1408 */ 1409 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1410 gfn_t gfn, bool *writable) 1411 { 1412 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1413 1414 if (!kvm_is_error_hva(hva) && writable) 1415 *writable = !memslot_is_readonly(slot); 1416 1417 return hva; 1418 } 1419 1420 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1421 { 1422 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1423 1424 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1425 } 1426 1427 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1428 { 1429 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1430 1431 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1432 } 1433 1434 static inline int check_user_page_hwpoison(unsigned long addr) 1435 { 1436 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1437 1438 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1439 return rc == -EHWPOISON; 1440 } 1441 1442 /* 1443 * The fast path to get the writable pfn which will be stored in @pfn, 1444 * true indicates success, otherwise false is returned. It's also the 1445 * only part that runs if we can are in atomic context. 1446 */ 1447 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1448 bool *writable, kvm_pfn_t *pfn) 1449 { 1450 struct page *page[1]; 1451 int npages; 1452 1453 /* 1454 * Fast pin a writable pfn only if it is a write fault request 1455 * or the caller allows to map a writable pfn for a read fault 1456 * request. 1457 */ 1458 if (!(write_fault || writable)) 1459 return false; 1460 1461 npages = __get_user_pages_fast(addr, 1, 1, page); 1462 if (npages == 1) { 1463 *pfn = page_to_pfn(page[0]); 1464 1465 if (writable) 1466 *writable = true; 1467 return true; 1468 } 1469 1470 return false; 1471 } 1472 1473 /* 1474 * The slow path to get the pfn of the specified host virtual address, 1475 * 1 indicates success, -errno is returned if error is detected. 1476 */ 1477 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1478 bool *writable, kvm_pfn_t *pfn) 1479 { 1480 unsigned int flags = FOLL_HWPOISON; 1481 struct page *page; 1482 int npages = 0; 1483 1484 might_sleep(); 1485 1486 if (writable) 1487 *writable = write_fault; 1488 1489 if (write_fault) 1490 flags |= FOLL_WRITE; 1491 if (async) 1492 flags |= FOLL_NOWAIT; 1493 1494 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1495 if (npages != 1) 1496 return npages; 1497 1498 /* map read fault as writable if possible */ 1499 if (unlikely(!write_fault) && writable) { 1500 struct page *wpage; 1501 1502 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1503 *writable = true; 1504 put_page(page); 1505 page = wpage; 1506 } 1507 } 1508 *pfn = page_to_pfn(page); 1509 return npages; 1510 } 1511 1512 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1513 { 1514 if (unlikely(!(vma->vm_flags & VM_READ))) 1515 return false; 1516 1517 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1518 return false; 1519 1520 return true; 1521 } 1522 1523 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1524 unsigned long addr, bool *async, 1525 bool write_fault, bool *writable, 1526 kvm_pfn_t *p_pfn) 1527 { 1528 unsigned long pfn; 1529 int r; 1530 1531 r = follow_pfn(vma, addr, &pfn); 1532 if (r) { 1533 /* 1534 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1535 * not call the fault handler, so do it here. 1536 */ 1537 bool unlocked = false; 1538 r = fixup_user_fault(current, current->mm, addr, 1539 (write_fault ? FAULT_FLAG_WRITE : 0), 1540 &unlocked); 1541 if (unlocked) 1542 return -EAGAIN; 1543 if (r) 1544 return r; 1545 1546 r = follow_pfn(vma, addr, &pfn); 1547 if (r) 1548 return r; 1549 1550 } 1551 1552 if (writable) 1553 *writable = true; 1554 1555 /* 1556 * Get a reference here because callers of *hva_to_pfn* and 1557 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1558 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1559 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1560 * simply do nothing for reserved pfns. 1561 * 1562 * Whoever called remap_pfn_range is also going to call e.g. 1563 * unmap_mapping_range before the underlying pages are freed, 1564 * causing a call to our MMU notifier. 1565 */ 1566 kvm_get_pfn(pfn); 1567 1568 *p_pfn = pfn; 1569 return 0; 1570 } 1571 1572 /* 1573 * Pin guest page in memory and return its pfn. 1574 * @addr: host virtual address which maps memory to the guest 1575 * @atomic: whether this function can sleep 1576 * @async: whether this function need to wait IO complete if the 1577 * host page is not in the memory 1578 * @write_fault: whether we should get a writable host page 1579 * @writable: whether it allows to map a writable host page for !@write_fault 1580 * 1581 * The function will map a writable host page for these two cases: 1582 * 1): @write_fault = true 1583 * 2): @write_fault = false && @writable, @writable will tell the caller 1584 * whether the mapping is writable. 1585 */ 1586 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1587 bool write_fault, bool *writable) 1588 { 1589 struct vm_area_struct *vma; 1590 kvm_pfn_t pfn = 0; 1591 int npages, r; 1592 1593 /* we can do it either atomically or asynchronously, not both */ 1594 BUG_ON(atomic && async); 1595 1596 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1597 return pfn; 1598 1599 if (atomic) 1600 return KVM_PFN_ERR_FAULT; 1601 1602 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1603 if (npages == 1) 1604 return pfn; 1605 1606 down_read(¤t->mm->mmap_sem); 1607 if (npages == -EHWPOISON || 1608 (!async && check_user_page_hwpoison(addr))) { 1609 pfn = KVM_PFN_ERR_HWPOISON; 1610 goto exit; 1611 } 1612 1613 retry: 1614 vma = find_vma_intersection(current->mm, addr, addr + 1); 1615 1616 if (vma == NULL) 1617 pfn = KVM_PFN_ERR_FAULT; 1618 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1619 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1620 if (r == -EAGAIN) 1621 goto retry; 1622 if (r < 0) 1623 pfn = KVM_PFN_ERR_FAULT; 1624 } else { 1625 if (async && vma_is_valid(vma, write_fault)) 1626 *async = true; 1627 pfn = KVM_PFN_ERR_FAULT; 1628 } 1629 exit: 1630 up_read(¤t->mm->mmap_sem); 1631 return pfn; 1632 } 1633 1634 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1635 bool atomic, bool *async, bool write_fault, 1636 bool *writable) 1637 { 1638 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1639 1640 if (addr == KVM_HVA_ERR_RO_BAD) { 1641 if (writable) 1642 *writable = false; 1643 return KVM_PFN_ERR_RO_FAULT; 1644 } 1645 1646 if (kvm_is_error_hva(addr)) { 1647 if (writable) 1648 *writable = false; 1649 return KVM_PFN_NOSLOT; 1650 } 1651 1652 /* Do not map writable pfn in the readonly memslot. */ 1653 if (writable && memslot_is_readonly(slot)) { 1654 *writable = false; 1655 writable = NULL; 1656 } 1657 1658 return hva_to_pfn(addr, atomic, async, write_fault, 1659 writable); 1660 } 1661 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1662 1663 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1664 bool *writable) 1665 { 1666 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1667 write_fault, writable); 1668 } 1669 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1670 1671 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1672 { 1673 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1674 } 1675 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1676 1677 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1678 { 1679 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1680 } 1681 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1682 1683 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1684 { 1685 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1686 } 1687 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1688 1689 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1690 { 1691 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1692 } 1693 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1694 1695 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1696 { 1697 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1698 } 1699 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1700 1701 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1702 { 1703 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1704 } 1705 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1706 1707 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1708 struct page **pages, int nr_pages) 1709 { 1710 unsigned long addr; 1711 gfn_t entry = 0; 1712 1713 addr = gfn_to_hva_many(slot, gfn, &entry); 1714 if (kvm_is_error_hva(addr)) 1715 return -1; 1716 1717 if (entry < nr_pages) 1718 return 0; 1719 1720 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1721 } 1722 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1723 1724 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1725 { 1726 if (is_error_noslot_pfn(pfn)) 1727 return KVM_ERR_PTR_BAD_PAGE; 1728 1729 if (kvm_is_reserved_pfn(pfn)) { 1730 WARN_ON(1); 1731 return KVM_ERR_PTR_BAD_PAGE; 1732 } 1733 1734 return pfn_to_page(pfn); 1735 } 1736 1737 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1738 { 1739 kvm_pfn_t pfn; 1740 1741 pfn = gfn_to_pfn(kvm, gfn); 1742 1743 return kvm_pfn_to_page(pfn); 1744 } 1745 EXPORT_SYMBOL_GPL(gfn_to_page); 1746 1747 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn, 1748 struct kvm_host_map *map) 1749 { 1750 kvm_pfn_t pfn; 1751 void *hva = NULL; 1752 struct page *page = KVM_UNMAPPED_PAGE; 1753 1754 if (!map) 1755 return -EINVAL; 1756 1757 pfn = gfn_to_pfn_memslot(slot, gfn); 1758 if (is_error_noslot_pfn(pfn)) 1759 return -EINVAL; 1760 1761 if (pfn_valid(pfn)) { 1762 page = pfn_to_page(pfn); 1763 hva = kmap(page); 1764 #ifdef CONFIG_HAS_IOMEM 1765 } else { 1766 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 1767 #endif 1768 } 1769 1770 if (!hva) 1771 return -EFAULT; 1772 1773 map->page = page; 1774 map->hva = hva; 1775 map->pfn = pfn; 1776 map->gfn = gfn; 1777 1778 return 0; 1779 } 1780 1781 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 1782 { 1783 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map); 1784 } 1785 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 1786 1787 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 1788 bool dirty) 1789 { 1790 if (!map) 1791 return; 1792 1793 if (!map->hva) 1794 return; 1795 1796 if (map->page) 1797 kunmap(map->page); 1798 #ifdef CONFIG_HAS_IOMEM 1799 else 1800 memunmap(map->hva); 1801 #endif 1802 1803 if (dirty) { 1804 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 1805 kvm_release_pfn_dirty(map->pfn); 1806 } else { 1807 kvm_release_pfn_clean(map->pfn); 1808 } 1809 1810 map->hva = NULL; 1811 map->page = NULL; 1812 } 1813 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 1814 1815 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1816 { 1817 kvm_pfn_t pfn; 1818 1819 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1820 1821 return kvm_pfn_to_page(pfn); 1822 } 1823 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1824 1825 void kvm_release_page_clean(struct page *page) 1826 { 1827 WARN_ON(is_error_page(page)); 1828 1829 kvm_release_pfn_clean(page_to_pfn(page)); 1830 } 1831 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1832 1833 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1834 { 1835 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1836 put_page(pfn_to_page(pfn)); 1837 } 1838 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1839 1840 void kvm_release_page_dirty(struct page *page) 1841 { 1842 WARN_ON(is_error_page(page)); 1843 1844 kvm_release_pfn_dirty(page_to_pfn(page)); 1845 } 1846 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1847 1848 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1849 { 1850 kvm_set_pfn_dirty(pfn); 1851 kvm_release_pfn_clean(pfn); 1852 } 1853 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1854 1855 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1856 { 1857 if (!kvm_is_reserved_pfn(pfn)) { 1858 struct page *page = pfn_to_page(pfn); 1859 1860 if (!PageReserved(page)) 1861 SetPageDirty(page); 1862 } 1863 } 1864 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1865 1866 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1867 { 1868 if (!kvm_is_reserved_pfn(pfn)) 1869 mark_page_accessed(pfn_to_page(pfn)); 1870 } 1871 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1872 1873 void kvm_get_pfn(kvm_pfn_t pfn) 1874 { 1875 if (!kvm_is_reserved_pfn(pfn)) 1876 get_page(pfn_to_page(pfn)); 1877 } 1878 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1879 1880 static int next_segment(unsigned long len, int offset) 1881 { 1882 if (len > PAGE_SIZE - offset) 1883 return PAGE_SIZE - offset; 1884 else 1885 return len; 1886 } 1887 1888 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1889 void *data, int offset, int len) 1890 { 1891 int r; 1892 unsigned long addr; 1893 1894 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1895 if (kvm_is_error_hva(addr)) 1896 return -EFAULT; 1897 r = __copy_from_user(data, (void __user *)addr + offset, len); 1898 if (r) 1899 return -EFAULT; 1900 return 0; 1901 } 1902 1903 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1904 int len) 1905 { 1906 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1907 1908 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1909 } 1910 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1911 1912 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1913 int offset, int len) 1914 { 1915 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1916 1917 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1918 } 1919 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1920 1921 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1922 { 1923 gfn_t gfn = gpa >> PAGE_SHIFT; 1924 int seg; 1925 int offset = offset_in_page(gpa); 1926 int ret; 1927 1928 while ((seg = next_segment(len, offset)) != 0) { 1929 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1930 if (ret < 0) 1931 return ret; 1932 offset = 0; 1933 len -= seg; 1934 data += seg; 1935 ++gfn; 1936 } 1937 return 0; 1938 } 1939 EXPORT_SYMBOL_GPL(kvm_read_guest); 1940 1941 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1942 { 1943 gfn_t gfn = gpa >> PAGE_SHIFT; 1944 int seg; 1945 int offset = offset_in_page(gpa); 1946 int ret; 1947 1948 while ((seg = next_segment(len, offset)) != 0) { 1949 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1950 if (ret < 0) 1951 return ret; 1952 offset = 0; 1953 len -= seg; 1954 data += seg; 1955 ++gfn; 1956 } 1957 return 0; 1958 } 1959 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1960 1961 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1962 void *data, int offset, unsigned long len) 1963 { 1964 int r; 1965 unsigned long addr; 1966 1967 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1968 if (kvm_is_error_hva(addr)) 1969 return -EFAULT; 1970 pagefault_disable(); 1971 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1972 pagefault_enable(); 1973 if (r) 1974 return -EFAULT; 1975 return 0; 1976 } 1977 1978 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1979 unsigned long len) 1980 { 1981 gfn_t gfn = gpa >> PAGE_SHIFT; 1982 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1983 int offset = offset_in_page(gpa); 1984 1985 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1986 } 1987 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1988 1989 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1990 void *data, unsigned long len) 1991 { 1992 gfn_t gfn = gpa >> PAGE_SHIFT; 1993 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1994 int offset = offset_in_page(gpa); 1995 1996 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1997 } 1998 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1999 2000 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 2001 const void *data, int offset, int len) 2002 { 2003 int r; 2004 unsigned long addr; 2005 2006 addr = gfn_to_hva_memslot(memslot, gfn); 2007 if (kvm_is_error_hva(addr)) 2008 return -EFAULT; 2009 r = __copy_to_user((void __user *)addr + offset, data, len); 2010 if (r) 2011 return -EFAULT; 2012 mark_page_dirty_in_slot(memslot, gfn); 2013 return 0; 2014 } 2015 2016 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2017 const void *data, int offset, int len) 2018 { 2019 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2020 2021 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2022 } 2023 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2024 2025 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2026 const void *data, int offset, int len) 2027 { 2028 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2029 2030 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2031 } 2032 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2033 2034 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2035 unsigned long len) 2036 { 2037 gfn_t gfn = gpa >> PAGE_SHIFT; 2038 int seg; 2039 int offset = offset_in_page(gpa); 2040 int ret; 2041 2042 while ((seg = next_segment(len, offset)) != 0) { 2043 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2044 if (ret < 0) 2045 return ret; 2046 offset = 0; 2047 len -= seg; 2048 data += seg; 2049 ++gfn; 2050 } 2051 return 0; 2052 } 2053 EXPORT_SYMBOL_GPL(kvm_write_guest); 2054 2055 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2056 unsigned long len) 2057 { 2058 gfn_t gfn = gpa >> PAGE_SHIFT; 2059 int seg; 2060 int offset = offset_in_page(gpa); 2061 int ret; 2062 2063 while ((seg = next_segment(len, offset)) != 0) { 2064 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2065 if (ret < 0) 2066 return ret; 2067 offset = 0; 2068 len -= seg; 2069 data += seg; 2070 ++gfn; 2071 } 2072 return 0; 2073 } 2074 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2075 2076 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2077 struct gfn_to_hva_cache *ghc, 2078 gpa_t gpa, unsigned long len) 2079 { 2080 int offset = offset_in_page(gpa); 2081 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2082 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2083 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2084 gfn_t nr_pages_avail; 2085 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2086 2087 ghc->gpa = gpa; 2088 ghc->generation = slots->generation; 2089 ghc->len = len; 2090 ghc->hva = KVM_HVA_ERR_BAD; 2091 2092 /* 2093 * If the requested region crosses two memslots, we still 2094 * verify that the entire region is valid here. 2095 */ 2096 while (!r && start_gfn <= end_gfn) { 2097 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2098 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2099 &nr_pages_avail); 2100 if (kvm_is_error_hva(ghc->hva)) 2101 r = -EFAULT; 2102 start_gfn += nr_pages_avail; 2103 } 2104 2105 /* Use the slow path for cross page reads and writes. */ 2106 if (!r && nr_pages_needed == 1) 2107 ghc->hva += offset; 2108 else 2109 ghc->memslot = NULL; 2110 2111 return r; 2112 } 2113 2114 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2115 gpa_t gpa, unsigned long len) 2116 { 2117 struct kvm_memslots *slots = kvm_memslots(kvm); 2118 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2119 } 2120 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2121 2122 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2123 void *data, unsigned int offset, 2124 unsigned long len) 2125 { 2126 struct kvm_memslots *slots = kvm_memslots(kvm); 2127 int r; 2128 gpa_t gpa = ghc->gpa + offset; 2129 2130 BUG_ON(len + offset > ghc->len); 2131 2132 if (slots->generation != ghc->generation) 2133 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2134 2135 if (unlikely(!ghc->memslot)) 2136 return kvm_write_guest(kvm, gpa, data, len); 2137 2138 if (kvm_is_error_hva(ghc->hva)) 2139 return -EFAULT; 2140 2141 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2142 if (r) 2143 return -EFAULT; 2144 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2145 2146 return 0; 2147 } 2148 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2149 2150 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2151 void *data, unsigned long len) 2152 { 2153 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2154 } 2155 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2156 2157 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2158 void *data, unsigned long len) 2159 { 2160 struct kvm_memslots *slots = kvm_memslots(kvm); 2161 int r; 2162 2163 BUG_ON(len > ghc->len); 2164 2165 if (slots->generation != ghc->generation) 2166 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2167 2168 if (unlikely(!ghc->memslot)) 2169 return kvm_read_guest(kvm, ghc->gpa, data, len); 2170 2171 if (kvm_is_error_hva(ghc->hva)) 2172 return -EFAULT; 2173 2174 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2175 if (r) 2176 return -EFAULT; 2177 2178 return 0; 2179 } 2180 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2181 2182 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2183 { 2184 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2185 2186 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2187 } 2188 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2189 2190 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2191 { 2192 gfn_t gfn = gpa >> PAGE_SHIFT; 2193 int seg; 2194 int offset = offset_in_page(gpa); 2195 int ret; 2196 2197 while ((seg = next_segment(len, offset)) != 0) { 2198 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2199 if (ret < 0) 2200 return ret; 2201 offset = 0; 2202 len -= seg; 2203 ++gfn; 2204 } 2205 return 0; 2206 } 2207 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2208 2209 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2210 gfn_t gfn) 2211 { 2212 if (memslot && memslot->dirty_bitmap) { 2213 unsigned long rel_gfn = gfn - memslot->base_gfn; 2214 2215 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2216 } 2217 } 2218 2219 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2220 { 2221 struct kvm_memory_slot *memslot; 2222 2223 memslot = gfn_to_memslot(kvm, gfn); 2224 mark_page_dirty_in_slot(memslot, gfn); 2225 } 2226 EXPORT_SYMBOL_GPL(mark_page_dirty); 2227 2228 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2229 { 2230 struct kvm_memory_slot *memslot; 2231 2232 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2233 mark_page_dirty_in_slot(memslot, gfn); 2234 } 2235 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2236 2237 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2238 { 2239 if (!vcpu->sigset_active) 2240 return; 2241 2242 /* 2243 * This does a lockless modification of ->real_blocked, which is fine 2244 * because, only current can change ->real_blocked and all readers of 2245 * ->real_blocked don't care as long ->real_blocked is always a subset 2246 * of ->blocked. 2247 */ 2248 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2249 } 2250 2251 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2252 { 2253 if (!vcpu->sigset_active) 2254 return; 2255 2256 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2257 sigemptyset(¤t->real_blocked); 2258 } 2259 2260 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2261 { 2262 unsigned int old, val, grow, grow_start; 2263 2264 old = val = vcpu->halt_poll_ns; 2265 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2266 grow = READ_ONCE(halt_poll_ns_grow); 2267 if (!grow) 2268 goto out; 2269 2270 val *= grow; 2271 if (val < grow_start) 2272 val = grow_start; 2273 2274 if (val > halt_poll_ns) 2275 val = halt_poll_ns; 2276 2277 vcpu->halt_poll_ns = val; 2278 out: 2279 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2280 } 2281 2282 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2283 { 2284 unsigned int old, val, shrink; 2285 2286 old = val = vcpu->halt_poll_ns; 2287 shrink = READ_ONCE(halt_poll_ns_shrink); 2288 if (shrink == 0) 2289 val = 0; 2290 else 2291 val /= shrink; 2292 2293 vcpu->halt_poll_ns = val; 2294 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2295 } 2296 2297 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2298 { 2299 int ret = -EINTR; 2300 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2301 2302 if (kvm_arch_vcpu_runnable(vcpu)) { 2303 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2304 goto out; 2305 } 2306 if (kvm_cpu_has_pending_timer(vcpu)) 2307 goto out; 2308 if (signal_pending(current)) 2309 goto out; 2310 2311 ret = 0; 2312 out: 2313 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2314 return ret; 2315 } 2316 2317 /* 2318 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2319 */ 2320 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2321 { 2322 ktime_t start, cur; 2323 DECLARE_SWAITQUEUE(wait); 2324 bool waited = false; 2325 u64 block_ns; 2326 2327 start = cur = ktime_get(); 2328 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2329 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2330 2331 ++vcpu->stat.halt_attempted_poll; 2332 do { 2333 /* 2334 * This sets KVM_REQ_UNHALT if an interrupt 2335 * arrives. 2336 */ 2337 if (kvm_vcpu_check_block(vcpu) < 0) { 2338 ++vcpu->stat.halt_successful_poll; 2339 if (!vcpu_valid_wakeup(vcpu)) 2340 ++vcpu->stat.halt_poll_invalid; 2341 goto out; 2342 } 2343 cur = ktime_get(); 2344 } while (single_task_running() && ktime_before(cur, stop)); 2345 } 2346 2347 kvm_arch_vcpu_blocking(vcpu); 2348 2349 for (;;) { 2350 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2351 2352 if (kvm_vcpu_check_block(vcpu) < 0) 2353 break; 2354 2355 waited = true; 2356 schedule(); 2357 } 2358 2359 finish_swait(&vcpu->wq, &wait); 2360 cur = ktime_get(); 2361 2362 kvm_arch_vcpu_unblocking(vcpu); 2363 out: 2364 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2365 2366 if (!vcpu_valid_wakeup(vcpu)) 2367 shrink_halt_poll_ns(vcpu); 2368 else if (halt_poll_ns) { 2369 if (block_ns <= vcpu->halt_poll_ns) 2370 ; 2371 /* we had a long block, shrink polling */ 2372 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2373 shrink_halt_poll_ns(vcpu); 2374 /* we had a short halt and our poll time is too small */ 2375 else if (vcpu->halt_poll_ns < halt_poll_ns && 2376 block_ns < halt_poll_ns) 2377 grow_halt_poll_ns(vcpu); 2378 } else 2379 vcpu->halt_poll_ns = 0; 2380 2381 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2382 kvm_arch_vcpu_block_finish(vcpu); 2383 } 2384 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2385 2386 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2387 { 2388 struct swait_queue_head *wqp; 2389 2390 wqp = kvm_arch_vcpu_wq(vcpu); 2391 if (swq_has_sleeper(wqp)) { 2392 swake_up_one(wqp); 2393 ++vcpu->stat.halt_wakeup; 2394 return true; 2395 } 2396 2397 return false; 2398 } 2399 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2400 2401 #ifndef CONFIG_S390 2402 /* 2403 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2404 */ 2405 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2406 { 2407 int me; 2408 int cpu = vcpu->cpu; 2409 2410 if (kvm_vcpu_wake_up(vcpu)) 2411 return; 2412 2413 me = get_cpu(); 2414 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2415 if (kvm_arch_vcpu_should_kick(vcpu)) 2416 smp_send_reschedule(cpu); 2417 put_cpu(); 2418 } 2419 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2420 #endif /* !CONFIG_S390 */ 2421 2422 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2423 { 2424 struct pid *pid; 2425 struct task_struct *task = NULL; 2426 int ret = 0; 2427 2428 rcu_read_lock(); 2429 pid = rcu_dereference(target->pid); 2430 if (pid) 2431 task = get_pid_task(pid, PIDTYPE_PID); 2432 rcu_read_unlock(); 2433 if (!task) 2434 return ret; 2435 ret = yield_to(task, 1); 2436 put_task_struct(task); 2437 2438 return ret; 2439 } 2440 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2441 2442 /* 2443 * Helper that checks whether a VCPU is eligible for directed yield. 2444 * Most eligible candidate to yield is decided by following heuristics: 2445 * 2446 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2447 * (preempted lock holder), indicated by @in_spin_loop. 2448 * Set at the beiginning and cleared at the end of interception/PLE handler. 2449 * 2450 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2451 * chance last time (mostly it has become eligible now since we have probably 2452 * yielded to lockholder in last iteration. This is done by toggling 2453 * @dy_eligible each time a VCPU checked for eligibility.) 2454 * 2455 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2456 * to preempted lock-holder could result in wrong VCPU selection and CPU 2457 * burning. Giving priority for a potential lock-holder increases lock 2458 * progress. 2459 * 2460 * Since algorithm is based on heuristics, accessing another VCPU data without 2461 * locking does not harm. It may result in trying to yield to same VCPU, fail 2462 * and continue with next VCPU and so on. 2463 */ 2464 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2465 { 2466 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2467 bool eligible; 2468 2469 eligible = !vcpu->spin_loop.in_spin_loop || 2470 vcpu->spin_loop.dy_eligible; 2471 2472 if (vcpu->spin_loop.in_spin_loop) 2473 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2474 2475 return eligible; 2476 #else 2477 return true; 2478 #endif 2479 } 2480 2481 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2482 { 2483 struct kvm *kvm = me->kvm; 2484 struct kvm_vcpu *vcpu; 2485 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2486 int yielded = 0; 2487 int try = 3; 2488 int pass; 2489 int i; 2490 2491 kvm_vcpu_set_in_spin_loop(me, true); 2492 /* 2493 * We boost the priority of a VCPU that is runnable but not 2494 * currently running, because it got preempted by something 2495 * else and called schedule in __vcpu_run. Hopefully that 2496 * VCPU is holding the lock that we need and will release it. 2497 * We approximate round-robin by starting at the last boosted VCPU. 2498 */ 2499 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2500 kvm_for_each_vcpu(i, vcpu, kvm) { 2501 if (!pass && i <= last_boosted_vcpu) { 2502 i = last_boosted_vcpu; 2503 continue; 2504 } else if (pass && i > last_boosted_vcpu) 2505 break; 2506 if (!READ_ONCE(vcpu->preempted)) 2507 continue; 2508 if (vcpu == me) 2509 continue; 2510 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2511 continue; 2512 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2513 continue; 2514 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2515 continue; 2516 2517 yielded = kvm_vcpu_yield_to(vcpu); 2518 if (yielded > 0) { 2519 kvm->last_boosted_vcpu = i; 2520 break; 2521 } else if (yielded < 0) { 2522 try--; 2523 if (!try) 2524 break; 2525 } 2526 } 2527 } 2528 kvm_vcpu_set_in_spin_loop(me, false); 2529 2530 /* Ensure vcpu is not eligible during next spinloop */ 2531 kvm_vcpu_set_dy_eligible(me, false); 2532 } 2533 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2534 2535 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2536 { 2537 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2538 struct page *page; 2539 2540 if (vmf->pgoff == 0) 2541 page = virt_to_page(vcpu->run); 2542 #ifdef CONFIG_X86 2543 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2544 page = virt_to_page(vcpu->arch.pio_data); 2545 #endif 2546 #ifdef CONFIG_KVM_MMIO 2547 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2548 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2549 #endif 2550 else 2551 return kvm_arch_vcpu_fault(vcpu, vmf); 2552 get_page(page); 2553 vmf->page = page; 2554 return 0; 2555 } 2556 2557 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2558 .fault = kvm_vcpu_fault, 2559 }; 2560 2561 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2562 { 2563 vma->vm_ops = &kvm_vcpu_vm_ops; 2564 return 0; 2565 } 2566 2567 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2568 { 2569 struct kvm_vcpu *vcpu = filp->private_data; 2570 2571 debugfs_remove_recursive(vcpu->debugfs_dentry); 2572 kvm_put_kvm(vcpu->kvm); 2573 return 0; 2574 } 2575 2576 static struct file_operations kvm_vcpu_fops = { 2577 .release = kvm_vcpu_release, 2578 .unlocked_ioctl = kvm_vcpu_ioctl, 2579 .mmap = kvm_vcpu_mmap, 2580 .llseek = noop_llseek, 2581 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2582 }; 2583 2584 /* 2585 * Allocates an inode for the vcpu. 2586 */ 2587 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2588 { 2589 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2590 2591 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2592 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2593 } 2594 2595 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2596 { 2597 char dir_name[ITOA_MAX_LEN * 2]; 2598 int ret; 2599 2600 if (!kvm_arch_has_vcpu_debugfs()) 2601 return 0; 2602 2603 if (!debugfs_initialized()) 2604 return 0; 2605 2606 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2607 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2608 vcpu->kvm->debugfs_dentry); 2609 if (!vcpu->debugfs_dentry) 2610 return -ENOMEM; 2611 2612 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2613 if (ret < 0) { 2614 debugfs_remove_recursive(vcpu->debugfs_dentry); 2615 return ret; 2616 } 2617 2618 return 0; 2619 } 2620 2621 /* 2622 * Creates some virtual cpus. Good luck creating more than one. 2623 */ 2624 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2625 { 2626 int r; 2627 struct kvm_vcpu *vcpu; 2628 2629 if (id >= KVM_MAX_VCPU_ID) 2630 return -EINVAL; 2631 2632 mutex_lock(&kvm->lock); 2633 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2634 mutex_unlock(&kvm->lock); 2635 return -EINVAL; 2636 } 2637 2638 kvm->created_vcpus++; 2639 mutex_unlock(&kvm->lock); 2640 2641 vcpu = kvm_arch_vcpu_create(kvm, id); 2642 if (IS_ERR(vcpu)) { 2643 r = PTR_ERR(vcpu); 2644 goto vcpu_decrement; 2645 } 2646 2647 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2648 2649 r = kvm_arch_vcpu_setup(vcpu); 2650 if (r) 2651 goto vcpu_destroy; 2652 2653 r = kvm_create_vcpu_debugfs(vcpu); 2654 if (r) 2655 goto vcpu_destroy; 2656 2657 mutex_lock(&kvm->lock); 2658 if (kvm_get_vcpu_by_id(kvm, id)) { 2659 r = -EEXIST; 2660 goto unlock_vcpu_destroy; 2661 } 2662 2663 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2664 2665 /* Now it's all set up, let userspace reach it */ 2666 kvm_get_kvm(kvm); 2667 r = create_vcpu_fd(vcpu); 2668 if (r < 0) { 2669 kvm_put_kvm(kvm); 2670 goto unlock_vcpu_destroy; 2671 } 2672 2673 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2674 2675 /* 2676 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2677 * before kvm->online_vcpu's incremented value. 2678 */ 2679 smp_wmb(); 2680 atomic_inc(&kvm->online_vcpus); 2681 2682 mutex_unlock(&kvm->lock); 2683 kvm_arch_vcpu_postcreate(vcpu); 2684 return r; 2685 2686 unlock_vcpu_destroy: 2687 mutex_unlock(&kvm->lock); 2688 debugfs_remove_recursive(vcpu->debugfs_dentry); 2689 vcpu_destroy: 2690 kvm_arch_vcpu_destroy(vcpu); 2691 vcpu_decrement: 2692 mutex_lock(&kvm->lock); 2693 kvm->created_vcpus--; 2694 mutex_unlock(&kvm->lock); 2695 return r; 2696 } 2697 2698 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2699 { 2700 if (sigset) { 2701 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2702 vcpu->sigset_active = 1; 2703 vcpu->sigset = *sigset; 2704 } else 2705 vcpu->sigset_active = 0; 2706 return 0; 2707 } 2708 2709 static long kvm_vcpu_ioctl(struct file *filp, 2710 unsigned int ioctl, unsigned long arg) 2711 { 2712 struct kvm_vcpu *vcpu = filp->private_data; 2713 void __user *argp = (void __user *)arg; 2714 int r; 2715 struct kvm_fpu *fpu = NULL; 2716 struct kvm_sregs *kvm_sregs = NULL; 2717 2718 if (vcpu->kvm->mm != current->mm) 2719 return -EIO; 2720 2721 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2722 return -EINVAL; 2723 2724 /* 2725 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2726 * execution; mutex_lock() would break them. 2727 */ 2728 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2729 if (r != -ENOIOCTLCMD) 2730 return r; 2731 2732 if (mutex_lock_killable(&vcpu->mutex)) 2733 return -EINTR; 2734 switch (ioctl) { 2735 case KVM_RUN: { 2736 struct pid *oldpid; 2737 r = -EINVAL; 2738 if (arg) 2739 goto out; 2740 oldpid = rcu_access_pointer(vcpu->pid); 2741 if (unlikely(oldpid != task_pid(current))) { 2742 /* The thread running this VCPU changed. */ 2743 struct pid *newpid; 2744 2745 r = kvm_arch_vcpu_run_pid_change(vcpu); 2746 if (r) 2747 break; 2748 2749 newpid = get_task_pid(current, PIDTYPE_PID); 2750 rcu_assign_pointer(vcpu->pid, newpid); 2751 if (oldpid) 2752 synchronize_rcu(); 2753 put_pid(oldpid); 2754 } 2755 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2756 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2757 break; 2758 } 2759 case KVM_GET_REGS: { 2760 struct kvm_regs *kvm_regs; 2761 2762 r = -ENOMEM; 2763 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2764 if (!kvm_regs) 2765 goto out; 2766 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2767 if (r) 2768 goto out_free1; 2769 r = -EFAULT; 2770 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2771 goto out_free1; 2772 r = 0; 2773 out_free1: 2774 kfree(kvm_regs); 2775 break; 2776 } 2777 case KVM_SET_REGS: { 2778 struct kvm_regs *kvm_regs; 2779 2780 r = -ENOMEM; 2781 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2782 if (IS_ERR(kvm_regs)) { 2783 r = PTR_ERR(kvm_regs); 2784 goto out; 2785 } 2786 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2787 kfree(kvm_regs); 2788 break; 2789 } 2790 case KVM_GET_SREGS: { 2791 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2792 GFP_KERNEL_ACCOUNT); 2793 r = -ENOMEM; 2794 if (!kvm_sregs) 2795 goto out; 2796 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2797 if (r) 2798 goto out; 2799 r = -EFAULT; 2800 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2801 goto out; 2802 r = 0; 2803 break; 2804 } 2805 case KVM_SET_SREGS: { 2806 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2807 if (IS_ERR(kvm_sregs)) { 2808 r = PTR_ERR(kvm_sregs); 2809 kvm_sregs = NULL; 2810 goto out; 2811 } 2812 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2813 break; 2814 } 2815 case KVM_GET_MP_STATE: { 2816 struct kvm_mp_state mp_state; 2817 2818 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2819 if (r) 2820 goto out; 2821 r = -EFAULT; 2822 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2823 goto out; 2824 r = 0; 2825 break; 2826 } 2827 case KVM_SET_MP_STATE: { 2828 struct kvm_mp_state mp_state; 2829 2830 r = -EFAULT; 2831 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2832 goto out; 2833 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2834 break; 2835 } 2836 case KVM_TRANSLATE: { 2837 struct kvm_translation tr; 2838 2839 r = -EFAULT; 2840 if (copy_from_user(&tr, argp, sizeof(tr))) 2841 goto out; 2842 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2843 if (r) 2844 goto out; 2845 r = -EFAULT; 2846 if (copy_to_user(argp, &tr, sizeof(tr))) 2847 goto out; 2848 r = 0; 2849 break; 2850 } 2851 case KVM_SET_GUEST_DEBUG: { 2852 struct kvm_guest_debug dbg; 2853 2854 r = -EFAULT; 2855 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2856 goto out; 2857 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2858 break; 2859 } 2860 case KVM_SET_SIGNAL_MASK: { 2861 struct kvm_signal_mask __user *sigmask_arg = argp; 2862 struct kvm_signal_mask kvm_sigmask; 2863 sigset_t sigset, *p; 2864 2865 p = NULL; 2866 if (argp) { 2867 r = -EFAULT; 2868 if (copy_from_user(&kvm_sigmask, argp, 2869 sizeof(kvm_sigmask))) 2870 goto out; 2871 r = -EINVAL; 2872 if (kvm_sigmask.len != sizeof(sigset)) 2873 goto out; 2874 r = -EFAULT; 2875 if (copy_from_user(&sigset, sigmask_arg->sigset, 2876 sizeof(sigset))) 2877 goto out; 2878 p = &sigset; 2879 } 2880 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2881 break; 2882 } 2883 case KVM_GET_FPU: { 2884 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 2885 r = -ENOMEM; 2886 if (!fpu) 2887 goto out; 2888 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2889 if (r) 2890 goto out; 2891 r = -EFAULT; 2892 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2893 goto out; 2894 r = 0; 2895 break; 2896 } 2897 case KVM_SET_FPU: { 2898 fpu = memdup_user(argp, sizeof(*fpu)); 2899 if (IS_ERR(fpu)) { 2900 r = PTR_ERR(fpu); 2901 fpu = NULL; 2902 goto out; 2903 } 2904 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2905 break; 2906 } 2907 default: 2908 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2909 } 2910 out: 2911 mutex_unlock(&vcpu->mutex); 2912 kfree(fpu); 2913 kfree(kvm_sregs); 2914 return r; 2915 } 2916 2917 #ifdef CONFIG_KVM_COMPAT 2918 static long kvm_vcpu_compat_ioctl(struct file *filp, 2919 unsigned int ioctl, unsigned long arg) 2920 { 2921 struct kvm_vcpu *vcpu = filp->private_data; 2922 void __user *argp = compat_ptr(arg); 2923 int r; 2924 2925 if (vcpu->kvm->mm != current->mm) 2926 return -EIO; 2927 2928 switch (ioctl) { 2929 case KVM_SET_SIGNAL_MASK: { 2930 struct kvm_signal_mask __user *sigmask_arg = argp; 2931 struct kvm_signal_mask kvm_sigmask; 2932 sigset_t sigset; 2933 2934 if (argp) { 2935 r = -EFAULT; 2936 if (copy_from_user(&kvm_sigmask, argp, 2937 sizeof(kvm_sigmask))) 2938 goto out; 2939 r = -EINVAL; 2940 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2941 goto out; 2942 r = -EFAULT; 2943 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2944 goto out; 2945 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2946 } else 2947 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2948 break; 2949 } 2950 default: 2951 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2952 } 2953 2954 out: 2955 return r; 2956 } 2957 #endif 2958 2959 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 2960 { 2961 struct kvm_device *dev = filp->private_data; 2962 2963 if (dev->ops->mmap) 2964 return dev->ops->mmap(dev, vma); 2965 2966 return -ENODEV; 2967 } 2968 2969 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2970 int (*accessor)(struct kvm_device *dev, 2971 struct kvm_device_attr *attr), 2972 unsigned long arg) 2973 { 2974 struct kvm_device_attr attr; 2975 2976 if (!accessor) 2977 return -EPERM; 2978 2979 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2980 return -EFAULT; 2981 2982 return accessor(dev, &attr); 2983 } 2984 2985 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2986 unsigned long arg) 2987 { 2988 struct kvm_device *dev = filp->private_data; 2989 2990 if (dev->kvm->mm != current->mm) 2991 return -EIO; 2992 2993 switch (ioctl) { 2994 case KVM_SET_DEVICE_ATTR: 2995 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2996 case KVM_GET_DEVICE_ATTR: 2997 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2998 case KVM_HAS_DEVICE_ATTR: 2999 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3000 default: 3001 if (dev->ops->ioctl) 3002 return dev->ops->ioctl(dev, ioctl, arg); 3003 3004 return -ENOTTY; 3005 } 3006 } 3007 3008 static int kvm_device_release(struct inode *inode, struct file *filp) 3009 { 3010 struct kvm_device *dev = filp->private_data; 3011 struct kvm *kvm = dev->kvm; 3012 3013 if (dev->ops->release) { 3014 mutex_lock(&kvm->lock); 3015 list_del(&dev->vm_node); 3016 dev->ops->release(dev); 3017 mutex_unlock(&kvm->lock); 3018 } 3019 3020 kvm_put_kvm(kvm); 3021 return 0; 3022 } 3023 3024 static const struct file_operations kvm_device_fops = { 3025 .unlocked_ioctl = kvm_device_ioctl, 3026 .release = kvm_device_release, 3027 KVM_COMPAT(kvm_device_ioctl), 3028 .mmap = kvm_device_mmap, 3029 }; 3030 3031 struct kvm_device *kvm_device_from_filp(struct file *filp) 3032 { 3033 if (filp->f_op != &kvm_device_fops) 3034 return NULL; 3035 3036 return filp->private_data; 3037 } 3038 3039 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3040 #ifdef CONFIG_KVM_MPIC 3041 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3042 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3043 #endif 3044 }; 3045 3046 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 3047 { 3048 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3049 return -ENOSPC; 3050 3051 if (kvm_device_ops_table[type] != NULL) 3052 return -EEXIST; 3053 3054 kvm_device_ops_table[type] = ops; 3055 return 0; 3056 } 3057 3058 void kvm_unregister_device_ops(u32 type) 3059 { 3060 if (kvm_device_ops_table[type] != NULL) 3061 kvm_device_ops_table[type] = NULL; 3062 } 3063 3064 static int kvm_ioctl_create_device(struct kvm *kvm, 3065 struct kvm_create_device *cd) 3066 { 3067 struct kvm_device_ops *ops = NULL; 3068 struct kvm_device *dev; 3069 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3070 int type; 3071 int ret; 3072 3073 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3074 return -ENODEV; 3075 3076 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3077 ops = kvm_device_ops_table[type]; 3078 if (ops == NULL) 3079 return -ENODEV; 3080 3081 if (test) 3082 return 0; 3083 3084 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3085 if (!dev) 3086 return -ENOMEM; 3087 3088 dev->ops = ops; 3089 dev->kvm = kvm; 3090 3091 mutex_lock(&kvm->lock); 3092 ret = ops->create(dev, type); 3093 if (ret < 0) { 3094 mutex_unlock(&kvm->lock); 3095 kfree(dev); 3096 return ret; 3097 } 3098 list_add(&dev->vm_node, &kvm->devices); 3099 mutex_unlock(&kvm->lock); 3100 3101 if (ops->init) 3102 ops->init(dev); 3103 3104 kvm_get_kvm(kvm); 3105 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3106 if (ret < 0) { 3107 kvm_put_kvm(kvm); 3108 mutex_lock(&kvm->lock); 3109 list_del(&dev->vm_node); 3110 mutex_unlock(&kvm->lock); 3111 ops->destroy(dev); 3112 return ret; 3113 } 3114 3115 cd->fd = ret; 3116 return 0; 3117 } 3118 3119 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3120 { 3121 switch (arg) { 3122 case KVM_CAP_USER_MEMORY: 3123 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3124 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3125 case KVM_CAP_INTERNAL_ERROR_DATA: 3126 #ifdef CONFIG_HAVE_KVM_MSI 3127 case KVM_CAP_SIGNAL_MSI: 3128 #endif 3129 #ifdef CONFIG_HAVE_KVM_IRQFD 3130 case KVM_CAP_IRQFD: 3131 case KVM_CAP_IRQFD_RESAMPLE: 3132 #endif 3133 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3134 case KVM_CAP_CHECK_EXTENSION_VM: 3135 case KVM_CAP_ENABLE_CAP_VM: 3136 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3137 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3138 #endif 3139 return 1; 3140 #ifdef CONFIG_KVM_MMIO 3141 case KVM_CAP_COALESCED_MMIO: 3142 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3143 case KVM_CAP_COALESCED_PIO: 3144 return 1; 3145 #endif 3146 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3147 case KVM_CAP_IRQ_ROUTING: 3148 return KVM_MAX_IRQ_ROUTES; 3149 #endif 3150 #if KVM_ADDRESS_SPACE_NUM > 1 3151 case KVM_CAP_MULTI_ADDRESS_SPACE: 3152 return KVM_ADDRESS_SPACE_NUM; 3153 #endif 3154 case KVM_CAP_MAX_VCPU_ID: 3155 return KVM_MAX_VCPU_ID; 3156 case KVM_CAP_NR_MEMSLOTS: 3157 return KVM_USER_MEM_SLOTS; 3158 default: 3159 break; 3160 } 3161 return kvm_vm_ioctl_check_extension(kvm, arg); 3162 } 3163 3164 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3165 struct kvm_enable_cap *cap) 3166 { 3167 return -EINVAL; 3168 } 3169 3170 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3171 struct kvm_enable_cap *cap) 3172 { 3173 switch (cap->cap) { 3174 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3175 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3176 if (cap->flags || (cap->args[0] & ~1)) 3177 return -EINVAL; 3178 kvm->manual_dirty_log_protect = cap->args[0]; 3179 return 0; 3180 #endif 3181 default: 3182 return kvm_vm_ioctl_enable_cap(kvm, cap); 3183 } 3184 } 3185 3186 static long kvm_vm_ioctl(struct file *filp, 3187 unsigned int ioctl, unsigned long arg) 3188 { 3189 struct kvm *kvm = filp->private_data; 3190 void __user *argp = (void __user *)arg; 3191 int r; 3192 3193 if (kvm->mm != current->mm) 3194 return -EIO; 3195 switch (ioctl) { 3196 case KVM_CREATE_VCPU: 3197 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3198 break; 3199 case KVM_ENABLE_CAP: { 3200 struct kvm_enable_cap cap; 3201 3202 r = -EFAULT; 3203 if (copy_from_user(&cap, argp, sizeof(cap))) 3204 goto out; 3205 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3206 break; 3207 } 3208 case KVM_SET_USER_MEMORY_REGION: { 3209 struct kvm_userspace_memory_region kvm_userspace_mem; 3210 3211 r = -EFAULT; 3212 if (copy_from_user(&kvm_userspace_mem, argp, 3213 sizeof(kvm_userspace_mem))) 3214 goto out; 3215 3216 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3217 break; 3218 } 3219 case KVM_GET_DIRTY_LOG: { 3220 struct kvm_dirty_log log; 3221 3222 r = -EFAULT; 3223 if (copy_from_user(&log, argp, sizeof(log))) 3224 goto out; 3225 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3226 break; 3227 } 3228 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3229 case KVM_CLEAR_DIRTY_LOG: { 3230 struct kvm_clear_dirty_log log; 3231 3232 r = -EFAULT; 3233 if (copy_from_user(&log, argp, sizeof(log))) 3234 goto out; 3235 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3236 break; 3237 } 3238 #endif 3239 #ifdef CONFIG_KVM_MMIO 3240 case KVM_REGISTER_COALESCED_MMIO: { 3241 struct kvm_coalesced_mmio_zone zone; 3242 3243 r = -EFAULT; 3244 if (copy_from_user(&zone, argp, sizeof(zone))) 3245 goto out; 3246 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3247 break; 3248 } 3249 case KVM_UNREGISTER_COALESCED_MMIO: { 3250 struct kvm_coalesced_mmio_zone zone; 3251 3252 r = -EFAULT; 3253 if (copy_from_user(&zone, argp, sizeof(zone))) 3254 goto out; 3255 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3256 break; 3257 } 3258 #endif 3259 case KVM_IRQFD: { 3260 struct kvm_irqfd data; 3261 3262 r = -EFAULT; 3263 if (copy_from_user(&data, argp, sizeof(data))) 3264 goto out; 3265 r = kvm_irqfd(kvm, &data); 3266 break; 3267 } 3268 case KVM_IOEVENTFD: { 3269 struct kvm_ioeventfd data; 3270 3271 r = -EFAULT; 3272 if (copy_from_user(&data, argp, sizeof(data))) 3273 goto out; 3274 r = kvm_ioeventfd(kvm, &data); 3275 break; 3276 } 3277 #ifdef CONFIG_HAVE_KVM_MSI 3278 case KVM_SIGNAL_MSI: { 3279 struct kvm_msi msi; 3280 3281 r = -EFAULT; 3282 if (copy_from_user(&msi, argp, sizeof(msi))) 3283 goto out; 3284 r = kvm_send_userspace_msi(kvm, &msi); 3285 break; 3286 } 3287 #endif 3288 #ifdef __KVM_HAVE_IRQ_LINE 3289 case KVM_IRQ_LINE_STATUS: 3290 case KVM_IRQ_LINE: { 3291 struct kvm_irq_level irq_event; 3292 3293 r = -EFAULT; 3294 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3295 goto out; 3296 3297 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3298 ioctl == KVM_IRQ_LINE_STATUS); 3299 if (r) 3300 goto out; 3301 3302 r = -EFAULT; 3303 if (ioctl == KVM_IRQ_LINE_STATUS) { 3304 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3305 goto out; 3306 } 3307 3308 r = 0; 3309 break; 3310 } 3311 #endif 3312 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3313 case KVM_SET_GSI_ROUTING: { 3314 struct kvm_irq_routing routing; 3315 struct kvm_irq_routing __user *urouting; 3316 struct kvm_irq_routing_entry *entries = NULL; 3317 3318 r = -EFAULT; 3319 if (copy_from_user(&routing, argp, sizeof(routing))) 3320 goto out; 3321 r = -EINVAL; 3322 if (!kvm_arch_can_set_irq_routing(kvm)) 3323 goto out; 3324 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3325 goto out; 3326 if (routing.flags) 3327 goto out; 3328 if (routing.nr) { 3329 r = -ENOMEM; 3330 entries = vmalloc(array_size(sizeof(*entries), 3331 routing.nr)); 3332 if (!entries) 3333 goto out; 3334 r = -EFAULT; 3335 urouting = argp; 3336 if (copy_from_user(entries, urouting->entries, 3337 routing.nr * sizeof(*entries))) 3338 goto out_free_irq_routing; 3339 } 3340 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3341 routing.flags); 3342 out_free_irq_routing: 3343 vfree(entries); 3344 break; 3345 } 3346 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3347 case KVM_CREATE_DEVICE: { 3348 struct kvm_create_device cd; 3349 3350 r = -EFAULT; 3351 if (copy_from_user(&cd, argp, sizeof(cd))) 3352 goto out; 3353 3354 r = kvm_ioctl_create_device(kvm, &cd); 3355 if (r) 3356 goto out; 3357 3358 r = -EFAULT; 3359 if (copy_to_user(argp, &cd, sizeof(cd))) 3360 goto out; 3361 3362 r = 0; 3363 break; 3364 } 3365 case KVM_CHECK_EXTENSION: 3366 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3367 break; 3368 default: 3369 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3370 } 3371 out: 3372 return r; 3373 } 3374 3375 #ifdef CONFIG_KVM_COMPAT 3376 struct compat_kvm_dirty_log { 3377 __u32 slot; 3378 __u32 padding1; 3379 union { 3380 compat_uptr_t dirty_bitmap; /* one bit per page */ 3381 __u64 padding2; 3382 }; 3383 }; 3384 3385 static long kvm_vm_compat_ioctl(struct file *filp, 3386 unsigned int ioctl, unsigned long arg) 3387 { 3388 struct kvm *kvm = filp->private_data; 3389 int r; 3390 3391 if (kvm->mm != current->mm) 3392 return -EIO; 3393 switch (ioctl) { 3394 case KVM_GET_DIRTY_LOG: { 3395 struct compat_kvm_dirty_log compat_log; 3396 struct kvm_dirty_log log; 3397 3398 if (copy_from_user(&compat_log, (void __user *)arg, 3399 sizeof(compat_log))) 3400 return -EFAULT; 3401 log.slot = compat_log.slot; 3402 log.padding1 = compat_log.padding1; 3403 log.padding2 = compat_log.padding2; 3404 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3405 3406 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3407 break; 3408 } 3409 default: 3410 r = kvm_vm_ioctl(filp, ioctl, arg); 3411 } 3412 return r; 3413 } 3414 #endif 3415 3416 static struct file_operations kvm_vm_fops = { 3417 .release = kvm_vm_release, 3418 .unlocked_ioctl = kvm_vm_ioctl, 3419 .llseek = noop_llseek, 3420 KVM_COMPAT(kvm_vm_compat_ioctl), 3421 }; 3422 3423 static int kvm_dev_ioctl_create_vm(unsigned long type) 3424 { 3425 int r; 3426 struct kvm *kvm; 3427 struct file *file; 3428 3429 kvm = kvm_create_vm(type); 3430 if (IS_ERR(kvm)) 3431 return PTR_ERR(kvm); 3432 #ifdef CONFIG_KVM_MMIO 3433 r = kvm_coalesced_mmio_init(kvm); 3434 if (r < 0) 3435 goto put_kvm; 3436 #endif 3437 r = get_unused_fd_flags(O_CLOEXEC); 3438 if (r < 0) 3439 goto put_kvm; 3440 3441 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3442 if (IS_ERR(file)) { 3443 put_unused_fd(r); 3444 r = PTR_ERR(file); 3445 goto put_kvm; 3446 } 3447 3448 /* 3449 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3450 * already set, with ->release() being kvm_vm_release(). In error 3451 * cases it will be called by the final fput(file) and will take 3452 * care of doing kvm_put_kvm(kvm). 3453 */ 3454 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3455 put_unused_fd(r); 3456 fput(file); 3457 return -ENOMEM; 3458 } 3459 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3460 3461 fd_install(r, file); 3462 return r; 3463 3464 put_kvm: 3465 kvm_put_kvm(kvm); 3466 return r; 3467 } 3468 3469 static long kvm_dev_ioctl(struct file *filp, 3470 unsigned int ioctl, unsigned long arg) 3471 { 3472 long r = -EINVAL; 3473 3474 switch (ioctl) { 3475 case KVM_GET_API_VERSION: 3476 if (arg) 3477 goto out; 3478 r = KVM_API_VERSION; 3479 break; 3480 case KVM_CREATE_VM: 3481 r = kvm_dev_ioctl_create_vm(arg); 3482 break; 3483 case KVM_CHECK_EXTENSION: 3484 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3485 break; 3486 case KVM_GET_VCPU_MMAP_SIZE: 3487 if (arg) 3488 goto out; 3489 r = PAGE_SIZE; /* struct kvm_run */ 3490 #ifdef CONFIG_X86 3491 r += PAGE_SIZE; /* pio data page */ 3492 #endif 3493 #ifdef CONFIG_KVM_MMIO 3494 r += PAGE_SIZE; /* coalesced mmio ring page */ 3495 #endif 3496 break; 3497 case KVM_TRACE_ENABLE: 3498 case KVM_TRACE_PAUSE: 3499 case KVM_TRACE_DISABLE: 3500 r = -EOPNOTSUPP; 3501 break; 3502 default: 3503 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3504 } 3505 out: 3506 return r; 3507 } 3508 3509 static struct file_operations kvm_chardev_ops = { 3510 .unlocked_ioctl = kvm_dev_ioctl, 3511 .llseek = noop_llseek, 3512 KVM_COMPAT(kvm_dev_ioctl), 3513 }; 3514 3515 static struct miscdevice kvm_dev = { 3516 KVM_MINOR, 3517 "kvm", 3518 &kvm_chardev_ops, 3519 }; 3520 3521 static void hardware_enable_nolock(void *junk) 3522 { 3523 int cpu = raw_smp_processor_id(); 3524 int r; 3525 3526 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3527 return; 3528 3529 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3530 3531 r = kvm_arch_hardware_enable(); 3532 3533 if (r) { 3534 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3535 atomic_inc(&hardware_enable_failed); 3536 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3537 } 3538 } 3539 3540 static int kvm_starting_cpu(unsigned int cpu) 3541 { 3542 raw_spin_lock(&kvm_count_lock); 3543 if (kvm_usage_count) 3544 hardware_enable_nolock(NULL); 3545 raw_spin_unlock(&kvm_count_lock); 3546 return 0; 3547 } 3548 3549 static void hardware_disable_nolock(void *junk) 3550 { 3551 int cpu = raw_smp_processor_id(); 3552 3553 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3554 return; 3555 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3556 kvm_arch_hardware_disable(); 3557 } 3558 3559 static int kvm_dying_cpu(unsigned int cpu) 3560 { 3561 raw_spin_lock(&kvm_count_lock); 3562 if (kvm_usage_count) 3563 hardware_disable_nolock(NULL); 3564 raw_spin_unlock(&kvm_count_lock); 3565 return 0; 3566 } 3567 3568 static void hardware_disable_all_nolock(void) 3569 { 3570 BUG_ON(!kvm_usage_count); 3571 3572 kvm_usage_count--; 3573 if (!kvm_usage_count) 3574 on_each_cpu(hardware_disable_nolock, NULL, 1); 3575 } 3576 3577 static void hardware_disable_all(void) 3578 { 3579 raw_spin_lock(&kvm_count_lock); 3580 hardware_disable_all_nolock(); 3581 raw_spin_unlock(&kvm_count_lock); 3582 } 3583 3584 static int hardware_enable_all(void) 3585 { 3586 int r = 0; 3587 3588 raw_spin_lock(&kvm_count_lock); 3589 3590 kvm_usage_count++; 3591 if (kvm_usage_count == 1) { 3592 atomic_set(&hardware_enable_failed, 0); 3593 on_each_cpu(hardware_enable_nolock, NULL, 1); 3594 3595 if (atomic_read(&hardware_enable_failed)) { 3596 hardware_disable_all_nolock(); 3597 r = -EBUSY; 3598 } 3599 } 3600 3601 raw_spin_unlock(&kvm_count_lock); 3602 3603 return r; 3604 } 3605 3606 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3607 void *v) 3608 { 3609 /* 3610 * Some (well, at least mine) BIOSes hang on reboot if 3611 * in vmx root mode. 3612 * 3613 * And Intel TXT required VMX off for all cpu when system shutdown. 3614 */ 3615 pr_info("kvm: exiting hardware virtualization\n"); 3616 kvm_rebooting = true; 3617 on_each_cpu(hardware_disable_nolock, NULL, 1); 3618 return NOTIFY_OK; 3619 } 3620 3621 static struct notifier_block kvm_reboot_notifier = { 3622 .notifier_call = kvm_reboot, 3623 .priority = 0, 3624 }; 3625 3626 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3627 { 3628 int i; 3629 3630 for (i = 0; i < bus->dev_count; i++) { 3631 struct kvm_io_device *pos = bus->range[i].dev; 3632 3633 kvm_iodevice_destructor(pos); 3634 } 3635 kfree(bus); 3636 } 3637 3638 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3639 const struct kvm_io_range *r2) 3640 { 3641 gpa_t addr1 = r1->addr; 3642 gpa_t addr2 = r2->addr; 3643 3644 if (addr1 < addr2) 3645 return -1; 3646 3647 /* If r2->len == 0, match the exact address. If r2->len != 0, 3648 * accept any overlapping write. Any order is acceptable for 3649 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3650 * we process all of them. 3651 */ 3652 if (r2->len) { 3653 addr1 += r1->len; 3654 addr2 += r2->len; 3655 } 3656 3657 if (addr1 > addr2) 3658 return 1; 3659 3660 return 0; 3661 } 3662 3663 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3664 { 3665 return kvm_io_bus_cmp(p1, p2); 3666 } 3667 3668 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3669 gpa_t addr, int len) 3670 { 3671 struct kvm_io_range *range, key; 3672 int off; 3673 3674 key = (struct kvm_io_range) { 3675 .addr = addr, 3676 .len = len, 3677 }; 3678 3679 range = bsearch(&key, bus->range, bus->dev_count, 3680 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3681 if (range == NULL) 3682 return -ENOENT; 3683 3684 off = range - bus->range; 3685 3686 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3687 off--; 3688 3689 return off; 3690 } 3691 3692 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3693 struct kvm_io_range *range, const void *val) 3694 { 3695 int idx; 3696 3697 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3698 if (idx < 0) 3699 return -EOPNOTSUPP; 3700 3701 while (idx < bus->dev_count && 3702 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3703 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3704 range->len, val)) 3705 return idx; 3706 idx++; 3707 } 3708 3709 return -EOPNOTSUPP; 3710 } 3711 3712 /* kvm_io_bus_write - called under kvm->slots_lock */ 3713 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3714 int len, const void *val) 3715 { 3716 struct kvm_io_bus *bus; 3717 struct kvm_io_range range; 3718 int r; 3719 3720 range = (struct kvm_io_range) { 3721 .addr = addr, 3722 .len = len, 3723 }; 3724 3725 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3726 if (!bus) 3727 return -ENOMEM; 3728 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3729 return r < 0 ? r : 0; 3730 } 3731 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3732 3733 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3734 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3735 gpa_t addr, int len, const void *val, long cookie) 3736 { 3737 struct kvm_io_bus *bus; 3738 struct kvm_io_range range; 3739 3740 range = (struct kvm_io_range) { 3741 .addr = addr, 3742 .len = len, 3743 }; 3744 3745 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3746 if (!bus) 3747 return -ENOMEM; 3748 3749 /* First try the device referenced by cookie. */ 3750 if ((cookie >= 0) && (cookie < bus->dev_count) && 3751 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3752 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3753 val)) 3754 return cookie; 3755 3756 /* 3757 * cookie contained garbage; fall back to search and return the 3758 * correct cookie value. 3759 */ 3760 return __kvm_io_bus_write(vcpu, bus, &range, val); 3761 } 3762 3763 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3764 struct kvm_io_range *range, void *val) 3765 { 3766 int idx; 3767 3768 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3769 if (idx < 0) 3770 return -EOPNOTSUPP; 3771 3772 while (idx < bus->dev_count && 3773 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3774 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3775 range->len, val)) 3776 return idx; 3777 idx++; 3778 } 3779 3780 return -EOPNOTSUPP; 3781 } 3782 3783 /* kvm_io_bus_read - called under kvm->slots_lock */ 3784 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3785 int len, void *val) 3786 { 3787 struct kvm_io_bus *bus; 3788 struct kvm_io_range range; 3789 int r; 3790 3791 range = (struct kvm_io_range) { 3792 .addr = addr, 3793 .len = len, 3794 }; 3795 3796 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3797 if (!bus) 3798 return -ENOMEM; 3799 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3800 return r < 0 ? r : 0; 3801 } 3802 3803 /* Caller must hold slots_lock. */ 3804 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3805 int len, struct kvm_io_device *dev) 3806 { 3807 int i; 3808 struct kvm_io_bus *new_bus, *bus; 3809 struct kvm_io_range range; 3810 3811 bus = kvm_get_bus(kvm, bus_idx); 3812 if (!bus) 3813 return -ENOMEM; 3814 3815 /* exclude ioeventfd which is limited by maximum fd */ 3816 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3817 return -ENOSPC; 3818 3819 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3820 GFP_KERNEL_ACCOUNT); 3821 if (!new_bus) 3822 return -ENOMEM; 3823 3824 range = (struct kvm_io_range) { 3825 .addr = addr, 3826 .len = len, 3827 .dev = dev, 3828 }; 3829 3830 for (i = 0; i < bus->dev_count; i++) 3831 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3832 break; 3833 3834 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3835 new_bus->dev_count++; 3836 new_bus->range[i] = range; 3837 memcpy(new_bus->range + i + 1, bus->range + i, 3838 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3839 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3840 synchronize_srcu_expedited(&kvm->srcu); 3841 kfree(bus); 3842 3843 return 0; 3844 } 3845 3846 /* Caller must hold slots_lock. */ 3847 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3848 struct kvm_io_device *dev) 3849 { 3850 int i; 3851 struct kvm_io_bus *new_bus, *bus; 3852 3853 bus = kvm_get_bus(kvm, bus_idx); 3854 if (!bus) 3855 return; 3856 3857 for (i = 0; i < bus->dev_count; i++) 3858 if (bus->range[i].dev == dev) { 3859 break; 3860 } 3861 3862 if (i == bus->dev_count) 3863 return; 3864 3865 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 3866 GFP_KERNEL_ACCOUNT); 3867 if (!new_bus) { 3868 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3869 goto broken; 3870 } 3871 3872 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3873 new_bus->dev_count--; 3874 memcpy(new_bus->range + i, bus->range + i + 1, 3875 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3876 3877 broken: 3878 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3879 synchronize_srcu_expedited(&kvm->srcu); 3880 kfree(bus); 3881 return; 3882 } 3883 3884 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3885 gpa_t addr) 3886 { 3887 struct kvm_io_bus *bus; 3888 int dev_idx, srcu_idx; 3889 struct kvm_io_device *iodev = NULL; 3890 3891 srcu_idx = srcu_read_lock(&kvm->srcu); 3892 3893 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3894 if (!bus) 3895 goto out_unlock; 3896 3897 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3898 if (dev_idx < 0) 3899 goto out_unlock; 3900 3901 iodev = bus->range[dev_idx].dev; 3902 3903 out_unlock: 3904 srcu_read_unlock(&kvm->srcu, srcu_idx); 3905 3906 return iodev; 3907 } 3908 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3909 3910 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3911 int (*get)(void *, u64 *), int (*set)(void *, u64), 3912 const char *fmt) 3913 { 3914 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3915 inode->i_private; 3916 3917 /* The debugfs files are a reference to the kvm struct which 3918 * is still valid when kvm_destroy_vm is called. 3919 * To avoid the race between open and the removal of the debugfs 3920 * directory we test against the users count. 3921 */ 3922 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3923 return -ENOENT; 3924 3925 if (simple_attr_open(inode, file, get, set, fmt)) { 3926 kvm_put_kvm(stat_data->kvm); 3927 return -ENOMEM; 3928 } 3929 3930 return 0; 3931 } 3932 3933 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3934 { 3935 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3936 inode->i_private; 3937 3938 simple_attr_release(inode, file); 3939 kvm_put_kvm(stat_data->kvm); 3940 3941 return 0; 3942 } 3943 3944 static int vm_stat_get_per_vm(void *data, u64 *val) 3945 { 3946 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3947 3948 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3949 3950 return 0; 3951 } 3952 3953 static int vm_stat_clear_per_vm(void *data, u64 val) 3954 { 3955 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3956 3957 if (val) 3958 return -EINVAL; 3959 3960 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3961 3962 return 0; 3963 } 3964 3965 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3966 { 3967 __simple_attr_check_format("%llu\n", 0ull); 3968 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3969 vm_stat_clear_per_vm, "%llu\n"); 3970 } 3971 3972 static const struct file_operations vm_stat_get_per_vm_fops = { 3973 .owner = THIS_MODULE, 3974 .open = vm_stat_get_per_vm_open, 3975 .release = kvm_debugfs_release, 3976 .read = simple_attr_read, 3977 .write = simple_attr_write, 3978 .llseek = no_llseek, 3979 }; 3980 3981 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3982 { 3983 int i; 3984 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3985 struct kvm_vcpu *vcpu; 3986 3987 *val = 0; 3988 3989 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3990 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3991 3992 return 0; 3993 } 3994 3995 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3996 { 3997 int i; 3998 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3999 struct kvm_vcpu *vcpu; 4000 4001 if (val) 4002 return -EINVAL; 4003 4004 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 4005 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 4006 4007 return 0; 4008 } 4009 4010 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 4011 { 4012 __simple_attr_check_format("%llu\n", 0ull); 4013 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 4014 vcpu_stat_clear_per_vm, "%llu\n"); 4015 } 4016 4017 static const struct file_operations vcpu_stat_get_per_vm_fops = { 4018 .owner = THIS_MODULE, 4019 .open = vcpu_stat_get_per_vm_open, 4020 .release = kvm_debugfs_release, 4021 .read = simple_attr_read, 4022 .write = simple_attr_write, 4023 .llseek = no_llseek, 4024 }; 4025 4026 static const struct file_operations *stat_fops_per_vm[] = { 4027 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 4028 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 4029 }; 4030 4031 static int vm_stat_get(void *_offset, u64 *val) 4032 { 4033 unsigned offset = (long)_offset; 4034 struct kvm *kvm; 4035 struct kvm_stat_data stat_tmp = {.offset = offset}; 4036 u64 tmp_val; 4037 4038 *val = 0; 4039 spin_lock(&kvm_lock); 4040 list_for_each_entry(kvm, &vm_list, vm_list) { 4041 stat_tmp.kvm = kvm; 4042 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4043 *val += tmp_val; 4044 } 4045 spin_unlock(&kvm_lock); 4046 return 0; 4047 } 4048 4049 static int vm_stat_clear(void *_offset, u64 val) 4050 { 4051 unsigned offset = (long)_offset; 4052 struct kvm *kvm; 4053 struct kvm_stat_data stat_tmp = {.offset = offset}; 4054 4055 if (val) 4056 return -EINVAL; 4057 4058 spin_lock(&kvm_lock); 4059 list_for_each_entry(kvm, &vm_list, vm_list) { 4060 stat_tmp.kvm = kvm; 4061 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 4062 } 4063 spin_unlock(&kvm_lock); 4064 4065 return 0; 4066 } 4067 4068 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4069 4070 static int vcpu_stat_get(void *_offset, u64 *val) 4071 { 4072 unsigned offset = (long)_offset; 4073 struct kvm *kvm; 4074 struct kvm_stat_data stat_tmp = {.offset = offset}; 4075 u64 tmp_val; 4076 4077 *val = 0; 4078 spin_lock(&kvm_lock); 4079 list_for_each_entry(kvm, &vm_list, vm_list) { 4080 stat_tmp.kvm = kvm; 4081 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4082 *val += tmp_val; 4083 } 4084 spin_unlock(&kvm_lock); 4085 return 0; 4086 } 4087 4088 static int vcpu_stat_clear(void *_offset, u64 val) 4089 { 4090 unsigned offset = (long)_offset; 4091 struct kvm *kvm; 4092 struct kvm_stat_data stat_tmp = {.offset = offset}; 4093 4094 if (val) 4095 return -EINVAL; 4096 4097 spin_lock(&kvm_lock); 4098 list_for_each_entry(kvm, &vm_list, vm_list) { 4099 stat_tmp.kvm = kvm; 4100 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4101 } 4102 spin_unlock(&kvm_lock); 4103 4104 return 0; 4105 } 4106 4107 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4108 "%llu\n"); 4109 4110 static const struct file_operations *stat_fops[] = { 4111 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4112 [KVM_STAT_VM] = &vm_stat_fops, 4113 }; 4114 4115 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4116 { 4117 struct kobj_uevent_env *env; 4118 unsigned long long created, active; 4119 4120 if (!kvm_dev.this_device || !kvm) 4121 return; 4122 4123 spin_lock(&kvm_lock); 4124 if (type == KVM_EVENT_CREATE_VM) { 4125 kvm_createvm_count++; 4126 kvm_active_vms++; 4127 } else if (type == KVM_EVENT_DESTROY_VM) { 4128 kvm_active_vms--; 4129 } 4130 created = kvm_createvm_count; 4131 active = kvm_active_vms; 4132 spin_unlock(&kvm_lock); 4133 4134 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4135 if (!env) 4136 return; 4137 4138 add_uevent_var(env, "CREATED=%llu", created); 4139 add_uevent_var(env, "COUNT=%llu", active); 4140 4141 if (type == KVM_EVENT_CREATE_VM) { 4142 add_uevent_var(env, "EVENT=create"); 4143 kvm->userspace_pid = task_pid_nr(current); 4144 } else if (type == KVM_EVENT_DESTROY_VM) { 4145 add_uevent_var(env, "EVENT=destroy"); 4146 } 4147 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4148 4149 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4150 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4151 4152 if (p) { 4153 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4154 if (!IS_ERR(tmp)) 4155 add_uevent_var(env, "STATS_PATH=%s", tmp); 4156 kfree(p); 4157 } 4158 } 4159 /* no need for checks, since we are adding at most only 5 keys */ 4160 env->envp[env->envp_idx++] = NULL; 4161 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4162 kfree(env); 4163 } 4164 4165 static void kvm_init_debug(void) 4166 { 4167 struct kvm_stats_debugfs_item *p; 4168 4169 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4170 4171 kvm_debugfs_num_entries = 0; 4172 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4173 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 4174 (void *)(long)p->offset, 4175 stat_fops[p->kind]); 4176 } 4177 } 4178 4179 static int kvm_suspend(void) 4180 { 4181 if (kvm_usage_count) 4182 hardware_disable_nolock(NULL); 4183 return 0; 4184 } 4185 4186 static void kvm_resume(void) 4187 { 4188 if (kvm_usage_count) { 4189 #ifdef CONFIG_LOCKDEP 4190 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4191 #endif 4192 hardware_enable_nolock(NULL); 4193 } 4194 } 4195 4196 static struct syscore_ops kvm_syscore_ops = { 4197 .suspend = kvm_suspend, 4198 .resume = kvm_resume, 4199 }; 4200 4201 static inline 4202 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4203 { 4204 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4205 } 4206 4207 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4208 { 4209 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4210 4211 if (vcpu->preempted) 4212 vcpu->preempted = false; 4213 4214 kvm_arch_sched_in(vcpu, cpu); 4215 4216 kvm_arch_vcpu_load(vcpu, cpu); 4217 } 4218 4219 static void kvm_sched_out(struct preempt_notifier *pn, 4220 struct task_struct *next) 4221 { 4222 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4223 4224 if (current->state == TASK_RUNNING) 4225 vcpu->preempted = true; 4226 kvm_arch_vcpu_put(vcpu); 4227 } 4228 4229 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4230 struct module *module) 4231 { 4232 int r; 4233 int cpu; 4234 4235 r = kvm_arch_init(opaque); 4236 if (r) 4237 goto out_fail; 4238 4239 /* 4240 * kvm_arch_init makes sure there's at most one caller 4241 * for architectures that support multiple implementations, 4242 * like intel and amd on x86. 4243 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4244 * conflicts in case kvm is already setup for another implementation. 4245 */ 4246 r = kvm_irqfd_init(); 4247 if (r) 4248 goto out_irqfd; 4249 4250 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4251 r = -ENOMEM; 4252 goto out_free_0; 4253 } 4254 4255 r = kvm_arch_hardware_setup(); 4256 if (r < 0) 4257 goto out_free_0a; 4258 4259 for_each_online_cpu(cpu) { 4260 smp_call_function_single(cpu, 4261 kvm_arch_check_processor_compat, 4262 &r, 1); 4263 if (r < 0) 4264 goto out_free_1; 4265 } 4266 4267 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4268 kvm_starting_cpu, kvm_dying_cpu); 4269 if (r) 4270 goto out_free_2; 4271 register_reboot_notifier(&kvm_reboot_notifier); 4272 4273 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4274 if (!vcpu_align) 4275 vcpu_align = __alignof__(struct kvm_vcpu); 4276 kvm_vcpu_cache = 4277 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4278 SLAB_ACCOUNT, 4279 offsetof(struct kvm_vcpu, arch), 4280 sizeof_field(struct kvm_vcpu, arch), 4281 NULL); 4282 if (!kvm_vcpu_cache) { 4283 r = -ENOMEM; 4284 goto out_free_3; 4285 } 4286 4287 r = kvm_async_pf_init(); 4288 if (r) 4289 goto out_free; 4290 4291 kvm_chardev_ops.owner = module; 4292 kvm_vm_fops.owner = module; 4293 kvm_vcpu_fops.owner = module; 4294 4295 r = misc_register(&kvm_dev); 4296 if (r) { 4297 pr_err("kvm: misc device register failed\n"); 4298 goto out_unreg; 4299 } 4300 4301 register_syscore_ops(&kvm_syscore_ops); 4302 4303 kvm_preempt_ops.sched_in = kvm_sched_in; 4304 kvm_preempt_ops.sched_out = kvm_sched_out; 4305 4306 kvm_init_debug(); 4307 4308 r = kvm_vfio_ops_init(); 4309 WARN_ON(r); 4310 4311 return 0; 4312 4313 out_unreg: 4314 kvm_async_pf_deinit(); 4315 out_free: 4316 kmem_cache_destroy(kvm_vcpu_cache); 4317 out_free_3: 4318 unregister_reboot_notifier(&kvm_reboot_notifier); 4319 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4320 out_free_2: 4321 out_free_1: 4322 kvm_arch_hardware_unsetup(); 4323 out_free_0a: 4324 free_cpumask_var(cpus_hardware_enabled); 4325 out_free_0: 4326 kvm_irqfd_exit(); 4327 out_irqfd: 4328 kvm_arch_exit(); 4329 out_fail: 4330 return r; 4331 } 4332 EXPORT_SYMBOL_GPL(kvm_init); 4333 4334 void kvm_exit(void) 4335 { 4336 debugfs_remove_recursive(kvm_debugfs_dir); 4337 misc_deregister(&kvm_dev); 4338 kmem_cache_destroy(kvm_vcpu_cache); 4339 kvm_async_pf_deinit(); 4340 unregister_syscore_ops(&kvm_syscore_ops); 4341 unregister_reboot_notifier(&kvm_reboot_notifier); 4342 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4343 on_each_cpu(hardware_disable_nolock, NULL, 1); 4344 kvm_arch_hardware_unsetup(); 4345 kvm_arch_exit(); 4346 kvm_irqfd_exit(); 4347 free_cpumask_var(cpus_hardware_enabled); 4348 kvm_vfio_ops_exit(); 4349 } 4350 EXPORT_SYMBOL_GPL(kvm_exit); 4351