xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 9d56dd3b083a3bec56e9da35ce07baca81030b03)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 
18 #include "iodev.h"
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 
48 #include <asm/processor.h>
49 #include <asm/io.h>
50 #include <asm/uaccess.h>
51 #include <asm/pgtable.h>
52 #include <asm-generic/bitops/le.h>
53 
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/kvm.h>
60 
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63 
64 /*
65  * Ordering of locks:
66  *
67  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
68  */
69 
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72 
73 static cpumask_var_t cpus_hardware_enabled;
74 static int kvm_usage_count = 0;
75 static atomic_t hardware_enable_failed;
76 
77 struct kmem_cache *kvm_vcpu_cache;
78 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
79 
80 static __read_mostly struct preempt_ops kvm_preempt_ops;
81 
82 struct dentry *kvm_debugfs_dir;
83 
84 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
85 			   unsigned long arg);
86 static int hardware_enable_all(void);
87 static void hardware_disable_all(void);
88 
89 static bool kvm_rebooting;
90 
91 static bool largepages_enabled = true;
92 
93 inline int kvm_is_mmio_pfn(pfn_t pfn)
94 {
95 	if (pfn_valid(pfn)) {
96 		struct page *page = compound_head(pfn_to_page(pfn));
97 		return PageReserved(page);
98 	}
99 
100 	return true;
101 }
102 
103 /*
104  * Switches to specified vcpu, until a matching vcpu_put()
105  */
106 void vcpu_load(struct kvm_vcpu *vcpu)
107 {
108 	int cpu;
109 
110 	mutex_lock(&vcpu->mutex);
111 	cpu = get_cpu();
112 	preempt_notifier_register(&vcpu->preempt_notifier);
113 	kvm_arch_vcpu_load(vcpu, cpu);
114 	put_cpu();
115 }
116 
117 void vcpu_put(struct kvm_vcpu *vcpu)
118 {
119 	preempt_disable();
120 	kvm_arch_vcpu_put(vcpu);
121 	preempt_notifier_unregister(&vcpu->preempt_notifier);
122 	preempt_enable();
123 	mutex_unlock(&vcpu->mutex);
124 }
125 
126 static void ack_flush(void *_completed)
127 {
128 }
129 
130 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
131 {
132 	int i, cpu, me;
133 	cpumask_var_t cpus;
134 	bool called = true;
135 	struct kvm_vcpu *vcpu;
136 
137 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
138 
139 	spin_lock(&kvm->requests_lock);
140 	me = smp_processor_id();
141 	kvm_for_each_vcpu(i, vcpu, kvm) {
142 		if (test_and_set_bit(req, &vcpu->requests))
143 			continue;
144 		cpu = vcpu->cpu;
145 		if (cpus != NULL && cpu != -1 && cpu != me)
146 			cpumask_set_cpu(cpu, cpus);
147 	}
148 	if (unlikely(cpus == NULL))
149 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
150 	else if (!cpumask_empty(cpus))
151 		smp_call_function_many(cpus, ack_flush, NULL, 1);
152 	else
153 		called = false;
154 	spin_unlock(&kvm->requests_lock);
155 	free_cpumask_var(cpus);
156 	return called;
157 }
158 
159 void kvm_flush_remote_tlbs(struct kvm *kvm)
160 {
161 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
162 		++kvm->stat.remote_tlb_flush;
163 }
164 
165 void kvm_reload_remote_mmus(struct kvm *kvm)
166 {
167 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
168 }
169 
170 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
171 {
172 	struct page *page;
173 	int r;
174 
175 	mutex_init(&vcpu->mutex);
176 	vcpu->cpu = -1;
177 	vcpu->kvm = kvm;
178 	vcpu->vcpu_id = id;
179 	init_waitqueue_head(&vcpu->wq);
180 
181 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
182 	if (!page) {
183 		r = -ENOMEM;
184 		goto fail;
185 	}
186 	vcpu->run = page_address(page);
187 
188 	r = kvm_arch_vcpu_init(vcpu);
189 	if (r < 0)
190 		goto fail_free_run;
191 	return 0;
192 
193 fail_free_run:
194 	free_page((unsigned long)vcpu->run);
195 fail:
196 	return r;
197 }
198 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
199 
200 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
201 {
202 	kvm_arch_vcpu_uninit(vcpu);
203 	free_page((unsigned long)vcpu->run);
204 }
205 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
206 
207 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
208 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
209 {
210 	return container_of(mn, struct kvm, mmu_notifier);
211 }
212 
213 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
214 					     struct mm_struct *mm,
215 					     unsigned long address)
216 {
217 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
218 	int need_tlb_flush;
219 
220 	/*
221 	 * When ->invalidate_page runs, the linux pte has been zapped
222 	 * already but the page is still allocated until
223 	 * ->invalidate_page returns. So if we increase the sequence
224 	 * here the kvm page fault will notice if the spte can't be
225 	 * established because the page is going to be freed. If
226 	 * instead the kvm page fault establishes the spte before
227 	 * ->invalidate_page runs, kvm_unmap_hva will release it
228 	 * before returning.
229 	 *
230 	 * The sequence increase only need to be seen at spin_unlock
231 	 * time, and not at spin_lock time.
232 	 *
233 	 * Increasing the sequence after the spin_unlock would be
234 	 * unsafe because the kvm page fault could then establish the
235 	 * pte after kvm_unmap_hva returned, without noticing the page
236 	 * is going to be freed.
237 	 */
238 	spin_lock(&kvm->mmu_lock);
239 	kvm->mmu_notifier_seq++;
240 	need_tlb_flush = kvm_unmap_hva(kvm, address);
241 	spin_unlock(&kvm->mmu_lock);
242 
243 	/* we've to flush the tlb before the pages can be freed */
244 	if (need_tlb_flush)
245 		kvm_flush_remote_tlbs(kvm);
246 
247 }
248 
249 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
250 					struct mm_struct *mm,
251 					unsigned long address,
252 					pte_t pte)
253 {
254 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
255 
256 	spin_lock(&kvm->mmu_lock);
257 	kvm->mmu_notifier_seq++;
258 	kvm_set_spte_hva(kvm, address, pte);
259 	spin_unlock(&kvm->mmu_lock);
260 }
261 
262 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
263 						    struct mm_struct *mm,
264 						    unsigned long start,
265 						    unsigned long end)
266 {
267 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 	int need_tlb_flush = 0;
269 
270 	spin_lock(&kvm->mmu_lock);
271 	/*
272 	 * The count increase must become visible at unlock time as no
273 	 * spte can be established without taking the mmu_lock and
274 	 * count is also read inside the mmu_lock critical section.
275 	 */
276 	kvm->mmu_notifier_count++;
277 	for (; start < end; start += PAGE_SIZE)
278 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
279 	spin_unlock(&kvm->mmu_lock);
280 
281 	/* we've to flush the tlb before the pages can be freed */
282 	if (need_tlb_flush)
283 		kvm_flush_remote_tlbs(kvm);
284 }
285 
286 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
287 						  struct mm_struct *mm,
288 						  unsigned long start,
289 						  unsigned long end)
290 {
291 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
292 
293 	spin_lock(&kvm->mmu_lock);
294 	/*
295 	 * This sequence increase will notify the kvm page fault that
296 	 * the page that is going to be mapped in the spte could have
297 	 * been freed.
298 	 */
299 	kvm->mmu_notifier_seq++;
300 	/*
301 	 * The above sequence increase must be visible before the
302 	 * below count decrease but both values are read by the kvm
303 	 * page fault under mmu_lock spinlock so we don't need to add
304 	 * a smb_wmb() here in between the two.
305 	 */
306 	kvm->mmu_notifier_count--;
307 	spin_unlock(&kvm->mmu_lock);
308 
309 	BUG_ON(kvm->mmu_notifier_count < 0);
310 }
311 
312 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
313 					      struct mm_struct *mm,
314 					      unsigned long address)
315 {
316 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
317 	int young;
318 
319 	spin_lock(&kvm->mmu_lock);
320 	young = kvm_age_hva(kvm, address);
321 	spin_unlock(&kvm->mmu_lock);
322 
323 	if (young)
324 		kvm_flush_remote_tlbs(kvm);
325 
326 	return young;
327 }
328 
329 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
330 				     struct mm_struct *mm)
331 {
332 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
333 	kvm_arch_flush_shadow(kvm);
334 }
335 
336 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
337 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
338 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
339 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
340 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
341 	.change_pte		= kvm_mmu_notifier_change_pte,
342 	.release		= kvm_mmu_notifier_release,
343 };
344 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
345 
346 static struct kvm *kvm_create_vm(void)
347 {
348 	int r = 0;
349 	struct kvm *kvm = kvm_arch_create_vm();
350 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
351 	struct page *page;
352 #endif
353 
354 	if (IS_ERR(kvm))
355 		goto out;
356 
357 	r = hardware_enable_all();
358 	if (r)
359 		goto out_err_nodisable;
360 
361 #ifdef CONFIG_HAVE_KVM_IRQCHIP
362 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
363 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
364 #endif
365 
366 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
367 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
368 	if (!page) {
369 		r = -ENOMEM;
370 		goto out_err;
371 	}
372 	kvm->coalesced_mmio_ring =
373 			(struct kvm_coalesced_mmio_ring *)page_address(page);
374 #endif
375 
376 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
377 	{
378 		kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
379 		r = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
380 		if (r) {
381 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
382 			put_page(page);
383 #endif
384 			goto out_err;
385 		}
386 	}
387 #endif
388 
389 	kvm->mm = current->mm;
390 	atomic_inc(&kvm->mm->mm_count);
391 	spin_lock_init(&kvm->mmu_lock);
392 	spin_lock_init(&kvm->requests_lock);
393 	kvm_io_bus_init(&kvm->pio_bus);
394 	kvm_eventfd_init(kvm);
395 	mutex_init(&kvm->lock);
396 	mutex_init(&kvm->irq_lock);
397 	kvm_io_bus_init(&kvm->mmio_bus);
398 	init_rwsem(&kvm->slots_lock);
399 	atomic_set(&kvm->users_count, 1);
400 	spin_lock(&kvm_lock);
401 	list_add(&kvm->vm_list, &vm_list);
402 	spin_unlock(&kvm_lock);
403 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
404 	kvm_coalesced_mmio_init(kvm);
405 #endif
406 out:
407 	return kvm;
408 
409 #if defined(KVM_COALESCED_MMIO_PAGE_OFFSET) || \
410     (defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER))
411 out_err:
412 	hardware_disable_all();
413 #endif
414 out_err_nodisable:
415 	kfree(kvm);
416 	return ERR_PTR(r);
417 }
418 
419 /*
420  * Free any memory in @free but not in @dont.
421  */
422 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
423 				  struct kvm_memory_slot *dont)
424 {
425 	int i;
426 
427 	if (!dont || free->rmap != dont->rmap)
428 		vfree(free->rmap);
429 
430 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
431 		vfree(free->dirty_bitmap);
432 
433 
434 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
435 		if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
436 			vfree(free->lpage_info[i]);
437 			free->lpage_info[i] = NULL;
438 		}
439 	}
440 
441 	free->npages = 0;
442 	free->dirty_bitmap = NULL;
443 	free->rmap = NULL;
444 }
445 
446 void kvm_free_physmem(struct kvm *kvm)
447 {
448 	int i;
449 
450 	for (i = 0; i < kvm->nmemslots; ++i)
451 		kvm_free_physmem_slot(&kvm->memslots[i], NULL);
452 }
453 
454 static void kvm_destroy_vm(struct kvm *kvm)
455 {
456 	struct mm_struct *mm = kvm->mm;
457 
458 	kvm_arch_sync_events(kvm);
459 	spin_lock(&kvm_lock);
460 	list_del(&kvm->vm_list);
461 	spin_unlock(&kvm_lock);
462 	kvm_free_irq_routing(kvm);
463 	kvm_io_bus_destroy(&kvm->pio_bus);
464 	kvm_io_bus_destroy(&kvm->mmio_bus);
465 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
466 	if (kvm->coalesced_mmio_ring != NULL)
467 		free_page((unsigned long)kvm->coalesced_mmio_ring);
468 #endif
469 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
470 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
471 #else
472 	kvm_arch_flush_shadow(kvm);
473 #endif
474 	kvm_arch_destroy_vm(kvm);
475 	hardware_disable_all();
476 	mmdrop(mm);
477 }
478 
479 void kvm_get_kvm(struct kvm *kvm)
480 {
481 	atomic_inc(&kvm->users_count);
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_kvm);
484 
485 void kvm_put_kvm(struct kvm *kvm)
486 {
487 	if (atomic_dec_and_test(&kvm->users_count))
488 		kvm_destroy_vm(kvm);
489 }
490 EXPORT_SYMBOL_GPL(kvm_put_kvm);
491 
492 
493 static int kvm_vm_release(struct inode *inode, struct file *filp)
494 {
495 	struct kvm *kvm = filp->private_data;
496 
497 	kvm_irqfd_release(kvm);
498 
499 	kvm_put_kvm(kvm);
500 	return 0;
501 }
502 
503 /*
504  * Allocate some memory and give it an address in the guest physical address
505  * space.
506  *
507  * Discontiguous memory is allowed, mostly for framebuffers.
508  *
509  * Must be called holding mmap_sem for write.
510  */
511 int __kvm_set_memory_region(struct kvm *kvm,
512 			    struct kvm_userspace_memory_region *mem,
513 			    int user_alloc)
514 {
515 	int r;
516 	gfn_t base_gfn;
517 	unsigned long npages;
518 	unsigned long i;
519 	struct kvm_memory_slot *memslot;
520 	struct kvm_memory_slot old, new;
521 
522 	r = -EINVAL;
523 	/* General sanity checks */
524 	if (mem->memory_size & (PAGE_SIZE - 1))
525 		goto out;
526 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
527 		goto out;
528 	if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
529 		goto out;
530 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
531 		goto out;
532 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
533 		goto out;
534 
535 	memslot = &kvm->memslots[mem->slot];
536 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
537 	npages = mem->memory_size >> PAGE_SHIFT;
538 
539 	if (!npages)
540 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
541 
542 	new = old = *memslot;
543 
544 	new.base_gfn = base_gfn;
545 	new.npages = npages;
546 	new.flags = mem->flags;
547 
548 	/* Disallow changing a memory slot's size. */
549 	r = -EINVAL;
550 	if (npages && old.npages && npages != old.npages)
551 		goto out_free;
552 
553 	/* Check for overlaps */
554 	r = -EEXIST;
555 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
556 		struct kvm_memory_slot *s = &kvm->memslots[i];
557 
558 		if (s == memslot || !s->npages)
559 			continue;
560 		if (!((base_gfn + npages <= s->base_gfn) ||
561 		      (base_gfn >= s->base_gfn + s->npages)))
562 			goto out_free;
563 	}
564 
565 	/* Free page dirty bitmap if unneeded */
566 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
567 		new.dirty_bitmap = NULL;
568 
569 	r = -ENOMEM;
570 
571 	/* Allocate if a slot is being created */
572 #ifndef CONFIG_S390
573 	if (npages && !new.rmap) {
574 		new.rmap = vmalloc(npages * sizeof(struct page *));
575 
576 		if (!new.rmap)
577 			goto out_free;
578 
579 		memset(new.rmap, 0, npages * sizeof(*new.rmap));
580 
581 		new.user_alloc = user_alloc;
582 		/*
583 		 * hva_to_rmmap() serialzies with the mmu_lock and to be
584 		 * safe it has to ignore memslots with !user_alloc &&
585 		 * !userspace_addr.
586 		 */
587 		if (user_alloc)
588 			new.userspace_addr = mem->userspace_addr;
589 		else
590 			new.userspace_addr = 0;
591 	}
592 	if (!npages)
593 		goto skip_lpage;
594 
595 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
596 		unsigned long ugfn;
597 		unsigned long j;
598 		int lpages;
599 		int level = i + 2;
600 
601 		/* Avoid unused variable warning if no large pages */
602 		(void)level;
603 
604 		if (new.lpage_info[i])
605 			continue;
606 
607 		lpages = 1 + (base_gfn + npages - 1) /
608 			     KVM_PAGES_PER_HPAGE(level);
609 		lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
610 
611 		new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
612 
613 		if (!new.lpage_info[i])
614 			goto out_free;
615 
616 		memset(new.lpage_info[i], 0,
617 		       lpages * sizeof(*new.lpage_info[i]));
618 
619 		if (base_gfn % KVM_PAGES_PER_HPAGE(level))
620 			new.lpage_info[i][0].write_count = 1;
621 		if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
622 			new.lpage_info[i][lpages - 1].write_count = 1;
623 		ugfn = new.userspace_addr >> PAGE_SHIFT;
624 		/*
625 		 * If the gfn and userspace address are not aligned wrt each
626 		 * other, or if explicitly asked to, disable large page
627 		 * support for this slot
628 		 */
629 		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
630 		    !largepages_enabled)
631 			for (j = 0; j < lpages; ++j)
632 				new.lpage_info[i][j].write_count = 1;
633 	}
634 
635 skip_lpage:
636 
637 	/* Allocate page dirty bitmap if needed */
638 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
639 		unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
640 
641 		new.dirty_bitmap = vmalloc(dirty_bytes);
642 		if (!new.dirty_bitmap)
643 			goto out_free;
644 		memset(new.dirty_bitmap, 0, dirty_bytes);
645 		if (old.npages)
646 			kvm_arch_flush_shadow(kvm);
647 	}
648 #else  /* not defined CONFIG_S390 */
649 	new.user_alloc = user_alloc;
650 	if (user_alloc)
651 		new.userspace_addr = mem->userspace_addr;
652 #endif /* not defined CONFIG_S390 */
653 
654 	if (!npages)
655 		kvm_arch_flush_shadow(kvm);
656 
657 	spin_lock(&kvm->mmu_lock);
658 	if (mem->slot >= kvm->nmemslots)
659 		kvm->nmemslots = mem->slot + 1;
660 
661 	*memslot = new;
662 	spin_unlock(&kvm->mmu_lock);
663 
664 	r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
665 	if (r) {
666 		spin_lock(&kvm->mmu_lock);
667 		*memslot = old;
668 		spin_unlock(&kvm->mmu_lock);
669 		goto out_free;
670 	}
671 
672 	kvm_free_physmem_slot(&old, npages ? &new : NULL);
673 	/* Slot deletion case: we have to update the current slot */
674 	spin_lock(&kvm->mmu_lock);
675 	if (!npages)
676 		*memslot = old;
677 	spin_unlock(&kvm->mmu_lock);
678 #ifdef CONFIG_DMAR
679 	/* map the pages in iommu page table */
680 	r = kvm_iommu_map_pages(kvm, base_gfn, npages);
681 	if (r)
682 		goto out;
683 #endif
684 	return 0;
685 
686 out_free:
687 	kvm_free_physmem_slot(&new, &old);
688 out:
689 	return r;
690 
691 }
692 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
693 
694 int kvm_set_memory_region(struct kvm *kvm,
695 			  struct kvm_userspace_memory_region *mem,
696 			  int user_alloc)
697 {
698 	int r;
699 
700 	down_write(&kvm->slots_lock);
701 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
702 	up_write(&kvm->slots_lock);
703 	return r;
704 }
705 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
706 
707 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
708 				   struct
709 				   kvm_userspace_memory_region *mem,
710 				   int user_alloc)
711 {
712 	if (mem->slot >= KVM_MEMORY_SLOTS)
713 		return -EINVAL;
714 	return kvm_set_memory_region(kvm, mem, user_alloc);
715 }
716 
717 int kvm_get_dirty_log(struct kvm *kvm,
718 			struct kvm_dirty_log *log, int *is_dirty)
719 {
720 	struct kvm_memory_slot *memslot;
721 	int r, i;
722 	int n;
723 	unsigned long any = 0;
724 
725 	r = -EINVAL;
726 	if (log->slot >= KVM_MEMORY_SLOTS)
727 		goto out;
728 
729 	memslot = &kvm->memslots[log->slot];
730 	r = -ENOENT;
731 	if (!memslot->dirty_bitmap)
732 		goto out;
733 
734 	n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
735 
736 	for (i = 0; !any && i < n/sizeof(long); ++i)
737 		any = memslot->dirty_bitmap[i];
738 
739 	r = -EFAULT;
740 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
741 		goto out;
742 
743 	if (any)
744 		*is_dirty = 1;
745 
746 	r = 0;
747 out:
748 	return r;
749 }
750 
751 void kvm_disable_largepages(void)
752 {
753 	largepages_enabled = false;
754 }
755 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
756 
757 int is_error_page(struct page *page)
758 {
759 	return page == bad_page;
760 }
761 EXPORT_SYMBOL_GPL(is_error_page);
762 
763 int is_error_pfn(pfn_t pfn)
764 {
765 	return pfn == bad_pfn;
766 }
767 EXPORT_SYMBOL_GPL(is_error_pfn);
768 
769 static inline unsigned long bad_hva(void)
770 {
771 	return PAGE_OFFSET;
772 }
773 
774 int kvm_is_error_hva(unsigned long addr)
775 {
776 	return addr == bad_hva();
777 }
778 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
779 
780 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
781 {
782 	int i;
783 
784 	for (i = 0; i < kvm->nmemslots; ++i) {
785 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
786 
787 		if (gfn >= memslot->base_gfn
788 		    && gfn < memslot->base_gfn + memslot->npages)
789 			return memslot;
790 	}
791 	return NULL;
792 }
793 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
794 
795 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
796 {
797 	gfn = unalias_gfn(kvm, gfn);
798 	return gfn_to_memslot_unaliased(kvm, gfn);
799 }
800 
801 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
802 {
803 	int i;
804 
805 	gfn = unalias_gfn(kvm, gfn);
806 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
807 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
808 
809 		if (gfn >= memslot->base_gfn
810 		    && gfn < memslot->base_gfn + memslot->npages)
811 			return 1;
812 	}
813 	return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
816 
817 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
818 {
819 	struct kvm_memory_slot *slot;
820 
821 	gfn = unalias_gfn(kvm, gfn);
822 	slot = gfn_to_memslot_unaliased(kvm, gfn);
823 	if (!slot)
824 		return bad_hva();
825 	return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
826 }
827 EXPORT_SYMBOL_GPL(gfn_to_hva);
828 
829 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
830 {
831 	struct page *page[1];
832 	unsigned long addr;
833 	int npages;
834 	pfn_t pfn;
835 
836 	might_sleep();
837 
838 	addr = gfn_to_hva(kvm, gfn);
839 	if (kvm_is_error_hva(addr)) {
840 		get_page(bad_page);
841 		return page_to_pfn(bad_page);
842 	}
843 
844 	npages = get_user_pages_fast(addr, 1, 1, page);
845 
846 	if (unlikely(npages != 1)) {
847 		struct vm_area_struct *vma;
848 
849 		down_read(&current->mm->mmap_sem);
850 		vma = find_vma(current->mm, addr);
851 
852 		if (vma == NULL || addr < vma->vm_start ||
853 		    !(vma->vm_flags & VM_PFNMAP)) {
854 			up_read(&current->mm->mmap_sem);
855 			get_page(bad_page);
856 			return page_to_pfn(bad_page);
857 		}
858 
859 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
860 		up_read(&current->mm->mmap_sem);
861 		BUG_ON(!kvm_is_mmio_pfn(pfn));
862 	} else
863 		pfn = page_to_pfn(page[0]);
864 
865 	return pfn;
866 }
867 
868 EXPORT_SYMBOL_GPL(gfn_to_pfn);
869 
870 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
871 {
872 	pfn_t pfn;
873 
874 	pfn = gfn_to_pfn(kvm, gfn);
875 	if (!kvm_is_mmio_pfn(pfn))
876 		return pfn_to_page(pfn);
877 
878 	WARN_ON(kvm_is_mmio_pfn(pfn));
879 
880 	get_page(bad_page);
881 	return bad_page;
882 }
883 
884 EXPORT_SYMBOL_GPL(gfn_to_page);
885 
886 void kvm_release_page_clean(struct page *page)
887 {
888 	kvm_release_pfn_clean(page_to_pfn(page));
889 }
890 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
891 
892 void kvm_release_pfn_clean(pfn_t pfn)
893 {
894 	if (!kvm_is_mmio_pfn(pfn))
895 		put_page(pfn_to_page(pfn));
896 }
897 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
898 
899 void kvm_release_page_dirty(struct page *page)
900 {
901 	kvm_release_pfn_dirty(page_to_pfn(page));
902 }
903 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
904 
905 void kvm_release_pfn_dirty(pfn_t pfn)
906 {
907 	kvm_set_pfn_dirty(pfn);
908 	kvm_release_pfn_clean(pfn);
909 }
910 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
911 
912 void kvm_set_page_dirty(struct page *page)
913 {
914 	kvm_set_pfn_dirty(page_to_pfn(page));
915 }
916 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
917 
918 void kvm_set_pfn_dirty(pfn_t pfn)
919 {
920 	if (!kvm_is_mmio_pfn(pfn)) {
921 		struct page *page = pfn_to_page(pfn);
922 		if (!PageReserved(page))
923 			SetPageDirty(page);
924 	}
925 }
926 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
927 
928 void kvm_set_pfn_accessed(pfn_t pfn)
929 {
930 	if (!kvm_is_mmio_pfn(pfn))
931 		mark_page_accessed(pfn_to_page(pfn));
932 }
933 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
934 
935 void kvm_get_pfn(pfn_t pfn)
936 {
937 	if (!kvm_is_mmio_pfn(pfn))
938 		get_page(pfn_to_page(pfn));
939 }
940 EXPORT_SYMBOL_GPL(kvm_get_pfn);
941 
942 static int next_segment(unsigned long len, int offset)
943 {
944 	if (len > PAGE_SIZE - offset)
945 		return PAGE_SIZE - offset;
946 	else
947 		return len;
948 }
949 
950 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
951 			int len)
952 {
953 	int r;
954 	unsigned long addr;
955 
956 	addr = gfn_to_hva(kvm, gfn);
957 	if (kvm_is_error_hva(addr))
958 		return -EFAULT;
959 	r = copy_from_user(data, (void __user *)addr + offset, len);
960 	if (r)
961 		return -EFAULT;
962 	return 0;
963 }
964 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
965 
966 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
967 {
968 	gfn_t gfn = gpa >> PAGE_SHIFT;
969 	int seg;
970 	int offset = offset_in_page(gpa);
971 	int ret;
972 
973 	while ((seg = next_segment(len, offset)) != 0) {
974 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
975 		if (ret < 0)
976 			return ret;
977 		offset = 0;
978 		len -= seg;
979 		data += seg;
980 		++gfn;
981 	}
982 	return 0;
983 }
984 EXPORT_SYMBOL_GPL(kvm_read_guest);
985 
986 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
987 			  unsigned long len)
988 {
989 	int r;
990 	unsigned long addr;
991 	gfn_t gfn = gpa >> PAGE_SHIFT;
992 	int offset = offset_in_page(gpa);
993 
994 	addr = gfn_to_hva(kvm, gfn);
995 	if (kvm_is_error_hva(addr))
996 		return -EFAULT;
997 	pagefault_disable();
998 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
999 	pagefault_enable();
1000 	if (r)
1001 		return -EFAULT;
1002 	return 0;
1003 }
1004 EXPORT_SYMBOL(kvm_read_guest_atomic);
1005 
1006 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1007 			 int offset, int len)
1008 {
1009 	int r;
1010 	unsigned long addr;
1011 
1012 	addr = gfn_to_hva(kvm, gfn);
1013 	if (kvm_is_error_hva(addr))
1014 		return -EFAULT;
1015 	r = copy_to_user((void __user *)addr + offset, data, len);
1016 	if (r)
1017 		return -EFAULT;
1018 	mark_page_dirty(kvm, gfn);
1019 	return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1022 
1023 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1024 		    unsigned long len)
1025 {
1026 	gfn_t gfn = gpa >> PAGE_SHIFT;
1027 	int seg;
1028 	int offset = offset_in_page(gpa);
1029 	int ret;
1030 
1031 	while ((seg = next_segment(len, offset)) != 0) {
1032 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1033 		if (ret < 0)
1034 			return ret;
1035 		offset = 0;
1036 		len -= seg;
1037 		data += seg;
1038 		++gfn;
1039 	}
1040 	return 0;
1041 }
1042 
1043 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1044 {
1045 	return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1046 }
1047 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1048 
1049 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1050 {
1051 	gfn_t gfn = gpa >> PAGE_SHIFT;
1052 	int seg;
1053 	int offset = offset_in_page(gpa);
1054 	int ret;
1055 
1056         while ((seg = next_segment(len, offset)) != 0) {
1057 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1058 		if (ret < 0)
1059 			return ret;
1060 		offset = 0;
1061 		len -= seg;
1062 		++gfn;
1063 	}
1064 	return 0;
1065 }
1066 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1067 
1068 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1069 {
1070 	struct kvm_memory_slot *memslot;
1071 
1072 	gfn = unalias_gfn(kvm, gfn);
1073 	memslot = gfn_to_memslot_unaliased(kvm, gfn);
1074 	if (memslot && memslot->dirty_bitmap) {
1075 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1076 
1077 		/* avoid RMW */
1078 		if (!generic_test_le_bit(rel_gfn, memslot->dirty_bitmap))
1079 			generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1080 	}
1081 }
1082 
1083 /*
1084  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1085  */
1086 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1087 {
1088 	DEFINE_WAIT(wait);
1089 
1090 	for (;;) {
1091 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1092 
1093 		if (kvm_arch_vcpu_runnable(vcpu)) {
1094 			set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1095 			break;
1096 		}
1097 		if (kvm_cpu_has_pending_timer(vcpu))
1098 			break;
1099 		if (signal_pending(current))
1100 			break;
1101 
1102 		schedule();
1103 	}
1104 
1105 	finish_wait(&vcpu->wq, &wait);
1106 }
1107 
1108 void kvm_resched(struct kvm_vcpu *vcpu)
1109 {
1110 	if (!need_resched())
1111 		return;
1112 	cond_resched();
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_resched);
1115 
1116 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1117 {
1118 	ktime_t expires;
1119 	DEFINE_WAIT(wait);
1120 
1121 	prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1122 
1123 	/* Sleep for 100 us, and hope lock-holder got scheduled */
1124 	expires = ktime_add_ns(ktime_get(), 100000UL);
1125 	schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1126 
1127 	finish_wait(&vcpu->wq, &wait);
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1130 
1131 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1132 {
1133 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1134 	struct page *page;
1135 
1136 	if (vmf->pgoff == 0)
1137 		page = virt_to_page(vcpu->run);
1138 #ifdef CONFIG_X86
1139 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1140 		page = virt_to_page(vcpu->arch.pio_data);
1141 #endif
1142 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1143 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1144 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1145 #endif
1146 	else
1147 		return VM_FAULT_SIGBUS;
1148 	get_page(page);
1149 	vmf->page = page;
1150 	return 0;
1151 }
1152 
1153 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1154 	.fault = kvm_vcpu_fault,
1155 };
1156 
1157 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1158 {
1159 	vma->vm_ops = &kvm_vcpu_vm_ops;
1160 	return 0;
1161 }
1162 
1163 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1164 {
1165 	struct kvm_vcpu *vcpu = filp->private_data;
1166 
1167 	kvm_put_kvm(vcpu->kvm);
1168 	return 0;
1169 }
1170 
1171 static struct file_operations kvm_vcpu_fops = {
1172 	.release        = kvm_vcpu_release,
1173 	.unlocked_ioctl = kvm_vcpu_ioctl,
1174 	.compat_ioctl   = kvm_vcpu_ioctl,
1175 	.mmap           = kvm_vcpu_mmap,
1176 };
1177 
1178 /*
1179  * Allocates an inode for the vcpu.
1180  */
1181 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1182 {
1183 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1184 }
1185 
1186 /*
1187  * Creates some virtual cpus.  Good luck creating more than one.
1188  */
1189 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1190 {
1191 	int r;
1192 	struct kvm_vcpu *vcpu, *v;
1193 
1194 	vcpu = kvm_arch_vcpu_create(kvm, id);
1195 	if (IS_ERR(vcpu))
1196 		return PTR_ERR(vcpu);
1197 
1198 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1199 
1200 	r = kvm_arch_vcpu_setup(vcpu);
1201 	if (r)
1202 		return r;
1203 
1204 	mutex_lock(&kvm->lock);
1205 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1206 		r = -EINVAL;
1207 		goto vcpu_destroy;
1208 	}
1209 
1210 	kvm_for_each_vcpu(r, v, kvm)
1211 		if (v->vcpu_id == id) {
1212 			r = -EEXIST;
1213 			goto vcpu_destroy;
1214 		}
1215 
1216 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1217 
1218 	/* Now it's all set up, let userspace reach it */
1219 	kvm_get_kvm(kvm);
1220 	r = create_vcpu_fd(vcpu);
1221 	if (r < 0) {
1222 		kvm_put_kvm(kvm);
1223 		goto vcpu_destroy;
1224 	}
1225 
1226 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1227 	smp_wmb();
1228 	atomic_inc(&kvm->online_vcpus);
1229 
1230 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1231 	if (kvm->bsp_vcpu_id == id)
1232 		kvm->bsp_vcpu = vcpu;
1233 #endif
1234 	mutex_unlock(&kvm->lock);
1235 	return r;
1236 
1237 vcpu_destroy:
1238 	mutex_unlock(&kvm->lock);
1239 	kvm_arch_vcpu_destroy(vcpu);
1240 	return r;
1241 }
1242 
1243 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1244 {
1245 	if (sigset) {
1246 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1247 		vcpu->sigset_active = 1;
1248 		vcpu->sigset = *sigset;
1249 	} else
1250 		vcpu->sigset_active = 0;
1251 	return 0;
1252 }
1253 
1254 static long kvm_vcpu_ioctl(struct file *filp,
1255 			   unsigned int ioctl, unsigned long arg)
1256 {
1257 	struct kvm_vcpu *vcpu = filp->private_data;
1258 	void __user *argp = (void __user *)arg;
1259 	int r;
1260 	struct kvm_fpu *fpu = NULL;
1261 	struct kvm_sregs *kvm_sregs = NULL;
1262 
1263 	if (vcpu->kvm->mm != current->mm)
1264 		return -EIO;
1265 	switch (ioctl) {
1266 	case KVM_RUN:
1267 		r = -EINVAL;
1268 		if (arg)
1269 			goto out;
1270 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1271 		break;
1272 	case KVM_GET_REGS: {
1273 		struct kvm_regs *kvm_regs;
1274 
1275 		r = -ENOMEM;
1276 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1277 		if (!kvm_regs)
1278 			goto out;
1279 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1280 		if (r)
1281 			goto out_free1;
1282 		r = -EFAULT;
1283 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1284 			goto out_free1;
1285 		r = 0;
1286 out_free1:
1287 		kfree(kvm_regs);
1288 		break;
1289 	}
1290 	case KVM_SET_REGS: {
1291 		struct kvm_regs *kvm_regs;
1292 
1293 		r = -ENOMEM;
1294 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1295 		if (!kvm_regs)
1296 			goto out;
1297 		r = -EFAULT;
1298 		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1299 			goto out_free2;
1300 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1301 		if (r)
1302 			goto out_free2;
1303 		r = 0;
1304 out_free2:
1305 		kfree(kvm_regs);
1306 		break;
1307 	}
1308 	case KVM_GET_SREGS: {
1309 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1310 		r = -ENOMEM;
1311 		if (!kvm_sregs)
1312 			goto out;
1313 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1314 		if (r)
1315 			goto out;
1316 		r = -EFAULT;
1317 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1318 			goto out;
1319 		r = 0;
1320 		break;
1321 	}
1322 	case KVM_SET_SREGS: {
1323 		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1324 		r = -ENOMEM;
1325 		if (!kvm_sregs)
1326 			goto out;
1327 		r = -EFAULT;
1328 		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1329 			goto out;
1330 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1331 		if (r)
1332 			goto out;
1333 		r = 0;
1334 		break;
1335 	}
1336 	case KVM_GET_MP_STATE: {
1337 		struct kvm_mp_state mp_state;
1338 
1339 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1340 		if (r)
1341 			goto out;
1342 		r = -EFAULT;
1343 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1344 			goto out;
1345 		r = 0;
1346 		break;
1347 	}
1348 	case KVM_SET_MP_STATE: {
1349 		struct kvm_mp_state mp_state;
1350 
1351 		r = -EFAULT;
1352 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1353 			goto out;
1354 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1355 		if (r)
1356 			goto out;
1357 		r = 0;
1358 		break;
1359 	}
1360 	case KVM_TRANSLATE: {
1361 		struct kvm_translation tr;
1362 
1363 		r = -EFAULT;
1364 		if (copy_from_user(&tr, argp, sizeof tr))
1365 			goto out;
1366 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1367 		if (r)
1368 			goto out;
1369 		r = -EFAULT;
1370 		if (copy_to_user(argp, &tr, sizeof tr))
1371 			goto out;
1372 		r = 0;
1373 		break;
1374 	}
1375 	case KVM_SET_GUEST_DEBUG: {
1376 		struct kvm_guest_debug dbg;
1377 
1378 		r = -EFAULT;
1379 		if (copy_from_user(&dbg, argp, sizeof dbg))
1380 			goto out;
1381 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1382 		if (r)
1383 			goto out;
1384 		r = 0;
1385 		break;
1386 	}
1387 	case KVM_SET_SIGNAL_MASK: {
1388 		struct kvm_signal_mask __user *sigmask_arg = argp;
1389 		struct kvm_signal_mask kvm_sigmask;
1390 		sigset_t sigset, *p;
1391 
1392 		p = NULL;
1393 		if (argp) {
1394 			r = -EFAULT;
1395 			if (copy_from_user(&kvm_sigmask, argp,
1396 					   sizeof kvm_sigmask))
1397 				goto out;
1398 			r = -EINVAL;
1399 			if (kvm_sigmask.len != sizeof sigset)
1400 				goto out;
1401 			r = -EFAULT;
1402 			if (copy_from_user(&sigset, sigmask_arg->sigset,
1403 					   sizeof sigset))
1404 				goto out;
1405 			p = &sigset;
1406 		}
1407 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1408 		break;
1409 	}
1410 	case KVM_GET_FPU: {
1411 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1412 		r = -ENOMEM;
1413 		if (!fpu)
1414 			goto out;
1415 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1416 		if (r)
1417 			goto out;
1418 		r = -EFAULT;
1419 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1420 			goto out;
1421 		r = 0;
1422 		break;
1423 	}
1424 	case KVM_SET_FPU: {
1425 		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1426 		r = -ENOMEM;
1427 		if (!fpu)
1428 			goto out;
1429 		r = -EFAULT;
1430 		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1431 			goto out;
1432 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1433 		if (r)
1434 			goto out;
1435 		r = 0;
1436 		break;
1437 	}
1438 	default:
1439 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1440 	}
1441 out:
1442 	kfree(fpu);
1443 	kfree(kvm_sregs);
1444 	return r;
1445 }
1446 
1447 static long kvm_vm_ioctl(struct file *filp,
1448 			   unsigned int ioctl, unsigned long arg)
1449 {
1450 	struct kvm *kvm = filp->private_data;
1451 	void __user *argp = (void __user *)arg;
1452 	int r;
1453 
1454 	if (kvm->mm != current->mm)
1455 		return -EIO;
1456 	switch (ioctl) {
1457 	case KVM_CREATE_VCPU:
1458 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1459 		if (r < 0)
1460 			goto out;
1461 		break;
1462 	case KVM_SET_USER_MEMORY_REGION: {
1463 		struct kvm_userspace_memory_region kvm_userspace_mem;
1464 
1465 		r = -EFAULT;
1466 		if (copy_from_user(&kvm_userspace_mem, argp,
1467 						sizeof kvm_userspace_mem))
1468 			goto out;
1469 
1470 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1471 		if (r)
1472 			goto out;
1473 		break;
1474 	}
1475 	case KVM_GET_DIRTY_LOG: {
1476 		struct kvm_dirty_log log;
1477 
1478 		r = -EFAULT;
1479 		if (copy_from_user(&log, argp, sizeof log))
1480 			goto out;
1481 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1482 		if (r)
1483 			goto out;
1484 		break;
1485 	}
1486 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1487 	case KVM_REGISTER_COALESCED_MMIO: {
1488 		struct kvm_coalesced_mmio_zone zone;
1489 		r = -EFAULT;
1490 		if (copy_from_user(&zone, argp, sizeof zone))
1491 			goto out;
1492 		r = -ENXIO;
1493 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1494 		if (r)
1495 			goto out;
1496 		r = 0;
1497 		break;
1498 	}
1499 	case KVM_UNREGISTER_COALESCED_MMIO: {
1500 		struct kvm_coalesced_mmio_zone zone;
1501 		r = -EFAULT;
1502 		if (copy_from_user(&zone, argp, sizeof zone))
1503 			goto out;
1504 		r = -ENXIO;
1505 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1506 		if (r)
1507 			goto out;
1508 		r = 0;
1509 		break;
1510 	}
1511 #endif
1512 	case KVM_IRQFD: {
1513 		struct kvm_irqfd data;
1514 
1515 		r = -EFAULT;
1516 		if (copy_from_user(&data, argp, sizeof data))
1517 			goto out;
1518 		r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1519 		break;
1520 	}
1521 	case KVM_IOEVENTFD: {
1522 		struct kvm_ioeventfd data;
1523 
1524 		r = -EFAULT;
1525 		if (copy_from_user(&data, argp, sizeof data))
1526 			goto out;
1527 		r = kvm_ioeventfd(kvm, &data);
1528 		break;
1529 	}
1530 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1531 	case KVM_SET_BOOT_CPU_ID:
1532 		r = 0;
1533 		mutex_lock(&kvm->lock);
1534 		if (atomic_read(&kvm->online_vcpus) != 0)
1535 			r = -EBUSY;
1536 		else
1537 			kvm->bsp_vcpu_id = arg;
1538 		mutex_unlock(&kvm->lock);
1539 		break;
1540 #endif
1541 	default:
1542 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1543 		if (r == -ENOTTY)
1544 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1545 	}
1546 out:
1547 	return r;
1548 }
1549 
1550 #ifdef CONFIG_COMPAT
1551 struct compat_kvm_dirty_log {
1552 	__u32 slot;
1553 	__u32 padding1;
1554 	union {
1555 		compat_uptr_t dirty_bitmap; /* one bit per page */
1556 		__u64 padding2;
1557 	};
1558 };
1559 
1560 static long kvm_vm_compat_ioctl(struct file *filp,
1561 			   unsigned int ioctl, unsigned long arg)
1562 {
1563 	struct kvm *kvm = filp->private_data;
1564 	int r;
1565 
1566 	if (kvm->mm != current->mm)
1567 		return -EIO;
1568 	switch (ioctl) {
1569 	case KVM_GET_DIRTY_LOG: {
1570 		struct compat_kvm_dirty_log compat_log;
1571 		struct kvm_dirty_log log;
1572 
1573 		r = -EFAULT;
1574 		if (copy_from_user(&compat_log, (void __user *)arg,
1575 				   sizeof(compat_log)))
1576 			goto out;
1577 		log.slot	 = compat_log.slot;
1578 		log.padding1	 = compat_log.padding1;
1579 		log.padding2	 = compat_log.padding2;
1580 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1581 
1582 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1583 		if (r)
1584 			goto out;
1585 		break;
1586 	}
1587 	default:
1588 		r = kvm_vm_ioctl(filp, ioctl, arg);
1589 	}
1590 
1591 out:
1592 	return r;
1593 }
1594 #endif
1595 
1596 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1597 {
1598 	struct page *page[1];
1599 	unsigned long addr;
1600 	int npages;
1601 	gfn_t gfn = vmf->pgoff;
1602 	struct kvm *kvm = vma->vm_file->private_data;
1603 
1604 	addr = gfn_to_hva(kvm, gfn);
1605 	if (kvm_is_error_hva(addr))
1606 		return VM_FAULT_SIGBUS;
1607 
1608 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1609 				NULL);
1610 	if (unlikely(npages != 1))
1611 		return VM_FAULT_SIGBUS;
1612 
1613 	vmf->page = page[0];
1614 	return 0;
1615 }
1616 
1617 static const struct vm_operations_struct kvm_vm_vm_ops = {
1618 	.fault = kvm_vm_fault,
1619 };
1620 
1621 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1622 {
1623 	vma->vm_ops = &kvm_vm_vm_ops;
1624 	return 0;
1625 }
1626 
1627 static struct file_operations kvm_vm_fops = {
1628 	.release        = kvm_vm_release,
1629 	.unlocked_ioctl = kvm_vm_ioctl,
1630 #ifdef CONFIG_COMPAT
1631 	.compat_ioctl   = kvm_vm_compat_ioctl,
1632 #endif
1633 	.mmap           = kvm_vm_mmap,
1634 };
1635 
1636 static int kvm_dev_ioctl_create_vm(void)
1637 {
1638 	int fd;
1639 	struct kvm *kvm;
1640 
1641 	kvm = kvm_create_vm();
1642 	if (IS_ERR(kvm))
1643 		return PTR_ERR(kvm);
1644 	fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1645 	if (fd < 0)
1646 		kvm_put_kvm(kvm);
1647 
1648 	return fd;
1649 }
1650 
1651 static long kvm_dev_ioctl_check_extension_generic(long arg)
1652 {
1653 	switch (arg) {
1654 	case KVM_CAP_USER_MEMORY:
1655 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1656 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1657 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1658 	case KVM_CAP_SET_BOOT_CPU_ID:
1659 #endif
1660 	case KVM_CAP_INTERNAL_ERROR_DATA:
1661 		return 1;
1662 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1663 	case KVM_CAP_IRQ_ROUTING:
1664 		return KVM_MAX_IRQ_ROUTES;
1665 #endif
1666 	default:
1667 		break;
1668 	}
1669 	return kvm_dev_ioctl_check_extension(arg);
1670 }
1671 
1672 static long kvm_dev_ioctl(struct file *filp,
1673 			  unsigned int ioctl, unsigned long arg)
1674 {
1675 	long r = -EINVAL;
1676 
1677 	switch (ioctl) {
1678 	case KVM_GET_API_VERSION:
1679 		r = -EINVAL;
1680 		if (arg)
1681 			goto out;
1682 		r = KVM_API_VERSION;
1683 		break;
1684 	case KVM_CREATE_VM:
1685 		r = -EINVAL;
1686 		if (arg)
1687 			goto out;
1688 		r = kvm_dev_ioctl_create_vm();
1689 		break;
1690 	case KVM_CHECK_EXTENSION:
1691 		r = kvm_dev_ioctl_check_extension_generic(arg);
1692 		break;
1693 	case KVM_GET_VCPU_MMAP_SIZE:
1694 		r = -EINVAL;
1695 		if (arg)
1696 			goto out;
1697 		r = PAGE_SIZE;     /* struct kvm_run */
1698 #ifdef CONFIG_X86
1699 		r += PAGE_SIZE;    /* pio data page */
1700 #endif
1701 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1702 		r += PAGE_SIZE;    /* coalesced mmio ring page */
1703 #endif
1704 		break;
1705 	case KVM_TRACE_ENABLE:
1706 	case KVM_TRACE_PAUSE:
1707 	case KVM_TRACE_DISABLE:
1708 		r = -EOPNOTSUPP;
1709 		break;
1710 	default:
1711 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
1712 	}
1713 out:
1714 	return r;
1715 }
1716 
1717 static struct file_operations kvm_chardev_ops = {
1718 	.unlocked_ioctl = kvm_dev_ioctl,
1719 	.compat_ioctl   = kvm_dev_ioctl,
1720 };
1721 
1722 static struct miscdevice kvm_dev = {
1723 	KVM_MINOR,
1724 	"kvm",
1725 	&kvm_chardev_ops,
1726 };
1727 
1728 static void hardware_enable(void *junk)
1729 {
1730 	int cpu = raw_smp_processor_id();
1731 	int r;
1732 
1733 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1734 		return;
1735 
1736 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
1737 
1738 	r = kvm_arch_hardware_enable(NULL);
1739 
1740 	if (r) {
1741 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1742 		atomic_inc(&hardware_enable_failed);
1743 		printk(KERN_INFO "kvm: enabling virtualization on "
1744 				 "CPU%d failed\n", cpu);
1745 	}
1746 }
1747 
1748 static void hardware_disable(void *junk)
1749 {
1750 	int cpu = raw_smp_processor_id();
1751 
1752 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1753 		return;
1754 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1755 	kvm_arch_hardware_disable(NULL);
1756 }
1757 
1758 static void hardware_disable_all_nolock(void)
1759 {
1760 	BUG_ON(!kvm_usage_count);
1761 
1762 	kvm_usage_count--;
1763 	if (!kvm_usage_count)
1764 		on_each_cpu(hardware_disable, NULL, 1);
1765 }
1766 
1767 static void hardware_disable_all(void)
1768 {
1769 	spin_lock(&kvm_lock);
1770 	hardware_disable_all_nolock();
1771 	spin_unlock(&kvm_lock);
1772 }
1773 
1774 static int hardware_enable_all(void)
1775 {
1776 	int r = 0;
1777 
1778 	spin_lock(&kvm_lock);
1779 
1780 	kvm_usage_count++;
1781 	if (kvm_usage_count == 1) {
1782 		atomic_set(&hardware_enable_failed, 0);
1783 		on_each_cpu(hardware_enable, NULL, 1);
1784 
1785 		if (atomic_read(&hardware_enable_failed)) {
1786 			hardware_disable_all_nolock();
1787 			r = -EBUSY;
1788 		}
1789 	}
1790 
1791 	spin_unlock(&kvm_lock);
1792 
1793 	return r;
1794 }
1795 
1796 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1797 			   void *v)
1798 {
1799 	int cpu = (long)v;
1800 
1801 	if (!kvm_usage_count)
1802 		return NOTIFY_OK;
1803 
1804 	val &= ~CPU_TASKS_FROZEN;
1805 	switch (val) {
1806 	case CPU_DYING:
1807 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1808 		       cpu);
1809 		hardware_disable(NULL);
1810 		break;
1811 	case CPU_UP_CANCELED:
1812 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1813 		       cpu);
1814 		smp_call_function_single(cpu, hardware_disable, NULL, 1);
1815 		break;
1816 	case CPU_ONLINE:
1817 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1818 		       cpu);
1819 		smp_call_function_single(cpu, hardware_enable, NULL, 1);
1820 		break;
1821 	}
1822 	return NOTIFY_OK;
1823 }
1824 
1825 
1826 asmlinkage void kvm_handle_fault_on_reboot(void)
1827 {
1828 	if (kvm_rebooting)
1829 		/* spin while reset goes on */
1830 		while (true)
1831 			;
1832 	/* Fault while not rebooting.  We want the trace. */
1833 	BUG();
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1836 
1837 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1838 		      void *v)
1839 {
1840 	/*
1841 	 * Some (well, at least mine) BIOSes hang on reboot if
1842 	 * in vmx root mode.
1843 	 *
1844 	 * And Intel TXT required VMX off for all cpu when system shutdown.
1845 	 */
1846 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1847 	kvm_rebooting = true;
1848 	on_each_cpu(hardware_disable, NULL, 1);
1849 	return NOTIFY_OK;
1850 }
1851 
1852 static struct notifier_block kvm_reboot_notifier = {
1853 	.notifier_call = kvm_reboot,
1854 	.priority = 0,
1855 };
1856 
1857 void kvm_io_bus_init(struct kvm_io_bus *bus)
1858 {
1859 	memset(bus, 0, sizeof(*bus));
1860 }
1861 
1862 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1863 {
1864 	int i;
1865 
1866 	for (i = 0; i < bus->dev_count; i++) {
1867 		struct kvm_io_device *pos = bus->devs[i];
1868 
1869 		kvm_iodevice_destructor(pos);
1870 	}
1871 }
1872 
1873 /* kvm_io_bus_write - called under kvm->slots_lock */
1874 int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
1875 		     int len, const void *val)
1876 {
1877 	int i;
1878 	for (i = 0; i < bus->dev_count; i++)
1879 		if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
1880 			return 0;
1881 	return -EOPNOTSUPP;
1882 }
1883 
1884 /* kvm_io_bus_read - called under kvm->slots_lock */
1885 int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
1886 {
1887 	int i;
1888 	for (i = 0; i < bus->dev_count; i++)
1889 		if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
1890 			return 0;
1891 	return -EOPNOTSUPP;
1892 }
1893 
1894 int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
1895 			     struct kvm_io_device *dev)
1896 {
1897 	int ret;
1898 
1899 	down_write(&kvm->slots_lock);
1900 	ret = __kvm_io_bus_register_dev(bus, dev);
1901 	up_write(&kvm->slots_lock);
1902 
1903 	return ret;
1904 }
1905 
1906 /* An unlocked version. Caller must have write lock on slots_lock. */
1907 int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
1908 			      struct kvm_io_device *dev)
1909 {
1910 	if (bus->dev_count > NR_IOBUS_DEVS-1)
1911 		return -ENOSPC;
1912 
1913 	bus->devs[bus->dev_count++] = dev;
1914 
1915 	return 0;
1916 }
1917 
1918 void kvm_io_bus_unregister_dev(struct kvm *kvm,
1919 			       struct kvm_io_bus *bus,
1920 			       struct kvm_io_device *dev)
1921 {
1922 	down_write(&kvm->slots_lock);
1923 	__kvm_io_bus_unregister_dev(bus, dev);
1924 	up_write(&kvm->slots_lock);
1925 }
1926 
1927 /* An unlocked version. Caller must have write lock on slots_lock. */
1928 void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
1929 				 struct kvm_io_device *dev)
1930 {
1931 	int i;
1932 
1933 	for (i = 0; i < bus->dev_count; i++)
1934 		if (bus->devs[i] == dev) {
1935 			bus->devs[i] = bus->devs[--bus->dev_count];
1936 			break;
1937 		}
1938 }
1939 
1940 static struct notifier_block kvm_cpu_notifier = {
1941 	.notifier_call = kvm_cpu_hotplug,
1942 	.priority = 20, /* must be > scheduler priority */
1943 };
1944 
1945 static int vm_stat_get(void *_offset, u64 *val)
1946 {
1947 	unsigned offset = (long)_offset;
1948 	struct kvm *kvm;
1949 
1950 	*val = 0;
1951 	spin_lock(&kvm_lock);
1952 	list_for_each_entry(kvm, &vm_list, vm_list)
1953 		*val += *(u32 *)((void *)kvm + offset);
1954 	spin_unlock(&kvm_lock);
1955 	return 0;
1956 }
1957 
1958 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1959 
1960 static int vcpu_stat_get(void *_offset, u64 *val)
1961 {
1962 	unsigned offset = (long)_offset;
1963 	struct kvm *kvm;
1964 	struct kvm_vcpu *vcpu;
1965 	int i;
1966 
1967 	*val = 0;
1968 	spin_lock(&kvm_lock);
1969 	list_for_each_entry(kvm, &vm_list, vm_list)
1970 		kvm_for_each_vcpu(i, vcpu, kvm)
1971 			*val += *(u32 *)((void *)vcpu + offset);
1972 
1973 	spin_unlock(&kvm_lock);
1974 	return 0;
1975 }
1976 
1977 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1978 
1979 static const struct file_operations *stat_fops[] = {
1980 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
1981 	[KVM_STAT_VM]   = &vm_stat_fops,
1982 };
1983 
1984 static void kvm_init_debug(void)
1985 {
1986 	struct kvm_stats_debugfs_item *p;
1987 
1988 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1989 	for (p = debugfs_entries; p->name; ++p)
1990 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1991 						(void *)(long)p->offset,
1992 						stat_fops[p->kind]);
1993 }
1994 
1995 static void kvm_exit_debug(void)
1996 {
1997 	struct kvm_stats_debugfs_item *p;
1998 
1999 	for (p = debugfs_entries; p->name; ++p)
2000 		debugfs_remove(p->dentry);
2001 	debugfs_remove(kvm_debugfs_dir);
2002 }
2003 
2004 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2005 {
2006 	if (kvm_usage_count)
2007 		hardware_disable(NULL);
2008 	return 0;
2009 }
2010 
2011 static int kvm_resume(struct sys_device *dev)
2012 {
2013 	if (kvm_usage_count)
2014 		hardware_enable(NULL);
2015 	return 0;
2016 }
2017 
2018 static struct sysdev_class kvm_sysdev_class = {
2019 	.name = "kvm",
2020 	.suspend = kvm_suspend,
2021 	.resume = kvm_resume,
2022 };
2023 
2024 static struct sys_device kvm_sysdev = {
2025 	.id = 0,
2026 	.cls = &kvm_sysdev_class,
2027 };
2028 
2029 struct page *bad_page;
2030 pfn_t bad_pfn;
2031 
2032 static inline
2033 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2034 {
2035 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2036 }
2037 
2038 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2039 {
2040 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2041 
2042 	kvm_arch_vcpu_load(vcpu, cpu);
2043 }
2044 
2045 static void kvm_sched_out(struct preempt_notifier *pn,
2046 			  struct task_struct *next)
2047 {
2048 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2049 
2050 	kvm_arch_vcpu_put(vcpu);
2051 }
2052 
2053 int kvm_init(void *opaque, unsigned int vcpu_size,
2054 		  struct module *module)
2055 {
2056 	int r;
2057 	int cpu;
2058 
2059 	r = kvm_arch_init(opaque);
2060 	if (r)
2061 		goto out_fail;
2062 
2063 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2064 
2065 	if (bad_page == NULL) {
2066 		r = -ENOMEM;
2067 		goto out;
2068 	}
2069 
2070 	bad_pfn = page_to_pfn(bad_page);
2071 
2072 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2073 		r = -ENOMEM;
2074 		goto out_free_0;
2075 	}
2076 
2077 	r = kvm_arch_hardware_setup();
2078 	if (r < 0)
2079 		goto out_free_0a;
2080 
2081 	for_each_online_cpu(cpu) {
2082 		smp_call_function_single(cpu,
2083 				kvm_arch_check_processor_compat,
2084 				&r, 1);
2085 		if (r < 0)
2086 			goto out_free_1;
2087 	}
2088 
2089 	r = register_cpu_notifier(&kvm_cpu_notifier);
2090 	if (r)
2091 		goto out_free_2;
2092 	register_reboot_notifier(&kvm_reboot_notifier);
2093 
2094 	r = sysdev_class_register(&kvm_sysdev_class);
2095 	if (r)
2096 		goto out_free_3;
2097 
2098 	r = sysdev_register(&kvm_sysdev);
2099 	if (r)
2100 		goto out_free_4;
2101 
2102 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2103 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2104 					   __alignof__(struct kvm_vcpu),
2105 					   0, NULL);
2106 	if (!kvm_vcpu_cache) {
2107 		r = -ENOMEM;
2108 		goto out_free_5;
2109 	}
2110 
2111 	kvm_chardev_ops.owner = module;
2112 	kvm_vm_fops.owner = module;
2113 	kvm_vcpu_fops.owner = module;
2114 
2115 	r = misc_register(&kvm_dev);
2116 	if (r) {
2117 		printk(KERN_ERR "kvm: misc device register failed\n");
2118 		goto out_free;
2119 	}
2120 
2121 	kvm_preempt_ops.sched_in = kvm_sched_in;
2122 	kvm_preempt_ops.sched_out = kvm_sched_out;
2123 
2124 	kvm_init_debug();
2125 
2126 	return 0;
2127 
2128 out_free:
2129 	kmem_cache_destroy(kvm_vcpu_cache);
2130 out_free_5:
2131 	sysdev_unregister(&kvm_sysdev);
2132 out_free_4:
2133 	sysdev_class_unregister(&kvm_sysdev_class);
2134 out_free_3:
2135 	unregister_reboot_notifier(&kvm_reboot_notifier);
2136 	unregister_cpu_notifier(&kvm_cpu_notifier);
2137 out_free_2:
2138 out_free_1:
2139 	kvm_arch_hardware_unsetup();
2140 out_free_0a:
2141 	free_cpumask_var(cpus_hardware_enabled);
2142 out_free_0:
2143 	__free_page(bad_page);
2144 out:
2145 	kvm_arch_exit();
2146 out_fail:
2147 	return r;
2148 }
2149 EXPORT_SYMBOL_GPL(kvm_init);
2150 
2151 void kvm_exit(void)
2152 {
2153 	tracepoint_synchronize_unregister();
2154 	kvm_exit_debug();
2155 	misc_deregister(&kvm_dev);
2156 	kmem_cache_destroy(kvm_vcpu_cache);
2157 	sysdev_unregister(&kvm_sysdev);
2158 	sysdev_class_unregister(&kvm_sysdev_class);
2159 	unregister_reboot_notifier(&kvm_reboot_notifier);
2160 	unregister_cpu_notifier(&kvm_cpu_notifier);
2161 	on_each_cpu(hardware_disable, NULL, 1);
2162 	kvm_arch_hardware_unsetup();
2163 	kvm_arch_exit();
2164 	free_cpumask_var(cpus_hardware_enabled);
2165 	__free_page(bad_page);
2166 }
2167 EXPORT_SYMBOL_GPL(kvm_exit);
2168