xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 3381df0954199458fa3993db72fb427f0ed1e43b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77 
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82 
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87 
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92 
93 /*
94  * Ordering of locks:
95  *
96  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98 
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102 
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106 
107 static struct kmem_cache *kvm_vcpu_cache;
108 
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111 
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114 
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 		unsigned long start, unsigned long end, bool blockable)
160 {
161 	return 0;
162 }
163 
164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 {
166 	/*
167 	 * The metadata used by is_zone_device_page() to determine whether or
168 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
170 	 * page_count() is zero to help detect bad usage of this helper.
171 	 */
172 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173 		return false;
174 
175 	return is_zone_device_page(pfn_to_page(pfn));
176 }
177 
178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 {
180 	/*
181 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182 	 * perspective they are "normal" pages, albeit with slightly different
183 	 * usage rules.
184 	 */
185 	if (pfn_valid(pfn))
186 		return PageReserved(pfn_to_page(pfn)) &&
187 		       !is_zero_pfn(pfn) &&
188 		       !kvm_is_zone_device_pfn(pfn);
189 
190 	return true;
191 }
192 
193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 {
195 	struct page *page = pfn_to_page(pfn);
196 
197 	if (!PageTransCompoundMap(page))
198 		return false;
199 
200 	return is_transparent_hugepage(compound_head(page));
201 }
202 
203 /*
204  * Switches to specified vcpu, until a matching vcpu_put()
205  */
206 void vcpu_load(struct kvm_vcpu *vcpu)
207 {
208 	int cpu = get_cpu();
209 
210 	__this_cpu_write(kvm_running_vcpu, vcpu);
211 	preempt_notifier_register(&vcpu->preempt_notifier);
212 	kvm_arch_vcpu_load(vcpu, cpu);
213 	put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(vcpu_load);
216 
217 void vcpu_put(struct kvm_vcpu *vcpu)
218 {
219 	preempt_disable();
220 	kvm_arch_vcpu_put(vcpu);
221 	preempt_notifier_unregister(&vcpu->preempt_notifier);
222 	__this_cpu_write(kvm_running_vcpu, NULL);
223 	preempt_enable();
224 }
225 EXPORT_SYMBOL_GPL(vcpu_put);
226 
227 /* TODO: merge with kvm_arch_vcpu_should_kick */
228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 {
230 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231 
232 	/*
233 	 * We need to wait for the VCPU to reenable interrupts and get out of
234 	 * READING_SHADOW_PAGE_TABLES mode.
235 	 */
236 	if (req & KVM_REQUEST_WAIT)
237 		return mode != OUTSIDE_GUEST_MODE;
238 
239 	/*
240 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
241 	 */
242 	return mode == IN_GUEST_MODE;
243 }
244 
245 static void ack_flush(void *_completed)
246 {
247 }
248 
249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 {
251 	if (unlikely(!cpus))
252 		cpus = cpu_online_mask;
253 
254 	if (cpumask_empty(cpus))
255 		return false;
256 
257 	smp_call_function_many(cpus, ack_flush, NULL, wait);
258 	return true;
259 }
260 
261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264 	int i, cpu, me;
265 	struct kvm_vcpu *vcpu;
266 	bool called;
267 
268 	me = get_cpu();
269 
270 	kvm_for_each_vcpu(i, vcpu, kvm) {
271 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
272 			continue;
273 
274 		kvm_make_request(req, vcpu);
275 		cpu = vcpu->cpu;
276 
277 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278 			continue;
279 
280 		if (tmp != NULL && cpu != -1 && cpu != me &&
281 		    kvm_request_needs_ipi(vcpu, req))
282 			__cpumask_set_cpu(cpu, tmp);
283 	}
284 
285 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286 	put_cpu();
287 
288 	return called;
289 }
290 
291 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
292 {
293 	cpumask_var_t cpus;
294 	bool called;
295 
296 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
297 
298 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
299 
300 	free_cpumask_var(cpus);
301 	return called;
302 }
303 
304 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
305 void kvm_flush_remote_tlbs(struct kvm *kvm)
306 {
307 	/*
308 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
309 	 * kvm_make_all_cpus_request.
310 	 */
311 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
312 
313 	/*
314 	 * We want to publish modifications to the page tables before reading
315 	 * mode. Pairs with a memory barrier in arch-specific code.
316 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
317 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
318 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
319 	 *
320 	 * There is already an smp_mb__after_atomic() before
321 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
322 	 * barrier here.
323 	 */
324 	if (!kvm_arch_flush_remote_tlb(kvm)
325 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
326 		++kvm->stat.remote_tlb_flush;
327 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
328 }
329 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
330 #endif
331 
332 void kvm_reload_remote_mmus(struct kvm *kvm)
333 {
334 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
335 }
336 
337 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
338 {
339 	mutex_init(&vcpu->mutex);
340 	vcpu->cpu = -1;
341 	vcpu->kvm = kvm;
342 	vcpu->vcpu_id = id;
343 	vcpu->pid = NULL;
344 	init_swait_queue_head(&vcpu->wq);
345 	kvm_async_pf_vcpu_init(vcpu);
346 
347 	vcpu->pre_pcpu = -1;
348 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
349 
350 	kvm_vcpu_set_in_spin_loop(vcpu, false);
351 	kvm_vcpu_set_dy_eligible(vcpu, false);
352 	vcpu->preempted = false;
353 	vcpu->ready = false;
354 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
355 }
356 
357 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
358 {
359 	kvm_arch_vcpu_destroy(vcpu);
360 
361 	/*
362 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
363 	 * the vcpu->pid pointer, and at destruction time all file descriptors
364 	 * are already gone.
365 	 */
366 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
367 
368 	free_page((unsigned long)vcpu->run);
369 	kmem_cache_free(kvm_vcpu_cache, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
372 
373 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
374 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
375 {
376 	return container_of(mn, struct kvm, mmu_notifier);
377 }
378 
379 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
380 					struct mm_struct *mm,
381 					unsigned long address,
382 					pte_t pte)
383 {
384 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
385 	int idx;
386 
387 	idx = srcu_read_lock(&kvm->srcu);
388 	spin_lock(&kvm->mmu_lock);
389 	kvm->mmu_notifier_seq++;
390 
391 	if (kvm_set_spte_hva(kvm, address, pte))
392 		kvm_flush_remote_tlbs(kvm);
393 
394 	spin_unlock(&kvm->mmu_lock);
395 	srcu_read_unlock(&kvm->srcu, idx);
396 }
397 
398 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
399 					const struct mmu_notifier_range *range)
400 {
401 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
402 	int need_tlb_flush = 0, idx;
403 	int ret;
404 
405 	idx = srcu_read_lock(&kvm->srcu);
406 	spin_lock(&kvm->mmu_lock);
407 	/*
408 	 * The count increase must become visible at unlock time as no
409 	 * spte can be established without taking the mmu_lock and
410 	 * count is also read inside the mmu_lock critical section.
411 	 */
412 	kvm->mmu_notifier_count++;
413 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
414 	need_tlb_flush |= kvm->tlbs_dirty;
415 	/* we've to flush the tlb before the pages can be freed */
416 	if (need_tlb_flush)
417 		kvm_flush_remote_tlbs(kvm);
418 
419 	spin_unlock(&kvm->mmu_lock);
420 
421 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
422 					range->end,
423 					mmu_notifier_range_blockable(range));
424 
425 	srcu_read_unlock(&kvm->srcu, idx);
426 
427 	return ret;
428 }
429 
430 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
431 					const struct mmu_notifier_range *range)
432 {
433 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
434 
435 	spin_lock(&kvm->mmu_lock);
436 	/*
437 	 * This sequence increase will notify the kvm page fault that
438 	 * the page that is going to be mapped in the spte could have
439 	 * been freed.
440 	 */
441 	kvm->mmu_notifier_seq++;
442 	smp_wmb();
443 	/*
444 	 * The above sequence increase must be visible before the
445 	 * below count decrease, which is ensured by the smp_wmb above
446 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
447 	 */
448 	kvm->mmu_notifier_count--;
449 	spin_unlock(&kvm->mmu_lock);
450 
451 	BUG_ON(kvm->mmu_notifier_count < 0);
452 }
453 
454 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
455 					      struct mm_struct *mm,
456 					      unsigned long start,
457 					      unsigned long end)
458 {
459 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
460 	int young, idx;
461 
462 	idx = srcu_read_lock(&kvm->srcu);
463 	spin_lock(&kvm->mmu_lock);
464 
465 	young = kvm_age_hva(kvm, start, end);
466 	if (young)
467 		kvm_flush_remote_tlbs(kvm);
468 
469 	spin_unlock(&kvm->mmu_lock);
470 	srcu_read_unlock(&kvm->srcu, idx);
471 
472 	return young;
473 }
474 
475 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
476 					struct mm_struct *mm,
477 					unsigned long start,
478 					unsigned long end)
479 {
480 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
481 	int young, idx;
482 
483 	idx = srcu_read_lock(&kvm->srcu);
484 	spin_lock(&kvm->mmu_lock);
485 	/*
486 	 * Even though we do not flush TLB, this will still adversely
487 	 * affect performance on pre-Haswell Intel EPT, where there is
488 	 * no EPT Access Bit to clear so that we have to tear down EPT
489 	 * tables instead. If we find this unacceptable, we can always
490 	 * add a parameter to kvm_age_hva so that it effectively doesn't
491 	 * do anything on clear_young.
492 	 *
493 	 * Also note that currently we never issue secondary TLB flushes
494 	 * from clear_young, leaving this job up to the regular system
495 	 * cadence. If we find this inaccurate, we might come up with a
496 	 * more sophisticated heuristic later.
497 	 */
498 	young = kvm_age_hva(kvm, start, end);
499 	spin_unlock(&kvm->mmu_lock);
500 	srcu_read_unlock(&kvm->srcu, idx);
501 
502 	return young;
503 }
504 
505 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
506 				       struct mm_struct *mm,
507 				       unsigned long address)
508 {
509 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
510 	int young, idx;
511 
512 	idx = srcu_read_lock(&kvm->srcu);
513 	spin_lock(&kvm->mmu_lock);
514 	young = kvm_test_age_hva(kvm, address);
515 	spin_unlock(&kvm->mmu_lock);
516 	srcu_read_unlock(&kvm->srcu, idx);
517 
518 	return young;
519 }
520 
521 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
522 				     struct mm_struct *mm)
523 {
524 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
525 	int idx;
526 
527 	idx = srcu_read_lock(&kvm->srcu);
528 	kvm_arch_flush_shadow_all(kvm);
529 	srcu_read_unlock(&kvm->srcu, idx);
530 }
531 
532 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
533 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
534 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
535 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
536 	.clear_young		= kvm_mmu_notifier_clear_young,
537 	.test_young		= kvm_mmu_notifier_test_young,
538 	.change_pte		= kvm_mmu_notifier_change_pte,
539 	.release		= kvm_mmu_notifier_release,
540 };
541 
542 static int kvm_init_mmu_notifier(struct kvm *kvm)
543 {
544 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
545 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
546 }
547 
548 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
549 
550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552 	return 0;
553 }
554 
555 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
556 
557 static struct kvm_memslots *kvm_alloc_memslots(void)
558 {
559 	int i;
560 	struct kvm_memslots *slots;
561 
562 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
563 	if (!slots)
564 		return NULL;
565 
566 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
567 		slots->id_to_index[i] = -1;
568 
569 	return slots;
570 }
571 
572 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
573 {
574 	if (!memslot->dirty_bitmap)
575 		return;
576 
577 	kvfree(memslot->dirty_bitmap);
578 	memslot->dirty_bitmap = NULL;
579 }
580 
581 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
582 {
583 	kvm_destroy_dirty_bitmap(slot);
584 
585 	kvm_arch_free_memslot(kvm, slot);
586 
587 	slot->flags = 0;
588 	slot->npages = 0;
589 }
590 
591 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
592 {
593 	struct kvm_memory_slot *memslot;
594 
595 	if (!slots)
596 		return;
597 
598 	kvm_for_each_memslot(memslot, slots)
599 		kvm_free_memslot(kvm, memslot);
600 
601 	kvfree(slots);
602 }
603 
604 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
605 {
606 	int i;
607 
608 	if (!kvm->debugfs_dentry)
609 		return;
610 
611 	debugfs_remove_recursive(kvm->debugfs_dentry);
612 
613 	if (kvm->debugfs_stat_data) {
614 		for (i = 0; i < kvm_debugfs_num_entries; i++)
615 			kfree(kvm->debugfs_stat_data[i]);
616 		kfree(kvm->debugfs_stat_data);
617 	}
618 }
619 
620 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
621 {
622 	char dir_name[ITOA_MAX_LEN * 2];
623 	struct kvm_stat_data *stat_data;
624 	struct kvm_stats_debugfs_item *p;
625 
626 	if (!debugfs_initialized())
627 		return 0;
628 
629 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
630 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
631 
632 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
633 					 sizeof(*kvm->debugfs_stat_data),
634 					 GFP_KERNEL_ACCOUNT);
635 	if (!kvm->debugfs_stat_data)
636 		return -ENOMEM;
637 
638 	for (p = debugfs_entries; p->name; p++) {
639 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
640 		if (!stat_data)
641 			return -ENOMEM;
642 
643 		stat_data->kvm = kvm;
644 		stat_data->dbgfs_item = p;
645 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
646 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
647 				    kvm->debugfs_dentry, stat_data,
648 				    &stat_fops_per_vm);
649 	}
650 	return 0;
651 }
652 
653 /*
654  * Called after the VM is otherwise initialized, but just before adding it to
655  * the vm_list.
656  */
657 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
658 {
659 	return 0;
660 }
661 
662 /*
663  * Called just after removing the VM from the vm_list, but before doing any
664  * other destruction.
665  */
666 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
667 {
668 }
669 
670 static struct kvm *kvm_create_vm(unsigned long type)
671 {
672 	struct kvm *kvm = kvm_arch_alloc_vm();
673 	int r = -ENOMEM;
674 	int i;
675 
676 	if (!kvm)
677 		return ERR_PTR(-ENOMEM);
678 
679 	spin_lock_init(&kvm->mmu_lock);
680 	mmgrab(current->mm);
681 	kvm->mm = current->mm;
682 	kvm_eventfd_init(kvm);
683 	mutex_init(&kvm->lock);
684 	mutex_init(&kvm->irq_lock);
685 	mutex_init(&kvm->slots_lock);
686 	INIT_LIST_HEAD(&kvm->devices);
687 
688 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
689 
690 	if (init_srcu_struct(&kvm->srcu))
691 		goto out_err_no_srcu;
692 	if (init_srcu_struct(&kvm->irq_srcu))
693 		goto out_err_no_irq_srcu;
694 
695 	refcount_set(&kvm->users_count, 1);
696 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
697 		struct kvm_memslots *slots = kvm_alloc_memslots();
698 
699 		if (!slots)
700 			goto out_err_no_arch_destroy_vm;
701 		/* Generations must be different for each address space. */
702 		slots->generation = i;
703 		rcu_assign_pointer(kvm->memslots[i], slots);
704 	}
705 
706 	for (i = 0; i < KVM_NR_BUSES; i++) {
707 		rcu_assign_pointer(kvm->buses[i],
708 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
709 		if (!kvm->buses[i])
710 			goto out_err_no_arch_destroy_vm;
711 	}
712 
713 	r = kvm_arch_init_vm(kvm, type);
714 	if (r)
715 		goto out_err_no_arch_destroy_vm;
716 
717 	r = hardware_enable_all();
718 	if (r)
719 		goto out_err_no_disable;
720 
721 #ifdef CONFIG_HAVE_KVM_IRQFD
722 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
723 #endif
724 
725 	r = kvm_init_mmu_notifier(kvm);
726 	if (r)
727 		goto out_err_no_mmu_notifier;
728 
729 	r = kvm_arch_post_init_vm(kvm);
730 	if (r)
731 		goto out_err;
732 
733 	mutex_lock(&kvm_lock);
734 	list_add(&kvm->vm_list, &vm_list);
735 	mutex_unlock(&kvm_lock);
736 
737 	preempt_notifier_inc();
738 
739 	return kvm;
740 
741 out_err:
742 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
743 	if (kvm->mmu_notifier.ops)
744 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
745 #endif
746 out_err_no_mmu_notifier:
747 	hardware_disable_all();
748 out_err_no_disable:
749 	kvm_arch_destroy_vm(kvm);
750 out_err_no_arch_destroy_vm:
751 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
752 	for (i = 0; i < KVM_NR_BUSES; i++)
753 		kfree(kvm_get_bus(kvm, i));
754 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
755 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
756 	cleanup_srcu_struct(&kvm->irq_srcu);
757 out_err_no_irq_srcu:
758 	cleanup_srcu_struct(&kvm->srcu);
759 out_err_no_srcu:
760 	kvm_arch_free_vm(kvm);
761 	mmdrop(current->mm);
762 	return ERR_PTR(r);
763 }
764 
765 static void kvm_destroy_devices(struct kvm *kvm)
766 {
767 	struct kvm_device *dev, *tmp;
768 
769 	/*
770 	 * We do not need to take the kvm->lock here, because nobody else
771 	 * has a reference to the struct kvm at this point and therefore
772 	 * cannot access the devices list anyhow.
773 	 */
774 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
775 		list_del(&dev->vm_node);
776 		dev->ops->destroy(dev);
777 	}
778 }
779 
780 static void kvm_destroy_vm(struct kvm *kvm)
781 {
782 	int i;
783 	struct mm_struct *mm = kvm->mm;
784 
785 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
786 	kvm_destroy_vm_debugfs(kvm);
787 	kvm_arch_sync_events(kvm);
788 	mutex_lock(&kvm_lock);
789 	list_del(&kvm->vm_list);
790 	mutex_unlock(&kvm_lock);
791 	kvm_arch_pre_destroy_vm(kvm);
792 
793 	kvm_free_irq_routing(kvm);
794 	for (i = 0; i < KVM_NR_BUSES; i++) {
795 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
796 
797 		if (bus)
798 			kvm_io_bus_destroy(bus);
799 		kvm->buses[i] = NULL;
800 	}
801 	kvm_coalesced_mmio_free(kvm);
802 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
803 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
804 #else
805 	kvm_arch_flush_shadow_all(kvm);
806 #endif
807 	kvm_arch_destroy_vm(kvm);
808 	kvm_destroy_devices(kvm);
809 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
810 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
811 	cleanup_srcu_struct(&kvm->irq_srcu);
812 	cleanup_srcu_struct(&kvm->srcu);
813 	kvm_arch_free_vm(kvm);
814 	preempt_notifier_dec();
815 	hardware_disable_all();
816 	mmdrop(mm);
817 }
818 
819 void kvm_get_kvm(struct kvm *kvm)
820 {
821 	refcount_inc(&kvm->users_count);
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_kvm);
824 
825 void kvm_put_kvm(struct kvm *kvm)
826 {
827 	if (refcount_dec_and_test(&kvm->users_count))
828 		kvm_destroy_vm(kvm);
829 }
830 EXPORT_SYMBOL_GPL(kvm_put_kvm);
831 
832 /*
833  * Used to put a reference that was taken on behalf of an object associated
834  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
835  * of the new file descriptor fails and the reference cannot be transferred to
836  * its final owner.  In such cases, the caller is still actively using @kvm and
837  * will fail miserably if the refcount unexpectedly hits zero.
838  */
839 void kvm_put_kvm_no_destroy(struct kvm *kvm)
840 {
841 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
842 }
843 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
844 
845 static int kvm_vm_release(struct inode *inode, struct file *filp)
846 {
847 	struct kvm *kvm = filp->private_data;
848 
849 	kvm_irqfd_release(kvm);
850 
851 	kvm_put_kvm(kvm);
852 	return 0;
853 }
854 
855 /*
856  * Allocation size is twice as large as the actual dirty bitmap size.
857  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
858  */
859 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
860 {
861 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
862 
863 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
864 	if (!memslot->dirty_bitmap)
865 		return -ENOMEM;
866 
867 	return 0;
868 }
869 
870 /*
871  * Delete a memslot by decrementing the number of used slots and shifting all
872  * other entries in the array forward one spot.
873  */
874 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
875 				      struct kvm_memory_slot *memslot)
876 {
877 	struct kvm_memory_slot *mslots = slots->memslots;
878 	int i;
879 
880 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
881 		return;
882 
883 	slots->used_slots--;
884 
885 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
886 		atomic_set(&slots->lru_slot, 0);
887 
888 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
889 		mslots[i] = mslots[i + 1];
890 		slots->id_to_index[mslots[i].id] = i;
891 	}
892 	mslots[i] = *memslot;
893 	slots->id_to_index[memslot->id] = -1;
894 }
895 
896 /*
897  * "Insert" a new memslot by incrementing the number of used slots.  Returns
898  * the new slot's initial index into the memslots array.
899  */
900 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
901 {
902 	return slots->used_slots++;
903 }
904 
905 /*
906  * Move a changed memslot backwards in the array by shifting existing slots
907  * with a higher GFN toward the front of the array.  Note, the changed memslot
908  * itself is not preserved in the array, i.e. not swapped at this time, only
909  * its new index into the array is tracked.  Returns the changed memslot's
910  * current index into the memslots array.
911  */
912 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
913 					    struct kvm_memory_slot *memslot)
914 {
915 	struct kvm_memory_slot *mslots = slots->memslots;
916 	int i;
917 
918 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
919 	    WARN_ON_ONCE(!slots->used_slots))
920 		return -1;
921 
922 	/*
923 	 * Move the target memslot backward in the array by shifting existing
924 	 * memslots with a higher GFN (than the target memslot) towards the
925 	 * front of the array.
926 	 */
927 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
928 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
929 			break;
930 
931 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
932 
933 		/* Shift the next memslot forward one and update its index. */
934 		mslots[i] = mslots[i + 1];
935 		slots->id_to_index[mslots[i].id] = i;
936 	}
937 	return i;
938 }
939 
940 /*
941  * Move a changed memslot forwards in the array by shifting existing slots with
942  * a lower GFN toward the back of the array.  Note, the changed memslot itself
943  * is not preserved in the array, i.e. not swapped at this time, only its new
944  * index into the array is tracked.  Returns the changed memslot's final index
945  * into the memslots array.
946  */
947 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
948 					   struct kvm_memory_slot *memslot,
949 					   int start)
950 {
951 	struct kvm_memory_slot *mslots = slots->memslots;
952 	int i;
953 
954 	for (i = start; i > 0; i--) {
955 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
956 			break;
957 
958 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
959 
960 		/* Shift the next memslot back one and update its index. */
961 		mslots[i] = mslots[i - 1];
962 		slots->id_to_index[mslots[i].id] = i;
963 	}
964 	return i;
965 }
966 
967 /*
968  * Re-sort memslots based on their GFN to account for an added, deleted, or
969  * moved memslot.  Sorting memslots by GFN allows using a binary search during
970  * memslot lookup.
971  *
972  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
973  * at memslots[0] has the highest GFN.
974  *
975  * The sorting algorithm takes advantage of having initially sorted memslots
976  * and knowing the position of the changed memslot.  Sorting is also optimized
977  * by not swapping the updated memslot and instead only shifting other memslots
978  * and tracking the new index for the update memslot.  Only once its final
979  * index is known is the updated memslot copied into its position in the array.
980  *
981  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
982  *    the end of the array.
983  *
984  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
985  *    end of the array and then it forward to its correct location.
986  *
987  *  - When moving a memslot, the algorithm first moves the updated memslot
988  *    backward to handle the scenario where the memslot's GFN was changed to a
989  *    lower value.  update_memslots() then falls through and runs the same flow
990  *    as creating a memslot to move the memslot forward to handle the scenario
991  *    where its GFN was changed to a higher value.
992  *
993  * Note, slots are sorted from highest->lowest instead of lowest->highest for
994  * historical reasons.  Originally, invalid memslots where denoted by having
995  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
996  * to the end of the array.  The current algorithm uses dedicated logic to
997  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
998  *
999  * The other historical motiviation for highest->lowest was to improve the
1000  * performance of memslot lookup.  KVM originally used a linear search starting
1001  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1002  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1003  * single memslot above the 4gb boundary.  As the largest memslot is also the
1004  * most likely to be referenced, sorting it to the front of the array was
1005  * advantageous.  The current binary search starts from the middle of the array
1006  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1007  */
1008 static void update_memslots(struct kvm_memslots *slots,
1009 			    struct kvm_memory_slot *memslot,
1010 			    enum kvm_mr_change change)
1011 {
1012 	int i;
1013 
1014 	if (change == KVM_MR_DELETE) {
1015 		kvm_memslot_delete(slots, memslot);
1016 	} else {
1017 		if (change == KVM_MR_CREATE)
1018 			i = kvm_memslot_insert_back(slots);
1019 		else
1020 			i = kvm_memslot_move_backward(slots, memslot);
1021 		i = kvm_memslot_move_forward(slots, memslot, i);
1022 
1023 		/*
1024 		 * Copy the memslot to its new position in memslots and update
1025 		 * its index accordingly.
1026 		 */
1027 		slots->memslots[i] = *memslot;
1028 		slots->id_to_index[memslot->id] = i;
1029 	}
1030 }
1031 
1032 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1033 {
1034 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1035 
1036 #ifdef __KVM_HAVE_READONLY_MEM
1037 	valid_flags |= KVM_MEM_READONLY;
1038 #endif
1039 
1040 	if (mem->flags & ~valid_flags)
1041 		return -EINVAL;
1042 
1043 	return 0;
1044 }
1045 
1046 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1047 		int as_id, struct kvm_memslots *slots)
1048 {
1049 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1050 	u64 gen = old_memslots->generation;
1051 
1052 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1053 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1054 
1055 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1056 	synchronize_srcu_expedited(&kvm->srcu);
1057 
1058 	/*
1059 	 * Increment the new memslot generation a second time, dropping the
1060 	 * update in-progress flag and incrementing the generation based on
1061 	 * the number of address spaces.  This provides a unique and easily
1062 	 * identifiable generation number while the memslots are in flux.
1063 	 */
1064 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1065 
1066 	/*
1067 	 * Generations must be unique even across address spaces.  We do not need
1068 	 * a global counter for that, instead the generation space is evenly split
1069 	 * across address spaces.  For example, with two address spaces, address
1070 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1071 	 * use generations 1, 3, 5, ...
1072 	 */
1073 	gen += KVM_ADDRESS_SPACE_NUM;
1074 
1075 	kvm_arch_memslots_updated(kvm, gen);
1076 
1077 	slots->generation = gen;
1078 
1079 	return old_memslots;
1080 }
1081 
1082 /*
1083  * Note, at a minimum, the current number of used slots must be allocated, even
1084  * when deleting a memslot, as we need a complete duplicate of the memslots for
1085  * use when invalidating a memslot prior to deleting/moving the memslot.
1086  */
1087 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1088 					     enum kvm_mr_change change)
1089 {
1090 	struct kvm_memslots *slots;
1091 	size_t old_size, new_size;
1092 
1093 	old_size = sizeof(struct kvm_memslots) +
1094 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1095 
1096 	if (change == KVM_MR_CREATE)
1097 		new_size = old_size + sizeof(struct kvm_memory_slot);
1098 	else
1099 		new_size = old_size;
1100 
1101 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1102 	if (likely(slots))
1103 		memcpy(slots, old, old_size);
1104 
1105 	return slots;
1106 }
1107 
1108 static int kvm_set_memslot(struct kvm *kvm,
1109 			   const struct kvm_userspace_memory_region *mem,
1110 			   struct kvm_memory_slot *old,
1111 			   struct kvm_memory_slot *new, int as_id,
1112 			   enum kvm_mr_change change)
1113 {
1114 	struct kvm_memory_slot *slot;
1115 	struct kvm_memslots *slots;
1116 	int r;
1117 
1118 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1119 	if (!slots)
1120 		return -ENOMEM;
1121 
1122 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1123 		/*
1124 		 * Note, the INVALID flag needs to be in the appropriate entry
1125 		 * in the freshly allocated memslots, not in @old or @new.
1126 		 */
1127 		slot = id_to_memslot(slots, old->id);
1128 		slot->flags |= KVM_MEMSLOT_INVALID;
1129 
1130 		/*
1131 		 * We can re-use the old memslots, the only difference from the
1132 		 * newly installed memslots is the invalid flag, which will get
1133 		 * dropped by update_memslots anyway.  We'll also revert to the
1134 		 * old memslots if preparing the new memory region fails.
1135 		 */
1136 		slots = install_new_memslots(kvm, as_id, slots);
1137 
1138 		/* From this point no new shadow pages pointing to a deleted,
1139 		 * or moved, memslot will be created.
1140 		 *
1141 		 * validation of sp->gfn happens in:
1142 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1143 		 *	- kvm_is_visible_gfn (mmu_check_root)
1144 		 */
1145 		kvm_arch_flush_shadow_memslot(kvm, slot);
1146 	}
1147 
1148 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1149 	if (r)
1150 		goto out_slots;
1151 
1152 	update_memslots(slots, new, change);
1153 	slots = install_new_memslots(kvm, as_id, slots);
1154 
1155 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1156 
1157 	kvfree(slots);
1158 	return 0;
1159 
1160 out_slots:
1161 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1162 		slots = install_new_memslots(kvm, as_id, slots);
1163 	kvfree(slots);
1164 	return r;
1165 }
1166 
1167 static int kvm_delete_memslot(struct kvm *kvm,
1168 			      const struct kvm_userspace_memory_region *mem,
1169 			      struct kvm_memory_slot *old, int as_id)
1170 {
1171 	struct kvm_memory_slot new;
1172 	int r;
1173 
1174 	if (!old->npages)
1175 		return -EINVAL;
1176 
1177 	memset(&new, 0, sizeof(new));
1178 	new.id = old->id;
1179 
1180 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1181 	if (r)
1182 		return r;
1183 
1184 	kvm_free_memslot(kvm, old);
1185 	return 0;
1186 }
1187 
1188 /*
1189  * Allocate some memory and give it an address in the guest physical address
1190  * space.
1191  *
1192  * Discontiguous memory is allowed, mostly for framebuffers.
1193  *
1194  * Must be called holding kvm->slots_lock for write.
1195  */
1196 int __kvm_set_memory_region(struct kvm *kvm,
1197 			    const struct kvm_userspace_memory_region *mem)
1198 {
1199 	struct kvm_memory_slot old, new;
1200 	struct kvm_memory_slot *tmp;
1201 	enum kvm_mr_change change;
1202 	int as_id, id;
1203 	int r;
1204 
1205 	r = check_memory_region_flags(mem);
1206 	if (r)
1207 		return r;
1208 
1209 	as_id = mem->slot >> 16;
1210 	id = (u16)mem->slot;
1211 
1212 	/* General sanity checks */
1213 	if (mem->memory_size & (PAGE_SIZE - 1))
1214 		return -EINVAL;
1215 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1216 		return -EINVAL;
1217 	/* We can read the guest memory with __xxx_user() later on. */
1218 	if ((id < KVM_USER_MEM_SLOTS) &&
1219 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1220 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1221 			mem->memory_size)))
1222 		return -EINVAL;
1223 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1224 		return -EINVAL;
1225 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1226 		return -EINVAL;
1227 
1228 	/*
1229 	 * Make a full copy of the old memslot, the pointer will become stale
1230 	 * when the memslots are re-sorted by update_memslots(), and the old
1231 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1232 	 * to free its resources and for arch specific behavior.
1233 	 */
1234 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1235 	if (tmp) {
1236 		old = *tmp;
1237 		tmp = NULL;
1238 	} else {
1239 		memset(&old, 0, sizeof(old));
1240 		old.id = id;
1241 	}
1242 
1243 	if (!mem->memory_size)
1244 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1245 
1246 	new.id = id;
1247 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1248 	new.npages = mem->memory_size >> PAGE_SHIFT;
1249 	new.flags = mem->flags;
1250 	new.userspace_addr = mem->userspace_addr;
1251 
1252 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1253 		return -EINVAL;
1254 
1255 	if (!old.npages) {
1256 		change = KVM_MR_CREATE;
1257 		new.dirty_bitmap = NULL;
1258 		memset(&new.arch, 0, sizeof(new.arch));
1259 	} else { /* Modify an existing slot. */
1260 		if ((new.userspace_addr != old.userspace_addr) ||
1261 		    (new.npages != old.npages) ||
1262 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1263 			return -EINVAL;
1264 
1265 		if (new.base_gfn != old.base_gfn)
1266 			change = KVM_MR_MOVE;
1267 		else if (new.flags != old.flags)
1268 			change = KVM_MR_FLAGS_ONLY;
1269 		else /* Nothing to change. */
1270 			return 0;
1271 
1272 		/* Copy dirty_bitmap and arch from the current memslot. */
1273 		new.dirty_bitmap = old.dirty_bitmap;
1274 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1275 	}
1276 
1277 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1278 		/* Check for overlaps */
1279 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1280 			if (tmp->id == id)
1281 				continue;
1282 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1283 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1284 				return -EEXIST;
1285 		}
1286 	}
1287 
1288 	/* Allocate/free page dirty bitmap as needed */
1289 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1290 		new.dirty_bitmap = NULL;
1291 	else if (!new.dirty_bitmap) {
1292 		r = kvm_alloc_dirty_bitmap(&new);
1293 		if (r)
1294 			return r;
1295 
1296 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1297 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1298 	}
1299 
1300 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1301 	if (r)
1302 		goto out_bitmap;
1303 
1304 	if (old.dirty_bitmap && !new.dirty_bitmap)
1305 		kvm_destroy_dirty_bitmap(&old);
1306 	return 0;
1307 
1308 out_bitmap:
1309 	if (new.dirty_bitmap && !old.dirty_bitmap)
1310 		kvm_destroy_dirty_bitmap(&new);
1311 	return r;
1312 }
1313 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1314 
1315 int kvm_set_memory_region(struct kvm *kvm,
1316 			  const struct kvm_userspace_memory_region *mem)
1317 {
1318 	int r;
1319 
1320 	mutex_lock(&kvm->slots_lock);
1321 	r = __kvm_set_memory_region(kvm, mem);
1322 	mutex_unlock(&kvm->slots_lock);
1323 	return r;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1326 
1327 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1328 					  struct kvm_userspace_memory_region *mem)
1329 {
1330 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1331 		return -EINVAL;
1332 
1333 	return kvm_set_memory_region(kvm, mem);
1334 }
1335 
1336 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1337 /**
1338  * kvm_get_dirty_log - get a snapshot of dirty pages
1339  * @kvm:	pointer to kvm instance
1340  * @log:	slot id and address to which we copy the log
1341  * @is_dirty:	set to '1' if any dirty pages were found
1342  * @memslot:	set to the associated memslot, always valid on success
1343  */
1344 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1345 		      int *is_dirty, struct kvm_memory_slot **memslot)
1346 {
1347 	struct kvm_memslots *slots;
1348 	int i, as_id, id;
1349 	unsigned long n;
1350 	unsigned long any = 0;
1351 
1352 	*memslot = NULL;
1353 	*is_dirty = 0;
1354 
1355 	as_id = log->slot >> 16;
1356 	id = (u16)log->slot;
1357 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1358 		return -EINVAL;
1359 
1360 	slots = __kvm_memslots(kvm, as_id);
1361 	*memslot = id_to_memslot(slots, id);
1362 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1363 		return -ENOENT;
1364 
1365 	kvm_arch_sync_dirty_log(kvm, *memslot);
1366 
1367 	n = kvm_dirty_bitmap_bytes(*memslot);
1368 
1369 	for (i = 0; !any && i < n/sizeof(long); ++i)
1370 		any = (*memslot)->dirty_bitmap[i];
1371 
1372 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1373 		return -EFAULT;
1374 
1375 	if (any)
1376 		*is_dirty = 1;
1377 	return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1380 
1381 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1382 /**
1383  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1384  *	and reenable dirty page tracking for the corresponding pages.
1385  * @kvm:	pointer to kvm instance
1386  * @log:	slot id and address to which we copy the log
1387  *
1388  * We need to keep it in mind that VCPU threads can write to the bitmap
1389  * concurrently. So, to avoid losing track of dirty pages we keep the
1390  * following order:
1391  *
1392  *    1. Take a snapshot of the bit and clear it if needed.
1393  *    2. Write protect the corresponding page.
1394  *    3. Copy the snapshot to the userspace.
1395  *    4. Upon return caller flushes TLB's if needed.
1396  *
1397  * Between 2 and 4, the guest may write to the page using the remaining TLB
1398  * entry.  This is not a problem because the page is reported dirty using
1399  * the snapshot taken before and step 4 ensures that writes done after
1400  * exiting to userspace will be logged for the next call.
1401  *
1402  */
1403 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1404 {
1405 	struct kvm_memslots *slots;
1406 	struct kvm_memory_slot *memslot;
1407 	int i, as_id, id;
1408 	unsigned long n;
1409 	unsigned long *dirty_bitmap;
1410 	unsigned long *dirty_bitmap_buffer;
1411 	bool flush;
1412 
1413 	as_id = log->slot >> 16;
1414 	id = (u16)log->slot;
1415 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1416 		return -EINVAL;
1417 
1418 	slots = __kvm_memslots(kvm, as_id);
1419 	memslot = id_to_memslot(slots, id);
1420 	if (!memslot || !memslot->dirty_bitmap)
1421 		return -ENOENT;
1422 
1423 	dirty_bitmap = memslot->dirty_bitmap;
1424 
1425 	kvm_arch_sync_dirty_log(kvm, memslot);
1426 
1427 	n = kvm_dirty_bitmap_bytes(memslot);
1428 	flush = false;
1429 	if (kvm->manual_dirty_log_protect) {
1430 		/*
1431 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1432 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1433 		 * is some code duplication between this function and
1434 		 * kvm_get_dirty_log, but hopefully all architecture
1435 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1436 		 * can be eliminated.
1437 		 */
1438 		dirty_bitmap_buffer = dirty_bitmap;
1439 	} else {
1440 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1441 		memset(dirty_bitmap_buffer, 0, n);
1442 
1443 		spin_lock(&kvm->mmu_lock);
1444 		for (i = 0; i < n / sizeof(long); i++) {
1445 			unsigned long mask;
1446 			gfn_t offset;
1447 
1448 			if (!dirty_bitmap[i])
1449 				continue;
1450 
1451 			flush = true;
1452 			mask = xchg(&dirty_bitmap[i], 0);
1453 			dirty_bitmap_buffer[i] = mask;
1454 
1455 			offset = i * BITS_PER_LONG;
1456 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1457 								offset, mask);
1458 		}
1459 		spin_unlock(&kvm->mmu_lock);
1460 	}
1461 
1462 	if (flush)
1463 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1464 
1465 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1466 		return -EFAULT;
1467 	return 0;
1468 }
1469 
1470 
1471 /**
1472  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1473  * @kvm: kvm instance
1474  * @log: slot id and address to which we copy the log
1475  *
1476  * Steps 1-4 below provide general overview of dirty page logging. See
1477  * kvm_get_dirty_log_protect() function description for additional details.
1478  *
1479  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1480  * always flush the TLB (step 4) even if previous step failed  and the dirty
1481  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1482  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1483  * writes will be marked dirty for next log read.
1484  *
1485  *   1. Take a snapshot of the bit and clear it if needed.
1486  *   2. Write protect the corresponding page.
1487  *   3. Copy the snapshot to the userspace.
1488  *   4. Flush TLB's if needed.
1489  */
1490 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1491 				      struct kvm_dirty_log *log)
1492 {
1493 	int r;
1494 
1495 	mutex_lock(&kvm->slots_lock);
1496 
1497 	r = kvm_get_dirty_log_protect(kvm, log);
1498 
1499 	mutex_unlock(&kvm->slots_lock);
1500 	return r;
1501 }
1502 
1503 /**
1504  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1505  *	and reenable dirty page tracking for the corresponding pages.
1506  * @kvm:	pointer to kvm instance
1507  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1508  */
1509 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1510 				       struct kvm_clear_dirty_log *log)
1511 {
1512 	struct kvm_memslots *slots;
1513 	struct kvm_memory_slot *memslot;
1514 	int as_id, id;
1515 	gfn_t offset;
1516 	unsigned long i, n;
1517 	unsigned long *dirty_bitmap;
1518 	unsigned long *dirty_bitmap_buffer;
1519 	bool flush;
1520 
1521 	as_id = log->slot >> 16;
1522 	id = (u16)log->slot;
1523 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1524 		return -EINVAL;
1525 
1526 	if (log->first_page & 63)
1527 		return -EINVAL;
1528 
1529 	slots = __kvm_memslots(kvm, as_id);
1530 	memslot = id_to_memslot(slots, id);
1531 	if (!memslot || !memslot->dirty_bitmap)
1532 		return -ENOENT;
1533 
1534 	dirty_bitmap = memslot->dirty_bitmap;
1535 
1536 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1537 
1538 	if (log->first_page > memslot->npages ||
1539 	    log->num_pages > memslot->npages - log->first_page ||
1540 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1541 	    return -EINVAL;
1542 
1543 	kvm_arch_sync_dirty_log(kvm, memslot);
1544 
1545 	flush = false;
1546 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1547 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1548 		return -EFAULT;
1549 
1550 	spin_lock(&kvm->mmu_lock);
1551 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1552 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1553 	     i++, offset += BITS_PER_LONG) {
1554 		unsigned long mask = *dirty_bitmap_buffer++;
1555 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1556 		if (!mask)
1557 			continue;
1558 
1559 		mask &= atomic_long_fetch_andnot(mask, p);
1560 
1561 		/*
1562 		 * mask contains the bits that really have been cleared.  This
1563 		 * never includes any bits beyond the length of the memslot (if
1564 		 * the length is not aligned to 64 pages), therefore it is not
1565 		 * a problem if userspace sets them in log->dirty_bitmap.
1566 		*/
1567 		if (mask) {
1568 			flush = true;
1569 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1570 								offset, mask);
1571 		}
1572 	}
1573 	spin_unlock(&kvm->mmu_lock);
1574 
1575 	if (flush)
1576 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1577 
1578 	return 0;
1579 }
1580 
1581 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1582 					struct kvm_clear_dirty_log *log)
1583 {
1584 	int r;
1585 
1586 	mutex_lock(&kvm->slots_lock);
1587 
1588 	r = kvm_clear_dirty_log_protect(kvm, log);
1589 
1590 	mutex_unlock(&kvm->slots_lock);
1591 	return r;
1592 }
1593 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1594 
1595 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1596 {
1597 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1598 }
1599 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1600 
1601 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1602 {
1603 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1604 }
1605 
1606 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1607 {
1608 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1609 
1610 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1611 	      memslot->flags & KVM_MEMSLOT_INVALID)
1612 		return false;
1613 
1614 	return true;
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1617 
1618 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1619 {
1620 	struct vm_area_struct *vma;
1621 	unsigned long addr, size;
1622 
1623 	size = PAGE_SIZE;
1624 
1625 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1626 	if (kvm_is_error_hva(addr))
1627 		return PAGE_SIZE;
1628 
1629 	down_read(&current->mm->mmap_sem);
1630 	vma = find_vma(current->mm, addr);
1631 	if (!vma)
1632 		goto out;
1633 
1634 	size = vma_kernel_pagesize(vma);
1635 
1636 out:
1637 	up_read(&current->mm->mmap_sem);
1638 
1639 	return size;
1640 }
1641 
1642 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1643 {
1644 	return slot->flags & KVM_MEM_READONLY;
1645 }
1646 
1647 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1648 				       gfn_t *nr_pages, bool write)
1649 {
1650 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1651 		return KVM_HVA_ERR_BAD;
1652 
1653 	if (memslot_is_readonly(slot) && write)
1654 		return KVM_HVA_ERR_RO_BAD;
1655 
1656 	if (nr_pages)
1657 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1658 
1659 	return __gfn_to_hva_memslot(slot, gfn);
1660 }
1661 
1662 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1663 				     gfn_t *nr_pages)
1664 {
1665 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1666 }
1667 
1668 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1669 					gfn_t gfn)
1670 {
1671 	return gfn_to_hva_many(slot, gfn, NULL);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1674 
1675 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1676 {
1677 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_hva);
1680 
1681 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1682 {
1683 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1686 
1687 /*
1688  * Return the hva of a @gfn and the R/W attribute if possible.
1689  *
1690  * @slot: the kvm_memory_slot which contains @gfn
1691  * @gfn: the gfn to be translated
1692  * @writable: used to return the read/write attribute of the @slot if the hva
1693  * is valid and @writable is not NULL
1694  */
1695 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1696 				      gfn_t gfn, bool *writable)
1697 {
1698 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1699 
1700 	if (!kvm_is_error_hva(hva) && writable)
1701 		*writable = !memslot_is_readonly(slot);
1702 
1703 	return hva;
1704 }
1705 
1706 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1707 {
1708 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1709 
1710 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1711 }
1712 
1713 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1714 {
1715 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1716 
1717 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1718 }
1719 
1720 static inline int check_user_page_hwpoison(unsigned long addr)
1721 {
1722 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1723 
1724 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1725 	return rc == -EHWPOISON;
1726 }
1727 
1728 /*
1729  * The fast path to get the writable pfn which will be stored in @pfn,
1730  * true indicates success, otherwise false is returned.  It's also the
1731  * only part that runs if we can in atomic context.
1732  */
1733 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1734 			    bool *writable, kvm_pfn_t *pfn)
1735 {
1736 	struct page *page[1];
1737 	int npages;
1738 
1739 	/*
1740 	 * Fast pin a writable pfn only if it is a write fault request
1741 	 * or the caller allows to map a writable pfn for a read fault
1742 	 * request.
1743 	 */
1744 	if (!(write_fault || writable))
1745 		return false;
1746 
1747 	npages = __get_user_pages_fast(addr, 1, 1, page);
1748 	if (npages == 1) {
1749 		*pfn = page_to_pfn(page[0]);
1750 
1751 		if (writable)
1752 			*writable = true;
1753 		return true;
1754 	}
1755 
1756 	return false;
1757 }
1758 
1759 /*
1760  * The slow path to get the pfn of the specified host virtual address,
1761  * 1 indicates success, -errno is returned if error is detected.
1762  */
1763 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1764 			   bool *writable, kvm_pfn_t *pfn)
1765 {
1766 	unsigned int flags = FOLL_HWPOISON;
1767 	struct page *page;
1768 	int npages = 0;
1769 
1770 	might_sleep();
1771 
1772 	if (writable)
1773 		*writable = write_fault;
1774 
1775 	if (write_fault)
1776 		flags |= FOLL_WRITE;
1777 	if (async)
1778 		flags |= FOLL_NOWAIT;
1779 
1780 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1781 	if (npages != 1)
1782 		return npages;
1783 
1784 	/* map read fault as writable if possible */
1785 	if (unlikely(!write_fault) && writable) {
1786 		struct page *wpage;
1787 
1788 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1789 			*writable = true;
1790 			put_page(page);
1791 			page = wpage;
1792 		}
1793 	}
1794 	*pfn = page_to_pfn(page);
1795 	return npages;
1796 }
1797 
1798 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1799 {
1800 	if (unlikely(!(vma->vm_flags & VM_READ)))
1801 		return false;
1802 
1803 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1804 		return false;
1805 
1806 	return true;
1807 }
1808 
1809 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1810 			       unsigned long addr, bool *async,
1811 			       bool write_fault, bool *writable,
1812 			       kvm_pfn_t *p_pfn)
1813 {
1814 	unsigned long pfn;
1815 	int r;
1816 
1817 	r = follow_pfn(vma, addr, &pfn);
1818 	if (r) {
1819 		/*
1820 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1821 		 * not call the fault handler, so do it here.
1822 		 */
1823 		bool unlocked = false;
1824 		r = fixup_user_fault(current, current->mm, addr,
1825 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1826 				     &unlocked);
1827 		if (unlocked)
1828 			return -EAGAIN;
1829 		if (r)
1830 			return r;
1831 
1832 		r = follow_pfn(vma, addr, &pfn);
1833 		if (r)
1834 			return r;
1835 
1836 	}
1837 
1838 	if (writable)
1839 		*writable = true;
1840 
1841 	/*
1842 	 * Get a reference here because callers of *hva_to_pfn* and
1843 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1844 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1845 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1846 	 * simply do nothing for reserved pfns.
1847 	 *
1848 	 * Whoever called remap_pfn_range is also going to call e.g.
1849 	 * unmap_mapping_range before the underlying pages are freed,
1850 	 * causing a call to our MMU notifier.
1851 	 */
1852 	kvm_get_pfn(pfn);
1853 
1854 	*p_pfn = pfn;
1855 	return 0;
1856 }
1857 
1858 /*
1859  * Pin guest page in memory and return its pfn.
1860  * @addr: host virtual address which maps memory to the guest
1861  * @atomic: whether this function can sleep
1862  * @async: whether this function need to wait IO complete if the
1863  *         host page is not in the memory
1864  * @write_fault: whether we should get a writable host page
1865  * @writable: whether it allows to map a writable host page for !@write_fault
1866  *
1867  * The function will map a writable host page for these two cases:
1868  * 1): @write_fault = true
1869  * 2): @write_fault = false && @writable, @writable will tell the caller
1870  *     whether the mapping is writable.
1871  */
1872 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1873 			bool write_fault, bool *writable)
1874 {
1875 	struct vm_area_struct *vma;
1876 	kvm_pfn_t pfn = 0;
1877 	int npages, r;
1878 
1879 	/* we can do it either atomically or asynchronously, not both */
1880 	BUG_ON(atomic && async);
1881 
1882 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1883 		return pfn;
1884 
1885 	if (atomic)
1886 		return KVM_PFN_ERR_FAULT;
1887 
1888 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1889 	if (npages == 1)
1890 		return pfn;
1891 
1892 	down_read(&current->mm->mmap_sem);
1893 	if (npages == -EHWPOISON ||
1894 	      (!async && check_user_page_hwpoison(addr))) {
1895 		pfn = KVM_PFN_ERR_HWPOISON;
1896 		goto exit;
1897 	}
1898 
1899 retry:
1900 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1901 
1902 	if (vma == NULL)
1903 		pfn = KVM_PFN_ERR_FAULT;
1904 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1905 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1906 		if (r == -EAGAIN)
1907 			goto retry;
1908 		if (r < 0)
1909 			pfn = KVM_PFN_ERR_FAULT;
1910 	} else {
1911 		if (async && vma_is_valid(vma, write_fault))
1912 			*async = true;
1913 		pfn = KVM_PFN_ERR_FAULT;
1914 	}
1915 exit:
1916 	up_read(&current->mm->mmap_sem);
1917 	return pfn;
1918 }
1919 
1920 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1921 			       bool atomic, bool *async, bool write_fault,
1922 			       bool *writable)
1923 {
1924 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1925 
1926 	if (addr == KVM_HVA_ERR_RO_BAD) {
1927 		if (writable)
1928 			*writable = false;
1929 		return KVM_PFN_ERR_RO_FAULT;
1930 	}
1931 
1932 	if (kvm_is_error_hva(addr)) {
1933 		if (writable)
1934 			*writable = false;
1935 		return KVM_PFN_NOSLOT;
1936 	}
1937 
1938 	/* Do not map writable pfn in the readonly memslot. */
1939 	if (writable && memslot_is_readonly(slot)) {
1940 		*writable = false;
1941 		writable = NULL;
1942 	}
1943 
1944 	return hva_to_pfn(addr, atomic, async, write_fault,
1945 			  writable);
1946 }
1947 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1948 
1949 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1950 		      bool *writable)
1951 {
1952 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1953 				    write_fault, writable);
1954 }
1955 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1956 
1957 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1958 {
1959 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1960 }
1961 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1962 
1963 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1964 {
1965 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1966 }
1967 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1968 
1969 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1970 {
1971 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1974 
1975 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1976 {
1977 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1978 }
1979 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1980 
1981 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1982 {
1983 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1986 
1987 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1988 			    struct page **pages, int nr_pages)
1989 {
1990 	unsigned long addr;
1991 	gfn_t entry = 0;
1992 
1993 	addr = gfn_to_hva_many(slot, gfn, &entry);
1994 	if (kvm_is_error_hva(addr))
1995 		return -1;
1996 
1997 	if (entry < nr_pages)
1998 		return 0;
1999 
2000 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
2001 }
2002 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2003 
2004 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2005 {
2006 	if (is_error_noslot_pfn(pfn))
2007 		return KVM_ERR_PTR_BAD_PAGE;
2008 
2009 	if (kvm_is_reserved_pfn(pfn)) {
2010 		WARN_ON(1);
2011 		return KVM_ERR_PTR_BAD_PAGE;
2012 	}
2013 
2014 	return pfn_to_page(pfn);
2015 }
2016 
2017 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2018 {
2019 	kvm_pfn_t pfn;
2020 
2021 	pfn = gfn_to_pfn(kvm, gfn);
2022 
2023 	return kvm_pfn_to_page(pfn);
2024 }
2025 EXPORT_SYMBOL_GPL(gfn_to_page);
2026 
2027 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2028 {
2029 	if (pfn == 0)
2030 		return;
2031 
2032 	if (cache)
2033 		cache->pfn = cache->gfn = 0;
2034 
2035 	if (dirty)
2036 		kvm_release_pfn_dirty(pfn);
2037 	else
2038 		kvm_release_pfn_clean(pfn);
2039 }
2040 
2041 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2042 				 struct gfn_to_pfn_cache *cache, u64 gen)
2043 {
2044 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2045 
2046 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2047 	cache->gfn = gfn;
2048 	cache->dirty = false;
2049 	cache->generation = gen;
2050 }
2051 
2052 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2053 			 struct kvm_host_map *map,
2054 			 struct gfn_to_pfn_cache *cache,
2055 			 bool atomic)
2056 {
2057 	kvm_pfn_t pfn;
2058 	void *hva = NULL;
2059 	struct page *page = KVM_UNMAPPED_PAGE;
2060 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2061 	u64 gen = slots->generation;
2062 
2063 	if (!map)
2064 		return -EINVAL;
2065 
2066 	if (cache) {
2067 		if (!cache->pfn || cache->gfn != gfn ||
2068 			cache->generation != gen) {
2069 			if (atomic)
2070 				return -EAGAIN;
2071 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2072 		}
2073 		pfn = cache->pfn;
2074 	} else {
2075 		if (atomic)
2076 			return -EAGAIN;
2077 		pfn = gfn_to_pfn_memslot(slot, gfn);
2078 	}
2079 	if (is_error_noslot_pfn(pfn))
2080 		return -EINVAL;
2081 
2082 	if (pfn_valid(pfn)) {
2083 		page = pfn_to_page(pfn);
2084 		if (atomic)
2085 			hva = kmap_atomic(page);
2086 		else
2087 			hva = kmap(page);
2088 #ifdef CONFIG_HAS_IOMEM
2089 	} else if (!atomic) {
2090 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2091 	} else {
2092 		return -EINVAL;
2093 #endif
2094 	}
2095 
2096 	if (!hva)
2097 		return -EFAULT;
2098 
2099 	map->page = page;
2100 	map->hva = hva;
2101 	map->pfn = pfn;
2102 	map->gfn = gfn;
2103 
2104 	return 0;
2105 }
2106 
2107 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2108 		struct gfn_to_pfn_cache *cache, bool atomic)
2109 {
2110 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2111 			cache, atomic);
2112 }
2113 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2114 
2115 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2116 {
2117 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2118 		NULL, false);
2119 }
2120 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2121 
2122 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2123 			struct kvm_host_map *map,
2124 			struct gfn_to_pfn_cache *cache,
2125 			bool dirty, bool atomic)
2126 {
2127 	if (!map)
2128 		return;
2129 
2130 	if (!map->hva)
2131 		return;
2132 
2133 	if (map->page != KVM_UNMAPPED_PAGE) {
2134 		if (atomic)
2135 			kunmap_atomic(map->hva);
2136 		else
2137 			kunmap(map->page);
2138 	}
2139 #ifdef CONFIG_HAS_IOMEM
2140 	else if (!atomic)
2141 		memunmap(map->hva);
2142 	else
2143 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2144 #endif
2145 
2146 	if (dirty)
2147 		mark_page_dirty_in_slot(memslot, map->gfn);
2148 
2149 	if (cache)
2150 		cache->dirty |= dirty;
2151 	else
2152 		kvm_release_pfn(map->pfn, dirty, NULL);
2153 
2154 	map->hva = NULL;
2155 	map->page = NULL;
2156 }
2157 
2158 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2159 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2160 {
2161 	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2162 			cache, dirty, atomic);
2163 	return 0;
2164 }
2165 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2166 
2167 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2168 {
2169 	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2170 			dirty, false);
2171 }
2172 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2173 
2174 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2175 {
2176 	kvm_pfn_t pfn;
2177 
2178 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2179 
2180 	return kvm_pfn_to_page(pfn);
2181 }
2182 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2183 
2184 void kvm_release_page_clean(struct page *page)
2185 {
2186 	WARN_ON(is_error_page(page));
2187 
2188 	kvm_release_pfn_clean(page_to_pfn(page));
2189 }
2190 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2191 
2192 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2193 {
2194 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2195 		put_page(pfn_to_page(pfn));
2196 }
2197 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2198 
2199 void kvm_release_page_dirty(struct page *page)
2200 {
2201 	WARN_ON(is_error_page(page));
2202 
2203 	kvm_release_pfn_dirty(page_to_pfn(page));
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2206 
2207 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2208 {
2209 	kvm_set_pfn_dirty(pfn);
2210 	kvm_release_pfn_clean(pfn);
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2213 
2214 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2215 {
2216 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2217 		SetPageDirty(pfn_to_page(pfn));
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2220 
2221 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2222 {
2223 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2224 		mark_page_accessed(pfn_to_page(pfn));
2225 }
2226 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2227 
2228 void kvm_get_pfn(kvm_pfn_t pfn)
2229 {
2230 	if (!kvm_is_reserved_pfn(pfn))
2231 		get_page(pfn_to_page(pfn));
2232 }
2233 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2234 
2235 static int next_segment(unsigned long len, int offset)
2236 {
2237 	if (len > PAGE_SIZE - offset)
2238 		return PAGE_SIZE - offset;
2239 	else
2240 		return len;
2241 }
2242 
2243 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2244 				 void *data, int offset, int len)
2245 {
2246 	int r;
2247 	unsigned long addr;
2248 
2249 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2250 	if (kvm_is_error_hva(addr))
2251 		return -EFAULT;
2252 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2253 	if (r)
2254 		return -EFAULT;
2255 	return 0;
2256 }
2257 
2258 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2259 			int len)
2260 {
2261 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2262 
2263 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2264 }
2265 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2266 
2267 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2268 			     int offset, int len)
2269 {
2270 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2271 
2272 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2275 
2276 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2277 {
2278 	gfn_t gfn = gpa >> PAGE_SHIFT;
2279 	int seg;
2280 	int offset = offset_in_page(gpa);
2281 	int ret;
2282 
2283 	while ((seg = next_segment(len, offset)) != 0) {
2284 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2285 		if (ret < 0)
2286 			return ret;
2287 		offset = 0;
2288 		len -= seg;
2289 		data += seg;
2290 		++gfn;
2291 	}
2292 	return 0;
2293 }
2294 EXPORT_SYMBOL_GPL(kvm_read_guest);
2295 
2296 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2297 {
2298 	gfn_t gfn = gpa >> PAGE_SHIFT;
2299 	int seg;
2300 	int offset = offset_in_page(gpa);
2301 	int ret;
2302 
2303 	while ((seg = next_segment(len, offset)) != 0) {
2304 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2305 		if (ret < 0)
2306 			return ret;
2307 		offset = 0;
2308 		len -= seg;
2309 		data += seg;
2310 		++gfn;
2311 	}
2312 	return 0;
2313 }
2314 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2315 
2316 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2317 			           void *data, int offset, unsigned long len)
2318 {
2319 	int r;
2320 	unsigned long addr;
2321 
2322 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2323 	if (kvm_is_error_hva(addr))
2324 		return -EFAULT;
2325 	pagefault_disable();
2326 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2327 	pagefault_enable();
2328 	if (r)
2329 		return -EFAULT;
2330 	return 0;
2331 }
2332 
2333 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2334 			       void *data, unsigned long len)
2335 {
2336 	gfn_t gfn = gpa >> PAGE_SHIFT;
2337 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2338 	int offset = offset_in_page(gpa);
2339 
2340 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2343 
2344 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2345 			          const void *data, int offset, int len)
2346 {
2347 	int r;
2348 	unsigned long addr;
2349 
2350 	addr = gfn_to_hva_memslot(memslot, gfn);
2351 	if (kvm_is_error_hva(addr))
2352 		return -EFAULT;
2353 	r = __copy_to_user((void __user *)addr + offset, data, len);
2354 	if (r)
2355 		return -EFAULT;
2356 	mark_page_dirty_in_slot(memslot, gfn);
2357 	return 0;
2358 }
2359 
2360 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2361 			 const void *data, int offset, int len)
2362 {
2363 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2364 
2365 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2366 }
2367 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2368 
2369 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2370 			      const void *data, int offset, int len)
2371 {
2372 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2373 
2374 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2377 
2378 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2379 		    unsigned long len)
2380 {
2381 	gfn_t gfn = gpa >> PAGE_SHIFT;
2382 	int seg;
2383 	int offset = offset_in_page(gpa);
2384 	int ret;
2385 
2386 	while ((seg = next_segment(len, offset)) != 0) {
2387 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2388 		if (ret < 0)
2389 			return ret;
2390 		offset = 0;
2391 		len -= seg;
2392 		data += seg;
2393 		++gfn;
2394 	}
2395 	return 0;
2396 }
2397 EXPORT_SYMBOL_GPL(kvm_write_guest);
2398 
2399 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2400 		         unsigned long len)
2401 {
2402 	gfn_t gfn = gpa >> PAGE_SHIFT;
2403 	int seg;
2404 	int offset = offset_in_page(gpa);
2405 	int ret;
2406 
2407 	while ((seg = next_segment(len, offset)) != 0) {
2408 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2409 		if (ret < 0)
2410 			return ret;
2411 		offset = 0;
2412 		len -= seg;
2413 		data += seg;
2414 		++gfn;
2415 	}
2416 	return 0;
2417 }
2418 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2419 
2420 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2421 				       struct gfn_to_hva_cache *ghc,
2422 				       gpa_t gpa, unsigned long len)
2423 {
2424 	int offset = offset_in_page(gpa);
2425 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2426 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2427 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2428 	gfn_t nr_pages_avail;
2429 
2430 	/* Update ghc->generation before performing any error checks. */
2431 	ghc->generation = slots->generation;
2432 
2433 	if (start_gfn > end_gfn) {
2434 		ghc->hva = KVM_HVA_ERR_BAD;
2435 		return -EINVAL;
2436 	}
2437 
2438 	/*
2439 	 * If the requested region crosses two memslots, we still
2440 	 * verify that the entire region is valid here.
2441 	 */
2442 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2443 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2444 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2445 					   &nr_pages_avail);
2446 		if (kvm_is_error_hva(ghc->hva))
2447 			return -EFAULT;
2448 	}
2449 
2450 	/* Use the slow path for cross page reads and writes. */
2451 	if (nr_pages_needed == 1)
2452 		ghc->hva += offset;
2453 	else
2454 		ghc->memslot = NULL;
2455 
2456 	ghc->gpa = gpa;
2457 	ghc->len = len;
2458 	return 0;
2459 }
2460 
2461 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2462 			      gpa_t gpa, unsigned long len)
2463 {
2464 	struct kvm_memslots *slots = kvm_memslots(kvm);
2465 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2468 
2469 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2470 				  void *data, unsigned int offset,
2471 				  unsigned long len)
2472 {
2473 	struct kvm_memslots *slots = kvm_memslots(kvm);
2474 	int r;
2475 	gpa_t gpa = ghc->gpa + offset;
2476 
2477 	BUG_ON(len + offset > ghc->len);
2478 
2479 	if (slots->generation != ghc->generation) {
2480 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2481 			return -EFAULT;
2482 	}
2483 
2484 	if (kvm_is_error_hva(ghc->hva))
2485 		return -EFAULT;
2486 
2487 	if (unlikely(!ghc->memslot))
2488 		return kvm_write_guest(kvm, gpa, data, len);
2489 
2490 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2491 	if (r)
2492 		return -EFAULT;
2493 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2494 
2495 	return 0;
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2498 
2499 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2500 			   void *data, unsigned long len)
2501 {
2502 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2503 }
2504 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2505 
2506 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2507 			   void *data, unsigned long len)
2508 {
2509 	struct kvm_memslots *slots = kvm_memslots(kvm);
2510 	int r;
2511 
2512 	BUG_ON(len > ghc->len);
2513 
2514 	if (slots->generation != ghc->generation) {
2515 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2516 			return -EFAULT;
2517 	}
2518 
2519 	if (kvm_is_error_hva(ghc->hva))
2520 		return -EFAULT;
2521 
2522 	if (unlikely(!ghc->memslot))
2523 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2524 
2525 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2526 	if (r)
2527 		return -EFAULT;
2528 
2529 	return 0;
2530 }
2531 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2532 
2533 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2534 {
2535 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2536 
2537 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2538 }
2539 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2540 
2541 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2542 {
2543 	gfn_t gfn = gpa >> PAGE_SHIFT;
2544 	int seg;
2545 	int offset = offset_in_page(gpa);
2546 	int ret;
2547 
2548 	while ((seg = next_segment(len, offset)) != 0) {
2549 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2550 		if (ret < 0)
2551 			return ret;
2552 		offset = 0;
2553 		len -= seg;
2554 		++gfn;
2555 	}
2556 	return 0;
2557 }
2558 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2559 
2560 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2561 				    gfn_t gfn)
2562 {
2563 	if (memslot && memslot->dirty_bitmap) {
2564 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2565 
2566 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2567 	}
2568 }
2569 
2570 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2571 {
2572 	struct kvm_memory_slot *memslot;
2573 
2574 	memslot = gfn_to_memslot(kvm, gfn);
2575 	mark_page_dirty_in_slot(memslot, gfn);
2576 }
2577 EXPORT_SYMBOL_GPL(mark_page_dirty);
2578 
2579 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2580 {
2581 	struct kvm_memory_slot *memslot;
2582 
2583 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2584 	mark_page_dirty_in_slot(memslot, gfn);
2585 }
2586 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2587 
2588 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2589 {
2590 	if (!vcpu->sigset_active)
2591 		return;
2592 
2593 	/*
2594 	 * This does a lockless modification of ->real_blocked, which is fine
2595 	 * because, only current can change ->real_blocked and all readers of
2596 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2597 	 * of ->blocked.
2598 	 */
2599 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2600 }
2601 
2602 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2603 {
2604 	if (!vcpu->sigset_active)
2605 		return;
2606 
2607 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2608 	sigemptyset(&current->real_blocked);
2609 }
2610 
2611 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2612 {
2613 	unsigned int old, val, grow, grow_start;
2614 
2615 	old = val = vcpu->halt_poll_ns;
2616 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2617 	grow = READ_ONCE(halt_poll_ns_grow);
2618 	if (!grow)
2619 		goto out;
2620 
2621 	val *= grow;
2622 	if (val < grow_start)
2623 		val = grow_start;
2624 
2625 	if (val > halt_poll_ns)
2626 		val = halt_poll_ns;
2627 
2628 	vcpu->halt_poll_ns = val;
2629 out:
2630 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2631 }
2632 
2633 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2634 {
2635 	unsigned int old, val, shrink;
2636 
2637 	old = val = vcpu->halt_poll_ns;
2638 	shrink = READ_ONCE(halt_poll_ns_shrink);
2639 	if (shrink == 0)
2640 		val = 0;
2641 	else
2642 		val /= shrink;
2643 
2644 	vcpu->halt_poll_ns = val;
2645 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2646 }
2647 
2648 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2649 {
2650 	int ret = -EINTR;
2651 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2652 
2653 	if (kvm_arch_vcpu_runnable(vcpu)) {
2654 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2655 		goto out;
2656 	}
2657 	if (kvm_cpu_has_pending_timer(vcpu))
2658 		goto out;
2659 	if (signal_pending(current))
2660 		goto out;
2661 
2662 	ret = 0;
2663 out:
2664 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2665 	return ret;
2666 }
2667 
2668 /*
2669  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2670  */
2671 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2672 {
2673 	ktime_t start, cur;
2674 	DECLARE_SWAITQUEUE(wait);
2675 	bool waited = false;
2676 	u64 block_ns;
2677 
2678 	kvm_arch_vcpu_blocking(vcpu);
2679 
2680 	start = cur = ktime_get();
2681 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2682 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2683 
2684 		++vcpu->stat.halt_attempted_poll;
2685 		do {
2686 			/*
2687 			 * This sets KVM_REQ_UNHALT if an interrupt
2688 			 * arrives.
2689 			 */
2690 			if (kvm_vcpu_check_block(vcpu) < 0) {
2691 				++vcpu->stat.halt_successful_poll;
2692 				if (!vcpu_valid_wakeup(vcpu))
2693 					++vcpu->stat.halt_poll_invalid;
2694 				goto out;
2695 			}
2696 			cur = ktime_get();
2697 		} while (single_task_running() && ktime_before(cur, stop));
2698 	}
2699 
2700 	for (;;) {
2701 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2702 
2703 		if (kvm_vcpu_check_block(vcpu) < 0)
2704 			break;
2705 
2706 		waited = true;
2707 		schedule();
2708 	}
2709 
2710 	finish_swait(&vcpu->wq, &wait);
2711 	cur = ktime_get();
2712 out:
2713 	kvm_arch_vcpu_unblocking(vcpu);
2714 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2715 
2716 	if (!kvm_arch_no_poll(vcpu)) {
2717 		if (!vcpu_valid_wakeup(vcpu)) {
2718 			shrink_halt_poll_ns(vcpu);
2719 		} else if (halt_poll_ns) {
2720 			if (block_ns <= vcpu->halt_poll_ns)
2721 				;
2722 			/* we had a long block, shrink polling */
2723 			else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2724 				shrink_halt_poll_ns(vcpu);
2725 			/* we had a short halt and our poll time is too small */
2726 			else if (vcpu->halt_poll_ns < halt_poll_ns &&
2727 				block_ns < halt_poll_ns)
2728 				grow_halt_poll_ns(vcpu);
2729 		} else {
2730 			vcpu->halt_poll_ns = 0;
2731 		}
2732 	}
2733 
2734 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2735 	kvm_arch_vcpu_block_finish(vcpu);
2736 }
2737 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2738 
2739 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2740 {
2741 	struct swait_queue_head *wqp;
2742 
2743 	wqp = kvm_arch_vcpu_wq(vcpu);
2744 	if (swq_has_sleeper(wqp)) {
2745 		swake_up_one(wqp);
2746 		WRITE_ONCE(vcpu->ready, true);
2747 		++vcpu->stat.halt_wakeup;
2748 		return true;
2749 	}
2750 
2751 	return false;
2752 }
2753 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2754 
2755 #ifndef CONFIG_S390
2756 /*
2757  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2758  */
2759 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2760 {
2761 	int me;
2762 	int cpu = vcpu->cpu;
2763 
2764 	if (kvm_vcpu_wake_up(vcpu))
2765 		return;
2766 
2767 	me = get_cpu();
2768 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2769 		if (kvm_arch_vcpu_should_kick(vcpu))
2770 			smp_send_reschedule(cpu);
2771 	put_cpu();
2772 }
2773 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2774 #endif /* !CONFIG_S390 */
2775 
2776 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2777 {
2778 	struct pid *pid;
2779 	struct task_struct *task = NULL;
2780 	int ret = 0;
2781 
2782 	rcu_read_lock();
2783 	pid = rcu_dereference(target->pid);
2784 	if (pid)
2785 		task = get_pid_task(pid, PIDTYPE_PID);
2786 	rcu_read_unlock();
2787 	if (!task)
2788 		return ret;
2789 	ret = yield_to(task, 1);
2790 	put_task_struct(task);
2791 
2792 	return ret;
2793 }
2794 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2795 
2796 /*
2797  * Helper that checks whether a VCPU is eligible for directed yield.
2798  * Most eligible candidate to yield is decided by following heuristics:
2799  *
2800  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2801  *  (preempted lock holder), indicated by @in_spin_loop.
2802  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2803  *
2804  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2805  *  chance last time (mostly it has become eligible now since we have probably
2806  *  yielded to lockholder in last iteration. This is done by toggling
2807  *  @dy_eligible each time a VCPU checked for eligibility.)
2808  *
2809  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2810  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2811  *  burning. Giving priority for a potential lock-holder increases lock
2812  *  progress.
2813  *
2814  *  Since algorithm is based on heuristics, accessing another VCPU data without
2815  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2816  *  and continue with next VCPU and so on.
2817  */
2818 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2819 {
2820 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2821 	bool eligible;
2822 
2823 	eligible = !vcpu->spin_loop.in_spin_loop ||
2824 		    vcpu->spin_loop.dy_eligible;
2825 
2826 	if (vcpu->spin_loop.in_spin_loop)
2827 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2828 
2829 	return eligible;
2830 #else
2831 	return true;
2832 #endif
2833 }
2834 
2835 /*
2836  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2837  * a vcpu_load/vcpu_put pair.  However, for most architectures
2838  * kvm_arch_vcpu_runnable does not require vcpu_load.
2839  */
2840 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2841 {
2842 	return kvm_arch_vcpu_runnable(vcpu);
2843 }
2844 
2845 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2846 {
2847 	if (kvm_arch_dy_runnable(vcpu))
2848 		return true;
2849 
2850 #ifdef CONFIG_KVM_ASYNC_PF
2851 	if (!list_empty_careful(&vcpu->async_pf.done))
2852 		return true;
2853 #endif
2854 
2855 	return false;
2856 }
2857 
2858 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2859 {
2860 	struct kvm *kvm = me->kvm;
2861 	struct kvm_vcpu *vcpu;
2862 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2863 	int yielded = 0;
2864 	int try = 3;
2865 	int pass;
2866 	int i;
2867 
2868 	kvm_vcpu_set_in_spin_loop(me, true);
2869 	/*
2870 	 * We boost the priority of a VCPU that is runnable but not
2871 	 * currently running, because it got preempted by something
2872 	 * else and called schedule in __vcpu_run.  Hopefully that
2873 	 * VCPU is holding the lock that we need and will release it.
2874 	 * We approximate round-robin by starting at the last boosted VCPU.
2875 	 */
2876 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2877 		kvm_for_each_vcpu(i, vcpu, kvm) {
2878 			if (!pass && i <= last_boosted_vcpu) {
2879 				i = last_boosted_vcpu;
2880 				continue;
2881 			} else if (pass && i > last_boosted_vcpu)
2882 				break;
2883 			if (!READ_ONCE(vcpu->ready))
2884 				continue;
2885 			if (vcpu == me)
2886 				continue;
2887 			if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2888 				continue;
2889 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2890 				!kvm_arch_vcpu_in_kernel(vcpu))
2891 				continue;
2892 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2893 				continue;
2894 
2895 			yielded = kvm_vcpu_yield_to(vcpu);
2896 			if (yielded > 0) {
2897 				kvm->last_boosted_vcpu = i;
2898 				break;
2899 			} else if (yielded < 0) {
2900 				try--;
2901 				if (!try)
2902 					break;
2903 			}
2904 		}
2905 	}
2906 	kvm_vcpu_set_in_spin_loop(me, false);
2907 
2908 	/* Ensure vcpu is not eligible during next spinloop */
2909 	kvm_vcpu_set_dy_eligible(me, false);
2910 }
2911 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2912 
2913 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2914 {
2915 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2916 	struct page *page;
2917 
2918 	if (vmf->pgoff == 0)
2919 		page = virt_to_page(vcpu->run);
2920 #ifdef CONFIG_X86
2921 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2922 		page = virt_to_page(vcpu->arch.pio_data);
2923 #endif
2924 #ifdef CONFIG_KVM_MMIO
2925 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2926 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2927 #endif
2928 	else
2929 		return kvm_arch_vcpu_fault(vcpu, vmf);
2930 	get_page(page);
2931 	vmf->page = page;
2932 	return 0;
2933 }
2934 
2935 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2936 	.fault = kvm_vcpu_fault,
2937 };
2938 
2939 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2940 {
2941 	vma->vm_ops = &kvm_vcpu_vm_ops;
2942 	return 0;
2943 }
2944 
2945 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2946 {
2947 	struct kvm_vcpu *vcpu = filp->private_data;
2948 
2949 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2950 	kvm_put_kvm(vcpu->kvm);
2951 	return 0;
2952 }
2953 
2954 static struct file_operations kvm_vcpu_fops = {
2955 	.release        = kvm_vcpu_release,
2956 	.unlocked_ioctl = kvm_vcpu_ioctl,
2957 	.mmap           = kvm_vcpu_mmap,
2958 	.llseek		= noop_llseek,
2959 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2960 };
2961 
2962 /*
2963  * Allocates an inode for the vcpu.
2964  */
2965 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2966 {
2967 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2968 
2969 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2970 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2971 }
2972 
2973 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2974 {
2975 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2976 	char dir_name[ITOA_MAX_LEN * 2];
2977 
2978 	if (!debugfs_initialized())
2979 		return;
2980 
2981 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2982 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2983 						  vcpu->kvm->debugfs_dentry);
2984 
2985 	kvm_arch_create_vcpu_debugfs(vcpu);
2986 #endif
2987 }
2988 
2989 /*
2990  * Creates some virtual cpus.  Good luck creating more than one.
2991  */
2992 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2993 {
2994 	int r;
2995 	struct kvm_vcpu *vcpu;
2996 	struct page *page;
2997 
2998 	if (id >= KVM_MAX_VCPU_ID)
2999 		return -EINVAL;
3000 
3001 	mutex_lock(&kvm->lock);
3002 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3003 		mutex_unlock(&kvm->lock);
3004 		return -EINVAL;
3005 	}
3006 
3007 	kvm->created_vcpus++;
3008 	mutex_unlock(&kvm->lock);
3009 
3010 	r = kvm_arch_vcpu_precreate(kvm, id);
3011 	if (r)
3012 		goto vcpu_decrement;
3013 
3014 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3015 	if (!vcpu) {
3016 		r = -ENOMEM;
3017 		goto vcpu_decrement;
3018 	}
3019 
3020 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3021 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3022 	if (!page) {
3023 		r = -ENOMEM;
3024 		goto vcpu_free;
3025 	}
3026 	vcpu->run = page_address(page);
3027 
3028 	kvm_vcpu_init(vcpu, kvm, id);
3029 
3030 	r = kvm_arch_vcpu_create(vcpu);
3031 	if (r)
3032 		goto vcpu_free_run_page;
3033 
3034 	kvm_create_vcpu_debugfs(vcpu);
3035 
3036 	mutex_lock(&kvm->lock);
3037 	if (kvm_get_vcpu_by_id(kvm, id)) {
3038 		r = -EEXIST;
3039 		goto unlock_vcpu_destroy;
3040 	}
3041 
3042 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3043 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3044 
3045 	/* Now it's all set up, let userspace reach it */
3046 	kvm_get_kvm(kvm);
3047 	r = create_vcpu_fd(vcpu);
3048 	if (r < 0) {
3049 		kvm_put_kvm_no_destroy(kvm);
3050 		goto unlock_vcpu_destroy;
3051 	}
3052 
3053 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3054 
3055 	/*
3056 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3057 	 * before kvm->online_vcpu's incremented value.
3058 	 */
3059 	smp_wmb();
3060 	atomic_inc(&kvm->online_vcpus);
3061 
3062 	mutex_unlock(&kvm->lock);
3063 	kvm_arch_vcpu_postcreate(vcpu);
3064 	return r;
3065 
3066 unlock_vcpu_destroy:
3067 	mutex_unlock(&kvm->lock);
3068 	debugfs_remove_recursive(vcpu->debugfs_dentry);
3069 	kvm_arch_vcpu_destroy(vcpu);
3070 vcpu_free_run_page:
3071 	free_page((unsigned long)vcpu->run);
3072 vcpu_free:
3073 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3074 vcpu_decrement:
3075 	mutex_lock(&kvm->lock);
3076 	kvm->created_vcpus--;
3077 	mutex_unlock(&kvm->lock);
3078 	return r;
3079 }
3080 
3081 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3082 {
3083 	if (sigset) {
3084 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3085 		vcpu->sigset_active = 1;
3086 		vcpu->sigset = *sigset;
3087 	} else
3088 		vcpu->sigset_active = 0;
3089 	return 0;
3090 }
3091 
3092 static long kvm_vcpu_ioctl(struct file *filp,
3093 			   unsigned int ioctl, unsigned long arg)
3094 {
3095 	struct kvm_vcpu *vcpu = filp->private_data;
3096 	void __user *argp = (void __user *)arg;
3097 	int r;
3098 	struct kvm_fpu *fpu = NULL;
3099 	struct kvm_sregs *kvm_sregs = NULL;
3100 
3101 	if (vcpu->kvm->mm != current->mm)
3102 		return -EIO;
3103 
3104 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3105 		return -EINVAL;
3106 
3107 	/*
3108 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3109 	 * execution; mutex_lock() would break them.
3110 	 */
3111 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3112 	if (r != -ENOIOCTLCMD)
3113 		return r;
3114 
3115 	if (mutex_lock_killable(&vcpu->mutex))
3116 		return -EINTR;
3117 	switch (ioctl) {
3118 	case KVM_RUN: {
3119 		struct pid *oldpid;
3120 		r = -EINVAL;
3121 		if (arg)
3122 			goto out;
3123 		oldpid = rcu_access_pointer(vcpu->pid);
3124 		if (unlikely(oldpid != task_pid(current))) {
3125 			/* The thread running this VCPU changed. */
3126 			struct pid *newpid;
3127 
3128 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3129 			if (r)
3130 				break;
3131 
3132 			newpid = get_task_pid(current, PIDTYPE_PID);
3133 			rcu_assign_pointer(vcpu->pid, newpid);
3134 			if (oldpid)
3135 				synchronize_rcu();
3136 			put_pid(oldpid);
3137 		}
3138 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
3139 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3140 		break;
3141 	}
3142 	case KVM_GET_REGS: {
3143 		struct kvm_regs *kvm_regs;
3144 
3145 		r = -ENOMEM;
3146 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3147 		if (!kvm_regs)
3148 			goto out;
3149 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3150 		if (r)
3151 			goto out_free1;
3152 		r = -EFAULT;
3153 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3154 			goto out_free1;
3155 		r = 0;
3156 out_free1:
3157 		kfree(kvm_regs);
3158 		break;
3159 	}
3160 	case KVM_SET_REGS: {
3161 		struct kvm_regs *kvm_regs;
3162 
3163 		r = -ENOMEM;
3164 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3165 		if (IS_ERR(kvm_regs)) {
3166 			r = PTR_ERR(kvm_regs);
3167 			goto out;
3168 		}
3169 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3170 		kfree(kvm_regs);
3171 		break;
3172 	}
3173 	case KVM_GET_SREGS: {
3174 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3175 				    GFP_KERNEL_ACCOUNT);
3176 		r = -ENOMEM;
3177 		if (!kvm_sregs)
3178 			goto out;
3179 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3180 		if (r)
3181 			goto out;
3182 		r = -EFAULT;
3183 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3184 			goto out;
3185 		r = 0;
3186 		break;
3187 	}
3188 	case KVM_SET_SREGS: {
3189 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3190 		if (IS_ERR(kvm_sregs)) {
3191 			r = PTR_ERR(kvm_sregs);
3192 			kvm_sregs = NULL;
3193 			goto out;
3194 		}
3195 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3196 		break;
3197 	}
3198 	case KVM_GET_MP_STATE: {
3199 		struct kvm_mp_state mp_state;
3200 
3201 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3202 		if (r)
3203 			goto out;
3204 		r = -EFAULT;
3205 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3206 			goto out;
3207 		r = 0;
3208 		break;
3209 	}
3210 	case KVM_SET_MP_STATE: {
3211 		struct kvm_mp_state mp_state;
3212 
3213 		r = -EFAULT;
3214 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3215 			goto out;
3216 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3217 		break;
3218 	}
3219 	case KVM_TRANSLATE: {
3220 		struct kvm_translation tr;
3221 
3222 		r = -EFAULT;
3223 		if (copy_from_user(&tr, argp, sizeof(tr)))
3224 			goto out;
3225 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3226 		if (r)
3227 			goto out;
3228 		r = -EFAULT;
3229 		if (copy_to_user(argp, &tr, sizeof(tr)))
3230 			goto out;
3231 		r = 0;
3232 		break;
3233 	}
3234 	case KVM_SET_GUEST_DEBUG: {
3235 		struct kvm_guest_debug dbg;
3236 
3237 		r = -EFAULT;
3238 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3239 			goto out;
3240 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3241 		break;
3242 	}
3243 	case KVM_SET_SIGNAL_MASK: {
3244 		struct kvm_signal_mask __user *sigmask_arg = argp;
3245 		struct kvm_signal_mask kvm_sigmask;
3246 		sigset_t sigset, *p;
3247 
3248 		p = NULL;
3249 		if (argp) {
3250 			r = -EFAULT;
3251 			if (copy_from_user(&kvm_sigmask, argp,
3252 					   sizeof(kvm_sigmask)))
3253 				goto out;
3254 			r = -EINVAL;
3255 			if (kvm_sigmask.len != sizeof(sigset))
3256 				goto out;
3257 			r = -EFAULT;
3258 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3259 					   sizeof(sigset)))
3260 				goto out;
3261 			p = &sigset;
3262 		}
3263 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3264 		break;
3265 	}
3266 	case KVM_GET_FPU: {
3267 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3268 		r = -ENOMEM;
3269 		if (!fpu)
3270 			goto out;
3271 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3272 		if (r)
3273 			goto out;
3274 		r = -EFAULT;
3275 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3276 			goto out;
3277 		r = 0;
3278 		break;
3279 	}
3280 	case KVM_SET_FPU: {
3281 		fpu = memdup_user(argp, sizeof(*fpu));
3282 		if (IS_ERR(fpu)) {
3283 			r = PTR_ERR(fpu);
3284 			fpu = NULL;
3285 			goto out;
3286 		}
3287 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3288 		break;
3289 	}
3290 	default:
3291 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3292 	}
3293 out:
3294 	mutex_unlock(&vcpu->mutex);
3295 	kfree(fpu);
3296 	kfree(kvm_sregs);
3297 	return r;
3298 }
3299 
3300 #ifdef CONFIG_KVM_COMPAT
3301 static long kvm_vcpu_compat_ioctl(struct file *filp,
3302 				  unsigned int ioctl, unsigned long arg)
3303 {
3304 	struct kvm_vcpu *vcpu = filp->private_data;
3305 	void __user *argp = compat_ptr(arg);
3306 	int r;
3307 
3308 	if (vcpu->kvm->mm != current->mm)
3309 		return -EIO;
3310 
3311 	switch (ioctl) {
3312 	case KVM_SET_SIGNAL_MASK: {
3313 		struct kvm_signal_mask __user *sigmask_arg = argp;
3314 		struct kvm_signal_mask kvm_sigmask;
3315 		sigset_t sigset;
3316 
3317 		if (argp) {
3318 			r = -EFAULT;
3319 			if (copy_from_user(&kvm_sigmask, argp,
3320 					   sizeof(kvm_sigmask)))
3321 				goto out;
3322 			r = -EINVAL;
3323 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3324 				goto out;
3325 			r = -EFAULT;
3326 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3327 				goto out;
3328 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3329 		} else
3330 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3331 		break;
3332 	}
3333 	default:
3334 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3335 	}
3336 
3337 out:
3338 	return r;
3339 }
3340 #endif
3341 
3342 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3343 {
3344 	struct kvm_device *dev = filp->private_data;
3345 
3346 	if (dev->ops->mmap)
3347 		return dev->ops->mmap(dev, vma);
3348 
3349 	return -ENODEV;
3350 }
3351 
3352 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3353 				 int (*accessor)(struct kvm_device *dev,
3354 						 struct kvm_device_attr *attr),
3355 				 unsigned long arg)
3356 {
3357 	struct kvm_device_attr attr;
3358 
3359 	if (!accessor)
3360 		return -EPERM;
3361 
3362 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3363 		return -EFAULT;
3364 
3365 	return accessor(dev, &attr);
3366 }
3367 
3368 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3369 			     unsigned long arg)
3370 {
3371 	struct kvm_device *dev = filp->private_data;
3372 
3373 	if (dev->kvm->mm != current->mm)
3374 		return -EIO;
3375 
3376 	switch (ioctl) {
3377 	case KVM_SET_DEVICE_ATTR:
3378 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3379 	case KVM_GET_DEVICE_ATTR:
3380 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3381 	case KVM_HAS_DEVICE_ATTR:
3382 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3383 	default:
3384 		if (dev->ops->ioctl)
3385 			return dev->ops->ioctl(dev, ioctl, arg);
3386 
3387 		return -ENOTTY;
3388 	}
3389 }
3390 
3391 static int kvm_device_release(struct inode *inode, struct file *filp)
3392 {
3393 	struct kvm_device *dev = filp->private_data;
3394 	struct kvm *kvm = dev->kvm;
3395 
3396 	if (dev->ops->release) {
3397 		mutex_lock(&kvm->lock);
3398 		list_del(&dev->vm_node);
3399 		dev->ops->release(dev);
3400 		mutex_unlock(&kvm->lock);
3401 	}
3402 
3403 	kvm_put_kvm(kvm);
3404 	return 0;
3405 }
3406 
3407 static const struct file_operations kvm_device_fops = {
3408 	.unlocked_ioctl = kvm_device_ioctl,
3409 	.release = kvm_device_release,
3410 	KVM_COMPAT(kvm_device_ioctl),
3411 	.mmap = kvm_device_mmap,
3412 };
3413 
3414 struct kvm_device *kvm_device_from_filp(struct file *filp)
3415 {
3416 	if (filp->f_op != &kvm_device_fops)
3417 		return NULL;
3418 
3419 	return filp->private_data;
3420 }
3421 
3422 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3423 #ifdef CONFIG_KVM_MPIC
3424 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3425 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3426 #endif
3427 };
3428 
3429 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3430 {
3431 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3432 		return -ENOSPC;
3433 
3434 	if (kvm_device_ops_table[type] != NULL)
3435 		return -EEXIST;
3436 
3437 	kvm_device_ops_table[type] = ops;
3438 	return 0;
3439 }
3440 
3441 void kvm_unregister_device_ops(u32 type)
3442 {
3443 	if (kvm_device_ops_table[type] != NULL)
3444 		kvm_device_ops_table[type] = NULL;
3445 }
3446 
3447 static int kvm_ioctl_create_device(struct kvm *kvm,
3448 				   struct kvm_create_device *cd)
3449 {
3450 	const struct kvm_device_ops *ops = NULL;
3451 	struct kvm_device *dev;
3452 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3453 	int type;
3454 	int ret;
3455 
3456 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3457 		return -ENODEV;
3458 
3459 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3460 	ops = kvm_device_ops_table[type];
3461 	if (ops == NULL)
3462 		return -ENODEV;
3463 
3464 	if (test)
3465 		return 0;
3466 
3467 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3468 	if (!dev)
3469 		return -ENOMEM;
3470 
3471 	dev->ops = ops;
3472 	dev->kvm = kvm;
3473 
3474 	mutex_lock(&kvm->lock);
3475 	ret = ops->create(dev, type);
3476 	if (ret < 0) {
3477 		mutex_unlock(&kvm->lock);
3478 		kfree(dev);
3479 		return ret;
3480 	}
3481 	list_add(&dev->vm_node, &kvm->devices);
3482 	mutex_unlock(&kvm->lock);
3483 
3484 	if (ops->init)
3485 		ops->init(dev);
3486 
3487 	kvm_get_kvm(kvm);
3488 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3489 	if (ret < 0) {
3490 		kvm_put_kvm_no_destroy(kvm);
3491 		mutex_lock(&kvm->lock);
3492 		list_del(&dev->vm_node);
3493 		mutex_unlock(&kvm->lock);
3494 		ops->destroy(dev);
3495 		return ret;
3496 	}
3497 
3498 	cd->fd = ret;
3499 	return 0;
3500 }
3501 
3502 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3503 {
3504 	switch (arg) {
3505 	case KVM_CAP_USER_MEMORY:
3506 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3507 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3508 	case KVM_CAP_INTERNAL_ERROR_DATA:
3509 #ifdef CONFIG_HAVE_KVM_MSI
3510 	case KVM_CAP_SIGNAL_MSI:
3511 #endif
3512 #ifdef CONFIG_HAVE_KVM_IRQFD
3513 	case KVM_CAP_IRQFD:
3514 	case KVM_CAP_IRQFD_RESAMPLE:
3515 #endif
3516 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3517 	case KVM_CAP_CHECK_EXTENSION_VM:
3518 	case KVM_CAP_ENABLE_CAP_VM:
3519 		return 1;
3520 #ifdef CONFIG_KVM_MMIO
3521 	case KVM_CAP_COALESCED_MMIO:
3522 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3523 	case KVM_CAP_COALESCED_PIO:
3524 		return 1;
3525 #endif
3526 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3527 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3528 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3529 #endif
3530 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3531 	case KVM_CAP_IRQ_ROUTING:
3532 		return KVM_MAX_IRQ_ROUTES;
3533 #endif
3534 #if KVM_ADDRESS_SPACE_NUM > 1
3535 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3536 		return KVM_ADDRESS_SPACE_NUM;
3537 #endif
3538 	case KVM_CAP_NR_MEMSLOTS:
3539 		return KVM_USER_MEM_SLOTS;
3540 	default:
3541 		break;
3542 	}
3543 	return kvm_vm_ioctl_check_extension(kvm, arg);
3544 }
3545 
3546 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3547 						  struct kvm_enable_cap *cap)
3548 {
3549 	return -EINVAL;
3550 }
3551 
3552 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3553 					   struct kvm_enable_cap *cap)
3554 {
3555 	switch (cap->cap) {
3556 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3557 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3558 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3559 
3560 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3561 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3562 
3563 		if (cap->flags || (cap->args[0] & ~allowed_options))
3564 			return -EINVAL;
3565 		kvm->manual_dirty_log_protect = cap->args[0];
3566 		return 0;
3567 	}
3568 #endif
3569 	default:
3570 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3571 	}
3572 }
3573 
3574 static long kvm_vm_ioctl(struct file *filp,
3575 			   unsigned int ioctl, unsigned long arg)
3576 {
3577 	struct kvm *kvm = filp->private_data;
3578 	void __user *argp = (void __user *)arg;
3579 	int r;
3580 
3581 	if (kvm->mm != current->mm)
3582 		return -EIO;
3583 	switch (ioctl) {
3584 	case KVM_CREATE_VCPU:
3585 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3586 		break;
3587 	case KVM_ENABLE_CAP: {
3588 		struct kvm_enable_cap cap;
3589 
3590 		r = -EFAULT;
3591 		if (copy_from_user(&cap, argp, sizeof(cap)))
3592 			goto out;
3593 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3594 		break;
3595 	}
3596 	case KVM_SET_USER_MEMORY_REGION: {
3597 		struct kvm_userspace_memory_region kvm_userspace_mem;
3598 
3599 		r = -EFAULT;
3600 		if (copy_from_user(&kvm_userspace_mem, argp,
3601 						sizeof(kvm_userspace_mem)))
3602 			goto out;
3603 
3604 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3605 		break;
3606 	}
3607 	case KVM_GET_DIRTY_LOG: {
3608 		struct kvm_dirty_log log;
3609 
3610 		r = -EFAULT;
3611 		if (copy_from_user(&log, argp, sizeof(log)))
3612 			goto out;
3613 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3614 		break;
3615 	}
3616 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3617 	case KVM_CLEAR_DIRTY_LOG: {
3618 		struct kvm_clear_dirty_log log;
3619 
3620 		r = -EFAULT;
3621 		if (copy_from_user(&log, argp, sizeof(log)))
3622 			goto out;
3623 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3624 		break;
3625 	}
3626 #endif
3627 #ifdef CONFIG_KVM_MMIO
3628 	case KVM_REGISTER_COALESCED_MMIO: {
3629 		struct kvm_coalesced_mmio_zone zone;
3630 
3631 		r = -EFAULT;
3632 		if (copy_from_user(&zone, argp, sizeof(zone)))
3633 			goto out;
3634 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3635 		break;
3636 	}
3637 	case KVM_UNREGISTER_COALESCED_MMIO: {
3638 		struct kvm_coalesced_mmio_zone zone;
3639 
3640 		r = -EFAULT;
3641 		if (copy_from_user(&zone, argp, sizeof(zone)))
3642 			goto out;
3643 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3644 		break;
3645 	}
3646 #endif
3647 	case KVM_IRQFD: {
3648 		struct kvm_irqfd data;
3649 
3650 		r = -EFAULT;
3651 		if (copy_from_user(&data, argp, sizeof(data)))
3652 			goto out;
3653 		r = kvm_irqfd(kvm, &data);
3654 		break;
3655 	}
3656 	case KVM_IOEVENTFD: {
3657 		struct kvm_ioeventfd data;
3658 
3659 		r = -EFAULT;
3660 		if (copy_from_user(&data, argp, sizeof(data)))
3661 			goto out;
3662 		r = kvm_ioeventfd(kvm, &data);
3663 		break;
3664 	}
3665 #ifdef CONFIG_HAVE_KVM_MSI
3666 	case KVM_SIGNAL_MSI: {
3667 		struct kvm_msi msi;
3668 
3669 		r = -EFAULT;
3670 		if (copy_from_user(&msi, argp, sizeof(msi)))
3671 			goto out;
3672 		r = kvm_send_userspace_msi(kvm, &msi);
3673 		break;
3674 	}
3675 #endif
3676 #ifdef __KVM_HAVE_IRQ_LINE
3677 	case KVM_IRQ_LINE_STATUS:
3678 	case KVM_IRQ_LINE: {
3679 		struct kvm_irq_level irq_event;
3680 
3681 		r = -EFAULT;
3682 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3683 			goto out;
3684 
3685 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3686 					ioctl == KVM_IRQ_LINE_STATUS);
3687 		if (r)
3688 			goto out;
3689 
3690 		r = -EFAULT;
3691 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3692 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3693 				goto out;
3694 		}
3695 
3696 		r = 0;
3697 		break;
3698 	}
3699 #endif
3700 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3701 	case KVM_SET_GSI_ROUTING: {
3702 		struct kvm_irq_routing routing;
3703 		struct kvm_irq_routing __user *urouting;
3704 		struct kvm_irq_routing_entry *entries = NULL;
3705 
3706 		r = -EFAULT;
3707 		if (copy_from_user(&routing, argp, sizeof(routing)))
3708 			goto out;
3709 		r = -EINVAL;
3710 		if (!kvm_arch_can_set_irq_routing(kvm))
3711 			goto out;
3712 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3713 			goto out;
3714 		if (routing.flags)
3715 			goto out;
3716 		if (routing.nr) {
3717 			r = -ENOMEM;
3718 			entries = vmalloc(array_size(sizeof(*entries),
3719 						     routing.nr));
3720 			if (!entries)
3721 				goto out;
3722 			r = -EFAULT;
3723 			urouting = argp;
3724 			if (copy_from_user(entries, urouting->entries,
3725 					   routing.nr * sizeof(*entries)))
3726 				goto out_free_irq_routing;
3727 		}
3728 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3729 					routing.flags);
3730 out_free_irq_routing:
3731 		vfree(entries);
3732 		break;
3733 	}
3734 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3735 	case KVM_CREATE_DEVICE: {
3736 		struct kvm_create_device cd;
3737 
3738 		r = -EFAULT;
3739 		if (copy_from_user(&cd, argp, sizeof(cd)))
3740 			goto out;
3741 
3742 		r = kvm_ioctl_create_device(kvm, &cd);
3743 		if (r)
3744 			goto out;
3745 
3746 		r = -EFAULT;
3747 		if (copy_to_user(argp, &cd, sizeof(cd)))
3748 			goto out;
3749 
3750 		r = 0;
3751 		break;
3752 	}
3753 	case KVM_CHECK_EXTENSION:
3754 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3755 		break;
3756 	default:
3757 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3758 	}
3759 out:
3760 	return r;
3761 }
3762 
3763 #ifdef CONFIG_KVM_COMPAT
3764 struct compat_kvm_dirty_log {
3765 	__u32 slot;
3766 	__u32 padding1;
3767 	union {
3768 		compat_uptr_t dirty_bitmap; /* one bit per page */
3769 		__u64 padding2;
3770 	};
3771 };
3772 
3773 static long kvm_vm_compat_ioctl(struct file *filp,
3774 			   unsigned int ioctl, unsigned long arg)
3775 {
3776 	struct kvm *kvm = filp->private_data;
3777 	int r;
3778 
3779 	if (kvm->mm != current->mm)
3780 		return -EIO;
3781 	switch (ioctl) {
3782 	case KVM_GET_DIRTY_LOG: {
3783 		struct compat_kvm_dirty_log compat_log;
3784 		struct kvm_dirty_log log;
3785 
3786 		if (copy_from_user(&compat_log, (void __user *)arg,
3787 				   sizeof(compat_log)))
3788 			return -EFAULT;
3789 		log.slot	 = compat_log.slot;
3790 		log.padding1	 = compat_log.padding1;
3791 		log.padding2	 = compat_log.padding2;
3792 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3793 
3794 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3795 		break;
3796 	}
3797 	default:
3798 		r = kvm_vm_ioctl(filp, ioctl, arg);
3799 	}
3800 	return r;
3801 }
3802 #endif
3803 
3804 static struct file_operations kvm_vm_fops = {
3805 	.release        = kvm_vm_release,
3806 	.unlocked_ioctl = kvm_vm_ioctl,
3807 	.llseek		= noop_llseek,
3808 	KVM_COMPAT(kvm_vm_compat_ioctl),
3809 };
3810 
3811 static int kvm_dev_ioctl_create_vm(unsigned long type)
3812 {
3813 	int r;
3814 	struct kvm *kvm;
3815 	struct file *file;
3816 
3817 	kvm = kvm_create_vm(type);
3818 	if (IS_ERR(kvm))
3819 		return PTR_ERR(kvm);
3820 #ifdef CONFIG_KVM_MMIO
3821 	r = kvm_coalesced_mmio_init(kvm);
3822 	if (r < 0)
3823 		goto put_kvm;
3824 #endif
3825 	r = get_unused_fd_flags(O_CLOEXEC);
3826 	if (r < 0)
3827 		goto put_kvm;
3828 
3829 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3830 	if (IS_ERR(file)) {
3831 		put_unused_fd(r);
3832 		r = PTR_ERR(file);
3833 		goto put_kvm;
3834 	}
3835 
3836 	/*
3837 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3838 	 * already set, with ->release() being kvm_vm_release().  In error
3839 	 * cases it will be called by the final fput(file) and will take
3840 	 * care of doing kvm_put_kvm(kvm).
3841 	 */
3842 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3843 		put_unused_fd(r);
3844 		fput(file);
3845 		return -ENOMEM;
3846 	}
3847 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3848 
3849 	fd_install(r, file);
3850 	return r;
3851 
3852 put_kvm:
3853 	kvm_put_kvm(kvm);
3854 	return r;
3855 }
3856 
3857 static long kvm_dev_ioctl(struct file *filp,
3858 			  unsigned int ioctl, unsigned long arg)
3859 {
3860 	long r = -EINVAL;
3861 
3862 	switch (ioctl) {
3863 	case KVM_GET_API_VERSION:
3864 		if (arg)
3865 			goto out;
3866 		r = KVM_API_VERSION;
3867 		break;
3868 	case KVM_CREATE_VM:
3869 		r = kvm_dev_ioctl_create_vm(arg);
3870 		break;
3871 	case KVM_CHECK_EXTENSION:
3872 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3873 		break;
3874 	case KVM_GET_VCPU_MMAP_SIZE:
3875 		if (arg)
3876 			goto out;
3877 		r = PAGE_SIZE;     /* struct kvm_run */
3878 #ifdef CONFIG_X86
3879 		r += PAGE_SIZE;    /* pio data page */
3880 #endif
3881 #ifdef CONFIG_KVM_MMIO
3882 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3883 #endif
3884 		break;
3885 	case KVM_TRACE_ENABLE:
3886 	case KVM_TRACE_PAUSE:
3887 	case KVM_TRACE_DISABLE:
3888 		r = -EOPNOTSUPP;
3889 		break;
3890 	default:
3891 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3892 	}
3893 out:
3894 	return r;
3895 }
3896 
3897 static struct file_operations kvm_chardev_ops = {
3898 	.unlocked_ioctl = kvm_dev_ioctl,
3899 	.llseek		= noop_llseek,
3900 	KVM_COMPAT(kvm_dev_ioctl),
3901 };
3902 
3903 static struct miscdevice kvm_dev = {
3904 	KVM_MINOR,
3905 	"kvm",
3906 	&kvm_chardev_ops,
3907 };
3908 
3909 static void hardware_enable_nolock(void *junk)
3910 {
3911 	int cpu = raw_smp_processor_id();
3912 	int r;
3913 
3914 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3915 		return;
3916 
3917 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3918 
3919 	r = kvm_arch_hardware_enable();
3920 
3921 	if (r) {
3922 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3923 		atomic_inc(&hardware_enable_failed);
3924 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3925 	}
3926 }
3927 
3928 static int kvm_starting_cpu(unsigned int cpu)
3929 {
3930 	raw_spin_lock(&kvm_count_lock);
3931 	if (kvm_usage_count)
3932 		hardware_enable_nolock(NULL);
3933 	raw_spin_unlock(&kvm_count_lock);
3934 	return 0;
3935 }
3936 
3937 static void hardware_disable_nolock(void *junk)
3938 {
3939 	int cpu = raw_smp_processor_id();
3940 
3941 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3942 		return;
3943 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3944 	kvm_arch_hardware_disable();
3945 }
3946 
3947 static int kvm_dying_cpu(unsigned int cpu)
3948 {
3949 	raw_spin_lock(&kvm_count_lock);
3950 	if (kvm_usage_count)
3951 		hardware_disable_nolock(NULL);
3952 	raw_spin_unlock(&kvm_count_lock);
3953 	return 0;
3954 }
3955 
3956 static void hardware_disable_all_nolock(void)
3957 {
3958 	BUG_ON(!kvm_usage_count);
3959 
3960 	kvm_usage_count--;
3961 	if (!kvm_usage_count)
3962 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3963 }
3964 
3965 static void hardware_disable_all(void)
3966 {
3967 	raw_spin_lock(&kvm_count_lock);
3968 	hardware_disable_all_nolock();
3969 	raw_spin_unlock(&kvm_count_lock);
3970 }
3971 
3972 static int hardware_enable_all(void)
3973 {
3974 	int r = 0;
3975 
3976 	raw_spin_lock(&kvm_count_lock);
3977 
3978 	kvm_usage_count++;
3979 	if (kvm_usage_count == 1) {
3980 		atomic_set(&hardware_enable_failed, 0);
3981 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3982 
3983 		if (atomic_read(&hardware_enable_failed)) {
3984 			hardware_disable_all_nolock();
3985 			r = -EBUSY;
3986 		}
3987 	}
3988 
3989 	raw_spin_unlock(&kvm_count_lock);
3990 
3991 	return r;
3992 }
3993 
3994 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3995 		      void *v)
3996 {
3997 	/*
3998 	 * Some (well, at least mine) BIOSes hang on reboot if
3999 	 * in vmx root mode.
4000 	 *
4001 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4002 	 */
4003 	pr_info("kvm: exiting hardware virtualization\n");
4004 	kvm_rebooting = true;
4005 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4006 	return NOTIFY_OK;
4007 }
4008 
4009 static struct notifier_block kvm_reboot_notifier = {
4010 	.notifier_call = kvm_reboot,
4011 	.priority = 0,
4012 };
4013 
4014 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4015 {
4016 	int i;
4017 
4018 	for (i = 0; i < bus->dev_count; i++) {
4019 		struct kvm_io_device *pos = bus->range[i].dev;
4020 
4021 		kvm_iodevice_destructor(pos);
4022 	}
4023 	kfree(bus);
4024 }
4025 
4026 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4027 				 const struct kvm_io_range *r2)
4028 {
4029 	gpa_t addr1 = r1->addr;
4030 	gpa_t addr2 = r2->addr;
4031 
4032 	if (addr1 < addr2)
4033 		return -1;
4034 
4035 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4036 	 * accept any overlapping write.  Any order is acceptable for
4037 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4038 	 * we process all of them.
4039 	 */
4040 	if (r2->len) {
4041 		addr1 += r1->len;
4042 		addr2 += r2->len;
4043 	}
4044 
4045 	if (addr1 > addr2)
4046 		return 1;
4047 
4048 	return 0;
4049 }
4050 
4051 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4052 {
4053 	return kvm_io_bus_cmp(p1, p2);
4054 }
4055 
4056 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4057 			     gpa_t addr, int len)
4058 {
4059 	struct kvm_io_range *range, key;
4060 	int off;
4061 
4062 	key = (struct kvm_io_range) {
4063 		.addr = addr,
4064 		.len = len,
4065 	};
4066 
4067 	range = bsearch(&key, bus->range, bus->dev_count,
4068 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4069 	if (range == NULL)
4070 		return -ENOENT;
4071 
4072 	off = range - bus->range;
4073 
4074 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4075 		off--;
4076 
4077 	return off;
4078 }
4079 
4080 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4081 			      struct kvm_io_range *range, const void *val)
4082 {
4083 	int idx;
4084 
4085 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4086 	if (idx < 0)
4087 		return -EOPNOTSUPP;
4088 
4089 	while (idx < bus->dev_count &&
4090 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4091 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4092 					range->len, val))
4093 			return idx;
4094 		idx++;
4095 	}
4096 
4097 	return -EOPNOTSUPP;
4098 }
4099 
4100 /* kvm_io_bus_write - called under kvm->slots_lock */
4101 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4102 		     int len, const void *val)
4103 {
4104 	struct kvm_io_bus *bus;
4105 	struct kvm_io_range range;
4106 	int r;
4107 
4108 	range = (struct kvm_io_range) {
4109 		.addr = addr,
4110 		.len = len,
4111 	};
4112 
4113 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4114 	if (!bus)
4115 		return -ENOMEM;
4116 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4117 	return r < 0 ? r : 0;
4118 }
4119 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4120 
4121 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4122 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4123 			    gpa_t addr, int len, const void *val, long cookie)
4124 {
4125 	struct kvm_io_bus *bus;
4126 	struct kvm_io_range range;
4127 
4128 	range = (struct kvm_io_range) {
4129 		.addr = addr,
4130 		.len = len,
4131 	};
4132 
4133 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4134 	if (!bus)
4135 		return -ENOMEM;
4136 
4137 	/* First try the device referenced by cookie. */
4138 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4139 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4140 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4141 					val))
4142 			return cookie;
4143 
4144 	/*
4145 	 * cookie contained garbage; fall back to search and return the
4146 	 * correct cookie value.
4147 	 */
4148 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4149 }
4150 
4151 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4152 			     struct kvm_io_range *range, void *val)
4153 {
4154 	int idx;
4155 
4156 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4157 	if (idx < 0)
4158 		return -EOPNOTSUPP;
4159 
4160 	while (idx < bus->dev_count &&
4161 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4162 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4163 				       range->len, val))
4164 			return idx;
4165 		idx++;
4166 	}
4167 
4168 	return -EOPNOTSUPP;
4169 }
4170 
4171 /* kvm_io_bus_read - called under kvm->slots_lock */
4172 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4173 		    int len, void *val)
4174 {
4175 	struct kvm_io_bus *bus;
4176 	struct kvm_io_range range;
4177 	int r;
4178 
4179 	range = (struct kvm_io_range) {
4180 		.addr = addr,
4181 		.len = len,
4182 	};
4183 
4184 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4185 	if (!bus)
4186 		return -ENOMEM;
4187 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4188 	return r < 0 ? r : 0;
4189 }
4190 
4191 /* Caller must hold slots_lock. */
4192 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4193 			    int len, struct kvm_io_device *dev)
4194 {
4195 	int i;
4196 	struct kvm_io_bus *new_bus, *bus;
4197 	struct kvm_io_range range;
4198 
4199 	bus = kvm_get_bus(kvm, bus_idx);
4200 	if (!bus)
4201 		return -ENOMEM;
4202 
4203 	/* exclude ioeventfd which is limited by maximum fd */
4204 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4205 		return -ENOSPC;
4206 
4207 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4208 			  GFP_KERNEL_ACCOUNT);
4209 	if (!new_bus)
4210 		return -ENOMEM;
4211 
4212 	range = (struct kvm_io_range) {
4213 		.addr = addr,
4214 		.len = len,
4215 		.dev = dev,
4216 	};
4217 
4218 	for (i = 0; i < bus->dev_count; i++)
4219 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4220 			break;
4221 
4222 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4223 	new_bus->dev_count++;
4224 	new_bus->range[i] = range;
4225 	memcpy(new_bus->range + i + 1, bus->range + i,
4226 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4227 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4228 	synchronize_srcu_expedited(&kvm->srcu);
4229 	kfree(bus);
4230 
4231 	return 0;
4232 }
4233 
4234 /* Caller must hold slots_lock. */
4235 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4236 			       struct kvm_io_device *dev)
4237 {
4238 	int i;
4239 	struct kvm_io_bus *new_bus, *bus;
4240 
4241 	bus = kvm_get_bus(kvm, bus_idx);
4242 	if (!bus)
4243 		return;
4244 
4245 	for (i = 0; i < bus->dev_count; i++)
4246 		if (bus->range[i].dev == dev) {
4247 			break;
4248 		}
4249 
4250 	if (i == bus->dev_count)
4251 		return;
4252 
4253 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4254 			  GFP_KERNEL_ACCOUNT);
4255 	if (!new_bus)  {
4256 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4257 		goto broken;
4258 	}
4259 
4260 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4261 	new_bus->dev_count--;
4262 	memcpy(new_bus->range + i, bus->range + i + 1,
4263 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4264 
4265 broken:
4266 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4267 	synchronize_srcu_expedited(&kvm->srcu);
4268 	kfree(bus);
4269 	return;
4270 }
4271 
4272 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4273 					 gpa_t addr)
4274 {
4275 	struct kvm_io_bus *bus;
4276 	int dev_idx, srcu_idx;
4277 	struct kvm_io_device *iodev = NULL;
4278 
4279 	srcu_idx = srcu_read_lock(&kvm->srcu);
4280 
4281 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4282 	if (!bus)
4283 		goto out_unlock;
4284 
4285 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4286 	if (dev_idx < 0)
4287 		goto out_unlock;
4288 
4289 	iodev = bus->range[dev_idx].dev;
4290 
4291 out_unlock:
4292 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4293 
4294 	return iodev;
4295 }
4296 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4297 
4298 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4299 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4300 			   const char *fmt)
4301 {
4302 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4303 					  inode->i_private;
4304 
4305 	/* The debugfs files are a reference to the kvm struct which
4306 	 * is still valid when kvm_destroy_vm is called.
4307 	 * To avoid the race between open and the removal of the debugfs
4308 	 * directory we test against the users count.
4309 	 */
4310 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4311 		return -ENOENT;
4312 
4313 	if (simple_attr_open(inode, file, get,
4314 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4315 		    ? set : NULL,
4316 		    fmt)) {
4317 		kvm_put_kvm(stat_data->kvm);
4318 		return -ENOMEM;
4319 	}
4320 
4321 	return 0;
4322 }
4323 
4324 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4325 {
4326 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4327 					  inode->i_private;
4328 
4329 	simple_attr_release(inode, file);
4330 	kvm_put_kvm(stat_data->kvm);
4331 
4332 	return 0;
4333 }
4334 
4335 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4336 {
4337 	*val = *(ulong *)((void *)kvm + offset);
4338 
4339 	return 0;
4340 }
4341 
4342 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4343 {
4344 	*(ulong *)((void *)kvm + offset) = 0;
4345 
4346 	return 0;
4347 }
4348 
4349 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4350 {
4351 	int i;
4352 	struct kvm_vcpu *vcpu;
4353 
4354 	*val = 0;
4355 
4356 	kvm_for_each_vcpu(i, vcpu, kvm)
4357 		*val += *(u64 *)((void *)vcpu + offset);
4358 
4359 	return 0;
4360 }
4361 
4362 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4363 {
4364 	int i;
4365 	struct kvm_vcpu *vcpu;
4366 
4367 	kvm_for_each_vcpu(i, vcpu, kvm)
4368 		*(u64 *)((void *)vcpu + offset) = 0;
4369 
4370 	return 0;
4371 }
4372 
4373 static int kvm_stat_data_get(void *data, u64 *val)
4374 {
4375 	int r = -EFAULT;
4376 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4377 
4378 	switch (stat_data->dbgfs_item->kind) {
4379 	case KVM_STAT_VM:
4380 		r = kvm_get_stat_per_vm(stat_data->kvm,
4381 					stat_data->dbgfs_item->offset, val);
4382 		break;
4383 	case KVM_STAT_VCPU:
4384 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4385 					  stat_data->dbgfs_item->offset, val);
4386 		break;
4387 	}
4388 
4389 	return r;
4390 }
4391 
4392 static int kvm_stat_data_clear(void *data, u64 val)
4393 {
4394 	int r = -EFAULT;
4395 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4396 
4397 	if (val)
4398 		return -EINVAL;
4399 
4400 	switch (stat_data->dbgfs_item->kind) {
4401 	case KVM_STAT_VM:
4402 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4403 					  stat_data->dbgfs_item->offset);
4404 		break;
4405 	case KVM_STAT_VCPU:
4406 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4407 					    stat_data->dbgfs_item->offset);
4408 		break;
4409 	}
4410 
4411 	return r;
4412 }
4413 
4414 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4415 {
4416 	__simple_attr_check_format("%llu\n", 0ull);
4417 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4418 				kvm_stat_data_clear, "%llu\n");
4419 }
4420 
4421 static const struct file_operations stat_fops_per_vm = {
4422 	.owner = THIS_MODULE,
4423 	.open = kvm_stat_data_open,
4424 	.release = kvm_debugfs_release,
4425 	.read = simple_attr_read,
4426 	.write = simple_attr_write,
4427 	.llseek = no_llseek,
4428 };
4429 
4430 static int vm_stat_get(void *_offset, u64 *val)
4431 {
4432 	unsigned offset = (long)_offset;
4433 	struct kvm *kvm;
4434 	u64 tmp_val;
4435 
4436 	*val = 0;
4437 	mutex_lock(&kvm_lock);
4438 	list_for_each_entry(kvm, &vm_list, vm_list) {
4439 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4440 		*val += tmp_val;
4441 	}
4442 	mutex_unlock(&kvm_lock);
4443 	return 0;
4444 }
4445 
4446 static int vm_stat_clear(void *_offset, u64 val)
4447 {
4448 	unsigned offset = (long)_offset;
4449 	struct kvm *kvm;
4450 
4451 	if (val)
4452 		return -EINVAL;
4453 
4454 	mutex_lock(&kvm_lock);
4455 	list_for_each_entry(kvm, &vm_list, vm_list) {
4456 		kvm_clear_stat_per_vm(kvm, offset);
4457 	}
4458 	mutex_unlock(&kvm_lock);
4459 
4460 	return 0;
4461 }
4462 
4463 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4464 
4465 static int vcpu_stat_get(void *_offset, u64 *val)
4466 {
4467 	unsigned offset = (long)_offset;
4468 	struct kvm *kvm;
4469 	u64 tmp_val;
4470 
4471 	*val = 0;
4472 	mutex_lock(&kvm_lock);
4473 	list_for_each_entry(kvm, &vm_list, vm_list) {
4474 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4475 		*val += tmp_val;
4476 	}
4477 	mutex_unlock(&kvm_lock);
4478 	return 0;
4479 }
4480 
4481 static int vcpu_stat_clear(void *_offset, u64 val)
4482 {
4483 	unsigned offset = (long)_offset;
4484 	struct kvm *kvm;
4485 
4486 	if (val)
4487 		return -EINVAL;
4488 
4489 	mutex_lock(&kvm_lock);
4490 	list_for_each_entry(kvm, &vm_list, vm_list) {
4491 		kvm_clear_stat_per_vcpu(kvm, offset);
4492 	}
4493 	mutex_unlock(&kvm_lock);
4494 
4495 	return 0;
4496 }
4497 
4498 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4499 			"%llu\n");
4500 
4501 static const struct file_operations *stat_fops[] = {
4502 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4503 	[KVM_STAT_VM]   = &vm_stat_fops,
4504 };
4505 
4506 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4507 {
4508 	struct kobj_uevent_env *env;
4509 	unsigned long long created, active;
4510 
4511 	if (!kvm_dev.this_device || !kvm)
4512 		return;
4513 
4514 	mutex_lock(&kvm_lock);
4515 	if (type == KVM_EVENT_CREATE_VM) {
4516 		kvm_createvm_count++;
4517 		kvm_active_vms++;
4518 	} else if (type == KVM_EVENT_DESTROY_VM) {
4519 		kvm_active_vms--;
4520 	}
4521 	created = kvm_createvm_count;
4522 	active = kvm_active_vms;
4523 	mutex_unlock(&kvm_lock);
4524 
4525 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4526 	if (!env)
4527 		return;
4528 
4529 	add_uevent_var(env, "CREATED=%llu", created);
4530 	add_uevent_var(env, "COUNT=%llu", active);
4531 
4532 	if (type == KVM_EVENT_CREATE_VM) {
4533 		add_uevent_var(env, "EVENT=create");
4534 		kvm->userspace_pid = task_pid_nr(current);
4535 	} else if (type == KVM_EVENT_DESTROY_VM) {
4536 		add_uevent_var(env, "EVENT=destroy");
4537 	}
4538 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4539 
4540 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4541 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4542 
4543 		if (p) {
4544 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4545 			if (!IS_ERR(tmp))
4546 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4547 			kfree(p);
4548 		}
4549 	}
4550 	/* no need for checks, since we are adding at most only 5 keys */
4551 	env->envp[env->envp_idx++] = NULL;
4552 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4553 	kfree(env);
4554 }
4555 
4556 static void kvm_init_debug(void)
4557 {
4558 	struct kvm_stats_debugfs_item *p;
4559 
4560 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4561 
4562 	kvm_debugfs_num_entries = 0;
4563 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4564 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4565 				    kvm_debugfs_dir, (void *)(long)p->offset,
4566 				    stat_fops[p->kind]);
4567 	}
4568 }
4569 
4570 static int kvm_suspend(void)
4571 {
4572 	if (kvm_usage_count)
4573 		hardware_disable_nolock(NULL);
4574 	return 0;
4575 }
4576 
4577 static void kvm_resume(void)
4578 {
4579 	if (kvm_usage_count) {
4580 #ifdef CONFIG_LOCKDEP
4581 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4582 #endif
4583 		hardware_enable_nolock(NULL);
4584 	}
4585 }
4586 
4587 static struct syscore_ops kvm_syscore_ops = {
4588 	.suspend = kvm_suspend,
4589 	.resume = kvm_resume,
4590 };
4591 
4592 static inline
4593 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4594 {
4595 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4596 }
4597 
4598 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4599 {
4600 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4601 
4602 	WRITE_ONCE(vcpu->preempted, false);
4603 	WRITE_ONCE(vcpu->ready, false);
4604 
4605 	__this_cpu_write(kvm_running_vcpu, vcpu);
4606 	kvm_arch_sched_in(vcpu, cpu);
4607 	kvm_arch_vcpu_load(vcpu, cpu);
4608 }
4609 
4610 static void kvm_sched_out(struct preempt_notifier *pn,
4611 			  struct task_struct *next)
4612 {
4613 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4614 
4615 	if (current->state == TASK_RUNNING) {
4616 		WRITE_ONCE(vcpu->preempted, true);
4617 		WRITE_ONCE(vcpu->ready, true);
4618 	}
4619 	kvm_arch_vcpu_put(vcpu);
4620 	__this_cpu_write(kvm_running_vcpu, NULL);
4621 }
4622 
4623 /**
4624  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4625  *
4626  * We can disable preemption locally around accessing the per-CPU variable,
4627  * and use the resolved vcpu pointer after enabling preemption again,
4628  * because even if the current thread is migrated to another CPU, reading
4629  * the per-CPU value later will give us the same value as we update the
4630  * per-CPU variable in the preempt notifier handlers.
4631  */
4632 struct kvm_vcpu *kvm_get_running_vcpu(void)
4633 {
4634 	struct kvm_vcpu *vcpu;
4635 
4636 	preempt_disable();
4637 	vcpu = __this_cpu_read(kvm_running_vcpu);
4638 	preempt_enable();
4639 
4640 	return vcpu;
4641 }
4642 
4643 /**
4644  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4645  */
4646 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4647 {
4648         return &kvm_running_vcpu;
4649 }
4650 
4651 struct kvm_cpu_compat_check {
4652 	void *opaque;
4653 	int *ret;
4654 };
4655 
4656 static void check_processor_compat(void *data)
4657 {
4658 	struct kvm_cpu_compat_check *c = data;
4659 
4660 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4661 }
4662 
4663 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4664 		  struct module *module)
4665 {
4666 	struct kvm_cpu_compat_check c;
4667 	int r;
4668 	int cpu;
4669 
4670 	r = kvm_arch_init(opaque);
4671 	if (r)
4672 		goto out_fail;
4673 
4674 	/*
4675 	 * kvm_arch_init makes sure there's at most one caller
4676 	 * for architectures that support multiple implementations,
4677 	 * like intel and amd on x86.
4678 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4679 	 * conflicts in case kvm is already setup for another implementation.
4680 	 */
4681 	r = kvm_irqfd_init();
4682 	if (r)
4683 		goto out_irqfd;
4684 
4685 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4686 		r = -ENOMEM;
4687 		goto out_free_0;
4688 	}
4689 
4690 	r = kvm_arch_hardware_setup(opaque);
4691 	if (r < 0)
4692 		goto out_free_1;
4693 
4694 	c.ret = &r;
4695 	c.opaque = opaque;
4696 	for_each_online_cpu(cpu) {
4697 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4698 		if (r < 0)
4699 			goto out_free_2;
4700 	}
4701 
4702 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4703 				      kvm_starting_cpu, kvm_dying_cpu);
4704 	if (r)
4705 		goto out_free_2;
4706 	register_reboot_notifier(&kvm_reboot_notifier);
4707 
4708 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4709 	if (!vcpu_align)
4710 		vcpu_align = __alignof__(struct kvm_vcpu);
4711 	kvm_vcpu_cache =
4712 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4713 					   SLAB_ACCOUNT,
4714 					   offsetof(struct kvm_vcpu, arch),
4715 					   sizeof_field(struct kvm_vcpu, arch),
4716 					   NULL);
4717 	if (!kvm_vcpu_cache) {
4718 		r = -ENOMEM;
4719 		goto out_free_3;
4720 	}
4721 
4722 	r = kvm_async_pf_init();
4723 	if (r)
4724 		goto out_free;
4725 
4726 	kvm_chardev_ops.owner = module;
4727 	kvm_vm_fops.owner = module;
4728 	kvm_vcpu_fops.owner = module;
4729 
4730 	r = misc_register(&kvm_dev);
4731 	if (r) {
4732 		pr_err("kvm: misc device register failed\n");
4733 		goto out_unreg;
4734 	}
4735 
4736 	register_syscore_ops(&kvm_syscore_ops);
4737 
4738 	kvm_preempt_ops.sched_in = kvm_sched_in;
4739 	kvm_preempt_ops.sched_out = kvm_sched_out;
4740 
4741 	kvm_init_debug();
4742 
4743 	r = kvm_vfio_ops_init();
4744 	WARN_ON(r);
4745 
4746 	return 0;
4747 
4748 out_unreg:
4749 	kvm_async_pf_deinit();
4750 out_free:
4751 	kmem_cache_destroy(kvm_vcpu_cache);
4752 out_free_3:
4753 	unregister_reboot_notifier(&kvm_reboot_notifier);
4754 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4755 out_free_2:
4756 	kvm_arch_hardware_unsetup();
4757 out_free_1:
4758 	free_cpumask_var(cpus_hardware_enabled);
4759 out_free_0:
4760 	kvm_irqfd_exit();
4761 out_irqfd:
4762 	kvm_arch_exit();
4763 out_fail:
4764 	return r;
4765 }
4766 EXPORT_SYMBOL_GPL(kvm_init);
4767 
4768 void kvm_exit(void)
4769 {
4770 	debugfs_remove_recursive(kvm_debugfs_dir);
4771 	misc_deregister(&kvm_dev);
4772 	kmem_cache_destroy(kvm_vcpu_cache);
4773 	kvm_async_pf_deinit();
4774 	unregister_syscore_ops(&kvm_syscore_ops);
4775 	unregister_reboot_notifier(&kvm_reboot_notifier);
4776 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4777 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4778 	kvm_arch_hardware_unsetup();
4779 	kvm_arch_exit();
4780 	kvm_irqfd_exit();
4781 	free_cpumask_var(cpus_hardware_enabled);
4782 	kvm_vfio_ops_exit();
4783 }
4784 EXPORT_SYMBOL_GPL(kvm_exit);
4785 
4786 struct kvm_vm_worker_thread_context {
4787 	struct kvm *kvm;
4788 	struct task_struct *parent;
4789 	struct completion init_done;
4790 	kvm_vm_thread_fn_t thread_fn;
4791 	uintptr_t data;
4792 	int err;
4793 };
4794 
4795 static int kvm_vm_worker_thread(void *context)
4796 {
4797 	/*
4798 	 * The init_context is allocated on the stack of the parent thread, so
4799 	 * we have to locally copy anything that is needed beyond initialization
4800 	 */
4801 	struct kvm_vm_worker_thread_context *init_context = context;
4802 	struct kvm *kvm = init_context->kvm;
4803 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4804 	uintptr_t data = init_context->data;
4805 	int err;
4806 
4807 	err = kthread_park(current);
4808 	/* kthread_park(current) is never supposed to return an error */
4809 	WARN_ON(err != 0);
4810 	if (err)
4811 		goto init_complete;
4812 
4813 	err = cgroup_attach_task_all(init_context->parent, current);
4814 	if (err) {
4815 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4816 			__func__, err);
4817 		goto init_complete;
4818 	}
4819 
4820 	set_user_nice(current, task_nice(init_context->parent));
4821 
4822 init_complete:
4823 	init_context->err = err;
4824 	complete(&init_context->init_done);
4825 	init_context = NULL;
4826 
4827 	if (err)
4828 		return err;
4829 
4830 	/* Wait to be woken up by the spawner before proceeding. */
4831 	kthread_parkme();
4832 
4833 	if (!kthread_should_stop())
4834 		err = thread_fn(kvm, data);
4835 
4836 	return err;
4837 }
4838 
4839 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4840 				uintptr_t data, const char *name,
4841 				struct task_struct **thread_ptr)
4842 {
4843 	struct kvm_vm_worker_thread_context init_context = {};
4844 	struct task_struct *thread;
4845 
4846 	*thread_ptr = NULL;
4847 	init_context.kvm = kvm;
4848 	init_context.parent = current;
4849 	init_context.thread_fn = thread_fn;
4850 	init_context.data = data;
4851 	init_completion(&init_context.init_done);
4852 
4853 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4854 			     "%s-%d", name, task_pid_nr(current));
4855 	if (IS_ERR(thread))
4856 		return PTR_ERR(thread);
4857 
4858 	/* kthread_run is never supposed to return NULL */
4859 	WARN_ON(thread == NULL);
4860 
4861 	wait_for_completion(&init_context.init_done);
4862 
4863 	if (!init_context.err)
4864 		*thread_ptr = thread;
4865 
4866 	return init_context.err;
4867 }
4868