xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 2efd61a608b0039911924d2e5d7028eb37496e85)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159 
160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 						   unsigned long start, unsigned long end)
162 {
163 }
164 
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167 	/*
168 	 * The metadata used by is_zone_device_page() to determine whether or
169 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
171 	 * page_count() is zero to help detect bad usage of this helper.
172 	 */
173 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174 		return false;
175 
176 	return is_zone_device_page(pfn_to_page(pfn));
177 }
178 
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181 	/*
182 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183 	 * perspective they are "normal" pages, albeit with slightly different
184 	 * usage rules.
185 	 */
186 	if (pfn_valid(pfn))
187 		return PageReserved(pfn_to_page(pfn)) &&
188 		       !is_zero_pfn(pfn) &&
189 		       !kvm_is_zone_device_pfn(pfn);
190 
191 	return true;
192 }
193 
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199 	int cpu = get_cpu();
200 
201 	__this_cpu_write(kvm_running_vcpu, vcpu);
202 	preempt_notifier_register(&vcpu->preempt_notifier);
203 	kvm_arch_vcpu_load(vcpu, cpu);
204 	put_cpu();
205 }
206 EXPORT_SYMBOL_GPL(vcpu_load);
207 
208 void vcpu_put(struct kvm_vcpu *vcpu)
209 {
210 	preempt_disable();
211 	kvm_arch_vcpu_put(vcpu);
212 	preempt_notifier_unregister(&vcpu->preempt_notifier);
213 	__this_cpu_write(kvm_running_vcpu, NULL);
214 	preempt_enable();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_put);
217 
218 /* TODO: merge with kvm_arch_vcpu_should_kick */
219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220 {
221 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222 
223 	/*
224 	 * We need to wait for the VCPU to reenable interrupts and get out of
225 	 * READING_SHADOW_PAGE_TABLES mode.
226 	 */
227 	if (req & KVM_REQUEST_WAIT)
228 		return mode != OUTSIDE_GUEST_MODE;
229 
230 	/*
231 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
232 	 */
233 	return mode == IN_GUEST_MODE;
234 }
235 
236 static void ack_flush(void *_completed)
237 {
238 }
239 
240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
241 {
242 	if (cpumask_empty(cpus))
243 		return false;
244 
245 	smp_call_function_many(cpus, ack_flush, NULL, wait);
246 	return true;
247 }
248 
249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
250 				  unsigned int req, struct cpumask *tmp,
251 				  int current_cpu)
252 {
253 	int cpu;
254 
255 	kvm_make_request(req, vcpu);
256 
257 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
258 		return;
259 
260 	/*
261 	 * Note, the vCPU could get migrated to a different pCPU at any point
262 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
263 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
264 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
265 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
266 	 * after this point is also OK, as the requirement is only that KVM wait
267 	 * for vCPUs that were reading SPTEs _before_ any changes were
268 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
269 	 */
270 	if (kvm_request_needs_ipi(vcpu, req)) {
271 		cpu = READ_ONCE(vcpu->cpu);
272 		if (cpu != -1 && cpu != current_cpu)
273 			__cpumask_set_cpu(cpu, tmp);
274 	}
275 }
276 
277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
278 				 unsigned long *vcpu_bitmap)
279 {
280 	struct kvm_vcpu *vcpu;
281 	struct cpumask *cpus;
282 	int i, me;
283 	bool called;
284 
285 	me = get_cpu();
286 
287 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
288 	cpumask_clear(cpus);
289 
290 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
291 		vcpu = kvm_get_vcpu(kvm, i);
292 		if (!vcpu)
293 			continue;
294 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
295 	}
296 
297 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
298 	put_cpu();
299 
300 	return called;
301 }
302 
303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
304 				      struct kvm_vcpu *except)
305 {
306 	struct kvm_vcpu *vcpu;
307 	struct cpumask *cpus;
308 	unsigned long i;
309 	bool called;
310 	int me;
311 
312 	me = get_cpu();
313 
314 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
315 	cpumask_clear(cpus);
316 
317 	kvm_for_each_vcpu(i, vcpu, kvm) {
318 		if (vcpu == except)
319 			continue;
320 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
321 	}
322 
323 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
324 	put_cpu();
325 
326 	return called;
327 }
328 
329 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
330 {
331 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
332 }
333 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
334 
335 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
336 void kvm_flush_remote_tlbs(struct kvm *kvm)
337 {
338 	++kvm->stat.generic.remote_tlb_flush_requests;
339 
340 	/*
341 	 * We want to publish modifications to the page tables before reading
342 	 * mode. Pairs with a memory barrier in arch-specific code.
343 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
344 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
345 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
346 	 *
347 	 * There is already an smp_mb__after_atomic() before
348 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
349 	 * barrier here.
350 	 */
351 	if (!kvm_arch_flush_remote_tlb(kvm)
352 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
353 		++kvm->stat.generic.remote_tlb_flush;
354 }
355 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
356 #endif
357 
358 void kvm_reload_remote_mmus(struct kvm *kvm)
359 {
360 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
361 }
362 
363 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
364 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
365 					       gfp_t gfp_flags)
366 {
367 	gfp_flags |= mc->gfp_zero;
368 
369 	if (mc->kmem_cache)
370 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
371 	else
372 		return (void *)__get_free_page(gfp_flags);
373 }
374 
375 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
376 {
377 	void *obj;
378 
379 	if (mc->nobjs >= min)
380 		return 0;
381 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
382 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
383 		if (!obj)
384 			return mc->nobjs >= min ? 0 : -ENOMEM;
385 		mc->objects[mc->nobjs++] = obj;
386 	}
387 	return 0;
388 }
389 
390 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
391 {
392 	return mc->nobjs;
393 }
394 
395 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
396 {
397 	while (mc->nobjs) {
398 		if (mc->kmem_cache)
399 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
400 		else
401 			free_page((unsigned long)mc->objects[--mc->nobjs]);
402 	}
403 }
404 
405 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
406 {
407 	void *p;
408 
409 	if (WARN_ON(!mc->nobjs))
410 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
411 	else
412 		p = mc->objects[--mc->nobjs];
413 	BUG_ON(!p);
414 	return p;
415 }
416 #endif
417 
418 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
419 {
420 	mutex_init(&vcpu->mutex);
421 	vcpu->cpu = -1;
422 	vcpu->kvm = kvm;
423 	vcpu->vcpu_id = id;
424 	vcpu->pid = NULL;
425 #ifndef __KVM_HAVE_ARCH_WQP
426 	rcuwait_init(&vcpu->wait);
427 #endif
428 	kvm_async_pf_vcpu_init(vcpu);
429 
430 	vcpu->pre_pcpu = -1;
431 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
432 
433 	kvm_vcpu_set_in_spin_loop(vcpu, false);
434 	kvm_vcpu_set_dy_eligible(vcpu, false);
435 	vcpu->preempted = false;
436 	vcpu->ready = false;
437 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
438 	vcpu->last_used_slot = NULL;
439 }
440 
441 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
442 {
443 	kvm_dirty_ring_free(&vcpu->dirty_ring);
444 	kvm_arch_vcpu_destroy(vcpu);
445 
446 	/*
447 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
448 	 * the vcpu->pid pointer, and at destruction time all file descriptors
449 	 * are already gone.
450 	 */
451 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
452 
453 	free_page((unsigned long)vcpu->run);
454 	kmem_cache_free(kvm_vcpu_cache, vcpu);
455 }
456 
457 void kvm_destroy_vcpus(struct kvm *kvm)
458 {
459 	unsigned long i;
460 	struct kvm_vcpu *vcpu;
461 
462 	kvm_for_each_vcpu(i, vcpu, kvm) {
463 		kvm_vcpu_destroy(vcpu);
464 		xa_erase(&kvm->vcpu_array, i);
465 	}
466 
467 	atomic_set(&kvm->online_vcpus, 0);
468 }
469 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
470 
471 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
472 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
473 {
474 	return container_of(mn, struct kvm, mmu_notifier);
475 }
476 
477 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
478 					      struct mm_struct *mm,
479 					      unsigned long start, unsigned long end)
480 {
481 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
482 	int idx;
483 
484 	idx = srcu_read_lock(&kvm->srcu);
485 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
486 	srcu_read_unlock(&kvm->srcu, idx);
487 }
488 
489 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
490 
491 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
492 			     unsigned long end);
493 
494 struct kvm_hva_range {
495 	unsigned long start;
496 	unsigned long end;
497 	pte_t pte;
498 	hva_handler_t handler;
499 	on_lock_fn_t on_lock;
500 	bool flush_on_ret;
501 	bool may_block;
502 };
503 
504 /*
505  * Use a dedicated stub instead of NULL to indicate that there is no callback
506  * function/handler.  The compiler technically can't guarantee that a real
507  * function will have a non-zero address, and so it will generate code to
508  * check for !NULL, whereas comparing against a stub will be elided at compile
509  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
510  */
511 static void kvm_null_fn(void)
512 {
513 
514 }
515 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
516 
517 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
518 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
519 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
520 	     node;							     \
521 	     node = interval_tree_iter_next(node, start, last))	     \
522 
523 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
524 						  const struct kvm_hva_range *range)
525 {
526 	bool ret = false, locked = false;
527 	struct kvm_gfn_range gfn_range;
528 	struct kvm_memory_slot *slot;
529 	struct kvm_memslots *slots;
530 	int i, idx;
531 
532 	if (WARN_ON_ONCE(range->end <= range->start))
533 		return 0;
534 
535 	/* A null handler is allowed if and only if on_lock() is provided. */
536 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
537 			 IS_KVM_NULL_FN(range->handler)))
538 		return 0;
539 
540 	idx = srcu_read_lock(&kvm->srcu);
541 
542 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
543 		struct interval_tree_node *node;
544 
545 		slots = __kvm_memslots(kvm, i);
546 		kvm_for_each_memslot_in_hva_range(node, slots,
547 						  range->start, range->end - 1) {
548 			unsigned long hva_start, hva_end;
549 
550 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
551 			hva_start = max(range->start, slot->userspace_addr);
552 			hva_end = min(range->end, slot->userspace_addr +
553 						  (slot->npages << PAGE_SHIFT));
554 
555 			/*
556 			 * To optimize for the likely case where the address
557 			 * range is covered by zero or one memslots, don't
558 			 * bother making these conditional (to avoid writes on
559 			 * the second or later invocation of the handler).
560 			 */
561 			gfn_range.pte = range->pte;
562 			gfn_range.may_block = range->may_block;
563 
564 			/*
565 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
566 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
567 			 */
568 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
569 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
570 			gfn_range.slot = slot;
571 
572 			if (!locked) {
573 				locked = true;
574 				KVM_MMU_LOCK(kvm);
575 				if (!IS_KVM_NULL_FN(range->on_lock))
576 					range->on_lock(kvm, range->start, range->end);
577 				if (IS_KVM_NULL_FN(range->handler))
578 					break;
579 			}
580 			ret |= range->handler(kvm, &gfn_range);
581 		}
582 	}
583 
584 	if (range->flush_on_ret && ret)
585 		kvm_flush_remote_tlbs(kvm);
586 
587 	if (locked)
588 		KVM_MMU_UNLOCK(kvm);
589 
590 	srcu_read_unlock(&kvm->srcu, idx);
591 
592 	/* The notifiers are averse to booleans. :-( */
593 	return (int)ret;
594 }
595 
596 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
597 						unsigned long start,
598 						unsigned long end,
599 						pte_t pte,
600 						hva_handler_t handler)
601 {
602 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
603 	const struct kvm_hva_range range = {
604 		.start		= start,
605 		.end		= end,
606 		.pte		= pte,
607 		.handler	= handler,
608 		.on_lock	= (void *)kvm_null_fn,
609 		.flush_on_ret	= true,
610 		.may_block	= false,
611 	};
612 
613 	return __kvm_handle_hva_range(kvm, &range);
614 }
615 
616 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
617 							 unsigned long start,
618 							 unsigned long end,
619 							 hva_handler_t handler)
620 {
621 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
622 	const struct kvm_hva_range range = {
623 		.start		= start,
624 		.end		= end,
625 		.pte		= __pte(0),
626 		.handler	= handler,
627 		.on_lock	= (void *)kvm_null_fn,
628 		.flush_on_ret	= false,
629 		.may_block	= false,
630 	};
631 
632 	return __kvm_handle_hva_range(kvm, &range);
633 }
634 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
635 					struct mm_struct *mm,
636 					unsigned long address,
637 					pte_t pte)
638 {
639 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
640 
641 	trace_kvm_set_spte_hva(address);
642 
643 	/*
644 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
645 	 * If mmu_notifier_count is zero, then no in-progress invalidations,
646 	 * including this one, found a relevant memslot at start(); rechecking
647 	 * memslots here is unnecessary.  Note, a false positive (count elevated
648 	 * by a different invalidation) is sub-optimal but functionally ok.
649 	 */
650 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
651 	if (!READ_ONCE(kvm->mmu_notifier_count))
652 		return;
653 
654 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
655 }
656 
657 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
658 				   unsigned long end)
659 {
660 	/*
661 	 * The count increase must become visible at unlock time as no
662 	 * spte can be established without taking the mmu_lock and
663 	 * count is also read inside the mmu_lock critical section.
664 	 */
665 	kvm->mmu_notifier_count++;
666 	if (likely(kvm->mmu_notifier_count == 1)) {
667 		kvm->mmu_notifier_range_start = start;
668 		kvm->mmu_notifier_range_end = end;
669 	} else {
670 		/*
671 		 * Fully tracking multiple concurrent ranges has dimishing
672 		 * returns. Keep things simple and just find the minimal range
673 		 * which includes the current and new ranges. As there won't be
674 		 * enough information to subtract a range after its invalidate
675 		 * completes, any ranges invalidated concurrently will
676 		 * accumulate and persist until all outstanding invalidates
677 		 * complete.
678 		 */
679 		kvm->mmu_notifier_range_start =
680 			min(kvm->mmu_notifier_range_start, start);
681 		kvm->mmu_notifier_range_end =
682 			max(kvm->mmu_notifier_range_end, end);
683 	}
684 }
685 
686 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
687 					const struct mmu_notifier_range *range)
688 {
689 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
690 	const struct kvm_hva_range hva_range = {
691 		.start		= range->start,
692 		.end		= range->end,
693 		.pte		= __pte(0),
694 		.handler	= kvm_unmap_gfn_range,
695 		.on_lock	= kvm_inc_notifier_count,
696 		.flush_on_ret	= true,
697 		.may_block	= mmu_notifier_range_blockable(range),
698 	};
699 
700 	trace_kvm_unmap_hva_range(range->start, range->end);
701 
702 	/*
703 	 * Prevent memslot modification between range_start() and range_end()
704 	 * so that conditionally locking provides the same result in both
705 	 * functions.  Without that guarantee, the mmu_notifier_count
706 	 * adjustments will be imbalanced.
707 	 *
708 	 * Pairs with the decrement in range_end().
709 	 */
710 	spin_lock(&kvm->mn_invalidate_lock);
711 	kvm->mn_active_invalidate_count++;
712 	spin_unlock(&kvm->mn_invalidate_lock);
713 
714 	__kvm_handle_hva_range(kvm, &hva_range);
715 
716 	return 0;
717 }
718 
719 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
720 				   unsigned long end)
721 {
722 	/*
723 	 * This sequence increase will notify the kvm page fault that
724 	 * the page that is going to be mapped in the spte could have
725 	 * been freed.
726 	 */
727 	kvm->mmu_notifier_seq++;
728 	smp_wmb();
729 	/*
730 	 * The above sequence increase must be visible before the
731 	 * below count decrease, which is ensured by the smp_wmb above
732 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
733 	 */
734 	kvm->mmu_notifier_count--;
735 }
736 
737 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
738 					const struct mmu_notifier_range *range)
739 {
740 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
741 	const struct kvm_hva_range hva_range = {
742 		.start		= range->start,
743 		.end		= range->end,
744 		.pte		= __pte(0),
745 		.handler	= (void *)kvm_null_fn,
746 		.on_lock	= kvm_dec_notifier_count,
747 		.flush_on_ret	= false,
748 		.may_block	= mmu_notifier_range_blockable(range),
749 	};
750 	bool wake;
751 
752 	__kvm_handle_hva_range(kvm, &hva_range);
753 
754 	/* Pairs with the increment in range_start(). */
755 	spin_lock(&kvm->mn_invalidate_lock);
756 	wake = (--kvm->mn_active_invalidate_count == 0);
757 	spin_unlock(&kvm->mn_invalidate_lock);
758 
759 	/*
760 	 * There can only be one waiter, since the wait happens under
761 	 * slots_lock.
762 	 */
763 	if (wake)
764 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
765 
766 	BUG_ON(kvm->mmu_notifier_count < 0);
767 }
768 
769 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
770 					      struct mm_struct *mm,
771 					      unsigned long start,
772 					      unsigned long end)
773 {
774 	trace_kvm_age_hva(start, end);
775 
776 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
777 }
778 
779 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
780 					struct mm_struct *mm,
781 					unsigned long start,
782 					unsigned long end)
783 {
784 	trace_kvm_age_hva(start, end);
785 
786 	/*
787 	 * Even though we do not flush TLB, this will still adversely
788 	 * affect performance on pre-Haswell Intel EPT, where there is
789 	 * no EPT Access Bit to clear so that we have to tear down EPT
790 	 * tables instead. If we find this unacceptable, we can always
791 	 * add a parameter to kvm_age_hva so that it effectively doesn't
792 	 * do anything on clear_young.
793 	 *
794 	 * Also note that currently we never issue secondary TLB flushes
795 	 * from clear_young, leaving this job up to the regular system
796 	 * cadence. If we find this inaccurate, we might come up with a
797 	 * more sophisticated heuristic later.
798 	 */
799 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
800 }
801 
802 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
803 				       struct mm_struct *mm,
804 				       unsigned long address)
805 {
806 	trace_kvm_test_age_hva(address);
807 
808 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
809 					     kvm_test_age_gfn);
810 }
811 
812 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
813 				     struct mm_struct *mm)
814 {
815 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
816 	int idx;
817 
818 	idx = srcu_read_lock(&kvm->srcu);
819 	kvm_arch_flush_shadow_all(kvm);
820 	srcu_read_unlock(&kvm->srcu, idx);
821 }
822 
823 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
824 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
825 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
826 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
827 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
828 	.clear_young		= kvm_mmu_notifier_clear_young,
829 	.test_young		= kvm_mmu_notifier_test_young,
830 	.change_pte		= kvm_mmu_notifier_change_pte,
831 	.release		= kvm_mmu_notifier_release,
832 };
833 
834 static int kvm_init_mmu_notifier(struct kvm *kvm)
835 {
836 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
837 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
838 }
839 
840 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
841 
842 static int kvm_init_mmu_notifier(struct kvm *kvm)
843 {
844 	return 0;
845 }
846 
847 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
848 
849 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
850 static int kvm_pm_notifier_call(struct notifier_block *bl,
851 				unsigned long state,
852 				void *unused)
853 {
854 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
855 
856 	return kvm_arch_pm_notifier(kvm, state);
857 }
858 
859 static void kvm_init_pm_notifier(struct kvm *kvm)
860 {
861 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
862 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
863 	kvm->pm_notifier.priority = INT_MAX;
864 	register_pm_notifier(&kvm->pm_notifier);
865 }
866 
867 static void kvm_destroy_pm_notifier(struct kvm *kvm)
868 {
869 	unregister_pm_notifier(&kvm->pm_notifier);
870 }
871 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
872 static void kvm_init_pm_notifier(struct kvm *kvm)
873 {
874 }
875 
876 static void kvm_destroy_pm_notifier(struct kvm *kvm)
877 {
878 }
879 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
880 
881 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
882 {
883 	if (!memslot->dirty_bitmap)
884 		return;
885 
886 	kvfree(memslot->dirty_bitmap);
887 	memslot->dirty_bitmap = NULL;
888 }
889 
890 /* This does not remove the slot from struct kvm_memslots data structures */
891 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
892 {
893 	kvm_destroy_dirty_bitmap(slot);
894 
895 	kvm_arch_free_memslot(kvm, slot);
896 
897 	kfree(slot);
898 }
899 
900 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
901 {
902 	struct hlist_node *idnode;
903 	struct kvm_memory_slot *memslot;
904 	int bkt;
905 
906 	/*
907 	 * The same memslot objects live in both active and inactive sets,
908 	 * arbitrarily free using index '1' so the second invocation of this
909 	 * function isn't operating over a structure with dangling pointers
910 	 * (even though this function isn't actually touching them).
911 	 */
912 	if (!slots->node_idx)
913 		return;
914 
915 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
916 		kvm_free_memslot(kvm, memslot);
917 }
918 
919 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
920 {
921 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
922 	case KVM_STATS_TYPE_INSTANT:
923 		return 0444;
924 	case KVM_STATS_TYPE_CUMULATIVE:
925 	case KVM_STATS_TYPE_PEAK:
926 	default:
927 		return 0644;
928 	}
929 }
930 
931 
932 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
933 {
934 	int i;
935 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
936 				      kvm_vcpu_stats_header.num_desc;
937 
938 	if (!kvm->debugfs_dentry)
939 		return;
940 
941 	debugfs_remove_recursive(kvm->debugfs_dentry);
942 
943 	if (kvm->debugfs_stat_data) {
944 		for (i = 0; i < kvm_debugfs_num_entries; i++)
945 			kfree(kvm->debugfs_stat_data[i]);
946 		kfree(kvm->debugfs_stat_data);
947 	}
948 }
949 
950 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
951 {
952 	static DEFINE_MUTEX(kvm_debugfs_lock);
953 	struct dentry *dent;
954 	char dir_name[ITOA_MAX_LEN * 2];
955 	struct kvm_stat_data *stat_data;
956 	const struct _kvm_stats_desc *pdesc;
957 	int i, ret;
958 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
959 				      kvm_vcpu_stats_header.num_desc;
960 
961 	if (!debugfs_initialized())
962 		return 0;
963 
964 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
965 	mutex_lock(&kvm_debugfs_lock);
966 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
967 	if (dent) {
968 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
969 		dput(dent);
970 		mutex_unlock(&kvm_debugfs_lock);
971 		return 0;
972 	}
973 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
974 	mutex_unlock(&kvm_debugfs_lock);
975 	if (IS_ERR(dent))
976 		return 0;
977 
978 	kvm->debugfs_dentry = dent;
979 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
980 					 sizeof(*kvm->debugfs_stat_data),
981 					 GFP_KERNEL_ACCOUNT);
982 	if (!kvm->debugfs_stat_data)
983 		return -ENOMEM;
984 
985 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
986 		pdesc = &kvm_vm_stats_desc[i];
987 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
988 		if (!stat_data)
989 			return -ENOMEM;
990 
991 		stat_data->kvm = kvm;
992 		stat_data->desc = pdesc;
993 		stat_data->kind = KVM_STAT_VM;
994 		kvm->debugfs_stat_data[i] = stat_data;
995 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
996 				    kvm->debugfs_dentry, stat_data,
997 				    &stat_fops_per_vm);
998 	}
999 
1000 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1001 		pdesc = &kvm_vcpu_stats_desc[i];
1002 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1003 		if (!stat_data)
1004 			return -ENOMEM;
1005 
1006 		stat_data->kvm = kvm;
1007 		stat_data->desc = pdesc;
1008 		stat_data->kind = KVM_STAT_VCPU;
1009 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1010 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1011 				    kvm->debugfs_dentry, stat_data,
1012 				    &stat_fops_per_vm);
1013 	}
1014 
1015 	ret = kvm_arch_create_vm_debugfs(kvm);
1016 	if (ret) {
1017 		kvm_destroy_vm_debugfs(kvm);
1018 		return i;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 /*
1025  * Called after the VM is otherwise initialized, but just before adding it to
1026  * the vm_list.
1027  */
1028 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1029 {
1030 	return 0;
1031 }
1032 
1033 /*
1034  * Called just after removing the VM from the vm_list, but before doing any
1035  * other destruction.
1036  */
1037 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1038 {
1039 }
1040 
1041 /*
1042  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1043  * be setup already, so we can create arch-specific debugfs entries under it.
1044  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1045  * a per-arch destroy interface is not needed.
1046  */
1047 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1048 {
1049 	return 0;
1050 }
1051 
1052 static struct kvm *kvm_create_vm(unsigned long type)
1053 {
1054 	struct kvm *kvm = kvm_arch_alloc_vm();
1055 	struct kvm_memslots *slots;
1056 	int r = -ENOMEM;
1057 	int i, j;
1058 
1059 	if (!kvm)
1060 		return ERR_PTR(-ENOMEM);
1061 
1062 	KVM_MMU_LOCK_INIT(kvm);
1063 	mmgrab(current->mm);
1064 	kvm->mm = current->mm;
1065 	kvm_eventfd_init(kvm);
1066 	mutex_init(&kvm->lock);
1067 	mutex_init(&kvm->irq_lock);
1068 	mutex_init(&kvm->slots_lock);
1069 	mutex_init(&kvm->slots_arch_lock);
1070 	spin_lock_init(&kvm->mn_invalidate_lock);
1071 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1072 	xa_init(&kvm->vcpu_array);
1073 
1074 	INIT_LIST_HEAD(&kvm->devices);
1075 
1076 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1077 
1078 	if (init_srcu_struct(&kvm->srcu))
1079 		goto out_err_no_srcu;
1080 	if (init_srcu_struct(&kvm->irq_srcu))
1081 		goto out_err_no_irq_srcu;
1082 
1083 	refcount_set(&kvm->users_count, 1);
1084 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1085 		for (j = 0; j < 2; j++) {
1086 			slots = &kvm->__memslots[i][j];
1087 
1088 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1089 			slots->hva_tree = RB_ROOT_CACHED;
1090 			slots->gfn_tree = RB_ROOT;
1091 			hash_init(slots->id_hash);
1092 			slots->node_idx = j;
1093 
1094 			/* Generations must be different for each address space. */
1095 			slots->generation = i;
1096 		}
1097 
1098 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1099 	}
1100 
1101 	for (i = 0; i < KVM_NR_BUSES; i++) {
1102 		rcu_assign_pointer(kvm->buses[i],
1103 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1104 		if (!kvm->buses[i])
1105 			goto out_err_no_arch_destroy_vm;
1106 	}
1107 
1108 	kvm->max_halt_poll_ns = halt_poll_ns;
1109 
1110 	r = kvm_arch_init_vm(kvm, type);
1111 	if (r)
1112 		goto out_err_no_arch_destroy_vm;
1113 
1114 	r = hardware_enable_all();
1115 	if (r)
1116 		goto out_err_no_disable;
1117 
1118 #ifdef CONFIG_HAVE_KVM_IRQFD
1119 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1120 #endif
1121 
1122 	r = kvm_init_mmu_notifier(kvm);
1123 	if (r)
1124 		goto out_err_no_mmu_notifier;
1125 
1126 	r = kvm_arch_post_init_vm(kvm);
1127 	if (r)
1128 		goto out_err;
1129 
1130 	mutex_lock(&kvm_lock);
1131 	list_add(&kvm->vm_list, &vm_list);
1132 	mutex_unlock(&kvm_lock);
1133 
1134 	preempt_notifier_inc();
1135 	kvm_init_pm_notifier(kvm);
1136 
1137 	return kvm;
1138 
1139 out_err:
1140 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1141 	if (kvm->mmu_notifier.ops)
1142 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1143 #endif
1144 out_err_no_mmu_notifier:
1145 	hardware_disable_all();
1146 out_err_no_disable:
1147 	kvm_arch_destroy_vm(kvm);
1148 out_err_no_arch_destroy_vm:
1149 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1150 	for (i = 0; i < KVM_NR_BUSES; i++)
1151 		kfree(kvm_get_bus(kvm, i));
1152 	cleanup_srcu_struct(&kvm->irq_srcu);
1153 out_err_no_irq_srcu:
1154 	cleanup_srcu_struct(&kvm->srcu);
1155 out_err_no_srcu:
1156 	kvm_arch_free_vm(kvm);
1157 	mmdrop(current->mm);
1158 	return ERR_PTR(r);
1159 }
1160 
1161 static void kvm_destroy_devices(struct kvm *kvm)
1162 {
1163 	struct kvm_device *dev, *tmp;
1164 
1165 	/*
1166 	 * We do not need to take the kvm->lock here, because nobody else
1167 	 * has a reference to the struct kvm at this point and therefore
1168 	 * cannot access the devices list anyhow.
1169 	 */
1170 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1171 		list_del(&dev->vm_node);
1172 		dev->ops->destroy(dev);
1173 	}
1174 }
1175 
1176 static void kvm_destroy_vm(struct kvm *kvm)
1177 {
1178 	int i;
1179 	struct mm_struct *mm = kvm->mm;
1180 
1181 	kvm_destroy_pm_notifier(kvm);
1182 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1183 	kvm_destroy_vm_debugfs(kvm);
1184 	kvm_arch_sync_events(kvm);
1185 	mutex_lock(&kvm_lock);
1186 	list_del(&kvm->vm_list);
1187 	mutex_unlock(&kvm_lock);
1188 	kvm_arch_pre_destroy_vm(kvm);
1189 
1190 	kvm_free_irq_routing(kvm);
1191 	for (i = 0; i < KVM_NR_BUSES; i++) {
1192 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1193 
1194 		if (bus)
1195 			kvm_io_bus_destroy(bus);
1196 		kvm->buses[i] = NULL;
1197 	}
1198 	kvm_coalesced_mmio_free(kvm);
1199 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1200 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1201 	/*
1202 	 * At this point, pending calls to invalidate_range_start()
1203 	 * have completed but no more MMU notifiers will run, so
1204 	 * mn_active_invalidate_count may remain unbalanced.
1205 	 * No threads can be waiting in install_new_memslots as the
1206 	 * last reference on KVM has been dropped, but freeing
1207 	 * memslots would deadlock without this manual intervention.
1208 	 */
1209 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1210 	kvm->mn_active_invalidate_count = 0;
1211 #else
1212 	kvm_arch_flush_shadow_all(kvm);
1213 #endif
1214 	kvm_arch_destroy_vm(kvm);
1215 	kvm_destroy_devices(kvm);
1216 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1217 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1218 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1219 	}
1220 	cleanup_srcu_struct(&kvm->irq_srcu);
1221 	cleanup_srcu_struct(&kvm->srcu);
1222 	kvm_arch_free_vm(kvm);
1223 	preempt_notifier_dec();
1224 	hardware_disable_all();
1225 	mmdrop(mm);
1226 }
1227 
1228 void kvm_get_kvm(struct kvm *kvm)
1229 {
1230 	refcount_inc(&kvm->users_count);
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1233 
1234 /*
1235  * Make sure the vm is not during destruction, which is a safe version of
1236  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1237  */
1238 bool kvm_get_kvm_safe(struct kvm *kvm)
1239 {
1240 	return refcount_inc_not_zero(&kvm->users_count);
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1243 
1244 void kvm_put_kvm(struct kvm *kvm)
1245 {
1246 	if (refcount_dec_and_test(&kvm->users_count))
1247 		kvm_destroy_vm(kvm);
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1250 
1251 /*
1252  * Used to put a reference that was taken on behalf of an object associated
1253  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1254  * of the new file descriptor fails and the reference cannot be transferred to
1255  * its final owner.  In such cases, the caller is still actively using @kvm and
1256  * will fail miserably if the refcount unexpectedly hits zero.
1257  */
1258 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1259 {
1260 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1261 }
1262 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1263 
1264 static int kvm_vm_release(struct inode *inode, struct file *filp)
1265 {
1266 	struct kvm *kvm = filp->private_data;
1267 
1268 	kvm_irqfd_release(kvm);
1269 
1270 	kvm_put_kvm(kvm);
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Allocation size is twice as large as the actual dirty bitmap size.
1276  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1277  */
1278 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1279 {
1280 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1281 
1282 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1283 	if (!memslot->dirty_bitmap)
1284 		return -ENOMEM;
1285 
1286 	return 0;
1287 }
1288 
1289 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1290 {
1291 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1292 	int node_idx_inactive = active->node_idx ^ 1;
1293 
1294 	return &kvm->__memslots[as_id][node_idx_inactive];
1295 }
1296 
1297 /*
1298  * Helper to get the address space ID when one of memslot pointers may be NULL.
1299  * This also serves as a sanity that at least one of the pointers is non-NULL,
1300  * and that their address space IDs don't diverge.
1301  */
1302 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1303 				  struct kvm_memory_slot *b)
1304 {
1305 	if (WARN_ON_ONCE(!a && !b))
1306 		return 0;
1307 
1308 	if (!a)
1309 		return b->as_id;
1310 	if (!b)
1311 		return a->as_id;
1312 
1313 	WARN_ON_ONCE(a->as_id != b->as_id);
1314 	return a->as_id;
1315 }
1316 
1317 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1318 				struct kvm_memory_slot *slot)
1319 {
1320 	struct rb_root *gfn_tree = &slots->gfn_tree;
1321 	struct rb_node **node, *parent;
1322 	int idx = slots->node_idx;
1323 
1324 	parent = NULL;
1325 	for (node = &gfn_tree->rb_node; *node; ) {
1326 		struct kvm_memory_slot *tmp;
1327 
1328 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1329 		parent = *node;
1330 		if (slot->base_gfn < tmp->base_gfn)
1331 			node = &(*node)->rb_left;
1332 		else if (slot->base_gfn > tmp->base_gfn)
1333 			node = &(*node)->rb_right;
1334 		else
1335 			BUG();
1336 	}
1337 
1338 	rb_link_node(&slot->gfn_node[idx], parent, node);
1339 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1340 }
1341 
1342 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1343 			       struct kvm_memory_slot *slot)
1344 {
1345 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1346 }
1347 
1348 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1349 				 struct kvm_memory_slot *old,
1350 				 struct kvm_memory_slot *new)
1351 {
1352 	int idx = slots->node_idx;
1353 
1354 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1355 
1356 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1357 			&slots->gfn_tree);
1358 }
1359 
1360 /*
1361  * Replace @old with @new in the inactive memslots.
1362  *
1363  * With NULL @old this simply adds @new.
1364  * With NULL @new this simply removes @old.
1365  *
1366  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1367  * appropriately.
1368  */
1369 static void kvm_replace_memslot(struct kvm *kvm,
1370 				struct kvm_memory_slot *old,
1371 				struct kvm_memory_slot *new)
1372 {
1373 	int as_id = kvm_memslots_get_as_id(old, new);
1374 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1375 	int idx = slots->node_idx;
1376 
1377 	if (old) {
1378 		hash_del(&old->id_node[idx]);
1379 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1380 
1381 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1382 			atomic_long_set(&slots->last_used_slot, (long)new);
1383 
1384 		if (!new) {
1385 			kvm_erase_gfn_node(slots, old);
1386 			return;
1387 		}
1388 	}
1389 
1390 	/*
1391 	 * Initialize @new's hva range.  Do this even when replacing an @old
1392 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1393 	 */
1394 	new->hva_node[idx].start = new->userspace_addr;
1395 	new->hva_node[idx].last = new->userspace_addr +
1396 				  (new->npages << PAGE_SHIFT) - 1;
1397 
1398 	/*
1399 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1400 	 * hva_node needs to be swapped with remove+insert even though hva can't
1401 	 * change when replacing an existing slot.
1402 	 */
1403 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1404 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1405 
1406 	/*
1407 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1408 	 * switch the node in the gfn tree instead of removing the old and
1409 	 * inserting the new as two separate operations. Replacement is a
1410 	 * single O(1) operation versus two O(log(n)) operations for
1411 	 * remove+insert.
1412 	 */
1413 	if (old && old->base_gfn == new->base_gfn) {
1414 		kvm_replace_gfn_node(slots, old, new);
1415 	} else {
1416 		if (old)
1417 			kvm_erase_gfn_node(slots, old);
1418 		kvm_insert_gfn_node(slots, new);
1419 	}
1420 }
1421 
1422 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1423 {
1424 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1425 
1426 #ifdef __KVM_HAVE_READONLY_MEM
1427 	valid_flags |= KVM_MEM_READONLY;
1428 #endif
1429 
1430 	if (mem->flags & ~valid_flags)
1431 		return -EINVAL;
1432 
1433 	return 0;
1434 }
1435 
1436 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1437 {
1438 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1439 
1440 	/* Grab the generation from the activate memslots. */
1441 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1442 
1443 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1444 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1445 
1446 	/*
1447 	 * Do not store the new memslots while there are invalidations in
1448 	 * progress, otherwise the locking in invalidate_range_start and
1449 	 * invalidate_range_end will be unbalanced.
1450 	 */
1451 	spin_lock(&kvm->mn_invalidate_lock);
1452 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1453 	while (kvm->mn_active_invalidate_count) {
1454 		set_current_state(TASK_UNINTERRUPTIBLE);
1455 		spin_unlock(&kvm->mn_invalidate_lock);
1456 		schedule();
1457 		spin_lock(&kvm->mn_invalidate_lock);
1458 	}
1459 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1460 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1461 	spin_unlock(&kvm->mn_invalidate_lock);
1462 
1463 	/*
1464 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1465 	 * SRCU below in order to avoid deadlock with another thread
1466 	 * acquiring the slots_arch_lock in an srcu critical section.
1467 	 */
1468 	mutex_unlock(&kvm->slots_arch_lock);
1469 
1470 	synchronize_srcu_expedited(&kvm->srcu);
1471 
1472 	/*
1473 	 * Increment the new memslot generation a second time, dropping the
1474 	 * update in-progress flag and incrementing the generation based on
1475 	 * the number of address spaces.  This provides a unique and easily
1476 	 * identifiable generation number while the memslots are in flux.
1477 	 */
1478 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1479 
1480 	/*
1481 	 * Generations must be unique even across address spaces.  We do not need
1482 	 * a global counter for that, instead the generation space is evenly split
1483 	 * across address spaces.  For example, with two address spaces, address
1484 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1485 	 * use generations 1, 3, 5, ...
1486 	 */
1487 	gen += KVM_ADDRESS_SPACE_NUM;
1488 
1489 	kvm_arch_memslots_updated(kvm, gen);
1490 
1491 	slots->generation = gen;
1492 }
1493 
1494 static int kvm_prepare_memory_region(struct kvm *kvm,
1495 				     const struct kvm_memory_slot *old,
1496 				     struct kvm_memory_slot *new,
1497 				     enum kvm_mr_change change)
1498 {
1499 	int r;
1500 
1501 	/*
1502 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1503 	 * will be freed on "commit".  If logging is enabled in both old and
1504 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1505 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1506 	 * new bitmap.
1507 	 */
1508 	if (change != KVM_MR_DELETE) {
1509 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1510 			new->dirty_bitmap = NULL;
1511 		else if (old && old->dirty_bitmap)
1512 			new->dirty_bitmap = old->dirty_bitmap;
1513 		else if (!kvm->dirty_ring_size) {
1514 			r = kvm_alloc_dirty_bitmap(new);
1515 			if (r)
1516 				return r;
1517 
1518 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1519 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1520 		}
1521 	}
1522 
1523 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1524 
1525 	/* Free the bitmap on failure if it was allocated above. */
1526 	if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap)
1527 		kvm_destroy_dirty_bitmap(new);
1528 
1529 	return r;
1530 }
1531 
1532 static void kvm_commit_memory_region(struct kvm *kvm,
1533 				     struct kvm_memory_slot *old,
1534 				     const struct kvm_memory_slot *new,
1535 				     enum kvm_mr_change change)
1536 {
1537 	/*
1538 	 * Update the total number of memslot pages before calling the arch
1539 	 * hook so that architectures can consume the result directly.
1540 	 */
1541 	if (change == KVM_MR_DELETE)
1542 		kvm->nr_memslot_pages -= old->npages;
1543 	else if (change == KVM_MR_CREATE)
1544 		kvm->nr_memslot_pages += new->npages;
1545 
1546 	kvm_arch_commit_memory_region(kvm, old, new, change);
1547 
1548 	switch (change) {
1549 	case KVM_MR_CREATE:
1550 		/* Nothing more to do. */
1551 		break;
1552 	case KVM_MR_DELETE:
1553 		/* Free the old memslot and all its metadata. */
1554 		kvm_free_memslot(kvm, old);
1555 		break;
1556 	case KVM_MR_MOVE:
1557 	case KVM_MR_FLAGS_ONLY:
1558 		/*
1559 		 * Free the dirty bitmap as needed; the below check encompasses
1560 		 * both the flags and whether a ring buffer is being used)
1561 		 */
1562 		if (old->dirty_bitmap && !new->dirty_bitmap)
1563 			kvm_destroy_dirty_bitmap(old);
1564 
1565 		/*
1566 		 * The final quirk.  Free the detached, old slot, but only its
1567 		 * memory, not any metadata.  Metadata, including arch specific
1568 		 * data, may be reused by @new.
1569 		 */
1570 		kfree(old);
1571 		break;
1572 	default:
1573 		BUG();
1574 	}
1575 }
1576 
1577 /*
1578  * Activate @new, which must be installed in the inactive slots by the caller,
1579  * by swapping the active slots and then propagating @new to @old once @old is
1580  * unreachable and can be safely modified.
1581  *
1582  * With NULL @old this simply adds @new to @active (while swapping the sets).
1583  * With NULL @new this simply removes @old from @active and frees it
1584  * (while also swapping the sets).
1585  */
1586 static void kvm_activate_memslot(struct kvm *kvm,
1587 				 struct kvm_memory_slot *old,
1588 				 struct kvm_memory_slot *new)
1589 {
1590 	int as_id = kvm_memslots_get_as_id(old, new);
1591 
1592 	kvm_swap_active_memslots(kvm, as_id);
1593 
1594 	/* Propagate the new memslot to the now inactive memslots. */
1595 	kvm_replace_memslot(kvm, old, new);
1596 }
1597 
1598 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1599 			     const struct kvm_memory_slot *src)
1600 {
1601 	dest->base_gfn = src->base_gfn;
1602 	dest->npages = src->npages;
1603 	dest->dirty_bitmap = src->dirty_bitmap;
1604 	dest->arch = src->arch;
1605 	dest->userspace_addr = src->userspace_addr;
1606 	dest->flags = src->flags;
1607 	dest->id = src->id;
1608 	dest->as_id = src->as_id;
1609 }
1610 
1611 static void kvm_invalidate_memslot(struct kvm *kvm,
1612 				   struct kvm_memory_slot *old,
1613 				   struct kvm_memory_slot *invalid_slot)
1614 {
1615 	/*
1616 	 * Mark the current slot INVALID.  As with all memslot modifications,
1617 	 * this must be done on an unreachable slot to avoid modifying the
1618 	 * current slot in the active tree.
1619 	 */
1620 	kvm_copy_memslot(invalid_slot, old);
1621 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1622 	kvm_replace_memslot(kvm, old, invalid_slot);
1623 
1624 	/*
1625 	 * Activate the slot that is now marked INVALID, but don't propagate
1626 	 * the slot to the now inactive slots. The slot is either going to be
1627 	 * deleted or recreated as a new slot.
1628 	 */
1629 	kvm_swap_active_memslots(kvm, old->as_id);
1630 
1631 	/*
1632 	 * From this point no new shadow pages pointing to a deleted, or moved,
1633 	 * memslot will be created.  Validation of sp->gfn happens in:
1634 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1635 	 *	- kvm_is_visible_gfn (mmu_check_root)
1636 	 */
1637 	kvm_arch_flush_shadow_memslot(kvm, old);
1638 
1639 	/* Was released by kvm_swap_active_memslots, reacquire. */
1640 	mutex_lock(&kvm->slots_arch_lock);
1641 
1642 	/*
1643 	 * Copy the arch-specific field of the newly-installed slot back to the
1644 	 * old slot as the arch data could have changed between releasing
1645 	 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1646 	 * above.  Writers are required to retrieve memslots *after* acquiring
1647 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1648 	 */
1649 	old->arch = invalid_slot->arch;
1650 }
1651 
1652 static void kvm_create_memslot(struct kvm *kvm,
1653 			       struct kvm_memory_slot *new)
1654 {
1655 	/* Add the new memslot to the inactive set and activate. */
1656 	kvm_replace_memslot(kvm, NULL, new);
1657 	kvm_activate_memslot(kvm, NULL, new);
1658 }
1659 
1660 static void kvm_delete_memslot(struct kvm *kvm,
1661 			       struct kvm_memory_slot *old,
1662 			       struct kvm_memory_slot *invalid_slot)
1663 {
1664 	/*
1665 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1666 	 * the "new" slot, and for the invalid version in the active slots.
1667 	 */
1668 	kvm_replace_memslot(kvm, old, NULL);
1669 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1670 }
1671 
1672 static void kvm_move_memslot(struct kvm *kvm,
1673 			     struct kvm_memory_slot *old,
1674 			     struct kvm_memory_slot *new,
1675 			     struct kvm_memory_slot *invalid_slot)
1676 {
1677 	/*
1678 	 * Replace the old memslot in the inactive slots, and then swap slots
1679 	 * and replace the current INVALID with the new as well.
1680 	 */
1681 	kvm_replace_memslot(kvm, old, new);
1682 	kvm_activate_memslot(kvm, invalid_slot, new);
1683 }
1684 
1685 static void kvm_update_flags_memslot(struct kvm *kvm,
1686 				     struct kvm_memory_slot *old,
1687 				     struct kvm_memory_slot *new)
1688 {
1689 	/*
1690 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1691 	 * an intermediate step. Instead, the old memslot is simply replaced
1692 	 * with a new, updated copy in both memslot sets.
1693 	 */
1694 	kvm_replace_memslot(kvm, old, new);
1695 	kvm_activate_memslot(kvm, old, new);
1696 }
1697 
1698 static int kvm_set_memslot(struct kvm *kvm,
1699 			   struct kvm_memory_slot *old,
1700 			   struct kvm_memory_slot *new,
1701 			   enum kvm_mr_change change)
1702 {
1703 	struct kvm_memory_slot *invalid_slot;
1704 	int r;
1705 
1706 	/*
1707 	 * Released in kvm_swap_active_memslots.
1708 	 *
1709 	 * Must be held from before the current memslots are copied until
1710 	 * after the new memslots are installed with rcu_assign_pointer,
1711 	 * then released before the synchronize srcu in kvm_swap_active_memslots.
1712 	 *
1713 	 * When modifying memslots outside of the slots_lock, must be held
1714 	 * before reading the pointer to the current memslots until after all
1715 	 * changes to those memslots are complete.
1716 	 *
1717 	 * These rules ensure that installing new memslots does not lose
1718 	 * changes made to the previous memslots.
1719 	 */
1720 	mutex_lock(&kvm->slots_arch_lock);
1721 
1722 	/*
1723 	 * Invalidate the old slot if it's being deleted or moved.  This is
1724 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1725 	 * continue running by ensuring there are no mappings or shadow pages
1726 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1727 	 * (and without a lock), a window would exist between effecting the
1728 	 * delete/move and committing the changes in arch code where KVM or a
1729 	 * guest could access a non-existent memslot.
1730 	 *
1731 	 * Modifications are done on a temporary, unreachable slot.  The old
1732 	 * slot needs to be preserved in case a later step fails and the
1733 	 * invalidation needs to be reverted.
1734 	 */
1735 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1736 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1737 		if (!invalid_slot) {
1738 			mutex_unlock(&kvm->slots_arch_lock);
1739 			return -ENOMEM;
1740 		}
1741 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1742 	}
1743 
1744 	r = kvm_prepare_memory_region(kvm, old, new, change);
1745 	if (r) {
1746 		/*
1747 		 * For DELETE/MOVE, revert the above INVALID change.  No
1748 		 * modifications required since the original slot was preserved
1749 		 * in the inactive slots.  Changing the active memslots also
1750 		 * release slots_arch_lock.
1751 		 */
1752 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1753 			kvm_activate_memslot(kvm, invalid_slot, old);
1754 			kfree(invalid_slot);
1755 		} else {
1756 			mutex_unlock(&kvm->slots_arch_lock);
1757 		}
1758 		return r;
1759 	}
1760 
1761 	/*
1762 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1763 	 * version of the old slot.  MOVE is particularly special as it reuses
1764 	 * the old slot and returns a copy of the old slot (in working_slot).
1765 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1766 	 * old slot is detached but otherwise preserved.
1767 	 */
1768 	if (change == KVM_MR_CREATE)
1769 		kvm_create_memslot(kvm, new);
1770 	else if (change == KVM_MR_DELETE)
1771 		kvm_delete_memslot(kvm, old, invalid_slot);
1772 	else if (change == KVM_MR_MOVE)
1773 		kvm_move_memslot(kvm, old, new, invalid_slot);
1774 	else if (change == KVM_MR_FLAGS_ONLY)
1775 		kvm_update_flags_memslot(kvm, old, new);
1776 	else
1777 		BUG();
1778 
1779 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1780 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1781 		kfree(invalid_slot);
1782 
1783 	/*
1784 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1785 	 * will directly hit the final, active memsot.  Architectures are
1786 	 * responsible for knowing that new->arch may be stale.
1787 	 */
1788 	kvm_commit_memory_region(kvm, old, new, change);
1789 
1790 	return 0;
1791 }
1792 
1793 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1794 				      gfn_t start, gfn_t end)
1795 {
1796 	struct kvm_memslot_iter iter;
1797 
1798 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1799 		if (iter.slot->id != id)
1800 			return true;
1801 	}
1802 
1803 	return false;
1804 }
1805 
1806 /*
1807  * Allocate some memory and give it an address in the guest physical address
1808  * space.
1809  *
1810  * Discontiguous memory is allowed, mostly for framebuffers.
1811  *
1812  * Must be called holding kvm->slots_lock for write.
1813  */
1814 int __kvm_set_memory_region(struct kvm *kvm,
1815 			    const struct kvm_userspace_memory_region *mem)
1816 {
1817 	struct kvm_memory_slot *old, *new;
1818 	struct kvm_memslots *slots;
1819 	enum kvm_mr_change change;
1820 	unsigned long npages;
1821 	gfn_t base_gfn;
1822 	int as_id, id;
1823 	int r;
1824 
1825 	r = check_memory_region_flags(mem);
1826 	if (r)
1827 		return r;
1828 
1829 	as_id = mem->slot >> 16;
1830 	id = (u16)mem->slot;
1831 
1832 	/* General sanity checks */
1833 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1834 	    (mem->memory_size != (unsigned long)mem->memory_size))
1835 		return -EINVAL;
1836 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1837 		return -EINVAL;
1838 	/* We can read the guest memory with __xxx_user() later on. */
1839 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1840 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1841 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1842 			mem->memory_size))
1843 		return -EINVAL;
1844 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1845 		return -EINVAL;
1846 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1847 		return -EINVAL;
1848 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1849 		return -EINVAL;
1850 
1851 	slots = __kvm_memslots(kvm, as_id);
1852 
1853 	/*
1854 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1855 	 * and/or destroyed by kvm_set_memslot().
1856 	 */
1857 	old = id_to_memslot(slots, id);
1858 
1859 	if (!mem->memory_size) {
1860 		if (!old || !old->npages)
1861 			return -EINVAL;
1862 
1863 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1864 			return -EIO;
1865 
1866 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1867 	}
1868 
1869 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1870 	npages = (mem->memory_size >> PAGE_SHIFT);
1871 
1872 	if (!old || !old->npages) {
1873 		change = KVM_MR_CREATE;
1874 
1875 		/*
1876 		 * To simplify KVM internals, the total number of pages across
1877 		 * all memslots must fit in an unsigned long.
1878 		 */
1879 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1880 			return -EINVAL;
1881 	} else { /* Modify an existing slot. */
1882 		if ((mem->userspace_addr != old->userspace_addr) ||
1883 		    (npages != old->npages) ||
1884 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1885 			return -EINVAL;
1886 
1887 		if (base_gfn != old->base_gfn)
1888 			change = KVM_MR_MOVE;
1889 		else if (mem->flags != old->flags)
1890 			change = KVM_MR_FLAGS_ONLY;
1891 		else /* Nothing to change. */
1892 			return 0;
1893 	}
1894 
1895 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1896 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1897 		return -EEXIST;
1898 
1899 	/* Allocate a slot that will persist in the memslot. */
1900 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1901 	if (!new)
1902 		return -ENOMEM;
1903 
1904 	new->as_id = as_id;
1905 	new->id = id;
1906 	new->base_gfn = base_gfn;
1907 	new->npages = npages;
1908 	new->flags = mem->flags;
1909 	new->userspace_addr = mem->userspace_addr;
1910 
1911 	r = kvm_set_memslot(kvm, old, new, change);
1912 	if (r)
1913 		kfree(new);
1914 	return r;
1915 }
1916 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1917 
1918 int kvm_set_memory_region(struct kvm *kvm,
1919 			  const struct kvm_userspace_memory_region *mem)
1920 {
1921 	int r;
1922 
1923 	mutex_lock(&kvm->slots_lock);
1924 	r = __kvm_set_memory_region(kvm, mem);
1925 	mutex_unlock(&kvm->slots_lock);
1926 	return r;
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1929 
1930 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1931 					  struct kvm_userspace_memory_region *mem)
1932 {
1933 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1934 		return -EINVAL;
1935 
1936 	return kvm_set_memory_region(kvm, mem);
1937 }
1938 
1939 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1940 /**
1941  * kvm_get_dirty_log - get a snapshot of dirty pages
1942  * @kvm:	pointer to kvm instance
1943  * @log:	slot id and address to which we copy the log
1944  * @is_dirty:	set to '1' if any dirty pages were found
1945  * @memslot:	set to the associated memslot, always valid on success
1946  */
1947 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1948 		      int *is_dirty, struct kvm_memory_slot **memslot)
1949 {
1950 	struct kvm_memslots *slots;
1951 	int i, as_id, id;
1952 	unsigned long n;
1953 	unsigned long any = 0;
1954 
1955 	/* Dirty ring tracking is exclusive to dirty log tracking */
1956 	if (kvm->dirty_ring_size)
1957 		return -ENXIO;
1958 
1959 	*memslot = NULL;
1960 	*is_dirty = 0;
1961 
1962 	as_id = log->slot >> 16;
1963 	id = (u16)log->slot;
1964 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1965 		return -EINVAL;
1966 
1967 	slots = __kvm_memslots(kvm, as_id);
1968 	*memslot = id_to_memslot(slots, id);
1969 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1970 		return -ENOENT;
1971 
1972 	kvm_arch_sync_dirty_log(kvm, *memslot);
1973 
1974 	n = kvm_dirty_bitmap_bytes(*memslot);
1975 
1976 	for (i = 0; !any && i < n/sizeof(long); ++i)
1977 		any = (*memslot)->dirty_bitmap[i];
1978 
1979 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1980 		return -EFAULT;
1981 
1982 	if (any)
1983 		*is_dirty = 1;
1984 	return 0;
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1987 
1988 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1989 /**
1990  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1991  *	and reenable dirty page tracking for the corresponding pages.
1992  * @kvm:	pointer to kvm instance
1993  * @log:	slot id and address to which we copy the log
1994  *
1995  * We need to keep it in mind that VCPU threads can write to the bitmap
1996  * concurrently. So, to avoid losing track of dirty pages we keep the
1997  * following order:
1998  *
1999  *    1. Take a snapshot of the bit and clear it if needed.
2000  *    2. Write protect the corresponding page.
2001  *    3. Copy the snapshot to the userspace.
2002  *    4. Upon return caller flushes TLB's if needed.
2003  *
2004  * Between 2 and 4, the guest may write to the page using the remaining TLB
2005  * entry.  This is not a problem because the page is reported dirty using
2006  * the snapshot taken before and step 4 ensures that writes done after
2007  * exiting to userspace will be logged for the next call.
2008  *
2009  */
2010 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2011 {
2012 	struct kvm_memslots *slots;
2013 	struct kvm_memory_slot *memslot;
2014 	int i, as_id, id;
2015 	unsigned long n;
2016 	unsigned long *dirty_bitmap;
2017 	unsigned long *dirty_bitmap_buffer;
2018 	bool flush;
2019 
2020 	/* Dirty ring tracking is exclusive to dirty log tracking */
2021 	if (kvm->dirty_ring_size)
2022 		return -ENXIO;
2023 
2024 	as_id = log->slot >> 16;
2025 	id = (u16)log->slot;
2026 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2027 		return -EINVAL;
2028 
2029 	slots = __kvm_memslots(kvm, as_id);
2030 	memslot = id_to_memslot(slots, id);
2031 	if (!memslot || !memslot->dirty_bitmap)
2032 		return -ENOENT;
2033 
2034 	dirty_bitmap = memslot->dirty_bitmap;
2035 
2036 	kvm_arch_sync_dirty_log(kvm, memslot);
2037 
2038 	n = kvm_dirty_bitmap_bytes(memslot);
2039 	flush = false;
2040 	if (kvm->manual_dirty_log_protect) {
2041 		/*
2042 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2043 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2044 		 * is some code duplication between this function and
2045 		 * kvm_get_dirty_log, but hopefully all architecture
2046 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2047 		 * can be eliminated.
2048 		 */
2049 		dirty_bitmap_buffer = dirty_bitmap;
2050 	} else {
2051 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2052 		memset(dirty_bitmap_buffer, 0, n);
2053 
2054 		KVM_MMU_LOCK(kvm);
2055 		for (i = 0; i < n / sizeof(long); i++) {
2056 			unsigned long mask;
2057 			gfn_t offset;
2058 
2059 			if (!dirty_bitmap[i])
2060 				continue;
2061 
2062 			flush = true;
2063 			mask = xchg(&dirty_bitmap[i], 0);
2064 			dirty_bitmap_buffer[i] = mask;
2065 
2066 			offset = i * BITS_PER_LONG;
2067 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2068 								offset, mask);
2069 		}
2070 		KVM_MMU_UNLOCK(kvm);
2071 	}
2072 
2073 	if (flush)
2074 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2075 
2076 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2077 		return -EFAULT;
2078 	return 0;
2079 }
2080 
2081 
2082 /**
2083  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2084  * @kvm: kvm instance
2085  * @log: slot id and address to which we copy the log
2086  *
2087  * Steps 1-4 below provide general overview of dirty page logging. See
2088  * kvm_get_dirty_log_protect() function description for additional details.
2089  *
2090  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2091  * always flush the TLB (step 4) even if previous step failed  and the dirty
2092  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2093  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2094  * writes will be marked dirty for next log read.
2095  *
2096  *   1. Take a snapshot of the bit and clear it if needed.
2097  *   2. Write protect the corresponding page.
2098  *   3. Copy the snapshot to the userspace.
2099  *   4. Flush TLB's if needed.
2100  */
2101 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2102 				      struct kvm_dirty_log *log)
2103 {
2104 	int r;
2105 
2106 	mutex_lock(&kvm->slots_lock);
2107 
2108 	r = kvm_get_dirty_log_protect(kvm, log);
2109 
2110 	mutex_unlock(&kvm->slots_lock);
2111 	return r;
2112 }
2113 
2114 /**
2115  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2116  *	and reenable dirty page tracking for the corresponding pages.
2117  * @kvm:	pointer to kvm instance
2118  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2119  */
2120 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2121 				       struct kvm_clear_dirty_log *log)
2122 {
2123 	struct kvm_memslots *slots;
2124 	struct kvm_memory_slot *memslot;
2125 	int as_id, id;
2126 	gfn_t offset;
2127 	unsigned long i, n;
2128 	unsigned long *dirty_bitmap;
2129 	unsigned long *dirty_bitmap_buffer;
2130 	bool flush;
2131 
2132 	/* Dirty ring tracking is exclusive to dirty log tracking */
2133 	if (kvm->dirty_ring_size)
2134 		return -ENXIO;
2135 
2136 	as_id = log->slot >> 16;
2137 	id = (u16)log->slot;
2138 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2139 		return -EINVAL;
2140 
2141 	if (log->first_page & 63)
2142 		return -EINVAL;
2143 
2144 	slots = __kvm_memslots(kvm, as_id);
2145 	memslot = id_to_memslot(slots, id);
2146 	if (!memslot || !memslot->dirty_bitmap)
2147 		return -ENOENT;
2148 
2149 	dirty_bitmap = memslot->dirty_bitmap;
2150 
2151 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2152 
2153 	if (log->first_page > memslot->npages ||
2154 	    log->num_pages > memslot->npages - log->first_page ||
2155 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2156 	    return -EINVAL;
2157 
2158 	kvm_arch_sync_dirty_log(kvm, memslot);
2159 
2160 	flush = false;
2161 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2162 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2163 		return -EFAULT;
2164 
2165 	KVM_MMU_LOCK(kvm);
2166 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2167 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2168 	     i++, offset += BITS_PER_LONG) {
2169 		unsigned long mask = *dirty_bitmap_buffer++;
2170 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2171 		if (!mask)
2172 			continue;
2173 
2174 		mask &= atomic_long_fetch_andnot(mask, p);
2175 
2176 		/*
2177 		 * mask contains the bits that really have been cleared.  This
2178 		 * never includes any bits beyond the length of the memslot (if
2179 		 * the length is not aligned to 64 pages), therefore it is not
2180 		 * a problem if userspace sets them in log->dirty_bitmap.
2181 		*/
2182 		if (mask) {
2183 			flush = true;
2184 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2185 								offset, mask);
2186 		}
2187 	}
2188 	KVM_MMU_UNLOCK(kvm);
2189 
2190 	if (flush)
2191 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2192 
2193 	return 0;
2194 }
2195 
2196 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2197 					struct kvm_clear_dirty_log *log)
2198 {
2199 	int r;
2200 
2201 	mutex_lock(&kvm->slots_lock);
2202 
2203 	r = kvm_clear_dirty_log_protect(kvm, log);
2204 
2205 	mutex_unlock(&kvm->slots_lock);
2206 	return r;
2207 }
2208 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2209 
2210 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2211 {
2212 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2213 }
2214 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2215 
2216 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2217 {
2218 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2219 	u64 gen = slots->generation;
2220 	struct kvm_memory_slot *slot;
2221 
2222 	/*
2223 	 * This also protects against using a memslot from a different address space,
2224 	 * since different address spaces have different generation numbers.
2225 	 */
2226 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2227 		vcpu->last_used_slot = NULL;
2228 		vcpu->last_used_slot_gen = gen;
2229 	}
2230 
2231 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2232 	if (slot)
2233 		return slot;
2234 
2235 	/*
2236 	 * Fall back to searching all memslots. We purposely use
2237 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2238 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2239 	 */
2240 	slot = search_memslots(slots, gfn, false);
2241 	if (slot) {
2242 		vcpu->last_used_slot = slot;
2243 		return slot;
2244 	}
2245 
2246 	return NULL;
2247 }
2248 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2249 
2250 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2251 {
2252 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2253 
2254 	return kvm_is_visible_memslot(memslot);
2255 }
2256 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2257 
2258 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2259 {
2260 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2261 
2262 	return kvm_is_visible_memslot(memslot);
2263 }
2264 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2265 
2266 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2267 {
2268 	struct vm_area_struct *vma;
2269 	unsigned long addr, size;
2270 
2271 	size = PAGE_SIZE;
2272 
2273 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2274 	if (kvm_is_error_hva(addr))
2275 		return PAGE_SIZE;
2276 
2277 	mmap_read_lock(current->mm);
2278 	vma = find_vma(current->mm, addr);
2279 	if (!vma)
2280 		goto out;
2281 
2282 	size = vma_kernel_pagesize(vma);
2283 
2284 out:
2285 	mmap_read_unlock(current->mm);
2286 
2287 	return size;
2288 }
2289 
2290 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2291 {
2292 	return slot->flags & KVM_MEM_READONLY;
2293 }
2294 
2295 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2296 				       gfn_t *nr_pages, bool write)
2297 {
2298 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2299 		return KVM_HVA_ERR_BAD;
2300 
2301 	if (memslot_is_readonly(slot) && write)
2302 		return KVM_HVA_ERR_RO_BAD;
2303 
2304 	if (nr_pages)
2305 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2306 
2307 	return __gfn_to_hva_memslot(slot, gfn);
2308 }
2309 
2310 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2311 				     gfn_t *nr_pages)
2312 {
2313 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2314 }
2315 
2316 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2317 					gfn_t gfn)
2318 {
2319 	return gfn_to_hva_many(slot, gfn, NULL);
2320 }
2321 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2322 
2323 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2324 {
2325 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2326 }
2327 EXPORT_SYMBOL_GPL(gfn_to_hva);
2328 
2329 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2330 {
2331 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2332 }
2333 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2334 
2335 /*
2336  * Return the hva of a @gfn and the R/W attribute if possible.
2337  *
2338  * @slot: the kvm_memory_slot which contains @gfn
2339  * @gfn: the gfn to be translated
2340  * @writable: used to return the read/write attribute of the @slot if the hva
2341  * is valid and @writable is not NULL
2342  */
2343 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2344 				      gfn_t gfn, bool *writable)
2345 {
2346 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2347 
2348 	if (!kvm_is_error_hva(hva) && writable)
2349 		*writable = !memslot_is_readonly(slot);
2350 
2351 	return hva;
2352 }
2353 
2354 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2355 {
2356 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2357 
2358 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2359 }
2360 
2361 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2362 {
2363 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2364 
2365 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2366 }
2367 
2368 static inline int check_user_page_hwpoison(unsigned long addr)
2369 {
2370 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2371 
2372 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2373 	return rc == -EHWPOISON;
2374 }
2375 
2376 /*
2377  * The fast path to get the writable pfn which will be stored in @pfn,
2378  * true indicates success, otherwise false is returned.  It's also the
2379  * only part that runs if we can in atomic context.
2380  */
2381 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2382 			    bool *writable, kvm_pfn_t *pfn)
2383 {
2384 	struct page *page[1];
2385 
2386 	/*
2387 	 * Fast pin a writable pfn only if it is a write fault request
2388 	 * or the caller allows to map a writable pfn for a read fault
2389 	 * request.
2390 	 */
2391 	if (!(write_fault || writable))
2392 		return false;
2393 
2394 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2395 		*pfn = page_to_pfn(page[0]);
2396 
2397 		if (writable)
2398 			*writable = true;
2399 		return true;
2400 	}
2401 
2402 	return false;
2403 }
2404 
2405 /*
2406  * The slow path to get the pfn of the specified host virtual address,
2407  * 1 indicates success, -errno is returned if error is detected.
2408  */
2409 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2410 			   bool *writable, kvm_pfn_t *pfn)
2411 {
2412 	unsigned int flags = FOLL_HWPOISON;
2413 	struct page *page;
2414 	int npages = 0;
2415 
2416 	might_sleep();
2417 
2418 	if (writable)
2419 		*writable = write_fault;
2420 
2421 	if (write_fault)
2422 		flags |= FOLL_WRITE;
2423 	if (async)
2424 		flags |= FOLL_NOWAIT;
2425 
2426 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2427 	if (npages != 1)
2428 		return npages;
2429 
2430 	/* map read fault as writable if possible */
2431 	if (unlikely(!write_fault) && writable) {
2432 		struct page *wpage;
2433 
2434 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2435 			*writable = true;
2436 			put_page(page);
2437 			page = wpage;
2438 		}
2439 	}
2440 	*pfn = page_to_pfn(page);
2441 	return npages;
2442 }
2443 
2444 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2445 {
2446 	if (unlikely(!(vma->vm_flags & VM_READ)))
2447 		return false;
2448 
2449 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2450 		return false;
2451 
2452 	return true;
2453 }
2454 
2455 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2456 {
2457 	if (kvm_is_reserved_pfn(pfn))
2458 		return 1;
2459 	return get_page_unless_zero(pfn_to_page(pfn));
2460 }
2461 
2462 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2463 			       unsigned long addr, bool *async,
2464 			       bool write_fault, bool *writable,
2465 			       kvm_pfn_t *p_pfn)
2466 {
2467 	kvm_pfn_t pfn;
2468 	pte_t *ptep;
2469 	spinlock_t *ptl;
2470 	int r;
2471 
2472 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2473 	if (r) {
2474 		/*
2475 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2476 		 * not call the fault handler, so do it here.
2477 		 */
2478 		bool unlocked = false;
2479 		r = fixup_user_fault(current->mm, addr,
2480 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2481 				     &unlocked);
2482 		if (unlocked)
2483 			return -EAGAIN;
2484 		if (r)
2485 			return r;
2486 
2487 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2488 		if (r)
2489 			return r;
2490 	}
2491 
2492 	if (write_fault && !pte_write(*ptep)) {
2493 		pfn = KVM_PFN_ERR_RO_FAULT;
2494 		goto out;
2495 	}
2496 
2497 	if (writable)
2498 		*writable = pte_write(*ptep);
2499 	pfn = pte_pfn(*ptep);
2500 
2501 	/*
2502 	 * Get a reference here because callers of *hva_to_pfn* and
2503 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2504 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2505 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2506 	 * simply do nothing for reserved pfns.
2507 	 *
2508 	 * Whoever called remap_pfn_range is also going to call e.g.
2509 	 * unmap_mapping_range before the underlying pages are freed,
2510 	 * causing a call to our MMU notifier.
2511 	 *
2512 	 * Certain IO or PFNMAP mappings can be backed with valid
2513 	 * struct pages, but be allocated without refcounting e.g.,
2514 	 * tail pages of non-compound higher order allocations, which
2515 	 * would then underflow the refcount when the caller does the
2516 	 * required put_page. Don't allow those pages here.
2517 	 */
2518 	if (!kvm_try_get_pfn(pfn))
2519 		r = -EFAULT;
2520 
2521 out:
2522 	pte_unmap_unlock(ptep, ptl);
2523 	*p_pfn = pfn;
2524 
2525 	return r;
2526 }
2527 
2528 /*
2529  * Pin guest page in memory and return its pfn.
2530  * @addr: host virtual address which maps memory to the guest
2531  * @atomic: whether this function can sleep
2532  * @async: whether this function need to wait IO complete if the
2533  *         host page is not in the memory
2534  * @write_fault: whether we should get a writable host page
2535  * @writable: whether it allows to map a writable host page for !@write_fault
2536  *
2537  * The function will map a writable host page for these two cases:
2538  * 1): @write_fault = true
2539  * 2): @write_fault = false && @writable, @writable will tell the caller
2540  *     whether the mapping is writable.
2541  */
2542 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2543 			bool write_fault, bool *writable)
2544 {
2545 	struct vm_area_struct *vma;
2546 	kvm_pfn_t pfn = 0;
2547 	int npages, r;
2548 
2549 	/* we can do it either atomically or asynchronously, not both */
2550 	BUG_ON(atomic && async);
2551 
2552 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2553 		return pfn;
2554 
2555 	if (atomic)
2556 		return KVM_PFN_ERR_FAULT;
2557 
2558 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2559 	if (npages == 1)
2560 		return pfn;
2561 
2562 	mmap_read_lock(current->mm);
2563 	if (npages == -EHWPOISON ||
2564 	      (!async && check_user_page_hwpoison(addr))) {
2565 		pfn = KVM_PFN_ERR_HWPOISON;
2566 		goto exit;
2567 	}
2568 
2569 retry:
2570 	vma = vma_lookup(current->mm, addr);
2571 
2572 	if (vma == NULL)
2573 		pfn = KVM_PFN_ERR_FAULT;
2574 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2575 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2576 		if (r == -EAGAIN)
2577 			goto retry;
2578 		if (r < 0)
2579 			pfn = KVM_PFN_ERR_FAULT;
2580 	} else {
2581 		if (async && vma_is_valid(vma, write_fault))
2582 			*async = true;
2583 		pfn = KVM_PFN_ERR_FAULT;
2584 	}
2585 exit:
2586 	mmap_read_unlock(current->mm);
2587 	return pfn;
2588 }
2589 
2590 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2591 			       bool atomic, bool *async, bool write_fault,
2592 			       bool *writable, hva_t *hva)
2593 {
2594 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2595 
2596 	if (hva)
2597 		*hva = addr;
2598 
2599 	if (addr == KVM_HVA_ERR_RO_BAD) {
2600 		if (writable)
2601 			*writable = false;
2602 		return KVM_PFN_ERR_RO_FAULT;
2603 	}
2604 
2605 	if (kvm_is_error_hva(addr)) {
2606 		if (writable)
2607 			*writable = false;
2608 		return KVM_PFN_NOSLOT;
2609 	}
2610 
2611 	/* Do not map writable pfn in the readonly memslot. */
2612 	if (writable && memslot_is_readonly(slot)) {
2613 		*writable = false;
2614 		writable = NULL;
2615 	}
2616 
2617 	return hva_to_pfn(addr, atomic, async, write_fault,
2618 			  writable);
2619 }
2620 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2621 
2622 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2623 		      bool *writable)
2624 {
2625 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2626 				    write_fault, writable, NULL);
2627 }
2628 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2629 
2630 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2631 {
2632 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2633 }
2634 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2635 
2636 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2637 {
2638 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2639 }
2640 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2641 
2642 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2643 {
2644 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2645 }
2646 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2647 
2648 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2649 {
2650 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2651 }
2652 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2653 
2654 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2655 {
2656 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2657 }
2658 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2659 
2660 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2661 			    struct page **pages, int nr_pages)
2662 {
2663 	unsigned long addr;
2664 	gfn_t entry = 0;
2665 
2666 	addr = gfn_to_hva_many(slot, gfn, &entry);
2667 	if (kvm_is_error_hva(addr))
2668 		return -1;
2669 
2670 	if (entry < nr_pages)
2671 		return 0;
2672 
2673 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2674 }
2675 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2676 
2677 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2678 {
2679 	if (is_error_noslot_pfn(pfn))
2680 		return KVM_ERR_PTR_BAD_PAGE;
2681 
2682 	if (kvm_is_reserved_pfn(pfn)) {
2683 		WARN_ON(1);
2684 		return KVM_ERR_PTR_BAD_PAGE;
2685 	}
2686 
2687 	return pfn_to_page(pfn);
2688 }
2689 
2690 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2691 {
2692 	kvm_pfn_t pfn;
2693 
2694 	pfn = gfn_to_pfn(kvm, gfn);
2695 
2696 	return kvm_pfn_to_page(pfn);
2697 }
2698 EXPORT_SYMBOL_GPL(gfn_to_page);
2699 
2700 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2701 {
2702 	if (pfn == 0)
2703 		return;
2704 
2705 	if (dirty)
2706 		kvm_release_pfn_dirty(pfn);
2707 	else
2708 		kvm_release_pfn_clean(pfn);
2709 }
2710 
2711 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2712 {
2713 	kvm_pfn_t pfn;
2714 	void *hva = NULL;
2715 	struct page *page = KVM_UNMAPPED_PAGE;
2716 
2717 	if (!map)
2718 		return -EINVAL;
2719 
2720 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2721 	if (is_error_noslot_pfn(pfn))
2722 		return -EINVAL;
2723 
2724 	if (pfn_valid(pfn)) {
2725 		page = pfn_to_page(pfn);
2726 		hva = kmap(page);
2727 #ifdef CONFIG_HAS_IOMEM
2728 	} else {
2729 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2730 #endif
2731 	}
2732 
2733 	if (!hva)
2734 		return -EFAULT;
2735 
2736 	map->page = page;
2737 	map->hva = hva;
2738 	map->pfn = pfn;
2739 	map->gfn = gfn;
2740 
2741 	return 0;
2742 }
2743 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2744 
2745 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2746 {
2747 	if (!map)
2748 		return;
2749 
2750 	if (!map->hva)
2751 		return;
2752 
2753 	if (map->page != KVM_UNMAPPED_PAGE)
2754 		kunmap(map->page);
2755 #ifdef CONFIG_HAS_IOMEM
2756 	else
2757 		memunmap(map->hva);
2758 #endif
2759 
2760 	if (dirty)
2761 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2762 
2763 	kvm_release_pfn(map->pfn, dirty);
2764 
2765 	map->hva = NULL;
2766 	map->page = NULL;
2767 }
2768 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2769 
2770 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2771 {
2772 	kvm_pfn_t pfn;
2773 
2774 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2775 
2776 	return kvm_pfn_to_page(pfn);
2777 }
2778 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2779 
2780 void kvm_release_page_clean(struct page *page)
2781 {
2782 	WARN_ON(is_error_page(page));
2783 
2784 	kvm_release_pfn_clean(page_to_pfn(page));
2785 }
2786 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2787 
2788 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2789 {
2790 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2791 		put_page(pfn_to_page(pfn));
2792 }
2793 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2794 
2795 void kvm_release_page_dirty(struct page *page)
2796 {
2797 	WARN_ON(is_error_page(page));
2798 
2799 	kvm_release_pfn_dirty(page_to_pfn(page));
2800 }
2801 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2802 
2803 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2804 {
2805 	kvm_set_pfn_dirty(pfn);
2806 	kvm_release_pfn_clean(pfn);
2807 }
2808 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2809 
2810 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2811 {
2812 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2813 		SetPageDirty(pfn_to_page(pfn));
2814 }
2815 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2816 
2817 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2818 {
2819 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2820 		mark_page_accessed(pfn_to_page(pfn));
2821 }
2822 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2823 
2824 static int next_segment(unsigned long len, int offset)
2825 {
2826 	if (len > PAGE_SIZE - offset)
2827 		return PAGE_SIZE - offset;
2828 	else
2829 		return len;
2830 }
2831 
2832 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2833 				 void *data, int offset, int len)
2834 {
2835 	int r;
2836 	unsigned long addr;
2837 
2838 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2839 	if (kvm_is_error_hva(addr))
2840 		return -EFAULT;
2841 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2842 	if (r)
2843 		return -EFAULT;
2844 	return 0;
2845 }
2846 
2847 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2848 			int len)
2849 {
2850 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2851 
2852 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2853 }
2854 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2855 
2856 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2857 			     int offset, int len)
2858 {
2859 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2860 
2861 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2862 }
2863 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2864 
2865 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2866 {
2867 	gfn_t gfn = gpa >> PAGE_SHIFT;
2868 	int seg;
2869 	int offset = offset_in_page(gpa);
2870 	int ret;
2871 
2872 	while ((seg = next_segment(len, offset)) != 0) {
2873 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2874 		if (ret < 0)
2875 			return ret;
2876 		offset = 0;
2877 		len -= seg;
2878 		data += seg;
2879 		++gfn;
2880 	}
2881 	return 0;
2882 }
2883 EXPORT_SYMBOL_GPL(kvm_read_guest);
2884 
2885 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2886 {
2887 	gfn_t gfn = gpa >> PAGE_SHIFT;
2888 	int seg;
2889 	int offset = offset_in_page(gpa);
2890 	int ret;
2891 
2892 	while ((seg = next_segment(len, offset)) != 0) {
2893 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2894 		if (ret < 0)
2895 			return ret;
2896 		offset = 0;
2897 		len -= seg;
2898 		data += seg;
2899 		++gfn;
2900 	}
2901 	return 0;
2902 }
2903 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2904 
2905 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2906 			           void *data, int offset, unsigned long len)
2907 {
2908 	int r;
2909 	unsigned long addr;
2910 
2911 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2912 	if (kvm_is_error_hva(addr))
2913 		return -EFAULT;
2914 	pagefault_disable();
2915 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2916 	pagefault_enable();
2917 	if (r)
2918 		return -EFAULT;
2919 	return 0;
2920 }
2921 
2922 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2923 			       void *data, unsigned long len)
2924 {
2925 	gfn_t gfn = gpa >> PAGE_SHIFT;
2926 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2927 	int offset = offset_in_page(gpa);
2928 
2929 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2930 }
2931 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2932 
2933 static int __kvm_write_guest_page(struct kvm *kvm,
2934 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2935 			          const void *data, int offset, int len)
2936 {
2937 	int r;
2938 	unsigned long addr;
2939 
2940 	addr = gfn_to_hva_memslot(memslot, gfn);
2941 	if (kvm_is_error_hva(addr))
2942 		return -EFAULT;
2943 	r = __copy_to_user((void __user *)addr + offset, data, len);
2944 	if (r)
2945 		return -EFAULT;
2946 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2947 	return 0;
2948 }
2949 
2950 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2951 			 const void *data, int offset, int len)
2952 {
2953 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2954 
2955 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2956 }
2957 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2958 
2959 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2960 			      const void *data, int offset, int len)
2961 {
2962 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2963 
2964 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2965 }
2966 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2967 
2968 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2969 		    unsigned long len)
2970 {
2971 	gfn_t gfn = gpa >> PAGE_SHIFT;
2972 	int seg;
2973 	int offset = offset_in_page(gpa);
2974 	int ret;
2975 
2976 	while ((seg = next_segment(len, offset)) != 0) {
2977 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2978 		if (ret < 0)
2979 			return ret;
2980 		offset = 0;
2981 		len -= seg;
2982 		data += seg;
2983 		++gfn;
2984 	}
2985 	return 0;
2986 }
2987 EXPORT_SYMBOL_GPL(kvm_write_guest);
2988 
2989 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2990 		         unsigned long len)
2991 {
2992 	gfn_t gfn = gpa >> PAGE_SHIFT;
2993 	int seg;
2994 	int offset = offset_in_page(gpa);
2995 	int ret;
2996 
2997 	while ((seg = next_segment(len, offset)) != 0) {
2998 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2999 		if (ret < 0)
3000 			return ret;
3001 		offset = 0;
3002 		len -= seg;
3003 		data += seg;
3004 		++gfn;
3005 	}
3006 	return 0;
3007 }
3008 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3009 
3010 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3011 				       struct gfn_to_hva_cache *ghc,
3012 				       gpa_t gpa, unsigned long len)
3013 {
3014 	int offset = offset_in_page(gpa);
3015 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3016 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3017 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3018 	gfn_t nr_pages_avail;
3019 
3020 	/* Update ghc->generation before performing any error checks. */
3021 	ghc->generation = slots->generation;
3022 
3023 	if (start_gfn > end_gfn) {
3024 		ghc->hva = KVM_HVA_ERR_BAD;
3025 		return -EINVAL;
3026 	}
3027 
3028 	/*
3029 	 * If the requested region crosses two memslots, we still
3030 	 * verify that the entire region is valid here.
3031 	 */
3032 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3033 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3034 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3035 					   &nr_pages_avail);
3036 		if (kvm_is_error_hva(ghc->hva))
3037 			return -EFAULT;
3038 	}
3039 
3040 	/* Use the slow path for cross page reads and writes. */
3041 	if (nr_pages_needed == 1)
3042 		ghc->hva += offset;
3043 	else
3044 		ghc->memslot = NULL;
3045 
3046 	ghc->gpa = gpa;
3047 	ghc->len = len;
3048 	return 0;
3049 }
3050 
3051 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3052 			      gpa_t gpa, unsigned long len)
3053 {
3054 	struct kvm_memslots *slots = kvm_memslots(kvm);
3055 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3056 }
3057 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3058 
3059 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3060 				  void *data, unsigned int offset,
3061 				  unsigned long len)
3062 {
3063 	struct kvm_memslots *slots = kvm_memslots(kvm);
3064 	int r;
3065 	gpa_t gpa = ghc->gpa + offset;
3066 
3067 	if (WARN_ON_ONCE(len + offset > ghc->len))
3068 		return -EINVAL;
3069 
3070 	if (slots->generation != ghc->generation) {
3071 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3072 			return -EFAULT;
3073 	}
3074 
3075 	if (kvm_is_error_hva(ghc->hva))
3076 		return -EFAULT;
3077 
3078 	if (unlikely(!ghc->memslot))
3079 		return kvm_write_guest(kvm, gpa, data, len);
3080 
3081 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3082 	if (r)
3083 		return -EFAULT;
3084 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3085 
3086 	return 0;
3087 }
3088 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3089 
3090 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3091 			   void *data, unsigned long len)
3092 {
3093 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3094 }
3095 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3096 
3097 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3098 				 void *data, unsigned int offset,
3099 				 unsigned long len)
3100 {
3101 	struct kvm_memslots *slots = kvm_memslots(kvm);
3102 	int r;
3103 	gpa_t gpa = ghc->gpa + offset;
3104 
3105 	if (WARN_ON_ONCE(len + offset > ghc->len))
3106 		return -EINVAL;
3107 
3108 	if (slots->generation != ghc->generation) {
3109 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3110 			return -EFAULT;
3111 	}
3112 
3113 	if (kvm_is_error_hva(ghc->hva))
3114 		return -EFAULT;
3115 
3116 	if (unlikely(!ghc->memslot))
3117 		return kvm_read_guest(kvm, gpa, data, len);
3118 
3119 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3120 	if (r)
3121 		return -EFAULT;
3122 
3123 	return 0;
3124 }
3125 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3126 
3127 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3128 			  void *data, unsigned long len)
3129 {
3130 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3131 }
3132 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3133 
3134 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3135 {
3136 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3137 	gfn_t gfn = gpa >> PAGE_SHIFT;
3138 	int seg;
3139 	int offset = offset_in_page(gpa);
3140 	int ret;
3141 
3142 	while ((seg = next_segment(len, offset)) != 0) {
3143 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3144 		if (ret < 0)
3145 			return ret;
3146 		offset = 0;
3147 		len -= seg;
3148 		++gfn;
3149 	}
3150 	return 0;
3151 }
3152 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3153 
3154 void mark_page_dirty_in_slot(struct kvm *kvm,
3155 			     const struct kvm_memory_slot *memslot,
3156 		 	     gfn_t gfn)
3157 {
3158 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3159 
3160 	if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3161 		return;
3162 
3163 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3164 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3165 		u32 slot = (memslot->as_id << 16) | memslot->id;
3166 
3167 		if (kvm->dirty_ring_size)
3168 			kvm_dirty_ring_push(&vcpu->dirty_ring,
3169 					    slot, rel_gfn);
3170 		else
3171 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3172 	}
3173 }
3174 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3175 
3176 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3177 {
3178 	struct kvm_memory_slot *memslot;
3179 
3180 	memslot = gfn_to_memslot(kvm, gfn);
3181 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3182 }
3183 EXPORT_SYMBOL_GPL(mark_page_dirty);
3184 
3185 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3186 {
3187 	struct kvm_memory_slot *memslot;
3188 
3189 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3190 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3191 }
3192 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3193 
3194 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3195 {
3196 	if (!vcpu->sigset_active)
3197 		return;
3198 
3199 	/*
3200 	 * This does a lockless modification of ->real_blocked, which is fine
3201 	 * because, only current can change ->real_blocked and all readers of
3202 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3203 	 * of ->blocked.
3204 	 */
3205 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3206 }
3207 
3208 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3209 {
3210 	if (!vcpu->sigset_active)
3211 		return;
3212 
3213 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3214 	sigemptyset(&current->real_blocked);
3215 }
3216 
3217 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3218 {
3219 	unsigned int old, val, grow, grow_start;
3220 
3221 	old = val = vcpu->halt_poll_ns;
3222 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3223 	grow = READ_ONCE(halt_poll_ns_grow);
3224 	if (!grow)
3225 		goto out;
3226 
3227 	val *= grow;
3228 	if (val < grow_start)
3229 		val = grow_start;
3230 
3231 	if (val > vcpu->kvm->max_halt_poll_ns)
3232 		val = vcpu->kvm->max_halt_poll_ns;
3233 
3234 	vcpu->halt_poll_ns = val;
3235 out:
3236 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3237 }
3238 
3239 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3240 {
3241 	unsigned int old, val, shrink, grow_start;
3242 
3243 	old = val = vcpu->halt_poll_ns;
3244 	shrink = READ_ONCE(halt_poll_ns_shrink);
3245 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3246 	if (shrink == 0)
3247 		val = 0;
3248 	else
3249 		val /= shrink;
3250 
3251 	if (val < grow_start)
3252 		val = 0;
3253 
3254 	vcpu->halt_poll_ns = val;
3255 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3256 }
3257 
3258 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3259 {
3260 	int ret = -EINTR;
3261 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3262 
3263 	if (kvm_arch_vcpu_runnable(vcpu)) {
3264 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3265 		goto out;
3266 	}
3267 	if (kvm_cpu_has_pending_timer(vcpu))
3268 		goto out;
3269 	if (signal_pending(current))
3270 		goto out;
3271 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3272 		goto out;
3273 
3274 	ret = 0;
3275 out:
3276 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3277 	return ret;
3278 }
3279 
3280 /*
3281  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3282  * pending.  This is mostly used when halting a vCPU, but may also be used
3283  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3284  */
3285 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3286 {
3287 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3288 	bool waited = false;
3289 
3290 	vcpu->stat.generic.blocking = 1;
3291 
3292 	kvm_arch_vcpu_blocking(vcpu);
3293 
3294 	prepare_to_rcuwait(wait);
3295 	for (;;) {
3296 		set_current_state(TASK_INTERRUPTIBLE);
3297 
3298 		if (kvm_vcpu_check_block(vcpu) < 0)
3299 			break;
3300 
3301 		waited = true;
3302 		schedule();
3303 	}
3304 	finish_rcuwait(wait);
3305 
3306 	kvm_arch_vcpu_unblocking(vcpu);
3307 
3308 	vcpu->stat.generic.blocking = 0;
3309 
3310 	return waited;
3311 }
3312 
3313 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3314 					  ktime_t end, bool success)
3315 {
3316 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3317 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3318 
3319 	++vcpu->stat.generic.halt_attempted_poll;
3320 
3321 	if (success) {
3322 		++vcpu->stat.generic.halt_successful_poll;
3323 
3324 		if (!vcpu_valid_wakeup(vcpu))
3325 			++vcpu->stat.generic.halt_poll_invalid;
3326 
3327 		stats->halt_poll_success_ns += poll_ns;
3328 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3329 	} else {
3330 		stats->halt_poll_fail_ns += poll_ns;
3331 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3332 	}
3333 }
3334 
3335 /*
3336  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3337  * polling is enabled, busy wait for a short time before blocking to avoid the
3338  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3339  * is halted.
3340  */
3341 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3342 {
3343 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3344 	bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3345 	ktime_t start, cur, poll_end;
3346 	bool waited = false;
3347 	u64 halt_ns;
3348 
3349 	start = cur = poll_end = ktime_get();
3350 	if (do_halt_poll) {
3351 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3352 
3353 		do {
3354 			/*
3355 			 * This sets KVM_REQ_UNHALT if an interrupt
3356 			 * arrives.
3357 			 */
3358 			if (kvm_vcpu_check_block(vcpu) < 0)
3359 				goto out;
3360 			cpu_relax();
3361 			poll_end = cur = ktime_get();
3362 		} while (kvm_vcpu_can_poll(cur, stop));
3363 	}
3364 
3365 	waited = kvm_vcpu_block(vcpu);
3366 
3367 	cur = ktime_get();
3368 	if (waited) {
3369 		vcpu->stat.generic.halt_wait_ns +=
3370 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3371 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3372 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3373 	}
3374 out:
3375 	/* The total time the vCPU was "halted", including polling time. */
3376 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3377 
3378 	/*
3379 	 * Note, halt-polling is considered successful so long as the vCPU was
3380 	 * never actually scheduled out, i.e. even if the wake event arrived
3381 	 * after of the halt-polling loop itself, but before the full wait.
3382 	 */
3383 	if (do_halt_poll)
3384 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3385 
3386 	if (halt_poll_allowed) {
3387 		if (!vcpu_valid_wakeup(vcpu)) {
3388 			shrink_halt_poll_ns(vcpu);
3389 		} else if (vcpu->kvm->max_halt_poll_ns) {
3390 			if (halt_ns <= vcpu->halt_poll_ns)
3391 				;
3392 			/* we had a long block, shrink polling */
3393 			else if (vcpu->halt_poll_ns &&
3394 				 halt_ns > vcpu->kvm->max_halt_poll_ns)
3395 				shrink_halt_poll_ns(vcpu);
3396 			/* we had a short halt and our poll time is too small */
3397 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3398 				 halt_ns < vcpu->kvm->max_halt_poll_ns)
3399 				grow_halt_poll_ns(vcpu);
3400 		} else {
3401 			vcpu->halt_poll_ns = 0;
3402 		}
3403 	}
3404 
3405 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3406 }
3407 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3408 
3409 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3410 {
3411 	if (__kvm_vcpu_wake_up(vcpu)) {
3412 		WRITE_ONCE(vcpu->ready, true);
3413 		++vcpu->stat.generic.halt_wakeup;
3414 		return true;
3415 	}
3416 
3417 	return false;
3418 }
3419 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3420 
3421 #ifndef CONFIG_S390
3422 /*
3423  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3424  */
3425 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3426 {
3427 	int me, cpu;
3428 
3429 	if (kvm_vcpu_wake_up(vcpu))
3430 		return;
3431 
3432 	me = get_cpu();
3433 	/*
3434 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3435 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3436 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3437 	 * within the vCPU thread itself.
3438 	 */
3439 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3440 		if (vcpu->mode == IN_GUEST_MODE)
3441 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3442 		goto out;
3443 	}
3444 
3445 	/*
3446 	 * Note, the vCPU could get migrated to a different pCPU at any point
3447 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3448 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3449 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3450 	 * vCPU also requires it to leave IN_GUEST_MODE.
3451 	 */
3452 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3453 		cpu = READ_ONCE(vcpu->cpu);
3454 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3455 			smp_send_reschedule(cpu);
3456 	}
3457 out:
3458 	put_cpu();
3459 }
3460 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3461 #endif /* !CONFIG_S390 */
3462 
3463 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3464 {
3465 	struct pid *pid;
3466 	struct task_struct *task = NULL;
3467 	int ret = 0;
3468 
3469 	rcu_read_lock();
3470 	pid = rcu_dereference(target->pid);
3471 	if (pid)
3472 		task = get_pid_task(pid, PIDTYPE_PID);
3473 	rcu_read_unlock();
3474 	if (!task)
3475 		return ret;
3476 	ret = yield_to(task, 1);
3477 	put_task_struct(task);
3478 
3479 	return ret;
3480 }
3481 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3482 
3483 /*
3484  * Helper that checks whether a VCPU is eligible for directed yield.
3485  * Most eligible candidate to yield is decided by following heuristics:
3486  *
3487  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3488  *  (preempted lock holder), indicated by @in_spin_loop.
3489  *  Set at the beginning and cleared at the end of interception/PLE handler.
3490  *
3491  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3492  *  chance last time (mostly it has become eligible now since we have probably
3493  *  yielded to lockholder in last iteration. This is done by toggling
3494  *  @dy_eligible each time a VCPU checked for eligibility.)
3495  *
3496  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3497  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3498  *  burning. Giving priority for a potential lock-holder increases lock
3499  *  progress.
3500  *
3501  *  Since algorithm is based on heuristics, accessing another VCPU data without
3502  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3503  *  and continue with next VCPU and so on.
3504  */
3505 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3506 {
3507 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3508 	bool eligible;
3509 
3510 	eligible = !vcpu->spin_loop.in_spin_loop ||
3511 		    vcpu->spin_loop.dy_eligible;
3512 
3513 	if (vcpu->spin_loop.in_spin_loop)
3514 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3515 
3516 	return eligible;
3517 #else
3518 	return true;
3519 #endif
3520 }
3521 
3522 /*
3523  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3524  * a vcpu_load/vcpu_put pair.  However, for most architectures
3525  * kvm_arch_vcpu_runnable does not require vcpu_load.
3526  */
3527 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3528 {
3529 	return kvm_arch_vcpu_runnable(vcpu);
3530 }
3531 
3532 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3533 {
3534 	if (kvm_arch_dy_runnable(vcpu))
3535 		return true;
3536 
3537 #ifdef CONFIG_KVM_ASYNC_PF
3538 	if (!list_empty_careful(&vcpu->async_pf.done))
3539 		return true;
3540 #endif
3541 
3542 	return false;
3543 }
3544 
3545 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3546 {
3547 	return false;
3548 }
3549 
3550 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3551 {
3552 	struct kvm *kvm = me->kvm;
3553 	struct kvm_vcpu *vcpu;
3554 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3555 	unsigned long i;
3556 	int yielded = 0;
3557 	int try = 3;
3558 	int pass;
3559 
3560 	kvm_vcpu_set_in_spin_loop(me, true);
3561 	/*
3562 	 * We boost the priority of a VCPU that is runnable but not
3563 	 * currently running, because it got preempted by something
3564 	 * else and called schedule in __vcpu_run.  Hopefully that
3565 	 * VCPU is holding the lock that we need and will release it.
3566 	 * We approximate round-robin by starting at the last boosted VCPU.
3567 	 */
3568 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3569 		kvm_for_each_vcpu(i, vcpu, kvm) {
3570 			if (!pass && i <= last_boosted_vcpu) {
3571 				i = last_boosted_vcpu;
3572 				continue;
3573 			} else if (pass && i > last_boosted_vcpu)
3574 				break;
3575 			if (!READ_ONCE(vcpu->ready))
3576 				continue;
3577 			if (vcpu == me)
3578 				continue;
3579 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3580 				continue;
3581 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3582 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3583 			    !kvm_arch_vcpu_in_kernel(vcpu))
3584 				continue;
3585 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3586 				continue;
3587 
3588 			yielded = kvm_vcpu_yield_to(vcpu);
3589 			if (yielded > 0) {
3590 				kvm->last_boosted_vcpu = i;
3591 				break;
3592 			} else if (yielded < 0) {
3593 				try--;
3594 				if (!try)
3595 					break;
3596 			}
3597 		}
3598 	}
3599 	kvm_vcpu_set_in_spin_loop(me, false);
3600 
3601 	/* Ensure vcpu is not eligible during next spinloop */
3602 	kvm_vcpu_set_dy_eligible(me, false);
3603 }
3604 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3605 
3606 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3607 {
3608 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3609 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3610 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3611 	     kvm->dirty_ring_size / PAGE_SIZE);
3612 #else
3613 	return false;
3614 #endif
3615 }
3616 
3617 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3618 {
3619 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3620 	struct page *page;
3621 
3622 	if (vmf->pgoff == 0)
3623 		page = virt_to_page(vcpu->run);
3624 #ifdef CONFIG_X86
3625 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3626 		page = virt_to_page(vcpu->arch.pio_data);
3627 #endif
3628 #ifdef CONFIG_KVM_MMIO
3629 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3630 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3631 #endif
3632 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3633 		page = kvm_dirty_ring_get_page(
3634 		    &vcpu->dirty_ring,
3635 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3636 	else
3637 		return kvm_arch_vcpu_fault(vcpu, vmf);
3638 	get_page(page);
3639 	vmf->page = page;
3640 	return 0;
3641 }
3642 
3643 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3644 	.fault = kvm_vcpu_fault,
3645 };
3646 
3647 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3648 {
3649 	struct kvm_vcpu *vcpu = file->private_data;
3650 	unsigned long pages = vma_pages(vma);
3651 
3652 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3653 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3654 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3655 		return -EINVAL;
3656 
3657 	vma->vm_ops = &kvm_vcpu_vm_ops;
3658 	return 0;
3659 }
3660 
3661 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3662 {
3663 	struct kvm_vcpu *vcpu = filp->private_data;
3664 
3665 	kvm_put_kvm(vcpu->kvm);
3666 	return 0;
3667 }
3668 
3669 static struct file_operations kvm_vcpu_fops = {
3670 	.release        = kvm_vcpu_release,
3671 	.unlocked_ioctl = kvm_vcpu_ioctl,
3672 	.mmap           = kvm_vcpu_mmap,
3673 	.llseek		= noop_llseek,
3674 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3675 };
3676 
3677 /*
3678  * Allocates an inode for the vcpu.
3679  */
3680 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3681 {
3682 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3683 
3684 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3685 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3686 }
3687 
3688 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3689 {
3690 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3691 	struct dentry *debugfs_dentry;
3692 	char dir_name[ITOA_MAX_LEN * 2];
3693 
3694 	if (!debugfs_initialized())
3695 		return;
3696 
3697 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3698 	debugfs_dentry = debugfs_create_dir(dir_name,
3699 					    vcpu->kvm->debugfs_dentry);
3700 
3701 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3702 #endif
3703 }
3704 
3705 /*
3706  * Creates some virtual cpus.  Good luck creating more than one.
3707  */
3708 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3709 {
3710 	int r;
3711 	struct kvm_vcpu *vcpu;
3712 	struct page *page;
3713 
3714 	if (id >= KVM_MAX_VCPU_IDS)
3715 		return -EINVAL;
3716 
3717 	mutex_lock(&kvm->lock);
3718 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3719 		mutex_unlock(&kvm->lock);
3720 		return -EINVAL;
3721 	}
3722 
3723 	kvm->created_vcpus++;
3724 	mutex_unlock(&kvm->lock);
3725 
3726 	r = kvm_arch_vcpu_precreate(kvm, id);
3727 	if (r)
3728 		goto vcpu_decrement;
3729 
3730 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3731 	if (!vcpu) {
3732 		r = -ENOMEM;
3733 		goto vcpu_decrement;
3734 	}
3735 
3736 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3737 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3738 	if (!page) {
3739 		r = -ENOMEM;
3740 		goto vcpu_free;
3741 	}
3742 	vcpu->run = page_address(page);
3743 
3744 	kvm_vcpu_init(vcpu, kvm, id);
3745 
3746 	r = kvm_arch_vcpu_create(vcpu);
3747 	if (r)
3748 		goto vcpu_free_run_page;
3749 
3750 	if (kvm->dirty_ring_size) {
3751 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3752 					 id, kvm->dirty_ring_size);
3753 		if (r)
3754 			goto arch_vcpu_destroy;
3755 	}
3756 
3757 	mutex_lock(&kvm->lock);
3758 	if (kvm_get_vcpu_by_id(kvm, id)) {
3759 		r = -EEXIST;
3760 		goto unlock_vcpu_destroy;
3761 	}
3762 
3763 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3764 	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3765 	BUG_ON(r == -EBUSY);
3766 	if (r)
3767 		goto unlock_vcpu_destroy;
3768 
3769 	/* Fill the stats id string for the vcpu */
3770 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3771 		 task_pid_nr(current), id);
3772 
3773 	/* Now it's all set up, let userspace reach it */
3774 	kvm_get_kvm(kvm);
3775 	r = create_vcpu_fd(vcpu);
3776 	if (r < 0) {
3777 		xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3778 		kvm_put_kvm_no_destroy(kvm);
3779 		goto unlock_vcpu_destroy;
3780 	}
3781 
3782 	/*
3783 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3784 	 * pointer before kvm->online_vcpu's incremented value.
3785 	 */
3786 	smp_wmb();
3787 	atomic_inc(&kvm->online_vcpus);
3788 
3789 	mutex_unlock(&kvm->lock);
3790 	kvm_arch_vcpu_postcreate(vcpu);
3791 	kvm_create_vcpu_debugfs(vcpu);
3792 	return r;
3793 
3794 unlock_vcpu_destroy:
3795 	mutex_unlock(&kvm->lock);
3796 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3797 arch_vcpu_destroy:
3798 	kvm_arch_vcpu_destroy(vcpu);
3799 vcpu_free_run_page:
3800 	free_page((unsigned long)vcpu->run);
3801 vcpu_free:
3802 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3803 vcpu_decrement:
3804 	mutex_lock(&kvm->lock);
3805 	kvm->created_vcpus--;
3806 	mutex_unlock(&kvm->lock);
3807 	return r;
3808 }
3809 
3810 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3811 {
3812 	if (sigset) {
3813 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3814 		vcpu->sigset_active = 1;
3815 		vcpu->sigset = *sigset;
3816 	} else
3817 		vcpu->sigset_active = 0;
3818 	return 0;
3819 }
3820 
3821 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3822 			      size_t size, loff_t *offset)
3823 {
3824 	struct kvm_vcpu *vcpu = file->private_data;
3825 
3826 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3827 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3828 			sizeof(vcpu->stat), user_buffer, size, offset);
3829 }
3830 
3831 static const struct file_operations kvm_vcpu_stats_fops = {
3832 	.read = kvm_vcpu_stats_read,
3833 	.llseek = noop_llseek,
3834 };
3835 
3836 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3837 {
3838 	int fd;
3839 	struct file *file;
3840 	char name[15 + ITOA_MAX_LEN + 1];
3841 
3842 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3843 
3844 	fd = get_unused_fd_flags(O_CLOEXEC);
3845 	if (fd < 0)
3846 		return fd;
3847 
3848 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3849 	if (IS_ERR(file)) {
3850 		put_unused_fd(fd);
3851 		return PTR_ERR(file);
3852 	}
3853 	file->f_mode |= FMODE_PREAD;
3854 	fd_install(fd, file);
3855 
3856 	return fd;
3857 }
3858 
3859 static long kvm_vcpu_ioctl(struct file *filp,
3860 			   unsigned int ioctl, unsigned long arg)
3861 {
3862 	struct kvm_vcpu *vcpu = filp->private_data;
3863 	void __user *argp = (void __user *)arg;
3864 	int r;
3865 	struct kvm_fpu *fpu = NULL;
3866 	struct kvm_sregs *kvm_sregs = NULL;
3867 
3868 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3869 		return -EIO;
3870 
3871 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3872 		return -EINVAL;
3873 
3874 	/*
3875 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3876 	 * execution; mutex_lock() would break them.
3877 	 */
3878 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3879 	if (r != -ENOIOCTLCMD)
3880 		return r;
3881 
3882 	if (mutex_lock_killable(&vcpu->mutex))
3883 		return -EINTR;
3884 	switch (ioctl) {
3885 	case KVM_RUN: {
3886 		struct pid *oldpid;
3887 		r = -EINVAL;
3888 		if (arg)
3889 			goto out;
3890 		oldpid = rcu_access_pointer(vcpu->pid);
3891 		if (unlikely(oldpid != task_pid(current))) {
3892 			/* The thread running this VCPU changed. */
3893 			struct pid *newpid;
3894 
3895 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3896 			if (r)
3897 				break;
3898 
3899 			newpid = get_task_pid(current, PIDTYPE_PID);
3900 			rcu_assign_pointer(vcpu->pid, newpid);
3901 			if (oldpid)
3902 				synchronize_rcu();
3903 			put_pid(oldpid);
3904 		}
3905 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3906 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3907 		break;
3908 	}
3909 	case KVM_GET_REGS: {
3910 		struct kvm_regs *kvm_regs;
3911 
3912 		r = -ENOMEM;
3913 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3914 		if (!kvm_regs)
3915 			goto out;
3916 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3917 		if (r)
3918 			goto out_free1;
3919 		r = -EFAULT;
3920 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3921 			goto out_free1;
3922 		r = 0;
3923 out_free1:
3924 		kfree(kvm_regs);
3925 		break;
3926 	}
3927 	case KVM_SET_REGS: {
3928 		struct kvm_regs *kvm_regs;
3929 
3930 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3931 		if (IS_ERR(kvm_regs)) {
3932 			r = PTR_ERR(kvm_regs);
3933 			goto out;
3934 		}
3935 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3936 		kfree(kvm_regs);
3937 		break;
3938 	}
3939 	case KVM_GET_SREGS: {
3940 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3941 				    GFP_KERNEL_ACCOUNT);
3942 		r = -ENOMEM;
3943 		if (!kvm_sregs)
3944 			goto out;
3945 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3946 		if (r)
3947 			goto out;
3948 		r = -EFAULT;
3949 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3950 			goto out;
3951 		r = 0;
3952 		break;
3953 	}
3954 	case KVM_SET_SREGS: {
3955 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3956 		if (IS_ERR(kvm_sregs)) {
3957 			r = PTR_ERR(kvm_sregs);
3958 			kvm_sregs = NULL;
3959 			goto out;
3960 		}
3961 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3962 		break;
3963 	}
3964 	case KVM_GET_MP_STATE: {
3965 		struct kvm_mp_state mp_state;
3966 
3967 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3968 		if (r)
3969 			goto out;
3970 		r = -EFAULT;
3971 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3972 			goto out;
3973 		r = 0;
3974 		break;
3975 	}
3976 	case KVM_SET_MP_STATE: {
3977 		struct kvm_mp_state mp_state;
3978 
3979 		r = -EFAULT;
3980 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3981 			goto out;
3982 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3983 		break;
3984 	}
3985 	case KVM_TRANSLATE: {
3986 		struct kvm_translation tr;
3987 
3988 		r = -EFAULT;
3989 		if (copy_from_user(&tr, argp, sizeof(tr)))
3990 			goto out;
3991 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3992 		if (r)
3993 			goto out;
3994 		r = -EFAULT;
3995 		if (copy_to_user(argp, &tr, sizeof(tr)))
3996 			goto out;
3997 		r = 0;
3998 		break;
3999 	}
4000 	case KVM_SET_GUEST_DEBUG: {
4001 		struct kvm_guest_debug dbg;
4002 
4003 		r = -EFAULT;
4004 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4005 			goto out;
4006 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4007 		break;
4008 	}
4009 	case KVM_SET_SIGNAL_MASK: {
4010 		struct kvm_signal_mask __user *sigmask_arg = argp;
4011 		struct kvm_signal_mask kvm_sigmask;
4012 		sigset_t sigset, *p;
4013 
4014 		p = NULL;
4015 		if (argp) {
4016 			r = -EFAULT;
4017 			if (copy_from_user(&kvm_sigmask, argp,
4018 					   sizeof(kvm_sigmask)))
4019 				goto out;
4020 			r = -EINVAL;
4021 			if (kvm_sigmask.len != sizeof(sigset))
4022 				goto out;
4023 			r = -EFAULT;
4024 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4025 					   sizeof(sigset)))
4026 				goto out;
4027 			p = &sigset;
4028 		}
4029 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4030 		break;
4031 	}
4032 	case KVM_GET_FPU: {
4033 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4034 		r = -ENOMEM;
4035 		if (!fpu)
4036 			goto out;
4037 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4038 		if (r)
4039 			goto out;
4040 		r = -EFAULT;
4041 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4042 			goto out;
4043 		r = 0;
4044 		break;
4045 	}
4046 	case KVM_SET_FPU: {
4047 		fpu = memdup_user(argp, sizeof(*fpu));
4048 		if (IS_ERR(fpu)) {
4049 			r = PTR_ERR(fpu);
4050 			fpu = NULL;
4051 			goto out;
4052 		}
4053 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4054 		break;
4055 	}
4056 	case KVM_GET_STATS_FD: {
4057 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4058 		break;
4059 	}
4060 	default:
4061 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4062 	}
4063 out:
4064 	mutex_unlock(&vcpu->mutex);
4065 	kfree(fpu);
4066 	kfree(kvm_sregs);
4067 	return r;
4068 }
4069 
4070 #ifdef CONFIG_KVM_COMPAT
4071 static long kvm_vcpu_compat_ioctl(struct file *filp,
4072 				  unsigned int ioctl, unsigned long arg)
4073 {
4074 	struct kvm_vcpu *vcpu = filp->private_data;
4075 	void __user *argp = compat_ptr(arg);
4076 	int r;
4077 
4078 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4079 		return -EIO;
4080 
4081 	switch (ioctl) {
4082 	case KVM_SET_SIGNAL_MASK: {
4083 		struct kvm_signal_mask __user *sigmask_arg = argp;
4084 		struct kvm_signal_mask kvm_sigmask;
4085 		sigset_t sigset;
4086 
4087 		if (argp) {
4088 			r = -EFAULT;
4089 			if (copy_from_user(&kvm_sigmask, argp,
4090 					   sizeof(kvm_sigmask)))
4091 				goto out;
4092 			r = -EINVAL;
4093 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4094 				goto out;
4095 			r = -EFAULT;
4096 			if (get_compat_sigset(&sigset,
4097 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4098 				goto out;
4099 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4100 		} else
4101 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4102 		break;
4103 	}
4104 	default:
4105 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4106 	}
4107 
4108 out:
4109 	return r;
4110 }
4111 #endif
4112 
4113 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4114 {
4115 	struct kvm_device *dev = filp->private_data;
4116 
4117 	if (dev->ops->mmap)
4118 		return dev->ops->mmap(dev, vma);
4119 
4120 	return -ENODEV;
4121 }
4122 
4123 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4124 				 int (*accessor)(struct kvm_device *dev,
4125 						 struct kvm_device_attr *attr),
4126 				 unsigned long arg)
4127 {
4128 	struct kvm_device_attr attr;
4129 
4130 	if (!accessor)
4131 		return -EPERM;
4132 
4133 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4134 		return -EFAULT;
4135 
4136 	return accessor(dev, &attr);
4137 }
4138 
4139 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4140 			     unsigned long arg)
4141 {
4142 	struct kvm_device *dev = filp->private_data;
4143 
4144 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4145 		return -EIO;
4146 
4147 	switch (ioctl) {
4148 	case KVM_SET_DEVICE_ATTR:
4149 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4150 	case KVM_GET_DEVICE_ATTR:
4151 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4152 	case KVM_HAS_DEVICE_ATTR:
4153 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4154 	default:
4155 		if (dev->ops->ioctl)
4156 			return dev->ops->ioctl(dev, ioctl, arg);
4157 
4158 		return -ENOTTY;
4159 	}
4160 }
4161 
4162 static int kvm_device_release(struct inode *inode, struct file *filp)
4163 {
4164 	struct kvm_device *dev = filp->private_data;
4165 	struct kvm *kvm = dev->kvm;
4166 
4167 	if (dev->ops->release) {
4168 		mutex_lock(&kvm->lock);
4169 		list_del(&dev->vm_node);
4170 		dev->ops->release(dev);
4171 		mutex_unlock(&kvm->lock);
4172 	}
4173 
4174 	kvm_put_kvm(kvm);
4175 	return 0;
4176 }
4177 
4178 static const struct file_operations kvm_device_fops = {
4179 	.unlocked_ioctl = kvm_device_ioctl,
4180 	.release = kvm_device_release,
4181 	KVM_COMPAT(kvm_device_ioctl),
4182 	.mmap = kvm_device_mmap,
4183 };
4184 
4185 struct kvm_device *kvm_device_from_filp(struct file *filp)
4186 {
4187 	if (filp->f_op != &kvm_device_fops)
4188 		return NULL;
4189 
4190 	return filp->private_data;
4191 }
4192 
4193 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4194 #ifdef CONFIG_KVM_MPIC
4195 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4196 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4197 #endif
4198 };
4199 
4200 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4201 {
4202 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4203 		return -ENOSPC;
4204 
4205 	if (kvm_device_ops_table[type] != NULL)
4206 		return -EEXIST;
4207 
4208 	kvm_device_ops_table[type] = ops;
4209 	return 0;
4210 }
4211 
4212 void kvm_unregister_device_ops(u32 type)
4213 {
4214 	if (kvm_device_ops_table[type] != NULL)
4215 		kvm_device_ops_table[type] = NULL;
4216 }
4217 
4218 static int kvm_ioctl_create_device(struct kvm *kvm,
4219 				   struct kvm_create_device *cd)
4220 {
4221 	const struct kvm_device_ops *ops = NULL;
4222 	struct kvm_device *dev;
4223 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4224 	int type;
4225 	int ret;
4226 
4227 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4228 		return -ENODEV;
4229 
4230 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4231 	ops = kvm_device_ops_table[type];
4232 	if (ops == NULL)
4233 		return -ENODEV;
4234 
4235 	if (test)
4236 		return 0;
4237 
4238 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4239 	if (!dev)
4240 		return -ENOMEM;
4241 
4242 	dev->ops = ops;
4243 	dev->kvm = kvm;
4244 
4245 	mutex_lock(&kvm->lock);
4246 	ret = ops->create(dev, type);
4247 	if (ret < 0) {
4248 		mutex_unlock(&kvm->lock);
4249 		kfree(dev);
4250 		return ret;
4251 	}
4252 	list_add(&dev->vm_node, &kvm->devices);
4253 	mutex_unlock(&kvm->lock);
4254 
4255 	if (ops->init)
4256 		ops->init(dev);
4257 
4258 	kvm_get_kvm(kvm);
4259 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4260 	if (ret < 0) {
4261 		kvm_put_kvm_no_destroy(kvm);
4262 		mutex_lock(&kvm->lock);
4263 		list_del(&dev->vm_node);
4264 		mutex_unlock(&kvm->lock);
4265 		ops->destroy(dev);
4266 		return ret;
4267 	}
4268 
4269 	cd->fd = ret;
4270 	return 0;
4271 }
4272 
4273 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4274 {
4275 	switch (arg) {
4276 	case KVM_CAP_USER_MEMORY:
4277 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4278 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4279 	case KVM_CAP_INTERNAL_ERROR_DATA:
4280 #ifdef CONFIG_HAVE_KVM_MSI
4281 	case KVM_CAP_SIGNAL_MSI:
4282 #endif
4283 #ifdef CONFIG_HAVE_KVM_IRQFD
4284 	case KVM_CAP_IRQFD:
4285 	case KVM_CAP_IRQFD_RESAMPLE:
4286 #endif
4287 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4288 	case KVM_CAP_CHECK_EXTENSION_VM:
4289 	case KVM_CAP_ENABLE_CAP_VM:
4290 	case KVM_CAP_HALT_POLL:
4291 		return 1;
4292 #ifdef CONFIG_KVM_MMIO
4293 	case KVM_CAP_COALESCED_MMIO:
4294 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4295 	case KVM_CAP_COALESCED_PIO:
4296 		return 1;
4297 #endif
4298 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4299 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4300 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4301 #endif
4302 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4303 	case KVM_CAP_IRQ_ROUTING:
4304 		return KVM_MAX_IRQ_ROUTES;
4305 #endif
4306 #if KVM_ADDRESS_SPACE_NUM > 1
4307 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4308 		return KVM_ADDRESS_SPACE_NUM;
4309 #endif
4310 	case KVM_CAP_NR_MEMSLOTS:
4311 		return KVM_USER_MEM_SLOTS;
4312 	case KVM_CAP_DIRTY_LOG_RING:
4313 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4314 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4315 #else
4316 		return 0;
4317 #endif
4318 	case KVM_CAP_BINARY_STATS_FD:
4319 		return 1;
4320 	default:
4321 		break;
4322 	}
4323 	return kvm_vm_ioctl_check_extension(kvm, arg);
4324 }
4325 
4326 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4327 {
4328 	int r;
4329 
4330 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4331 		return -EINVAL;
4332 
4333 	/* the size should be power of 2 */
4334 	if (!size || (size & (size - 1)))
4335 		return -EINVAL;
4336 
4337 	/* Should be bigger to keep the reserved entries, or a page */
4338 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4339 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4340 		return -EINVAL;
4341 
4342 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4343 	    sizeof(struct kvm_dirty_gfn))
4344 		return -E2BIG;
4345 
4346 	/* We only allow it to set once */
4347 	if (kvm->dirty_ring_size)
4348 		return -EINVAL;
4349 
4350 	mutex_lock(&kvm->lock);
4351 
4352 	if (kvm->created_vcpus) {
4353 		/* We don't allow to change this value after vcpu created */
4354 		r = -EINVAL;
4355 	} else {
4356 		kvm->dirty_ring_size = size;
4357 		r = 0;
4358 	}
4359 
4360 	mutex_unlock(&kvm->lock);
4361 	return r;
4362 }
4363 
4364 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4365 {
4366 	unsigned long i;
4367 	struct kvm_vcpu *vcpu;
4368 	int cleared = 0;
4369 
4370 	if (!kvm->dirty_ring_size)
4371 		return -EINVAL;
4372 
4373 	mutex_lock(&kvm->slots_lock);
4374 
4375 	kvm_for_each_vcpu(i, vcpu, kvm)
4376 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4377 
4378 	mutex_unlock(&kvm->slots_lock);
4379 
4380 	if (cleared)
4381 		kvm_flush_remote_tlbs(kvm);
4382 
4383 	return cleared;
4384 }
4385 
4386 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4387 						  struct kvm_enable_cap *cap)
4388 {
4389 	return -EINVAL;
4390 }
4391 
4392 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4393 					   struct kvm_enable_cap *cap)
4394 {
4395 	switch (cap->cap) {
4396 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4397 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4398 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4399 
4400 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4401 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4402 
4403 		if (cap->flags || (cap->args[0] & ~allowed_options))
4404 			return -EINVAL;
4405 		kvm->manual_dirty_log_protect = cap->args[0];
4406 		return 0;
4407 	}
4408 #endif
4409 	case KVM_CAP_HALT_POLL: {
4410 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4411 			return -EINVAL;
4412 
4413 		kvm->max_halt_poll_ns = cap->args[0];
4414 		return 0;
4415 	}
4416 	case KVM_CAP_DIRTY_LOG_RING:
4417 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4418 	default:
4419 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4420 	}
4421 }
4422 
4423 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4424 			      size_t size, loff_t *offset)
4425 {
4426 	struct kvm *kvm = file->private_data;
4427 
4428 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4429 				&kvm_vm_stats_desc[0], &kvm->stat,
4430 				sizeof(kvm->stat), user_buffer, size, offset);
4431 }
4432 
4433 static const struct file_operations kvm_vm_stats_fops = {
4434 	.read = kvm_vm_stats_read,
4435 	.llseek = noop_llseek,
4436 };
4437 
4438 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4439 {
4440 	int fd;
4441 	struct file *file;
4442 
4443 	fd = get_unused_fd_flags(O_CLOEXEC);
4444 	if (fd < 0)
4445 		return fd;
4446 
4447 	file = anon_inode_getfile("kvm-vm-stats",
4448 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4449 	if (IS_ERR(file)) {
4450 		put_unused_fd(fd);
4451 		return PTR_ERR(file);
4452 	}
4453 	file->f_mode |= FMODE_PREAD;
4454 	fd_install(fd, file);
4455 
4456 	return fd;
4457 }
4458 
4459 static long kvm_vm_ioctl(struct file *filp,
4460 			   unsigned int ioctl, unsigned long arg)
4461 {
4462 	struct kvm *kvm = filp->private_data;
4463 	void __user *argp = (void __user *)arg;
4464 	int r;
4465 
4466 	if (kvm->mm != current->mm || kvm->vm_dead)
4467 		return -EIO;
4468 	switch (ioctl) {
4469 	case KVM_CREATE_VCPU:
4470 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4471 		break;
4472 	case KVM_ENABLE_CAP: {
4473 		struct kvm_enable_cap cap;
4474 
4475 		r = -EFAULT;
4476 		if (copy_from_user(&cap, argp, sizeof(cap)))
4477 			goto out;
4478 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4479 		break;
4480 	}
4481 	case KVM_SET_USER_MEMORY_REGION: {
4482 		struct kvm_userspace_memory_region kvm_userspace_mem;
4483 
4484 		r = -EFAULT;
4485 		if (copy_from_user(&kvm_userspace_mem, argp,
4486 						sizeof(kvm_userspace_mem)))
4487 			goto out;
4488 
4489 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4490 		break;
4491 	}
4492 	case KVM_GET_DIRTY_LOG: {
4493 		struct kvm_dirty_log log;
4494 
4495 		r = -EFAULT;
4496 		if (copy_from_user(&log, argp, sizeof(log)))
4497 			goto out;
4498 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4499 		break;
4500 	}
4501 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4502 	case KVM_CLEAR_DIRTY_LOG: {
4503 		struct kvm_clear_dirty_log log;
4504 
4505 		r = -EFAULT;
4506 		if (copy_from_user(&log, argp, sizeof(log)))
4507 			goto out;
4508 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4509 		break;
4510 	}
4511 #endif
4512 #ifdef CONFIG_KVM_MMIO
4513 	case KVM_REGISTER_COALESCED_MMIO: {
4514 		struct kvm_coalesced_mmio_zone zone;
4515 
4516 		r = -EFAULT;
4517 		if (copy_from_user(&zone, argp, sizeof(zone)))
4518 			goto out;
4519 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4520 		break;
4521 	}
4522 	case KVM_UNREGISTER_COALESCED_MMIO: {
4523 		struct kvm_coalesced_mmio_zone zone;
4524 
4525 		r = -EFAULT;
4526 		if (copy_from_user(&zone, argp, sizeof(zone)))
4527 			goto out;
4528 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4529 		break;
4530 	}
4531 #endif
4532 	case KVM_IRQFD: {
4533 		struct kvm_irqfd data;
4534 
4535 		r = -EFAULT;
4536 		if (copy_from_user(&data, argp, sizeof(data)))
4537 			goto out;
4538 		r = kvm_irqfd(kvm, &data);
4539 		break;
4540 	}
4541 	case KVM_IOEVENTFD: {
4542 		struct kvm_ioeventfd data;
4543 
4544 		r = -EFAULT;
4545 		if (copy_from_user(&data, argp, sizeof(data)))
4546 			goto out;
4547 		r = kvm_ioeventfd(kvm, &data);
4548 		break;
4549 	}
4550 #ifdef CONFIG_HAVE_KVM_MSI
4551 	case KVM_SIGNAL_MSI: {
4552 		struct kvm_msi msi;
4553 
4554 		r = -EFAULT;
4555 		if (copy_from_user(&msi, argp, sizeof(msi)))
4556 			goto out;
4557 		r = kvm_send_userspace_msi(kvm, &msi);
4558 		break;
4559 	}
4560 #endif
4561 #ifdef __KVM_HAVE_IRQ_LINE
4562 	case KVM_IRQ_LINE_STATUS:
4563 	case KVM_IRQ_LINE: {
4564 		struct kvm_irq_level irq_event;
4565 
4566 		r = -EFAULT;
4567 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4568 			goto out;
4569 
4570 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4571 					ioctl == KVM_IRQ_LINE_STATUS);
4572 		if (r)
4573 			goto out;
4574 
4575 		r = -EFAULT;
4576 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4577 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4578 				goto out;
4579 		}
4580 
4581 		r = 0;
4582 		break;
4583 	}
4584 #endif
4585 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4586 	case KVM_SET_GSI_ROUTING: {
4587 		struct kvm_irq_routing routing;
4588 		struct kvm_irq_routing __user *urouting;
4589 		struct kvm_irq_routing_entry *entries = NULL;
4590 
4591 		r = -EFAULT;
4592 		if (copy_from_user(&routing, argp, sizeof(routing)))
4593 			goto out;
4594 		r = -EINVAL;
4595 		if (!kvm_arch_can_set_irq_routing(kvm))
4596 			goto out;
4597 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4598 			goto out;
4599 		if (routing.flags)
4600 			goto out;
4601 		if (routing.nr) {
4602 			urouting = argp;
4603 			entries = vmemdup_user(urouting->entries,
4604 					       array_size(sizeof(*entries),
4605 							  routing.nr));
4606 			if (IS_ERR(entries)) {
4607 				r = PTR_ERR(entries);
4608 				goto out;
4609 			}
4610 		}
4611 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4612 					routing.flags);
4613 		kvfree(entries);
4614 		break;
4615 	}
4616 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4617 	case KVM_CREATE_DEVICE: {
4618 		struct kvm_create_device cd;
4619 
4620 		r = -EFAULT;
4621 		if (copy_from_user(&cd, argp, sizeof(cd)))
4622 			goto out;
4623 
4624 		r = kvm_ioctl_create_device(kvm, &cd);
4625 		if (r)
4626 			goto out;
4627 
4628 		r = -EFAULT;
4629 		if (copy_to_user(argp, &cd, sizeof(cd)))
4630 			goto out;
4631 
4632 		r = 0;
4633 		break;
4634 	}
4635 	case KVM_CHECK_EXTENSION:
4636 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4637 		break;
4638 	case KVM_RESET_DIRTY_RINGS:
4639 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4640 		break;
4641 	case KVM_GET_STATS_FD:
4642 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4643 		break;
4644 	default:
4645 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4646 	}
4647 out:
4648 	return r;
4649 }
4650 
4651 #ifdef CONFIG_KVM_COMPAT
4652 struct compat_kvm_dirty_log {
4653 	__u32 slot;
4654 	__u32 padding1;
4655 	union {
4656 		compat_uptr_t dirty_bitmap; /* one bit per page */
4657 		__u64 padding2;
4658 	};
4659 };
4660 
4661 struct compat_kvm_clear_dirty_log {
4662 	__u32 slot;
4663 	__u32 num_pages;
4664 	__u64 first_page;
4665 	union {
4666 		compat_uptr_t dirty_bitmap; /* one bit per page */
4667 		__u64 padding2;
4668 	};
4669 };
4670 
4671 static long kvm_vm_compat_ioctl(struct file *filp,
4672 			   unsigned int ioctl, unsigned long arg)
4673 {
4674 	struct kvm *kvm = filp->private_data;
4675 	int r;
4676 
4677 	if (kvm->mm != current->mm || kvm->vm_dead)
4678 		return -EIO;
4679 	switch (ioctl) {
4680 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4681 	case KVM_CLEAR_DIRTY_LOG: {
4682 		struct compat_kvm_clear_dirty_log compat_log;
4683 		struct kvm_clear_dirty_log log;
4684 
4685 		if (copy_from_user(&compat_log, (void __user *)arg,
4686 				   sizeof(compat_log)))
4687 			return -EFAULT;
4688 		log.slot	 = compat_log.slot;
4689 		log.num_pages	 = compat_log.num_pages;
4690 		log.first_page	 = compat_log.first_page;
4691 		log.padding2	 = compat_log.padding2;
4692 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4693 
4694 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4695 		break;
4696 	}
4697 #endif
4698 	case KVM_GET_DIRTY_LOG: {
4699 		struct compat_kvm_dirty_log compat_log;
4700 		struct kvm_dirty_log log;
4701 
4702 		if (copy_from_user(&compat_log, (void __user *)arg,
4703 				   sizeof(compat_log)))
4704 			return -EFAULT;
4705 		log.slot	 = compat_log.slot;
4706 		log.padding1	 = compat_log.padding1;
4707 		log.padding2	 = compat_log.padding2;
4708 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4709 
4710 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4711 		break;
4712 	}
4713 	default:
4714 		r = kvm_vm_ioctl(filp, ioctl, arg);
4715 	}
4716 	return r;
4717 }
4718 #endif
4719 
4720 static struct file_operations kvm_vm_fops = {
4721 	.release        = kvm_vm_release,
4722 	.unlocked_ioctl = kvm_vm_ioctl,
4723 	.llseek		= noop_llseek,
4724 	KVM_COMPAT(kvm_vm_compat_ioctl),
4725 };
4726 
4727 bool file_is_kvm(struct file *file)
4728 {
4729 	return file && file->f_op == &kvm_vm_fops;
4730 }
4731 EXPORT_SYMBOL_GPL(file_is_kvm);
4732 
4733 static int kvm_dev_ioctl_create_vm(unsigned long type)
4734 {
4735 	int r;
4736 	struct kvm *kvm;
4737 	struct file *file;
4738 
4739 	kvm = kvm_create_vm(type);
4740 	if (IS_ERR(kvm))
4741 		return PTR_ERR(kvm);
4742 #ifdef CONFIG_KVM_MMIO
4743 	r = kvm_coalesced_mmio_init(kvm);
4744 	if (r < 0)
4745 		goto put_kvm;
4746 #endif
4747 	r = get_unused_fd_flags(O_CLOEXEC);
4748 	if (r < 0)
4749 		goto put_kvm;
4750 
4751 	snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4752 			"kvm-%d", task_pid_nr(current));
4753 
4754 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4755 	if (IS_ERR(file)) {
4756 		put_unused_fd(r);
4757 		r = PTR_ERR(file);
4758 		goto put_kvm;
4759 	}
4760 
4761 	/*
4762 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4763 	 * already set, with ->release() being kvm_vm_release().  In error
4764 	 * cases it will be called by the final fput(file) and will take
4765 	 * care of doing kvm_put_kvm(kvm).
4766 	 */
4767 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4768 		put_unused_fd(r);
4769 		fput(file);
4770 		return -ENOMEM;
4771 	}
4772 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4773 
4774 	fd_install(r, file);
4775 	return r;
4776 
4777 put_kvm:
4778 	kvm_put_kvm(kvm);
4779 	return r;
4780 }
4781 
4782 static long kvm_dev_ioctl(struct file *filp,
4783 			  unsigned int ioctl, unsigned long arg)
4784 {
4785 	long r = -EINVAL;
4786 
4787 	switch (ioctl) {
4788 	case KVM_GET_API_VERSION:
4789 		if (arg)
4790 			goto out;
4791 		r = KVM_API_VERSION;
4792 		break;
4793 	case KVM_CREATE_VM:
4794 		r = kvm_dev_ioctl_create_vm(arg);
4795 		break;
4796 	case KVM_CHECK_EXTENSION:
4797 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4798 		break;
4799 	case KVM_GET_VCPU_MMAP_SIZE:
4800 		if (arg)
4801 			goto out;
4802 		r = PAGE_SIZE;     /* struct kvm_run */
4803 #ifdef CONFIG_X86
4804 		r += PAGE_SIZE;    /* pio data page */
4805 #endif
4806 #ifdef CONFIG_KVM_MMIO
4807 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4808 #endif
4809 		break;
4810 	case KVM_TRACE_ENABLE:
4811 	case KVM_TRACE_PAUSE:
4812 	case KVM_TRACE_DISABLE:
4813 		r = -EOPNOTSUPP;
4814 		break;
4815 	default:
4816 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4817 	}
4818 out:
4819 	return r;
4820 }
4821 
4822 static struct file_operations kvm_chardev_ops = {
4823 	.unlocked_ioctl = kvm_dev_ioctl,
4824 	.llseek		= noop_llseek,
4825 	KVM_COMPAT(kvm_dev_ioctl),
4826 };
4827 
4828 static struct miscdevice kvm_dev = {
4829 	KVM_MINOR,
4830 	"kvm",
4831 	&kvm_chardev_ops,
4832 };
4833 
4834 static void hardware_enable_nolock(void *junk)
4835 {
4836 	int cpu = raw_smp_processor_id();
4837 	int r;
4838 
4839 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4840 		return;
4841 
4842 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4843 
4844 	r = kvm_arch_hardware_enable();
4845 
4846 	if (r) {
4847 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4848 		atomic_inc(&hardware_enable_failed);
4849 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4850 	}
4851 }
4852 
4853 static int kvm_starting_cpu(unsigned int cpu)
4854 {
4855 	raw_spin_lock(&kvm_count_lock);
4856 	if (kvm_usage_count)
4857 		hardware_enable_nolock(NULL);
4858 	raw_spin_unlock(&kvm_count_lock);
4859 	return 0;
4860 }
4861 
4862 static void hardware_disable_nolock(void *junk)
4863 {
4864 	int cpu = raw_smp_processor_id();
4865 
4866 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4867 		return;
4868 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4869 	kvm_arch_hardware_disable();
4870 }
4871 
4872 static int kvm_dying_cpu(unsigned int cpu)
4873 {
4874 	raw_spin_lock(&kvm_count_lock);
4875 	if (kvm_usage_count)
4876 		hardware_disable_nolock(NULL);
4877 	raw_spin_unlock(&kvm_count_lock);
4878 	return 0;
4879 }
4880 
4881 static void hardware_disable_all_nolock(void)
4882 {
4883 	BUG_ON(!kvm_usage_count);
4884 
4885 	kvm_usage_count--;
4886 	if (!kvm_usage_count)
4887 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4888 }
4889 
4890 static void hardware_disable_all(void)
4891 {
4892 	raw_spin_lock(&kvm_count_lock);
4893 	hardware_disable_all_nolock();
4894 	raw_spin_unlock(&kvm_count_lock);
4895 }
4896 
4897 static int hardware_enable_all(void)
4898 {
4899 	int r = 0;
4900 
4901 	raw_spin_lock(&kvm_count_lock);
4902 
4903 	kvm_usage_count++;
4904 	if (kvm_usage_count == 1) {
4905 		atomic_set(&hardware_enable_failed, 0);
4906 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4907 
4908 		if (atomic_read(&hardware_enable_failed)) {
4909 			hardware_disable_all_nolock();
4910 			r = -EBUSY;
4911 		}
4912 	}
4913 
4914 	raw_spin_unlock(&kvm_count_lock);
4915 
4916 	return r;
4917 }
4918 
4919 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4920 		      void *v)
4921 {
4922 	/*
4923 	 * Some (well, at least mine) BIOSes hang on reboot if
4924 	 * in vmx root mode.
4925 	 *
4926 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4927 	 */
4928 	pr_info("kvm: exiting hardware virtualization\n");
4929 	kvm_rebooting = true;
4930 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4931 	return NOTIFY_OK;
4932 }
4933 
4934 static struct notifier_block kvm_reboot_notifier = {
4935 	.notifier_call = kvm_reboot,
4936 	.priority = 0,
4937 };
4938 
4939 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4940 {
4941 	int i;
4942 
4943 	for (i = 0; i < bus->dev_count; i++) {
4944 		struct kvm_io_device *pos = bus->range[i].dev;
4945 
4946 		kvm_iodevice_destructor(pos);
4947 	}
4948 	kfree(bus);
4949 }
4950 
4951 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4952 				 const struct kvm_io_range *r2)
4953 {
4954 	gpa_t addr1 = r1->addr;
4955 	gpa_t addr2 = r2->addr;
4956 
4957 	if (addr1 < addr2)
4958 		return -1;
4959 
4960 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4961 	 * accept any overlapping write.  Any order is acceptable for
4962 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4963 	 * we process all of them.
4964 	 */
4965 	if (r2->len) {
4966 		addr1 += r1->len;
4967 		addr2 += r2->len;
4968 	}
4969 
4970 	if (addr1 > addr2)
4971 		return 1;
4972 
4973 	return 0;
4974 }
4975 
4976 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4977 {
4978 	return kvm_io_bus_cmp(p1, p2);
4979 }
4980 
4981 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4982 			     gpa_t addr, int len)
4983 {
4984 	struct kvm_io_range *range, key;
4985 	int off;
4986 
4987 	key = (struct kvm_io_range) {
4988 		.addr = addr,
4989 		.len = len,
4990 	};
4991 
4992 	range = bsearch(&key, bus->range, bus->dev_count,
4993 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4994 	if (range == NULL)
4995 		return -ENOENT;
4996 
4997 	off = range - bus->range;
4998 
4999 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5000 		off--;
5001 
5002 	return off;
5003 }
5004 
5005 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5006 			      struct kvm_io_range *range, const void *val)
5007 {
5008 	int idx;
5009 
5010 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5011 	if (idx < 0)
5012 		return -EOPNOTSUPP;
5013 
5014 	while (idx < bus->dev_count &&
5015 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5016 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5017 					range->len, val))
5018 			return idx;
5019 		idx++;
5020 	}
5021 
5022 	return -EOPNOTSUPP;
5023 }
5024 
5025 /* kvm_io_bus_write - called under kvm->slots_lock */
5026 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5027 		     int len, const void *val)
5028 {
5029 	struct kvm_io_bus *bus;
5030 	struct kvm_io_range range;
5031 	int r;
5032 
5033 	range = (struct kvm_io_range) {
5034 		.addr = addr,
5035 		.len = len,
5036 	};
5037 
5038 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5039 	if (!bus)
5040 		return -ENOMEM;
5041 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5042 	return r < 0 ? r : 0;
5043 }
5044 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5045 
5046 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5047 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5048 			    gpa_t addr, int len, const void *val, long cookie)
5049 {
5050 	struct kvm_io_bus *bus;
5051 	struct kvm_io_range range;
5052 
5053 	range = (struct kvm_io_range) {
5054 		.addr = addr,
5055 		.len = len,
5056 	};
5057 
5058 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5059 	if (!bus)
5060 		return -ENOMEM;
5061 
5062 	/* First try the device referenced by cookie. */
5063 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5064 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5065 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5066 					val))
5067 			return cookie;
5068 
5069 	/*
5070 	 * cookie contained garbage; fall back to search and return the
5071 	 * correct cookie value.
5072 	 */
5073 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5074 }
5075 
5076 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5077 			     struct kvm_io_range *range, void *val)
5078 {
5079 	int idx;
5080 
5081 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5082 	if (idx < 0)
5083 		return -EOPNOTSUPP;
5084 
5085 	while (idx < bus->dev_count &&
5086 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5087 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5088 				       range->len, val))
5089 			return idx;
5090 		idx++;
5091 	}
5092 
5093 	return -EOPNOTSUPP;
5094 }
5095 
5096 /* kvm_io_bus_read - called under kvm->slots_lock */
5097 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5098 		    int len, void *val)
5099 {
5100 	struct kvm_io_bus *bus;
5101 	struct kvm_io_range range;
5102 	int r;
5103 
5104 	range = (struct kvm_io_range) {
5105 		.addr = addr,
5106 		.len = len,
5107 	};
5108 
5109 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5110 	if (!bus)
5111 		return -ENOMEM;
5112 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5113 	return r < 0 ? r : 0;
5114 }
5115 
5116 /* Caller must hold slots_lock. */
5117 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5118 			    int len, struct kvm_io_device *dev)
5119 {
5120 	int i;
5121 	struct kvm_io_bus *new_bus, *bus;
5122 	struct kvm_io_range range;
5123 
5124 	bus = kvm_get_bus(kvm, bus_idx);
5125 	if (!bus)
5126 		return -ENOMEM;
5127 
5128 	/* exclude ioeventfd which is limited by maximum fd */
5129 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5130 		return -ENOSPC;
5131 
5132 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5133 			  GFP_KERNEL_ACCOUNT);
5134 	if (!new_bus)
5135 		return -ENOMEM;
5136 
5137 	range = (struct kvm_io_range) {
5138 		.addr = addr,
5139 		.len = len,
5140 		.dev = dev,
5141 	};
5142 
5143 	for (i = 0; i < bus->dev_count; i++)
5144 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5145 			break;
5146 
5147 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5148 	new_bus->dev_count++;
5149 	new_bus->range[i] = range;
5150 	memcpy(new_bus->range + i + 1, bus->range + i,
5151 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5152 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5153 	synchronize_srcu_expedited(&kvm->srcu);
5154 	kfree(bus);
5155 
5156 	return 0;
5157 }
5158 
5159 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5160 			      struct kvm_io_device *dev)
5161 {
5162 	int i, j;
5163 	struct kvm_io_bus *new_bus, *bus;
5164 
5165 	lockdep_assert_held(&kvm->slots_lock);
5166 
5167 	bus = kvm_get_bus(kvm, bus_idx);
5168 	if (!bus)
5169 		return 0;
5170 
5171 	for (i = 0; i < bus->dev_count; i++) {
5172 		if (bus->range[i].dev == dev) {
5173 			break;
5174 		}
5175 	}
5176 
5177 	if (i == bus->dev_count)
5178 		return 0;
5179 
5180 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5181 			  GFP_KERNEL_ACCOUNT);
5182 	if (new_bus) {
5183 		memcpy(new_bus, bus, struct_size(bus, range, i));
5184 		new_bus->dev_count--;
5185 		memcpy(new_bus->range + i, bus->range + i + 1,
5186 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5187 	}
5188 
5189 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5190 	synchronize_srcu_expedited(&kvm->srcu);
5191 
5192 	/* Destroy the old bus _after_ installing the (null) bus. */
5193 	if (!new_bus) {
5194 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5195 		for (j = 0; j < bus->dev_count; j++) {
5196 			if (j == i)
5197 				continue;
5198 			kvm_iodevice_destructor(bus->range[j].dev);
5199 		}
5200 	}
5201 
5202 	kfree(bus);
5203 	return new_bus ? 0 : -ENOMEM;
5204 }
5205 
5206 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5207 					 gpa_t addr)
5208 {
5209 	struct kvm_io_bus *bus;
5210 	int dev_idx, srcu_idx;
5211 	struct kvm_io_device *iodev = NULL;
5212 
5213 	srcu_idx = srcu_read_lock(&kvm->srcu);
5214 
5215 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5216 	if (!bus)
5217 		goto out_unlock;
5218 
5219 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5220 	if (dev_idx < 0)
5221 		goto out_unlock;
5222 
5223 	iodev = bus->range[dev_idx].dev;
5224 
5225 out_unlock:
5226 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5227 
5228 	return iodev;
5229 }
5230 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5231 
5232 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5233 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5234 			   const char *fmt)
5235 {
5236 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5237 					  inode->i_private;
5238 
5239 	/*
5240 	 * The debugfs files are a reference to the kvm struct which
5241         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5242         * avoids the race between open and the removal of the debugfs directory.
5243 	 */
5244 	if (!kvm_get_kvm_safe(stat_data->kvm))
5245 		return -ENOENT;
5246 
5247 	if (simple_attr_open(inode, file, get,
5248 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
5249 		    ? set : NULL,
5250 		    fmt)) {
5251 		kvm_put_kvm(stat_data->kvm);
5252 		return -ENOMEM;
5253 	}
5254 
5255 	return 0;
5256 }
5257 
5258 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5259 {
5260 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5261 					  inode->i_private;
5262 
5263 	simple_attr_release(inode, file);
5264 	kvm_put_kvm(stat_data->kvm);
5265 
5266 	return 0;
5267 }
5268 
5269 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5270 {
5271 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5272 
5273 	return 0;
5274 }
5275 
5276 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5277 {
5278 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5279 
5280 	return 0;
5281 }
5282 
5283 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5284 {
5285 	unsigned long i;
5286 	struct kvm_vcpu *vcpu;
5287 
5288 	*val = 0;
5289 
5290 	kvm_for_each_vcpu(i, vcpu, kvm)
5291 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5292 
5293 	return 0;
5294 }
5295 
5296 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5297 {
5298 	unsigned long i;
5299 	struct kvm_vcpu *vcpu;
5300 
5301 	kvm_for_each_vcpu(i, vcpu, kvm)
5302 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5303 
5304 	return 0;
5305 }
5306 
5307 static int kvm_stat_data_get(void *data, u64 *val)
5308 {
5309 	int r = -EFAULT;
5310 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5311 
5312 	switch (stat_data->kind) {
5313 	case KVM_STAT_VM:
5314 		r = kvm_get_stat_per_vm(stat_data->kvm,
5315 					stat_data->desc->desc.offset, val);
5316 		break;
5317 	case KVM_STAT_VCPU:
5318 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5319 					  stat_data->desc->desc.offset, val);
5320 		break;
5321 	}
5322 
5323 	return r;
5324 }
5325 
5326 static int kvm_stat_data_clear(void *data, u64 val)
5327 {
5328 	int r = -EFAULT;
5329 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5330 
5331 	if (val)
5332 		return -EINVAL;
5333 
5334 	switch (stat_data->kind) {
5335 	case KVM_STAT_VM:
5336 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5337 					  stat_data->desc->desc.offset);
5338 		break;
5339 	case KVM_STAT_VCPU:
5340 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5341 					    stat_data->desc->desc.offset);
5342 		break;
5343 	}
5344 
5345 	return r;
5346 }
5347 
5348 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5349 {
5350 	__simple_attr_check_format("%llu\n", 0ull);
5351 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5352 				kvm_stat_data_clear, "%llu\n");
5353 }
5354 
5355 static const struct file_operations stat_fops_per_vm = {
5356 	.owner = THIS_MODULE,
5357 	.open = kvm_stat_data_open,
5358 	.release = kvm_debugfs_release,
5359 	.read = simple_attr_read,
5360 	.write = simple_attr_write,
5361 	.llseek = no_llseek,
5362 };
5363 
5364 static int vm_stat_get(void *_offset, u64 *val)
5365 {
5366 	unsigned offset = (long)_offset;
5367 	struct kvm *kvm;
5368 	u64 tmp_val;
5369 
5370 	*val = 0;
5371 	mutex_lock(&kvm_lock);
5372 	list_for_each_entry(kvm, &vm_list, vm_list) {
5373 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5374 		*val += tmp_val;
5375 	}
5376 	mutex_unlock(&kvm_lock);
5377 	return 0;
5378 }
5379 
5380 static int vm_stat_clear(void *_offset, u64 val)
5381 {
5382 	unsigned offset = (long)_offset;
5383 	struct kvm *kvm;
5384 
5385 	if (val)
5386 		return -EINVAL;
5387 
5388 	mutex_lock(&kvm_lock);
5389 	list_for_each_entry(kvm, &vm_list, vm_list) {
5390 		kvm_clear_stat_per_vm(kvm, offset);
5391 	}
5392 	mutex_unlock(&kvm_lock);
5393 
5394 	return 0;
5395 }
5396 
5397 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5398 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5399 
5400 static int vcpu_stat_get(void *_offset, u64 *val)
5401 {
5402 	unsigned offset = (long)_offset;
5403 	struct kvm *kvm;
5404 	u64 tmp_val;
5405 
5406 	*val = 0;
5407 	mutex_lock(&kvm_lock);
5408 	list_for_each_entry(kvm, &vm_list, vm_list) {
5409 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5410 		*val += tmp_val;
5411 	}
5412 	mutex_unlock(&kvm_lock);
5413 	return 0;
5414 }
5415 
5416 static int vcpu_stat_clear(void *_offset, u64 val)
5417 {
5418 	unsigned offset = (long)_offset;
5419 	struct kvm *kvm;
5420 
5421 	if (val)
5422 		return -EINVAL;
5423 
5424 	mutex_lock(&kvm_lock);
5425 	list_for_each_entry(kvm, &vm_list, vm_list) {
5426 		kvm_clear_stat_per_vcpu(kvm, offset);
5427 	}
5428 	mutex_unlock(&kvm_lock);
5429 
5430 	return 0;
5431 }
5432 
5433 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5434 			"%llu\n");
5435 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5436 
5437 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5438 {
5439 	struct kobj_uevent_env *env;
5440 	unsigned long long created, active;
5441 
5442 	if (!kvm_dev.this_device || !kvm)
5443 		return;
5444 
5445 	mutex_lock(&kvm_lock);
5446 	if (type == KVM_EVENT_CREATE_VM) {
5447 		kvm_createvm_count++;
5448 		kvm_active_vms++;
5449 	} else if (type == KVM_EVENT_DESTROY_VM) {
5450 		kvm_active_vms--;
5451 	}
5452 	created = kvm_createvm_count;
5453 	active = kvm_active_vms;
5454 	mutex_unlock(&kvm_lock);
5455 
5456 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5457 	if (!env)
5458 		return;
5459 
5460 	add_uevent_var(env, "CREATED=%llu", created);
5461 	add_uevent_var(env, "COUNT=%llu", active);
5462 
5463 	if (type == KVM_EVENT_CREATE_VM) {
5464 		add_uevent_var(env, "EVENT=create");
5465 		kvm->userspace_pid = task_pid_nr(current);
5466 	} else if (type == KVM_EVENT_DESTROY_VM) {
5467 		add_uevent_var(env, "EVENT=destroy");
5468 	}
5469 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5470 
5471 	if (kvm->debugfs_dentry) {
5472 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5473 
5474 		if (p) {
5475 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5476 			if (!IS_ERR(tmp))
5477 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5478 			kfree(p);
5479 		}
5480 	}
5481 	/* no need for checks, since we are adding at most only 5 keys */
5482 	env->envp[env->envp_idx++] = NULL;
5483 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5484 	kfree(env);
5485 }
5486 
5487 static void kvm_init_debug(void)
5488 {
5489 	const struct file_operations *fops;
5490 	const struct _kvm_stats_desc *pdesc;
5491 	int i;
5492 
5493 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5494 
5495 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5496 		pdesc = &kvm_vm_stats_desc[i];
5497 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5498 			fops = &vm_stat_fops;
5499 		else
5500 			fops = &vm_stat_readonly_fops;
5501 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5502 				kvm_debugfs_dir,
5503 				(void *)(long)pdesc->desc.offset, fops);
5504 	}
5505 
5506 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5507 		pdesc = &kvm_vcpu_stats_desc[i];
5508 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5509 			fops = &vcpu_stat_fops;
5510 		else
5511 			fops = &vcpu_stat_readonly_fops;
5512 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5513 				kvm_debugfs_dir,
5514 				(void *)(long)pdesc->desc.offset, fops);
5515 	}
5516 }
5517 
5518 static int kvm_suspend(void)
5519 {
5520 	if (kvm_usage_count)
5521 		hardware_disable_nolock(NULL);
5522 	return 0;
5523 }
5524 
5525 static void kvm_resume(void)
5526 {
5527 	if (kvm_usage_count) {
5528 #ifdef CONFIG_LOCKDEP
5529 		WARN_ON(lockdep_is_held(&kvm_count_lock));
5530 #endif
5531 		hardware_enable_nolock(NULL);
5532 	}
5533 }
5534 
5535 static struct syscore_ops kvm_syscore_ops = {
5536 	.suspend = kvm_suspend,
5537 	.resume = kvm_resume,
5538 };
5539 
5540 static inline
5541 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5542 {
5543 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5544 }
5545 
5546 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5547 {
5548 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5549 
5550 	WRITE_ONCE(vcpu->preempted, false);
5551 	WRITE_ONCE(vcpu->ready, false);
5552 
5553 	__this_cpu_write(kvm_running_vcpu, vcpu);
5554 	kvm_arch_sched_in(vcpu, cpu);
5555 	kvm_arch_vcpu_load(vcpu, cpu);
5556 }
5557 
5558 static void kvm_sched_out(struct preempt_notifier *pn,
5559 			  struct task_struct *next)
5560 {
5561 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5562 
5563 	if (current->on_rq) {
5564 		WRITE_ONCE(vcpu->preempted, true);
5565 		WRITE_ONCE(vcpu->ready, true);
5566 	}
5567 	kvm_arch_vcpu_put(vcpu);
5568 	__this_cpu_write(kvm_running_vcpu, NULL);
5569 }
5570 
5571 /**
5572  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5573  *
5574  * We can disable preemption locally around accessing the per-CPU variable,
5575  * and use the resolved vcpu pointer after enabling preemption again,
5576  * because even if the current thread is migrated to another CPU, reading
5577  * the per-CPU value later will give us the same value as we update the
5578  * per-CPU variable in the preempt notifier handlers.
5579  */
5580 struct kvm_vcpu *kvm_get_running_vcpu(void)
5581 {
5582 	struct kvm_vcpu *vcpu;
5583 
5584 	preempt_disable();
5585 	vcpu = __this_cpu_read(kvm_running_vcpu);
5586 	preempt_enable();
5587 
5588 	return vcpu;
5589 }
5590 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5591 
5592 /**
5593  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5594  */
5595 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5596 {
5597         return &kvm_running_vcpu;
5598 }
5599 
5600 struct kvm_cpu_compat_check {
5601 	void *opaque;
5602 	int *ret;
5603 };
5604 
5605 static void check_processor_compat(void *data)
5606 {
5607 	struct kvm_cpu_compat_check *c = data;
5608 
5609 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5610 }
5611 
5612 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5613 		  struct module *module)
5614 {
5615 	struct kvm_cpu_compat_check c;
5616 	int r;
5617 	int cpu;
5618 
5619 	r = kvm_arch_init(opaque);
5620 	if (r)
5621 		goto out_fail;
5622 
5623 	/*
5624 	 * kvm_arch_init makes sure there's at most one caller
5625 	 * for architectures that support multiple implementations,
5626 	 * like intel and amd on x86.
5627 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5628 	 * conflicts in case kvm is already setup for another implementation.
5629 	 */
5630 	r = kvm_irqfd_init();
5631 	if (r)
5632 		goto out_irqfd;
5633 
5634 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5635 		r = -ENOMEM;
5636 		goto out_free_0;
5637 	}
5638 
5639 	r = kvm_arch_hardware_setup(opaque);
5640 	if (r < 0)
5641 		goto out_free_1;
5642 
5643 	c.ret = &r;
5644 	c.opaque = opaque;
5645 	for_each_online_cpu(cpu) {
5646 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5647 		if (r < 0)
5648 			goto out_free_2;
5649 	}
5650 
5651 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5652 				      kvm_starting_cpu, kvm_dying_cpu);
5653 	if (r)
5654 		goto out_free_2;
5655 	register_reboot_notifier(&kvm_reboot_notifier);
5656 
5657 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5658 	if (!vcpu_align)
5659 		vcpu_align = __alignof__(struct kvm_vcpu);
5660 	kvm_vcpu_cache =
5661 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5662 					   SLAB_ACCOUNT,
5663 					   offsetof(struct kvm_vcpu, arch),
5664 					   offsetofend(struct kvm_vcpu, stats_id)
5665 					   - offsetof(struct kvm_vcpu, arch),
5666 					   NULL);
5667 	if (!kvm_vcpu_cache) {
5668 		r = -ENOMEM;
5669 		goto out_free_3;
5670 	}
5671 
5672 	for_each_possible_cpu(cpu) {
5673 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5674 					    GFP_KERNEL, cpu_to_node(cpu))) {
5675 			r = -ENOMEM;
5676 			goto out_free_4;
5677 		}
5678 	}
5679 
5680 	r = kvm_async_pf_init();
5681 	if (r)
5682 		goto out_free_5;
5683 
5684 	kvm_chardev_ops.owner = module;
5685 	kvm_vm_fops.owner = module;
5686 	kvm_vcpu_fops.owner = module;
5687 
5688 	r = misc_register(&kvm_dev);
5689 	if (r) {
5690 		pr_err("kvm: misc device register failed\n");
5691 		goto out_unreg;
5692 	}
5693 
5694 	register_syscore_ops(&kvm_syscore_ops);
5695 
5696 	kvm_preempt_ops.sched_in = kvm_sched_in;
5697 	kvm_preempt_ops.sched_out = kvm_sched_out;
5698 
5699 	kvm_init_debug();
5700 
5701 	r = kvm_vfio_ops_init();
5702 	WARN_ON(r);
5703 
5704 	return 0;
5705 
5706 out_unreg:
5707 	kvm_async_pf_deinit();
5708 out_free_5:
5709 	for_each_possible_cpu(cpu)
5710 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5711 out_free_4:
5712 	kmem_cache_destroy(kvm_vcpu_cache);
5713 out_free_3:
5714 	unregister_reboot_notifier(&kvm_reboot_notifier);
5715 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5716 out_free_2:
5717 	kvm_arch_hardware_unsetup();
5718 out_free_1:
5719 	free_cpumask_var(cpus_hardware_enabled);
5720 out_free_0:
5721 	kvm_irqfd_exit();
5722 out_irqfd:
5723 	kvm_arch_exit();
5724 out_fail:
5725 	return r;
5726 }
5727 EXPORT_SYMBOL_GPL(kvm_init);
5728 
5729 void kvm_exit(void)
5730 {
5731 	int cpu;
5732 
5733 	debugfs_remove_recursive(kvm_debugfs_dir);
5734 	misc_deregister(&kvm_dev);
5735 	for_each_possible_cpu(cpu)
5736 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5737 	kmem_cache_destroy(kvm_vcpu_cache);
5738 	kvm_async_pf_deinit();
5739 	unregister_syscore_ops(&kvm_syscore_ops);
5740 	unregister_reboot_notifier(&kvm_reboot_notifier);
5741 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5742 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5743 	kvm_arch_hardware_unsetup();
5744 	kvm_arch_exit();
5745 	kvm_irqfd_exit();
5746 	free_cpumask_var(cpus_hardware_enabled);
5747 	kvm_vfio_ops_exit();
5748 }
5749 EXPORT_SYMBOL_GPL(kvm_exit);
5750 
5751 struct kvm_vm_worker_thread_context {
5752 	struct kvm *kvm;
5753 	struct task_struct *parent;
5754 	struct completion init_done;
5755 	kvm_vm_thread_fn_t thread_fn;
5756 	uintptr_t data;
5757 	int err;
5758 };
5759 
5760 static int kvm_vm_worker_thread(void *context)
5761 {
5762 	/*
5763 	 * The init_context is allocated on the stack of the parent thread, so
5764 	 * we have to locally copy anything that is needed beyond initialization
5765 	 */
5766 	struct kvm_vm_worker_thread_context *init_context = context;
5767 	struct kvm *kvm = init_context->kvm;
5768 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5769 	uintptr_t data = init_context->data;
5770 	int err;
5771 
5772 	err = kthread_park(current);
5773 	/* kthread_park(current) is never supposed to return an error */
5774 	WARN_ON(err != 0);
5775 	if (err)
5776 		goto init_complete;
5777 
5778 	err = cgroup_attach_task_all(init_context->parent, current);
5779 	if (err) {
5780 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5781 			__func__, err);
5782 		goto init_complete;
5783 	}
5784 
5785 	set_user_nice(current, task_nice(init_context->parent));
5786 
5787 init_complete:
5788 	init_context->err = err;
5789 	complete(&init_context->init_done);
5790 	init_context = NULL;
5791 
5792 	if (err)
5793 		return err;
5794 
5795 	/* Wait to be woken up by the spawner before proceeding. */
5796 	kthread_parkme();
5797 
5798 	if (!kthread_should_stop())
5799 		err = thread_fn(kvm, data);
5800 
5801 	return err;
5802 }
5803 
5804 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5805 				uintptr_t data, const char *name,
5806 				struct task_struct **thread_ptr)
5807 {
5808 	struct kvm_vm_worker_thread_context init_context = {};
5809 	struct task_struct *thread;
5810 
5811 	*thread_ptr = NULL;
5812 	init_context.kvm = kvm;
5813 	init_context.parent = current;
5814 	init_context.thread_fn = thread_fn;
5815 	init_context.data = data;
5816 	init_completion(&init_context.init_done);
5817 
5818 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5819 			     "%s-%d", name, task_pid_nr(current));
5820 	if (IS_ERR(thread))
5821 		return PTR_ERR(thread);
5822 
5823 	/* kthread_run is never supposed to return NULL */
5824 	WARN_ON(thread == NULL);
5825 
5826 	wait_for_completion(&init_context.init_done);
5827 
5828 	if (!init_context.err)
5829 		*thread_ptr = thread;
5830 
5831 	return init_context.err;
5832 }
5833