xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 2df72e9bc4c505d8357012f2924589f3d16f9d44)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75 
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79 
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82 
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84 
85 struct dentry *kvm_debugfs_dir;
86 
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 			   unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 				  unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95 
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97 
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100 
101 static bool largepages_enabled = true;
102 
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 	if (pfn_valid(pfn)) {
106 		int reserved;
107 		struct page *tail = pfn_to_page(pfn);
108 		struct page *head = compound_trans_head(tail);
109 		reserved = PageReserved(head);
110 		if (head != tail) {
111 			/*
112 			 * "head" is not a dangling pointer
113 			 * (compound_trans_head takes care of that)
114 			 * but the hugepage may have been splitted
115 			 * from under us (and we may not hold a
116 			 * reference count on the head page so it can
117 			 * be reused before we run PageReferenced), so
118 			 * we've to check PageTail before returning
119 			 * what we just read.
120 			 */
121 			smp_rmb();
122 			if (PageTail(tail))
123 				return reserved;
124 		}
125 		return PageReserved(tail);
126 	}
127 
128 	return true;
129 }
130 
131 /*
132  * Switches to specified vcpu, until a matching vcpu_put()
133  */
134 void vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 	int cpu;
137 
138 	mutex_lock(&vcpu->mutex);
139 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
140 		/* The thread running this VCPU changed. */
141 		struct pid *oldpid = vcpu->pid;
142 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
143 		rcu_assign_pointer(vcpu->pid, newpid);
144 		synchronize_rcu();
145 		put_pid(oldpid);
146 	}
147 	cpu = get_cpu();
148 	preempt_notifier_register(&vcpu->preempt_notifier);
149 	kvm_arch_vcpu_load(vcpu, cpu);
150 	put_cpu();
151 }
152 
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 	preempt_disable();
156 	kvm_arch_vcpu_put(vcpu);
157 	preempt_notifier_unregister(&vcpu->preempt_notifier);
158 	preempt_enable();
159 	mutex_unlock(&vcpu->mutex);
160 }
161 
162 static void ack_flush(void *_completed)
163 {
164 }
165 
166 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
167 {
168 	int i, cpu, me;
169 	cpumask_var_t cpus;
170 	bool called = true;
171 	struct kvm_vcpu *vcpu;
172 
173 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
174 
175 	me = get_cpu();
176 	kvm_for_each_vcpu(i, vcpu, kvm) {
177 		kvm_make_request(req, vcpu);
178 		cpu = vcpu->cpu;
179 
180 		/* Set ->requests bit before we read ->mode */
181 		smp_mb();
182 
183 		if (cpus != NULL && cpu != -1 && cpu != me &&
184 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
185 			cpumask_set_cpu(cpu, cpus);
186 	}
187 	if (unlikely(cpus == NULL))
188 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
189 	else if (!cpumask_empty(cpus))
190 		smp_call_function_many(cpus, ack_flush, NULL, 1);
191 	else
192 		called = false;
193 	put_cpu();
194 	free_cpumask_var(cpus);
195 	return called;
196 }
197 
198 void kvm_flush_remote_tlbs(struct kvm *kvm)
199 {
200 	long dirty_count = kvm->tlbs_dirty;
201 
202 	smp_mb();
203 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
204 		++kvm->stat.remote_tlb_flush;
205 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
206 }
207 
208 void kvm_reload_remote_mmus(struct kvm *kvm)
209 {
210 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
211 }
212 
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215 	struct page *page;
216 	int r;
217 
218 	mutex_init(&vcpu->mutex);
219 	vcpu->cpu = -1;
220 	vcpu->kvm = kvm;
221 	vcpu->vcpu_id = id;
222 	vcpu->pid = NULL;
223 	init_waitqueue_head(&vcpu->wq);
224 	kvm_async_pf_vcpu_init(vcpu);
225 
226 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 	if (!page) {
228 		r = -ENOMEM;
229 		goto fail;
230 	}
231 	vcpu->run = page_address(page);
232 
233 	kvm_vcpu_set_in_spin_loop(vcpu, false);
234 	kvm_vcpu_set_dy_eligible(vcpu, false);
235 
236 	r = kvm_arch_vcpu_init(vcpu);
237 	if (r < 0)
238 		goto fail_free_run;
239 	return 0;
240 
241 fail_free_run:
242 	free_page((unsigned long)vcpu->run);
243 fail:
244 	return r;
245 }
246 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
247 
248 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 {
250 	put_pid(vcpu->pid);
251 	kvm_arch_vcpu_uninit(vcpu);
252 	free_page((unsigned long)vcpu->run);
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
255 
256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
257 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
258 {
259 	return container_of(mn, struct kvm, mmu_notifier);
260 }
261 
262 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
263 					     struct mm_struct *mm,
264 					     unsigned long address)
265 {
266 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
267 	int need_tlb_flush, idx;
268 
269 	/*
270 	 * When ->invalidate_page runs, the linux pte has been zapped
271 	 * already but the page is still allocated until
272 	 * ->invalidate_page returns. So if we increase the sequence
273 	 * here the kvm page fault will notice if the spte can't be
274 	 * established because the page is going to be freed. If
275 	 * instead the kvm page fault establishes the spte before
276 	 * ->invalidate_page runs, kvm_unmap_hva will release it
277 	 * before returning.
278 	 *
279 	 * The sequence increase only need to be seen at spin_unlock
280 	 * time, and not at spin_lock time.
281 	 *
282 	 * Increasing the sequence after the spin_unlock would be
283 	 * unsafe because the kvm page fault could then establish the
284 	 * pte after kvm_unmap_hva returned, without noticing the page
285 	 * is going to be freed.
286 	 */
287 	idx = srcu_read_lock(&kvm->srcu);
288 	spin_lock(&kvm->mmu_lock);
289 
290 	kvm->mmu_notifier_seq++;
291 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292 	/* we've to flush the tlb before the pages can be freed */
293 	if (need_tlb_flush)
294 		kvm_flush_remote_tlbs(kvm);
295 
296 	spin_unlock(&kvm->mmu_lock);
297 	srcu_read_unlock(&kvm->srcu, idx);
298 }
299 
300 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
301 					struct mm_struct *mm,
302 					unsigned long address,
303 					pte_t pte)
304 {
305 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
306 	int idx;
307 
308 	idx = srcu_read_lock(&kvm->srcu);
309 	spin_lock(&kvm->mmu_lock);
310 	kvm->mmu_notifier_seq++;
311 	kvm_set_spte_hva(kvm, address, pte);
312 	spin_unlock(&kvm->mmu_lock);
313 	srcu_read_unlock(&kvm->srcu, idx);
314 }
315 
316 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
317 						    struct mm_struct *mm,
318 						    unsigned long start,
319 						    unsigned long end)
320 {
321 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
322 	int need_tlb_flush = 0, idx;
323 
324 	idx = srcu_read_lock(&kvm->srcu);
325 	spin_lock(&kvm->mmu_lock);
326 	/*
327 	 * The count increase must become visible at unlock time as no
328 	 * spte can be established without taking the mmu_lock and
329 	 * count is also read inside the mmu_lock critical section.
330 	 */
331 	kvm->mmu_notifier_count++;
332 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
333 	need_tlb_flush |= kvm->tlbs_dirty;
334 	/* we've to flush the tlb before the pages can be freed */
335 	if (need_tlb_flush)
336 		kvm_flush_remote_tlbs(kvm);
337 
338 	spin_unlock(&kvm->mmu_lock);
339 	srcu_read_unlock(&kvm->srcu, idx);
340 }
341 
342 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
343 						  struct mm_struct *mm,
344 						  unsigned long start,
345 						  unsigned long end)
346 {
347 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
348 
349 	spin_lock(&kvm->mmu_lock);
350 	/*
351 	 * This sequence increase will notify the kvm page fault that
352 	 * the page that is going to be mapped in the spte could have
353 	 * been freed.
354 	 */
355 	kvm->mmu_notifier_seq++;
356 	smp_wmb();
357 	/*
358 	 * The above sequence increase must be visible before the
359 	 * below count decrease, which is ensured by the smp_wmb above
360 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
361 	 */
362 	kvm->mmu_notifier_count--;
363 	spin_unlock(&kvm->mmu_lock);
364 
365 	BUG_ON(kvm->mmu_notifier_count < 0);
366 }
367 
368 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
369 					      struct mm_struct *mm,
370 					      unsigned long address)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 	int young, idx;
374 
375 	idx = srcu_read_lock(&kvm->srcu);
376 	spin_lock(&kvm->mmu_lock);
377 
378 	young = kvm_age_hva(kvm, address);
379 	if (young)
380 		kvm_flush_remote_tlbs(kvm);
381 
382 	spin_unlock(&kvm->mmu_lock);
383 	srcu_read_unlock(&kvm->srcu, idx);
384 
385 	return young;
386 }
387 
388 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
389 				       struct mm_struct *mm,
390 				       unsigned long address)
391 {
392 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
393 	int young, idx;
394 
395 	idx = srcu_read_lock(&kvm->srcu);
396 	spin_lock(&kvm->mmu_lock);
397 	young = kvm_test_age_hva(kvm, address);
398 	spin_unlock(&kvm->mmu_lock);
399 	srcu_read_unlock(&kvm->srcu, idx);
400 
401 	return young;
402 }
403 
404 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
405 				     struct mm_struct *mm)
406 {
407 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
408 	int idx;
409 
410 	idx = srcu_read_lock(&kvm->srcu);
411 	kvm_arch_flush_shadow_all(kvm);
412 	srcu_read_unlock(&kvm->srcu, idx);
413 }
414 
415 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
416 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
417 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
418 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
419 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
420 	.test_young		= kvm_mmu_notifier_test_young,
421 	.change_pte		= kvm_mmu_notifier_change_pte,
422 	.release		= kvm_mmu_notifier_release,
423 };
424 
425 static int kvm_init_mmu_notifier(struct kvm *kvm)
426 {
427 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
428 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
429 }
430 
431 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
432 
433 static int kvm_init_mmu_notifier(struct kvm *kvm)
434 {
435 	return 0;
436 }
437 
438 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
439 
440 static void kvm_init_memslots_id(struct kvm *kvm)
441 {
442 	int i;
443 	struct kvm_memslots *slots = kvm->memslots;
444 
445 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
446 		slots->id_to_index[i] = slots->memslots[i].id = i;
447 }
448 
449 static struct kvm *kvm_create_vm(unsigned long type)
450 {
451 	int r, i;
452 	struct kvm *kvm = kvm_arch_alloc_vm();
453 
454 	if (!kvm)
455 		return ERR_PTR(-ENOMEM);
456 
457 	r = kvm_arch_init_vm(kvm, type);
458 	if (r)
459 		goto out_err_nodisable;
460 
461 	r = hardware_enable_all();
462 	if (r)
463 		goto out_err_nodisable;
464 
465 #ifdef CONFIG_HAVE_KVM_IRQCHIP
466 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
467 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
468 #endif
469 
470 	r = -ENOMEM;
471 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
472 	if (!kvm->memslots)
473 		goto out_err_nosrcu;
474 	kvm_init_memslots_id(kvm);
475 	if (init_srcu_struct(&kvm->srcu))
476 		goto out_err_nosrcu;
477 	for (i = 0; i < KVM_NR_BUSES; i++) {
478 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
479 					GFP_KERNEL);
480 		if (!kvm->buses[i])
481 			goto out_err;
482 	}
483 
484 	spin_lock_init(&kvm->mmu_lock);
485 	kvm->mm = current->mm;
486 	atomic_inc(&kvm->mm->mm_count);
487 	kvm_eventfd_init(kvm);
488 	mutex_init(&kvm->lock);
489 	mutex_init(&kvm->irq_lock);
490 	mutex_init(&kvm->slots_lock);
491 	atomic_set(&kvm->users_count, 1);
492 
493 	r = kvm_init_mmu_notifier(kvm);
494 	if (r)
495 		goto out_err;
496 
497 	raw_spin_lock(&kvm_lock);
498 	list_add(&kvm->vm_list, &vm_list);
499 	raw_spin_unlock(&kvm_lock);
500 
501 	return kvm;
502 
503 out_err:
504 	cleanup_srcu_struct(&kvm->srcu);
505 out_err_nosrcu:
506 	hardware_disable_all();
507 out_err_nodisable:
508 	for (i = 0; i < KVM_NR_BUSES; i++)
509 		kfree(kvm->buses[i]);
510 	kfree(kvm->memslots);
511 	kvm_arch_free_vm(kvm);
512 	return ERR_PTR(r);
513 }
514 
515 /*
516  * Avoid using vmalloc for a small buffer.
517  * Should not be used when the size is statically known.
518  */
519 void *kvm_kvzalloc(unsigned long size)
520 {
521 	if (size > PAGE_SIZE)
522 		return vzalloc(size);
523 	else
524 		return kzalloc(size, GFP_KERNEL);
525 }
526 
527 void kvm_kvfree(const void *addr)
528 {
529 	if (is_vmalloc_addr(addr))
530 		vfree(addr);
531 	else
532 		kfree(addr);
533 }
534 
535 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
536 {
537 	if (!memslot->dirty_bitmap)
538 		return;
539 
540 	kvm_kvfree(memslot->dirty_bitmap);
541 	memslot->dirty_bitmap = NULL;
542 }
543 
544 /*
545  * Free any memory in @free but not in @dont.
546  */
547 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
548 				  struct kvm_memory_slot *dont)
549 {
550 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
551 		kvm_destroy_dirty_bitmap(free);
552 
553 	kvm_arch_free_memslot(free, dont);
554 
555 	free->npages = 0;
556 }
557 
558 void kvm_free_physmem(struct kvm *kvm)
559 {
560 	struct kvm_memslots *slots = kvm->memslots;
561 	struct kvm_memory_slot *memslot;
562 
563 	kvm_for_each_memslot(memslot, slots)
564 		kvm_free_physmem_slot(memslot, NULL);
565 
566 	kfree(kvm->memslots);
567 }
568 
569 static void kvm_destroy_vm(struct kvm *kvm)
570 {
571 	int i;
572 	struct mm_struct *mm = kvm->mm;
573 
574 	kvm_arch_sync_events(kvm);
575 	raw_spin_lock(&kvm_lock);
576 	list_del(&kvm->vm_list);
577 	raw_spin_unlock(&kvm_lock);
578 	kvm_free_irq_routing(kvm);
579 	for (i = 0; i < KVM_NR_BUSES; i++)
580 		kvm_io_bus_destroy(kvm->buses[i]);
581 	kvm_coalesced_mmio_free(kvm);
582 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
583 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
584 #else
585 	kvm_arch_flush_shadow_all(kvm);
586 #endif
587 	kvm_arch_destroy_vm(kvm);
588 	kvm_free_physmem(kvm);
589 	cleanup_srcu_struct(&kvm->srcu);
590 	kvm_arch_free_vm(kvm);
591 	hardware_disable_all();
592 	mmdrop(mm);
593 }
594 
595 void kvm_get_kvm(struct kvm *kvm)
596 {
597 	atomic_inc(&kvm->users_count);
598 }
599 EXPORT_SYMBOL_GPL(kvm_get_kvm);
600 
601 void kvm_put_kvm(struct kvm *kvm)
602 {
603 	if (atomic_dec_and_test(&kvm->users_count))
604 		kvm_destroy_vm(kvm);
605 }
606 EXPORT_SYMBOL_GPL(kvm_put_kvm);
607 
608 
609 static int kvm_vm_release(struct inode *inode, struct file *filp)
610 {
611 	struct kvm *kvm = filp->private_data;
612 
613 	kvm_irqfd_release(kvm);
614 
615 	kvm_put_kvm(kvm);
616 	return 0;
617 }
618 
619 /*
620  * Allocation size is twice as large as the actual dirty bitmap size.
621  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
622  */
623 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
624 {
625 #ifndef CONFIG_S390
626 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
627 
628 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
629 	if (!memslot->dirty_bitmap)
630 		return -ENOMEM;
631 
632 #endif /* !CONFIG_S390 */
633 	return 0;
634 }
635 
636 static int cmp_memslot(const void *slot1, const void *slot2)
637 {
638 	struct kvm_memory_slot *s1, *s2;
639 
640 	s1 = (struct kvm_memory_slot *)slot1;
641 	s2 = (struct kvm_memory_slot *)slot2;
642 
643 	if (s1->npages < s2->npages)
644 		return 1;
645 	if (s1->npages > s2->npages)
646 		return -1;
647 
648 	return 0;
649 }
650 
651 /*
652  * Sort the memslots base on its size, so the larger slots
653  * will get better fit.
654  */
655 static void sort_memslots(struct kvm_memslots *slots)
656 {
657 	int i;
658 
659 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
660 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
661 
662 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
663 		slots->id_to_index[slots->memslots[i].id] = i;
664 }
665 
666 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
667 {
668 	if (new) {
669 		int id = new->id;
670 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
671 		unsigned long npages = old->npages;
672 
673 		*old = *new;
674 		if (new->npages != npages)
675 			sort_memslots(slots);
676 	}
677 
678 	slots->generation++;
679 }
680 
681 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
682 {
683 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
684 
685 #ifdef KVM_CAP_READONLY_MEM
686 	valid_flags |= KVM_MEM_READONLY;
687 #endif
688 
689 	if (mem->flags & ~valid_flags)
690 		return -EINVAL;
691 
692 	return 0;
693 }
694 
695 /*
696  * Allocate some memory and give it an address in the guest physical address
697  * space.
698  *
699  * Discontiguous memory is allowed, mostly for framebuffers.
700  *
701  * Must be called holding mmap_sem for write.
702  */
703 int __kvm_set_memory_region(struct kvm *kvm,
704 			    struct kvm_userspace_memory_region *mem,
705 			    int user_alloc)
706 {
707 	int r;
708 	gfn_t base_gfn;
709 	unsigned long npages;
710 	unsigned long i;
711 	struct kvm_memory_slot *memslot;
712 	struct kvm_memory_slot old, new;
713 	struct kvm_memslots *slots, *old_memslots;
714 
715 	r = check_memory_region_flags(mem);
716 	if (r)
717 		goto out;
718 
719 	r = -EINVAL;
720 	/* General sanity checks */
721 	if (mem->memory_size & (PAGE_SIZE - 1))
722 		goto out;
723 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
724 		goto out;
725 	/* We can read the guest memory with __xxx_user() later on. */
726 	if (user_alloc &&
727 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
728 	     !access_ok(VERIFY_WRITE,
729 			(void __user *)(unsigned long)mem->userspace_addr,
730 			mem->memory_size)))
731 		goto out;
732 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
733 		goto out;
734 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
735 		goto out;
736 
737 	memslot = id_to_memslot(kvm->memslots, mem->slot);
738 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
739 	npages = mem->memory_size >> PAGE_SHIFT;
740 
741 	r = -EINVAL;
742 	if (npages > KVM_MEM_MAX_NR_PAGES)
743 		goto out;
744 
745 	if (!npages)
746 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
747 
748 	new = old = *memslot;
749 
750 	new.id = mem->slot;
751 	new.base_gfn = base_gfn;
752 	new.npages = npages;
753 	new.flags = mem->flags;
754 
755 	/* Disallow changing a memory slot's size. */
756 	r = -EINVAL;
757 	if (npages && old.npages && npages != old.npages)
758 		goto out_free;
759 
760 	/* Check for overlaps */
761 	r = -EEXIST;
762 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
763 		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
764 
765 		if (s == memslot || !s->npages)
766 			continue;
767 		if (!((base_gfn + npages <= s->base_gfn) ||
768 		      (base_gfn >= s->base_gfn + s->npages)))
769 			goto out_free;
770 	}
771 
772 	/* Free page dirty bitmap if unneeded */
773 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
774 		new.dirty_bitmap = NULL;
775 
776 	r = -ENOMEM;
777 
778 	/* Allocate if a slot is being created */
779 	if (npages && !old.npages) {
780 		new.user_alloc = user_alloc;
781 		new.userspace_addr = mem->userspace_addr;
782 
783 		if (kvm_arch_create_memslot(&new, npages))
784 			goto out_free;
785 	}
786 
787 	/* Allocate page dirty bitmap if needed */
788 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
789 		if (kvm_create_dirty_bitmap(&new) < 0)
790 			goto out_free;
791 		/* destroy any largepage mappings for dirty tracking */
792 	}
793 
794 	if (!npages) {
795 		struct kvm_memory_slot *slot;
796 
797 		r = -ENOMEM;
798 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
799 				GFP_KERNEL);
800 		if (!slots)
801 			goto out_free;
802 		slot = id_to_memslot(slots, mem->slot);
803 		slot->flags |= KVM_MEMSLOT_INVALID;
804 
805 		update_memslots(slots, NULL);
806 
807 		old_memslots = kvm->memslots;
808 		rcu_assign_pointer(kvm->memslots, slots);
809 		synchronize_srcu_expedited(&kvm->srcu);
810 		/* From this point no new shadow pages pointing to a deleted
811 		 * memslot will be created.
812 		 *
813 		 * validation of sp->gfn happens in:
814 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
815 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
816 		 */
817 		kvm_arch_flush_shadow_memslot(kvm, slot);
818 		kfree(old_memslots);
819 	}
820 
821 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
822 	if (r)
823 		goto out_free;
824 
825 	/* map/unmap the pages in iommu page table */
826 	if (npages) {
827 		r = kvm_iommu_map_pages(kvm, &new);
828 		if (r)
829 			goto out_free;
830 	} else
831 		kvm_iommu_unmap_pages(kvm, &old);
832 
833 	r = -ENOMEM;
834 	slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
835 			GFP_KERNEL);
836 	if (!slots)
837 		goto out_free;
838 
839 	/* actual memory is freed via old in kvm_free_physmem_slot below */
840 	if (!npages) {
841 		new.dirty_bitmap = NULL;
842 		memset(&new.arch, 0, sizeof(new.arch));
843 	}
844 
845 	update_memslots(slots, &new);
846 	old_memslots = kvm->memslots;
847 	rcu_assign_pointer(kvm->memslots, slots);
848 	synchronize_srcu_expedited(&kvm->srcu);
849 
850 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
851 
852 	/*
853 	 * If the new memory slot is created, we need to clear all
854 	 * mmio sptes.
855 	 */
856 	if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
857 		kvm_arch_flush_shadow_all(kvm);
858 
859 	kvm_free_physmem_slot(&old, &new);
860 	kfree(old_memslots);
861 
862 	return 0;
863 
864 out_free:
865 	kvm_free_physmem_slot(&new, &old);
866 out:
867 	return r;
868 
869 }
870 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
871 
872 int kvm_set_memory_region(struct kvm *kvm,
873 			  struct kvm_userspace_memory_region *mem,
874 			  int user_alloc)
875 {
876 	int r;
877 
878 	mutex_lock(&kvm->slots_lock);
879 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
880 	mutex_unlock(&kvm->slots_lock);
881 	return r;
882 }
883 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
884 
885 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
886 				   struct
887 				   kvm_userspace_memory_region *mem,
888 				   int user_alloc)
889 {
890 	if (mem->slot >= KVM_MEMORY_SLOTS)
891 		return -EINVAL;
892 	return kvm_set_memory_region(kvm, mem, user_alloc);
893 }
894 
895 int kvm_get_dirty_log(struct kvm *kvm,
896 			struct kvm_dirty_log *log, int *is_dirty)
897 {
898 	struct kvm_memory_slot *memslot;
899 	int r, i;
900 	unsigned long n;
901 	unsigned long any = 0;
902 
903 	r = -EINVAL;
904 	if (log->slot >= KVM_MEMORY_SLOTS)
905 		goto out;
906 
907 	memslot = id_to_memslot(kvm->memslots, log->slot);
908 	r = -ENOENT;
909 	if (!memslot->dirty_bitmap)
910 		goto out;
911 
912 	n = kvm_dirty_bitmap_bytes(memslot);
913 
914 	for (i = 0; !any && i < n/sizeof(long); ++i)
915 		any = memslot->dirty_bitmap[i];
916 
917 	r = -EFAULT;
918 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
919 		goto out;
920 
921 	if (any)
922 		*is_dirty = 1;
923 
924 	r = 0;
925 out:
926 	return r;
927 }
928 
929 bool kvm_largepages_enabled(void)
930 {
931 	return largepages_enabled;
932 }
933 
934 void kvm_disable_largepages(void)
935 {
936 	largepages_enabled = false;
937 }
938 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
939 
940 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
941 {
942 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
943 }
944 EXPORT_SYMBOL_GPL(gfn_to_memslot);
945 
946 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
947 {
948 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
949 
950 	if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
951 	      memslot->flags & KVM_MEMSLOT_INVALID)
952 		return 0;
953 
954 	return 1;
955 }
956 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
957 
958 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
959 {
960 	struct vm_area_struct *vma;
961 	unsigned long addr, size;
962 
963 	size = PAGE_SIZE;
964 
965 	addr = gfn_to_hva(kvm, gfn);
966 	if (kvm_is_error_hva(addr))
967 		return PAGE_SIZE;
968 
969 	down_read(&current->mm->mmap_sem);
970 	vma = find_vma(current->mm, addr);
971 	if (!vma)
972 		goto out;
973 
974 	size = vma_kernel_pagesize(vma);
975 
976 out:
977 	up_read(&current->mm->mmap_sem);
978 
979 	return size;
980 }
981 
982 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
983 {
984 	return slot->flags & KVM_MEM_READONLY;
985 }
986 
987 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
988 				       gfn_t *nr_pages, bool write)
989 {
990 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
991 		return KVM_HVA_ERR_BAD;
992 
993 	if (memslot_is_readonly(slot) && write)
994 		return KVM_HVA_ERR_RO_BAD;
995 
996 	if (nr_pages)
997 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
998 
999 	return __gfn_to_hva_memslot(slot, gfn);
1000 }
1001 
1002 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1003 				     gfn_t *nr_pages)
1004 {
1005 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1006 }
1007 
1008 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1009 				 gfn_t gfn)
1010 {
1011 	return gfn_to_hva_many(slot, gfn, NULL);
1012 }
1013 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1014 
1015 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1016 {
1017 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1018 }
1019 EXPORT_SYMBOL_GPL(gfn_to_hva);
1020 
1021 /*
1022  * The hva returned by this function is only allowed to be read.
1023  * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1024  */
1025 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1026 {
1027 	return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1028 }
1029 
1030 static int kvm_read_hva(void *data, void __user *hva, int len)
1031 {
1032 	return __copy_from_user(data, hva, len);
1033 }
1034 
1035 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1036 {
1037 	return __copy_from_user_inatomic(data, hva, len);
1038 }
1039 
1040 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1041 	unsigned long start, int write, struct page **page)
1042 {
1043 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1044 
1045 	if (write)
1046 		flags |= FOLL_WRITE;
1047 
1048 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1049 }
1050 
1051 static inline int check_user_page_hwpoison(unsigned long addr)
1052 {
1053 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1054 
1055 	rc = __get_user_pages(current, current->mm, addr, 1,
1056 			      flags, NULL, NULL, NULL);
1057 	return rc == -EHWPOISON;
1058 }
1059 
1060 /*
1061  * The atomic path to get the writable pfn which will be stored in @pfn,
1062  * true indicates success, otherwise false is returned.
1063  */
1064 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1065 			    bool write_fault, bool *writable, pfn_t *pfn)
1066 {
1067 	struct page *page[1];
1068 	int npages;
1069 
1070 	if (!(async || atomic))
1071 		return false;
1072 
1073 	/*
1074 	 * Fast pin a writable pfn only if it is a write fault request
1075 	 * or the caller allows to map a writable pfn for a read fault
1076 	 * request.
1077 	 */
1078 	if (!(write_fault || writable))
1079 		return false;
1080 
1081 	npages = __get_user_pages_fast(addr, 1, 1, page);
1082 	if (npages == 1) {
1083 		*pfn = page_to_pfn(page[0]);
1084 
1085 		if (writable)
1086 			*writable = true;
1087 		return true;
1088 	}
1089 
1090 	return false;
1091 }
1092 
1093 /*
1094  * The slow path to get the pfn of the specified host virtual address,
1095  * 1 indicates success, -errno is returned if error is detected.
1096  */
1097 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1098 			   bool *writable, pfn_t *pfn)
1099 {
1100 	struct page *page[1];
1101 	int npages = 0;
1102 
1103 	might_sleep();
1104 
1105 	if (writable)
1106 		*writable = write_fault;
1107 
1108 	if (async) {
1109 		down_read(&current->mm->mmap_sem);
1110 		npages = get_user_page_nowait(current, current->mm,
1111 					      addr, write_fault, page);
1112 		up_read(&current->mm->mmap_sem);
1113 	} else
1114 		npages = get_user_pages_fast(addr, 1, write_fault,
1115 					     page);
1116 	if (npages != 1)
1117 		return npages;
1118 
1119 	/* map read fault as writable if possible */
1120 	if (unlikely(!write_fault) && writable) {
1121 		struct page *wpage[1];
1122 
1123 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1124 		if (npages == 1) {
1125 			*writable = true;
1126 			put_page(page[0]);
1127 			page[0] = wpage[0];
1128 		}
1129 
1130 		npages = 1;
1131 	}
1132 	*pfn = page_to_pfn(page[0]);
1133 	return npages;
1134 }
1135 
1136 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1137 {
1138 	if (unlikely(!(vma->vm_flags & VM_READ)))
1139 		return false;
1140 
1141 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1142 		return false;
1143 
1144 	return true;
1145 }
1146 
1147 /*
1148  * Pin guest page in memory and return its pfn.
1149  * @addr: host virtual address which maps memory to the guest
1150  * @atomic: whether this function can sleep
1151  * @async: whether this function need to wait IO complete if the
1152  *         host page is not in the memory
1153  * @write_fault: whether we should get a writable host page
1154  * @writable: whether it allows to map a writable host page for !@write_fault
1155  *
1156  * The function will map a writable host page for these two cases:
1157  * 1): @write_fault = true
1158  * 2): @write_fault = false && @writable, @writable will tell the caller
1159  *     whether the mapping is writable.
1160  */
1161 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1162 			bool write_fault, bool *writable)
1163 {
1164 	struct vm_area_struct *vma;
1165 	pfn_t pfn = 0;
1166 	int npages;
1167 
1168 	/* we can do it either atomically or asynchronously, not both */
1169 	BUG_ON(atomic && async);
1170 
1171 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1172 		return pfn;
1173 
1174 	if (atomic)
1175 		return KVM_PFN_ERR_FAULT;
1176 
1177 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1178 	if (npages == 1)
1179 		return pfn;
1180 
1181 	down_read(&current->mm->mmap_sem);
1182 	if (npages == -EHWPOISON ||
1183 	      (!async && check_user_page_hwpoison(addr))) {
1184 		pfn = KVM_PFN_ERR_HWPOISON;
1185 		goto exit;
1186 	}
1187 
1188 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1189 
1190 	if (vma == NULL)
1191 		pfn = KVM_PFN_ERR_FAULT;
1192 	else if ((vma->vm_flags & VM_PFNMAP)) {
1193 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1194 			vma->vm_pgoff;
1195 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1196 	} else {
1197 		if (async && vma_is_valid(vma, write_fault))
1198 			*async = true;
1199 		pfn = KVM_PFN_ERR_FAULT;
1200 	}
1201 exit:
1202 	up_read(&current->mm->mmap_sem);
1203 	return pfn;
1204 }
1205 
1206 static pfn_t
1207 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1208 		     bool *async, bool write_fault, bool *writable)
1209 {
1210 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1211 
1212 	if (addr == KVM_HVA_ERR_RO_BAD)
1213 		return KVM_PFN_ERR_RO_FAULT;
1214 
1215 	if (kvm_is_error_hva(addr))
1216 		return KVM_PFN_ERR_BAD;
1217 
1218 	/* Do not map writable pfn in the readonly memslot. */
1219 	if (writable && memslot_is_readonly(slot)) {
1220 		*writable = false;
1221 		writable = NULL;
1222 	}
1223 
1224 	return hva_to_pfn(addr, atomic, async, write_fault,
1225 			  writable);
1226 }
1227 
1228 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1229 			  bool write_fault, bool *writable)
1230 {
1231 	struct kvm_memory_slot *slot;
1232 
1233 	if (async)
1234 		*async = false;
1235 
1236 	slot = gfn_to_memslot(kvm, gfn);
1237 
1238 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1239 				    writable);
1240 }
1241 
1242 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1243 {
1244 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1245 }
1246 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1247 
1248 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1249 		       bool write_fault, bool *writable)
1250 {
1251 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1252 }
1253 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1254 
1255 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1256 {
1257 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1258 }
1259 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1260 
1261 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1262 		      bool *writable)
1263 {
1264 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1265 }
1266 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1267 
1268 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1269 {
1270 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1271 }
1272 
1273 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1274 {
1275 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1276 }
1277 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1278 
1279 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1280 								  int nr_pages)
1281 {
1282 	unsigned long addr;
1283 	gfn_t entry;
1284 
1285 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1286 	if (kvm_is_error_hva(addr))
1287 		return -1;
1288 
1289 	if (entry < nr_pages)
1290 		return 0;
1291 
1292 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1293 }
1294 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1295 
1296 static struct page *kvm_pfn_to_page(pfn_t pfn)
1297 {
1298 	if (is_error_pfn(pfn))
1299 		return KVM_ERR_PTR_BAD_PAGE;
1300 
1301 	if (kvm_is_mmio_pfn(pfn)) {
1302 		WARN_ON(1);
1303 		return KVM_ERR_PTR_BAD_PAGE;
1304 	}
1305 
1306 	return pfn_to_page(pfn);
1307 }
1308 
1309 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1310 {
1311 	pfn_t pfn;
1312 
1313 	pfn = gfn_to_pfn(kvm, gfn);
1314 
1315 	return kvm_pfn_to_page(pfn);
1316 }
1317 
1318 EXPORT_SYMBOL_GPL(gfn_to_page);
1319 
1320 void kvm_release_page_clean(struct page *page)
1321 {
1322 	WARN_ON(is_error_page(page));
1323 
1324 	kvm_release_pfn_clean(page_to_pfn(page));
1325 }
1326 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1327 
1328 void kvm_release_pfn_clean(pfn_t pfn)
1329 {
1330 	WARN_ON(is_error_pfn(pfn));
1331 
1332 	if (!kvm_is_mmio_pfn(pfn))
1333 		put_page(pfn_to_page(pfn));
1334 }
1335 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1336 
1337 void kvm_release_page_dirty(struct page *page)
1338 {
1339 	WARN_ON(is_error_page(page));
1340 
1341 	kvm_release_pfn_dirty(page_to_pfn(page));
1342 }
1343 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1344 
1345 void kvm_release_pfn_dirty(pfn_t pfn)
1346 {
1347 	kvm_set_pfn_dirty(pfn);
1348 	kvm_release_pfn_clean(pfn);
1349 }
1350 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1351 
1352 void kvm_set_page_dirty(struct page *page)
1353 {
1354 	kvm_set_pfn_dirty(page_to_pfn(page));
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1357 
1358 void kvm_set_pfn_dirty(pfn_t pfn)
1359 {
1360 	if (!kvm_is_mmio_pfn(pfn)) {
1361 		struct page *page = pfn_to_page(pfn);
1362 		if (!PageReserved(page))
1363 			SetPageDirty(page);
1364 	}
1365 }
1366 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1367 
1368 void kvm_set_pfn_accessed(pfn_t pfn)
1369 {
1370 	if (!kvm_is_mmio_pfn(pfn))
1371 		mark_page_accessed(pfn_to_page(pfn));
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1374 
1375 void kvm_get_pfn(pfn_t pfn)
1376 {
1377 	if (!kvm_is_mmio_pfn(pfn))
1378 		get_page(pfn_to_page(pfn));
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1381 
1382 static int next_segment(unsigned long len, int offset)
1383 {
1384 	if (len > PAGE_SIZE - offset)
1385 		return PAGE_SIZE - offset;
1386 	else
1387 		return len;
1388 }
1389 
1390 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1391 			int len)
1392 {
1393 	int r;
1394 	unsigned long addr;
1395 
1396 	addr = gfn_to_hva_read(kvm, gfn);
1397 	if (kvm_is_error_hva(addr))
1398 		return -EFAULT;
1399 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1400 	if (r)
1401 		return -EFAULT;
1402 	return 0;
1403 }
1404 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1405 
1406 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1407 {
1408 	gfn_t gfn = gpa >> PAGE_SHIFT;
1409 	int seg;
1410 	int offset = offset_in_page(gpa);
1411 	int ret;
1412 
1413 	while ((seg = next_segment(len, offset)) != 0) {
1414 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1415 		if (ret < 0)
1416 			return ret;
1417 		offset = 0;
1418 		len -= seg;
1419 		data += seg;
1420 		++gfn;
1421 	}
1422 	return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(kvm_read_guest);
1425 
1426 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1427 			  unsigned long len)
1428 {
1429 	int r;
1430 	unsigned long addr;
1431 	gfn_t gfn = gpa >> PAGE_SHIFT;
1432 	int offset = offset_in_page(gpa);
1433 
1434 	addr = gfn_to_hva_read(kvm, gfn);
1435 	if (kvm_is_error_hva(addr))
1436 		return -EFAULT;
1437 	pagefault_disable();
1438 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1439 	pagefault_enable();
1440 	if (r)
1441 		return -EFAULT;
1442 	return 0;
1443 }
1444 EXPORT_SYMBOL(kvm_read_guest_atomic);
1445 
1446 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1447 			 int offset, int len)
1448 {
1449 	int r;
1450 	unsigned long addr;
1451 
1452 	addr = gfn_to_hva(kvm, gfn);
1453 	if (kvm_is_error_hva(addr))
1454 		return -EFAULT;
1455 	r = __copy_to_user((void __user *)addr + offset, data, len);
1456 	if (r)
1457 		return -EFAULT;
1458 	mark_page_dirty(kvm, gfn);
1459 	return 0;
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1462 
1463 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1464 		    unsigned long len)
1465 {
1466 	gfn_t gfn = gpa >> PAGE_SHIFT;
1467 	int seg;
1468 	int offset = offset_in_page(gpa);
1469 	int ret;
1470 
1471 	while ((seg = next_segment(len, offset)) != 0) {
1472 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1473 		if (ret < 0)
1474 			return ret;
1475 		offset = 0;
1476 		len -= seg;
1477 		data += seg;
1478 		++gfn;
1479 	}
1480 	return 0;
1481 }
1482 
1483 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1484 			      gpa_t gpa)
1485 {
1486 	struct kvm_memslots *slots = kvm_memslots(kvm);
1487 	int offset = offset_in_page(gpa);
1488 	gfn_t gfn = gpa >> PAGE_SHIFT;
1489 
1490 	ghc->gpa = gpa;
1491 	ghc->generation = slots->generation;
1492 	ghc->memslot = gfn_to_memslot(kvm, gfn);
1493 	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1494 	if (!kvm_is_error_hva(ghc->hva))
1495 		ghc->hva += offset;
1496 	else
1497 		return -EFAULT;
1498 
1499 	return 0;
1500 }
1501 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1502 
1503 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1504 			   void *data, unsigned long len)
1505 {
1506 	struct kvm_memslots *slots = kvm_memslots(kvm);
1507 	int r;
1508 
1509 	if (slots->generation != ghc->generation)
1510 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1511 
1512 	if (kvm_is_error_hva(ghc->hva))
1513 		return -EFAULT;
1514 
1515 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1516 	if (r)
1517 		return -EFAULT;
1518 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1519 
1520 	return 0;
1521 }
1522 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1523 
1524 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1525 			   void *data, unsigned long len)
1526 {
1527 	struct kvm_memslots *slots = kvm_memslots(kvm);
1528 	int r;
1529 
1530 	if (slots->generation != ghc->generation)
1531 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1532 
1533 	if (kvm_is_error_hva(ghc->hva))
1534 		return -EFAULT;
1535 
1536 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1537 	if (r)
1538 		return -EFAULT;
1539 
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1543 
1544 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1545 {
1546 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1547 				    offset, len);
1548 }
1549 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1550 
1551 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1552 {
1553 	gfn_t gfn = gpa >> PAGE_SHIFT;
1554 	int seg;
1555 	int offset = offset_in_page(gpa);
1556 	int ret;
1557 
1558         while ((seg = next_segment(len, offset)) != 0) {
1559 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1560 		if (ret < 0)
1561 			return ret;
1562 		offset = 0;
1563 		len -= seg;
1564 		++gfn;
1565 	}
1566 	return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1569 
1570 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1571 			     gfn_t gfn)
1572 {
1573 	if (memslot && memslot->dirty_bitmap) {
1574 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1575 
1576 		/* TODO: introduce set_bit_le() and use it */
1577 		test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
1578 	}
1579 }
1580 
1581 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1582 {
1583 	struct kvm_memory_slot *memslot;
1584 
1585 	memslot = gfn_to_memslot(kvm, gfn);
1586 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1587 }
1588 
1589 /*
1590  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1591  */
1592 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1593 {
1594 	DEFINE_WAIT(wait);
1595 
1596 	for (;;) {
1597 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1598 
1599 		if (kvm_arch_vcpu_runnable(vcpu)) {
1600 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1601 			break;
1602 		}
1603 		if (kvm_cpu_has_pending_timer(vcpu))
1604 			break;
1605 		if (signal_pending(current))
1606 			break;
1607 
1608 		schedule();
1609 	}
1610 
1611 	finish_wait(&vcpu->wq, &wait);
1612 }
1613 
1614 #ifndef CONFIG_S390
1615 /*
1616  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1617  */
1618 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1619 {
1620 	int me;
1621 	int cpu = vcpu->cpu;
1622 	wait_queue_head_t *wqp;
1623 
1624 	wqp = kvm_arch_vcpu_wq(vcpu);
1625 	if (waitqueue_active(wqp)) {
1626 		wake_up_interruptible(wqp);
1627 		++vcpu->stat.halt_wakeup;
1628 	}
1629 
1630 	me = get_cpu();
1631 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1632 		if (kvm_arch_vcpu_should_kick(vcpu))
1633 			smp_send_reschedule(cpu);
1634 	put_cpu();
1635 }
1636 #endif /* !CONFIG_S390 */
1637 
1638 void kvm_resched(struct kvm_vcpu *vcpu)
1639 {
1640 	if (!need_resched())
1641 		return;
1642 	cond_resched();
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_resched);
1645 
1646 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1647 {
1648 	struct pid *pid;
1649 	struct task_struct *task = NULL;
1650 
1651 	rcu_read_lock();
1652 	pid = rcu_dereference(target->pid);
1653 	if (pid)
1654 		task = get_pid_task(target->pid, PIDTYPE_PID);
1655 	rcu_read_unlock();
1656 	if (!task)
1657 		return false;
1658 	if (task->flags & PF_VCPU) {
1659 		put_task_struct(task);
1660 		return false;
1661 	}
1662 	if (yield_to(task, 1)) {
1663 		put_task_struct(task);
1664 		return true;
1665 	}
1666 	put_task_struct(task);
1667 	return false;
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1670 
1671 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1672 /*
1673  * Helper that checks whether a VCPU is eligible for directed yield.
1674  * Most eligible candidate to yield is decided by following heuristics:
1675  *
1676  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1677  *  (preempted lock holder), indicated by @in_spin_loop.
1678  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1679  *
1680  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1681  *  chance last time (mostly it has become eligible now since we have probably
1682  *  yielded to lockholder in last iteration. This is done by toggling
1683  *  @dy_eligible each time a VCPU checked for eligibility.)
1684  *
1685  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1686  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1687  *  burning. Giving priority for a potential lock-holder increases lock
1688  *  progress.
1689  *
1690  *  Since algorithm is based on heuristics, accessing another VCPU data without
1691  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1692  *  and continue with next VCPU and so on.
1693  */
1694 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1695 {
1696 	bool eligible;
1697 
1698 	eligible = !vcpu->spin_loop.in_spin_loop ||
1699 			(vcpu->spin_loop.in_spin_loop &&
1700 			 vcpu->spin_loop.dy_eligible);
1701 
1702 	if (vcpu->spin_loop.in_spin_loop)
1703 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1704 
1705 	return eligible;
1706 }
1707 #endif
1708 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1709 {
1710 	struct kvm *kvm = me->kvm;
1711 	struct kvm_vcpu *vcpu;
1712 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1713 	int yielded = 0;
1714 	int pass;
1715 	int i;
1716 
1717 	kvm_vcpu_set_in_spin_loop(me, true);
1718 	/*
1719 	 * We boost the priority of a VCPU that is runnable but not
1720 	 * currently running, because it got preempted by something
1721 	 * else and called schedule in __vcpu_run.  Hopefully that
1722 	 * VCPU is holding the lock that we need and will release it.
1723 	 * We approximate round-robin by starting at the last boosted VCPU.
1724 	 */
1725 	for (pass = 0; pass < 2 && !yielded; pass++) {
1726 		kvm_for_each_vcpu(i, vcpu, kvm) {
1727 			if (!pass && i <= last_boosted_vcpu) {
1728 				i = last_boosted_vcpu;
1729 				continue;
1730 			} else if (pass && i > last_boosted_vcpu)
1731 				break;
1732 			if (vcpu == me)
1733 				continue;
1734 			if (waitqueue_active(&vcpu->wq))
1735 				continue;
1736 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1737 				continue;
1738 			if (kvm_vcpu_yield_to(vcpu)) {
1739 				kvm->last_boosted_vcpu = i;
1740 				yielded = 1;
1741 				break;
1742 			}
1743 		}
1744 	}
1745 	kvm_vcpu_set_in_spin_loop(me, false);
1746 
1747 	/* Ensure vcpu is not eligible during next spinloop */
1748 	kvm_vcpu_set_dy_eligible(me, false);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1751 
1752 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1753 {
1754 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1755 	struct page *page;
1756 
1757 	if (vmf->pgoff == 0)
1758 		page = virt_to_page(vcpu->run);
1759 #ifdef CONFIG_X86
1760 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1761 		page = virt_to_page(vcpu->arch.pio_data);
1762 #endif
1763 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1764 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1765 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1766 #endif
1767 	else
1768 		return kvm_arch_vcpu_fault(vcpu, vmf);
1769 	get_page(page);
1770 	vmf->page = page;
1771 	return 0;
1772 }
1773 
1774 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1775 	.fault = kvm_vcpu_fault,
1776 };
1777 
1778 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1779 {
1780 	vma->vm_ops = &kvm_vcpu_vm_ops;
1781 	return 0;
1782 }
1783 
1784 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1785 {
1786 	struct kvm_vcpu *vcpu = filp->private_data;
1787 
1788 	kvm_put_kvm(vcpu->kvm);
1789 	return 0;
1790 }
1791 
1792 static struct file_operations kvm_vcpu_fops = {
1793 	.release        = kvm_vcpu_release,
1794 	.unlocked_ioctl = kvm_vcpu_ioctl,
1795 #ifdef CONFIG_COMPAT
1796 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1797 #endif
1798 	.mmap           = kvm_vcpu_mmap,
1799 	.llseek		= noop_llseek,
1800 };
1801 
1802 /*
1803  * Allocates an inode for the vcpu.
1804  */
1805 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1806 {
1807 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1808 }
1809 
1810 /*
1811  * Creates some virtual cpus.  Good luck creating more than one.
1812  */
1813 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1814 {
1815 	int r;
1816 	struct kvm_vcpu *vcpu, *v;
1817 
1818 	vcpu = kvm_arch_vcpu_create(kvm, id);
1819 	if (IS_ERR(vcpu))
1820 		return PTR_ERR(vcpu);
1821 
1822 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1823 
1824 	r = kvm_arch_vcpu_setup(vcpu);
1825 	if (r)
1826 		goto vcpu_destroy;
1827 
1828 	mutex_lock(&kvm->lock);
1829 	if (!kvm_vcpu_compatible(vcpu)) {
1830 		r = -EINVAL;
1831 		goto unlock_vcpu_destroy;
1832 	}
1833 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1834 		r = -EINVAL;
1835 		goto unlock_vcpu_destroy;
1836 	}
1837 
1838 	kvm_for_each_vcpu(r, v, kvm)
1839 		if (v->vcpu_id == id) {
1840 			r = -EEXIST;
1841 			goto unlock_vcpu_destroy;
1842 		}
1843 
1844 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1845 
1846 	/* Now it's all set up, let userspace reach it */
1847 	kvm_get_kvm(kvm);
1848 	r = create_vcpu_fd(vcpu);
1849 	if (r < 0) {
1850 		kvm_put_kvm(kvm);
1851 		goto unlock_vcpu_destroy;
1852 	}
1853 
1854 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1855 	smp_wmb();
1856 	atomic_inc(&kvm->online_vcpus);
1857 
1858 	mutex_unlock(&kvm->lock);
1859 	return r;
1860 
1861 unlock_vcpu_destroy:
1862 	mutex_unlock(&kvm->lock);
1863 vcpu_destroy:
1864 	kvm_arch_vcpu_destroy(vcpu);
1865 	return r;
1866 }
1867 
1868 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1869 {
1870 	if (sigset) {
1871 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1872 		vcpu->sigset_active = 1;
1873 		vcpu->sigset = *sigset;
1874 	} else
1875 		vcpu->sigset_active = 0;
1876 	return 0;
1877 }
1878 
1879 static long kvm_vcpu_ioctl(struct file *filp,
1880 			   unsigned int ioctl, unsigned long arg)
1881 {
1882 	struct kvm_vcpu *vcpu = filp->private_data;
1883 	void __user *argp = (void __user *)arg;
1884 	int r;
1885 	struct kvm_fpu *fpu = NULL;
1886 	struct kvm_sregs *kvm_sregs = NULL;
1887 
1888 	if (vcpu->kvm->mm != current->mm)
1889 		return -EIO;
1890 
1891 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1892 	/*
1893 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1894 	 * so vcpu_load() would break it.
1895 	 */
1896 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1897 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1898 #endif
1899 
1900 
1901 	vcpu_load(vcpu);
1902 	switch (ioctl) {
1903 	case KVM_RUN:
1904 		r = -EINVAL;
1905 		if (arg)
1906 			goto out;
1907 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1908 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1909 		break;
1910 	case KVM_GET_REGS: {
1911 		struct kvm_regs *kvm_regs;
1912 
1913 		r = -ENOMEM;
1914 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1915 		if (!kvm_regs)
1916 			goto out;
1917 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1918 		if (r)
1919 			goto out_free1;
1920 		r = -EFAULT;
1921 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1922 			goto out_free1;
1923 		r = 0;
1924 out_free1:
1925 		kfree(kvm_regs);
1926 		break;
1927 	}
1928 	case KVM_SET_REGS: {
1929 		struct kvm_regs *kvm_regs;
1930 
1931 		r = -ENOMEM;
1932 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1933 		if (IS_ERR(kvm_regs)) {
1934 			r = PTR_ERR(kvm_regs);
1935 			goto out;
1936 		}
1937 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1938 		if (r)
1939 			goto out_free2;
1940 		r = 0;
1941 out_free2:
1942 		kfree(kvm_regs);
1943 		break;
1944 	}
1945 	case KVM_GET_SREGS: {
1946 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1947 		r = -ENOMEM;
1948 		if (!kvm_sregs)
1949 			goto out;
1950 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1951 		if (r)
1952 			goto out;
1953 		r = -EFAULT;
1954 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1955 			goto out;
1956 		r = 0;
1957 		break;
1958 	}
1959 	case KVM_SET_SREGS: {
1960 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1961 		if (IS_ERR(kvm_sregs)) {
1962 			r = PTR_ERR(kvm_sregs);
1963 			goto out;
1964 		}
1965 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1966 		if (r)
1967 			goto out;
1968 		r = 0;
1969 		break;
1970 	}
1971 	case KVM_GET_MP_STATE: {
1972 		struct kvm_mp_state mp_state;
1973 
1974 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1975 		if (r)
1976 			goto out;
1977 		r = -EFAULT;
1978 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1979 			goto out;
1980 		r = 0;
1981 		break;
1982 	}
1983 	case KVM_SET_MP_STATE: {
1984 		struct kvm_mp_state mp_state;
1985 
1986 		r = -EFAULT;
1987 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1988 			goto out;
1989 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1990 		if (r)
1991 			goto out;
1992 		r = 0;
1993 		break;
1994 	}
1995 	case KVM_TRANSLATE: {
1996 		struct kvm_translation tr;
1997 
1998 		r = -EFAULT;
1999 		if (copy_from_user(&tr, argp, sizeof tr))
2000 			goto out;
2001 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2002 		if (r)
2003 			goto out;
2004 		r = -EFAULT;
2005 		if (copy_to_user(argp, &tr, sizeof tr))
2006 			goto out;
2007 		r = 0;
2008 		break;
2009 	}
2010 	case KVM_SET_GUEST_DEBUG: {
2011 		struct kvm_guest_debug dbg;
2012 
2013 		r = -EFAULT;
2014 		if (copy_from_user(&dbg, argp, sizeof dbg))
2015 			goto out;
2016 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2017 		if (r)
2018 			goto out;
2019 		r = 0;
2020 		break;
2021 	}
2022 	case KVM_SET_SIGNAL_MASK: {
2023 		struct kvm_signal_mask __user *sigmask_arg = argp;
2024 		struct kvm_signal_mask kvm_sigmask;
2025 		sigset_t sigset, *p;
2026 
2027 		p = NULL;
2028 		if (argp) {
2029 			r = -EFAULT;
2030 			if (copy_from_user(&kvm_sigmask, argp,
2031 					   sizeof kvm_sigmask))
2032 				goto out;
2033 			r = -EINVAL;
2034 			if (kvm_sigmask.len != sizeof sigset)
2035 				goto out;
2036 			r = -EFAULT;
2037 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2038 					   sizeof sigset))
2039 				goto out;
2040 			p = &sigset;
2041 		}
2042 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2043 		break;
2044 	}
2045 	case KVM_GET_FPU: {
2046 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2047 		r = -ENOMEM;
2048 		if (!fpu)
2049 			goto out;
2050 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2051 		if (r)
2052 			goto out;
2053 		r = -EFAULT;
2054 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2055 			goto out;
2056 		r = 0;
2057 		break;
2058 	}
2059 	case KVM_SET_FPU: {
2060 		fpu = memdup_user(argp, sizeof(*fpu));
2061 		if (IS_ERR(fpu)) {
2062 			r = PTR_ERR(fpu);
2063 			goto out;
2064 		}
2065 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2066 		if (r)
2067 			goto out;
2068 		r = 0;
2069 		break;
2070 	}
2071 	default:
2072 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2073 	}
2074 out:
2075 	vcpu_put(vcpu);
2076 	kfree(fpu);
2077 	kfree(kvm_sregs);
2078 	return r;
2079 }
2080 
2081 #ifdef CONFIG_COMPAT
2082 static long kvm_vcpu_compat_ioctl(struct file *filp,
2083 				  unsigned int ioctl, unsigned long arg)
2084 {
2085 	struct kvm_vcpu *vcpu = filp->private_data;
2086 	void __user *argp = compat_ptr(arg);
2087 	int r;
2088 
2089 	if (vcpu->kvm->mm != current->mm)
2090 		return -EIO;
2091 
2092 	switch (ioctl) {
2093 	case KVM_SET_SIGNAL_MASK: {
2094 		struct kvm_signal_mask __user *sigmask_arg = argp;
2095 		struct kvm_signal_mask kvm_sigmask;
2096 		compat_sigset_t csigset;
2097 		sigset_t sigset;
2098 
2099 		if (argp) {
2100 			r = -EFAULT;
2101 			if (copy_from_user(&kvm_sigmask, argp,
2102 					   sizeof kvm_sigmask))
2103 				goto out;
2104 			r = -EINVAL;
2105 			if (kvm_sigmask.len != sizeof csigset)
2106 				goto out;
2107 			r = -EFAULT;
2108 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2109 					   sizeof csigset))
2110 				goto out;
2111 		}
2112 		sigset_from_compat(&sigset, &csigset);
2113 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2114 		break;
2115 	}
2116 	default:
2117 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2118 	}
2119 
2120 out:
2121 	return r;
2122 }
2123 #endif
2124 
2125 static long kvm_vm_ioctl(struct file *filp,
2126 			   unsigned int ioctl, unsigned long arg)
2127 {
2128 	struct kvm *kvm = filp->private_data;
2129 	void __user *argp = (void __user *)arg;
2130 	int r;
2131 
2132 	if (kvm->mm != current->mm)
2133 		return -EIO;
2134 	switch (ioctl) {
2135 	case KVM_CREATE_VCPU:
2136 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2137 		if (r < 0)
2138 			goto out;
2139 		break;
2140 	case KVM_SET_USER_MEMORY_REGION: {
2141 		struct kvm_userspace_memory_region kvm_userspace_mem;
2142 
2143 		r = -EFAULT;
2144 		if (copy_from_user(&kvm_userspace_mem, argp,
2145 						sizeof kvm_userspace_mem))
2146 			goto out;
2147 
2148 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2149 		if (r)
2150 			goto out;
2151 		break;
2152 	}
2153 	case KVM_GET_DIRTY_LOG: {
2154 		struct kvm_dirty_log log;
2155 
2156 		r = -EFAULT;
2157 		if (copy_from_user(&log, argp, sizeof log))
2158 			goto out;
2159 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2160 		if (r)
2161 			goto out;
2162 		break;
2163 	}
2164 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2165 	case KVM_REGISTER_COALESCED_MMIO: {
2166 		struct kvm_coalesced_mmio_zone zone;
2167 		r = -EFAULT;
2168 		if (copy_from_user(&zone, argp, sizeof zone))
2169 			goto out;
2170 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2171 		if (r)
2172 			goto out;
2173 		r = 0;
2174 		break;
2175 	}
2176 	case KVM_UNREGISTER_COALESCED_MMIO: {
2177 		struct kvm_coalesced_mmio_zone zone;
2178 		r = -EFAULT;
2179 		if (copy_from_user(&zone, argp, sizeof zone))
2180 			goto out;
2181 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2182 		if (r)
2183 			goto out;
2184 		r = 0;
2185 		break;
2186 	}
2187 #endif
2188 	case KVM_IRQFD: {
2189 		struct kvm_irqfd data;
2190 
2191 		r = -EFAULT;
2192 		if (copy_from_user(&data, argp, sizeof data))
2193 			goto out;
2194 		r = kvm_irqfd(kvm, &data);
2195 		break;
2196 	}
2197 	case KVM_IOEVENTFD: {
2198 		struct kvm_ioeventfd data;
2199 
2200 		r = -EFAULT;
2201 		if (copy_from_user(&data, argp, sizeof data))
2202 			goto out;
2203 		r = kvm_ioeventfd(kvm, &data);
2204 		break;
2205 	}
2206 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2207 	case KVM_SET_BOOT_CPU_ID:
2208 		r = 0;
2209 		mutex_lock(&kvm->lock);
2210 		if (atomic_read(&kvm->online_vcpus) != 0)
2211 			r = -EBUSY;
2212 		else
2213 			kvm->bsp_vcpu_id = arg;
2214 		mutex_unlock(&kvm->lock);
2215 		break;
2216 #endif
2217 #ifdef CONFIG_HAVE_KVM_MSI
2218 	case KVM_SIGNAL_MSI: {
2219 		struct kvm_msi msi;
2220 
2221 		r = -EFAULT;
2222 		if (copy_from_user(&msi, argp, sizeof msi))
2223 			goto out;
2224 		r = kvm_send_userspace_msi(kvm, &msi);
2225 		break;
2226 	}
2227 #endif
2228 #ifdef __KVM_HAVE_IRQ_LINE
2229 	case KVM_IRQ_LINE_STATUS:
2230 	case KVM_IRQ_LINE: {
2231 		struct kvm_irq_level irq_event;
2232 
2233 		r = -EFAULT;
2234 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2235 			goto out;
2236 
2237 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2238 		if (r)
2239 			goto out;
2240 
2241 		r = -EFAULT;
2242 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2243 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2244 				goto out;
2245 		}
2246 
2247 		r = 0;
2248 		break;
2249 	}
2250 #endif
2251 	default:
2252 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2253 		if (r == -ENOTTY)
2254 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2255 	}
2256 out:
2257 	return r;
2258 }
2259 
2260 #ifdef CONFIG_COMPAT
2261 struct compat_kvm_dirty_log {
2262 	__u32 slot;
2263 	__u32 padding1;
2264 	union {
2265 		compat_uptr_t dirty_bitmap; /* one bit per page */
2266 		__u64 padding2;
2267 	};
2268 };
2269 
2270 static long kvm_vm_compat_ioctl(struct file *filp,
2271 			   unsigned int ioctl, unsigned long arg)
2272 {
2273 	struct kvm *kvm = filp->private_data;
2274 	int r;
2275 
2276 	if (kvm->mm != current->mm)
2277 		return -EIO;
2278 	switch (ioctl) {
2279 	case KVM_GET_DIRTY_LOG: {
2280 		struct compat_kvm_dirty_log compat_log;
2281 		struct kvm_dirty_log log;
2282 
2283 		r = -EFAULT;
2284 		if (copy_from_user(&compat_log, (void __user *)arg,
2285 				   sizeof(compat_log)))
2286 			goto out;
2287 		log.slot	 = compat_log.slot;
2288 		log.padding1	 = compat_log.padding1;
2289 		log.padding2	 = compat_log.padding2;
2290 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2291 
2292 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2293 		if (r)
2294 			goto out;
2295 		break;
2296 	}
2297 	default:
2298 		r = kvm_vm_ioctl(filp, ioctl, arg);
2299 	}
2300 
2301 out:
2302 	return r;
2303 }
2304 #endif
2305 
2306 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2307 {
2308 	struct page *page[1];
2309 	unsigned long addr;
2310 	int npages;
2311 	gfn_t gfn = vmf->pgoff;
2312 	struct kvm *kvm = vma->vm_file->private_data;
2313 
2314 	addr = gfn_to_hva(kvm, gfn);
2315 	if (kvm_is_error_hva(addr))
2316 		return VM_FAULT_SIGBUS;
2317 
2318 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2319 				NULL);
2320 	if (unlikely(npages != 1))
2321 		return VM_FAULT_SIGBUS;
2322 
2323 	vmf->page = page[0];
2324 	return 0;
2325 }
2326 
2327 static const struct vm_operations_struct kvm_vm_vm_ops = {
2328 	.fault = kvm_vm_fault,
2329 };
2330 
2331 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2332 {
2333 	vma->vm_ops = &kvm_vm_vm_ops;
2334 	return 0;
2335 }
2336 
2337 static struct file_operations kvm_vm_fops = {
2338 	.release        = kvm_vm_release,
2339 	.unlocked_ioctl = kvm_vm_ioctl,
2340 #ifdef CONFIG_COMPAT
2341 	.compat_ioctl   = kvm_vm_compat_ioctl,
2342 #endif
2343 	.mmap           = kvm_vm_mmap,
2344 	.llseek		= noop_llseek,
2345 };
2346 
2347 static int kvm_dev_ioctl_create_vm(unsigned long type)
2348 {
2349 	int r;
2350 	struct kvm *kvm;
2351 
2352 	kvm = kvm_create_vm(type);
2353 	if (IS_ERR(kvm))
2354 		return PTR_ERR(kvm);
2355 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2356 	r = kvm_coalesced_mmio_init(kvm);
2357 	if (r < 0) {
2358 		kvm_put_kvm(kvm);
2359 		return r;
2360 	}
2361 #endif
2362 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2363 	if (r < 0)
2364 		kvm_put_kvm(kvm);
2365 
2366 	return r;
2367 }
2368 
2369 static long kvm_dev_ioctl_check_extension_generic(long arg)
2370 {
2371 	switch (arg) {
2372 	case KVM_CAP_USER_MEMORY:
2373 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2374 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2375 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2376 	case KVM_CAP_SET_BOOT_CPU_ID:
2377 #endif
2378 	case KVM_CAP_INTERNAL_ERROR_DATA:
2379 #ifdef CONFIG_HAVE_KVM_MSI
2380 	case KVM_CAP_SIGNAL_MSI:
2381 #endif
2382 		return 1;
2383 #ifdef KVM_CAP_IRQ_ROUTING
2384 	case KVM_CAP_IRQ_ROUTING:
2385 		return KVM_MAX_IRQ_ROUTES;
2386 #endif
2387 	default:
2388 		break;
2389 	}
2390 	return kvm_dev_ioctl_check_extension(arg);
2391 }
2392 
2393 static long kvm_dev_ioctl(struct file *filp,
2394 			  unsigned int ioctl, unsigned long arg)
2395 {
2396 	long r = -EINVAL;
2397 
2398 	switch (ioctl) {
2399 	case KVM_GET_API_VERSION:
2400 		r = -EINVAL;
2401 		if (arg)
2402 			goto out;
2403 		r = KVM_API_VERSION;
2404 		break;
2405 	case KVM_CREATE_VM:
2406 		r = kvm_dev_ioctl_create_vm(arg);
2407 		break;
2408 	case KVM_CHECK_EXTENSION:
2409 		r = kvm_dev_ioctl_check_extension_generic(arg);
2410 		break;
2411 	case KVM_GET_VCPU_MMAP_SIZE:
2412 		r = -EINVAL;
2413 		if (arg)
2414 			goto out;
2415 		r = PAGE_SIZE;     /* struct kvm_run */
2416 #ifdef CONFIG_X86
2417 		r += PAGE_SIZE;    /* pio data page */
2418 #endif
2419 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2420 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2421 #endif
2422 		break;
2423 	case KVM_TRACE_ENABLE:
2424 	case KVM_TRACE_PAUSE:
2425 	case KVM_TRACE_DISABLE:
2426 		r = -EOPNOTSUPP;
2427 		break;
2428 	default:
2429 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2430 	}
2431 out:
2432 	return r;
2433 }
2434 
2435 static struct file_operations kvm_chardev_ops = {
2436 	.unlocked_ioctl = kvm_dev_ioctl,
2437 	.compat_ioctl   = kvm_dev_ioctl,
2438 	.llseek		= noop_llseek,
2439 };
2440 
2441 static struct miscdevice kvm_dev = {
2442 	KVM_MINOR,
2443 	"kvm",
2444 	&kvm_chardev_ops,
2445 };
2446 
2447 static void hardware_enable_nolock(void *junk)
2448 {
2449 	int cpu = raw_smp_processor_id();
2450 	int r;
2451 
2452 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2453 		return;
2454 
2455 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2456 
2457 	r = kvm_arch_hardware_enable(NULL);
2458 
2459 	if (r) {
2460 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2461 		atomic_inc(&hardware_enable_failed);
2462 		printk(KERN_INFO "kvm: enabling virtualization on "
2463 				 "CPU%d failed\n", cpu);
2464 	}
2465 }
2466 
2467 static void hardware_enable(void *junk)
2468 {
2469 	raw_spin_lock(&kvm_lock);
2470 	hardware_enable_nolock(junk);
2471 	raw_spin_unlock(&kvm_lock);
2472 }
2473 
2474 static void hardware_disable_nolock(void *junk)
2475 {
2476 	int cpu = raw_smp_processor_id();
2477 
2478 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2479 		return;
2480 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2481 	kvm_arch_hardware_disable(NULL);
2482 }
2483 
2484 static void hardware_disable(void *junk)
2485 {
2486 	raw_spin_lock(&kvm_lock);
2487 	hardware_disable_nolock(junk);
2488 	raw_spin_unlock(&kvm_lock);
2489 }
2490 
2491 static void hardware_disable_all_nolock(void)
2492 {
2493 	BUG_ON(!kvm_usage_count);
2494 
2495 	kvm_usage_count--;
2496 	if (!kvm_usage_count)
2497 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2498 }
2499 
2500 static void hardware_disable_all(void)
2501 {
2502 	raw_spin_lock(&kvm_lock);
2503 	hardware_disable_all_nolock();
2504 	raw_spin_unlock(&kvm_lock);
2505 }
2506 
2507 static int hardware_enable_all(void)
2508 {
2509 	int r = 0;
2510 
2511 	raw_spin_lock(&kvm_lock);
2512 
2513 	kvm_usage_count++;
2514 	if (kvm_usage_count == 1) {
2515 		atomic_set(&hardware_enable_failed, 0);
2516 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2517 
2518 		if (atomic_read(&hardware_enable_failed)) {
2519 			hardware_disable_all_nolock();
2520 			r = -EBUSY;
2521 		}
2522 	}
2523 
2524 	raw_spin_unlock(&kvm_lock);
2525 
2526 	return r;
2527 }
2528 
2529 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2530 			   void *v)
2531 {
2532 	int cpu = (long)v;
2533 
2534 	if (!kvm_usage_count)
2535 		return NOTIFY_OK;
2536 
2537 	val &= ~CPU_TASKS_FROZEN;
2538 	switch (val) {
2539 	case CPU_DYING:
2540 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2541 		       cpu);
2542 		hardware_disable(NULL);
2543 		break;
2544 	case CPU_STARTING:
2545 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2546 		       cpu);
2547 		hardware_enable(NULL);
2548 		break;
2549 	}
2550 	return NOTIFY_OK;
2551 }
2552 
2553 
2554 asmlinkage void kvm_spurious_fault(void)
2555 {
2556 	/* Fault while not rebooting.  We want the trace. */
2557 	BUG();
2558 }
2559 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2560 
2561 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2562 		      void *v)
2563 {
2564 	/*
2565 	 * Some (well, at least mine) BIOSes hang on reboot if
2566 	 * in vmx root mode.
2567 	 *
2568 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2569 	 */
2570 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2571 	kvm_rebooting = true;
2572 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2573 	return NOTIFY_OK;
2574 }
2575 
2576 static struct notifier_block kvm_reboot_notifier = {
2577 	.notifier_call = kvm_reboot,
2578 	.priority = 0,
2579 };
2580 
2581 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2582 {
2583 	int i;
2584 
2585 	for (i = 0; i < bus->dev_count; i++) {
2586 		struct kvm_io_device *pos = bus->range[i].dev;
2587 
2588 		kvm_iodevice_destructor(pos);
2589 	}
2590 	kfree(bus);
2591 }
2592 
2593 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2594 {
2595 	const struct kvm_io_range *r1 = p1;
2596 	const struct kvm_io_range *r2 = p2;
2597 
2598 	if (r1->addr < r2->addr)
2599 		return -1;
2600 	if (r1->addr + r1->len > r2->addr + r2->len)
2601 		return 1;
2602 	return 0;
2603 }
2604 
2605 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2606 			  gpa_t addr, int len)
2607 {
2608 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2609 		.addr = addr,
2610 		.len = len,
2611 		.dev = dev,
2612 	};
2613 
2614 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2615 		kvm_io_bus_sort_cmp, NULL);
2616 
2617 	return 0;
2618 }
2619 
2620 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2621 			     gpa_t addr, int len)
2622 {
2623 	struct kvm_io_range *range, key;
2624 	int off;
2625 
2626 	key = (struct kvm_io_range) {
2627 		.addr = addr,
2628 		.len = len,
2629 	};
2630 
2631 	range = bsearch(&key, bus->range, bus->dev_count,
2632 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2633 	if (range == NULL)
2634 		return -ENOENT;
2635 
2636 	off = range - bus->range;
2637 
2638 	while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2639 		off--;
2640 
2641 	return off;
2642 }
2643 
2644 /* kvm_io_bus_write - called under kvm->slots_lock */
2645 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2646 		     int len, const void *val)
2647 {
2648 	int idx;
2649 	struct kvm_io_bus *bus;
2650 	struct kvm_io_range range;
2651 
2652 	range = (struct kvm_io_range) {
2653 		.addr = addr,
2654 		.len = len,
2655 	};
2656 
2657 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2658 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2659 	if (idx < 0)
2660 		return -EOPNOTSUPP;
2661 
2662 	while (idx < bus->dev_count &&
2663 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2664 		if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2665 			return 0;
2666 		idx++;
2667 	}
2668 
2669 	return -EOPNOTSUPP;
2670 }
2671 
2672 /* kvm_io_bus_read - called under kvm->slots_lock */
2673 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2674 		    int len, void *val)
2675 {
2676 	int idx;
2677 	struct kvm_io_bus *bus;
2678 	struct kvm_io_range range;
2679 
2680 	range = (struct kvm_io_range) {
2681 		.addr = addr,
2682 		.len = len,
2683 	};
2684 
2685 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2686 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2687 	if (idx < 0)
2688 		return -EOPNOTSUPP;
2689 
2690 	while (idx < bus->dev_count &&
2691 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2692 		if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2693 			return 0;
2694 		idx++;
2695 	}
2696 
2697 	return -EOPNOTSUPP;
2698 }
2699 
2700 /* Caller must hold slots_lock. */
2701 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2702 			    int len, struct kvm_io_device *dev)
2703 {
2704 	struct kvm_io_bus *new_bus, *bus;
2705 
2706 	bus = kvm->buses[bus_idx];
2707 	if (bus->dev_count > NR_IOBUS_DEVS - 1)
2708 		return -ENOSPC;
2709 
2710 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2711 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2712 	if (!new_bus)
2713 		return -ENOMEM;
2714 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2715 	       sizeof(struct kvm_io_range)));
2716 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2717 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2718 	synchronize_srcu_expedited(&kvm->srcu);
2719 	kfree(bus);
2720 
2721 	return 0;
2722 }
2723 
2724 /* Caller must hold slots_lock. */
2725 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2726 			      struct kvm_io_device *dev)
2727 {
2728 	int i, r;
2729 	struct kvm_io_bus *new_bus, *bus;
2730 
2731 	bus = kvm->buses[bus_idx];
2732 	r = -ENOENT;
2733 	for (i = 0; i < bus->dev_count; i++)
2734 		if (bus->range[i].dev == dev) {
2735 			r = 0;
2736 			break;
2737 		}
2738 
2739 	if (r)
2740 		return r;
2741 
2742 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2743 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2744 	if (!new_bus)
2745 		return -ENOMEM;
2746 
2747 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2748 	new_bus->dev_count--;
2749 	memcpy(new_bus->range + i, bus->range + i + 1,
2750 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2751 
2752 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2753 	synchronize_srcu_expedited(&kvm->srcu);
2754 	kfree(bus);
2755 	return r;
2756 }
2757 
2758 static struct notifier_block kvm_cpu_notifier = {
2759 	.notifier_call = kvm_cpu_hotplug,
2760 };
2761 
2762 static int vm_stat_get(void *_offset, u64 *val)
2763 {
2764 	unsigned offset = (long)_offset;
2765 	struct kvm *kvm;
2766 
2767 	*val = 0;
2768 	raw_spin_lock(&kvm_lock);
2769 	list_for_each_entry(kvm, &vm_list, vm_list)
2770 		*val += *(u32 *)((void *)kvm + offset);
2771 	raw_spin_unlock(&kvm_lock);
2772 	return 0;
2773 }
2774 
2775 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2776 
2777 static int vcpu_stat_get(void *_offset, u64 *val)
2778 {
2779 	unsigned offset = (long)_offset;
2780 	struct kvm *kvm;
2781 	struct kvm_vcpu *vcpu;
2782 	int i;
2783 
2784 	*val = 0;
2785 	raw_spin_lock(&kvm_lock);
2786 	list_for_each_entry(kvm, &vm_list, vm_list)
2787 		kvm_for_each_vcpu(i, vcpu, kvm)
2788 			*val += *(u32 *)((void *)vcpu + offset);
2789 
2790 	raw_spin_unlock(&kvm_lock);
2791 	return 0;
2792 }
2793 
2794 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2795 
2796 static const struct file_operations *stat_fops[] = {
2797 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2798 	[KVM_STAT_VM]   = &vm_stat_fops,
2799 };
2800 
2801 static int kvm_init_debug(void)
2802 {
2803 	int r = -EFAULT;
2804 	struct kvm_stats_debugfs_item *p;
2805 
2806 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2807 	if (kvm_debugfs_dir == NULL)
2808 		goto out;
2809 
2810 	for (p = debugfs_entries; p->name; ++p) {
2811 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2812 						(void *)(long)p->offset,
2813 						stat_fops[p->kind]);
2814 		if (p->dentry == NULL)
2815 			goto out_dir;
2816 	}
2817 
2818 	return 0;
2819 
2820 out_dir:
2821 	debugfs_remove_recursive(kvm_debugfs_dir);
2822 out:
2823 	return r;
2824 }
2825 
2826 static void kvm_exit_debug(void)
2827 {
2828 	struct kvm_stats_debugfs_item *p;
2829 
2830 	for (p = debugfs_entries; p->name; ++p)
2831 		debugfs_remove(p->dentry);
2832 	debugfs_remove(kvm_debugfs_dir);
2833 }
2834 
2835 static int kvm_suspend(void)
2836 {
2837 	if (kvm_usage_count)
2838 		hardware_disable_nolock(NULL);
2839 	return 0;
2840 }
2841 
2842 static void kvm_resume(void)
2843 {
2844 	if (kvm_usage_count) {
2845 		WARN_ON(raw_spin_is_locked(&kvm_lock));
2846 		hardware_enable_nolock(NULL);
2847 	}
2848 }
2849 
2850 static struct syscore_ops kvm_syscore_ops = {
2851 	.suspend = kvm_suspend,
2852 	.resume = kvm_resume,
2853 };
2854 
2855 static inline
2856 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2857 {
2858 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2859 }
2860 
2861 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2862 {
2863 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2864 
2865 	kvm_arch_vcpu_load(vcpu, cpu);
2866 }
2867 
2868 static void kvm_sched_out(struct preempt_notifier *pn,
2869 			  struct task_struct *next)
2870 {
2871 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2872 
2873 	kvm_arch_vcpu_put(vcpu);
2874 }
2875 
2876 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2877 		  struct module *module)
2878 {
2879 	int r;
2880 	int cpu;
2881 
2882 	r = kvm_arch_init(opaque);
2883 	if (r)
2884 		goto out_fail;
2885 
2886 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2887 		r = -ENOMEM;
2888 		goto out_free_0;
2889 	}
2890 
2891 	r = kvm_arch_hardware_setup();
2892 	if (r < 0)
2893 		goto out_free_0a;
2894 
2895 	for_each_online_cpu(cpu) {
2896 		smp_call_function_single(cpu,
2897 				kvm_arch_check_processor_compat,
2898 				&r, 1);
2899 		if (r < 0)
2900 			goto out_free_1;
2901 	}
2902 
2903 	r = register_cpu_notifier(&kvm_cpu_notifier);
2904 	if (r)
2905 		goto out_free_2;
2906 	register_reboot_notifier(&kvm_reboot_notifier);
2907 
2908 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2909 	if (!vcpu_align)
2910 		vcpu_align = __alignof__(struct kvm_vcpu);
2911 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2912 					   0, NULL);
2913 	if (!kvm_vcpu_cache) {
2914 		r = -ENOMEM;
2915 		goto out_free_3;
2916 	}
2917 
2918 	r = kvm_async_pf_init();
2919 	if (r)
2920 		goto out_free;
2921 
2922 	kvm_chardev_ops.owner = module;
2923 	kvm_vm_fops.owner = module;
2924 	kvm_vcpu_fops.owner = module;
2925 
2926 	r = misc_register(&kvm_dev);
2927 	if (r) {
2928 		printk(KERN_ERR "kvm: misc device register failed\n");
2929 		goto out_unreg;
2930 	}
2931 
2932 	register_syscore_ops(&kvm_syscore_ops);
2933 
2934 	kvm_preempt_ops.sched_in = kvm_sched_in;
2935 	kvm_preempt_ops.sched_out = kvm_sched_out;
2936 
2937 	r = kvm_init_debug();
2938 	if (r) {
2939 		printk(KERN_ERR "kvm: create debugfs files failed\n");
2940 		goto out_undebugfs;
2941 	}
2942 
2943 	return 0;
2944 
2945 out_undebugfs:
2946 	unregister_syscore_ops(&kvm_syscore_ops);
2947 out_unreg:
2948 	kvm_async_pf_deinit();
2949 out_free:
2950 	kmem_cache_destroy(kvm_vcpu_cache);
2951 out_free_3:
2952 	unregister_reboot_notifier(&kvm_reboot_notifier);
2953 	unregister_cpu_notifier(&kvm_cpu_notifier);
2954 out_free_2:
2955 out_free_1:
2956 	kvm_arch_hardware_unsetup();
2957 out_free_0a:
2958 	free_cpumask_var(cpus_hardware_enabled);
2959 out_free_0:
2960 	kvm_arch_exit();
2961 out_fail:
2962 	return r;
2963 }
2964 EXPORT_SYMBOL_GPL(kvm_init);
2965 
2966 void kvm_exit(void)
2967 {
2968 	kvm_exit_debug();
2969 	misc_deregister(&kvm_dev);
2970 	kmem_cache_destroy(kvm_vcpu_cache);
2971 	kvm_async_pf_deinit();
2972 	unregister_syscore_ops(&kvm_syscore_ops);
2973 	unregister_reboot_notifier(&kvm_reboot_notifier);
2974 	unregister_cpu_notifier(&kvm_cpu_notifier);
2975 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2976 	kvm_arch_hardware_unsetup();
2977 	kvm_arch_exit();
2978 	free_cpumask_var(cpus_hardware_enabled);
2979 }
2980 EXPORT_SYMBOL_GPL(kvm_exit);
2981