1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_RAW_SPINLOCK(kvm_lock); 74 LIST_HEAD(vm_list); 75 76 static cpumask_var_t cpus_hardware_enabled; 77 static int kvm_usage_count = 0; 78 static atomic_t hardware_enable_failed; 79 80 struct kmem_cache *kvm_vcpu_cache; 81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 82 83 static __read_mostly struct preempt_ops kvm_preempt_ops; 84 85 struct dentry *kvm_debugfs_dir; 86 87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 88 unsigned long arg); 89 #ifdef CONFIG_COMPAT 90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 91 unsigned long arg); 92 #endif 93 static int hardware_enable_all(void); 94 static void hardware_disable_all(void); 95 96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 97 98 bool kvm_rebooting; 99 EXPORT_SYMBOL_GPL(kvm_rebooting); 100 101 static bool largepages_enabled = true; 102 103 bool kvm_is_mmio_pfn(pfn_t pfn) 104 { 105 if (pfn_valid(pfn)) { 106 int reserved; 107 struct page *tail = pfn_to_page(pfn); 108 struct page *head = compound_trans_head(tail); 109 reserved = PageReserved(head); 110 if (head != tail) { 111 /* 112 * "head" is not a dangling pointer 113 * (compound_trans_head takes care of that) 114 * but the hugepage may have been splitted 115 * from under us (and we may not hold a 116 * reference count on the head page so it can 117 * be reused before we run PageReferenced), so 118 * we've to check PageTail before returning 119 * what we just read. 120 */ 121 smp_rmb(); 122 if (PageTail(tail)) 123 return reserved; 124 } 125 return PageReserved(tail); 126 } 127 128 return true; 129 } 130 131 /* 132 * Switches to specified vcpu, until a matching vcpu_put() 133 */ 134 void vcpu_load(struct kvm_vcpu *vcpu) 135 { 136 int cpu; 137 138 mutex_lock(&vcpu->mutex); 139 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 140 /* The thread running this VCPU changed. */ 141 struct pid *oldpid = vcpu->pid; 142 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 143 rcu_assign_pointer(vcpu->pid, newpid); 144 synchronize_rcu(); 145 put_pid(oldpid); 146 } 147 cpu = get_cpu(); 148 preempt_notifier_register(&vcpu->preempt_notifier); 149 kvm_arch_vcpu_load(vcpu, cpu); 150 put_cpu(); 151 } 152 153 void vcpu_put(struct kvm_vcpu *vcpu) 154 { 155 preempt_disable(); 156 kvm_arch_vcpu_put(vcpu); 157 preempt_notifier_unregister(&vcpu->preempt_notifier); 158 preempt_enable(); 159 mutex_unlock(&vcpu->mutex); 160 } 161 162 static void ack_flush(void *_completed) 163 { 164 } 165 166 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 167 { 168 int i, cpu, me; 169 cpumask_var_t cpus; 170 bool called = true; 171 struct kvm_vcpu *vcpu; 172 173 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 174 175 me = get_cpu(); 176 kvm_for_each_vcpu(i, vcpu, kvm) { 177 kvm_make_request(req, vcpu); 178 cpu = vcpu->cpu; 179 180 /* Set ->requests bit before we read ->mode */ 181 smp_mb(); 182 183 if (cpus != NULL && cpu != -1 && cpu != me && 184 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 185 cpumask_set_cpu(cpu, cpus); 186 } 187 if (unlikely(cpus == NULL)) 188 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 189 else if (!cpumask_empty(cpus)) 190 smp_call_function_many(cpus, ack_flush, NULL, 1); 191 else 192 called = false; 193 put_cpu(); 194 free_cpumask_var(cpus); 195 return called; 196 } 197 198 void kvm_flush_remote_tlbs(struct kvm *kvm) 199 { 200 long dirty_count = kvm->tlbs_dirty; 201 202 smp_mb(); 203 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 204 ++kvm->stat.remote_tlb_flush; 205 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 206 } 207 208 void kvm_reload_remote_mmus(struct kvm *kvm) 209 { 210 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 211 } 212 213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 214 { 215 struct page *page; 216 int r; 217 218 mutex_init(&vcpu->mutex); 219 vcpu->cpu = -1; 220 vcpu->kvm = kvm; 221 vcpu->vcpu_id = id; 222 vcpu->pid = NULL; 223 init_waitqueue_head(&vcpu->wq); 224 kvm_async_pf_vcpu_init(vcpu); 225 226 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 227 if (!page) { 228 r = -ENOMEM; 229 goto fail; 230 } 231 vcpu->run = page_address(page); 232 233 kvm_vcpu_set_in_spin_loop(vcpu, false); 234 kvm_vcpu_set_dy_eligible(vcpu, false); 235 236 r = kvm_arch_vcpu_init(vcpu); 237 if (r < 0) 238 goto fail_free_run; 239 return 0; 240 241 fail_free_run: 242 free_page((unsigned long)vcpu->run); 243 fail: 244 return r; 245 } 246 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 247 248 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 249 { 250 put_pid(vcpu->pid); 251 kvm_arch_vcpu_uninit(vcpu); 252 free_page((unsigned long)vcpu->run); 253 } 254 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 255 256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 257 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 258 { 259 return container_of(mn, struct kvm, mmu_notifier); 260 } 261 262 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 263 struct mm_struct *mm, 264 unsigned long address) 265 { 266 struct kvm *kvm = mmu_notifier_to_kvm(mn); 267 int need_tlb_flush, idx; 268 269 /* 270 * When ->invalidate_page runs, the linux pte has been zapped 271 * already but the page is still allocated until 272 * ->invalidate_page returns. So if we increase the sequence 273 * here the kvm page fault will notice if the spte can't be 274 * established because the page is going to be freed. If 275 * instead the kvm page fault establishes the spte before 276 * ->invalidate_page runs, kvm_unmap_hva will release it 277 * before returning. 278 * 279 * The sequence increase only need to be seen at spin_unlock 280 * time, and not at spin_lock time. 281 * 282 * Increasing the sequence after the spin_unlock would be 283 * unsafe because the kvm page fault could then establish the 284 * pte after kvm_unmap_hva returned, without noticing the page 285 * is going to be freed. 286 */ 287 idx = srcu_read_lock(&kvm->srcu); 288 spin_lock(&kvm->mmu_lock); 289 290 kvm->mmu_notifier_seq++; 291 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 292 /* we've to flush the tlb before the pages can be freed */ 293 if (need_tlb_flush) 294 kvm_flush_remote_tlbs(kvm); 295 296 spin_unlock(&kvm->mmu_lock); 297 srcu_read_unlock(&kvm->srcu, idx); 298 } 299 300 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 301 struct mm_struct *mm, 302 unsigned long address, 303 pte_t pte) 304 { 305 struct kvm *kvm = mmu_notifier_to_kvm(mn); 306 int idx; 307 308 idx = srcu_read_lock(&kvm->srcu); 309 spin_lock(&kvm->mmu_lock); 310 kvm->mmu_notifier_seq++; 311 kvm_set_spte_hva(kvm, address, pte); 312 spin_unlock(&kvm->mmu_lock); 313 srcu_read_unlock(&kvm->srcu, idx); 314 } 315 316 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 317 struct mm_struct *mm, 318 unsigned long start, 319 unsigned long end) 320 { 321 struct kvm *kvm = mmu_notifier_to_kvm(mn); 322 int need_tlb_flush = 0, idx; 323 324 idx = srcu_read_lock(&kvm->srcu); 325 spin_lock(&kvm->mmu_lock); 326 /* 327 * The count increase must become visible at unlock time as no 328 * spte can be established without taking the mmu_lock and 329 * count is also read inside the mmu_lock critical section. 330 */ 331 kvm->mmu_notifier_count++; 332 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 333 need_tlb_flush |= kvm->tlbs_dirty; 334 /* we've to flush the tlb before the pages can be freed */ 335 if (need_tlb_flush) 336 kvm_flush_remote_tlbs(kvm); 337 338 spin_unlock(&kvm->mmu_lock); 339 srcu_read_unlock(&kvm->srcu, idx); 340 } 341 342 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 343 struct mm_struct *mm, 344 unsigned long start, 345 unsigned long end) 346 { 347 struct kvm *kvm = mmu_notifier_to_kvm(mn); 348 349 spin_lock(&kvm->mmu_lock); 350 /* 351 * This sequence increase will notify the kvm page fault that 352 * the page that is going to be mapped in the spte could have 353 * been freed. 354 */ 355 kvm->mmu_notifier_seq++; 356 smp_wmb(); 357 /* 358 * The above sequence increase must be visible before the 359 * below count decrease, which is ensured by the smp_wmb above 360 * in conjunction with the smp_rmb in mmu_notifier_retry(). 361 */ 362 kvm->mmu_notifier_count--; 363 spin_unlock(&kvm->mmu_lock); 364 365 BUG_ON(kvm->mmu_notifier_count < 0); 366 } 367 368 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 369 struct mm_struct *mm, 370 unsigned long address) 371 { 372 struct kvm *kvm = mmu_notifier_to_kvm(mn); 373 int young, idx; 374 375 idx = srcu_read_lock(&kvm->srcu); 376 spin_lock(&kvm->mmu_lock); 377 378 young = kvm_age_hva(kvm, address); 379 if (young) 380 kvm_flush_remote_tlbs(kvm); 381 382 spin_unlock(&kvm->mmu_lock); 383 srcu_read_unlock(&kvm->srcu, idx); 384 385 return young; 386 } 387 388 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 389 struct mm_struct *mm, 390 unsigned long address) 391 { 392 struct kvm *kvm = mmu_notifier_to_kvm(mn); 393 int young, idx; 394 395 idx = srcu_read_lock(&kvm->srcu); 396 spin_lock(&kvm->mmu_lock); 397 young = kvm_test_age_hva(kvm, address); 398 spin_unlock(&kvm->mmu_lock); 399 srcu_read_unlock(&kvm->srcu, idx); 400 401 return young; 402 } 403 404 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 405 struct mm_struct *mm) 406 { 407 struct kvm *kvm = mmu_notifier_to_kvm(mn); 408 int idx; 409 410 idx = srcu_read_lock(&kvm->srcu); 411 kvm_arch_flush_shadow_all(kvm); 412 srcu_read_unlock(&kvm->srcu, idx); 413 } 414 415 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 416 .invalidate_page = kvm_mmu_notifier_invalidate_page, 417 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 418 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 419 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 420 .test_young = kvm_mmu_notifier_test_young, 421 .change_pte = kvm_mmu_notifier_change_pte, 422 .release = kvm_mmu_notifier_release, 423 }; 424 425 static int kvm_init_mmu_notifier(struct kvm *kvm) 426 { 427 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 428 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 429 } 430 431 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 432 433 static int kvm_init_mmu_notifier(struct kvm *kvm) 434 { 435 return 0; 436 } 437 438 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 439 440 static void kvm_init_memslots_id(struct kvm *kvm) 441 { 442 int i; 443 struct kvm_memslots *slots = kvm->memslots; 444 445 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 446 slots->id_to_index[i] = slots->memslots[i].id = i; 447 } 448 449 static struct kvm *kvm_create_vm(unsigned long type) 450 { 451 int r, i; 452 struct kvm *kvm = kvm_arch_alloc_vm(); 453 454 if (!kvm) 455 return ERR_PTR(-ENOMEM); 456 457 r = kvm_arch_init_vm(kvm, type); 458 if (r) 459 goto out_err_nodisable; 460 461 r = hardware_enable_all(); 462 if (r) 463 goto out_err_nodisable; 464 465 #ifdef CONFIG_HAVE_KVM_IRQCHIP 466 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 467 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 468 #endif 469 470 r = -ENOMEM; 471 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 472 if (!kvm->memslots) 473 goto out_err_nosrcu; 474 kvm_init_memslots_id(kvm); 475 if (init_srcu_struct(&kvm->srcu)) 476 goto out_err_nosrcu; 477 for (i = 0; i < KVM_NR_BUSES; i++) { 478 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 479 GFP_KERNEL); 480 if (!kvm->buses[i]) 481 goto out_err; 482 } 483 484 spin_lock_init(&kvm->mmu_lock); 485 kvm->mm = current->mm; 486 atomic_inc(&kvm->mm->mm_count); 487 kvm_eventfd_init(kvm); 488 mutex_init(&kvm->lock); 489 mutex_init(&kvm->irq_lock); 490 mutex_init(&kvm->slots_lock); 491 atomic_set(&kvm->users_count, 1); 492 493 r = kvm_init_mmu_notifier(kvm); 494 if (r) 495 goto out_err; 496 497 raw_spin_lock(&kvm_lock); 498 list_add(&kvm->vm_list, &vm_list); 499 raw_spin_unlock(&kvm_lock); 500 501 return kvm; 502 503 out_err: 504 cleanup_srcu_struct(&kvm->srcu); 505 out_err_nosrcu: 506 hardware_disable_all(); 507 out_err_nodisable: 508 for (i = 0; i < KVM_NR_BUSES; i++) 509 kfree(kvm->buses[i]); 510 kfree(kvm->memslots); 511 kvm_arch_free_vm(kvm); 512 return ERR_PTR(r); 513 } 514 515 /* 516 * Avoid using vmalloc for a small buffer. 517 * Should not be used when the size is statically known. 518 */ 519 void *kvm_kvzalloc(unsigned long size) 520 { 521 if (size > PAGE_SIZE) 522 return vzalloc(size); 523 else 524 return kzalloc(size, GFP_KERNEL); 525 } 526 527 void kvm_kvfree(const void *addr) 528 { 529 if (is_vmalloc_addr(addr)) 530 vfree(addr); 531 else 532 kfree(addr); 533 } 534 535 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 536 { 537 if (!memslot->dirty_bitmap) 538 return; 539 540 kvm_kvfree(memslot->dirty_bitmap); 541 memslot->dirty_bitmap = NULL; 542 } 543 544 /* 545 * Free any memory in @free but not in @dont. 546 */ 547 static void kvm_free_physmem_slot(struct kvm_memory_slot *free, 548 struct kvm_memory_slot *dont) 549 { 550 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 551 kvm_destroy_dirty_bitmap(free); 552 553 kvm_arch_free_memslot(free, dont); 554 555 free->npages = 0; 556 } 557 558 void kvm_free_physmem(struct kvm *kvm) 559 { 560 struct kvm_memslots *slots = kvm->memslots; 561 struct kvm_memory_slot *memslot; 562 563 kvm_for_each_memslot(memslot, slots) 564 kvm_free_physmem_slot(memslot, NULL); 565 566 kfree(kvm->memslots); 567 } 568 569 static void kvm_destroy_vm(struct kvm *kvm) 570 { 571 int i; 572 struct mm_struct *mm = kvm->mm; 573 574 kvm_arch_sync_events(kvm); 575 raw_spin_lock(&kvm_lock); 576 list_del(&kvm->vm_list); 577 raw_spin_unlock(&kvm_lock); 578 kvm_free_irq_routing(kvm); 579 for (i = 0; i < KVM_NR_BUSES; i++) 580 kvm_io_bus_destroy(kvm->buses[i]); 581 kvm_coalesced_mmio_free(kvm); 582 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 583 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 584 #else 585 kvm_arch_flush_shadow_all(kvm); 586 #endif 587 kvm_arch_destroy_vm(kvm); 588 kvm_free_physmem(kvm); 589 cleanup_srcu_struct(&kvm->srcu); 590 kvm_arch_free_vm(kvm); 591 hardware_disable_all(); 592 mmdrop(mm); 593 } 594 595 void kvm_get_kvm(struct kvm *kvm) 596 { 597 atomic_inc(&kvm->users_count); 598 } 599 EXPORT_SYMBOL_GPL(kvm_get_kvm); 600 601 void kvm_put_kvm(struct kvm *kvm) 602 { 603 if (atomic_dec_and_test(&kvm->users_count)) 604 kvm_destroy_vm(kvm); 605 } 606 EXPORT_SYMBOL_GPL(kvm_put_kvm); 607 608 609 static int kvm_vm_release(struct inode *inode, struct file *filp) 610 { 611 struct kvm *kvm = filp->private_data; 612 613 kvm_irqfd_release(kvm); 614 615 kvm_put_kvm(kvm); 616 return 0; 617 } 618 619 /* 620 * Allocation size is twice as large as the actual dirty bitmap size. 621 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 622 */ 623 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 624 { 625 #ifndef CONFIG_S390 626 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 627 628 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 629 if (!memslot->dirty_bitmap) 630 return -ENOMEM; 631 632 #endif /* !CONFIG_S390 */ 633 return 0; 634 } 635 636 static int cmp_memslot(const void *slot1, const void *slot2) 637 { 638 struct kvm_memory_slot *s1, *s2; 639 640 s1 = (struct kvm_memory_slot *)slot1; 641 s2 = (struct kvm_memory_slot *)slot2; 642 643 if (s1->npages < s2->npages) 644 return 1; 645 if (s1->npages > s2->npages) 646 return -1; 647 648 return 0; 649 } 650 651 /* 652 * Sort the memslots base on its size, so the larger slots 653 * will get better fit. 654 */ 655 static void sort_memslots(struct kvm_memslots *slots) 656 { 657 int i; 658 659 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 660 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 661 662 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 663 slots->id_to_index[slots->memslots[i].id] = i; 664 } 665 666 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new) 667 { 668 if (new) { 669 int id = new->id; 670 struct kvm_memory_slot *old = id_to_memslot(slots, id); 671 unsigned long npages = old->npages; 672 673 *old = *new; 674 if (new->npages != npages) 675 sort_memslots(slots); 676 } 677 678 slots->generation++; 679 } 680 681 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 682 { 683 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 684 685 #ifdef KVM_CAP_READONLY_MEM 686 valid_flags |= KVM_MEM_READONLY; 687 #endif 688 689 if (mem->flags & ~valid_flags) 690 return -EINVAL; 691 692 return 0; 693 } 694 695 /* 696 * Allocate some memory and give it an address in the guest physical address 697 * space. 698 * 699 * Discontiguous memory is allowed, mostly for framebuffers. 700 * 701 * Must be called holding mmap_sem for write. 702 */ 703 int __kvm_set_memory_region(struct kvm *kvm, 704 struct kvm_userspace_memory_region *mem, 705 int user_alloc) 706 { 707 int r; 708 gfn_t base_gfn; 709 unsigned long npages; 710 unsigned long i; 711 struct kvm_memory_slot *memslot; 712 struct kvm_memory_slot old, new; 713 struct kvm_memslots *slots, *old_memslots; 714 715 r = check_memory_region_flags(mem); 716 if (r) 717 goto out; 718 719 r = -EINVAL; 720 /* General sanity checks */ 721 if (mem->memory_size & (PAGE_SIZE - 1)) 722 goto out; 723 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 724 goto out; 725 /* We can read the guest memory with __xxx_user() later on. */ 726 if (user_alloc && 727 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 728 !access_ok(VERIFY_WRITE, 729 (void __user *)(unsigned long)mem->userspace_addr, 730 mem->memory_size))) 731 goto out; 732 if (mem->slot >= KVM_MEM_SLOTS_NUM) 733 goto out; 734 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 735 goto out; 736 737 memslot = id_to_memslot(kvm->memslots, mem->slot); 738 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 739 npages = mem->memory_size >> PAGE_SHIFT; 740 741 r = -EINVAL; 742 if (npages > KVM_MEM_MAX_NR_PAGES) 743 goto out; 744 745 if (!npages) 746 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 747 748 new = old = *memslot; 749 750 new.id = mem->slot; 751 new.base_gfn = base_gfn; 752 new.npages = npages; 753 new.flags = mem->flags; 754 755 /* Disallow changing a memory slot's size. */ 756 r = -EINVAL; 757 if (npages && old.npages && npages != old.npages) 758 goto out_free; 759 760 /* Check for overlaps */ 761 r = -EEXIST; 762 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { 763 struct kvm_memory_slot *s = &kvm->memslots->memslots[i]; 764 765 if (s == memslot || !s->npages) 766 continue; 767 if (!((base_gfn + npages <= s->base_gfn) || 768 (base_gfn >= s->base_gfn + s->npages))) 769 goto out_free; 770 } 771 772 /* Free page dirty bitmap if unneeded */ 773 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 774 new.dirty_bitmap = NULL; 775 776 r = -ENOMEM; 777 778 /* Allocate if a slot is being created */ 779 if (npages && !old.npages) { 780 new.user_alloc = user_alloc; 781 new.userspace_addr = mem->userspace_addr; 782 783 if (kvm_arch_create_memslot(&new, npages)) 784 goto out_free; 785 } 786 787 /* Allocate page dirty bitmap if needed */ 788 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 789 if (kvm_create_dirty_bitmap(&new) < 0) 790 goto out_free; 791 /* destroy any largepage mappings for dirty tracking */ 792 } 793 794 if (!npages) { 795 struct kvm_memory_slot *slot; 796 797 r = -ENOMEM; 798 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 799 GFP_KERNEL); 800 if (!slots) 801 goto out_free; 802 slot = id_to_memslot(slots, mem->slot); 803 slot->flags |= KVM_MEMSLOT_INVALID; 804 805 update_memslots(slots, NULL); 806 807 old_memslots = kvm->memslots; 808 rcu_assign_pointer(kvm->memslots, slots); 809 synchronize_srcu_expedited(&kvm->srcu); 810 /* From this point no new shadow pages pointing to a deleted 811 * memslot will be created. 812 * 813 * validation of sp->gfn happens in: 814 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 815 * - kvm_is_visible_gfn (mmu_check_roots) 816 */ 817 kvm_arch_flush_shadow_memslot(kvm, slot); 818 kfree(old_memslots); 819 } 820 821 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc); 822 if (r) 823 goto out_free; 824 825 /* map/unmap the pages in iommu page table */ 826 if (npages) { 827 r = kvm_iommu_map_pages(kvm, &new); 828 if (r) 829 goto out_free; 830 } else 831 kvm_iommu_unmap_pages(kvm, &old); 832 833 r = -ENOMEM; 834 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 835 GFP_KERNEL); 836 if (!slots) 837 goto out_free; 838 839 /* actual memory is freed via old in kvm_free_physmem_slot below */ 840 if (!npages) { 841 new.dirty_bitmap = NULL; 842 memset(&new.arch, 0, sizeof(new.arch)); 843 } 844 845 update_memslots(slots, &new); 846 old_memslots = kvm->memslots; 847 rcu_assign_pointer(kvm->memslots, slots); 848 synchronize_srcu_expedited(&kvm->srcu); 849 850 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc); 851 852 /* 853 * If the new memory slot is created, we need to clear all 854 * mmio sptes. 855 */ 856 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) 857 kvm_arch_flush_shadow_all(kvm); 858 859 kvm_free_physmem_slot(&old, &new); 860 kfree(old_memslots); 861 862 return 0; 863 864 out_free: 865 kvm_free_physmem_slot(&new, &old); 866 out: 867 return r; 868 869 } 870 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 871 872 int kvm_set_memory_region(struct kvm *kvm, 873 struct kvm_userspace_memory_region *mem, 874 int user_alloc) 875 { 876 int r; 877 878 mutex_lock(&kvm->slots_lock); 879 r = __kvm_set_memory_region(kvm, mem, user_alloc); 880 mutex_unlock(&kvm->slots_lock); 881 return r; 882 } 883 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 884 885 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 886 struct 887 kvm_userspace_memory_region *mem, 888 int user_alloc) 889 { 890 if (mem->slot >= KVM_MEMORY_SLOTS) 891 return -EINVAL; 892 return kvm_set_memory_region(kvm, mem, user_alloc); 893 } 894 895 int kvm_get_dirty_log(struct kvm *kvm, 896 struct kvm_dirty_log *log, int *is_dirty) 897 { 898 struct kvm_memory_slot *memslot; 899 int r, i; 900 unsigned long n; 901 unsigned long any = 0; 902 903 r = -EINVAL; 904 if (log->slot >= KVM_MEMORY_SLOTS) 905 goto out; 906 907 memslot = id_to_memslot(kvm->memslots, log->slot); 908 r = -ENOENT; 909 if (!memslot->dirty_bitmap) 910 goto out; 911 912 n = kvm_dirty_bitmap_bytes(memslot); 913 914 for (i = 0; !any && i < n/sizeof(long); ++i) 915 any = memslot->dirty_bitmap[i]; 916 917 r = -EFAULT; 918 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 919 goto out; 920 921 if (any) 922 *is_dirty = 1; 923 924 r = 0; 925 out: 926 return r; 927 } 928 929 bool kvm_largepages_enabled(void) 930 { 931 return largepages_enabled; 932 } 933 934 void kvm_disable_largepages(void) 935 { 936 largepages_enabled = false; 937 } 938 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 939 940 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 941 { 942 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 943 } 944 EXPORT_SYMBOL_GPL(gfn_to_memslot); 945 946 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 947 { 948 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 949 950 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS || 951 memslot->flags & KVM_MEMSLOT_INVALID) 952 return 0; 953 954 return 1; 955 } 956 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 957 958 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 959 { 960 struct vm_area_struct *vma; 961 unsigned long addr, size; 962 963 size = PAGE_SIZE; 964 965 addr = gfn_to_hva(kvm, gfn); 966 if (kvm_is_error_hva(addr)) 967 return PAGE_SIZE; 968 969 down_read(¤t->mm->mmap_sem); 970 vma = find_vma(current->mm, addr); 971 if (!vma) 972 goto out; 973 974 size = vma_kernel_pagesize(vma); 975 976 out: 977 up_read(¤t->mm->mmap_sem); 978 979 return size; 980 } 981 982 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 983 { 984 return slot->flags & KVM_MEM_READONLY; 985 } 986 987 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 988 gfn_t *nr_pages, bool write) 989 { 990 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 991 return KVM_HVA_ERR_BAD; 992 993 if (memslot_is_readonly(slot) && write) 994 return KVM_HVA_ERR_RO_BAD; 995 996 if (nr_pages) 997 *nr_pages = slot->npages - (gfn - slot->base_gfn); 998 999 return __gfn_to_hva_memslot(slot, gfn); 1000 } 1001 1002 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1003 gfn_t *nr_pages) 1004 { 1005 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1006 } 1007 1008 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1009 gfn_t gfn) 1010 { 1011 return gfn_to_hva_many(slot, gfn, NULL); 1012 } 1013 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1014 1015 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1016 { 1017 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1018 } 1019 EXPORT_SYMBOL_GPL(gfn_to_hva); 1020 1021 /* 1022 * The hva returned by this function is only allowed to be read. 1023 * It should pair with kvm_read_hva() or kvm_read_hva_atomic(). 1024 */ 1025 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn) 1026 { 1027 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false); 1028 } 1029 1030 static int kvm_read_hva(void *data, void __user *hva, int len) 1031 { 1032 return __copy_from_user(data, hva, len); 1033 } 1034 1035 static int kvm_read_hva_atomic(void *data, void __user *hva, int len) 1036 { 1037 return __copy_from_user_inatomic(data, hva, len); 1038 } 1039 1040 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1041 unsigned long start, int write, struct page **page) 1042 { 1043 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1044 1045 if (write) 1046 flags |= FOLL_WRITE; 1047 1048 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1049 } 1050 1051 static inline int check_user_page_hwpoison(unsigned long addr) 1052 { 1053 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1054 1055 rc = __get_user_pages(current, current->mm, addr, 1, 1056 flags, NULL, NULL, NULL); 1057 return rc == -EHWPOISON; 1058 } 1059 1060 /* 1061 * The atomic path to get the writable pfn which will be stored in @pfn, 1062 * true indicates success, otherwise false is returned. 1063 */ 1064 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1065 bool write_fault, bool *writable, pfn_t *pfn) 1066 { 1067 struct page *page[1]; 1068 int npages; 1069 1070 if (!(async || atomic)) 1071 return false; 1072 1073 /* 1074 * Fast pin a writable pfn only if it is a write fault request 1075 * or the caller allows to map a writable pfn for a read fault 1076 * request. 1077 */ 1078 if (!(write_fault || writable)) 1079 return false; 1080 1081 npages = __get_user_pages_fast(addr, 1, 1, page); 1082 if (npages == 1) { 1083 *pfn = page_to_pfn(page[0]); 1084 1085 if (writable) 1086 *writable = true; 1087 return true; 1088 } 1089 1090 return false; 1091 } 1092 1093 /* 1094 * The slow path to get the pfn of the specified host virtual address, 1095 * 1 indicates success, -errno is returned if error is detected. 1096 */ 1097 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1098 bool *writable, pfn_t *pfn) 1099 { 1100 struct page *page[1]; 1101 int npages = 0; 1102 1103 might_sleep(); 1104 1105 if (writable) 1106 *writable = write_fault; 1107 1108 if (async) { 1109 down_read(¤t->mm->mmap_sem); 1110 npages = get_user_page_nowait(current, current->mm, 1111 addr, write_fault, page); 1112 up_read(¤t->mm->mmap_sem); 1113 } else 1114 npages = get_user_pages_fast(addr, 1, write_fault, 1115 page); 1116 if (npages != 1) 1117 return npages; 1118 1119 /* map read fault as writable if possible */ 1120 if (unlikely(!write_fault) && writable) { 1121 struct page *wpage[1]; 1122 1123 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1124 if (npages == 1) { 1125 *writable = true; 1126 put_page(page[0]); 1127 page[0] = wpage[0]; 1128 } 1129 1130 npages = 1; 1131 } 1132 *pfn = page_to_pfn(page[0]); 1133 return npages; 1134 } 1135 1136 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1137 { 1138 if (unlikely(!(vma->vm_flags & VM_READ))) 1139 return false; 1140 1141 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1142 return false; 1143 1144 return true; 1145 } 1146 1147 /* 1148 * Pin guest page in memory and return its pfn. 1149 * @addr: host virtual address which maps memory to the guest 1150 * @atomic: whether this function can sleep 1151 * @async: whether this function need to wait IO complete if the 1152 * host page is not in the memory 1153 * @write_fault: whether we should get a writable host page 1154 * @writable: whether it allows to map a writable host page for !@write_fault 1155 * 1156 * The function will map a writable host page for these two cases: 1157 * 1): @write_fault = true 1158 * 2): @write_fault = false && @writable, @writable will tell the caller 1159 * whether the mapping is writable. 1160 */ 1161 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1162 bool write_fault, bool *writable) 1163 { 1164 struct vm_area_struct *vma; 1165 pfn_t pfn = 0; 1166 int npages; 1167 1168 /* we can do it either atomically or asynchronously, not both */ 1169 BUG_ON(atomic && async); 1170 1171 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1172 return pfn; 1173 1174 if (atomic) 1175 return KVM_PFN_ERR_FAULT; 1176 1177 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1178 if (npages == 1) 1179 return pfn; 1180 1181 down_read(¤t->mm->mmap_sem); 1182 if (npages == -EHWPOISON || 1183 (!async && check_user_page_hwpoison(addr))) { 1184 pfn = KVM_PFN_ERR_HWPOISON; 1185 goto exit; 1186 } 1187 1188 vma = find_vma_intersection(current->mm, addr, addr + 1); 1189 1190 if (vma == NULL) 1191 pfn = KVM_PFN_ERR_FAULT; 1192 else if ((vma->vm_flags & VM_PFNMAP)) { 1193 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1194 vma->vm_pgoff; 1195 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1196 } else { 1197 if (async && vma_is_valid(vma, write_fault)) 1198 *async = true; 1199 pfn = KVM_PFN_ERR_FAULT; 1200 } 1201 exit: 1202 up_read(¤t->mm->mmap_sem); 1203 return pfn; 1204 } 1205 1206 static pfn_t 1207 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1208 bool *async, bool write_fault, bool *writable) 1209 { 1210 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1211 1212 if (addr == KVM_HVA_ERR_RO_BAD) 1213 return KVM_PFN_ERR_RO_FAULT; 1214 1215 if (kvm_is_error_hva(addr)) 1216 return KVM_PFN_ERR_BAD; 1217 1218 /* Do not map writable pfn in the readonly memslot. */ 1219 if (writable && memslot_is_readonly(slot)) { 1220 *writable = false; 1221 writable = NULL; 1222 } 1223 1224 return hva_to_pfn(addr, atomic, async, write_fault, 1225 writable); 1226 } 1227 1228 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1229 bool write_fault, bool *writable) 1230 { 1231 struct kvm_memory_slot *slot; 1232 1233 if (async) 1234 *async = false; 1235 1236 slot = gfn_to_memslot(kvm, gfn); 1237 1238 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1239 writable); 1240 } 1241 1242 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1243 { 1244 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1245 } 1246 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1247 1248 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1249 bool write_fault, bool *writable) 1250 { 1251 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1252 } 1253 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1254 1255 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1256 { 1257 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1258 } 1259 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1260 1261 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1262 bool *writable) 1263 { 1264 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1265 } 1266 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1267 1268 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1269 { 1270 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1271 } 1272 1273 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1274 { 1275 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1276 } 1277 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1278 1279 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1280 int nr_pages) 1281 { 1282 unsigned long addr; 1283 gfn_t entry; 1284 1285 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1286 if (kvm_is_error_hva(addr)) 1287 return -1; 1288 1289 if (entry < nr_pages) 1290 return 0; 1291 1292 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1293 } 1294 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1295 1296 static struct page *kvm_pfn_to_page(pfn_t pfn) 1297 { 1298 if (is_error_pfn(pfn)) 1299 return KVM_ERR_PTR_BAD_PAGE; 1300 1301 if (kvm_is_mmio_pfn(pfn)) { 1302 WARN_ON(1); 1303 return KVM_ERR_PTR_BAD_PAGE; 1304 } 1305 1306 return pfn_to_page(pfn); 1307 } 1308 1309 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1310 { 1311 pfn_t pfn; 1312 1313 pfn = gfn_to_pfn(kvm, gfn); 1314 1315 return kvm_pfn_to_page(pfn); 1316 } 1317 1318 EXPORT_SYMBOL_GPL(gfn_to_page); 1319 1320 void kvm_release_page_clean(struct page *page) 1321 { 1322 WARN_ON(is_error_page(page)); 1323 1324 kvm_release_pfn_clean(page_to_pfn(page)); 1325 } 1326 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1327 1328 void kvm_release_pfn_clean(pfn_t pfn) 1329 { 1330 WARN_ON(is_error_pfn(pfn)); 1331 1332 if (!kvm_is_mmio_pfn(pfn)) 1333 put_page(pfn_to_page(pfn)); 1334 } 1335 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1336 1337 void kvm_release_page_dirty(struct page *page) 1338 { 1339 WARN_ON(is_error_page(page)); 1340 1341 kvm_release_pfn_dirty(page_to_pfn(page)); 1342 } 1343 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1344 1345 void kvm_release_pfn_dirty(pfn_t pfn) 1346 { 1347 kvm_set_pfn_dirty(pfn); 1348 kvm_release_pfn_clean(pfn); 1349 } 1350 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1351 1352 void kvm_set_page_dirty(struct page *page) 1353 { 1354 kvm_set_pfn_dirty(page_to_pfn(page)); 1355 } 1356 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 1357 1358 void kvm_set_pfn_dirty(pfn_t pfn) 1359 { 1360 if (!kvm_is_mmio_pfn(pfn)) { 1361 struct page *page = pfn_to_page(pfn); 1362 if (!PageReserved(page)) 1363 SetPageDirty(page); 1364 } 1365 } 1366 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1367 1368 void kvm_set_pfn_accessed(pfn_t pfn) 1369 { 1370 if (!kvm_is_mmio_pfn(pfn)) 1371 mark_page_accessed(pfn_to_page(pfn)); 1372 } 1373 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1374 1375 void kvm_get_pfn(pfn_t pfn) 1376 { 1377 if (!kvm_is_mmio_pfn(pfn)) 1378 get_page(pfn_to_page(pfn)); 1379 } 1380 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1381 1382 static int next_segment(unsigned long len, int offset) 1383 { 1384 if (len > PAGE_SIZE - offset) 1385 return PAGE_SIZE - offset; 1386 else 1387 return len; 1388 } 1389 1390 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1391 int len) 1392 { 1393 int r; 1394 unsigned long addr; 1395 1396 addr = gfn_to_hva_read(kvm, gfn); 1397 if (kvm_is_error_hva(addr)) 1398 return -EFAULT; 1399 r = kvm_read_hva(data, (void __user *)addr + offset, len); 1400 if (r) 1401 return -EFAULT; 1402 return 0; 1403 } 1404 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1405 1406 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1407 { 1408 gfn_t gfn = gpa >> PAGE_SHIFT; 1409 int seg; 1410 int offset = offset_in_page(gpa); 1411 int ret; 1412 1413 while ((seg = next_segment(len, offset)) != 0) { 1414 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1415 if (ret < 0) 1416 return ret; 1417 offset = 0; 1418 len -= seg; 1419 data += seg; 1420 ++gfn; 1421 } 1422 return 0; 1423 } 1424 EXPORT_SYMBOL_GPL(kvm_read_guest); 1425 1426 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1427 unsigned long len) 1428 { 1429 int r; 1430 unsigned long addr; 1431 gfn_t gfn = gpa >> PAGE_SHIFT; 1432 int offset = offset_in_page(gpa); 1433 1434 addr = gfn_to_hva_read(kvm, gfn); 1435 if (kvm_is_error_hva(addr)) 1436 return -EFAULT; 1437 pagefault_disable(); 1438 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); 1439 pagefault_enable(); 1440 if (r) 1441 return -EFAULT; 1442 return 0; 1443 } 1444 EXPORT_SYMBOL(kvm_read_guest_atomic); 1445 1446 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1447 int offset, int len) 1448 { 1449 int r; 1450 unsigned long addr; 1451 1452 addr = gfn_to_hva(kvm, gfn); 1453 if (kvm_is_error_hva(addr)) 1454 return -EFAULT; 1455 r = __copy_to_user((void __user *)addr + offset, data, len); 1456 if (r) 1457 return -EFAULT; 1458 mark_page_dirty(kvm, gfn); 1459 return 0; 1460 } 1461 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1462 1463 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1464 unsigned long len) 1465 { 1466 gfn_t gfn = gpa >> PAGE_SHIFT; 1467 int seg; 1468 int offset = offset_in_page(gpa); 1469 int ret; 1470 1471 while ((seg = next_segment(len, offset)) != 0) { 1472 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1473 if (ret < 0) 1474 return ret; 1475 offset = 0; 1476 len -= seg; 1477 data += seg; 1478 ++gfn; 1479 } 1480 return 0; 1481 } 1482 1483 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1484 gpa_t gpa) 1485 { 1486 struct kvm_memslots *slots = kvm_memslots(kvm); 1487 int offset = offset_in_page(gpa); 1488 gfn_t gfn = gpa >> PAGE_SHIFT; 1489 1490 ghc->gpa = gpa; 1491 ghc->generation = slots->generation; 1492 ghc->memslot = gfn_to_memslot(kvm, gfn); 1493 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL); 1494 if (!kvm_is_error_hva(ghc->hva)) 1495 ghc->hva += offset; 1496 else 1497 return -EFAULT; 1498 1499 return 0; 1500 } 1501 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1502 1503 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1504 void *data, unsigned long len) 1505 { 1506 struct kvm_memslots *slots = kvm_memslots(kvm); 1507 int r; 1508 1509 if (slots->generation != ghc->generation) 1510 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); 1511 1512 if (kvm_is_error_hva(ghc->hva)) 1513 return -EFAULT; 1514 1515 r = __copy_to_user((void __user *)ghc->hva, data, len); 1516 if (r) 1517 return -EFAULT; 1518 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1519 1520 return 0; 1521 } 1522 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1523 1524 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1525 void *data, unsigned long len) 1526 { 1527 struct kvm_memslots *slots = kvm_memslots(kvm); 1528 int r; 1529 1530 if (slots->generation != ghc->generation) 1531 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); 1532 1533 if (kvm_is_error_hva(ghc->hva)) 1534 return -EFAULT; 1535 1536 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1537 if (r) 1538 return -EFAULT; 1539 1540 return 0; 1541 } 1542 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1543 1544 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1545 { 1546 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, 1547 offset, len); 1548 } 1549 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1550 1551 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1552 { 1553 gfn_t gfn = gpa >> PAGE_SHIFT; 1554 int seg; 1555 int offset = offset_in_page(gpa); 1556 int ret; 1557 1558 while ((seg = next_segment(len, offset)) != 0) { 1559 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1560 if (ret < 0) 1561 return ret; 1562 offset = 0; 1563 len -= seg; 1564 ++gfn; 1565 } 1566 return 0; 1567 } 1568 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1569 1570 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, 1571 gfn_t gfn) 1572 { 1573 if (memslot && memslot->dirty_bitmap) { 1574 unsigned long rel_gfn = gfn - memslot->base_gfn; 1575 1576 /* TODO: introduce set_bit_le() and use it */ 1577 test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap); 1578 } 1579 } 1580 1581 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1582 { 1583 struct kvm_memory_slot *memslot; 1584 1585 memslot = gfn_to_memslot(kvm, gfn); 1586 mark_page_dirty_in_slot(kvm, memslot, gfn); 1587 } 1588 1589 /* 1590 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1591 */ 1592 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1593 { 1594 DEFINE_WAIT(wait); 1595 1596 for (;;) { 1597 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1598 1599 if (kvm_arch_vcpu_runnable(vcpu)) { 1600 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1601 break; 1602 } 1603 if (kvm_cpu_has_pending_timer(vcpu)) 1604 break; 1605 if (signal_pending(current)) 1606 break; 1607 1608 schedule(); 1609 } 1610 1611 finish_wait(&vcpu->wq, &wait); 1612 } 1613 1614 #ifndef CONFIG_S390 1615 /* 1616 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1617 */ 1618 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1619 { 1620 int me; 1621 int cpu = vcpu->cpu; 1622 wait_queue_head_t *wqp; 1623 1624 wqp = kvm_arch_vcpu_wq(vcpu); 1625 if (waitqueue_active(wqp)) { 1626 wake_up_interruptible(wqp); 1627 ++vcpu->stat.halt_wakeup; 1628 } 1629 1630 me = get_cpu(); 1631 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1632 if (kvm_arch_vcpu_should_kick(vcpu)) 1633 smp_send_reschedule(cpu); 1634 put_cpu(); 1635 } 1636 #endif /* !CONFIG_S390 */ 1637 1638 void kvm_resched(struct kvm_vcpu *vcpu) 1639 { 1640 if (!need_resched()) 1641 return; 1642 cond_resched(); 1643 } 1644 EXPORT_SYMBOL_GPL(kvm_resched); 1645 1646 bool kvm_vcpu_yield_to(struct kvm_vcpu *target) 1647 { 1648 struct pid *pid; 1649 struct task_struct *task = NULL; 1650 1651 rcu_read_lock(); 1652 pid = rcu_dereference(target->pid); 1653 if (pid) 1654 task = get_pid_task(target->pid, PIDTYPE_PID); 1655 rcu_read_unlock(); 1656 if (!task) 1657 return false; 1658 if (task->flags & PF_VCPU) { 1659 put_task_struct(task); 1660 return false; 1661 } 1662 if (yield_to(task, 1)) { 1663 put_task_struct(task); 1664 return true; 1665 } 1666 put_task_struct(task); 1667 return false; 1668 } 1669 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1670 1671 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1672 /* 1673 * Helper that checks whether a VCPU is eligible for directed yield. 1674 * Most eligible candidate to yield is decided by following heuristics: 1675 * 1676 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1677 * (preempted lock holder), indicated by @in_spin_loop. 1678 * Set at the beiginning and cleared at the end of interception/PLE handler. 1679 * 1680 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1681 * chance last time (mostly it has become eligible now since we have probably 1682 * yielded to lockholder in last iteration. This is done by toggling 1683 * @dy_eligible each time a VCPU checked for eligibility.) 1684 * 1685 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1686 * to preempted lock-holder could result in wrong VCPU selection and CPU 1687 * burning. Giving priority for a potential lock-holder increases lock 1688 * progress. 1689 * 1690 * Since algorithm is based on heuristics, accessing another VCPU data without 1691 * locking does not harm. It may result in trying to yield to same VCPU, fail 1692 * and continue with next VCPU and so on. 1693 */ 1694 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1695 { 1696 bool eligible; 1697 1698 eligible = !vcpu->spin_loop.in_spin_loop || 1699 (vcpu->spin_loop.in_spin_loop && 1700 vcpu->spin_loop.dy_eligible); 1701 1702 if (vcpu->spin_loop.in_spin_loop) 1703 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1704 1705 return eligible; 1706 } 1707 #endif 1708 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1709 { 1710 struct kvm *kvm = me->kvm; 1711 struct kvm_vcpu *vcpu; 1712 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1713 int yielded = 0; 1714 int pass; 1715 int i; 1716 1717 kvm_vcpu_set_in_spin_loop(me, true); 1718 /* 1719 * We boost the priority of a VCPU that is runnable but not 1720 * currently running, because it got preempted by something 1721 * else and called schedule in __vcpu_run. Hopefully that 1722 * VCPU is holding the lock that we need and will release it. 1723 * We approximate round-robin by starting at the last boosted VCPU. 1724 */ 1725 for (pass = 0; pass < 2 && !yielded; pass++) { 1726 kvm_for_each_vcpu(i, vcpu, kvm) { 1727 if (!pass && i <= last_boosted_vcpu) { 1728 i = last_boosted_vcpu; 1729 continue; 1730 } else if (pass && i > last_boosted_vcpu) 1731 break; 1732 if (vcpu == me) 1733 continue; 1734 if (waitqueue_active(&vcpu->wq)) 1735 continue; 1736 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1737 continue; 1738 if (kvm_vcpu_yield_to(vcpu)) { 1739 kvm->last_boosted_vcpu = i; 1740 yielded = 1; 1741 break; 1742 } 1743 } 1744 } 1745 kvm_vcpu_set_in_spin_loop(me, false); 1746 1747 /* Ensure vcpu is not eligible during next spinloop */ 1748 kvm_vcpu_set_dy_eligible(me, false); 1749 } 1750 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1751 1752 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1753 { 1754 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1755 struct page *page; 1756 1757 if (vmf->pgoff == 0) 1758 page = virt_to_page(vcpu->run); 1759 #ifdef CONFIG_X86 1760 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1761 page = virt_to_page(vcpu->arch.pio_data); 1762 #endif 1763 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1764 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1765 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1766 #endif 1767 else 1768 return kvm_arch_vcpu_fault(vcpu, vmf); 1769 get_page(page); 1770 vmf->page = page; 1771 return 0; 1772 } 1773 1774 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1775 .fault = kvm_vcpu_fault, 1776 }; 1777 1778 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1779 { 1780 vma->vm_ops = &kvm_vcpu_vm_ops; 1781 return 0; 1782 } 1783 1784 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1785 { 1786 struct kvm_vcpu *vcpu = filp->private_data; 1787 1788 kvm_put_kvm(vcpu->kvm); 1789 return 0; 1790 } 1791 1792 static struct file_operations kvm_vcpu_fops = { 1793 .release = kvm_vcpu_release, 1794 .unlocked_ioctl = kvm_vcpu_ioctl, 1795 #ifdef CONFIG_COMPAT 1796 .compat_ioctl = kvm_vcpu_compat_ioctl, 1797 #endif 1798 .mmap = kvm_vcpu_mmap, 1799 .llseek = noop_llseek, 1800 }; 1801 1802 /* 1803 * Allocates an inode for the vcpu. 1804 */ 1805 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1806 { 1807 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR); 1808 } 1809 1810 /* 1811 * Creates some virtual cpus. Good luck creating more than one. 1812 */ 1813 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1814 { 1815 int r; 1816 struct kvm_vcpu *vcpu, *v; 1817 1818 vcpu = kvm_arch_vcpu_create(kvm, id); 1819 if (IS_ERR(vcpu)) 1820 return PTR_ERR(vcpu); 1821 1822 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1823 1824 r = kvm_arch_vcpu_setup(vcpu); 1825 if (r) 1826 goto vcpu_destroy; 1827 1828 mutex_lock(&kvm->lock); 1829 if (!kvm_vcpu_compatible(vcpu)) { 1830 r = -EINVAL; 1831 goto unlock_vcpu_destroy; 1832 } 1833 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1834 r = -EINVAL; 1835 goto unlock_vcpu_destroy; 1836 } 1837 1838 kvm_for_each_vcpu(r, v, kvm) 1839 if (v->vcpu_id == id) { 1840 r = -EEXIST; 1841 goto unlock_vcpu_destroy; 1842 } 1843 1844 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1845 1846 /* Now it's all set up, let userspace reach it */ 1847 kvm_get_kvm(kvm); 1848 r = create_vcpu_fd(vcpu); 1849 if (r < 0) { 1850 kvm_put_kvm(kvm); 1851 goto unlock_vcpu_destroy; 1852 } 1853 1854 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1855 smp_wmb(); 1856 atomic_inc(&kvm->online_vcpus); 1857 1858 mutex_unlock(&kvm->lock); 1859 return r; 1860 1861 unlock_vcpu_destroy: 1862 mutex_unlock(&kvm->lock); 1863 vcpu_destroy: 1864 kvm_arch_vcpu_destroy(vcpu); 1865 return r; 1866 } 1867 1868 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1869 { 1870 if (sigset) { 1871 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1872 vcpu->sigset_active = 1; 1873 vcpu->sigset = *sigset; 1874 } else 1875 vcpu->sigset_active = 0; 1876 return 0; 1877 } 1878 1879 static long kvm_vcpu_ioctl(struct file *filp, 1880 unsigned int ioctl, unsigned long arg) 1881 { 1882 struct kvm_vcpu *vcpu = filp->private_data; 1883 void __user *argp = (void __user *)arg; 1884 int r; 1885 struct kvm_fpu *fpu = NULL; 1886 struct kvm_sregs *kvm_sregs = NULL; 1887 1888 if (vcpu->kvm->mm != current->mm) 1889 return -EIO; 1890 1891 #if defined(CONFIG_S390) || defined(CONFIG_PPC) 1892 /* 1893 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1894 * so vcpu_load() would break it. 1895 */ 1896 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1897 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1898 #endif 1899 1900 1901 vcpu_load(vcpu); 1902 switch (ioctl) { 1903 case KVM_RUN: 1904 r = -EINVAL; 1905 if (arg) 1906 goto out; 1907 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1908 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1909 break; 1910 case KVM_GET_REGS: { 1911 struct kvm_regs *kvm_regs; 1912 1913 r = -ENOMEM; 1914 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1915 if (!kvm_regs) 1916 goto out; 1917 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 1918 if (r) 1919 goto out_free1; 1920 r = -EFAULT; 1921 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 1922 goto out_free1; 1923 r = 0; 1924 out_free1: 1925 kfree(kvm_regs); 1926 break; 1927 } 1928 case KVM_SET_REGS: { 1929 struct kvm_regs *kvm_regs; 1930 1931 r = -ENOMEM; 1932 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 1933 if (IS_ERR(kvm_regs)) { 1934 r = PTR_ERR(kvm_regs); 1935 goto out; 1936 } 1937 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 1938 if (r) 1939 goto out_free2; 1940 r = 0; 1941 out_free2: 1942 kfree(kvm_regs); 1943 break; 1944 } 1945 case KVM_GET_SREGS: { 1946 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 1947 r = -ENOMEM; 1948 if (!kvm_sregs) 1949 goto out; 1950 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 1951 if (r) 1952 goto out; 1953 r = -EFAULT; 1954 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 1955 goto out; 1956 r = 0; 1957 break; 1958 } 1959 case KVM_SET_SREGS: { 1960 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 1961 if (IS_ERR(kvm_sregs)) { 1962 r = PTR_ERR(kvm_sregs); 1963 goto out; 1964 } 1965 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 1966 if (r) 1967 goto out; 1968 r = 0; 1969 break; 1970 } 1971 case KVM_GET_MP_STATE: { 1972 struct kvm_mp_state mp_state; 1973 1974 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 1975 if (r) 1976 goto out; 1977 r = -EFAULT; 1978 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 1979 goto out; 1980 r = 0; 1981 break; 1982 } 1983 case KVM_SET_MP_STATE: { 1984 struct kvm_mp_state mp_state; 1985 1986 r = -EFAULT; 1987 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 1988 goto out; 1989 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 1990 if (r) 1991 goto out; 1992 r = 0; 1993 break; 1994 } 1995 case KVM_TRANSLATE: { 1996 struct kvm_translation tr; 1997 1998 r = -EFAULT; 1999 if (copy_from_user(&tr, argp, sizeof tr)) 2000 goto out; 2001 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2002 if (r) 2003 goto out; 2004 r = -EFAULT; 2005 if (copy_to_user(argp, &tr, sizeof tr)) 2006 goto out; 2007 r = 0; 2008 break; 2009 } 2010 case KVM_SET_GUEST_DEBUG: { 2011 struct kvm_guest_debug dbg; 2012 2013 r = -EFAULT; 2014 if (copy_from_user(&dbg, argp, sizeof dbg)) 2015 goto out; 2016 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2017 if (r) 2018 goto out; 2019 r = 0; 2020 break; 2021 } 2022 case KVM_SET_SIGNAL_MASK: { 2023 struct kvm_signal_mask __user *sigmask_arg = argp; 2024 struct kvm_signal_mask kvm_sigmask; 2025 sigset_t sigset, *p; 2026 2027 p = NULL; 2028 if (argp) { 2029 r = -EFAULT; 2030 if (copy_from_user(&kvm_sigmask, argp, 2031 sizeof kvm_sigmask)) 2032 goto out; 2033 r = -EINVAL; 2034 if (kvm_sigmask.len != sizeof sigset) 2035 goto out; 2036 r = -EFAULT; 2037 if (copy_from_user(&sigset, sigmask_arg->sigset, 2038 sizeof sigset)) 2039 goto out; 2040 p = &sigset; 2041 } 2042 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2043 break; 2044 } 2045 case KVM_GET_FPU: { 2046 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2047 r = -ENOMEM; 2048 if (!fpu) 2049 goto out; 2050 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2051 if (r) 2052 goto out; 2053 r = -EFAULT; 2054 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2055 goto out; 2056 r = 0; 2057 break; 2058 } 2059 case KVM_SET_FPU: { 2060 fpu = memdup_user(argp, sizeof(*fpu)); 2061 if (IS_ERR(fpu)) { 2062 r = PTR_ERR(fpu); 2063 goto out; 2064 } 2065 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2066 if (r) 2067 goto out; 2068 r = 0; 2069 break; 2070 } 2071 default: 2072 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2073 } 2074 out: 2075 vcpu_put(vcpu); 2076 kfree(fpu); 2077 kfree(kvm_sregs); 2078 return r; 2079 } 2080 2081 #ifdef CONFIG_COMPAT 2082 static long kvm_vcpu_compat_ioctl(struct file *filp, 2083 unsigned int ioctl, unsigned long arg) 2084 { 2085 struct kvm_vcpu *vcpu = filp->private_data; 2086 void __user *argp = compat_ptr(arg); 2087 int r; 2088 2089 if (vcpu->kvm->mm != current->mm) 2090 return -EIO; 2091 2092 switch (ioctl) { 2093 case KVM_SET_SIGNAL_MASK: { 2094 struct kvm_signal_mask __user *sigmask_arg = argp; 2095 struct kvm_signal_mask kvm_sigmask; 2096 compat_sigset_t csigset; 2097 sigset_t sigset; 2098 2099 if (argp) { 2100 r = -EFAULT; 2101 if (copy_from_user(&kvm_sigmask, argp, 2102 sizeof kvm_sigmask)) 2103 goto out; 2104 r = -EINVAL; 2105 if (kvm_sigmask.len != sizeof csigset) 2106 goto out; 2107 r = -EFAULT; 2108 if (copy_from_user(&csigset, sigmask_arg->sigset, 2109 sizeof csigset)) 2110 goto out; 2111 } 2112 sigset_from_compat(&sigset, &csigset); 2113 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2114 break; 2115 } 2116 default: 2117 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2118 } 2119 2120 out: 2121 return r; 2122 } 2123 #endif 2124 2125 static long kvm_vm_ioctl(struct file *filp, 2126 unsigned int ioctl, unsigned long arg) 2127 { 2128 struct kvm *kvm = filp->private_data; 2129 void __user *argp = (void __user *)arg; 2130 int r; 2131 2132 if (kvm->mm != current->mm) 2133 return -EIO; 2134 switch (ioctl) { 2135 case KVM_CREATE_VCPU: 2136 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2137 if (r < 0) 2138 goto out; 2139 break; 2140 case KVM_SET_USER_MEMORY_REGION: { 2141 struct kvm_userspace_memory_region kvm_userspace_mem; 2142 2143 r = -EFAULT; 2144 if (copy_from_user(&kvm_userspace_mem, argp, 2145 sizeof kvm_userspace_mem)) 2146 goto out; 2147 2148 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1); 2149 if (r) 2150 goto out; 2151 break; 2152 } 2153 case KVM_GET_DIRTY_LOG: { 2154 struct kvm_dirty_log log; 2155 2156 r = -EFAULT; 2157 if (copy_from_user(&log, argp, sizeof log)) 2158 goto out; 2159 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2160 if (r) 2161 goto out; 2162 break; 2163 } 2164 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2165 case KVM_REGISTER_COALESCED_MMIO: { 2166 struct kvm_coalesced_mmio_zone zone; 2167 r = -EFAULT; 2168 if (copy_from_user(&zone, argp, sizeof zone)) 2169 goto out; 2170 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2171 if (r) 2172 goto out; 2173 r = 0; 2174 break; 2175 } 2176 case KVM_UNREGISTER_COALESCED_MMIO: { 2177 struct kvm_coalesced_mmio_zone zone; 2178 r = -EFAULT; 2179 if (copy_from_user(&zone, argp, sizeof zone)) 2180 goto out; 2181 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2182 if (r) 2183 goto out; 2184 r = 0; 2185 break; 2186 } 2187 #endif 2188 case KVM_IRQFD: { 2189 struct kvm_irqfd data; 2190 2191 r = -EFAULT; 2192 if (copy_from_user(&data, argp, sizeof data)) 2193 goto out; 2194 r = kvm_irqfd(kvm, &data); 2195 break; 2196 } 2197 case KVM_IOEVENTFD: { 2198 struct kvm_ioeventfd data; 2199 2200 r = -EFAULT; 2201 if (copy_from_user(&data, argp, sizeof data)) 2202 goto out; 2203 r = kvm_ioeventfd(kvm, &data); 2204 break; 2205 } 2206 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2207 case KVM_SET_BOOT_CPU_ID: 2208 r = 0; 2209 mutex_lock(&kvm->lock); 2210 if (atomic_read(&kvm->online_vcpus) != 0) 2211 r = -EBUSY; 2212 else 2213 kvm->bsp_vcpu_id = arg; 2214 mutex_unlock(&kvm->lock); 2215 break; 2216 #endif 2217 #ifdef CONFIG_HAVE_KVM_MSI 2218 case KVM_SIGNAL_MSI: { 2219 struct kvm_msi msi; 2220 2221 r = -EFAULT; 2222 if (copy_from_user(&msi, argp, sizeof msi)) 2223 goto out; 2224 r = kvm_send_userspace_msi(kvm, &msi); 2225 break; 2226 } 2227 #endif 2228 #ifdef __KVM_HAVE_IRQ_LINE 2229 case KVM_IRQ_LINE_STATUS: 2230 case KVM_IRQ_LINE: { 2231 struct kvm_irq_level irq_event; 2232 2233 r = -EFAULT; 2234 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 2235 goto out; 2236 2237 r = kvm_vm_ioctl_irq_line(kvm, &irq_event); 2238 if (r) 2239 goto out; 2240 2241 r = -EFAULT; 2242 if (ioctl == KVM_IRQ_LINE_STATUS) { 2243 if (copy_to_user(argp, &irq_event, sizeof irq_event)) 2244 goto out; 2245 } 2246 2247 r = 0; 2248 break; 2249 } 2250 #endif 2251 default: 2252 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2253 if (r == -ENOTTY) 2254 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2255 } 2256 out: 2257 return r; 2258 } 2259 2260 #ifdef CONFIG_COMPAT 2261 struct compat_kvm_dirty_log { 2262 __u32 slot; 2263 __u32 padding1; 2264 union { 2265 compat_uptr_t dirty_bitmap; /* one bit per page */ 2266 __u64 padding2; 2267 }; 2268 }; 2269 2270 static long kvm_vm_compat_ioctl(struct file *filp, 2271 unsigned int ioctl, unsigned long arg) 2272 { 2273 struct kvm *kvm = filp->private_data; 2274 int r; 2275 2276 if (kvm->mm != current->mm) 2277 return -EIO; 2278 switch (ioctl) { 2279 case KVM_GET_DIRTY_LOG: { 2280 struct compat_kvm_dirty_log compat_log; 2281 struct kvm_dirty_log log; 2282 2283 r = -EFAULT; 2284 if (copy_from_user(&compat_log, (void __user *)arg, 2285 sizeof(compat_log))) 2286 goto out; 2287 log.slot = compat_log.slot; 2288 log.padding1 = compat_log.padding1; 2289 log.padding2 = compat_log.padding2; 2290 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2291 2292 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2293 if (r) 2294 goto out; 2295 break; 2296 } 2297 default: 2298 r = kvm_vm_ioctl(filp, ioctl, arg); 2299 } 2300 2301 out: 2302 return r; 2303 } 2304 #endif 2305 2306 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2307 { 2308 struct page *page[1]; 2309 unsigned long addr; 2310 int npages; 2311 gfn_t gfn = vmf->pgoff; 2312 struct kvm *kvm = vma->vm_file->private_data; 2313 2314 addr = gfn_to_hva(kvm, gfn); 2315 if (kvm_is_error_hva(addr)) 2316 return VM_FAULT_SIGBUS; 2317 2318 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, 2319 NULL); 2320 if (unlikely(npages != 1)) 2321 return VM_FAULT_SIGBUS; 2322 2323 vmf->page = page[0]; 2324 return 0; 2325 } 2326 2327 static const struct vm_operations_struct kvm_vm_vm_ops = { 2328 .fault = kvm_vm_fault, 2329 }; 2330 2331 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) 2332 { 2333 vma->vm_ops = &kvm_vm_vm_ops; 2334 return 0; 2335 } 2336 2337 static struct file_operations kvm_vm_fops = { 2338 .release = kvm_vm_release, 2339 .unlocked_ioctl = kvm_vm_ioctl, 2340 #ifdef CONFIG_COMPAT 2341 .compat_ioctl = kvm_vm_compat_ioctl, 2342 #endif 2343 .mmap = kvm_vm_mmap, 2344 .llseek = noop_llseek, 2345 }; 2346 2347 static int kvm_dev_ioctl_create_vm(unsigned long type) 2348 { 2349 int r; 2350 struct kvm *kvm; 2351 2352 kvm = kvm_create_vm(type); 2353 if (IS_ERR(kvm)) 2354 return PTR_ERR(kvm); 2355 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2356 r = kvm_coalesced_mmio_init(kvm); 2357 if (r < 0) { 2358 kvm_put_kvm(kvm); 2359 return r; 2360 } 2361 #endif 2362 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 2363 if (r < 0) 2364 kvm_put_kvm(kvm); 2365 2366 return r; 2367 } 2368 2369 static long kvm_dev_ioctl_check_extension_generic(long arg) 2370 { 2371 switch (arg) { 2372 case KVM_CAP_USER_MEMORY: 2373 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2374 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2375 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2376 case KVM_CAP_SET_BOOT_CPU_ID: 2377 #endif 2378 case KVM_CAP_INTERNAL_ERROR_DATA: 2379 #ifdef CONFIG_HAVE_KVM_MSI 2380 case KVM_CAP_SIGNAL_MSI: 2381 #endif 2382 return 1; 2383 #ifdef KVM_CAP_IRQ_ROUTING 2384 case KVM_CAP_IRQ_ROUTING: 2385 return KVM_MAX_IRQ_ROUTES; 2386 #endif 2387 default: 2388 break; 2389 } 2390 return kvm_dev_ioctl_check_extension(arg); 2391 } 2392 2393 static long kvm_dev_ioctl(struct file *filp, 2394 unsigned int ioctl, unsigned long arg) 2395 { 2396 long r = -EINVAL; 2397 2398 switch (ioctl) { 2399 case KVM_GET_API_VERSION: 2400 r = -EINVAL; 2401 if (arg) 2402 goto out; 2403 r = KVM_API_VERSION; 2404 break; 2405 case KVM_CREATE_VM: 2406 r = kvm_dev_ioctl_create_vm(arg); 2407 break; 2408 case KVM_CHECK_EXTENSION: 2409 r = kvm_dev_ioctl_check_extension_generic(arg); 2410 break; 2411 case KVM_GET_VCPU_MMAP_SIZE: 2412 r = -EINVAL; 2413 if (arg) 2414 goto out; 2415 r = PAGE_SIZE; /* struct kvm_run */ 2416 #ifdef CONFIG_X86 2417 r += PAGE_SIZE; /* pio data page */ 2418 #endif 2419 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2420 r += PAGE_SIZE; /* coalesced mmio ring page */ 2421 #endif 2422 break; 2423 case KVM_TRACE_ENABLE: 2424 case KVM_TRACE_PAUSE: 2425 case KVM_TRACE_DISABLE: 2426 r = -EOPNOTSUPP; 2427 break; 2428 default: 2429 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2430 } 2431 out: 2432 return r; 2433 } 2434 2435 static struct file_operations kvm_chardev_ops = { 2436 .unlocked_ioctl = kvm_dev_ioctl, 2437 .compat_ioctl = kvm_dev_ioctl, 2438 .llseek = noop_llseek, 2439 }; 2440 2441 static struct miscdevice kvm_dev = { 2442 KVM_MINOR, 2443 "kvm", 2444 &kvm_chardev_ops, 2445 }; 2446 2447 static void hardware_enable_nolock(void *junk) 2448 { 2449 int cpu = raw_smp_processor_id(); 2450 int r; 2451 2452 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2453 return; 2454 2455 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2456 2457 r = kvm_arch_hardware_enable(NULL); 2458 2459 if (r) { 2460 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2461 atomic_inc(&hardware_enable_failed); 2462 printk(KERN_INFO "kvm: enabling virtualization on " 2463 "CPU%d failed\n", cpu); 2464 } 2465 } 2466 2467 static void hardware_enable(void *junk) 2468 { 2469 raw_spin_lock(&kvm_lock); 2470 hardware_enable_nolock(junk); 2471 raw_spin_unlock(&kvm_lock); 2472 } 2473 2474 static void hardware_disable_nolock(void *junk) 2475 { 2476 int cpu = raw_smp_processor_id(); 2477 2478 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2479 return; 2480 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2481 kvm_arch_hardware_disable(NULL); 2482 } 2483 2484 static void hardware_disable(void *junk) 2485 { 2486 raw_spin_lock(&kvm_lock); 2487 hardware_disable_nolock(junk); 2488 raw_spin_unlock(&kvm_lock); 2489 } 2490 2491 static void hardware_disable_all_nolock(void) 2492 { 2493 BUG_ON(!kvm_usage_count); 2494 2495 kvm_usage_count--; 2496 if (!kvm_usage_count) 2497 on_each_cpu(hardware_disable_nolock, NULL, 1); 2498 } 2499 2500 static void hardware_disable_all(void) 2501 { 2502 raw_spin_lock(&kvm_lock); 2503 hardware_disable_all_nolock(); 2504 raw_spin_unlock(&kvm_lock); 2505 } 2506 2507 static int hardware_enable_all(void) 2508 { 2509 int r = 0; 2510 2511 raw_spin_lock(&kvm_lock); 2512 2513 kvm_usage_count++; 2514 if (kvm_usage_count == 1) { 2515 atomic_set(&hardware_enable_failed, 0); 2516 on_each_cpu(hardware_enable_nolock, NULL, 1); 2517 2518 if (atomic_read(&hardware_enable_failed)) { 2519 hardware_disable_all_nolock(); 2520 r = -EBUSY; 2521 } 2522 } 2523 2524 raw_spin_unlock(&kvm_lock); 2525 2526 return r; 2527 } 2528 2529 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2530 void *v) 2531 { 2532 int cpu = (long)v; 2533 2534 if (!kvm_usage_count) 2535 return NOTIFY_OK; 2536 2537 val &= ~CPU_TASKS_FROZEN; 2538 switch (val) { 2539 case CPU_DYING: 2540 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2541 cpu); 2542 hardware_disable(NULL); 2543 break; 2544 case CPU_STARTING: 2545 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2546 cpu); 2547 hardware_enable(NULL); 2548 break; 2549 } 2550 return NOTIFY_OK; 2551 } 2552 2553 2554 asmlinkage void kvm_spurious_fault(void) 2555 { 2556 /* Fault while not rebooting. We want the trace. */ 2557 BUG(); 2558 } 2559 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 2560 2561 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2562 void *v) 2563 { 2564 /* 2565 * Some (well, at least mine) BIOSes hang on reboot if 2566 * in vmx root mode. 2567 * 2568 * And Intel TXT required VMX off for all cpu when system shutdown. 2569 */ 2570 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2571 kvm_rebooting = true; 2572 on_each_cpu(hardware_disable_nolock, NULL, 1); 2573 return NOTIFY_OK; 2574 } 2575 2576 static struct notifier_block kvm_reboot_notifier = { 2577 .notifier_call = kvm_reboot, 2578 .priority = 0, 2579 }; 2580 2581 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2582 { 2583 int i; 2584 2585 for (i = 0; i < bus->dev_count; i++) { 2586 struct kvm_io_device *pos = bus->range[i].dev; 2587 2588 kvm_iodevice_destructor(pos); 2589 } 2590 kfree(bus); 2591 } 2592 2593 int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2594 { 2595 const struct kvm_io_range *r1 = p1; 2596 const struct kvm_io_range *r2 = p2; 2597 2598 if (r1->addr < r2->addr) 2599 return -1; 2600 if (r1->addr + r1->len > r2->addr + r2->len) 2601 return 1; 2602 return 0; 2603 } 2604 2605 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2606 gpa_t addr, int len) 2607 { 2608 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2609 .addr = addr, 2610 .len = len, 2611 .dev = dev, 2612 }; 2613 2614 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2615 kvm_io_bus_sort_cmp, NULL); 2616 2617 return 0; 2618 } 2619 2620 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2621 gpa_t addr, int len) 2622 { 2623 struct kvm_io_range *range, key; 2624 int off; 2625 2626 key = (struct kvm_io_range) { 2627 .addr = addr, 2628 .len = len, 2629 }; 2630 2631 range = bsearch(&key, bus->range, bus->dev_count, 2632 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2633 if (range == NULL) 2634 return -ENOENT; 2635 2636 off = range - bus->range; 2637 2638 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0) 2639 off--; 2640 2641 return off; 2642 } 2643 2644 /* kvm_io_bus_write - called under kvm->slots_lock */ 2645 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2646 int len, const void *val) 2647 { 2648 int idx; 2649 struct kvm_io_bus *bus; 2650 struct kvm_io_range range; 2651 2652 range = (struct kvm_io_range) { 2653 .addr = addr, 2654 .len = len, 2655 }; 2656 2657 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2658 idx = kvm_io_bus_get_first_dev(bus, addr, len); 2659 if (idx < 0) 2660 return -EOPNOTSUPP; 2661 2662 while (idx < bus->dev_count && 2663 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { 2664 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val)) 2665 return 0; 2666 idx++; 2667 } 2668 2669 return -EOPNOTSUPP; 2670 } 2671 2672 /* kvm_io_bus_read - called under kvm->slots_lock */ 2673 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2674 int len, void *val) 2675 { 2676 int idx; 2677 struct kvm_io_bus *bus; 2678 struct kvm_io_range range; 2679 2680 range = (struct kvm_io_range) { 2681 .addr = addr, 2682 .len = len, 2683 }; 2684 2685 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2686 idx = kvm_io_bus_get_first_dev(bus, addr, len); 2687 if (idx < 0) 2688 return -EOPNOTSUPP; 2689 2690 while (idx < bus->dev_count && 2691 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { 2692 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val)) 2693 return 0; 2694 idx++; 2695 } 2696 2697 return -EOPNOTSUPP; 2698 } 2699 2700 /* Caller must hold slots_lock. */ 2701 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2702 int len, struct kvm_io_device *dev) 2703 { 2704 struct kvm_io_bus *new_bus, *bus; 2705 2706 bus = kvm->buses[bus_idx]; 2707 if (bus->dev_count > NR_IOBUS_DEVS - 1) 2708 return -ENOSPC; 2709 2710 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 2711 sizeof(struct kvm_io_range)), GFP_KERNEL); 2712 if (!new_bus) 2713 return -ENOMEM; 2714 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 2715 sizeof(struct kvm_io_range))); 2716 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 2717 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2718 synchronize_srcu_expedited(&kvm->srcu); 2719 kfree(bus); 2720 2721 return 0; 2722 } 2723 2724 /* Caller must hold slots_lock. */ 2725 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 2726 struct kvm_io_device *dev) 2727 { 2728 int i, r; 2729 struct kvm_io_bus *new_bus, *bus; 2730 2731 bus = kvm->buses[bus_idx]; 2732 r = -ENOENT; 2733 for (i = 0; i < bus->dev_count; i++) 2734 if (bus->range[i].dev == dev) { 2735 r = 0; 2736 break; 2737 } 2738 2739 if (r) 2740 return r; 2741 2742 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 2743 sizeof(struct kvm_io_range)), GFP_KERNEL); 2744 if (!new_bus) 2745 return -ENOMEM; 2746 2747 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 2748 new_bus->dev_count--; 2749 memcpy(new_bus->range + i, bus->range + i + 1, 2750 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 2751 2752 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2753 synchronize_srcu_expedited(&kvm->srcu); 2754 kfree(bus); 2755 return r; 2756 } 2757 2758 static struct notifier_block kvm_cpu_notifier = { 2759 .notifier_call = kvm_cpu_hotplug, 2760 }; 2761 2762 static int vm_stat_get(void *_offset, u64 *val) 2763 { 2764 unsigned offset = (long)_offset; 2765 struct kvm *kvm; 2766 2767 *val = 0; 2768 raw_spin_lock(&kvm_lock); 2769 list_for_each_entry(kvm, &vm_list, vm_list) 2770 *val += *(u32 *)((void *)kvm + offset); 2771 raw_spin_unlock(&kvm_lock); 2772 return 0; 2773 } 2774 2775 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 2776 2777 static int vcpu_stat_get(void *_offset, u64 *val) 2778 { 2779 unsigned offset = (long)_offset; 2780 struct kvm *kvm; 2781 struct kvm_vcpu *vcpu; 2782 int i; 2783 2784 *val = 0; 2785 raw_spin_lock(&kvm_lock); 2786 list_for_each_entry(kvm, &vm_list, vm_list) 2787 kvm_for_each_vcpu(i, vcpu, kvm) 2788 *val += *(u32 *)((void *)vcpu + offset); 2789 2790 raw_spin_unlock(&kvm_lock); 2791 return 0; 2792 } 2793 2794 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 2795 2796 static const struct file_operations *stat_fops[] = { 2797 [KVM_STAT_VCPU] = &vcpu_stat_fops, 2798 [KVM_STAT_VM] = &vm_stat_fops, 2799 }; 2800 2801 static int kvm_init_debug(void) 2802 { 2803 int r = -EFAULT; 2804 struct kvm_stats_debugfs_item *p; 2805 2806 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 2807 if (kvm_debugfs_dir == NULL) 2808 goto out; 2809 2810 for (p = debugfs_entries; p->name; ++p) { 2811 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 2812 (void *)(long)p->offset, 2813 stat_fops[p->kind]); 2814 if (p->dentry == NULL) 2815 goto out_dir; 2816 } 2817 2818 return 0; 2819 2820 out_dir: 2821 debugfs_remove_recursive(kvm_debugfs_dir); 2822 out: 2823 return r; 2824 } 2825 2826 static void kvm_exit_debug(void) 2827 { 2828 struct kvm_stats_debugfs_item *p; 2829 2830 for (p = debugfs_entries; p->name; ++p) 2831 debugfs_remove(p->dentry); 2832 debugfs_remove(kvm_debugfs_dir); 2833 } 2834 2835 static int kvm_suspend(void) 2836 { 2837 if (kvm_usage_count) 2838 hardware_disable_nolock(NULL); 2839 return 0; 2840 } 2841 2842 static void kvm_resume(void) 2843 { 2844 if (kvm_usage_count) { 2845 WARN_ON(raw_spin_is_locked(&kvm_lock)); 2846 hardware_enable_nolock(NULL); 2847 } 2848 } 2849 2850 static struct syscore_ops kvm_syscore_ops = { 2851 .suspend = kvm_suspend, 2852 .resume = kvm_resume, 2853 }; 2854 2855 static inline 2856 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 2857 { 2858 return container_of(pn, struct kvm_vcpu, preempt_notifier); 2859 } 2860 2861 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 2862 { 2863 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2864 2865 kvm_arch_vcpu_load(vcpu, cpu); 2866 } 2867 2868 static void kvm_sched_out(struct preempt_notifier *pn, 2869 struct task_struct *next) 2870 { 2871 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2872 2873 kvm_arch_vcpu_put(vcpu); 2874 } 2875 2876 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 2877 struct module *module) 2878 { 2879 int r; 2880 int cpu; 2881 2882 r = kvm_arch_init(opaque); 2883 if (r) 2884 goto out_fail; 2885 2886 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 2887 r = -ENOMEM; 2888 goto out_free_0; 2889 } 2890 2891 r = kvm_arch_hardware_setup(); 2892 if (r < 0) 2893 goto out_free_0a; 2894 2895 for_each_online_cpu(cpu) { 2896 smp_call_function_single(cpu, 2897 kvm_arch_check_processor_compat, 2898 &r, 1); 2899 if (r < 0) 2900 goto out_free_1; 2901 } 2902 2903 r = register_cpu_notifier(&kvm_cpu_notifier); 2904 if (r) 2905 goto out_free_2; 2906 register_reboot_notifier(&kvm_reboot_notifier); 2907 2908 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 2909 if (!vcpu_align) 2910 vcpu_align = __alignof__(struct kvm_vcpu); 2911 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 2912 0, NULL); 2913 if (!kvm_vcpu_cache) { 2914 r = -ENOMEM; 2915 goto out_free_3; 2916 } 2917 2918 r = kvm_async_pf_init(); 2919 if (r) 2920 goto out_free; 2921 2922 kvm_chardev_ops.owner = module; 2923 kvm_vm_fops.owner = module; 2924 kvm_vcpu_fops.owner = module; 2925 2926 r = misc_register(&kvm_dev); 2927 if (r) { 2928 printk(KERN_ERR "kvm: misc device register failed\n"); 2929 goto out_unreg; 2930 } 2931 2932 register_syscore_ops(&kvm_syscore_ops); 2933 2934 kvm_preempt_ops.sched_in = kvm_sched_in; 2935 kvm_preempt_ops.sched_out = kvm_sched_out; 2936 2937 r = kvm_init_debug(); 2938 if (r) { 2939 printk(KERN_ERR "kvm: create debugfs files failed\n"); 2940 goto out_undebugfs; 2941 } 2942 2943 return 0; 2944 2945 out_undebugfs: 2946 unregister_syscore_ops(&kvm_syscore_ops); 2947 out_unreg: 2948 kvm_async_pf_deinit(); 2949 out_free: 2950 kmem_cache_destroy(kvm_vcpu_cache); 2951 out_free_3: 2952 unregister_reboot_notifier(&kvm_reboot_notifier); 2953 unregister_cpu_notifier(&kvm_cpu_notifier); 2954 out_free_2: 2955 out_free_1: 2956 kvm_arch_hardware_unsetup(); 2957 out_free_0a: 2958 free_cpumask_var(cpus_hardware_enabled); 2959 out_free_0: 2960 kvm_arch_exit(); 2961 out_fail: 2962 return r; 2963 } 2964 EXPORT_SYMBOL_GPL(kvm_init); 2965 2966 void kvm_exit(void) 2967 { 2968 kvm_exit_debug(); 2969 misc_deregister(&kvm_dev); 2970 kmem_cache_destroy(kvm_vcpu_cache); 2971 kvm_async_pf_deinit(); 2972 unregister_syscore_ops(&kvm_syscore_ops); 2973 unregister_reboot_notifier(&kvm_reboot_notifier); 2974 unregister_cpu_notifier(&kvm_cpu_notifier); 2975 on_each_cpu(hardware_disable_nolock, NULL, 1); 2976 kvm_arch_hardware_unsetup(); 2977 kvm_arch_exit(); 2978 free_cpumask_var(cpus_hardware_enabled); 2979 } 2980 EXPORT_SYMBOL_GPL(kvm_exit); 2981