1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "mmu_lock.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 #define KVM_EVENT_CREATE_VM 0 153 #define KVM_EVENT_DESTROY_VM 1 154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 155 static unsigned long long kvm_createvm_count; 156 static unsigned long long kvm_active_vms; 157 158 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 159 160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 161 unsigned long start, unsigned long end) 162 { 163 } 164 165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 166 { 167 /* 168 * The metadata used by is_zone_device_page() to determine whether or 169 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 170 * the device has been pinned, e.g. by get_user_pages(). WARN if the 171 * page_count() is zero to help detect bad usage of this helper. 172 */ 173 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 174 return false; 175 176 return is_zone_device_page(pfn_to_page(pfn)); 177 } 178 179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 180 { 181 /* 182 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 183 * perspective they are "normal" pages, albeit with slightly different 184 * usage rules. 185 */ 186 if (pfn_valid(pfn)) 187 return PageReserved(pfn_to_page(pfn)) && 188 !is_zero_pfn(pfn) && 189 !kvm_is_zone_device_pfn(pfn); 190 191 return true; 192 } 193 194 /* 195 * Switches to specified vcpu, until a matching vcpu_put() 196 */ 197 void vcpu_load(struct kvm_vcpu *vcpu) 198 { 199 int cpu = get_cpu(); 200 201 __this_cpu_write(kvm_running_vcpu, vcpu); 202 preempt_notifier_register(&vcpu->preempt_notifier); 203 kvm_arch_vcpu_load(vcpu, cpu); 204 put_cpu(); 205 } 206 EXPORT_SYMBOL_GPL(vcpu_load); 207 208 void vcpu_put(struct kvm_vcpu *vcpu) 209 { 210 preempt_disable(); 211 kvm_arch_vcpu_put(vcpu); 212 preempt_notifier_unregister(&vcpu->preempt_notifier); 213 __this_cpu_write(kvm_running_vcpu, NULL); 214 preempt_enable(); 215 } 216 EXPORT_SYMBOL_GPL(vcpu_put); 217 218 /* TODO: merge with kvm_arch_vcpu_should_kick */ 219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 220 { 221 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 222 223 /* 224 * We need to wait for the VCPU to reenable interrupts and get out of 225 * READING_SHADOW_PAGE_TABLES mode. 226 */ 227 if (req & KVM_REQUEST_WAIT) 228 return mode != OUTSIDE_GUEST_MODE; 229 230 /* 231 * Need to kick a running VCPU, but otherwise there is nothing to do. 232 */ 233 return mode == IN_GUEST_MODE; 234 } 235 236 static void ack_flush(void *_completed) 237 { 238 } 239 240 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 241 { 242 if (cpumask_empty(cpus)) 243 return false; 244 245 smp_call_function_many(cpus, ack_flush, NULL, wait); 246 return true; 247 } 248 249 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu, 250 unsigned int req, struct cpumask *tmp, 251 int current_cpu) 252 { 253 int cpu; 254 255 kvm_make_request(req, vcpu); 256 257 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 258 return; 259 260 /* 261 * Note, the vCPU could get migrated to a different pCPU at any point 262 * after kvm_request_needs_ipi(), which could result in sending an IPI 263 * to the previous pCPU. But, that's OK because the purpose of the IPI 264 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 265 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 266 * after this point is also OK, as the requirement is only that KVM wait 267 * for vCPUs that were reading SPTEs _before_ any changes were 268 * finalized. See kvm_vcpu_kick() for more details on handling requests. 269 */ 270 if (kvm_request_needs_ipi(vcpu, req)) { 271 cpu = READ_ONCE(vcpu->cpu); 272 if (cpu != -1 && cpu != current_cpu) 273 __cpumask_set_cpu(cpu, tmp); 274 } 275 } 276 277 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 278 unsigned long *vcpu_bitmap) 279 { 280 struct kvm_vcpu *vcpu; 281 struct cpumask *cpus; 282 int i, me; 283 bool called; 284 285 me = get_cpu(); 286 287 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 288 cpumask_clear(cpus); 289 290 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 291 vcpu = kvm_get_vcpu(kvm, i); 292 if (!vcpu) 293 continue; 294 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me); 295 } 296 297 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 298 put_cpu(); 299 300 return called; 301 } 302 303 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 304 struct kvm_vcpu *except) 305 { 306 struct kvm_vcpu *vcpu; 307 struct cpumask *cpus; 308 unsigned long i; 309 bool called; 310 int me; 311 312 me = get_cpu(); 313 314 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 315 cpumask_clear(cpus); 316 317 kvm_for_each_vcpu(i, vcpu, kvm) { 318 if (vcpu == except) 319 continue; 320 kvm_make_vcpu_request(kvm, vcpu, req, cpus, me); 321 } 322 323 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 324 put_cpu(); 325 326 return called; 327 } 328 329 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 330 { 331 return kvm_make_all_cpus_request_except(kvm, req, NULL); 332 } 333 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 334 335 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 336 void kvm_flush_remote_tlbs(struct kvm *kvm) 337 { 338 ++kvm->stat.generic.remote_tlb_flush_requests; 339 340 /* 341 * We want to publish modifications to the page tables before reading 342 * mode. Pairs with a memory barrier in arch-specific code. 343 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 344 * and smp_mb in walk_shadow_page_lockless_begin/end. 345 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 346 * 347 * There is already an smp_mb__after_atomic() before 348 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 349 * barrier here. 350 */ 351 if (!kvm_arch_flush_remote_tlb(kvm) 352 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 353 ++kvm->stat.generic.remote_tlb_flush; 354 } 355 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 356 #endif 357 358 void kvm_reload_remote_mmus(struct kvm *kvm) 359 { 360 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 361 } 362 363 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 364 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 365 gfp_t gfp_flags) 366 { 367 gfp_flags |= mc->gfp_zero; 368 369 if (mc->kmem_cache) 370 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 371 else 372 return (void *)__get_free_page(gfp_flags); 373 } 374 375 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 376 { 377 void *obj; 378 379 if (mc->nobjs >= min) 380 return 0; 381 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 382 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 383 if (!obj) 384 return mc->nobjs >= min ? 0 : -ENOMEM; 385 mc->objects[mc->nobjs++] = obj; 386 } 387 return 0; 388 } 389 390 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 391 { 392 return mc->nobjs; 393 } 394 395 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 396 { 397 while (mc->nobjs) { 398 if (mc->kmem_cache) 399 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 400 else 401 free_page((unsigned long)mc->objects[--mc->nobjs]); 402 } 403 } 404 405 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 406 { 407 void *p; 408 409 if (WARN_ON(!mc->nobjs)) 410 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 411 else 412 p = mc->objects[--mc->nobjs]; 413 BUG_ON(!p); 414 return p; 415 } 416 #endif 417 418 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 419 { 420 mutex_init(&vcpu->mutex); 421 vcpu->cpu = -1; 422 vcpu->kvm = kvm; 423 vcpu->vcpu_id = id; 424 vcpu->pid = NULL; 425 rcuwait_init(&vcpu->wait); 426 kvm_async_pf_vcpu_init(vcpu); 427 428 vcpu->pre_pcpu = -1; 429 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 430 431 kvm_vcpu_set_in_spin_loop(vcpu, false); 432 kvm_vcpu_set_dy_eligible(vcpu, false); 433 vcpu->preempted = false; 434 vcpu->ready = false; 435 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 436 vcpu->last_used_slot = 0; 437 } 438 439 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 440 { 441 kvm_dirty_ring_free(&vcpu->dirty_ring); 442 kvm_arch_vcpu_destroy(vcpu); 443 444 /* 445 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 446 * the vcpu->pid pointer, and at destruction time all file descriptors 447 * are already gone. 448 */ 449 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 450 451 free_page((unsigned long)vcpu->run); 452 kmem_cache_free(kvm_vcpu_cache, vcpu); 453 } 454 455 void kvm_destroy_vcpus(struct kvm *kvm) 456 { 457 unsigned long i; 458 struct kvm_vcpu *vcpu; 459 460 kvm_for_each_vcpu(i, vcpu, kvm) { 461 kvm_vcpu_destroy(vcpu); 462 xa_erase(&kvm->vcpu_array, i); 463 } 464 465 atomic_set(&kvm->online_vcpus, 0); 466 } 467 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 468 469 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 470 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 471 { 472 return container_of(mn, struct kvm, mmu_notifier); 473 } 474 475 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 476 struct mm_struct *mm, 477 unsigned long start, unsigned long end) 478 { 479 struct kvm *kvm = mmu_notifier_to_kvm(mn); 480 int idx; 481 482 idx = srcu_read_lock(&kvm->srcu); 483 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 484 srcu_read_unlock(&kvm->srcu, idx); 485 } 486 487 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 488 489 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 490 unsigned long end); 491 492 struct kvm_hva_range { 493 unsigned long start; 494 unsigned long end; 495 pte_t pte; 496 hva_handler_t handler; 497 on_lock_fn_t on_lock; 498 bool flush_on_ret; 499 bool may_block; 500 }; 501 502 /* 503 * Use a dedicated stub instead of NULL to indicate that there is no callback 504 * function/handler. The compiler technically can't guarantee that a real 505 * function will have a non-zero address, and so it will generate code to 506 * check for !NULL, whereas comparing against a stub will be elided at compile 507 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 508 */ 509 static void kvm_null_fn(void) 510 { 511 512 } 513 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 514 515 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 516 const struct kvm_hva_range *range) 517 { 518 bool ret = false, locked = false; 519 struct kvm_gfn_range gfn_range; 520 struct kvm_memory_slot *slot; 521 struct kvm_memslots *slots; 522 int i, idx; 523 524 /* A null handler is allowed if and only if on_lock() is provided. */ 525 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 526 IS_KVM_NULL_FN(range->handler))) 527 return 0; 528 529 idx = srcu_read_lock(&kvm->srcu); 530 531 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 532 slots = __kvm_memslots(kvm, i); 533 kvm_for_each_memslot(slot, slots) { 534 unsigned long hva_start, hva_end; 535 536 hva_start = max(range->start, slot->userspace_addr); 537 hva_end = min(range->end, slot->userspace_addr + 538 (slot->npages << PAGE_SHIFT)); 539 if (hva_start >= hva_end) 540 continue; 541 542 /* 543 * To optimize for the likely case where the address 544 * range is covered by zero or one memslots, don't 545 * bother making these conditional (to avoid writes on 546 * the second or later invocation of the handler). 547 */ 548 gfn_range.pte = range->pte; 549 gfn_range.may_block = range->may_block; 550 551 /* 552 * {gfn(page) | page intersects with [hva_start, hva_end)} = 553 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 554 */ 555 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 556 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 557 gfn_range.slot = slot; 558 559 if (!locked) { 560 locked = true; 561 KVM_MMU_LOCK(kvm); 562 if (!IS_KVM_NULL_FN(range->on_lock)) 563 range->on_lock(kvm, range->start, range->end); 564 if (IS_KVM_NULL_FN(range->handler)) 565 break; 566 } 567 ret |= range->handler(kvm, &gfn_range); 568 } 569 } 570 571 if (range->flush_on_ret && ret) 572 kvm_flush_remote_tlbs(kvm); 573 574 if (locked) 575 KVM_MMU_UNLOCK(kvm); 576 577 srcu_read_unlock(&kvm->srcu, idx); 578 579 /* The notifiers are averse to booleans. :-( */ 580 return (int)ret; 581 } 582 583 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 584 unsigned long start, 585 unsigned long end, 586 pte_t pte, 587 hva_handler_t handler) 588 { 589 struct kvm *kvm = mmu_notifier_to_kvm(mn); 590 const struct kvm_hva_range range = { 591 .start = start, 592 .end = end, 593 .pte = pte, 594 .handler = handler, 595 .on_lock = (void *)kvm_null_fn, 596 .flush_on_ret = true, 597 .may_block = false, 598 }; 599 600 return __kvm_handle_hva_range(kvm, &range); 601 } 602 603 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 604 unsigned long start, 605 unsigned long end, 606 hva_handler_t handler) 607 { 608 struct kvm *kvm = mmu_notifier_to_kvm(mn); 609 const struct kvm_hva_range range = { 610 .start = start, 611 .end = end, 612 .pte = __pte(0), 613 .handler = handler, 614 .on_lock = (void *)kvm_null_fn, 615 .flush_on_ret = false, 616 .may_block = false, 617 }; 618 619 return __kvm_handle_hva_range(kvm, &range); 620 } 621 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 622 struct mm_struct *mm, 623 unsigned long address, 624 pte_t pte) 625 { 626 struct kvm *kvm = mmu_notifier_to_kvm(mn); 627 628 trace_kvm_set_spte_hva(address); 629 630 /* 631 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 632 * If mmu_notifier_count is zero, then no in-progress invalidations, 633 * including this one, found a relevant memslot at start(); rechecking 634 * memslots here is unnecessary. Note, a false positive (count elevated 635 * by a different invalidation) is sub-optimal but functionally ok. 636 */ 637 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 638 if (!READ_ONCE(kvm->mmu_notifier_count)) 639 return; 640 641 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 642 } 643 644 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 645 unsigned long end) 646 { 647 /* 648 * The count increase must become visible at unlock time as no 649 * spte can be established without taking the mmu_lock and 650 * count is also read inside the mmu_lock critical section. 651 */ 652 kvm->mmu_notifier_count++; 653 if (likely(kvm->mmu_notifier_count == 1)) { 654 kvm->mmu_notifier_range_start = start; 655 kvm->mmu_notifier_range_end = end; 656 } else { 657 /* 658 * Fully tracking multiple concurrent ranges has dimishing 659 * returns. Keep things simple and just find the minimal range 660 * which includes the current and new ranges. As there won't be 661 * enough information to subtract a range after its invalidate 662 * completes, any ranges invalidated concurrently will 663 * accumulate and persist until all outstanding invalidates 664 * complete. 665 */ 666 kvm->mmu_notifier_range_start = 667 min(kvm->mmu_notifier_range_start, start); 668 kvm->mmu_notifier_range_end = 669 max(kvm->mmu_notifier_range_end, end); 670 } 671 } 672 673 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 674 const struct mmu_notifier_range *range) 675 { 676 struct kvm *kvm = mmu_notifier_to_kvm(mn); 677 const struct kvm_hva_range hva_range = { 678 .start = range->start, 679 .end = range->end, 680 .pte = __pte(0), 681 .handler = kvm_unmap_gfn_range, 682 .on_lock = kvm_inc_notifier_count, 683 .flush_on_ret = true, 684 .may_block = mmu_notifier_range_blockable(range), 685 }; 686 687 trace_kvm_unmap_hva_range(range->start, range->end); 688 689 /* 690 * Prevent memslot modification between range_start() and range_end() 691 * so that conditionally locking provides the same result in both 692 * functions. Without that guarantee, the mmu_notifier_count 693 * adjustments will be imbalanced. 694 * 695 * Pairs with the decrement in range_end(). 696 */ 697 spin_lock(&kvm->mn_invalidate_lock); 698 kvm->mn_active_invalidate_count++; 699 spin_unlock(&kvm->mn_invalidate_lock); 700 701 __kvm_handle_hva_range(kvm, &hva_range); 702 703 return 0; 704 } 705 706 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 707 unsigned long end) 708 { 709 /* 710 * This sequence increase will notify the kvm page fault that 711 * the page that is going to be mapped in the spte could have 712 * been freed. 713 */ 714 kvm->mmu_notifier_seq++; 715 smp_wmb(); 716 /* 717 * The above sequence increase must be visible before the 718 * below count decrease, which is ensured by the smp_wmb above 719 * in conjunction with the smp_rmb in mmu_notifier_retry(). 720 */ 721 kvm->mmu_notifier_count--; 722 } 723 724 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 725 const struct mmu_notifier_range *range) 726 { 727 struct kvm *kvm = mmu_notifier_to_kvm(mn); 728 const struct kvm_hva_range hva_range = { 729 .start = range->start, 730 .end = range->end, 731 .pte = __pte(0), 732 .handler = (void *)kvm_null_fn, 733 .on_lock = kvm_dec_notifier_count, 734 .flush_on_ret = false, 735 .may_block = mmu_notifier_range_blockable(range), 736 }; 737 bool wake; 738 739 __kvm_handle_hva_range(kvm, &hva_range); 740 741 /* Pairs with the increment in range_start(). */ 742 spin_lock(&kvm->mn_invalidate_lock); 743 wake = (--kvm->mn_active_invalidate_count == 0); 744 spin_unlock(&kvm->mn_invalidate_lock); 745 746 /* 747 * There can only be one waiter, since the wait happens under 748 * slots_lock. 749 */ 750 if (wake) 751 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 752 753 BUG_ON(kvm->mmu_notifier_count < 0); 754 } 755 756 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 757 struct mm_struct *mm, 758 unsigned long start, 759 unsigned long end) 760 { 761 trace_kvm_age_hva(start, end); 762 763 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 764 } 765 766 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 767 struct mm_struct *mm, 768 unsigned long start, 769 unsigned long end) 770 { 771 trace_kvm_age_hva(start, end); 772 773 /* 774 * Even though we do not flush TLB, this will still adversely 775 * affect performance on pre-Haswell Intel EPT, where there is 776 * no EPT Access Bit to clear so that we have to tear down EPT 777 * tables instead. If we find this unacceptable, we can always 778 * add a parameter to kvm_age_hva so that it effectively doesn't 779 * do anything on clear_young. 780 * 781 * Also note that currently we never issue secondary TLB flushes 782 * from clear_young, leaving this job up to the regular system 783 * cadence. If we find this inaccurate, we might come up with a 784 * more sophisticated heuristic later. 785 */ 786 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 787 } 788 789 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 790 struct mm_struct *mm, 791 unsigned long address) 792 { 793 trace_kvm_test_age_hva(address); 794 795 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 796 kvm_test_age_gfn); 797 } 798 799 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 800 struct mm_struct *mm) 801 { 802 struct kvm *kvm = mmu_notifier_to_kvm(mn); 803 int idx; 804 805 idx = srcu_read_lock(&kvm->srcu); 806 kvm_arch_flush_shadow_all(kvm); 807 srcu_read_unlock(&kvm->srcu, idx); 808 } 809 810 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 811 .invalidate_range = kvm_mmu_notifier_invalidate_range, 812 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 813 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 814 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 815 .clear_young = kvm_mmu_notifier_clear_young, 816 .test_young = kvm_mmu_notifier_test_young, 817 .change_pte = kvm_mmu_notifier_change_pte, 818 .release = kvm_mmu_notifier_release, 819 }; 820 821 static int kvm_init_mmu_notifier(struct kvm *kvm) 822 { 823 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 824 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 825 } 826 827 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 828 829 static int kvm_init_mmu_notifier(struct kvm *kvm) 830 { 831 return 0; 832 } 833 834 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 835 836 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 837 static int kvm_pm_notifier_call(struct notifier_block *bl, 838 unsigned long state, 839 void *unused) 840 { 841 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 842 843 return kvm_arch_pm_notifier(kvm, state); 844 } 845 846 static void kvm_init_pm_notifier(struct kvm *kvm) 847 { 848 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 849 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 850 kvm->pm_notifier.priority = INT_MAX; 851 register_pm_notifier(&kvm->pm_notifier); 852 } 853 854 static void kvm_destroy_pm_notifier(struct kvm *kvm) 855 { 856 unregister_pm_notifier(&kvm->pm_notifier); 857 } 858 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 859 static void kvm_init_pm_notifier(struct kvm *kvm) 860 { 861 } 862 863 static void kvm_destroy_pm_notifier(struct kvm *kvm) 864 { 865 } 866 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 867 868 static struct kvm_memslots *kvm_alloc_memslots(void) 869 { 870 struct kvm_memslots *slots; 871 872 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 873 if (!slots) 874 return NULL; 875 876 hash_init(slots->id_hash); 877 878 return slots; 879 } 880 881 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 882 { 883 if (!memslot->dirty_bitmap) 884 return; 885 886 kvfree(memslot->dirty_bitmap); 887 memslot->dirty_bitmap = NULL; 888 } 889 890 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 891 { 892 kvm_destroy_dirty_bitmap(slot); 893 894 kvm_arch_free_memslot(kvm, slot); 895 896 slot->flags = 0; 897 slot->npages = 0; 898 } 899 900 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 901 { 902 struct kvm_memory_slot *memslot; 903 904 if (!slots) 905 return; 906 907 kvm_for_each_memslot(memslot, slots) 908 kvm_free_memslot(kvm, memslot); 909 910 kvfree(slots); 911 } 912 913 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 914 { 915 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 916 case KVM_STATS_TYPE_INSTANT: 917 return 0444; 918 case KVM_STATS_TYPE_CUMULATIVE: 919 case KVM_STATS_TYPE_PEAK: 920 default: 921 return 0644; 922 } 923 } 924 925 926 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 927 { 928 int i; 929 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 930 kvm_vcpu_stats_header.num_desc; 931 932 if (!kvm->debugfs_dentry) 933 return; 934 935 debugfs_remove_recursive(kvm->debugfs_dentry); 936 937 if (kvm->debugfs_stat_data) { 938 for (i = 0; i < kvm_debugfs_num_entries; i++) 939 kfree(kvm->debugfs_stat_data[i]); 940 kfree(kvm->debugfs_stat_data); 941 } 942 } 943 944 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 945 { 946 static DEFINE_MUTEX(kvm_debugfs_lock); 947 struct dentry *dent; 948 char dir_name[ITOA_MAX_LEN * 2]; 949 struct kvm_stat_data *stat_data; 950 const struct _kvm_stats_desc *pdesc; 951 int i, ret; 952 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 953 kvm_vcpu_stats_header.num_desc; 954 955 if (!debugfs_initialized()) 956 return 0; 957 958 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 959 mutex_lock(&kvm_debugfs_lock); 960 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 961 if (dent) { 962 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 963 dput(dent); 964 mutex_unlock(&kvm_debugfs_lock); 965 return 0; 966 } 967 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 968 mutex_unlock(&kvm_debugfs_lock); 969 if (IS_ERR(dent)) 970 return 0; 971 972 kvm->debugfs_dentry = dent; 973 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 974 sizeof(*kvm->debugfs_stat_data), 975 GFP_KERNEL_ACCOUNT); 976 if (!kvm->debugfs_stat_data) 977 return -ENOMEM; 978 979 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 980 pdesc = &kvm_vm_stats_desc[i]; 981 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 982 if (!stat_data) 983 return -ENOMEM; 984 985 stat_data->kvm = kvm; 986 stat_data->desc = pdesc; 987 stat_data->kind = KVM_STAT_VM; 988 kvm->debugfs_stat_data[i] = stat_data; 989 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 990 kvm->debugfs_dentry, stat_data, 991 &stat_fops_per_vm); 992 } 993 994 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 995 pdesc = &kvm_vcpu_stats_desc[i]; 996 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 997 if (!stat_data) 998 return -ENOMEM; 999 1000 stat_data->kvm = kvm; 1001 stat_data->desc = pdesc; 1002 stat_data->kind = KVM_STAT_VCPU; 1003 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1004 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1005 kvm->debugfs_dentry, stat_data, 1006 &stat_fops_per_vm); 1007 } 1008 1009 ret = kvm_arch_create_vm_debugfs(kvm); 1010 if (ret) { 1011 kvm_destroy_vm_debugfs(kvm); 1012 return i; 1013 } 1014 1015 return 0; 1016 } 1017 1018 /* 1019 * Called after the VM is otherwise initialized, but just before adding it to 1020 * the vm_list. 1021 */ 1022 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1023 { 1024 return 0; 1025 } 1026 1027 /* 1028 * Called just after removing the VM from the vm_list, but before doing any 1029 * other destruction. 1030 */ 1031 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1032 { 1033 } 1034 1035 /* 1036 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1037 * be setup already, so we can create arch-specific debugfs entries under it. 1038 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1039 * a per-arch destroy interface is not needed. 1040 */ 1041 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1042 { 1043 return 0; 1044 } 1045 1046 static struct kvm *kvm_create_vm(unsigned long type) 1047 { 1048 struct kvm *kvm = kvm_arch_alloc_vm(); 1049 int r = -ENOMEM; 1050 int i; 1051 1052 if (!kvm) 1053 return ERR_PTR(-ENOMEM); 1054 1055 KVM_MMU_LOCK_INIT(kvm); 1056 mmgrab(current->mm); 1057 kvm->mm = current->mm; 1058 kvm_eventfd_init(kvm); 1059 mutex_init(&kvm->lock); 1060 mutex_init(&kvm->irq_lock); 1061 mutex_init(&kvm->slots_lock); 1062 mutex_init(&kvm->slots_arch_lock); 1063 spin_lock_init(&kvm->mn_invalidate_lock); 1064 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1065 xa_init(&kvm->vcpu_array); 1066 1067 INIT_LIST_HEAD(&kvm->devices); 1068 1069 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1070 1071 if (init_srcu_struct(&kvm->srcu)) 1072 goto out_err_no_srcu; 1073 if (init_srcu_struct(&kvm->irq_srcu)) 1074 goto out_err_no_irq_srcu; 1075 1076 refcount_set(&kvm->users_count, 1); 1077 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1078 struct kvm_memslots *slots = kvm_alloc_memslots(); 1079 1080 if (!slots) 1081 goto out_err_no_arch_destroy_vm; 1082 /* Generations must be different for each address space. */ 1083 slots->generation = i; 1084 rcu_assign_pointer(kvm->memslots[i], slots); 1085 } 1086 1087 for (i = 0; i < KVM_NR_BUSES; i++) { 1088 rcu_assign_pointer(kvm->buses[i], 1089 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1090 if (!kvm->buses[i]) 1091 goto out_err_no_arch_destroy_vm; 1092 } 1093 1094 kvm->max_halt_poll_ns = halt_poll_ns; 1095 1096 r = kvm_arch_init_vm(kvm, type); 1097 if (r) 1098 goto out_err_no_arch_destroy_vm; 1099 1100 r = hardware_enable_all(); 1101 if (r) 1102 goto out_err_no_disable; 1103 1104 #ifdef CONFIG_HAVE_KVM_IRQFD 1105 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1106 #endif 1107 1108 r = kvm_init_mmu_notifier(kvm); 1109 if (r) 1110 goto out_err_no_mmu_notifier; 1111 1112 r = kvm_arch_post_init_vm(kvm); 1113 if (r) 1114 goto out_err; 1115 1116 mutex_lock(&kvm_lock); 1117 list_add(&kvm->vm_list, &vm_list); 1118 mutex_unlock(&kvm_lock); 1119 1120 preempt_notifier_inc(); 1121 kvm_init_pm_notifier(kvm); 1122 1123 return kvm; 1124 1125 out_err: 1126 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1127 if (kvm->mmu_notifier.ops) 1128 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1129 #endif 1130 out_err_no_mmu_notifier: 1131 hardware_disable_all(); 1132 out_err_no_disable: 1133 kvm_arch_destroy_vm(kvm); 1134 out_err_no_arch_destroy_vm: 1135 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1136 for (i = 0; i < KVM_NR_BUSES; i++) 1137 kfree(kvm_get_bus(kvm, i)); 1138 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1139 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1140 cleanup_srcu_struct(&kvm->irq_srcu); 1141 out_err_no_irq_srcu: 1142 cleanup_srcu_struct(&kvm->srcu); 1143 out_err_no_srcu: 1144 kvm_arch_free_vm(kvm); 1145 mmdrop(current->mm); 1146 return ERR_PTR(r); 1147 } 1148 1149 static void kvm_destroy_devices(struct kvm *kvm) 1150 { 1151 struct kvm_device *dev, *tmp; 1152 1153 /* 1154 * We do not need to take the kvm->lock here, because nobody else 1155 * has a reference to the struct kvm at this point and therefore 1156 * cannot access the devices list anyhow. 1157 */ 1158 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1159 list_del(&dev->vm_node); 1160 dev->ops->destroy(dev); 1161 } 1162 } 1163 1164 static void kvm_destroy_vm(struct kvm *kvm) 1165 { 1166 int i; 1167 struct mm_struct *mm = kvm->mm; 1168 1169 kvm_destroy_pm_notifier(kvm); 1170 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1171 kvm_destroy_vm_debugfs(kvm); 1172 kvm_arch_sync_events(kvm); 1173 mutex_lock(&kvm_lock); 1174 list_del(&kvm->vm_list); 1175 mutex_unlock(&kvm_lock); 1176 kvm_arch_pre_destroy_vm(kvm); 1177 1178 kvm_free_irq_routing(kvm); 1179 for (i = 0; i < KVM_NR_BUSES; i++) { 1180 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1181 1182 if (bus) 1183 kvm_io_bus_destroy(bus); 1184 kvm->buses[i] = NULL; 1185 } 1186 kvm_coalesced_mmio_free(kvm); 1187 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1188 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1189 /* 1190 * At this point, pending calls to invalidate_range_start() 1191 * have completed but no more MMU notifiers will run, so 1192 * mn_active_invalidate_count may remain unbalanced. 1193 * No threads can be waiting in install_new_memslots as the 1194 * last reference on KVM has been dropped, but freeing 1195 * memslots would deadlock without this manual intervention. 1196 */ 1197 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1198 kvm->mn_active_invalidate_count = 0; 1199 #else 1200 kvm_arch_flush_shadow_all(kvm); 1201 #endif 1202 kvm_arch_destroy_vm(kvm); 1203 kvm_destroy_devices(kvm); 1204 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1205 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1206 cleanup_srcu_struct(&kvm->irq_srcu); 1207 cleanup_srcu_struct(&kvm->srcu); 1208 kvm_arch_free_vm(kvm); 1209 preempt_notifier_dec(); 1210 hardware_disable_all(); 1211 mmdrop(mm); 1212 } 1213 1214 void kvm_get_kvm(struct kvm *kvm) 1215 { 1216 refcount_inc(&kvm->users_count); 1217 } 1218 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1219 1220 /* 1221 * Make sure the vm is not during destruction, which is a safe version of 1222 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1223 */ 1224 bool kvm_get_kvm_safe(struct kvm *kvm) 1225 { 1226 return refcount_inc_not_zero(&kvm->users_count); 1227 } 1228 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1229 1230 void kvm_put_kvm(struct kvm *kvm) 1231 { 1232 if (refcount_dec_and_test(&kvm->users_count)) 1233 kvm_destroy_vm(kvm); 1234 } 1235 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1236 1237 /* 1238 * Used to put a reference that was taken on behalf of an object associated 1239 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1240 * of the new file descriptor fails and the reference cannot be transferred to 1241 * its final owner. In such cases, the caller is still actively using @kvm and 1242 * will fail miserably if the refcount unexpectedly hits zero. 1243 */ 1244 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1245 { 1246 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1247 } 1248 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1249 1250 static int kvm_vm_release(struct inode *inode, struct file *filp) 1251 { 1252 struct kvm *kvm = filp->private_data; 1253 1254 kvm_irqfd_release(kvm); 1255 1256 kvm_put_kvm(kvm); 1257 return 0; 1258 } 1259 1260 /* 1261 * Allocation size is twice as large as the actual dirty bitmap size. 1262 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1263 */ 1264 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1265 { 1266 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 1267 1268 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 1269 if (!memslot->dirty_bitmap) 1270 return -ENOMEM; 1271 1272 return 0; 1273 } 1274 1275 static void kvm_replace_memslot(struct kvm_memslots *slots, 1276 struct kvm_memory_slot *old, 1277 struct kvm_memory_slot *new) 1278 { 1279 /* 1280 * Remove the old memslot from the hash list, copying the node data 1281 * would corrupt the list. 1282 */ 1283 if (old) { 1284 hash_del(&old->id_node); 1285 1286 if (!new) 1287 return; 1288 1289 /* Copy the source *data*, not the pointer, to the destination. */ 1290 *new = *old; 1291 } 1292 1293 /* (Re)Add the new memslot. */ 1294 hash_add(slots->id_hash, &new->id_node, new->id); 1295 } 1296 1297 static void kvm_shift_memslot(struct kvm_memslots *slots, int dst, int src) 1298 { 1299 struct kvm_memory_slot *mslots = slots->memslots; 1300 1301 kvm_replace_memslot(slots, &mslots[src], &mslots[dst]); 1302 } 1303 1304 /* 1305 * Delete a memslot by decrementing the number of used slots and shifting all 1306 * other entries in the array forward one spot. 1307 * @memslot is a detached dummy struct with just .id and .as_id filled. 1308 */ 1309 static inline void kvm_memslot_delete(struct kvm_memslots *slots, 1310 struct kvm_memory_slot *memslot) 1311 { 1312 struct kvm_memory_slot *mslots = slots->memslots; 1313 struct kvm_memory_slot *oldslot = id_to_memslot(slots, memslot->id); 1314 int i; 1315 1316 if (WARN_ON(!oldslot)) 1317 return; 1318 1319 slots->used_slots--; 1320 1321 if (atomic_read(&slots->last_used_slot) >= slots->used_slots) 1322 atomic_set(&slots->last_used_slot, 0); 1323 1324 /* 1325 * Remove the to-be-deleted memslot from the list _before_ shifting 1326 * the trailing memslots forward, its data will be overwritten. 1327 * Defer the (somewhat pointless) copying of the memslot until after 1328 * the last slot has been shifted to avoid overwriting said last slot. 1329 */ 1330 kvm_replace_memslot(slots, oldslot, NULL); 1331 1332 for (i = oldslot - mslots; i < slots->used_slots; i++) 1333 kvm_shift_memslot(slots, i, i + 1); 1334 mslots[i] = *memslot; 1335 } 1336 1337 /* 1338 * "Insert" a new memslot by incrementing the number of used slots. Returns 1339 * the new slot's initial index into the memslots array. 1340 */ 1341 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots) 1342 { 1343 return slots->used_slots++; 1344 } 1345 1346 /* 1347 * Move a changed memslot backwards in the array by shifting existing slots 1348 * with a higher GFN toward the front of the array. Note, the changed memslot 1349 * itself is not preserved in the array, i.e. not swapped at this time, only 1350 * its new index into the array is tracked. Returns the changed memslot's 1351 * current index into the memslots array. 1352 * The memslot at the returned index will not be in @slots->id_hash by then. 1353 * @memslot is a detached struct with desired final data of the changed slot. 1354 */ 1355 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots, 1356 struct kvm_memory_slot *memslot) 1357 { 1358 struct kvm_memory_slot *mslots = slots->memslots; 1359 struct kvm_memory_slot *oldslot = id_to_memslot(slots, memslot->id); 1360 int i; 1361 1362 if (!oldslot || !slots->used_slots) 1363 return -1; 1364 1365 /* 1366 * Delete the slot from the hash table before sorting the remaining 1367 * slots, the slot's data may be overwritten when copying slots as part 1368 * of the sorting proccess. update_memslots() will unconditionally 1369 * rewrite the entire slot and re-add it to the hash table. 1370 */ 1371 kvm_replace_memslot(slots, oldslot, NULL); 1372 1373 /* 1374 * Move the target memslot backward in the array by shifting existing 1375 * memslots with a higher GFN (than the target memslot) towards the 1376 * front of the array. 1377 */ 1378 for (i = oldslot - mslots; i < slots->used_slots - 1; i++) { 1379 if (memslot->base_gfn > mslots[i + 1].base_gfn) 1380 break; 1381 1382 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn); 1383 1384 kvm_shift_memslot(slots, i, i + 1); 1385 } 1386 return i; 1387 } 1388 1389 /* 1390 * Move a changed memslot forwards in the array by shifting existing slots with 1391 * a lower GFN toward the back of the array. Note, the changed memslot itself 1392 * is not preserved in the array, i.e. not swapped at this time, only its new 1393 * index into the array is tracked. Returns the changed memslot's final index 1394 * into the memslots array. 1395 * The memslot at the returned index will not be in @slots->id_hash by then. 1396 * @memslot is a detached struct with desired final data of the new or 1397 * changed slot. 1398 * Assumes that the memslot at @start index is not in @slots->id_hash. 1399 */ 1400 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots, 1401 struct kvm_memory_slot *memslot, 1402 int start) 1403 { 1404 struct kvm_memory_slot *mslots = slots->memslots; 1405 int i; 1406 1407 for (i = start; i > 0; i--) { 1408 if (memslot->base_gfn < mslots[i - 1].base_gfn) 1409 break; 1410 1411 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn); 1412 1413 kvm_shift_memslot(slots, i, i - 1); 1414 } 1415 return i; 1416 } 1417 1418 /* 1419 * Re-sort memslots based on their GFN to account for an added, deleted, or 1420 * moved memslot. Sorting memslots by GFN allows using a binary search during 1421 * memslot lookup. 1422 * 1423 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry 1424 * at memslots[0] has the highest GFN. 1425 * 1426 * The sorting algorithm takes advantage of having initially sorted memslots 1427 * and knowing the position of the changed memslot. Sorting is also optimized 1428 * by not swapping the updated memslot and instead only shifting other memslots 1429 * and tracking the new index for the update memslot. Only once its final 1430 * index is known is the updated memslot copied into its position in the array. 1431 * 1432 * - When deleting a memslot, the deleted memslot simply needs to be moved to 1433 * the end of the array. 1434 * 1435 * - When creating a memslot, the algorithm "inserts" the new memslot at the 1436 * end of the array and then it forward to its correct location. 1437 * 1438 * - When moving a memslot, the algorithm first moves the updated memslot 1439 * backward to handle the scenario where the memslot's GFN was changed to a 1440 * lower value. update_memslots() then falls through and runs the same flow 1441 * as creating a memslot to move the memslot forward to handle the scenario 1442 * where its GFN was changed to a higher value. 1443 * 1444 * Note, slots are sorted from highest->lowest instead of lowest->highest for 1445 * historical reasons. Originally, invalid memslots where denoted by having 1446 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots 1447 * to the end of the array. The current algorithm uses dedicated logic to 1448 * delete a memslot and thus does not rely on invalid memslots having GFN=0. 1449 * 1450 * The other historical motiviation for highest->lowest was to improve the 1451 * performance of memslot lookup. KVM originally used a linear search starting 1452 * at memslots[0]. On x86, the largest memslot usually has one of the highest, 1453 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a 1454 * single memslot above the 4gb boundary. As the largest memslot is also the 1455 * most likely to be referenced, sorting it to the front of the array was 1456 * advantageous. The current binary search starts from the middle of the array 1457 * and uses an LRU pointer to improve performance for all memslots and GFNs. 1458 * 1459 * @memslot is a detached struct, not a part of the current or new memslot 1460 * array. 1461 */ 1462 static void update_memslots(struct kvm_memslots *slots, 1463 struct kvm_memory_slot *memslot, 1464 enum kvm_mr_change change) 1465 { 1466 int i; 1467 1468 if (change == KVM_MR_DELETE) { 1469 kvm_memslot_delete(slots, memslot); 1470 } else { 1471 if (change == KVM_MR_CREATE) 1472 i = kvm_memslot_insert_back(slots); 1473 else 1474 i = kvm_memslot_move_backward(slots, memslot); 1475 i = kvm_memslot_move_forward(slots, memslot, i); 1476 1477 if (WARN_ON_ONCE(i < 0)) 1478 return; 1479 1480 /* 1481 * Copy the memslot to its new position in memslots and update 1482 * its index accordingly. 1483 */ 1484 slots->memslots[i] = *memslot; 1485 kvm_replace_memslot(slots, NULL, &slots->memslots[i]); 1486 } 1487 } 1488 1489 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1490 { 1491 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1492 1493 #ifdef __KVM_HAVE_READONLY_MEM 1494 valid_flags |= KVM_MEM_READONLY; 1495 #endif 1496 1497 if (mem->flags & ~valid_flags) 1498 return -EINVAL; 1499 1500 return 0; 1501 } 1502 1503 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 1504 int as_id, struct kvm_memslots *slots) 1505 { 1506 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 1507 u64 gen = old_memslots->generation; 1508 1509 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1510 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1511 1512 /* 1513 * Do not store the new memslots while there are invalidations in 1514 * progress, otherwise the locking in invalidate_range_start and 1515 * invalidate_range_end will be unbalanced. 1516 */ 1517 spin_lock(&kvm->mn_invalidate_lock); 1518 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1519 while (kvm->mn_active_invalidate_count) { 1520 set_current_state(TASK_UNINTERRUPTIBLE); 1521 spin_unlock(&kvm->mn_invalidate_lock); 1522 schedule(); 1523 spin_lock(&kvm->mn_invalidate_lock); 1524 } 1525 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1526 rcu_assign_pointer(kvm->memslots[as_id], slots); 1527 spin_unlock(&kvm->mn_invalidate_lock); 1528 1529 /* 1530 * Acquired in kvm_set_memslot. Must be released before synchronize 1531 * SRCU below in order to avoid deadlock with another thread 1532 * acquiring the slots_arch_lock in an srcu critical section. 1533 */ 1534 mutex_unlock(&kvm->slots_arch_lock); 1535 1536 synchronize_srcu_expedited(&kvm->srcu); 1537 1538 /* 1539 * Increment the new memslot generation a second time, dropping the 1540 * update in-progress flag and incrementing the generation based on 1541 * the number of address spaces. This provides a unique and easily 1542 * identifiable generation number while the memslots are in flux. 1543 */ 1544 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1545 1546 /* 1547 * Generations must be unique even across address spaces. We do not need 1548 * a global counter for that, instead the generation space is evenly split 1549 * across address spaces. For example, with two address spaces, address 1550 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1551 * use generations 1, 3, 5, ... 1552 */ 1553 gen += KVM_ADDRESS_SPACE_NUM; 1554 1555 kvm_arch_memslots_updated(kvm, gen); 1556 1557 slots->generation = gen; 1558 1559 return old_memslots; 1560 } 1561 1562 static size_t kvm_memslots_size(int slots) 1563 { 1564 return sizeof(struct kvm_memslots) + 1565 (sizeof(struct kvm_memory_slot) * slots); 1566 } 1567 1568 /* 1569 * Note, at a minimum, the current number of used slots must be allocated, even 1570 * when deleting a memslot, as we need a complete duplicate of the memslots for 1571 * use when invalidating a memslot prior to deleting/moving the memslot. 1572 */ 1573 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old, 1574 enum kvm_mr_change change) 1575 { 1576 struct kvm_memslots *slots; 1577 size_t new_size; 1578 struct kvm_memory_slot *memslot; 1579 1580 if (change == KVM_MR_CREATE) 1581 new_size = kvm_memslots_size(old->used_slots + 1); 1582 else 1583 new_size = kvm_memslots_size(old->used_slots); 1584 1585 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT); 1586 if (unlikely(!slots)) 1587 return NULL; 1588 1589 memcpy(slots, old, kvm_memslots_size(old->used_slots)); 1590 1591 hash_init(slots->id_hash); 1592 kvm_for_each_memslot(memslot, slots) 1593 hash_add(slots->id_hash, &memslot->id_node, memslot->id); 1594 1595 return slots; 1596 } 1597 1598 static void kvm_copy_memslots_arch(struct kvm_memslots *to, 1599 struct kvm_memslots *from) 1600 { 1601 int i; 1602 1603 WARN_ON_ONCE(to->used_slots != from->used_slots); 1604 1605 for (i = 0; i < from->used_slots; i++) 1606 to->memslots[i].arch = from->memslots[i].arch; 1607 } 1608 1609 static int kvm_prepare_memory_region(struct kvm *kvm, 1610 const struct kvm_memory_slot *old, 1611 struct kvm_memory_slot *new, 1612 enum kvm_mr_change change) 1613 { 1614 int r; 1615 1616 /* 1617 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1618 * will be freed on "commit". If logging is enabled in both old and 1619 * new, reuse the existing bitmap. If logging is enabled only in the 1620 * new and KVM isn't using a ring buffer, allocate and initialize a 1621 * new bitmap. 1622 */ 1623 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1624 new->dirty_bitmap = NULL; 1625 else if (old->dirty_bitmap) 1626 new->dirty_bitmap = old->dirty_bitmap; 1627 else if (!kvm->dirty_ring_size) { 1628 r = kvm_alloc_dirty_bitmap(new); 1629 if (r) 1630 return r; 1631 1632 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1633 bitmap_set(new->dirty_bitmap, 0, new->npages); 1634 } 1635 1636 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1637 1638 /* Free the bitmap on failure if it was allocated above. */ 1639 if (r && new->dirty_bitmap && !old->dirty_bitmap) 1640 kvm_destroy_dirty_bitmap(new); 1641 1642 return r; 1643 } 1644 1645 static void kvm_commit_memory_region(struct kvm *kvm, 1646 struct kvm_memory_slot *old, 1647 const struct kvm_memory_slot *new, 1648 enum kvm_mr_change change) 1649 { 1650 /* 1651 * Update the total number of memslot pages before calling the arch 1652 * hook so that architectures can consume the result directly. 1653 */ 1654 if (change == KVM_MR_DELETE) 1655 kvm->nr_memslot_pages -= old->npages; 1656 else if (change == KVM_MR_CREATE) 1657 kvm->nr_memslot_pages += new->npages; 1658 1659 kvm_arch_commit_memory_region(kvm, old, new, change); 1660 1661 /* 1662 * Free the old memslot's metadata. On DELETE, free the whole thing, 1663 * otherwise free the dirty bitmap as needed (the below effectively 1664 * checks both the flags and whether a ring buffer is being used). 1665 */ 1666 if (change == KVM_MR_DELETE) 1667 kvm_free_memslot(kvm, old); 1668 else if (old->dirty_bitmap && !new->dirty_bitmap) 1669 kvm_destroy_dirty_bitmap(old); 1670 } 1671 1672 static int kvm_set_memslot(struct kvm *kvm, 1673 struct kvm_memory_slot *new, 1674 enum kvm_mr_change change) 1675 { 1676 struct kvm_memory_slot *slot, old; 1677 struct kvm_memslots *slots; 1678 int r; 1679 1680 /* 1681 * Released in install_new_memslots. 1682 * 1683 * Must be held from before the current memslots are copied until 1684 * after the new memslots are installed with rcu_assign_pointer, 1685 * then released before the synchronize srcu in install_new_memslots. 1686 * 1687 * When modifying memslots outside of the slots_lock, must be held 1688 * before reading the pointer to the current memslots until after all 1689 * changes to those memslots are complete. 1690 * 1691 * These rules ensure that installing new memslots does not lose 1692 * changes made to the previous memslots. 1693 */ 1694 mutex_lock(&kvm->slots_arch_lock); 1695 1696 slots = kvm_dup_memslots(__kvm_memslots(kvm, new->as_id), change); 1697 if (!slots) { 1698 mutex_unlock(&kvm->slots_arch_lock); 1699 return -ENOMEM; 1700 } 1701 1702 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1703 /* 1704 * Note, the INVALID flag needs to be in the appropriate entry 1705 * in the freshly allocated memslots, not in @old or @new. 1706 */ 1707 slot = id_to_memslot(slots, new->id); 1708 slot->flags |= KVM_MEMSLOT_INVALID; 1709 1710 /* 1711 * We can re-use the old memslots, the only difference from the 1712 * newly installed memslots is the invalid flag, which will get 1713 * dropped by update_memslots anyway. We'll also revert to the 1714 * old memslots if preparing the new memory region fails. 1715 */ 1716 slots = install_new_memslots(kvm, new->as_id, slots); 1717 1718 /* From this point no new shadow pages pointing to a deleted, 1719 * or moved, memslot will be created. 1720 * 1721 * validation of sp->gfn happens in: 1722 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1723 * - kvm_is_visible_gfn (mmu_check_root) 1724 */ 1725 kvm_arch_flush_shadow_memslot(kvm, slot); 1726 1727 /* Released in install_new_memslots. */ 1728 mutex_lock(&kvm->slots_arch_lock); 1729 1730 /* 1731 * The arch-specific fields of the now-active memslots could 1732 * have been modified between releasing slots_arch_lock in 1733 * install_new_memslots and re-acquiring slots_arch_lock above. 1734 * Copy them to the inactive memslots. Arch code is required 1735 * to retrieve memslots *after* acquiring slots_arch_lock, thus 1736 * the active memslots are guaranteed to be fresh. 1737 */ 1738 kvm_copy_memslots_arch(slots, __kvm_memslots(kvm, new->as_id)); 1739 } 1740 1741 /* 1742 * Make a full copy of the old memslot, the pointer will become stale 1743 * when the memslots are re-sorted by update_memslots(), and the old 1744 * memslot needs to be referenced after calling update_memslots(), e.g. 1745 * to free its resources and for arch specific behavior. This needs to 1746 * happen *after* (re)acquiring slots_arch_lock. 1747 */ 1748 slot = id_to_memslot(slots, new->id); 1749 if (slot) { 1750 old = *slot; 1751 } else { 1752 WARN_ON_ONCE(change != KVM_MR_CREATE); 1753 memset(&old, 0, sizeof(old)); 1754 old.id = new->id; 1755 old.as_id = new->as_id; 1756 } 1757 1758 r = kvm_prepare_memory_region(kvm, &old, new, change); 1759 if (r) 1760 goto out_slots; 1761 1762 update_memslots(slots, new, change); 1763 slots = install_new_memslots(kvm, new->as_id, slots); 1764 1765 kvm_commit_memory_region(kvm, &old, new, change); 1766 1767 kvfree(slots); 1768 return 0; 1769 1770 out_slots: 1771 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1772 slots = install_new_memslots(kvm, new->as_id, slots); 1773 else 1774 mutex_unlock(&kvm->slots_arch_lock); 1775 kvfree(slots); 1776 return r; 1777 } 1778 1779 /* 1780 * Allocate some memory and give it an address in the guest physical address 1781 * space. 1782 * 1783 * Discontiguous memory is allowed, mostly for framebuffers. 1784 * 1785 * Must be called holding kvm->slots_lock for write. 1786 */ 1787 int __kvm_set_memory_region(struct kvm *kvm, 1788 const struct kvm_userspace_memory_region *mem) 1789 { 1790 struct kvm_memory_slot *old, *tmp; 1791 struct kvm_memory_slot new; 1792 enum kvm_mr_change change; 1793 int as_id, id; 1794 int r; 1795 1796 r = check_memory_region_flags(mem); 1797 if (r) 1798 return r; 1799 1800 as_id = mem->slot >> 16; 1801 id = (u16)mem->slot; 1802 1803 /* General sanity checks */ 1804 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1805 (mem->memory_size != (unsigned long)mem->memory_size)) 1806 return -EINVAL; 1807 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1808 return -EINVAL; 1809 /* We can read the guest memory with __xxx_user() later on. */ 1810 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1811 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1812 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1813 mem->memory_size)) 1814 return -EINVAL; 1815 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1816 return -EINVAL; 1817 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1818 return -EINVAL; 1819 1820 /* 1821 * Note, the old memslot (and the pointer itself!) may be invalidated 1822 * and/or destroyed by kvm_set_memslot(). 1823 */ 1824 old = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1825 1826 if (!mem->memory_size) { 1827 if (!old || !old->npages) 1828 return -EINVAL; 1829 1830 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1831 return -EIO; 1832 1833 memset(&new, 0, sizeof(new)); 1834 new.id = id; 1835 new.as_id = as_id; 1836 1837 return kvm_set_memslot(kvm, &new, KVM_MR_DELETE); 1838 } 1839 1840 new.as_id = as_id; 1841 new.id = id; 1842 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1843 new.npages = mem->memory_size >> PAGE_SHIFT; 1844 new.flags = mem->flags; 1845 new.userspace_addr = mem->userspace_addr; 1846 1847 if (new.npages > KVM_MEM_MAX_NR_PAGES) 1848 return -EINVAL; 1849 1850 if (!old || !old->npages) { 1851 change = KVM_MR_CREATE; 1852 1853 /* 1854 * To simplify KVM internals, the total number of pages across 1855 * all memslots must fit in an unsigned long. 1856 */ 1857 if ((kvm->nr_memslot_pages + new.npages) < kvm->nr_memslot_pages) 1858 return -EINVAL; 1859 } else { /* Modify an existing slot. */ 1860 if ((new.userspace_addr != old->userspace_addr) || 1861 (new.npages != old->npages) || 1862 ((new.flags ^ old->flags) & KVM_MEM_READONLY)) 1863 return -EINVAL; 1864 1865 if (new.base_gfn != old->base_gfn) 1866 change = KVM_MR_MOVE; 1867 else if (new.flags != old->flags) 1868 change = KVM_MR_FLAGS_ONLY; 1869 else /* Nothing to change. */ 1870 return 0; 1871 } 1872 1873 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1874 /* Check for overlaps */ 1875 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) { 1876 if (tmp->id == id) 1877 continue; 1878 if (!((new.base_gfn + new.npages <= tmp->base_gfn) || 1879 (new.base_gfn >= tmp->base_gfn + tmp->npages))) 1880 return -EEXIST; 1881 } 1882 } 1883 1884 return kvm_set_memslot(kvm, &new, change); 1885 } 1886 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1887 1888 int kvm_set_memory_region(struct kvm *kvm, 1889 const struct kvm_userspace_memory_region *mem) 1890 { 1891 int r; 1892 1893 mutex_lock(&kvm->slots_lock); 1894 r = __kvm_set_memory_region(kvm, mem); 1895 mutex_unlock(&kvm->slots_lock); 1896 return r; 1897 } 1898 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1899 1900 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1901 struct kvm_userspace_memory_region *mem) 1902 { 1903 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1904 return -EINVAL; 1905 1906 return kvm_set_memory_region(kvm, mem); 1907 } 1908 1909 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1910 /** 1911 * kvm_get_dirty_log - get a snapshot of dirty pages 1912 * @kvm: pointer to kvm instance 1913 * @log: slot id and address to which we copy the log 1914 * @is_dirty: set to '1' if any dirty pages were found 1915 * @memslot: set to the associated memslot, always valid on success 1916 */ 1917 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1918 int *is_dirty, struct kvm_memory_slot **memslot) 1919 { 1920 struct kvm_memslots *slots; 1921 int i, as_id, id; 1922 unsigned long n; 1923 unsigned long any = 0; 1924 1925 /* Dirty ring tracking is exclusive to dirty log tracking */ 1926 if (kvm->dirty_ring_size) 1927 return -ENXIO; 1928 1929 *memslot = NULL; 1930 *is_dirty = 0; 1931 1932 as_id = log->slot >> 16; 1933 id = (u16)log->slot; 1934 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1935 return -EINVAL; 1936 1937 slots = __kvm_memslots(kvm, as_id); 1938 *memslot = id_to_memslot(slots, id); 1939 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1940 return -ENOENT; 1941 1942 kvm_arch_sync_dirty_log(kvm, *memslot); 1943 1944 n = kvm_dirty_bitmap_bytes(*memslot); 1945 1946 for (i = 0; !any && i < n/sizeof(long); ++i) 1947 any = (*memslot)->dirty_bitmap[i]; 1948 1949 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1950 return -EFAULT; 1951 1952 if (any) 1953 *is_dirty = 1; 1954 return 0; 1955 } 1956 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1957 1958 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1959 /** 1960 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1961 * and reenable dirty page tracking for the corresponding pages. 1962 * @kvm: pointer to kvm instance 1963 * @log: slot id and address to which we copy the log 1964 * 1965 * We need to keep it in mind that VCPU threads can write to the bitmap 1966 * concurrently. So, to avoid losing track of dirty pages we keep the 1967 * following order: 1968 * 1969 * 1. Take a snapshot of the bit and clear it if needed. 1970 * 2. Write protect the corresponding page. 1971 * 3. Copy the snapshot to the userspace. 1972 * 4. Upon return caller flushes TLB's if needed. 1973 * 1974 * Between 2 and 4, the guest may write to the page using the remaining TLB 1975 * entry. This is not a problem because the page is reported dirty using 1976 * the snapshot taken before and step 4 ensures that writes done after 1977 * exiting to userspace will be logged for the next call. 1978 * 1979 */ 1980 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 1981 { 1982 struct kvm_memslots *slots; 1983 struct kvm_memory_slot *memslot; 1984 int i, as_id, id; 1985 unsigned long n; 1986 unsigned long *dirty_bitmap; 1987 unsigned long *dirty_bitmap_buffer; 1988 bool flush; 1989 1990 /* Dirty ring tracking is exclusive to dirty log tracking */ 1991 if (kvm->dirty_ring_size) 1992 return -ENXIO; 1993 1994 as_id = log->slot >> 16; 1995 id = (u16)log->slot; 1996 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1997 return -EINVAL; 1998 1999 slots = __kvm_memslots(kvm, as_id); 2000 memslot = id_to_memslot(slots, id); 2001 if (!memslot || !memslot->dirty_bitmap) 2002 return -ENOENT; 2003 2004 dirty_bitmap = memslot->dirty_bitmap; 2005 2006 kvm_arch_sync_dirty_log(kvm, memslot); 2007 2008 n = kvm_dirty_bitmap_bytes(memslot); 2009 flush = false; 2010 if (kvm->manual_dirty_log_protect) { 2011 /* 2012 * Unlike kvm_get_dirty_log, we always return false in *flush, 2013 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2014 * is some code duplication between this function and 2015 * kvm_get_dirty_log, but hopefully all architecture 2016 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2017 * can be eliminated. 2018 */ 2019 dirty_bitmap_buffer = dirty_bitmap; 2020 } else { 2021 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2022 memset(dirty_bitmap_buffer, 0, n); 2023 2024 KVM_MMU_LOCK(kvm); 2025 for (i = 0; i < n / sizeof(long); i++) { 2026 unsigned long mask; 2027 gfn_t offset; 2028 2029 if (!dirty_bitmap[i]) 2030 continue; 2031 2032 flush = true; 2033 mask = xchg(&dirty_bitmap[i], 0); 2034 dirty_bitmap_buffer[i] = mask; 2035 2036 offset = i * BITS_PER_LONG; 2037 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2038 offset, mask); 2039 } 2040 KVM_MMU_UNLOCK(kvm); 2041 } 2042 2043 if (flush) 2044 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2045 2046 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2047 return -EFAULT; 2048 return 0; 2049 } 2050 2051 2052 /** 2053 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2054 * @kvm: kvm instance 2055 * @log: slot id and address to which we copy the log 2056 * 2057 * Steps 1-4 below provide general overview of dirty page logging. See 2058 * kvm_get_dirty_log_protect() function description for additional details. 2059 * 2060 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2061 * always flush the TLB (step 4) even if previous step failed and the dirty 2062 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2063 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2064 * writes will be marked dirty for next log read. 2065 * 2066 * 1. Take a snapshot of the bit and clear it if needed. 2067 * 2. Write protect the corresponding page. 2068 * 3. Copy the snapshot to the userspace. 2069 * 4. Flush TLB's if needed. 2070 */ 2071 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2072 struct kvm_dirty_log *log) 2073 { 2074 int r; 2075 2076 mutex_lock(&kvm->slots_lock); 2077 2078 r = kvm_get_dirty_log_protect(kvm, log); 2079 2080 mutex_unlock(&kvm->slots_lock); 2081 return r; 2082 } 2083 2084 /** 2085 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2086 * and reenable dirty page tracking for the corresponding pages. 2087 * @kvm: pointer to kvm instance 2088 * @log: slot id and address from which to fetch the bitmap of dirty pages 2089 */ 2090 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2091 struct kvm_clear_dirty_log *log) 2092 { 2093 struct kvm_memslots *slots; 2094 struct kvm_memory_slot *memslot; 2095 int as_id, id; 2096 gfn_t offset; 2097 unsigned long i, n; 2098 unsigned long *dirty_bitmap; 2099 unsigned long *dirty_bitmap_buffer; 2100 bool flush; 2101 2102 /* Dirty ring tracking is exclusive to dirty log tracking */ 2103 if (kvm->dirty_ring_size) 2104 return -ENXIO; 2105 2106 as_id = log->slot >> 16; 2107 id = (u16)log->slot; 2108 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2109 return -EINVAL; 2110 2111 if (log->first_page & 63) 2112 return -EINVAL; 2113 2114 slots = __kvm_memslots(kvm, as_id); 2115 memslot = id_to_memslot(slots, id); 2116 if (!memslot || !memslot->dirty_bitmap) 2117 return -ENOENT; 2118 2119 dirty_bitmap = memslot->dirty_bitmap; 2120 2121 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2122 2123 if (log->first_page > memslot->npages || 2124 log->num_pages > memslot->npages - log->first_page || 2125 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2126 return -EINVAL; 2127 2128 kvm_arch_sync_dirty_log(kvm, memslot); 2129 2130 flush = false; 2131 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2132 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2133 return -EFAULT; 2134 2135 KVM_MMU_LOCK(kvm); 2136 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2137 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2138 i++, offset += BITS_PER_LONG) { 2139 unsigned long mask = *dirty_bitmap_buffer++; 2140 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2141 if (!mask) 2142 continue; 2143 2144 mask &= atomic_long_fetch_andnot(mask, p); 2145 2146 /* 2147 * mask contains the bits that really have been cleared. This 2148 * never includes any bits beyond the length of the memslot (if 2149 * the length is not aligned to 64 pages), therefore it is not 2150 * a problem if userspace sets them in log->dirty_bitmap. 2151 */ 2152 if (mask) { 2153 flush = true; 2154 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2155 offset, mask); 2156 } 2157 } 2158 KVM_MMU_UNLOCK(kvm); 2159 2160 if (flush) 2161 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2162 2163 return 0; 2164 } 2165 2166 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2167 struct kvm_clear_dirty_log *log) 2168 { 2169 int r; 2170 2171 mutex_lock(&kvm->slots_lock); 2172 2173 r = kvm_clear_dirty_log_protect(kvm, log); 2174 2175 mutex_unlock(&kvm->slots_lock); 2176 return r; 2177 } 2178 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2179 2180 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2181 { 2182 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2183 } 2184 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2185 2186 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2187 { 2188 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2189 struct kvm_memory_slot *slot; 2190 int slot_index; 2191 2192 slot = try_get_memslot(slots, vcpu->last_used_slot, gfn); 2193 if (slot) 2194 return slot; 2195 2196 /* 2197 * Fall back to searching all memslots. We purposely use 2198 * search_memslots() instead of __gfn_to_memslot() to avoid 2199 * thrashing the VM-wide last_used_index in kvm_memslots. 2200 */ 2201 slot = search_memslots(slots, gfn, &slot_index, false); 2202 if (slot) { 2203 vcpu->last_used_slot = slot_index; 2204 return slot; 2205 } 2206 2207 return NULL; 2208 } 2209 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 2210 2211 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2212 { 2213 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2214 2215 return kvm_is_visible_memslot(memslot); 2216 } 2217 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2218 2219 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2220 { 2221 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2222 2223 return kvm_is_visible_memslot(memslot); 2224 } 2225 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2226 2227 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2228 { 2229 struct vm_area_struct *vma; 2230 unsigned long addr, size; 2231 2232 size = PAGE_SIZE; 2233 2234 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2235 if (kvm_is_error_hva(addr)) 2236 return PAGE_SIZE; 2237 2238 mmap_read_lock(current->mm); 2239 vma = find_vma(current->mm, addr); 2240 if (!vma) 2241 goto out; 2242 2243 size = vma_kernel_pagesize(vma); 2244 2245 out: 2246 mmap_read_unlock(current->mm); 2247 2248 return size; 2249 } 2250 2251 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 2252 { 2253 return slot->flags & KVM_MEM_READONLY; 2254 } 2255 2256 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2257 gfn_t *nr_pages, bool write) 2258 { 2259 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2260 return KVM_HVA_ERR_BAD; 2261 2262 if (memslot_is_readonly(slot) && write) 2263 return KVM_HVA_ERR_RO_BAD; 2264 2265 if (nr_pages) 2266 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2267 2268 return __gfn_to_hva_memslot(slot, gfn); 2269 } 2270 2271 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2272 gfn_t *nr_pages) 2273 { 2274 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2275 } 2276 2277 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2278 gfn_t gfn) 2279 { 2280 return gfn_to_hva_many(slot, gfn, NULL); 2281 } 2282 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2283 2284 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2285 { 2286 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2287 } 2288 EXPORT_SYMBOL_GPL(gfn_to_hva); 2289 2290 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2291 { 2292 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2293 } 2294 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2295 2296 /* 2297 * Return the hva of a @gfn and the R/W attribute if possible. 2298 * 2299 * @slot: the kvm_memory_slot which contains @gfn 2300 * @gfn: the gfn to be translated 2301 * @writable: used to return the read/write attribute of the @slot if the hva 2302 * is valid and @writable is not NULL 2303 */ 2304 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2305 gfn_t gfn, bool *writable) 2306 { 2307 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2308 2309 if (!kvm_is_error_hva(hva) && writable) 2310 *writable = !memslot_is_readonly(slot); 2311 2312 return hva; 2313 } 2314 2315 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2316 { 2317 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2318 2319 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2320 } 2321 2322 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2323 { 2324 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2325 2326 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2327 } 2328 2329 static inline int check_user_page_hwpoison(unsigned long addr) 2330 { 2331 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2332 2333 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2334 return rc == -EHWPOISON; 2335 } 2336 2337 /* 2338 * The fast path to get the writable pfn which will be stored in @pfn, 2339 * true indicates success, otherwise false is returned. It's also the 2340 * only part that runs if we can in atomic context. 2341 */ 2342 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2343 bool *writable, kvm_pfn_t *pfn) 2344 { 2345 struct page *page[1]; 2346 2347 /* 2348 * Fast pin a writable pfn only if it is a write fault request 2349 * or the caller allows to map a writable pfn for a read fault 2350 * request. 2351 */ 2352 if (!(write_fault || writable)) 2353 return false; 2354 2355 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2356 *pfn = page_to_pfn(page[0]); 2357 2358 if (writable) 2359 *writable = true; 2360 return true; 2361 } 2362 2363 return false; 2364 } 2365 2366 /* 2367 * The slow path to get the pfn of the specified host virtual address, 2368 * 1 indicates success, -errno is returned if error is detected. 2369 */ 2370 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2371 bool *writable, kvm_pfn_t *pfn) 2372 { 2373 unsigned int flags = FOLL_HWPOISON; 2374 struct page *page; 2375 int npages = 0; 2376 2377 might_sleep(); 2378 2379 if (writable) 2380 *writable = write_fault; 2381 2382 if (write_fault) 2383 flags |= FOLL_WRITE; 2384 if (async) 2385 flags |= FOLL_NOWAIT; 2386 2387 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2388 if (npages != 1) 2389 return npages; 2390 2391 /* map read fault as writable if possible */ 2392 if (unlikely(!write_fault) && writable) { 2393 struct page *wpage; 2394 2395 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2396 *writable = true; 2397 put_page(page); 2398 page = wpage; 2399 } 2400 } 2401 *pfn = page_to_pfn(page); 2402 return npages; 2403 } 2404 2405 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2406 { 2407 if (unlikely(!(vma->vm_flags & VM_READ))) 2408 return false; 2409 2410 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2411 return false; 2412 2413 return true; 2414 } 2415 2416 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2417 { 2418 if (kvm_is_reserved_pfn(pfn)) 2419 return 1; 2420 return get_page_unless_zero(pfn_to_page(pfn)); 2421 } 2422 2423 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2424 unsigned long addr, bool *async, 2425 bool write_fault, bool *writable, 2426 kvm_pfn_t *p_pfn) 2427 { 2428 kvm_pfn_t pfn; 2429 pte_t *ptep; 2430 spinlock_t *ptl; 2431 int r; 2432 2433 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2434 if (r) { 2435 /* 2436 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2437 * not call the fault handler, so do it here. 2438 */ 2439 bool unlocked = false; 2440 r = fixup_user_fault(current->mm, addr, 2441 (write_fault ? FAULT_FLAG_WRITE : 0), 2442 &unlocked); 2443 if (unlocked) 2444 return -EAGAIN; 2445 if (r) 2446 return r; 2447 2448 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2449 if (r) 2450 return r; 2451 } 2452 2453 if (write_fault && !pte_write(*ptep)) { 2454 pfn = KVM_PFN_ERR_RO_FAULT; 2455 goto out; 2456 } 2457 2458 if (writable) 2459 *writable = pte_write(*ptep); 2460 pfn = pte_pfn(*ptep); 2461 2462 /* 2463 * Get a reference here because callers of *hva_to_pfn* and 2464 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2465 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2466 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2467 * simply do nothing for reserved pfns. 2468 * 2469 * Whoever called remap_pfn_range is also going to call e.g. 2470 * unmap_mapping_range before the underlying pages are freed, 2471 * causing a call to our MMU notifier. 2472 * 2473 * Certain IO or PFNMAP mappings can be backed with valid 2474 * struct pages, but be allocated without refcounting e.g., 2475 * tail pages of non-compound higher order allocations, which 2476 * would then underflow the refcount when the caller does the 2477 * required put_page. Don't allow those pages here. 2478 */ 2479 if (!kvm_try_get_pfn(pfn)) 2480 r = -EFAULT; 2481 2482 out: 2483 pte_unmap_unlock(ptep, ptl); 2484 *p_pfn = pfn; 2485 2486 return r; 2487 } 2488 2489 /* 2490 * Pin guest page in memory and return its pfn. 2491 * @addr: host virtual address which maps memory to the guest 2492 * @atomic: whether this function can sleep 2493 * @async: whether this function need to wait IO complete if the 2494 * host page is not in the memory 2495 * @write_fault: whether we should get a writable host page 2496 * @writable: whether it allows to map a writable host page for !@write_fault 2497 * 2498 * The function will map a writable host page for these two cases: 2499 * 1): @write_fault = true 2500 * 2): @write_fault = false && @writable, @writable will tell the caller 2501 * whether the mapping is writable. 2502 */ 2503 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2504 bool write_fault, bool *writable) 2505 { 2506 struct vm_area_struct *vma; 2507 kvm_pfn_t pfn = 0; 2508 int npages, r; 2509 2510 /* we can do it either atomically or asynchronously, not both */ 2511 BUG_ON(atomic && async); 2512 2513 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2514 return pfn; 2515 2516 if (atomic) 2517 return KVM_PFN_ERR_FAULT; 2518 2519 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2520 if (npages == 1) 2521 return pfn; 2522 2523 mmap_read_lock(current->mm); 2524 if (npages == -EHWPOISON || 2525 (!async && check_user_page_hwpoison(addr))) { 2526 pfn = KVM_PFN_ERR_HWPOISON; 2527 goto exit; 2528 } 2529 2530 retry: 2531 vma = vma_lookup(current->mm, addr); 2532 2533 if (vma == NULL) 2534 pfn = KVM_PFN_ERR_FAULT; 2535 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2536 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 2537 if (r == -EAGAIN) 2538 goto retry; 2539 if (r < 0) 2540 pfn = KVM_PFN_ERR_FAULT; 2541 } else { 2542 if (async && vma_is_valid(vma, write_fault)) 2543 *async = true; 2544 pfn = KVM_PFN_ERR_FAULT; 2545 } 2546 exit: 2547 mmap_read_unlock(current->mm); 2548 return pfn; 2549 } 2550 2551 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 2552 bool atomic, bool *async, bool write_fault, 2553 bool *writable, hva_t *hva) 2554 { 2555 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2556 2557 if (hva) 2558 *hva = addr; 2559 2560 if (addr == KVM_HVA_ERR_RO_BAD) { 2561 if (writable) 2562 *writable = false; 2563 return KVM_PFN_ERR_RO_FAULT; 2564 } 2565 2566 if (kvm_is_error_hva(addr)) { 2567 if (writable) 2568 *writable = false; 2569 return KVM_PFN_NOSLOT; 2570 } 2571 2572 /* Do not map writable pfn in the readonly memslot. */ 2573 if (writable && memslot_is_readonly(slot)) { 2574 *writable = false; 2575 writable = NULL; 2576 } 2577 2578 return hva_to_pfn(addr, atomic, async, write_fault, 2579 writable); 2580 } 2581 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2582 2583 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2584 bool *writable) 2585 { 2586 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2587 write_fault, writable, NULL); 2588 } 2589 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2590 2591 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 2592 { 2593 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2594 } 2595 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2596 2597 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 2598 { 2599 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2600 } 2601 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2602 2603 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2604 { 2605 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2606 } 2607 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2608 2609 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2610 { 2611 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2612 } 2613 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2614 2615 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2616 { 2617 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2618 } 2619 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2620 2621 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2622 struct page **pages, int nr_pages) 2623 { 2624 unsigned long addr; 2625 gfn_t entry = 0; 2626 2627 addr = gfn_to_hva_many(slot, gfn, &entry); 2628 if (kvm_is_error_hva(addr)) 2629 return -1; 2630 2631 if (entry < nr_pages) 2632 return 0; 2633 2634 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2635 } 2636 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2637 2638 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2639 { 2640 if (is_error_noslot_pfn(pfn)) 2641 return KVM_ERR_PTR_BAD_PAGE; 2642 2643 if (kvm_is_reserved_pfn(pfn)) { 2644 WARN_ON(1); 2645 return KVM_ERR_PTR_BAD_PAGE; 2646 } 2647 2648 return pfn_to_page(pfn); 2649 } 2650 2651 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2652 { 2653 kvm_pfn_t pfn; 2654 2655 pfn = gfn_to_pfn(kvm, gfn); 2656 2657 return kvm_pfn_to_page(pfn); 2658 } 2659 EXPORT_SYMBOL_GPL(gfn_to_page); 2660 2661 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2662 { 2663 if (pfn == 0) 2664 return; 2665 2666 if (dirty) 2667 kvm_release_pfn_dirty(pfn); 2668 else 2669 kvm_release_pfn_clean(pfn); 2670 } 2671 2672 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2673 { 2674 kvm_pfn_t pfn; 2675 void *hva = NULL; 2676 struct page *page = KVM_UNMAPPED_PAGE; 2677 2678 if (!map) 2679 return -EINVAL; 2680 2681 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2682 if (is_error_noslot_pfn(pfn)) 2683 return -EINVAL; 2684 2685 if (pfn_valid(pfn)) { 2686 page = pfn_to_page(pfn); 2687 hva = kmap(page); 2688 #ifdef CONFIG_HAS_IOMEM 2689 } else { 2690 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2691 #endif 2692 } 2693 2694 if (!hva) 2695 return -EFAULT; 2696 2697 map->page = page; 2698 map->hva = hva; 2699 map->pfn = pfn; 2700 map->gfn = gfn; 2701 2702 return 0; 2703 } 2704 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2705 2706 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2707 { 2708 if (!map) 2709 return; 2710 2711 if (!map->hva) 2712 return; 2713 2714 if (map->page != KVM_UNMAPPED_PAGE) 2715 kunmap(map->page); 2716 #ifdef CONFIG_HAS_IOMEM 2717 else 2718 memunmap(map->hva); 2719 #endif 2720 2721 if (dirty) 2722 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2723 2724 kvm_release_pfn(map->pfn, dirty); 2725 2726 map->hva = NULL; 2727 map->page = NULL; 2728 } 2729 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2730 2731 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2732 { 2733 kvm_pfn_t pfn; 2734 2735 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2736 2737 return kvm_pfn_to_page(pfn); 2738 } 2739 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2740 2741 void kvm_release_page_clean(struct page *page) 2742 { 2743 WARN_ON(is_error_page(page)); 2744 2745 kvm_release_pfn_clean(page_to_pfn(page)); 2746 } 2747 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2748 2749 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2750 { 2751 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2752 put_page(pfn_to_page(pfn)); 2753 } 2754 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2755 2756 void kvm_release_page_dirty(struct page *page) 2757 { 2758 WARN_ON(is_error_page(page)); 2759 2760 kvm_release_pfn_dirty(page_to_pfn(page)); 2761 } 2762 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2763 2764 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2765 { 2766 kvm_set_pfn_dirty(pfn); 2767 kvm_release_pfn_clean(pfn); 2768 } 2769 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2770 2771 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2772 { 2773 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2774 SetPageDirty(pfn_to_page(pfn)); 2775 } 2776 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2777 2778 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2779 { 2780 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2781 mark_page_accessed(pfn_to_page(pfn)); 2782 } 2783 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2784 2785 static int next_segment(unsigned long len, int offset) 2786 { 2787 if (len > PAGE_SIZE - offset) 2788 return PAGE_SIZE - offset; 2789 else 2790 return len; 2791 } 2792 2793 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2794 void *data, int offset, int len) 2795 { 2796 int r; 2797 unsigned long addr; 2798 2799 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2800 if (kvm_is_error_hva(addr)) 2801 return -EFAULT; 2802 r = __copy_from_user(data, (void __user *)addr + offset, len); 2803 if (r) 2804 return -EFAULT; 2805 return 0; 2806 } 2807 2808 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2809 int len) 2810 { 2811 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2812 2813 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2814 } 2815 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2816 2817 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2818 int offset, int len) 2819 { 2820 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2821 2822 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2823 } 2824 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2825 2826 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2827 { 2828 gfn_t gfn = gpa >> PAGE_SHIFT; 2829 int seg; 2830 int offset = offset_in_page(gpa); 2831 int ret; 2832 2833 while ((seg = next_segment(len, offset)) != 0) { 2834 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2835 if (ret < 0) 2836 return ret; 2837 offset = 0; 2838 len -= seg; 2839 data += seg; 2840 ++gfn; 2841 } 2842 return 0; 2843 } 2844 EXPORT_SYMBOL_GPL(kvm_read_guest); 2845 2846 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2847 { 2848 gfn_t gfn = gpa >> PAGE_SHIFT; 2849 int seg; 2850 int offset = offset_in_page(gpa); 2851 int ret; 2852 2853 while ((seg = next_segment(len, offset)) != 0) { 2854 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2855 if (ret < 0) 2856 return ret; 2857 offset = 0; 2858 len -= seg; 2859 data += seg; 2860 ++gfn; 2861 } 2862 return 0; 2863 } 2864 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2865 2866 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2867 void *data, int offset, unsigned long len) 2868 { 2869 int r; 2870 unsigned long addr; 2871 2872 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2873 if (kvm_is_error_hva(addr)) 2874 return -EFAULT; 2875 pagefault_disable(); 2876 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2877 pagefault_enable(); 2878 if (r) 2879 return -EFAULT; 2880 return 0; 2881 } 2882 2883 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2884 void *data, unsigned long len) 2885 { 2886 gfn_t gfn = gpa >> PAGE_SHIFT; 2887 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2888 int offset = offset_in_page(gpa); 2889 2890 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2891 } 2892 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2893 2894 static int __kvm_write_guest_page(struct kvm *kvm, 2895 struct kvm_memory_slot *memslot, gfn_t gfn, 2896 const void *data, int offset, int len) 2897 { 2898 int r; 2899 unsigned long addr; 2900 2901 addr = gfn_to_hva_memslot(memslot, gfn); 2902 if (kvm_is_error_hva(addr)) 2903 return -EFAULT; 2904 r = __copy_to_user((void __user *)addr + offset, data, len); 2905 if (r) 2906 return -EFAULT; 2907 mark_page_dirty_in_slot(kvm, memslot, gfn); 2908 return 0; 2909 } 2910 2911 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2912 const void *data, int offset, int len) 2913 { 2914 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2915 2916 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2917 } 2918 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2919 2920 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2921 const void *data, int offset, int len) 2922 { 2923 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2924 2925 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 2926 } 2927 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2928 2929 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2930 unsigned long len) 2931 { 2932 gfn_t gfn = gpa >> PAGE_SHIFT; 2933 int seg; 2934 int offset = offset_in_page(gpa); 2935 int ret; 2936 2937 while ((seg = next_segment(len, offset)) != 0) { 2938 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2939 if (ret < 0) 2940 return ret; 2941 offset = 0; 2942 len -= seg; 2943 data += seg; 2944 ++gfn; 2945 } 2946 return 0; 2947 } 2948 EXPORT_SYMBOL_GPL(kvm_write_guest); 2949 2950 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2951 unsigned long len) 2952 { 2953 gfn_t gfn = gpa >> PAGE_SHIFT; 2954 int seg; 2955 int offset = offset_in_page(gpa); 2956 int ret; 2957 2958 while ((seg = next_segment(len, offset)) != 0) { 2959 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2960 if (ret < 0) 2961 return ret; 2962 offset = 0; 2963 len -= seg; 2964 data += seg; 2965 ++gfn; 2966 } 2967 return 0; 2968 } 2969 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2970 2971 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2972 struct gfn_to_hva_cache *ghc, 2973 gpa_t gpa, unsigned long len) 2974 { 2975 int offset = offset_in_page(gpa); 2976 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2977 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2978 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2979 gfn_t nr_pages_avail; 2980 2981 /* Update ghc->generation before performing any error checks. */ 2982 ghc->generation = slots->generation; 2983 2984 if (start_gfn > end_gfn) { 2985 ghc->hva = KVM_HVA_ERR_BAD; 2986 return -EINVAL; 2987 } 2988 2989 /* 2990 * If the requested region crosses two memslots, we still 2991 * verify that the entire region is valid here. 2992 */ 2993 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2994 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2995 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2996 &nr_pages_avail); 2997 if (kvm_is_error_hva(ghc->hva)) 2998 return -EFAULT; 2999 } 3000 3001 /* Use the slow path for cross page reads and writes. */ 3002 if (nr_pages_needed == 1) 3003 ghc->hva += offset; 3004 else 3005 ghc->memslot = NULL; 3006 3007 ghc->gpa = gpa; 3008 ghc->len = len; 3009 return 0; 3010 } 3011 3012 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3013 gpa_t gpa, unsigned long len) 3014 { 3015 struct kvm_memslots *slots = kvm_memslots(kvm); 3016 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3017 } 3018 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3019 3020 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3021 void *data, unsigned int offset, 3022 unsigned long len) 3023 { 3024 struct kvm_memslots *slots = kvm_memslots(kvm); 3025 int r; 3026 gpa_t gpa = ghc->gpa + offset; 3027 3028 if (WARN_ON_ONCE(len + offset > ghc->len)) 3029 return -EINVAL; 3030 3031 if (slots->generation != ghc->generation) { 3032 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3033 return -EFAULT; 3034 } 3035 3036 if (kvm_is_error_hva(ghc->hva)) 3037 return -EFAULT; 3038 3039 if (unlikely(!ghc->memslot)) 3040 return kvm_write_guest(kvm, gpa, data, len); 3041 3042 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3043 if (r) 3044 return -EFAULT; 3045 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3046 3047 return 0; 3048 } 3049 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3050 3051 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3052 void *data, unsigned long len) 3053 { 3054 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3055 } 3056 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3057 3058 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3059 void *data, unsigned int offset, 3060 unsigned long len) 3061 { 3062 struct kvm_memslots *slots = kvm_memslots(kvm); 3063 int r; 3064 gpa_t gpa = ghc->gpa + offset; 3065 3066 if (WARN_ON_ONCE(len + offset > ghc->len)) 3067 return -EINVAL; 3068 3069 if (slots->generation != ghc->generation) { 3070 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3071 return -EFAULT; 3072 } 3073 3074 if (kvm_is_error_hva(ghc->hva)) 3075 return -EFAULT; 3076 3077 if (unlikely(!ghc->memslot)) 3078 return kvm_read_guest(kvm, gpa, data, len); 3079 3080 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3081 if (r) 3082 return -EFAULT; 3083 3084 return 0; 3085 } 3086 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3087 3088 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3089 void *data, unsigned long len) 3090 { 3091 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3092 } 3093 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3094 3095 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3096 { 3097 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3098 gfn_t gfn = gpa >> PAGE_SHIFT; 3099 int seg; 3100 int offset = offset_in_page(gpa); 3101 int ret; 3102 3103 while ((seg = next_segment(len, offset)) != 0) { 3104 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3105 if (ret < 0) 3106 return ret; 3107 offset = 0; 3108 len -= seg; 3109 ++gfn; 3110 } 3111 return 0; 3112 } 3113 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3114 3115 void mark_page_dirty_in_slot(struct kvm *kvm, 3116 struct kvm_memory_slot *memslot, 3117 gfn_t gfn) 3118 { 3119 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3120 unsigned long rel_gfn = gfn - memslot->base_gfn; 3121 u32 slot = (memslot->as_id << 16) | memslot->id; 3122 3123 if (kvm->dirty_ring_size) 3124 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm), 3125 slot, rel_gfn); 3126 else 3127 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3128 } 3129 } 3130 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3131 3132 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3133 { 3134 struct kvm_memory_slot *memslot; 3135 3136 memslot = gfn_to_memslot(kvm, gfn); 3137 mark_page_dirty_in_slot(kvm, memslot, gfn); 3138 } 3139 EXPORT_SYMBOL_GPL(mark_page_dirty); 3140 3141 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3142 { 3143 struct kvm_memory_slot *memslot; 3144 3145 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3146 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3147 } 3148 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3149 3150 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3151 { 3152 if (!vcpu->sigset_active) 3153 return; 3154 3155 /* 3156 * This does a lockless modification of ->real_blocked, which is fine 3157 * because, only current can change ->real_blocked and all readers of 3158 * ->real_blocked don't care as long ->real_blocked is always a subset 3159 * of ->blocked. 3160 */ 3161 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3162 } 3163 3164 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3165 { 3166 if (!vcpu->sigset_active) 3167 return; 3168 3169 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3170 sigemptyset(¤t->real_blocked); 3171 } 3172 3173 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3174 { 3175 unsigned int old, val, grow, grow_start; 3176 3177 old = val = vcpu->halt_poll_ns; 3178 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3179 grow = READ_ONCE(halt_poll_ns_grow); 3180 if (!grow) 3181 goto out; 3182 3183 val *= grow; 3184 if (val < grow_start) 3185 val = grow_start; 3186 3187 if (val > vcpu->kvm->max_halt_poll_ns) 3188 val = vcpu->kvm->max_halt_poll_ns; 3189 3190 vcpu->halt_poll_ns = val; 3191 out: 3192 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3193 } 3194 3195 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3196 { 3197 unsigned int old, val, shrink, grow_start; 3198 3199 old = val = vcpu->halt_poll_ns; 3200 shrink = READ_ONCE(halt_poll_ns_shrink); 3201 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3202 if (shrink == 0) 3203 val = 0; 3204 else 3205 val /= shrink; 3206 3207 if (val < grow_start) 3208 val = 0; 3209 3210 vcpu->halt_poll_ns = val; 3211 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3212 } 3213 3214 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3215 { 3216 int ret = -EINTR; 3217 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3218 3219 if (kvm_arch_vcpu_runnable(vcpu)) { 3220 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3221 goto out; 3222 } 3223 if (kvm_cpu_has_pending_timer(vcpu)) 3224 goto out; 3225 if (signal_pending(current)) 3226 goto out; 3227 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3228 goto out; 3229 3230 ret = 0; 3231 out: 3232 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3233 return ret; 3234 } 3235 3236 static inline void 3237 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited) 3238 { 3239 if (waited) 3240 vcpu->stat.generic.halt_poll_fail_ns += poll_ns; 3241 else 3242 vcpu->stat.generic.halt_poll_success_ns += poll_ns; 3243 } 3244 3245 /* 3246 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 3247 */ 3248 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 3249 { 3250 ktime_t start, cur, poll_end; 3251 bool waited = false; 3252 u64 block_ns; 3253 3254 kvm_arch_vcpu_blocking(vcpu); 3255 3256 start = cur = poll_end = ktime_get(); 3257 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 3258 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 3259 3260 ++vcpu->stat.generic.halt_attempted_poll; 3261 do { 3262 /* 3263 * This sets KVM_REQ_UNHALT if an interrupt 3264 * arrives. 3265 */ 3266 if (kvm_vcpu_check_block(vcpu) < 0) { 3267 ++vcpu->stat.generic.halt_successful_poll; 3268 if (!vcpu_valid_wakeup(vcpu)) 3269 ++vcpu->stat.generic.halt_poll_invalid; 3270 3271 KVM_STATS_LOG_HIST_UPDATE( 3272 vcpu->stat.generic.halt_poll_success_hist, 3273 ktime_to_ns(ktime_get()) - 3274 ktime_to_ns(start)); 3275 goto out; 3276 } 3277 cpu_relax(); 3278 poll_end = cur = ktime_get(); 3279 } while (kvm_vcpu_can_poll(cur, stop)); 3280 3281 KVM_STATS_LOG_HIST_UPDATE( 3282 vcpu->stat.generic.halt_poll_fail_hist, 3283 ktime_to_ns(ktime_get()) - ktime_to_ns(start)); 3284 } 3285 3286 3287 prepare_to_rcuwait(&vcpu->wait); 3288 for (;;) { 3289 set_current_state(TASK_INTERRUPTIBLE); 3290 3291 if (kvm_vcpu_check_block(vcpu) < 0) 3292 break; 3293 3294 waited = true; 3295 schedule(); 3296 } 3297 finish_rcuwait(&vcpu->wait); 3298 cur = ktime_get(); 3299 if (waited) { 3300 vcpu->stat.generic.halt_wait_ns += 3301 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3302 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3303 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3304 } 3305 out: 3306 kvm_arch_vcpu_unblocking(vcpu); 3307 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3308 3309 update_halt_poll_stats( 3310 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited); 3311 3312 if (!kvm_arch_no_poll(vcpu)) { 3313 if (!vcpu_valid_wakeup(vcpu)) { 3314 shrink_halt_poll_ns(vcpu); 3315 } else if (vcpu->kvm->max_halt_poll_ns) { 3316 if (block_ns <= vcpu->halt_poll_ns) 3317 ; 3318 /* we had a long block, shrink polling */ 3319 else if (vcpu->halt_poll_ns && 3320 block_ns > vcpu->kvm->max_halt_poll_ns) 3321 shrink_halt_poll_ns(vcpu); 3322 /* we had a short halt and our poll time is too small */ 3323 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3324 block_ns < vcpu->kvm->max_halt_poll_ns) 3325 grow_halt_poll_ns(vcpu); 3326 } else { 3327 vcpu->halt_poll_ns = 0; 3328 } 3329 } 3330 3331 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 3332 kvm_arch_vcpu_block_finish(vcpu); 3333 } 3334 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 3335 3336 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3337 { 3338 struct rcuwait *waitp; 3339 3340 waitp = kvm_arch_vcpu_get_wait(vcpu); 3341 if (rcuwait_wake_up(waitp)) { 3342 WRITE_ONCE(vcpu->ready, true); 3343 ++vcpu->stat.generic.halt_wakeup; 3344 return true; 3345 } 3346 3347 return false; 3348 } 3349 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3350 3351 #ifndef CONFIG_S390 3352 /* 3353 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3354 */ 3355 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3356 { 3357 int me, cpu; 3358 3359 if (kvm_vcpu_wake_up(vcpu)) 3360 return; 3361 3362 /* 3363 * Note, the vCPU could get migrated to a different pCPU at any point 3364 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3365 * IPI to the previous pCPU. But, that's ok because the purpose of the 3366 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3367 * vCPU also requires it to leave IN_GUEST_MODE. 3368 */ 3369 me = get_cpu(); 3370 if (kvm_arch_vcpu_should_kick(vcpu)) { 3371 cpu = READ_ONCE(vcpu->cpu); 3372 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3373 smp_send_reschedule(cpu); 3374 } 3375 put_cpu(); 3376 } 3377 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3378 #endif /* !CONFIG_S390 */ 3379 3380 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3381 { 3382 struct pid *pid; 3383 struct task_struct *task = NULL; 3384 int ret = 0; 3385 3386 rcu_read_lock(); 3387 pid = rcu_dereference(target->pid); 3388 if (pid) 3389 task = get_pid_task(pid, PIDTYPE_PID); 3390 rcu_read_unlock(); 3391 if (!task) 3392 return ret; 3393 ret = yield_to(task, 1); 3394 put_task_struct(task); 3395 3396 return ret; 3397 } 3398 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3399 3400 /* 3401 * Helper that checks whether a VCPU is eligible for directed yield. 3402 * Most eligible candidate to yield is decided by following heuristics: 3403 * 3404 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3405 * (preempted lock holder), indicated by @in_spin_loop. 3406 * Set at the beginning and cleared at the end of interception/PLE handler. 3407 * 3408 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3409 * chance last time (mostly it has become eligible now since we have probably 3410 * yielded to lockholder in last iteration. This is done by toggling 3411 * @dy_eligible each time a VCPU checked for eligibility.) 3412 * 3413 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3414 * to preempted lock-holder could result in wrong VCPU selection and CPU 3415 * burning. Giving priority for a potential lock-holder increases lock 3416 * progress. 3417 * 3418 * Since algorithm is based on heuristics, accessing another VCPU data without 3419 * locking does not harm. It may result in trying to yield to same VCPU, fail 3420 * and continue with next VCPU and so on. 3421 */ 3422 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3423 { 3424 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3425 bool eligible; 3426 3427 eligible = !vcpu->spin_loop.in_spin_loop || 3428 vcpu->spin_loop.dy_eligible; 3429 3430 if (vcpu->spin_loop.in_spin_loop) 3431 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3432 3433 return eligible; 3434 #else 3435 return true; 3436 #endif 3437 } 3438 3439 /* 3440 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3441 * a vcpu_load/vcpu_put pair. However, for most architectures 3442 * kvm_arch_vcpu_runnable does not require vcpu_load. 3443 */ 3444 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3445 { 3446 return kvm_arch_vcpu_runnable(vcpu); 3447 } 3448 3449 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3450 { 3451 if (kvm_arch_dy_runnable(vcpu)) 3452 return true; 3453 3454 #ifdef CONFIG_KVM_ASYNC_PF 3455 if (!list_empty_careful(&vcpu->async_pf.done)) 3456 return true; 3457 #endif 3458 3459 return false; 3460 } 3461 3462 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3463 { 3464 return false; 3465 } 3466 3467 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3468 { 3469 struct kvm *kvm = me->kvm; 3470 struct kvm_vcpu *vcpu; 3471 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3472 unsigned long i; 3473 int yielded = 0; 3474 int try = 3; 3475 int pass; 3476 3477 kvm_vcpu_set_in_spin_loop(me, true); 3478 /* 3479 * We boost the priority of a VCPU that is runnable but not 3480 * currently running, because it got preempted by something 3481 * else and called schedule in __vcpu_run. Hopefully that 3482 * VCPU is holding the lock that we need and will release it. 3483 * We approximate round-robin by starting at the last boosted VCPU. 3484 */ 3485 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3486 kvm_for_each_vcpu(i, vcpu, kvm) { 3487 if (!pass && i <= last_boosted_vcpu) { 3488 i = last_boosted_vcpu; 3489 continue; 3490 } else if (pass && i > last_boosted_vcpu) 3491 break; 3492 if (!READ_ONCE(vcpu->ready)) 3493 continue; 3494 if (vcpu == me) 3495 continue; 3496 if (rcuwait_active(&vcpu->wait) && 3497 !vcpu_dy_runnable(vcpu)) 3498 continue; 3499 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3500 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3501 !kvm_arch_vcpu_in_kernel(vcpu)) 3502 continue; 3503 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3504 continue; 3505 3506 yielded = kvm_vcpu_yield_to(vcpu); 3507 if (yielded > 0) { 3508 kvm->last_boosted_vcpu = i; 3509 break; 3510 } else if (yielded < 0) { 3511 try--; 3512 if (!try) 3513 break; 3514 } 3515 } 3516 } 3517 kvm_vcpu_set_in_spin_loop(me, false); 3518 3519 /* Ensure vcpu is not eligible during next spinloop */ 3520 kvm_vcpu_set_dy_eligible(me, false); 3521 } 3522 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3523 3524 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3525 { 3526 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 3527 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3528 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3529 kvm->dirty_ring_size / PAGE_SIZE); 3530 #else 3531 return false; 3532 #endif 3533 } 3534 3535 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3536 { 3537 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3538 struct page *page; 3539 3540 if (vmf->pgoff == 0) 3541 page = virt_to_page(vcpu->run); 3542 #ifdef CONFIG_X86 3543 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3544 page = virt_to_page(vcpu->arch.pio_data); 3545 #endif 3546 #ifdef CONFIG_KVM_MMIO 3547 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3548 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3549 #endif 3550 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3551 page = kvm_dirty_ring_get_page( 3552 &vcpu->dirty_ring, 3553 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3554 else 3555 return kvm_arch_vcpu_fault(vcpu, vmf); 3556 get_page(page); 3557 vmf->page = page; 3558 return 0; 3559 } 3560 3561 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3562 .fault = kvm_vcpu_fault, 3563 }; 3564 3565 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3566 { 3567 struct kvm_vcpu *vcpu = file->private_data; 3568 unsigned long pages = vma_pages(vma); 3569 3570 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3571 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3572 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3573 return -EINVAL; 3574 3575 vma->vm_ops = &kvm_vcpu_vm_ops; 3576 return 0; 3577 } 3578 3579 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3580 { 3581 struct kvm_vcpu *vcpu = filp->private_data; 3582 3583 kvm_put_kvm(vcpu->kvm); 3584 return 0; 3585 } 3586 3587 static struct file_operations kvm_vcpu_fops = { 3588 .release = kvm_vcpu_release, 3589 .unlocked_ioctl = kvm_vcpu_ioctl, 3590 .mmap = kvm_vcpu_mmap, 3591 .llseek = noop_llseek, 3592 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3593 }; 3594 3595 /* 3596 * Allocates an inode for the vcpu. 3597 */ 3598 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3599 { 3600 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3601 3602 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3603 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3604 } 3605 3606 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3607 { 3608 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3609 struct dentry *debugfs_dentry; 3610 char dir_name[ITOA_MAX_LEN * 2]; 3611 3612 if (!debugfs_initialized()) 3613 return; 3614 3615 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3616 debugfs_dentry = debugfs_create_dir(dir_name, 3617 vcpu->kvm->debugfs_dentry); 3618 3619 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3620 #endif 3621 } 3622 3623 /* 3624 * Creates some virtual cpus. Good luck creating more than one. 3625 */ 3626 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3627 { 3628 int r; 3629 struct kvm_vcpu *vcpu; 3630 struct page *page; 3631 3632 if (id >= KVM_MAX_VCPU_IDS) 3633 return -EINVAL; 3634 3635 mutex_lock(&kvm->lock); 3636 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3637 mutex_unlock(&kvm->lock); 3638 return -EINVAL; 3639 } 3640 3641 kvm->created_vcpus++; 3642 mutex_unlock(&kvm->lock); 3643 3644 r = kvm_arch_vcpu_precreate(kvm, id); 3645 if (r) 3646 goto vcpu_decrement; 3647 3648 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3649 if (!vcpu) { 3650 r = -ENOMEM; 3651 goto vcpu_decrement; 3652 } 3653 3654 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3655 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3656 if (!page) { 3657 r = -ENOMEM; 3658 goto vcpu_free; 3659 } 3660 vcpu->run = page_address(page); 3661 3662 kvm_vcpu_init(vcpu, kvm, id); 3663 3664 r = kvm_arch_vcpu_create(vcpu); 3665 if (r) 3666 goto vcpu_free_run_page; 3667 3668 if (kvm->dirty_ring_size) { 3669 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3670 id, kvm->dirty_ring_size); 3671 if (r) 3672 goto arch_vcpu_destroy; 3673 } 3674 3675 mutex_lock(&kvm->lock); 3676 if (kvm_get_vcpu_by_id(kvm, id)) { 3677 r = -EEXIST; 3678 goto unlock_vcpu_destroy; 3679 } 3680 3681 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3682 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3683 BUG_ON(r == -EBUSY); 3684 if (r) 3685 goto unlock_vcpu_destroy; 3686 3687 /* Fill the stats id string for the vcpu */ 3688 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3689 task_pid_nr(current), id); 3690 3691 /* Now it's all set up, let userspace reach it */ 3692 kvm_get_kvm(kvm); 3693 r = create_vcpu_fd(vcpu); 3694 if (r < 0) { 3695 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3696 kvm_put_kvm_no_destroy(kvm); 3697 goto unlock_vcpu_destroy; 3698 } 3699 3700 /* 3701 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3702 * pointer before kvm->online_vcpu's incremented value. 3703 */ 3704 smp_wmb(); 3705 atomic_inc(&kvm->online_vcpus); 3706 3707 mutex_unlock(&kvm->lock); 3708 kvm_arch_vcpu_postcreate(vcpu); 3709 kvm_create_vcpu_debugfs(vcpu); 3710 return r; 3711 3712 unlock_vcpu_destroy: 3713 mutex_unlock(&kvm->lock); 3714 kvm_dirty_ring_free(&vcpu->dirty_ring); 3715 arch_vcpu_destroy: 3716 kvm_arch_vcpu_destroy(vcpu); 3717 vcpu_free_run_page: 3718 free_page((unsigned long)vcpu->run); 3719 vcpu_free: 3720 kmem_cache_free(kvm_vcpu_cache, vcpu); 3721 vcpu_decrement: 3722 mutex_lock(&kvm->lock); 3723 kvm->created_vcpus--; 3724 mutex_unlock(&kvm->lock); 3725 return r; 3726 } 3727 3728 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3729 { 3730 if (sigset) { 3731 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3732 vcpu->sigset_active = 1; 3733 vcpu->sigset = *sigset; 3734 } else 3735 vcpu->sigset_active = 0; 3736 return 0; 3737 } 3738 3739 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3740 size_t size, loff_t *offset) 3741 { 3742 struct kvm_vcpu *vcpu = file->private_data; 3743 3744 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3745 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3746 sizeof(vcpu->stat), user_buffer, size, offset); 3747 } 3748 3749 static const struct file_operations kvm_vcpu_stats_fops = { 3750 .read = kvm_vcpu_stats_read, 3751 .llseek = noop_llseek, 3752 }; 3753 3754 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3755 { 3756 int fd; 3757 struct file *file; 3758 char name[15 + ITOA_MAX_LEN + 1]; 3759 3760 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3761 3762 fd = get_unused_fd_flags(O_CLOEXEC); 3763 if (fd < 0) 3764 return fd; 3765 3766 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3767 if (IS_ERR(file)) { 3768 put_unused_fd(fd); 3769 return PTR_ERR(file); 3770 } 3771 file->f_mode |= FMODE_PREAD; 3772 fd_install(fd, file); 3773 3774 return fd; 3775 } 3776 3777 static long kvm_vcpu_ioctl(struct file *filp, 3778 unsigned int ioctl, unsigned long arg) 3779 { 3780 struct kvm_vcpu *vcpu = filp->private_data; 3781 void __user *argp = (void __user *)arg; 3782 int r; 3783 struct kvm_fpu *fpu = NULL; 3784 struct kvm_sregs *kvm_sregs = NULL; 3785 3786 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3787 return -EIO; 3788 3789 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3790 return -EINVAL; 3791 3792 /* 3793 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3794 * execution; mutex_lock() would break them. 3795 */ 3796 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3797 if (r != -ENOIOCTLCMD) 3798 return r; 3799 3800 if (mutex_lock_killable(&vcpu->mutex)) 3801 return -EINTR; 3802 switch (ioctl) { 3803 case KVM_RUN: { 3804 struct pid *oldpid; 3805 r = -EINVAL; 3806 if (arg) 3807 goto out; 3808 oldpid = rcu_access_pointer(vcpu->pid); 3809 if (unlikely(oldpid != task_pid(current))) { 3810 /* The thread running this VCPU changed. */ 3811 struct pid *newpid; 3812 3813 r = kvm_arch_vcpu_run_pid_change(vcpu); 3814 if (r) 3815 break; 3816 3817 newpid = get_task_pid(current, PIDTYPE_PID); 3818 rcu_assign_pointer(vcpu->pid, newpid); 3819 if (oldpid) 3820 synchronize_rcu(); 3821 put_pid(oldpid); 3822 } 3823 r = kvm_arch_vcpu_ioctl_run(vcpu); 3824 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3825 break; 3826 } 3827 case KVM_GET_REGS: { 3828 struct kvm_regs *kvm_regs; 3829 3830 r = -ENOMEM; 3831 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3832 if (!kvm_regs) 3833 goto out; 3834 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3835 if (r) 3836 goto out_free1; 3837 r = -EFAULT; 3838 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3839 goto out_free1; 3840 r = 0; 3841 out_free1: 3842 kfree(kvm_regs); 3843 break; 3844 } 3845 case KVM_SET_REGS: { 3846 struct kvm_regs *kvm_regs; 3847 3848 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3849 if (IS_ERR(kvm_regs)) { 3850 r = PTR_ERR(kvm_regs); 3851 goto out; 3852 } 3853 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3854 kfree(kvm_regs); 3855 break; 3856 } 3857 case KVM_GET_SREGS: { 3858 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3859 GFP_KERNEL_ACCOUNT); 3860 r = -ENOMEM; 3861 if (!kvm_sregs) 3862 goto out; 3863 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3864 if (r) 3865 goto out; 3866 r = -EFAULT; 3867 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3868 goto out; 3869 r = 0; 3870 break; 3871 } 3872 case KVM_SET_SREGS: { 3873 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3874 if (IS_ERR(kvm_sregs)) { 3875 r = PTR_ERR(kvm_sregs); 3876 kvm_sregs = NULL; 3877 goto out; 3878 } 3879 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3880 break; 3881 } 3882 case KVM_GET_MP_STATE: { 3883 struct kvm_mp_state mp_state; 3884 3885 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3886 if (r) 3887 goto out; 3888 r = -EFAULT; 3889 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3890 goto out; 3891 r = 0; 3892 break; 3893 } 3894 case KVM_SET_MP_STATE: { 3895 struct kvm_mp_state mp_state; 3896 3897 r = -EFAULT; 3898 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3899 goto out; 3900 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3901 break; 3902 } 3903 case KVM_TRANSLATE: { 3904 struct kvm_translation tr; 3905 3906 r = -EFAULT; 3907 if (copy_from_user(&tr, argp, sizeof(tr))) 3908 goto out; 3909 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3910 if (r) 3911 goto out; 3912 r = -EFAULT; 3913 if (copy_to_user(argp, &tr, sizeof(tr))) 3914 goto out; 3915 r = 0; 3916 break; 3917 } 3918 case KVM_SET_GUEST_DEBUG: { 3919 struct kvm_guest_debug dbg; 3920 3921 r = -EFAULT; 3922 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3923 goto out; 3924 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3925 break; 3926 } 3927 case KVM_SET_SIGNAL_MASK: { 3928 struct kvm_signal_mask __user *sigmask_arg = argp; 3929 struct kvm_signal_mask kvm_sigmask; 3930 sigset_t sigset, *p; 3931 3932 p = NULL; 3933 if (argp) { 3934 r = -EFAULT; 3935 if (copy_from_user(&kvm_sigmask, argp, 3936 sizeof(kvm_sigmask))) 3937 goto out; 3938 r = -EINVAL; 3939 if (kvm_sigmask.len != sizeof(sigset)) 3940 goto out; 3941 r = -EFAULT; 3942 if (copy_from_user(&sigset, sigmask_arg->sigset, 3943 sizeof(sigset))) 3944 goto out; 3945 p = &sigset; 3946 } 3947 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3948 break; 3949 } 3950 case KVM_GET_FPU: { 3951 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3952 r = -ENOMEM; 3953 if (!fpu) 3954 goto out; 3955 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3956 if (r) 3957 goto out; 3958 r = -EFAULT; 3959 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3960 goto out; 3961 r = 0; 3962 break; 3963 } 3964 case KVM_SET_FPU: { 3965 fpu = memdup_user(argp, sizeof(*fpu)); 3966 if (IS_ERR(fpu)) { 3967 r = PTR_ERR(fpu); 3968 fpu = NULL; 3969 goto out; 3970 } 3971 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3972 break; 3973 } 3974 case KVM_GET_STATS_FD: { 3975 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 3976 break; 3977 } 3978 default: 3979 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3980 } 3981 out: 3982 mutex_unlock(&vcpu->mutex); 3983 kfree(fpu); 3984 kfree(kvm_sregs); 3985 return r; 3986 } 3987 3988 #ifdef CONFIG_KVM_COMPAT 3989 static long kvm_vcpu_compat_ioctl(struct file *filp, 3990 unsigned int ioctl, unsigned long arg) 3991 { 3992 struct kvm_vcpu *vcpu = filp->private_data; 3993 void __user *argp = compat_ptr(arg); 3994 int r; 3995 3996 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3997 return -EIO; 3998 3999 switch (ioctl) { 4000 case KVM_SET_SIGNAL_MASK: { 4001 struct kvm_signal_mask __user *sigmask_arg = argp; 4002 struct kvm_signal_mask kvm_sigmask; 4003 sigset_t sigset; 4004 4005 if (argp) { 4006 r = -EFAULT; 4007 if (copy_from_user(&kvm_sigmask, argp, 4008 sizeof(kvm_sigmask))) 4009 goto out; 4010 r = -EINVAL; 4011 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4012 goto out; 4013 r = -EFAULT; 4014 if (get_compat_sigset(&sigset, 4015 (compat_sigset_t __user *)sigmask_arg->sigset)) 4016 goto out; 4017 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4018 } else 4019 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4020 break; 4021 } 4022 default: 4023 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4024 } 4025 4026 out: 4027 return r; 4028 } 4029 #endif 4030 4031 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4032 { 4033 struct kvm_device *dev = filp->private_data; 4034 4035 if (dev->ops->mmap) 4036 return dev->ops->mmap(dev, vma); 4037 4038 return -ENODEV; 4039 } 4040 4041 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4042 int (*accessor)(struct kvm_device *dev, 4043 struct kvm_device_attr *attr), 4044 unsigned long arg) 4045 { 4046 struct kvm_device_attr attr; 4047 4048 if (!accessor) 4049 return -EPERM; 4050 4051 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4052 return -EFAULT; 4053 4054 return accessor(dev, &attr); 4055 } 4056 4057 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4058 unsigned long arg) 4059 { 4060 struct kvm_device *dev = filp->private_data; 4061 4062 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4063 return -EIO; 4064 4065 switch (ioctl) { 4066 case KVM_SET_DEVICE_ATTR: 4067 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4068 case KVM_GET_DEVICE_ATTR: 4069 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4070 case KVM_HAS_DEVICE_ATTR: 4071 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4072 default: 4073 if (dev->ops->ioctl) 4074 return dev->ops->ioctl(dev, ioctl, arg); 4075 4076 return -ENOTTY; 4077 } 4078 } 4079 4080 static int kvm_device_release(struct inode *inode, struct file *filp) 4081 { 4082 struct kvm_device *dev = filp->private_data; 4083 struct kvm *kvm = dev->kvm; 4084 4085 if (dev->ops->release) { 4086 mutex_lock(&kvm->lock); 4087 list_del(&dev->vm_node); 4088 dev->ops->release(dev); 4089 mutex_unlock(&kvm->lock); 4090 } 4091 4092 kvm_put_kvm(kvm); 4093 return 0; 4094 } 4095 4096 static const struct file_operations kvm_device_fops = { 4097 .unlocked_ioctl = kvm_device_ioctl, 4098 .release = kvm_device_release, 4099 KVM_COMPAT(kvm_device_ioctl), 4100 .mmap = kvm_device_mmap, 4101 }; 4102 4103 struct kvm_device *kvm_device_from_filp(struct file *filp) 4104 { 4105 if (filp->f_op != &kvm_device_fops) 4106 return NULL; 4107 4108 return filp->private_data; 4109 } 4110 4111 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4112 #ifdef CONFIG_KVM_MPIC 4113 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4114 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4115 #endif 4116 }; 4117 4118 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4119 { 4120 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4121 return -ENOSPC; 4122 4123 if (kvm_device_ops_table[type] != NULL) 4124 return -EEXIST; 4125 4126 kvm_device_ops_table[type] = ops; 4127 return 0; 4128 } 4129 4130 void kvm_unregister_device_ops(u32 type) 4131 { 4132 if (kvm_device_ops_table[type] != NULL) 4133 kvm_device_ops_table[type] = NULL; 4134 } 4135 4136 static int kvm_ioctl_create_device(struct kvm *kvm, 4137 struct kvm_create_device *cd) 4138 { 4139 const struct kvm_device_ops *ops = NULL; 4140 struct kvm_device *dev; 4141 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4142 int type; 4143 int ret; 4144 4145 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4146 return -ENODEV; 4147 4148 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4149 ops = kvm_device_ops_table[type]; 4150 if (ops == NULL) 4151 return -ENODEV; 4152 4153 if (test) 4154 return 0; 4155 4156 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4157 if (!dev) 4158 return -ENOMEM; 4159 4160 dev->ops = ops; 4161 dev->kvm = kvm; 4162 4163 mutex_lock(&kvm->lock); 4164 ret = ops->create(dev, type); 4165 if (ret < 0) { 4166 mutex_unlock(&kvm->lock); 4167 kfree(dev); 4168 return ret; 4169 } 4170 list_add(&dev->vm_node, &kvm->devices); 4171 mutex_unlock(&kvm->lock); 4172 4173 if (ops->init) 4174 ops->init(dev); 4175 4176 kvm_get_kvm(kvm); 4177 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4178 if (ret < 0) { 4179 kvm_put_kvm_no_destroy(kvm); 4180 mutex_lock(&kvm->lock); 4181 list_del(&dev->vm_node); 4182 mutex_unlock(&kvm->lock); 4183 ops->destroy(dev); 4184 return ret; 4185 } 4186 4187 cd->fd = ret; 4188 return 0; 4189 } 4190 4191 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4192 { 4193 switch (arg) { 4194 case KVM_CAP_USER_MEMORY: 4195 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4196 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4197 case KVM_CAP_INTERNAL_ERROR_DATA: 4198 #ifdef CONFIG_HAVE_KVM_MSI 4199 case KVM_CAP_SIGNAL_MSI: 4200 #endif 4201 #ifdef CONFIG_HAVE_KVM_IRQFD 4202 case KVM_CAP_IRQFD: 4203 case KVM_CAP_IRQFD_RESAMPLE: 4204 #endif 4205 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4206 case KVM_CAP_CHECK_EXTENSION_VM: 4207 case KVM_CAP_ENABLE_CAP_VM: 4208 case KVM_CAP_HALT_POLL: 4209 return 1; 4210 #ifdef CONFIG_KVM_MMIO 4211 case KVM_CAP_COALESCED_MMIO: 4212 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4213 case KVM_CAP_COALESCED_PIO: 4214 return 1; 4215 #endif 4216 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4217 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4218 return KVM_DIRTY_LOG_MANUAL_CAPS; 4219 #endif 4220 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4221 case KVM_CAP_IRQ_ROUTING: 4222 return KVM_MAX_IRQ_ROUTES; 4223 #endif 4224 #if KVM_ADDRESS_SPACE_NUM > 1 4225 case KVM_CAP_MULTI_ADDRESS_SPACE: 4226 return KVM_ADDRESS_SPACE_NUM; 4227 #endif 4228 case KVM_CAP_NR_MEMSLOTS: 4229 return KVM_USER_MEM_SLOTS; 4230 case KVM_CAP_DIRTY_LOG_RING: 4231 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 4232 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4233 #else 4234 return 0; 4235 #endif 4236 case KVM_CAP_BINARY_STATS_FD: 4237 return 1; 4238 default: 4239 break; 4240 } 4241 return kvm_vm_ioctl_check_extension(kvm, arg); 4242 } 4243 4244 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4245 { 4246 int r; 4247 4248 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4249 return -EINVAL; 4250 4251 /* the size should be power of 2 */ 4252 if (!size || (size & (size - 1))) 4253 return -EINVAL; 4254 4255 /* Should be bigger to keep the reserved entries, or a page */ 4256 if (size < kvm_dirty_ring_get_rsvd_entries() * 4257 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4258 return -EINVAL; 4259 4260 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4261 sizeof(struct kvm_dirty_gfn)) 4262 return -E2BIG; 4263 4264 /* We only allow it to set once */ 4265 if (kvm->dirty_ring_size) 4266 return -EINVAL; 4267 4268 mutex_lock(&kvm->lock); 4269 4270 if (kvm->created_vcpus) { 4271 /* We don't allow to change this value after vcpu created */ 4272 r = -EINVAL; 4273 } else { 4274 kvm->dirty_ring_size = size; 4275 r = 0; 4276 } 4277 4278 mutex_unlock(&kvm->lock); 4279 return r; 4280 } 4281 4282 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4283 { 4284 unsigned long i; 4285 struct kvm_vcpu *vcpu; 4286 int cleared = 0; 4287 4288 if (!kvm->dirty_ring_size) 4289 return -EINVAL; 4290 4291 mutex_lock(&kvm->slots_lock); 4292 4293 kvm_for_each_vcpu(i, vcpu, kvm) 4294 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4295 4296 mutex_unlock(&kvm->slots_lock); 4297 4298 if (cleared) 4299 kvm_flush_remote_tlbs(kvm); 4300 4301 return cleared; 4302 } 4303 4304 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4305 struct kvm_enable_cap *cap) 4306 { 4307 return -EINVAL; 4308 } 4309 4310 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4311 struct kvm_enable_cap *cap) 4312 { 4313 switch (cap->cap) { 4314 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4315 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4316 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4317 4318 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4319 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4320 4321 if (cap->flags || (cap->args[0] & ~allowed_options)) 4322 return -EINVAL; 4323 kvm->manual_dirty_log_protect = cap->args[0]; 4324 return 0; 4325 } 4326 #endif 4327 case KVM_CAP_HALT_POLL: { 4328 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4329 return -EINVAL; 4330 4331 kvm->max_halt_poll_ns = cap->args[0]; 4332 return 0; 4333 } 4334 case KVM_CAP_DIRTY_LOG_RING: 4335 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4336 default: 4337 return kvm_vm_ioctl_enable_cap(kvm, cap); 4338 } 4339 } 4340 4341 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4342 size_t size, loff_t *offset) 4343 { 4344 struct kvm *kvm = file->private_data; 4345 4346 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4347 &kvm_vm_stats_desc[0], &kvm->stat, 4348 sizeof(kvm->stat), user_buffer, size, offset); 4349 } 4350 4351 static const struct file_operations kvm_vm_stats_fops = { 4352 .read = kvm_vm_stats_read, 4353 .llseek = noop_llseek, 4354 }; 4355 4356 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4357 { 4358 int fd; 4359 struct file *file; 4360 4361 fd = get_unused_fd_flags(O_CLOEXEC); 4362 if (fd < 0) 4363 return fd; 4364 4365 file = anon_inode_getfile("kvm-vm-stats", 4366 &kvm_vm_stats_fops, kvm, O_RDONLY); 4367 if (IS_ERR(file)) { 4368 put_unused_fd(fd); 4369 return PTR_ERR(file); 4370 } 4371 file->f_mode |= FMODE_PREAD; 4372 fd_install(fd, file); 4373 4374 return fd; 4375 } 4376 4377 static long kvm_vm_ioctl(struct file *filp, 4378 unsigned int ioctl, unsigned long arg) 4379 { 4380 struct kvm *kvm = filp->private_data; 4381 void __user *argp = (void __user *)arg; 4382 int r; 4383 4384 if (kvm->mm != current->mm || kvm->vm_dead) 4385 return -EIO; 4386 switch (ioctl) { 4387 case KVM_CREATE_VCPU: 4388 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4389 break; 4390 case KVM_ENABLE_CAP: { 4391 struct kvm_enable_cap cap; 4392 4393 r = -EFAULT; 4394 if (copy_from_user(&cap, argp, sizeof(cap))) 4395 goto out; 4396 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4397 break; 4398 } 4399 case KVM_SET_USER_MEMORY_REGION: { 4400 struct kvm_userspace_memory_region kvm_userspace_mem; 4401 4402 r = -EFAULT; 4403 if (copy_from_user(&kvm_userspace_mem, argp, 4404 sizeof(kvm_userspace_mem))) 4405 goto out; 4406 4407 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4408 break; 4409 } 4410 case KVM_GET_DIRTY_LOG: { 4411 struct kvm_dirty_log log; 4412 4413 r = -EFAULT; 4414 if (copy_from_user(&log, argp, sizeof(log))) 4415 goto out; 4416 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4417 break; 4418 } 4419 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4420 case KVM_CLEAR_DIRTY_LOG: { 4421 struct kvm_clear_dirty_log log; 4422 4423 r = -EFAULT; 4424 if (copy_from_user(&log, argp, sizeof(log))) 4425 goto out; 4426 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4427 break; 4428 } 4429 #endif 4430 #ifdef CONFIG_KVM_MMIO 4431 case KVM_REGISTER_COALESCED_MMIO: { 4432 struct kvm_coalesced_mmio_zone zone; 4433 4434 r = -EFAULT; 4435 if (copy_from_user(&zone, argp, sizeof(zone))) 4436 goto out; 4437 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4438 break; 4439 } 4440 case KVM_UNREGISTER_COALESCED_MMIO: { 4441 struct kvm_coalesced_mmio_zone zone; 4442 4443 r = -EFAULT; 4444 if (copy_from_user(&zone, argp, sizeof(zone))) 4445 goto out; 4446 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4447 break; 4448 } 4449 #endif 4450 case KVM_IRQFD: { 4451 struct kvm_irqfd data; 4452 4453 r = -EFAULT; 4454 if (copy_from_user(&data, argp, sizeof(data))) 4455 goto out; 4456 r = kvm_irqfd(kvm, &data); 4457 break; 4458 } 4459 case KVM_IOEVENTFD: { 4460 struct kvm_ioeventfd data; 4461 4462 r = -EFAULT; 4463 if (copy_from_user(&data, argp, sizeof(data))) 4464 goto out; 4465 r = kvm_ioeventfd(kvm, &data); 4466 break; 4467 } 4468 #ifdef CONFIG_HAVE_KVM_MSI 4469 case KVM_SIGNAL_MSI: { 4470 struct kvm_msi msi; 4471 4472 r = -EFAULT; 4473 if (copy_from_user(&msi, argp, sizeof(msi))) 4474 goto out; 4475 r = kvm_send_userspace_msi(kvm, &msi); 4476 break; 4477 } 4478 #endif 4479 #ifdef __KVM_HAVE_IRQ_LINE 4480 case KVM_IRQ_LINE_STATUS: 4481 case KVM_IRQ_LINE: { 4482 struct kvm_irq_level irq_event; 4483 4484 r = -EFAULT; 4485 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4486 goto out; 4487 4488 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4489 ioctl == KVM_IRQ_LINE_STATUS); 4490 if (r) 4491 goto out; 4492 4493 r = -EFAULT; 4494 if (ioctl == KVM_IRQ_LINE_STATUS) { 4495 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4496 goto out; 4497 } 4498 4499 r = 0; 4500 break; 4501 } 4502 #endif 4503 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4504 case KVM_SET_GSI_ROUTING: { 4505 struct kvm_irq_routing routing; 4506 struct kvm_irq_routing __user *urouting; 4507 struct kvm_irq_routing_entry *entries = NULL; 4508 4509 r = -EFAULT; 4510 if (copy_from_user(&routing, argp, sizeof(routing))) 4511 goto out; 4512 r = -EINVAL; 4513 if (!kvm_arch_can_set_irq_routing(kvm)) 4514 goto out; 4515 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4516 goto out; 4517 if (routing.flags) 4518 goto out; 4519 if (routing.nr) { 4520 urouting = argp; 4521 entries = vmemdup_user(urouting->entries, 4522 array_size(sizeof(*entries), 4523 routing.nr)); 4524 if (IS_ERR(entries)) { 4525 r = PTR_ERR(entries); 4526 goto out; 4527 } 4528 } 4529 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4530 routing.flags); 4531 kvfree(entries); 4532 break; 4533 } 4534 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4535 case KVM_CREATE_DEVICE: { 4536 struct kvm_create_device cd; 4537 4538 r = -EFAULT; 4539 if (copy_from_user(&cd, argp, sizeof(cd))) 4540 goto out; 4541 4542 r = kvm_ioctl_create_device(kvm, &cd); 4543 if (r) 4544 goto out; 4545 4546 r = -EFAULT; 4547 if (copy_to_user(argp, &cd, sizeof(cd))) 4548 goto out; 4549 4550 r = 0; 4551 break; 4552 } 4553 case KVM_CHECK_EXTENSION: 4554 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4555 break; 4556 case KVM_RESET_DIRTY_RINGS: 4557 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4558 break; 4559 case KVM_GET_STATS_FD: 4560 r = kvm_vm_ioctl_get_stats_fd(kvm); 4561 break; 4562 default: 4563 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4564 } 4565 out: 4566 return r; 4567 } 4568 4569 #ifdef CONFIG_KVM_COMPAT 4570 struct compat_kvm_dirty_log { 4571 __u32 slot; 4572 __u32 padding1; 4573 union { 4574 compat_uptr_t dirty_bitmap; /* one bit per page */ 4575 __u64 padding2; 4576 }; 4577 }; 4578 4579 struct compat_kvm_clear_dirty_log { 4580 __u32 slot; 4581 __u32 num_pages; 4582 __u64 first_page; 4583 union { 4584 compat_uptr_t dirty_bitmap; /* one bit per page */ 4585 __u64 padding2; 4586 }; 4587 }; 4588 4589 static long kvm_vm_compat_ioctl(struct file *filp, 4590 unsigned int ioctl, unsigned long arg) 4591 { 4592 struct kvm *kvm = filp->private_data; 4593 int r; 4594 4595 if (kvm->mm != current->mm || kvm->vm_dead) 4596 return -EIO; 4597 switch (ioctl) { 4598 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4599 case KVM_CLEAR_DIRTY_LOG: { 4600 struct compat_kvm_clear_dirty_log compat_log; 4601 struct kvm_clear_dirty_log log; 4602 4603 if (copy_from_user(&compat_log, (void __user *)arg, 4604 sizeof(compat_log))) 4605 return -EFAULT; 4606 log.slot = compat_log.slot; 4607 log.num_pages = compat_log.num_pages; 4608 log.first_page = compat_log.first_page; 4609 log.padding2 = compat_log.padding2; 4610 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4611 4612 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4613 break; 4614 } 4615 #endif 4616 case KVM_GET_DIRTY_LOG: { 4617 struct compat_kvm_dirty_log compat_log; 4618 struct kvm_dirty_log log; 4619 4620 if (copy_from_user(&compat_log, (void __user *)arg, 4621 sizeof(compat_log))) 4622 return -EFAULT; 4623 log.slot = compat_log.slot; 4624 log.padding1 = compat_log.padding1; 4625 log.padding2 = compat_log.padding2; 4626 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4627 4628 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4629 break; 4630 } 4631 default: 4632 r = kvm_vm_ioctl(filp, ioctl, arg); 4633 } 4634 return r; 4635 } 4636 #endif 4637 4638 static struct file_operations kvm_vm_fops = { 4639 .release = kvm_vm_release, 4640 .unlocked_ioctl = kvm_vm_ioctl, 4641 .llseek = noop_llseek, 4642 KVM_COMPAT(kvm_vm_compat_ioctl), 4643 }; 4644 4645 bool file_is_kvm(struct file *file) 4646 { 4647 return file && file->f_op == &kvm_vm_fops; 4648 } 4649 EXPORT_SYMBOL_GPL(file_is_kvm); 4650 4651 static int kvm_dev_ioctl_create_vm(unsigned long type) 4652 { 4653 int r; 4654 struct kvm *kvm; 4655 struct file *file; 4656 4657 kvm = kvm_create_vm(type); 4658 if (IS_ERR(kvm)) 4659 return PTR_ERR(kvm); 4660 #ifdef CONFIG_KVM_MMIO 4661 r = kvm_coalesced_mmio_init(kvm); 4662 if (r < 0) 4663 goto put_kvm; 4664 #endif 4665 r = get_unused_fd_flags(O_CLOEXEC); 4666 if (r < 0) 4667 goto put_kvm; 4668 4669 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4670 "kvm-%d", task_pid_nr(current)); 4671 4672 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4673 if (IS_ERR(file)) { 4674 put_unused_fd(r); 4675 r = PTR_ERR(file); 4676 goto put_kvm; 4677 } 4678 4679 /* 4680 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4681 * already set, with ->release() being kvm_vm_release(). In error 4682 * cases it will be called by the final fput(file) and will take 4683 * care of doing kvm_put_kvm(kvm). 4684 */ 4685 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4686 put_unused_fd(r); 4687 fput(file); 4688 return -ENOMEM; 4689 } 4690 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4691 4692 fd_install(r, file); 4693 return r; 4694 4695 put_kvm: 4696 kvm_put_kvm(kvm); 4697 return r; 4698 } 4699 4700 static long kvm_dev_ioctl(struct file *filp, 4701 unsigned int ioctl, unsigned long arg) 4702 { 4703 long r = -EINVAL; 4704 4705 switch (ioctl) { 4706 case KVM_GET_API_VERSION: 4707 if (arg) 4708 goto out; 4709 r = KVM_API_VERSION; 4710 break; 4711 case KVM_CREATE_VM: 4712 r = kvm_dev_ioctl_create_vm(arg); 4713 break; 4714 case KVM_CHECK_EXTENSION: 4715 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4716 break; 4717 case KVM_GET_VCPU_MMAP_SIZE: 4718 if (arg) 4719 goto out; 4720 r = PAGE_SIZE; /* struct kvm_run */ 4721 #ifdef CONFIG_X86 4722 r += PAGE_SIZE; /* pio data page */ 4723 #endif 4724 #ifdef CONFIG_KVM_MMIO 4725 r += PAGE_SIZE; /* coalesced mmio ring page */ 4726 #endif 4727 break; 4728 case KVM_TRACE_ENABLE: 4729 case KVM_TRACE_PAUSE: 4730 case KVM_TRACE_DISABLE: 4731 r = -EOPNOTSUPP; 4732 break; 4733 default: 4734 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4735 } 4736 out: 4737 return r; 4738 } 4739 4740 static struct file_operations kvm_chardev_ops = { 4741 .unlocked_ioctl = kvm_dev_ioctl, 4742 .llseek = noop_llseek, 4743 KVM_COMPAT(kvm_dev_ioctl), 4744 }; 4745 4746 static struct miscdevice kvm_dev = { 4747 KVM_MINOR, 4748 "kvm", 4749 &kvm_chardev_ops, 4750 }; 4751 4752 static void hardware_enable_nolock(void *junk) 4753 { 4754 int cpu = raw_smp_processor_id(); 4755 int r; 4756 4757 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4758 return; 4759 4760 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4761 4762 r = kvm_arch_hardware_enable(); 4763 4764 if (r) { 4765 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4766 atomic_inc(&hardware_enable_failed); 4767 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4768 } 4769 } 4770 4771 static int kvm_starting_cpu(unsigned int cpu) 4772 { 4773 raw_spin_lock(&kvm_count_lock); 4774 if (kvm_usage_count) 4775 hardware_enable_nolock(NULL); 4776 raw_spin_unlock(&kvm_count_lock); 4777 return 0; 4778 } 4779 4780 static void hardware_disable_nolock(void *junk) 4781 { 4782 int cpu = raw_smp_processor_id(); 4783 4784 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4785 return; 4786 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4787 kvm_arch_hardware_disable(); 4788 } 4789 4790 static int kvm_dying_cpu(unsigned int cpu) 4791 { 4792 raw_spin_lock(&kvm_count_lock); 4793 if (kvm_usage_count) 4794 hardware_disable_nolock(NULL); 4795 raw_spin_unlock(&kvm_count_lock); 4796 return 0; 4797 } 4798 4799 static void hardware_disable_all_nolock(void) 4800 { 4801 BUG_ON(!kvm_usage_count); 4802 4803 kvm_usage_count--; 4804 if (!kvm_usage_count) 4805 on_each_cpu(hardware_disable_nolock, NULL, 1); 4806 } 4807 4808 static void hardware_disable_all(void) 4809 { 4810 raw_spin_lock(&kvm_count_lock); 4811 hardware_disable_all_nolock(); 4812 raw_spin_unlock(&kvm_count_lock); 4813 } 4814 4815 static int hardware_enable_all(void) 4816 { 4817 int r = 0; 4818 4819 raw_spin_lock(&kvm_count_lock); 4820 4821 kvm_usage_count++; 4822 if (kvm_usage_count == 1) { 4823 atomic_set(&hardware_enable_failed, 0); 4824 on_each_cpu(hardware_enable_nolock, NULL, 1); 4825 4826 if (atomic_read(&hardware_enable_failed)) { 4827 hardware_disable_all_nolock(); 4828 r = -EBUSY; 4829 } 4830 } 4831 4832 raw_spin_unlock(&kvm_count_lock); 4833 4834 return r; 4835 } 4836 4837 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4838 void *v) 4839 { 4840 /* 4841 * Some (well, at least mine) BIOSes hang on reboot if 4842 * in vmx root mode. 4843 * 4844 * And Intel TXT required VMX off for all cpu when system shutdown. 4845 */ 4846 pr_info("kvm: exiting hardware virtualization\n"); 4847 kvm_rebooting = true; 4848 on_each_cpu(hardware_disable_nolock, NULL, 1); 4849 return NOTIFY_OK; 4850 } 4851 4852 static struct notifier_block kvm_reboot_notifier = { 4853 .notifier_call = kvm_reboot, 4854 .priority = 0, 4855 }; 4856 4857 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4858 { 4859 int i; 4860 4861 for (i = 0; i < bus->dev_count; i++) { 4862 struct kvm_io_device *pos = bus->range[i].dev; 4863 4864 kvm_iodevice_destructor(pos); 4865 } 4866 kfree(bus); 4867 } 4868 4869 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4870 const struct kvm_io_range *r2) 4871 { 4872 gpa_t addr1 = r1->addr; 4873 gpa_t addr2 = r2->addr; 4874 4875 if (addr1 < addr2) 4876 return -1; 4877 4878 /* If r2->len == 0, match the exact address. If r2->len != 0, 4879 * accept any overlapping write. Any order is acceptable for 4880 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4881 * we process all of them. 4882 */ 4883 if (r2->len) { 4884 addr1 += r1->len; 4885 addr2 += r2->len; 4886 } 4887 4888 if (addr1 > addr2) 4889 return 1; 4890 4891 return 0; 4892 } 4893 4894 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4895 { 4896 return kvm_io_bus_cmp(p1, p2); 4897 } 4898 4899 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4900 gpa_t addr, int len) 4901 { 4902 struct kvm_io_range *range, key; 4903 int off; 4904 4905 key = (struct kvm_io_range) { 4906 .addr = addr, 4907 .len = len, 4908 }; 4909 4910 range = bsearch(&key, bus->range, bus->dev_count, 4911 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4912 if (range == NULL) 4913 return -ENOENT; 4914 4915 off = range - bus->range; 4916 4917 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4918 off--; 4919 4920 return off; 4921 } 4922 4923 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4924 struct kvm_io_range *range, const void *val) 4925 { 4926 int idx; 4927 4928 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4929 if (idx < 0) 4930 return -EOPNOTSUPP; 4931 4932 while (idx < bus->dev_count && 4933 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4934 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 4935 range->len, val)) 4936 return idx; 4937 idx++; 4938 } 4939 4940 return -EOPNOTSUPP; 4941 } 4942 4943 /* kvm_io_bus_write - called under kvm->slots_lock */ 4944 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4945 int len, const void *val) 4946 { 4947 struct kvm_io_bus *bus; 4948 struct kvm_io_range range; 4949 int r; 4950 4951 range = (struct kvm_io_range) { 4952 .addr = addr, 4953 .len = len, 4954 }; 4955 4956 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4957 if (!bus) 4958 return -ENOMEM; 4959 r = __kvm_io_bus_write(vcpu, bus, &range, val); 4960 return r < 0 ? r : 0; 4961 } 4962 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 4963 4964 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 4965 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 4966 gpa_t addr, int len, const void *val, long cookie) 4967 { 4968 struct kvm_io_bus *bus; 4969 struct kvm_io_range range; 4970 4971 range = (struct kvm_io_range) { 4972 .addr = addr, 4973 .len = len, 4974 }; 4975 4976 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4977 if (!bus) 4978 return -ENOMEM; 4979 4980 /* First try the device referenced by cookie. */ 4981 if ((cookie >= 0) && (cookie < bus->dev_count) && 4982 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 4983 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 4984 val)) 4985 return cookie; 4986 4987 /* 4988 * cookie contained garbage; fall back to search and return the 4989 * correct cookie value. 4990 */ 4991 return __kvm_io_bus_write(vcpu, bus, &range, val); 4992 } 4993 4994 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4995 struct kvm_io_range *range, void *val) 4996 { 4997 int idx; 4998 4999 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5000 if (idx < 0) 5001 return -EOPNOTSUPP; 5002 5003 while (idx < bus->dev_count && 5004 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5005 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5006 range->len, val)) 5007 return idx; 5008 idx++; 5009 } 5010 5011 return -EOPNOTSUPP; 5012 } 5013 5014 /* kvm_io_bus_read - called under kvm->slots_lock */ 5015 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5016 int len, void *val) 5017 { 5018 struct kvm_io_bus *bus; 5019 struct kvm_io_range range; 5020 int r; 5021 5022 range = (struct kvm_io_range) { 5023 .addr = addr, 5024 .len = len, 5025 }; 5026 5027 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5028 if (!bus) 5029 return -ENOMEM; 5030 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5031 return r < 0 ? r : 0; 5032 } 5033 5034 /* Caller must hold slots_lock. */ 5035 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5036 int len, struct kvm_io_device *dev) 5037 { 5038 int i; 5039 struct kvm_io_bus *new_bus, *bus; 5040 struct kvm_io_range range; 5041 5042 bus = kvm_get_bus(kvm, bus_idx); 5043 if (!bus) 5044 return -ENOMEM; 5045 5046 /* exclude ioeventfd which is limited by maximum fd */ 5047 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5048 return -ENOSPC; 5049 5050 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5051 GFP_KERNEL_ACCOUNT); 5052 if (!new_bus) 5053 return -ENOMEM; 5054 5055 range = (struct kvm_io_range) { 5056 .addr = addr, 5057 .len = len, 5058 .dev = dev, 5059 }; 5060 5061 for (i = 0; i < bus->dev_count; i++) 5062 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5063 break; 5064 5065 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5066 new_bus->dev_count++; 5067 new_bus->range[i] = range; 5068 memcpy(new_bus->range + i + 1, bus->range + i, 5069 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5070 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5071 synchronize_srcu_expedited(&kvm->srcu); 5072 kfree(bus); 5073 5074 return 0; 5075 } 5076 5077 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5078 struct kvm_io_device *dev) 5079 { 5080 int i, j; 5081 struct kvm_io_bus *new_bus, *bus; 5082 5083 lockdep_assert_held(&kvm->slots_lock); 5084 5085 bus = kvm_get_bus(kvm, bus_idx); 5086 if (!bus) 5087 return 0; 5088 5089 for (i = 0; i < bus->dev_count; i++) { 5090 if (bus->range[i].dev == dev) { 5091 break; 5092 } 5093 } 5094 5095 if (i == bus->dev_count) 5096 return 0; 5097 5098 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5099 GFP_KERNEL_ACCOUNT); 5100 if (new_bus) { 5101 memcpy(new_bus, bus, struct_size(bus, range, i)); 5102 new_bus->dev_count--; 5103 memcpy(new_bus->range + i, bus->range + i + 1, 5104 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5105 } 5106 5107 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5108 synchronize_srcu_expedited(&kvm->srcu); 5109 5110 /* Destroy the old bus _after_ installing the (null) bus. */ 5111 if (!new_bus) { 5112 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5113 for (j = 0; j < bus->dev_count; j++) { 5114 if (j == i) 5115 continue; 5116 kvm_iodevice_destructor(bus->range[j].dev); 5117 } 5118 } 5119 5120 kfree(bus); 5121 return new_bus ? 0 : -ENOMEM; 5122 } 5123 5124 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5125 gpa_t addr) 5126 { 5127 struct kvm_io_bus *bus; 5128 int dev_idx, srcu_idx; 5129 struct kvm_io_device *iodev = NULL; 5130 5131 srcu_idx = srcu_read_lock(&kvm->srcu); 5132 5133 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5134 if (!bus) 5135 goto out_unlock; 5136 5137 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5138 if (dev_idx < 0) 5139 goto out_unlock; 5140 5141 iodev = bus->range[dev_idx].dev; 5142 5143 out_unlock: 5144 srcu_read_unlock(&kvm->srcu, srcu_idx); 5145 5146 return iodev; 5147 } 5148 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5149 5150 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5151 int (*get)(void *, u64 *), int (*set)(void *, u64), 5152 const char *fmt) 5153 { 5154 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5155 inode->i_private; 5156 5157 /* 5158 * The debugfs files are a reference to the kvm struct which 5159 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5160 * avoids the race between open and the removal of the debugfs directory. 5161 */ 5162 if (!kvm_get_kvm_safe(stat_data->kvm)) 5163 return -ENOENT; 5164 5165 if (simple_attr_open(inode, file, get, 5166 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5167 ? set : NULL, 5168 fmt)) { 5169 kvm_put_kvm(stat_data->kvm); 5170 return -ENOMEM; 5171 } 5172 5173 return 0; 5174 } 5175 5176 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5177 { 5178 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5179 inode->i_private; 5180 5181 simple_attr_release(inode, file); 5182 kvm_put_kvm(stat_data->kvm); 5183 5184 return 0; 5185 } 5186 5187 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5188 { 5189 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5190 5191 return 0; 5192 } 5193 5194 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5195 { 5196 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5197 5198 return 0; 5199 } 5200 5201 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5202 { 5203 unsigned long i; 5204 struct kvm_vcpu *vcpu; 5205 5206 *val = 0; 5207 5208 kvm_for_each_vcpu(i, vcpu, kvm) 5209 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5210 5211 return 0; 5212 } 5213 5214 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5215 { 5216 unsigned long i; 5217 struct kvm_vcpu *vcpu; 5218 5219 kvm_for_each_vcpu(i, vcpu, kvm) 5220 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5221 5222 return 0; 5223 } 5224 5225 static int kvm_stat_data_get(void *data, u64 *val) 5226 { 5227 int r = -EFAULT; 5228 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5229 5230 switch (stat_data->kind) { 5231 case KVM_STAT_VM: 5232 r = kvm_get_stat_per_vm(stat_data->kvm, 5233 stat_data->desc->desc.offset, val); 5234 break; 5235 case KVM_STAT_VCPU: 5236 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5237 stat_data->desc->desc.offset, val); 5238 break; 5239 } 5240 5241 return r; 5242 } 5243 5244 static int kvm_stat_data_clear(void *data, u64 val) 5245 { 5246 int r = -EFAULT; 5247 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5248 5249 if (val) 5250 return -EINVAL; 5251 5252 switch (stat_data->kind) { 5253 case KVM_STAT_VM: 5254 r = kvm_clear_stat_per_vm(stat_data->kvm, 5255 stat_data->desc->desc.offset); 5256 break; 5257 case KVM_STAT_VCPU: 5258 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5259 stat_data->desc->desc.offset); 5260 break; 5261 } 5262 5263 return r; 5264 } 5265 5266 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5267 { 5268 __simple_attr_check_format("%llu\n", 0ull); 5269 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5270 kvm_stat_data_clear, "%llu\n"); 5271 } 5272 5273 static const struct file_operations stat_fops_per_vm = { 5274 .owner = THIS_MODULE, 5275 .open = kvm_stat_data_open, 5276 .release = kvm_debugfs_release, 5277 .read = simple_attr_read, 5278 .write = simple_attr_write, 5279 .llseek = no_llseek, 5280 }; 5281 5282 static int vm_stat_get(void *_offset, u64 *val) 5283 { 5284 unsigned offset = (long)_offset; 5285 struct kvm *kvm; 5286 u64 tmp_val; 5287 5288 *val = 0; 5289 mutex_lock(&kvm_lock); 5290 list_for_each_entry(kvm, &vm_list, vm_list) { 5291 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5292 *val += tmp_val; 5293 } 5294 mutex_unlock(&kvm_lock); 5295 return 0; 5296 } 5297 5298 static int vm_stat_clear(void *_offset, u64 val) 5299 { 5300 unsigned offset = (long)_offset; 5301 struct kvm *kvm; 5302 5303 if (val) 5304 return -EINVAL; 5305 5306 mutex_lock(&kvm_lock); 5307 list_for_each_entry(kvm, &vm_list, vm_list) { 5308 kvm_clear_stat_per_vm(kvm, offset); 5309 } 5310 mutex_unlock(&kvm_lock); 5311 5312 return 0; 5313 } 5314 5315 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5316 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5317 5318 static int vcpu_stat_get(void *_offset, u64 *val) 5319 { 5320 unsigned offset = (long)_offset; 5321 struct kvm *kvm; 5322 u64 tmp_val; 5323 5324 *val = 0; 5325 mutex_lock(&kvm_lock); 5326 list_for_each_entry(kvm, &vm_list, vm_list) { 5327 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5328 *val += tmp_val; 5329 } 5330 mutex_unlock(&kvm_lock); 5331 return 0; 5332 } 5333 5334 static int vcpu_stat_clear(void *_offset, u64 val) 5335 { 5336 unsigned offset = (long)_offset; 5337 struct kvm *kvm; 5338 5339 if (val) 5340 return -EINVAL; 5341 5342 mutex_lock(&kvm_lock); 5343 list_for_each_entry(kvm, &vm_list, vm_list) { 5344 kvm_clear_stat_per_vcpu(kvm, offset); 5345 } 5346 mutex_unlock(&kvm_lock); 5347 5348 return 0; 5349 } 5350 5351 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5352 "%llu\n"); 5353 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5354 5355 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5356 { 5357 struct kobj_uevent_env *env; 5358 unsigned long long created, active; 5359 5360 if (!kvm_dev.this_device || !kvm) 5361 return; 5362 5363 mutex_lock(&kvm_lock); 5364 if (type == KVM_EVENT_CREATE_VM) { 5365 kvm_createvm_count++; 5366 kvm_active_vms++; 5367 } else if (type == KVM_EVENT_DESTROY_VM) { 5368 kvm_active_vms--; 5369 } 5370 created = kvm_createvm_count; 5371 active = kvm_active_vms; 5372 mutex_unlock(&kvm_lock); 5373 5374 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5375 if (!env) 5376 return; 5377 5378 add_uevent_var(env, "CREATED=%llu", created); 5379 add_uevent_var(env, "COUNT=%llu", active); 5380 5381 if (type == KVM_EVENT_CREATE_VM) { 5382 add_uevent_var(env, "EVENT=create"); 5383 kvm->userspace_pid = task_pid_nr(current); 5384 } else if (type == KVM_EVENT_DESTROY_VM) { 5385 add_uevent_var(env, "EVENT=destroy"); 5386 } 5387 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5388 5389 if (kvm->debugfs_dentry) { 5390 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5391 5392 if (p) { 5393 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5394 if (!IS_ERR(tmp)) 5395 add_uevent_var(env, "STATS_PATH=%s", tmp); 5396 kfree(p); 5397 } 5398 } 5399 /* no need for checks, since we are adding at most only 5 keys */ 5400 env->envp[env->envp_idx++] = NULL; 5401 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5402 kfree(env); 5403 } 5404 5405 static void kvm_init_debug(void) 5406 { 5407 const struct file_operations *fops; 5408 const struct _kvm_stats_desc *pdesc; 5409 int i; 5410 5411 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5412 5413 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5414 pdesc = &kvm_vm_stats_desc[i]; 5415 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5416 fops = &vm_stat_fops; 5417 else 5418 fops = &vm_stat_readonly_fops; 5419 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5420 kvm_debugfs_dir, 5421 (void *)(long)pdesc->desc.offset, fops); 5422 } 5423 5424 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5425 pdesc = &kvm_vcpu_stats_desc[i]; 5426 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5427 fops = &vcpu_stat_fops; 5428 else 5429 fops = &vcpu_stat_readonly_fops; 5430 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5431 kvm_debugfs_dir, 5432 (void *)(long)pdesc->desc.offset, fops); 5433 } 5434 } 5435 5436 static int kvm_suspend(void) 5437 { 5438 if (kvm_usage_count) 5439 hardware_disable_nolock(NULL); 5440 return 0; 5441 } 5442 5443 static void kvm_resume(void) 5444 { 5445 if (kvm_usage_count) { 5446 #ifdef CONFIG_LOCKDEP 5447 WARN_ON(lockdep_is_held(&kvm_count_lock)); 5448 #endif 5449 hardware_enable_nolock(NULL); 5450 } 5451 } 5452 5453 static struct syscore_ops kvm_syscore_ops = { 5454 .suspend = kvm_suspend, 5455 .resume = kvm_resume, 5456 }; 5457 5458 static inline 5459 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5460 { 5461 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5462 } 5463 5464 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5465 { 5466 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5467 5468 WRITE_ONCE(vcpu->preempted, false); 5469 WRITE_ONCE(vcpu->ready, false); 5470 5471 __this_cpu_write(kvm_running_vcpu, vcpu); 5472 kvm_arch_sched_in(vcpu, cpu); 5473 kvm_arch_vcpu_load(vcpu, cpu); 5474 } 5475 5476 static void kvm_sched_out(struct preempt_notifier *pn, 5477 struct task_struct *next) 5478 { 5479 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5480 5481 if (current->on_rq) { 5482 WRITE_ONCE(vcpu->preempted, true); 5483 WRITE_ONCE(vcpu->ready, true); 5484 } 5485 kvm_arch_vcpu_put(vcpu); 5486 __this_cpu_write(kvm_running_vcpu, NULL); 5487 } 5488 5489 /** 5490 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5491 * 5492 * We can disable preemption locally around accessing the per-CPU variable, 5493 * and use the resolved vcpu pointer after enabling preemption again, 5494 * because even if the current thread is migrated to another CPU, reading 5495 * the per-CPU value later will give us the same value as we update the 5496 * per-CPU variable in the preempt notifier handlers. 5497 */ 5498 struct kvm_vcpu *kvm_get_running_vcpu(void) 5499 { 5500 struct kvm_vcpu *vcpu; 5501 5502 preempt_disable(); 5503 vcpu = __this_cpu_read(kvm_running_vcpu); 5504 preempt_enable(); 5505 5506 return vcpu; 5507 } 5508 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5509 5510 /** 5511 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5512 */ 5513 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5514 { 5515 return &kvm_running_vcpu; 5516 } 5517 5518 struct kvm_cpu_compat_check { 5519 void *opaque; 5520 int *ret; 5521 }; 5522 5523 static void check_processor_compat(void *data) 5524 { 5525 struct kvm_cpu_compat_check *c = data; 5526 5527 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5528 } 5529 5530 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5531 struct module *module) 5532 { 5533 struct kvm_cpu_compat_check c; 5534 int r; 5535 int cpu; 5536 5537 r = kvm_arch_init(opaque); 5538 if (r) 5539 goto out_fail; 5540 5541 /* 5542 * kvm_arch_init makes sure there's at most one caller 5543 * for architectures that support multiple implementations, 5544 * like intel and amd on x86. 5545 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5546 * conflicts in case kvm is already setup for another implementation. 5547 */ 5548 r = kvm_irqfd_init(); 5549 if (r) 5550 goto out_irqfd; 5551 5552 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5553 r = -ENOMEM; 5554 goto out_free_0; 5555 } 5556 5557 r = kvm_arch_hardware_setup(opaque); 5558 if (r < 0) 5559 goto out_free_1; 5560 5561 c.ret = &r; 5562 c.opaque = opaque; 5563 for_each_online_cpu(cpu) { 5564 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5565 if (r < 0) 5566 goto out_free_2; 5567 } 5568 5569 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5570 kvm_starting_cpu, kvm_dying_cpu); 5571 if (r) 5572 goto out_free_2; 5573 register_reboot_notifier(&kvm_reboot_notifier); 5574 5575 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5576 if (!vcpu_align) 5577 vcpu_align = __alignof__(struct kvm_vcpu); 5578 kvm_vcpu_cache = 5579 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5580 SLAB_ACCOUNT, 5581 offsetof(struct kvm_vcpu, arch), 5582 offsetofend(struct kvm_vcpu, stats_id) 5583 - offsetof(struct kvm_vcpu, arch), 5584 NULL); 5585 if (!kvm_vcpu_cache) { 5586 r = -ENOMEM; 5587 goto out_free_3; 5588 } 5589 5590 for_each_possible_cpu(cpu) { 5591 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5592 GFP_KERNEL, cpu_to_node(cpu))) { 5593 r = -ENOMEM; 5594 goto out_free_4; 5595 } 5596 } 5597 5598 r = kvm_async_pf_init(); 5599 if (r) 5600 goto out_free_5; 5601 5602 kvm_chardev_ops.owner = module; 5603 kvm_vm_fops.owner = module; 5604 kvm_vcpu_fops.owner = module; 5605 5606 r = misc_register(&kvm_dev); 5607 if (r) { 5608 pr_err("kvm: misc device register failed\n"); 5609 goto out_unreg; 5610 } 5611 5612 register_syscore_ops(&kvm_syscore_ops); 5613 5614 kvm_preempt_ops.sched_in = kvm_sched_in; 5615 kvm_preempt_ops.sched_out = kvm_sched_out; 5616 5617 kvm_init_debug(); 5618 5619 r = kvm_vfio_ops_init(); 5620 WARN_ON(r); 5621 5622 return 0; 5623 5624 out_unreg: 5625 kvm_async_pf_deinit(); 5626 out_free_5: 5627 for_each_possible_cpu(cpu) 5628 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5629 out_free_4: 5630 kmem_cache_destroy(kvm_vcpu_cache); 5631 out_free_3: 5632 unregister_reboot_notifier(&kvm_reboot_notifier); 5633 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5634 out_free_2: 5635 kvm_arch_hardware_unsetup(); 5636 out_free_1: 5637 free_cpumask_var(cpus_hardware_enabled); 5638 out_free_0: 5639 kvm_irqfd_exit(); 5640 out_irqfd: 5641 kvm_arch_exit(); 5642 out_fail: 5643 return r; 5644 } 5645 EXPORT_SYMBOL_GPL(kvm_init); 5646 5647 void kvm_exit(void) 5648 { 5649 int cpu; 5650 5651 debugfs_remove_recursive(kvm_debugfs_dir); 5652 misc_deregister(&kvm_dev); 5653 for_each_possible_cpu(cpu) 5654 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5655 kmem_cache_destroy(kvm_vcpu_cache); 5656 kvm_async_pf_deinit(); 5657 unregister_syscore_ops(&kvm_syscore_ops); 5658 unregister_reboot_notifier(&kvm_reboot_notifier); 5659 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5660 on_each_cpu(hardware_disable_nolock, NULL, 1); 5661 kvm_arch_hardware_unsetup(); 5662 kvm_arch_exit(); 5663 kvm_irqfd_exit(); 5664 free_cpumask_var(cpus_hardware_enabled); 5665 kvm_vfio_ops_exit(); 5666 } 5667 EXPORT_SYMBOL_GPL(kvm_exit); 5668 5669 struct kvm_vm_worker_thread_context { 5670 struct kvm *kvm; 5671 struct task_struct *parent; 5672 struct completion init_done; 5673 kvm_vm_thread_fn_t thread_fn; 5674 uintptr_t data; 5675 int err; 5676 }; 5677 5678 static int kvm_vm_worker_thread(void *context) 5679 { 5680 /* 5681 * The init_context is allocated on the stack of the parent thread, so 5682 * we have to locally copy anything that is needed beyond initialization 5683 */ 5684 struct kvm_vm_worker_thread_context *init_context = context; 5685 struct kvm *kvm = init_context->kvm; 5686 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5687 uintptr_t data = init_context->data; 5688 int err; 5689 5690 err = kthread_park(current); 5691 /* kthread_park(current) is never supposed to return an error */ 5692 WARN_ON(err != 0); 5693 if (err) 5694 goto init_complete; 5695 5696 err = cgroup_attach_task_all(init_context->parent, current); 5697 if (err) { 5698 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5699 __func__, err); 5700 goto init_complete; 5701 } 5702 5703 set_user_nice(current, task_nice(init_context->parent)); 5704 5705 init_complete: 5706 init_context->err = err; 5707 complete(&init_context->init_done); 5708 init_context = NULL; 5709 5710 if (err) 5711 return err; 5712 5713 /* Wait to be woken up by the spawner before proceeding. */ 5714 kthread_parkme(); 5715 5716 if (!kthread_should_stop()) 5717 err = thread_fn(kvm, data); 5718 5719 return err; 5720 } 5721 5722 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5723 uintptr_t data, const char *name, 5724 struct task_struct **thread_ptr) 5725 { 5726 struct kvm_vm_worker_thread_context init_context = {}; 5727 struct task_struct *thread; 5728 5729 *thread_ptr = NULL; 5730 init_context.kvm = kvm; 5731 init_context.parent = current; 5732 init_context.thread_fn = thread_fn; 5733 init_context.data = data; 5734 init_completion(&init_context.init_done); 5735 5736 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5737 "%s-%d", name, task_pid_nr(current)); 5738 if (IS_ERR(thread)) 5739 return PTR_ERR(thread); 5740 5741 /* kthread_run is never supposed to return NULL */ 5742 WARN_ON(thread == NULL); 5743 5744 wait_for_completion(&init_context.init_done); 5745 5746 if (!init_context.err) 5747 *thread_ptr = thread; 5748 5749 return init_context.err; 5750 } 5751