xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "mmu_lock.h"
62 #include "vfio.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 #include <linux/kvm_dirty_ring.h>
68 
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71 
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74 
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 
85 /* The start value to grow halt_poll_ns from */
86 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
87 module_param(halt_poll_ns_grow_start, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
89 
90 /* Default resets per-vcpu halt_poll_ns . */
91 unsigned int halt_poll_ns_shrink;
92 module_param(halt_poll_ns_shrink, uint, 0644);
93 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
94 
95 /*
96  * Ordering of locks:
97  *
98  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
99  */
100 
101 DEFINE_MUTEX(kvm_lock);
102 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
103 LIST_HEAD(vm_list);
104 
105 static cpumask_var_t cpus_hardware_enabled;
106 static int kvm_usage_count;
107 static atomic_t hardware_enable_failed;
108 
109 static struct kmem_cache *kvm_vcpu_cache;
110 
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
113 
114 struct dentry *kvm_debugfs_dir;
115 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116 
117 static int kvm_debugfs_num_entries;
118 static const struct file_operations stat_fops_per_vm;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 						   unsigned long start, unsigned long end)
160 {
161 }
162 
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165 	/*
166 	 * The metadata used by is_zone_device_page() to determine whether or
167 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
169 	 * page_count() is zero to help detect bad usage of this helper.
170 	 */
171 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172 		return false;
173 
174 	return is_zone_device_page(pfn_to_page(pfn));
175 }
176 
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179 	/*
180 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 	 * perspective they are "normal" pages, albeit with slightly different
182 	 * usage rules.
183 	 */
184 	if (pfn_valid(pfn))
185 		return PageReserved(pfn_to_page(pfn)) &&
186 		       !is_zero_pfn(pfn) &&
187 		       !kvm_is_zone_device_pfn(pfn);
188 
189 	return true;
190 }
191 
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194 	struct page *page = pfn_to_page(pfn);
195 
196 	if (!PageTransCompoundMap(page))
197 		return false;
198 
199 	return is_transparent_hugepage(compound_head(page));
200 }
201 
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207 	int cpu = get_cpu();
208 
209 	__this_cpu_write(kvm_running_vcpu, vcpu);
210 	preempt_notifier_register(&vcpu->preempt_notifier);
211 	kvm_arch_vcpu_load(vcpu, cpu);
212 	put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215 
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218 	preempt_disable();
219 	kvm_arch_vcpu_put(vcpu);
220 	preempt_notifier_unregister(&vcpu->preempt_notifier);
221 	__this_cpu_write(kvm_running_vcpu, NULL);
222 	preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225 
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230 
231 	/*
232 	 * We need to wait for the VCPU to reenable interrupts and get out of
233 	 * READING_SHADOW_PAGE_TABLES mode.
234 	 */
235 	if (req & KVM_REQUEST_WAIT)
236 		return mode != OUTSIDE_GUEST_MODE;
237 
238 	/*
239 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 	 */
241 	return mode == IN_GUEST_MODE;
242 }
243 
244 static void ack_flush(void *_completed)
245 {
246 }
247 
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250 	if (unlikely(!cpus))
251 		cpus = cpu_online_mask;
252 
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_flush, NULL, wait);
257 	return true;
258 }
259 
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261 				 struct kvm_vcpu *except,
262 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264 	int i, cpu, me;
265 	struct kvm_vcpu *vcpu;
266 	bool called;
267 
268 	me = get_cpu();
269 
270 	kvm_for_each_vcpu(i, vcpu, kvm) {
271 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272 		    vcpu == except)
273 			continue;
274 
275 		kvm_make_request(req, vcpu);
276 		cpu = vcpu->cpu;
277 
278 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279 			continue;
280 
281 		if (tmp != NULL && cpu != -1 && cpu != me &&
282 		    kvm_request_needs_ipi(vcpu, req))
283 			__cpumask_set_cpu(cpu, tmp);
284 	}
285 
286 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287 	put_cpu();
288 
289 	return called;
290 }
291 
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293 				      struct kvm_vcpu *except)
294 {
295 	cpumask_var_t cpus;
296 	bool called;
297 
298 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299 
300 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301 
302 	free_cpumask_var(cpus);
303 	return called;
304 }
305 
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 
311 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
312 void kvm_flush_remote_tlbs(struct kvm *kvm)
313 {
314 	/*
315 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
316 	 * kvm_make_all_cpus_request.
317 	 */
318 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
319 
320 	/*
321 	 * We want to publish modifications to the page tables before reading
322 	 * mode. Pairs with a memory barrier in arch-specific code.
323 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
324 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
325 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
326 	 *
327 	 * There is already an smp_mb__after_atomic() before
328 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
329 	 * barrier here.
330 	 */
331 	if (!kvm_arch_flush_remote_tlb(kvm)
332 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
333 		++kvm->stat.remote_tlb_flush;
334 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
335 }
336 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
337 #endif
338 
339 void kvm_reload_remote_mmus(struct kvm *kvm)
340 {
341 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
342 }
343 
344 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
345 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
346 					       gfp_t gfp_flags)
347 {
348 	gfp_flags |= mc->gfp_zero;
349 
350 	if (mc->kmem_cache)
351 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
352 	else
353 		return (void *)__get_free_page(gfp_flags);
354 }
355 
356 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
357 {
358 	void *obj;
359 
360 	if (mc->nobjs >= min)
361 		return 0;
362 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
363 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
364 		if (!obj)
365 			return mc->nobjs >= min ? 0 : -ENOMEM;
366 		mc->objects[mc->nobjs++] = obj;
367 	}
368 	return 0;
369 }
370 
371 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
372 {
373 	return mc->nobjs;
374 }
375 
376 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
377 {
378 	while (mc->nobjs) {
379 		if (mc->kmem_cache)
380 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
381 		else
382 			free_page((unsigned long)mc->objects[--mc->nobjs]);
383 	}
384 }
385 
386 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
387 {
388 	void *p;
389 
390 	if (WARN_ON(!mc->nobjs))
391 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
392 	else
393 		p = mc->objects[--mc->nobjs];
394 	BUG_ON(!p);
395 	return p;
396 }
397 #endif
398 
399 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
400 {
401 	mutex_init(&vcpu->mutex);
402 	vcpu->cpu = -1;
403 	vcpu->kvm = kvm;
404 	vcpu->vcpu_id = id;
405 	vcpu->pid = NULL;
406 	rcuwait_init(&vcpu->wait);
407 	kvm_async_pf_vcpu_init(vcpu);
408 
409 	vcpu->pre_pcpu = -1;
410 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
411 
412 	kvm_vcpu_set_in_spin_loop(vcpu, false);
413 	kvm_vcpu_set_dy_eligible(vcpu, false);
414 	vcpu->preempted = false;
415 	vcpu->ready = false;
416 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
417 }
418 
419 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
420 {
421 	kvm_dirty_ring_free(&vcpu->dirty_ring);
422 	kvm_arch_vcpu_destroy(vcpu);
423 
424 	/*
425 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
426 	 * the vcpu->pid pointer, and at destruction time all file descriptors
427 	 * are already gone.
428 	 */
429 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
430 
431 	free_page((unsigned long)vcpu->run);
432 	kmem_cache_free(kvm_vcpu_cache, vcpu);
433 }
434 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
435 
436 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
437 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
438 {
439 	return container_of(mn, struct kvm, mmu_notifier);
440 }
441 
442 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
443 					      struct mm_struct *mm,
444 					      unsigned long start, unsigned long end)
445 {
446 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
447 	int idx;
448 
449 	idx = srcu_read_lock(&kvm->srcu);
450 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
451 	srcu_read_unlock(&kvm->srcu, idx);
452 }
453 
454 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
455 					struct mm_struct *mm,
456 					unsigned long address,
457 					pte_t pte)
458 {
459 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
460 	int idx;
461 
462 	idx = srcu_read_lock(&kvm->srcu);
463 
464 	KVM_MMU_LOCK(kvm);
465 
466 	kvm->mmu_notifier_seq++;
467 
468 	if (kvm_set_spte_hva(kvm, address, pte))
469 		kvm_flush_remote_tlbs(kvm);
470 
471 	KVM_MMU_UNLOCK(kvm);
472 	srcu_read_unlock(&kvm->srcu, idx);
473 }
474 
475 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
476 					const struct mmu_notifier_range *range)
477 {
478 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
479 	int need_tlb_flush = 0, idx;
480 
481 	idx = srcu_read_lock(&kvm->srcu);
482 	KVM_MMU_LOCK(kvm);
483 	/*
484 	 * The count increase must become visible at unlock time as no
485 	 * spte can be established without taking the mmu_lock and
486 	 * count is also read inside the mmu_lock critical section.
487 	 */
488 	kvm->mmu_notifier_count++;
489 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
490 					     range->flags);
491 	/* we've to flush the tlb before the pages can be freed */
492 	if (need_tlb_flush || kvm->tlbs_dirty)
493 		kvm_flush_remote_tlbs(kvm);
494 
495 	KVM_MMU_UNLOCK(kvm);
496 	srcu_read_unlock(&kvm->srcu, idx);
497 
498 	return 0;
499 }
500 
501 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
502 					const struct mmu_notifier_range *range)
503 {
504 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
505 
506 	KVM_MMU_LOCK(kvm);
507 	/*
508 	 * This sequence increase will notify the kvm page fault that
509 	 * the page that is going to be mapped in the spte could have
510 	 * been freed.
511 	 */
512 	kvm->mmu_notifier_seq++;
513 	smp_wmb();
514 	/*
515 	 * The above sequence increase must be visible before the
516 	 * below count decrease, which is ensured by the smp_wmb above
517 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
518 	 */
519 	kvm->mmu_notifier_count--;
520 	KVM_MMU_UNLOCK(kvm);
521 
522 	BUG_ON(kvm->mmu_notifier_count < 0);
523 }
524 
525 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
526 					      struct mm_struct *mm,
527 					      unsigned long start,
528 					      unsigned long end)
529 {
530 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
531 	int young, idx;
532 
533 	idx = srcu_read_lock(&kvm->srcu);
534 	KVM_MMU_LOCK(kvm);
535 
536 	young = kvm_age_hva(kvm, start, end);
537 	if (young)
538 		kvm_flush_remote_tlbs(kvm);
539 
540 	KVM_MMU_UNLOCK(kvm);
541 	srcu_read_unlock(&kvm->srcu, idx);
542 
543 	return young;
544 }
545 
546 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
547 					struct mm_struct *mm,
548 					unsigned long start,
549 					unsigned long end)
550 {
551 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
552 	int young, idx;
553 
554 	idx = srcu_read_lock(&kvm->srcu);
555 	KVM_MMU_LOCK(kvm);
556 	/*
557 	 * Even though we do not flush TLB, this will still adversely
558 	 * affect performance on pre-Haswell Intel EPT, where there is
559 	 * no EPT Access Bit to clear so that we have to tear down EPT
560 	 * tables instead. If we find this unacceptable, we can always
561 	 * add a parameter to kvm_age_hva so that it effectively doesn't
562 	 * do anything on clear_young.
563 	 *
564 	 * Also note that currently we never issue secondary TLB flushes
565 	 * from clear_young, leaving this job up to the regular system
566 	 * cadence. If we find this inaccurate, we might come up with a
567 	 * more sophisticated heuristic later.
568 	 */
569 	young = kvm_age_hva(kvm, start, end);
570 	KVM_MMU_UNLOCK(kvm);
571 	srcu_read_unlock(&kvm->srcu, idx);
572 
573 	return young;
574 }
575 
576 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
577 				       struct mm_struct *mm,
578 				       unsigned long address)
579 {
580 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
581 	int young, idx;
582 
583 	idx = srcu_read_lock(&kvm->srcu);
584 	KVM_MMU_LOCK(kvm);
585 	young = kvm_test_age_hva(kvm, address);
586 	KVM_MMU_UNLOCK(kvm);
587 	srcu_read_unlock(&kvm->srcu, idx);
588 
589 	return young;
590 }
591 
592 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
593 				     struct mm_struct *mm)
594 {
595 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
596 	int idx;
597 
598 	idx = srcu_read_lock(&kvm->srcu);
599 	kvm_arch_flush_shadow_all(kvm);
600 	srcu_read_unlock(&kvm->srcu, idx);
601 }
602 
603 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
604 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
605 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
606 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
607 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
608 	.clear_young		= kvm_mmu_notifier_clear_young,
609 	.test_young		= kvm_mmu_notifier_test_young,
610 	.change_pte		= kvm_mmu_notifier_change_pte,
611 	.release		= kvm_mmu_notifier_release,
612 };
613 
614 static int kvm_init_mmu_notifier(struct kvm *kvm)
615 {
616 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
617 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
618 }
619 
620 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
621 
622 static int kvm_init_mmu_notifier(struct kvm *kvm)
623 {
624 	return 0;
625 }
626 
627 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
628 
629 static struct kvm_memslots *kvm_alloc_memslots(void)
630 {
631 	int i;
632 	struct kvm_memslots *slots;
633 
634 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
635 	if (!slots)
636 		return NULL;
637 
638 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
639 		slots->id_to_index[i] = -1;
640 
641 	return slots;
642 }
643 
644 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
645 {
646 	if (!memslot->dirty_bitmap)
647 		return;
648 
649 	kvfree(memslot->dirty_bitmap);
650 	memslot->dirty_bitmap = NULL;
651 }
652 
653 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
654 {
655 	kvm_destroy_dirty_bitmap(slot);
656 
657 	kvm_arch_free_memslot(kvm, slot);
658 
659 	slot->flags = 0;
660 	slot->npages = 0;
661 }
662 
663 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
664 {
665 	struct kvm_memory_slot *memslot;
666 
667 	if (!slots)
668 		return;
669 
670 	kvm_for_each_memslot(memslot, slots)
671 		kvm_free_memslot(kvm, memslot);
672 
673 	kvfree(slots);
674 }
675 
676 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
677 {
678 	int i;
679 
680 	if (!kvm->debugfs_dentry)
681 		return;
682 
683 	debugfs_remove_recursive(kvm->debugfs_dentry);
684 
685 	if (kvm->debugfs_stat_data) {
686 		for (i = 0; i < kvm_debugfs_num_entries; i++)
687 			kfree(kvm->debugfs_stat_data[i]);
688 		kfree(kvm->debugfs_stat_data);
689 	}
690 }
691 
692 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
693 {
694 	char dir_name[ITOA_MAX_LEN * 2];
695 	struct kvm_stat_data *stat_data;
696 	struct kvm_stats_debugfs_item *p;
697 
698 	if (!debugfs_initialized())
699 		return 0;
700 
701 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
702 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
703 
704 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
705 					 sizeof(*kvm->debugfs_stat_data),
706 					 GFP_KERNEL_ACCOUNT);
707 	if (!kvm->debugfs_stat_data)
708 		return -ENOMEM;
709 
710 	for (p = debugfs_entries; p->name; p++) {
711 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
712 		if (!stat_data)
713 			return -ENOMEM;
714 
715 		stat_data->kvm = kvm;
716 		stat_data->dbgfs_item = p;
717 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
718 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
719 				    kvm->debugfs_dentry, stat_data,
720 				    &stat_fops_per_vm);
721 	}
722 	return 0;
723 }
724 
725 /*
726  * Called after the VM is otherwise initialized, but just before adding it to
727  * the vm_list.
728  */
729 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
730 {
731 	return 0;
732 }
733 
734 /*
735  * Called just after removing the VM from the vm_list, but before doing any
736  * other destruction.
737  */
738 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
739 {
740 }
741 
742 static struct kvm *kvm_create_vm(unsigned long type)
743 {
744 	struct kvm *kvm = kvm_arch_alloc_vm();
745 	int r = -ENOMEM;
746 	int i;
747 
748 	if (!kvm)
749 		return ERR_PTR(-ENOMEM);
750 
751 	KVM_MMU_LOCK_INIT(kvm);
752 	mmgrab(current->mm);
753 	kvm->mm = current->mm;
754 	kvm_eventfd_init(kvm);
755 	mutex_init(&kvm->lock);
756 	mutex_init(&kvm->irq_lock);
757 	mutex_init(&kvm->slots_lock);
758 	INIT_LIST_HEAD(&kvm->devices);
759 
760 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
761 
762 	if (init_srcu_struct(&kvm->srcu))
763 		goto out_err_no_srcu;
764 	if (init_srcu_struct(&kvm->irq_srcu))
765 		goto out_err_no_irq_srcu;
766 
767 	refcount_set(&kvm->users_count, 1);
768 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
769 		struct kvm_memslots *slots = kvm_alloc_memslots();
770 
771 		if (!slots)
772 			goto out_err_no_arch_destroy_vm;
773 		/* Generations must be different for each address space. */
774 		slots->generation = i;
775 		rcu_assign_pointer(kvm->memslots[i], slots);
776 	}
777 
778 	for (i = 0; i < KVM_NR_BUSES; i++) {
779 		rcu_assign_pointer(kvm->buses[i],
780 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
781 		if (!kvm->buses[i])
782 			goto out_err_no_arch_destroy_vm;
783 	}
784 
785 	kvm->max_halt_poll_ns = halt_poll_ns;
786 
787 	r = kvm_arch_init_vm(kvm, type);
788 	if (r)
789 		goto out_err_no_arch_destroy_vm;
790 
791 	r = hardware_enable_all();
792 	if (r)
793 		goto out_err_no_disable;
794 
795 #ifdef CONFIG_HAVE_KVM_IRQFD
796 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
797 #endif
798 
799 	r = kvm_init_mmu_notifier(kvm);
800 	if (r)
801 		goto out_err_no_mmu_notifier;
802 
803 	r = kvm_arch_post_init_vm(kvm);
804 	if (r)
805 		goto out_err;
806 
807 	mutex_lock(&kvm_lock);
808 	list_add(&kvm->vm_list, &vm_list);
809 	mutex_unlock(&kvm_lock);
810 
811 	preempt_notifier_inc();
812 
813 	return kvm;
814 
815 out_err:
816 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
817 	if (kvm->mmu_notifier.ops)
818 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
819 #endif
820 out_err_no_mmu_notifier:
821 	hardware_disable_all();
822 out_err_no_disable:
823 	kvm_arch_destroy_vm(kvm);
824 out_err_no_arch_destroy_vm:
825 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
826 	for (i = 0; i < KVM_NR_BUSES; i++)
827 		kfree(kvm_get_bus(kvm, i));
828 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
829 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
830 	cleanup_srcu_struct(&kvm->irq_srcu);
831 out_err_no_irq_srcu:
832 	cleanup_srcu_struct(&kvm->srcu);
833 out_err_no_srcu:
834 	kvm_arch_free_vm(kvm);
835 	mmdrop(current->mm);
836 	return ERR_PTR(r);
837 }
838 
839 static void kvm_destroy_devices(struct kvm *kvm)
840 {
841 	struct kvm_device *dev, *tmp;
842 
843 	/*
844 	 * We do not need to take the kvm->lock here, because nobody else
845 	 * has a reference to the struct kvm at this point and therefore
846 	 * cannot access the devices list anyhow.
847 	 */
848 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
849 		list_del(&dev->vm_node);
850 		dev->ops->destroy(dev);
851 	}
852 }
853 
854 static void kvm_destroy_vm(struct kvm *kvm)
855 {
856 	int i;
857 	struct mm_struct *mm = kvm->mm;
858 
859 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
860 	kvm_destroy_vm_debugfs(kvm);
861 	kvm_arch_sync_events(kvm);
862 	mutex_lock(&kvm_lock);
863 	list_del(&kvm->vm_list);
864 	mutex_unlock(&kvm_lock);
865 	kvm_arch_pre_destroy_vm(kvm);
866 
867 	kvm_free_irq_routing(kvm);
868 	for (i = 0; i < KVM_NR_BUSES; i++) {
869 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
870 
871 		if (bus)
872 			kvm_io_bus_destroy(bus);
873 		kvm->buses[i] = NULL;
874 	}
875 	kvm_coalesced_mmio_free(kvm);
876 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
877 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
878 #else
879 	kvm_arch_flush_shadow_all(kvm);
880 #endif
881 	kvm_arch_destroy_vm(kvm);
882 	kvm_destroy_devices(kvm);
883 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
884 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
885 	cleanup_srcu_struct(&kvm->irq_srcu);
886 	cleanup_srcu_struct(&kvm->srcu);
887 	kvm_arch_free_vm(kvm);
888 	preempt_notifier_dec();
889 	hardware_disable_all();
890 	mmdrop(mm);
891 }
892 
893 void kvm_get_kvm(struct kvm *kvm)
894 {
895 	refcount_inc(&kvm->users_count);
896 }
897 EXPORT_SYMBOL_GPL(kvm_get_kvm);
898 
899 void kvm_put_kvm(struct kvm *kvm)
900 {
901 	if (refcount_dec_and_test(&kvm->users_count))
902 		kvm_destroy_vm(kvm);
903 }
904 EXPORT_SYMBOL_GPL(kvm_put_kvm);
905 
906 /*
907  * Used to put a reference that was taken on behalf of an object associated
908  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
909  * of the new file descriptor fails and the reference cannot be transferred to
910  * its final owner.  In such cases, the caller is still actively using @kvm and
911  * will fail miserably if the refcount unexpectedly hits zero.
912  */
913 void kvm_put_kvm_no_destroy(struct kvm *kvm)
914 {
915 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
916 }
917 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
918 
919 static int kvm_vm_release(struct inode *inode, struct file *filp)
920 {
921 	struct kvm *kvm = filp->private_data;
922 
923 	kvm_irqfd_release(kvm);
924 
925 	kvm_put_kvm(kvm);
926 	return 0;
927 }
928 
929 /*
930  * Allocation size is twice as large as the actual dirty bitmap size.
931  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
932  */
933 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
934 {
935 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
936 
937 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
938 	if (!memslot->dirty_bitmap)
939 		return -ENOMEM;
940 
941 	return 0;
942 }
943 
944 /*
945  * Delete a memslot by decrementing the number of used slots and shifting all
946  * other entries in the array forward one spot.
947  */
948 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
949 				      struct kvm_memory_slot *memslot)
950 {
951 	struct kvm_memory_slot *mslots = slots->memslots;
952 	int i;
953 
954 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
955 		return;
956 
957 	slots->used_slots--;
958 
959 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
960 		atomic_set(&slots->lru_slot, 0);
961 
962 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
963 		mslots[i] = mslots[i + 1];
964 		slots->id_to_index[mslots[i].id] = i;
965 	}
966 	mslots[i] = *memslot;
967 	slots->id_to_index[memslot->id] = -1;
968 }
969 
970 /*
971  * "Insert" a new memslot by incrementing the number of used slots.  Returns
972  * the new slot's initial index into the memslots array.
973  */
974 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
975 {
976 	return slots->used_slots++;
977 }
978 
979 /*
980  * Move a changed memslot backwards in the array by shifting existing slots
981  * with a higher GFN toward the front of the array.  Note, the changed memslot
982  * itself is not preserved in the array, i.e. not swapped at this time, only
983  * its new index into the array is tracked.  Returns the changed memslot's
984  * current index into the memslots array.
985  */
986 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
987 					    struct kvm_memory_slot *memslot)
988 {
989 	struct kvm_memory_slot *mslots = slots->memslots;
990 	int i;
991 
992 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
993 	    WARN_ON_ONCE(!slots->used_slots))
994 		return -1;
995 
996 	/*
997 	 * Move the target memslot backward in the array by shifting existing
998 	 * memslots with a higher GFN (than the target memslot) towards the
999 	 * front of the array.
1000 	 */
1001 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1002 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1003 			break;
1004 
1005 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1006 
1007 		/* Shift the next memslot forward one and update its index. */
1008 		mslots[i] = mslots[i + 1];
1009 		slots->id_to_index[mslots[i].id] = i;
1010 	}
1011 	return i;
1012 }
1013 
1014 /*
1015  * Move a changed memslot forwards in the array by shifting existing slots with
1016  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1017  * is not preserved in the array, i.e. not swapped at this time, only its new
1018  * index into the array is tracked.  Returns the changed memslot's final index
1019  * into the memslots array.
1020  */
1021 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1022 					   struct kvm_memory_slot *memslot,
1023 					   int start)
1024 {
1025 	struct kvm_memory_slot *mslots = slots->memslots;
1026 	int i;
1027 
1028 	for (i = start; i > 0; i--) {
1029 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1030 			break;
1031 
1032 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1033 
1034 		/* Shift the next memslot back one and update its index. */
1035 		mslots[i] = mslots[i - 1];
1036 		slots->id_to_index[mslots[i].id] = i;
1037 	}
1038 	return i;
1039 }
1040 
1041 /*
1042  * Re-sort memslots based on their GFN to account for an added, deleted, or
1043  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1044  * memslot lookup.
1045  *
1046  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1047  * at memslots[0] has the highest GFN.
1048  *
1049  * The sorting algorithm takes advantage of having initially sorted memslots
1050  * and knowing the position of the changed memslot.  Sorting is also optimized
1051  * by not swapping the updated memslot and instead only shifting other memslots
1052  * and tracking the new index for the update memslot.  Only once its final
1053  * index is known is the updated memslot copied into its position in the array.
1054  *
1055  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1056  *    the end of the array.
1057  *
1058  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1059  *    end of the array and then it forward to its correct location.
1060  *
1061  *  - When moving a memslot, the algorithm first moves the updated memslot
1062  *    backward to handle the scenario where the memslot's GFN was changed to a
1063  *    lower value.  update_memslots() then falls through and runs the same flow
1064  *    as creating a memslot to move the memslot forward to handle the scenario
1065  *    where its GFN was changed to a higher value.
1066  *
1067  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1068  * historical reasons.  Originally, invalid memslots where denoted by having
1069  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1070  * to the end of the array.  The current algorithm uses dedicated logic to
1071  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1072  *
1073  * The other historical motiviation for highest->lowest was to improve the
1074  * performance of memslot lookup.  KVM originally used a linear search starting
1075  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1076  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1077  * single memslot above the 4gb boundary.  As the largest memslot is also the
1078  * most likely to be referenced, sorting it to the front of the array was
1079  * advantageous.  The current binary search starts from the middle of the array
1080  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1081  */
1082 static void update_memslots(struct kvm_memslots *slots,
1083 			    struct kvm_memory_slot *memslot,
1084 			    enum kvm_mr_change change)
1085 {
1086 	int i;
1087 
1088 	if (change == KVM_MR_DELETE) {
1089 		kvm_memslot_delete(slots, memslot);
1090 	} else {
1091 		if (change == KVM_MR_CREATE)
1092 			i = kvm_memslot_insert_back(slots);
1093 		else
1094 			i = kvm_memslot_move_backward(slots, memslot);
1095 		i = kvm_memslot_move_forward(slots, memslot, i);
1096 
1097 		/*
1098 		 * Copy the memslot to its new position in memslots and update
1099 		 * its index accordingly.
1100 		 */
1101 		slots->memslots[i] = *memslot;
1102 		slots->id_to_index[memslot->id] = i;
1103 	}
1104 }
1105 
1106 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1107 {
1108 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1109 
1110 #ifdef __KVM_HAVE_READONLY_MEM
1111 	valid_flags |= KVM_MEM_READONLY;
1112 #endif
1113 
1114 	if (mem->flags & ~valid_flags)
1115 		return -EINVAL;
1116 
1117 	return 0;
1118 }
1119 
1120 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1121 		int as_id, struct kvm_memslots *slots)
1122 {
1123 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1124 	u64 gen = old_memslots->generation;
1125 
1126 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1127 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1128 
1129 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1130 	synchronize_srcu_expedited(&kvm->srcu);
1131 
1132 	/*
1133 	 * Increment the new memslot generation a second time, dropping the
1134 	 * update in-progress flag and incrementing the generation based on
1135 	 * the number of address spaces.  This provides a unique and easily
1136 	 * identifiable generation number while the memslots are in flux.
1137 	 */
1138 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1139 
1140 	/*
1141 	 * Generations must be unique even across address spaces.  We do not need
1142 	 * a global counter for that, instead the generation space is evenly split
1143 	 * across address spaces.  For example, with two address spaces, address
1144 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1145 	 * use generations 1, 3, 5, ...
1146 	 */
1147 	gen += KVM_ADDRESS_SPACE_NUM;
1148 
1149 	kvm_arch_memslots_updated(kvm, gen);
1150 
1151 	slots->generation = gen;
1152 
1153 	return old_memslots;
1154 }
1155 
1156 /*
1157  * Note, at a minimum, the current number of used slots must be allocated, even
1158  * when deleting a memslot, as we need a complete duplicate of the memslots for
1159  * use when invalidating a memslot prior to deleting/moving the memslot.
1160  */
1161 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1162 					     enum kvm_mr_change change)
1163 {
1164 	struct kvm_memslots *slots;
1165 	size_t old_size, new_size;
1166 
1167 	old_size = sizeof(struct kvm_memslots) +
1168 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1169 
1170 	if (change == KVM_MR_CREATE)
1171 		new_size = old_size + sizeof(struct kvm_memory_slot);
1172 	else
1173 		new_size = old_size;
1174 
1175 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1176 	if (likely(slots))
1177 		memcpy(slots, old, old_size);
1178 
1179 	return slots;
1180 }
1181 
1182 static int kvm_set_memslot(struct kvm *kvm,
1183 			   const struct kvm_userspace_memory_region *mem,
1184 			   struct kvm_memory_slot *old,
1185 			   struct kvm_memory_slot *new, int as_id,
1186 			   enum kvm_mr_change change)
1187 {
1188 	struct kvm_memory_slot *slot;
1189 	struct kvm_memslots *slots;
1190 	int r;
1191 
1192 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1193 	if (!slots)
1194 		return -ENOMEM;
1195 
1196 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1197 		/*
1198 		 * Note, the INVALID flag needs to be in the appropriate entry
1199 		 * in the freshly allocated memslots, not in @old or @new.
1200 		 */
1201 		slot = id_to_memslot(slots, old->id);
1202 		slot->flags |= KVM_MEMSLOT_INVALID;
1203 
1204 		/*
1205 		 * We can re-use the old memslots, the only difference from the
1206 		 * newly installed memslots is the invalid flag, which will get
1207 		 * dropped by update_memslots anyway.  We'll also revert to the
1208 		 * old memslots if preparing the new memory region fails.
1209 		 */
1210 		slots = install_new_memslots(kvm, as_id, slots);
1211 
1212 		/* From this point no new shadow pages pointing to a deleted,
1213 		 * or moved, memslot will be created.
1214 		 *
1215 		 * validation of sp->gfn happens in:
1216 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1217 		 *	- kvm_is_visible_gfn (mmu_check_root)
1218 		 */
1219 		kvm_arch_flush_shadow_memslot(kvm, slot);
1220 	}
1221 
1222 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1223 	if (r)
1224 		goto out_slots;
1225 
1226 	update_memslots(slots, new, change);
1227 	slots = install_new_memslots(kvm, as_id, slots);
1228 
1229 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1230 
1231 	kvfree(slots);
1232 	return 0;
1233 
1234 out_slots:
1235 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1236 		slots = install_new_memslots(kvm, as_id, slots);
1237 	kvfree(slots);
1238 	return r;
1239 }
1240 
1241 static int kvm_delete_memslot(struct kvm *kvm,
1242 			      const struct kvm_userspace_memory_region *mem,
1243 			      struct kvm_memory_slot *old, int as_id)
1244 {
1245 	struct kvm_memory_slot new;
1246 	int r;
1247 
1248 	if (!old->npages)
1249 		return -EINVAL;
1250 
1251 	memset(&new, 0, sizeof(new));
1252 	new.id = old->id;
1253 	/*
1254 	 * This is only for debugging purpose; it should never be referenced
1255 	 * for a removed memslot.
1256 	 */
1257 	new.as_id = as_id;
1258 
1259 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1260 	if (r)
1261 		return r;
1262 
1263 	kvm_free_memslot(kvm, old);
1264 	return 0;
1265 }
1266 
1267 /*
1268  * Allocate some memory and give it an address in the guest physical address
1269  * space.
1270  *
1271  * Discontiguous memory is allowed, mostly for framebuffers.
1272  *
1273  * Must be called holding kvm->slots_lock for write.
1274  */
1275 int __kvm_set_memory_region(struct kvm *kvm,
1276 			    const struct kvm_userspace_memory_region *mem)
1277 {
1278 	struct kvm_memory_slot old, new;
1279 	struct kvm_memory_slot *tmp;
1280 	enum kvm_mr_change change;
1281 	int as_id, id;
1282 	int r;
1283 
1284 	r = check_memory_region_flags(mem);
1285 	if (r)
1286 		return r;
1287 
1288 	as_id = mem->slot >> 16;
1289 	id = (u16)mem->slot;
1290 
1291 	/* General sanity checks */
1292 	if (mem->memory_size & (PAGE_SIZE - 1))
1293 		return -EINVAL;
1294 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1295 		return -EINVAL;
1296 	/* We can read the guest memory with __xxx_user() later on. */
1297 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1298 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1299 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1300 			mem->memory_size))
1301 		return -EINVAL;
1302 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1303 		return -EINVAL;
1304 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1305 		return -EINVAL;
1306 
1307 	/*
1308 	 * Make a full copy of the old memslot, the pointer will become stale
1309 	 * when the memslots are re-sorted by update_memslots(), and the old
1310 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1311 	 * to free its resources and for arch specific behavior.
1312 	 */
1313 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1314 	if (tmp) {
1315 		old = *tmp;
1316 		tmp = NULL;
1317 	} else {
1318 		memset(&old, 0, sizeof(old));
1319 		old.id = id;
1320 	}
1321 
1322 	if (!mem->memory_size)
1323 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1324 
1325 	new.as_id = as_id;
1326 	new.id = id;
1327 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1328 	new.npages = mem->memory_size >> PAGE_SHIFT;
1329 	new.flags = mem->flags;
1330 	new.userspace_addr = mem->userspace_addr;
1331 
1332 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1333 		return -EINVAL;
1334 
1335 	if (!old.npages) {
1336 		change = KVM_MR_CREATE;
1337 		new.dirty_bitmap = NULL;
1338 		memset(&new.arch, 0, sizeof(new.arch));
1339 	} else { /* Modify an existing slot. */
1340 		if ((new.userspace_addr != old.userspace_addr) ||
1341 		    (new.npages != old.npages) ||
1342 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1343 			return -EINVAL;
1344 
1345 		if (new.base_gfn != old.base_gfn)
1346 			change = KVM_MR_MOVE;
1347 		else if (new.flags != old.flags)
1348 			change = KVM_MR_FLAGS_ONLY;
1349 		else /* Nothing to change. */
1350 			return 0;
1351 
1352 		/* Copy dirty_bitmap and arch from the current memslot. */
1353 		new.dirty_bitmap = old.dirty_bitmap;
1354 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1355 	}
1356 
1357 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1358 		/* Check for overlaps */
1359 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1360 			if (tmp->id == id)
1361 				continue;
1362 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1363 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1364 				return -EEXIST;
1365 		}
1366 	}
1367 
1368 	/* Allocate/free page dirty bitmap as needed */
1369 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1370 		new.dirty_bitmap = NULL;
1371 	else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1372 		r = kvm_alloc_dirty_bitmap(&new);
1373 		if (r)
1374 			return r;
1375 
1376 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1377 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1378 	}
1379 
1380 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1381 	if (r)
1382 		goto out_bitmap;
1383 
1384 	if (old.dirty_bitmap && !new.dirty_bitmap)
1385 		kvm_destroy_dirty_bitmap(&old);
1386 	return 0;
1387 
1388 out_bitmap:
1389 	if (new.dirty_bitmap && !old.dirty_bitmap)
1390 		kvm_destroy_dirty_bitmap(&new);
1391 	return r;
1392 }
1393 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1394 
1395 int kvm_set_memory_region(struct kvm *kvm,
1396 			  const struct kvm_userspace_memory_region *mem)
1397 {
1398 	int r;
1399 
1400 	mutex_lock(&kvm->slots_lock);
1401 	r = __kvm_set_memory_region(kvm, mem);
1402 	mutex_unlock(&kvm->slots_lock);
1403 	return r;
1404 }
1405 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1406 
1407 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1408 					  struct kvm_userspace_memory_region *mem)
1409 {
1410 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1411 		return -EINVAL;
1412 
1413 	return kvm_set_memory_region(kvm, mem);
1414 }
1415 
1416 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1417 /**
1418  * kvm_get_dirty_log - get a snapshot of dirty pages
1419  * @kvm:	pointer to kvm instance
1420  * @log:	slot id and address to which we copy the log
1421  * @is_dirty:	set to '1' if any dirty pages were found
1422  * @memslot:	set to the associated memslot, always valid on success
1423  */
1424 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1425 		      int *is_dirty, struct kvm_memory_slot **memslot)
1426 {
1427 	struct kvm_memslots *slots;
1428 	int i, as_id, id;
1429 	unsigned long n;
1430 	unsigned long any = 0;
1431 
1432 	/* Dirty ring tracking is exclusive to dirty log tracking */
1433 	if (kvm->dirty_ring_size)
1434 		return -ENXIO;
1435 
1436 	*memslot = NULL;
1437 	*is_dirty = 0;
1438 
1439 	as_id = log->slot >> 16;
1440 	id = (u16)log->slot;
1441 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1442 		return -EINVAL;
1443 
1444 	slots = __kvm_memslots(kvm, as_id);
1445 	*memslot = id_to_memslot(slots, id);
1446 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1447 		return -ENOENT;
1448 
1449 	kvm_arch_sync_dirty_log(kvm, *memslot);
1450 
1451 	n = kvm_dirty_bitmap_bytes(*memslot);
1452 
1453 	for (i = 0; !any && i < n/sizeof(long); ++i)
1454 		any = (*memslot)->dirty_bitmap[i];
1455 
1456 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1457 		return -EFAULT;
1458 
1459 	if (any)
1460 		*is_dirty = 1;
1461 	return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1464 
1465 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1466 /**
1467  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1468  *	and reenable dirty page tracking for the corresponding pages.
1469  * @kvm:	pointer to kvm instance
1470  * @log:	slot id and address to which we copy the log
1471  *
1472  * We need to keep it in mind that VCPU threads can write to the bitmap
1473  * concurrently. So, to avoid losing track of dirty pages we keep the
1474  * following order:
1475  *
1476  *    1. Take a snapshot of the bit and clear it if needed.
1477  *    2. Write protect the corresponding page.
1478  *    3. Copy the snapshot to the userspace.
1479  *    4. Upon return caller flushes TLB's if needed.
1480  *
1481  * Between 2 and 4, the guest may write to the page using the remaining TLB
1482  * entry.  This is not a problem because the page is reported dirty using
1483  * the snapshot taken before and step 4 ensures that writes done after
1484  * exiting to userspace will be logged for the next call.
1485  *
1486  */
1487 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1488 {
1489 	struct kvm_memslots *slots;
1490 	struct kvm_memory_slot *memslot;
1491 	int i, as_id, id;
1492 	unsigned long n;
1493 	unsigned long *dirty_bitmap;
1494 	unsigned long *dirty_bitmap_buffer;
1495 	bool flush;
1496 
1497 	/* Dirty ring tracking is exclusive to dirty log tracking */
1498 	if (kvm->dirty_ring_size)
1499 		return -ENXIO;
1500 
1501 	as_id = log->slot >> 16;
1502 	id = (u16)log->slot;
1503 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1504 		return -EINVAL;
1505 
1506 	slots = __kvm_memslots(kvm, as_id);
1507 	memslot = id_to_memslot(slots, id);
1508 	if (!memslot || !memslot->dirty_bitmap)
1509 		return -ENOENT;
1510 
1511 	dirty_bitmap = memslot->dirty_bitmap;
1512 
1513 	kvm_arch_sync_dirty_log(kvm, memslot);
1514 
1515 	n = kvm_dirty_bitmap_bytes(memslot);
1516 	flush = false;
1517 	if (kvm->manual_dirty_log_protect) {
1518 		/*
1519 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1520 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1521 		 * is some code duplication between this function and
1522 		 * kvm_get_dirty_log, but hopefully all architecture
1523 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1524 		 * can be eliminated.
1525 		 */
1526 		dirty_bitmap_buffer = dirty_bitmap;
1527 	} else {
1528 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1529 		memset(dirty_bitmap_buffer, 0, n);
1530 
1531 		KVM_MMU_LOCK(kvm);
1532 		for (i = 0; i < n / sizeof(long); i++) {
1533 			unsigned long mask;
1534 			gfn_t offset;
1535 
1536 			if (!dirty_bitmap[i])
1537 				continue;
1538 
1539 			flush = true;
1540 			mask = xchg(&dirty_bitmap[i], 0);
1541 			dirty_bitmap_buffer[i] = mask;
1542 
1543 			offset = i * BITS_PER_LONG;
1544 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1545 								offset, mask);
1546 		}
1547 		KVM_MMU_UNLOCK(kvm);
1548 	}
1549 
1550 	if (flush)
1551 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1552 
1553 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1554 		return -EFAULT;
1555 	return 0;
1556 }
1557 
1558 
1559 /**
1560  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1561  * @kvm: kvm instance
1562  * @log: slot id and address to which we copy the log
1563  *
1564  * Steps 1-4 below provide general overview of dirty page logging. See
1565  * kvm_get_dirty_log_protect() function description for additional details.
1566  *
1567  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1568  * always flush the TLB (step 4) even if previous step failed  and the dirty
1569  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1570  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1571  * writes will be marked dirty for next log read.
1572  *
1573  *   1. Take a snapshot of the bit and clear it if needed.
1574  *   2. Write protect the corresponding page.
1575  *   3. Copy the snapshot to the userspace.
1576  *   4. Flush TLB's if needed.
1577  */
1578 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1579 				      struct kvm_dirty_log *log)
1580 {
1581 	int r;
1582 
1583 	mutex_lock(&kvm->slots_lock);
1584 
1585 	r = kvm_get_dirty_log_protect(kvm, log);
1586 
1587 	mutex_unlock(&kvm->slots_lock);
1588 	return r;
1589 }
1590 
1591 /**
1592  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1593  *	and reenable dirty page tracking for the corresponding pages.
1594  * @kvm:	pointer to kvm instance
1595  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1596  */
1597 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1598 				       struct kvm_clear_dirty_log *log)
1599 {
1600 	struct kvm_memslots *slots;
1601 	struct kvm_memory_slot *memslot;
1602 	int as_id, id;
1603 	gfn_t offset;
1604 	unsigned long i, n;
1605 	unsigned long *dirty_bitmap;
1606 	unsigned long *dirty_bitmap_buffer;
1607 	bool flush;
1608 
1609 	/* Dirty ring tracking is exclusive to dirty log tracking */
1610 	if (kvm->dirty_ring_size)
1611 		return -ENXIO;
1612 
1613 	as_id = log->slot >> 16;
1614 	id = (u16)log->slot;
1615 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1616 		return -EINVAL;
1617 
1618 	if (log->first_page & 63)
1619 		return -EINVAL;
1620 
1621 	slots = __kvm_memslots(kvm, as_id);
1622 	memslot = id_to_memslot(slots, id);
1623 	if (!memslot || !memslot->dirty_bitmap)
1624 		return -ENOENT;
1625 
1626 	dirty_bitmap = memslot->dirty_bitmap;
1627 
1628 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1629 
1630 	if (log->first_page > memslot->npages ||
1631 	    log->num_pages > memslot->npages - log->first_page ||
1632 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1633 	    return -EINVAL;
1634 
1635 	kvm_arch_sync_dirty_log(kvm, memslot);
1636 
1637 	flush = false;
1638 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1639 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1640 		return -EFAULT;
1641 
1642 	KVM_MMU_LOCK(kvm);
1643 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1644 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1645 	     i++, offset += BITS_PER_LONG) {
1646 		unsigned long mask = *dirty_bitmap_buffer++;
1647 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1648 		if (!mask)
1649 			continue;
1650 
1651 		mask &= atomic_long_fetch_andnot(mask, p);
1652 
1653 		/*
1654 		 * mask contains the bits that really have been cleared.  This
1655 		 * never includes any bits beyond the length of the memslot (if
1656 		 * the length is not aligned to 64 pages), therefore it is not
1657 		 * a problem if userspace sets them in log->dirty_bitmap.
1658 		*/
1659 		if (mask) {
1660 			flush = true;
1661 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1662 								offset, mask);
1663 		}
1664 	}
1665 	KVM_MMU_UNLOCK(kvm);
1666 
1667 	if (flush)
1668 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1669 
1670 	return 0;
1671 }
1672 
1673 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1674 					struct kvm_clear_dirty_log *log)
1675 {
1676 	int r;
1677 
1678 	mutex_lock(&kvm->slots_lock);
1679 
1680 	r = kvm_clear_dirty_log_protect(kvm, log);
1681 
1682 	mutex_unlock(&kvm->slots_lock);
1683 	return r;
1684 }
1685 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1686 
1687 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1688 {
1689 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1690 }
1691 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1692 
1693 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1694 {
1695 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1698 
1699 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1700 {
1701 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1702 
1703 	return kvm_is_visible_memslot(memslot);
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1706 
1707 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1708 {
1709 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1710 
1711 	return kvm_is_visible_memslot(memslot);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1714 
1715 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1716 {
1717 	struct vm_area_struct *vma;
1718 	unsigned long addr, size;
1719 
1720 	size = PAGE_SIZE;
1721 
1722 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1723 	if (kvm_is_error_hva(addr))
1724 		return PAGE_SIZE;
1725 
1726 	mmap_read_lock(current->mm);
1727 	vma = find_vma(current->mm, addr);
1728 	if (!vma)
1729 		goto out;
1730 
1731 	size = vma_kernel_pagesize(vma);
1732 
1733 out:
1734 	mmap_read_unlock(current->mm);
1735 
1736 	return size;
1737 }
1738 
1739 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1740 {
1741 	return slot->flags & KVM_MEM_READONLY;
1742 }
1743 
1744 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1745 				       gfn_t *nr_pages, bool write)
1746 {
1747 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1748 		return KVM_HVA_ERR_BAD;
1749 
1750 	if (memslot_is_readonly(slot) && write)
1751 		return KVM_HVA_ERR_RO_BAD;
1752 
1753 	if (nr_pages)
1754 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1755 
1756 	return __gfn_to_hva_memslot(slot, gfn);
1757 }
1758 
1759 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1760 				     gfn_t *nr_pages)
1761 {
1762 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1763 }
1764 
1765 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1766 					gfn_t gfn)
1767 {
1768 	return gfn_to_hva_many(slot, gfn, NULL);
1769 }
1770 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1771 
1772 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1773 {
1774 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1775 }
1776 EXPORT_SYMBOL_GPL(gfn_to_hva);
1777 
1778 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1779 {
1780 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1783 
1784 /*
1785  * Return the hva of a @gfn and the R/W attribute if possible.
1786  *
1787  * @slot: the kvm_memory_slot which contains @gfn
1788  * @gfn: the gfn to be translated
1789  * @writable: used to return the read/write attribute of the @slot if the hva
1790  * is valid and @writable is not NULL
1791  */
1792 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1793 				      gfn_t gfn, bool *writable)
1794 {
1795 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1796 
1797 	if (!kvm_is_error_hva(hva) && writable)
1798 		*writable = !memslot_is_readonly(slot);
1799 
1800 	return hva;
1801 }
1802 
1803 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1804 {
1805 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1806 
1807 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1808 }
1809 
1810 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1811 {
1812 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1813 
1814 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1815 }
1816 
1817 static inline int check_user_page_hwpoison(unsigned long addr)
1818 {
1819 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1820 
1821 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1822 	return rc == -EHWPOISON;
1823 }
1824 
1825 /*
1826  * The fast path to get the writable pfn which will be stored in @pfn,
1827  * true indicates success, otherwise false is returned.  It's also the
1828  * only part that runs if we can in atomic context.
1829  */
1830 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1831 			    bool *writable, kvm_pfn_t *pfn)
1832 {
1833 	struct page *page[1];
1834 
1835 	/*
1836 	 * Fast pin a writable pfn only if it is a write fault request
1837 	 * or the caller allows to map a writable pfn for a read fault
1838 	 * request.
1839 	 */
1840 	if (!(write_fault || writable))
1841 		return false;
1842 
1843 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1844 		*pfn = page_to_pfn(page[0]);
1845 
1846 		if (writable)
1847 			*writable = true;
1848 		return true;
1849 	}
1850 
1851 	return false;
1852 }
1853 
1854 /*
1855  * The slow path to get the pfn of the specified host virtual address,
1856  * 1 indicates success, -errno is returned if error is detected.
1857  */
1858 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1859 			   bool *writable, kvm_pfn_t *pfn)
1860 {
1861 	unsigned int flags = FOLL_HWPOISON;
1862 	struct page *page;
1863 	int npages = 0;
1864 
1865 	might_sleep();
1866 
1867 	if (writable)
1868 		*writable = write_fault;
1869 
1870 	if (write_fault)
1871 		flags |= FOLL_WRITE;
1872 	if (async)
1873 		flags |= FOLL_NOWAIT;
1874 
1875 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1876 	if (npages != 1)
1877 		return npages;
1878 
1879 	/* map read fault as writable if possible */
1880 	if (unlikely(!write_fault) && writable) {
1881 		struct page *wpage;
1882 
1883 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1884 			*writable = true;
1885 			put_page(page);
1886 			page = wpage;
1887 		}
1888 	}
1889 	*pfn = page_to_pfn(page);
1890 	return npages;
1891 }
1892 
1893 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1894 {
1895 	if (unlikely(!(vma->vm_flags & VM_READ)))
1896 		return false;
1897 
1898 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1899 		return false;
1900 
1901 	return true;
1902 }
1903 
1904 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1905 			       unsigned long addr, bool *async,
1906 			       bool write_fault, bool *writable,
1907 			       kvm_pfn_t *p_pfn)
1908 {
1909 	kvm_pfn_t pfn;
1910 	pte_t *ptep;
1911 	spinlock_t *ptl;
1912 	int r;
1913 
1914 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
1915 	if (r) {
1916 		/*
1917 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1918 		 * not call the fault handler, so do it here.
1919 		 */
1920 		bool unlocked = false;
1921 		r = fixup_user_fault(current->mm, addr,
1922 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1923 				     &unlocked);
1924 		if (unlocked)
1925 			return -EAGAIN;
1926 		if (r)
1927 			return r;
1928 
1929 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
1930 		if (r)
1931 			return r;
1932 	}
1933 
1934 	if (write_fault && !pte_write(*ptep)) {
1935 		pfn = KVM_PFN_ERR_RO_FAULT;
1936 		goto out;
1937 	}
1938 
1939 	if (writable)
1940 		*writable = pte_write(*ptep);
1941 	pfn = pte_pfn(*ptep);
1942 
1943 	/*
1944 	 * Get a reference here because callers of *hva_to_pfn* and
1945 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1946 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1947 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1948 	 * simply do nothing for reserved pfns.
1949 	 *
1950 	 * Whoever called remap_pfn_range is also going to call e.g.
1951 	 * unmap_mapping_range before the underlying pages are freed,
1952 	 * causing a call to our MMU notifier.
1953 	 */
1954 	kvm_get_pfn(pfn);
1955 
1956 out:
1957 	pte_unmap_unlock(ptep, ptl);
1958 	*p_pfn = pfn;
1959 	return 0;
1960 }
1961 
1962 /*
1963  * Pin guest page in memory and return its pfn.
1964  * @addr: host virtual address which maps memory to the guest
1965  * @atomic: whether this function can sleep
1966  * @async: whether this function need to wait IO complete if the
1967  *         host page is not in the memory
1968  * @write_fault: whether we should get a writable host page
1969  * @writable: whether it allows to map a writable host page for !@write_fault
1970  *
1971  * The function will map a writable host page for these two cases:
1972  * 1): @write_fault = true
1973  * 2): @write_fault = false && @writable, @writable will tell the caller
1974  *     whether the mapping is writable.
1975  */
1976 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1977 			bool write_fault, bool *writable)
1978 {
1979 	struct vm_area_struct *vma;
1980 	kvm_pfn_t pfn = 0;
1981 	int npages, r;
1982 
1983 	/* we can do it either atomically or asynchronously, not both */
1984 	BUG_ON(atomic && async);
1985 
1986 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1987 		return pfn;
1988 
1989 	if (atomic)
1990 		return KVM_PFN_ERR_FAULT;
1991 
1992 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1993 	if (npages == 1)
1994 		return pfn;
1995 
1996 	mmap_read_lock(current->mm);
1997 	if (npages == -EHWPOISON ||
1998 	      (!async && check_user_page_hwpoison(addr))) {
1999 		pfn = KVM_PFN_ERR_HWPOISON;
2000 		goto exit;
2001 	}
2002 
2003 retry:
2004 	vma = find_vma_intersection(current->mm, addr, addr + 1);
2005 
2006 	if (vma == NULL)
2007 		pfn = KVM_PFN_ERR_FAULT;
2008 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2009 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2010 		if (r == -EAGAIN)
2011 			goto retry;
2012 		if (r < 0)
2013 			pfn = KVM_PFN_ERR_FAULT;
2014 	} else {
2015 		if (async && vma_is_valid(vma, write_fault))
2016 			*async = true;
2017 		pfn = KVM_PFN_ERR_FAULT;
2018 	}
2019 exit:
2020 	mmap_read_unlock(current->mm);
2021 	return pfn;
2022 }
2023 
2024 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2025 			       bool atomic, bool *async, bool write_fault,
2026 			       bool *writable)
2027 {
2028 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2029 
2030 	if (addr == KVM_HVA_ERR_RO_BAD) {
2031 		if (writable)
2032 			*writable = false;
2033 		return KVM_PFN_ERR_RO_FAULT;
2034 	}
2035 
2036 	if (kvm_is_error_hva(addr)) {
2037 		if (writable)
2038 			*writable = false;
2039 		return KVM_PFN_NOSLOT;
2040 	}
2041 
2042 	/* Do not map writable pfn in the readonly memslot. */
2043 	if (writable && memslot_is_readonly(slot)) {
2044 		*writable = false;
2045 		writable = NULL;
2046 	}
2047 
2048 	return hva_to_pfn(addr, atomic, async, write_fault,
2049 			  writable);
2050 }
2051 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2052 
2053 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2054 		      bool *writable)
2055 {
2056 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2057 				    write_fault, writable);
2058 }
2059 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2060 
2061 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2062 {
2063 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2064 }
2065 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2066 
2067 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2068 {
2069 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2070 }
2071 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2072 
2073 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2074 {
2075 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2078 
2079 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2080 {
2081 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2082 }
2083 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2084 
2085 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2086 {
2087 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2088 }
2089 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2090 
2091 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2092 			    struct page **pages, int nr_pages)
2093 {
2094 	unsigned long addr;
2095 	gfn_t entry = 0;
2096 
2097 	addr = gfn_to_hva_many(slot, gfn, &entry);
2098 	if (kvm_is_error_hva(addr))
2099 		return -1;
2100 
2101 	if (entry < nr_pages)
2102 		return 0;
2103 
2104 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2105 }
2106 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2107 
2108 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2109 {
2110 	if (is_error_noslot_pfn(pfn))
2111 		return KVM_ERR_PTR_BAD_PAGE;
2112 
2113 	if (kvm_is_reserved_pfn(pfn)) {
2114 		WARN_ON(1);
2115 		return KVM_ERR_PTR_BAD_PAGE;
2116 	}
2117 
2118 	return pfn_to_page(pfn);
2119 }
2120 
2121 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2122 {
2123 	kvm_pfn_t pfn;
2124 
2125 	pfn = gfn_to_pfn(kvm, gfn);
2126 
2127 	return kvm_pfn_to_page(pfn);
2128 }
2129 EXPORT_SYMBOL_GPL(gfn_to_page);
2130 
2131 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2132 {
2133 	if (pfn == 0)
2134 		return;
2135 
2136 	if (cache)
2137 		cache->pfn = cache->gfn = 0;
2138 
2139 	if (dirty)
2140 		kvm_release_pfn_dirty(pfn);
2141 	else
2142 		kvm_release_pfn_clean(pfn);
2143 }
2144 
2145 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2146 				 struct gfn_to_pfn_cache *cache, u64 gen)
2147 {
2148 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2149 
2150 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2151 	cache->gfn = gfn;
2152 	cache->dirty = false;
2153 	cache->generation = gen;
2154 }
2155 
2156 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2157 			 struct kvm_host_map *map,
2158 			 struct gfn_to_pfn_cache *cache,
2159 			 bool atomic)
2160 {
2161 	kvm_pfn_t pfn;
2162 	void *hva = NULL;
2163 	struct page *page = KVM_UNMAPPED_PAGE;
2164 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2165 	u64 gen = slots->generation;
2166 
2167 	if (!map)
2168 		return -EINVAL;
2169 
2170 	if (cache) {
2171 		if (!cache->pfn || cache->gfn != gfn ||
2172 			cache->generation != gen) {
2173 			if (atomic)
2174 				return -EAGAIN;
2175 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2176 		}
2177 		pfn = cache->pfn;
2178 	} else {
2179 		if (atomic)
2180 			return -EAGAIN;
2181 		pfn = gfn_to_pfn_memslot(slot, gfn);
2182 	}
2183 	if (is_error_noslot_pfn(pfn))
2184 		return -EINVAL;
2185 
2186 	if (pfn_valid(pfn)) {
2187 		page = pfn_to_page(pfn);
2188 		if (atomic)
2189 			hva = kmap_atomic(page);
2190 		else
2191 			hva = kmap(page);
2192 #ifdef CONFIG_HAS_IOMEM
2193 	} else if (!atomic) {
2194 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2195 	} else {
2196 		return -EINVAL;
2197 #endif
2198 	}
2199 
2200 	if (!hva)
2201 		return -EFAULT;
2202 
2203 	map->page = page;
2204 	map->hva = hva;
2205 	map->pfn = pfn;
2206 	map->gfn = gfn;
2207 
2208 	return 0;
2209 }
2210 
2211 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2212 		struct gfn_to_pfn_cache *cache, bool atomic)
2213 {
2214 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2215 			cache, atomic);
2216 }
2217 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2218 
2219 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2220 {
2221 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2222 		NULL, false);
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2225 
2226 static void __kvm_unmap_gfn(struct kvm *kvm,
2227 			struct kvm_memory_slot *memslot,
2228 			struct kvm_host_map *map,
2229 			struct gfn_to_pfn_cache *cache,
2230 			bool dirty, bool atomic)
2231 {
2232 	if (!map)
2233 		return;
2234 
2235 	if (!map->hva)
2236 		return;
2237 
2238 	if (map->page != KVM_UNMAPPED_PAGE) {
2239 		if (atomic)
2240 			kunmap_atomic(map->hva);
2241 		else
2242 			kunmap(map->page);
2243 	}
2244 #ifdef CONFIG_HAS_IOMEM
2245 	else if (!atomic)
2246 		memunmap(map->hva);
2247 	else
2248 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2249 #endif
2250 
2251 	if (dirty)
2252 		mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2253 
2254 	if (cache)
2255 		cache->dirty |= dirty;
2256 	else
2257 		kvm_release_pfn(map->pfn, dirty, NULL);
2258 
2259 	map->hva = NULL;
2260 	map->page = NULL;
2261 }
2262 
2263 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2264 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2265 {
2266 	__kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2267 			cache, dirty, atomic);
2268 	return 0;
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2271 
2272 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2273 {
2274 	__kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2275 			map, NULL, dirty, false);
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2278 
2279 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2280 {
2281 	kvm_pfn_t pfn;
2282 
2283 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2284 
2285 	return kvm_pfn_to_page(pfn);
2286 }
2287 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2288 
2289 void kvm_release_page_clean(struct page *page)
2290 {
2291 	WARN_ON(is_error_page(page));
2292 
2293 	kvm_release_pfn_clean(page_to_pfn(page));
2294 }
2295 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2296 
2297 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2298 {
2299 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2300 		put_page(pfn_to_page(pfn));
2301 }
2302 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2303 
2304 void kvm_release_page_dirty(struct page *page)
2305 {
2306 	WARN_ON(is_error_page(page));
2307 
2308 	kvm_release_pfn_dirty(page_to_pfn(page));
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2311 
2312 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2313 {
2314 	kvm_set_pfn_dirty(pfn);
2315 	kvm_release_pfn_clean(pfn);
2316 }
2317 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2318 
2319 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2320 {
2321 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2322 		SetPageDirty(pfn_to_page(pfn));
2323 }
2324 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2325 
2326 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2327 {
2328 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2329 		mark_page_accessed(pfn_to_page(pfn));
2330 }
2331 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2332 
2333 void kvm_get_pfn(kvm_pfn_t pfn)
2334 {
2335 	if (!kvm_is_reserved_pfn(pfn))
2336 		get_page(pfn_to_page(pfn));
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2339 
2340 static int next_segment(unsigned long len, int offset)
2341 {
2342 	if (len > PAGE_SIZE - offset)
2343 		return PAGE_SIZE - offset;
2344 	else
2345 		return len;
2346 }
2347 
2348 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2349 				 void *data, int offset, int len)
2350 {
2351 	int r;
2352 	unsigned long addr;
2353 
2354 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2355 	if (kvm_is_error_hva(addr))
2356 		return -EFAULT;
2357 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2358 	if (r)
2359 		return -EFAULT;
2360 	return 0;
2361 }
2362 
2363 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2364 			int len)
2365 {
2366 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2367 
2368 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2369 }
2370 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2371 
2372 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2373 			     int offset, int len)
2374 {
2375 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2376 
2377 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2378 }
2379 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2380 
2381 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2382 {
2383 	gfn_t gfn = gpa >> PAGE_SHIFT;
2384 	int seg;
2385 	int offset = offset_in_page(gpa);
2386 	int ret;
2387 
2388 	while ((seg = next_segment(len, offset)) != 0) {
2389 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2390 		if (ret < 0)
2391 			return ret;
2392 		offset = 0;
2393 		len -= seg;
2394 		data += seg;
2395 		++gfn;
2396 	}
2397 	return 0;
2398 }
2399 EXPORT_SYMBOL_GPL(kvm_read_guest);
2400 
2401 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2402 {
2403 	gfn_t gfn = gpa >> PAGE_SHIFT;
2404 	int seg;
2405 	int offset = offset_in_page(gpa);
2406 	int ret;
2407 
2408 	while ((seg = next_segment(len, offset)) != 0) {
2409 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2410 		if (ret < 0)
2411 			return ret;
2412 		offset = 0;
2413 		len -= seg;
2414 		data += seg;
2415 		++gfn;
2416 	}
2417 	return 0;
2418 }
2419 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2420 
2421 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2422 			           void *data, int offset, unsigned long len)
2423 {
2424 	int r;
2425 	unsigned long addr;
2426 
2427 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2428 	if (kvm_is_error_hva(addr))
2429 		return -EFAULT;
2430 	pagefault_disable();
2431 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2432 	pagefault_enable();
2433 	if (r)
2434 		return -EFAULT;
2435 	return 0;
2436 }
2437 
2438 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2439 			       void *data, unsigned long len)
2440 {
2441 	gfn_t gfn = gpa >> PAGE_SHIFT;
2442 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2443 	int offset = offset_in_page(gpa);
2444 
2445 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2446 }
2447 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2448 
2449 static int __kvm_write_guest_page(struct kvm *kvm,
2450 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2451 			          const void *data, int offset, int len)
2452 {
2453 	int r;
2454 	unsigned long addr;
2455 
2456 	addr = gfn_to_hva_memslot(memslot, gfn);
2457 	if (kvm_is_error_hva(addr))
2458 		return -EFAULT;
2459 	r = __copy_to_user((void __user *)addr + offset, data, len);
2460 	if (r)
2461 		return -EFAULT;
2462 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2463 	return 0;
2464 }
2465 
2466 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2467 			 const void *data, int offset, int len)
2468 {
2469 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2470 
2471 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2472 }
2473 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2474 
2475 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2476 			      const void *data, int offset, int len)
2477 {
2478 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2479 
2480 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2481 }
2482 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2483 
2484 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2485 		    unsigned long len)
2486 {
2487 	gfn_t gfn = gpa >> PAGE_SHIFT;
2488 	int seg;
2489 	int offset = offset_in_page(gpa);
2490 	int ret;
2491 
2492 	while ((seg = next_segment(len, offset)) != 0) {
2493 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2494 		if (ret < 0)
2495 			return ret;
2496 		offset = 0;
2497 		len -= seg;
2498 		data += seg;
2499 		++gfn;
2500 	}
2501 	return 0;
2502 }
2503 EXPORT_SYMBOL_GPL(kvm_write_guest);
2504 
2505 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2506 		         unsigned long len)
2507 {
2508 	gfn_t gfn = gpa >> PAGE_SHIFT;
2509 	int seg;
2510 	int offset = offset_in_page(gpa);
2511 	int ret;
2512 
2513 	while ((seg = next_segment(len, offset)) != 0) {
2514 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2515 		if (ret < 0)
2516 			return ret;
2517 		offset = 0;
2518 		len -= seg;
2519 		data += seg;
2520 		++gfn;
2521 	}
2522 	return 0;
2523 }
2524 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2525 
2526 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2527 				       struct gfn_to_hva_cache *ghc,
2528 				       gpa_t gpa, unsigned long len)
2529 {
2530 	int offset = offset_in_page(gpa);
2531 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2532 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2533 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2534 	gfn_t nr_pages_avail;
2535 
2536 	/* Update ghc->generation before performing any error checks. */
2537 	ghc->generation = slots->generation;
2538 
2539 	if (start_gfn > end_gfn) {
2540 		ghc->hva = KVM_HVA_ERR_BAD;
2541 		return -EINVAL;
2542 	}
2543 
2544 	/*
2545 	 * If the requested region crosses two memslots, we still
2546 	 * verify that the entire region is valid here.
2547 	 */
2548 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2549 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2550 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2551 					   &nr_pages_avail);
2552 		if (kvm_is_error_hva(ghc->hva))
2553 			return -EFAULT;
2554 	}
2555 
2556 	/* Use the slow path for cross page reads and writes. */
2557 	if (nr_pages_needed == 1)
2558 		ghc->hva += offset;
2559 	else
2560 		ghc->memslot = NULL;
2561 
2562 	ghc->gpa = gpa;
2563 	ghc->len = len;
2564 	return 0;
2565 }
2566 
2567 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2568 			      gpa_t gpa, unsigned long len)
2569 {
2570 	struct kvm_memslots *slots = kvm_memslots(kvm);
2571 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2572 }
2573 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2574 
2575 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2576 				  void *data, unsigned int offset,
2577 				  unsigned long len)
2578 {
2579 	struct kvm_memslots *slots = kvm_memslots(kvm);
2580 	int r;
2581 	gpa_t gpa = ghc->gpa + offset;
2582 
2583 	BUG_ON(len + offset > ghc->len);
2584 
2585 	if (slots->generation != ghc->generation) {
2586 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2587 			return -EFAULT;
2588 	}
2589 
2590 	if (kvm_is_error_hva(ghc->hva))
2591 		return -EFAULT;
2592 
2593 	if (unlikely(!ghc->memslot))
2594 		return kvm_write_guest(kvm, gpa, data, len);
2595 
2596 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2597 	if (r)
2598 		return -EFAULT;
2599 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2600 
2601 	return 0;
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2604 
2605 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2606 			   void *data, unsigned long len)
2607 {
2608 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2611 
2612 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2613 				 void *data, unsigned int offset,
2614 				 unsigned long len)
2615 {
2616 	struct kvm_memslots *slots = kvm_memslots(kvm);
2617 	int r;
2618 	gpa_t gpa = ghc->gpa + offset;
2619 
2620 	BUG_ON(len + offset > ghc->len);
2621 
2622 	if (slots->generation != ghc->generation) {
2623 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2624 			return -EFAULT;
2625 	}
2626 
2627 	if (kvm_is_error_hva(ghc->hva))
2628 		return -EFAULT;
2629 
2630 	if (unlikely(!ghc->memslot))
2631 		return kvm_read_guest(kvm, gpa, data, len);
2632 
2633 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2634 	if (r)
2635 		return -EFAULT;
2636 
2637 	return 0;
2638 }
2639 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2640 
2641 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2642 			  void *data, unsigned long len)
2643 {
2644 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2645 }
2646 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2647 
2648 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2649 {
2650 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2651 	gfn_t gfn = gpa >> PAGE_SHIFT;
2652 	int seg;
2653 	int offset = offset_in_page(gpa);
2654 	int ret;
2655 
2656 	while ((seg = next_segment(len, offset)) != 0) {
2657 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2658 		if (ret < 0)
2659 			return ret;
2660 		offset = 0;
2661 		len -= seg;
2662 		++gfn;
2663 	}
2664 	return 0;
2665 }
2666 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2667 
2668 void mark_page_dirty_in_slot(struct kvm *kvm,
2669 			     struct kvm_memory_slot *memslot,
2670 		 	     gfn_t gfn)
2671 {
2672 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2673 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2674 		u32 slot = (memslot->as_id << 16) | memslot->id;
2675 
2676 		if (kvm->dirty_ring_size)
2677 			kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2678 					    slot, rel_gfn);
2679 		else
2680 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
2681 	}
2682 }
2683 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2684 
2685 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2686 {
2687 	struct kvm_memory_slot *memslot;
2688 
2689 	memslot = gfn_to_memslot(kvm, gfn);
2690 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2691 }
2692 EXPORT_SYMBOL_GPL(mark_page_dirty);
2693 
2694 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2695 {
2696 	struct kvm_memory_slot *memslot;
2697 
2698 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2699 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2700 }
2701 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2702 
2703 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2704 {
2705 	if (!vcpu->sigset_active)
2706 		return;
2707 
2708 	/*
2709 	 * This does a lockless modification of ->real_blocked, which is fine
2710 	 * because, only current can change ->real_blocked and all readers of
2711 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2712 	 * of ->blocked.
2713 	 */
2714 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2715 }
2716 
2717 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2718 {
2719 	if (!vcpu->sigset_active)
2720 		return;
2721 
2722 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2723 	sigemptyset(&current->real_blocked);
2724 }
2725 
2726 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2727 {
2728 	unsigned int old, val, grow, grow_start;
2729 
2730 	old = val = vcpu->halt_poll_ns;
2731 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2732 	grow = READ_ONCE(halt_poll_ns_grow);
2733 	if (!grow)
2734 		goto out;
2735 
2736 	val *= grow;
2737 	if (val < grow_start)
2738 		val = grow_start;
2739 
2740 	if (val > halt_poll_ns)
2741 		val = halt_poll_ns;
2742 
2743 	vcpu->halt_poll_ns = val;
2744 out:
2745 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2746 }
2747 
2748 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2749 {
2750 	unsigned int old, val, shrink;
2751 
2752 	old = val = vcpu->halt_poll_ns;
2753 	shrink = READ_ONCE(halt_poll_ns_shrink);
2754 	if (shrink == 0)
2755 		val = 0;
2756 	else
2757 		val /= shrink;
2758 
2759 	vcpu->halt_poll_ns = val;
2760 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2761 }
2762 
2763 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2764 {
2765 	int ret = -EINTR;
2766 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2767 
2768 	if (kvm_arch_vcpu_runnable(vcpu)) {
2769 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2770 		goto out;
2771 	}
2772 	if (kvm_cpu_has_pending_timer(vcpu))
2773 		goto out;
2774 	if (signal_pending(current))
2775 		goto out;
2776 
2777 	ret = 0;
2778 out:
2779 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2780 	return ret;
2781 }
2782 
2783 static inline void
2784 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2785 {
2786 	if (waited)
2787 		vcpu->stat.halt_poll_fail_ns += poll_ns;
2788 	else
2789 		vcpu->stat.halt_poll_success_ns += poll_ns;
2790 }
2791 
2792 /*
2793  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2794  */
2795 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2796 {
2797 	ktime_t start, cur, poll_end;
2798 	bool waited = false;
2799 	u64 block_ns;
2800 
2801 	kvm_arch_vcpu_blocking(vcpu);
2802 
2803 	start = cur = poll_end = ktime_get();
2804 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2805 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2806 
2807 		++vcpu->stat.halt_attempted_poll;
2808 		do {
2809 			/*
2810 			 * This sets KVM_REQ_UNHALT if an interrupt
2811 			 * arrives.
2812 			 */
2813 			if (kvm_vcpu_check_block(vcpu) < 0) {
2814 				++vcpu->stat.halt_successful_poll;
2815 				if (!vcpu_valid_wakeup(vcpu))
2816 					++vcpu->stat.halt_poll_invalid;
2817 				goto out;
2818 			}
2819 			poll_end = cur = ktime_get();
2820 		} while (single_task_running() && ktime_before(cur, stop));
2821 	}
2822 
2823 	prepare_to_rcuwait(&vcpu->wait);
2824 	for (;;) {
2825 		set_current_state(TASK_INTERRUPTIBLE);
2826 
2827 		if (kvm_vcpu_check_block(vcpu) < 0)
2828 			break;
2829 
2830 		waited = true;
2831 		schedule();
2832 	}
2833 	finish_rcuwait(&vcpu->wait);
2834 	cur = ktime_get();
2835 out:
2836 	kvm_arch_vcpu_unblocking(vcpu);
2837 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2838 
2839 	update_halt_poll_stats(
2840 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2841 
2842 	if (!kvm_arch_no_poll(vcpu)) {
2843 		if (!vcpu_valid_wakeup(vcpu)) {
2844 			shrink_halt_poll_ns(vcpu);
2845 		} else if (vcpu->kvm->max_halt_poll_ns) {
2846 			if (block_ns <= vcpu->halt_poll_ns)
2847 				;
2848 			/* we had a long block, shrink polling */
2849 			else if (vcpu->halt_poll_ns &&
2850 					block_ns > vcpu->kvm->max_halt_poll_ns)
2851 				shrink_halt_poll_ns(vcpu);
2852 			/* we had a short halt and our poll time is too small */
2853 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2854 					block_ns < vcpu->kvm->max_halt_poll_ns)
2855 				grow_halt_poll_ns(vcpu);
2856 		} else {
2857 			vcpu->halt_poll_ns = 0;
2858 		}
2859 	}
2860 
2861 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2862 	kvm_arch_vcpu_block_finish(vcpu);
2863 }
2864 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2865 
2866 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2867 {
2868 	struct rcuwait *waitp;
2869 
2870 	waitp = kvm_arch_vcpu_get_wait(vcpu);
2871 	if (rcuwait_wake_up(waitp)) {
2872 		WRITE_ONCE(vcpu->ready, true);
2873 		++vcpu->stat.halt_wakeup;
2874 		return true;
2875 	}
2876 
2877 	return false;
2878 }
2879 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2880 
2881 #ifndef CONFIG_S390
2882 /*
2883  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2884  */
2885 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2886 {
2887 	int me;
2888 	int cpu = vcpu->cpu;
2889 
2890 	if (kvm_vcpu_wake_up(vcpu))
2891 		return;
2892 
2893 	me = get_cpu();
2894 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2895 		if (kvm_arch_vcpu_should_kick(vcpu))
2896 			smp_send_reschedule(cpu);
2897 	put_cpu();
2898 }
2899 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2900 #endif /* !CONFIG_S390 */
2901 
2902 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2903 {
2904 	struct pid *pid;
2905 	struct task_struct *task = NULL;
2906 	int ret = 0;
2907 
2908 	rcu_read_lock();
2909 	pid = rcu_dereference(target->pid);
2910 	if (pid)
2911 		task = get_pid_task(pid, PIDTYPE_PID);
2912 	rcu_read_unlock();
2913 	if (!task)
2914 		return ret;
2915 	ret = yield_to(task, 1);
2916 	put_task_struct(task);
2917 
2918 	return ret;
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2921 
2922 /*
2923  * Helper that checks whether a VCPU is eligible for directed yield.
2924  * Most eligible candidate to yield is decided by following heuristics:
2925  *
2926  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2927  *  (preempted lock holder), indicated by @in_spin_loop.
2928  *  Set at the beginning and cleared at the end of interception/PLE handler.
2929  *
2930  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2931  *  chance last time (mostly it has become eligible now since we have probably
2932  *  yielded to lockholder in last iteration. This is done by toggling
2933  *  @dy_eligible each time a VCPU checked for eligibility.)
2934  *
2935  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2936  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2937  *  burning. Giving priority for a potential lock-holder increases lock
2938  *  progress.
2939  *
2940  *  Since algorithm is based on heuristics, accessing another VCPU data without
2941  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2942  *  and continue with next VCPU and so on.
2943  */
2944 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2945 {
2946 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2947 	bool eligible;
2948 
2949 	eligible = !vcpu->spin_loop.in_spin_loop ||
2950 		    vcpu->spin_loop.dy_eligible;
2951 
2952 	if (vcpu->spin_loop.in_spin_loop)
2953 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2954 
2955 	return eligible;
2956 #else
2957 	return true;
2958 #endif
2959 }
2960 
2961 /*
2962  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2963  * a vcpu_load/vcpu_put pair.  However, for most architectures
2964  * kvm_arch_vcpu_runnable does not require vcpu_load.
2965  */
2966 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2967 {
2968 	return kvm_arch_vcpu_runnable(vcpu);
2969 }
2970 
2971 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2972 {
2973 	if (kvm_arch_dy_runnable(vcpu))
2974 		return true;
2975 
2976 #ifdef CONFIG_KVM_ASYNC_PF
2977 	if (!list_empty_careful(&vcpu->async_pf.done))
2978 		return true;
2979 #endif
2980 
2981 	return false;
2982 }
2983 
2984 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2985 {
2986 	struct kvm *kvm = me->kvm;
2987 	struct kvm_vcpu *vcpu;
2988 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2989 	int yielded = 0;
2990 	int try = 3;
2991 	int pass;
2992 	int i;
2993 
2994 	kvm_vcpu_set_in_spin_loop(me, true);
2995 	/*
2996 	 * We boost the priority of a VCPU that is runnable but not
2997 	 * currently running, because it got preempted by something
2998 	 * else and called schedule in __vcpu_run.  Hopefully that
2999 	 * VCPU is holding the lock that we need and will release it.
3000 	 * We approximate round-robin by starting at the last boosted VCPU.
3001 	 */
3002 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3003 		kvm_for_each_vcpu(i, vcpu, kvm) {
3004 			if (!pass && i <= last_boosted_vcpu) {
3005 				i = last_boosted_vcpu;
3006 				continue;
3007 			} else if (pass && i > last_boosted_vcpu)
3008 				break;
3009 			if (!READ_ONCE(vcpu->ready))
3010 				continue;
3011 			if (vcpu == me)
3012 				continue;
3013 			if (rcuwait_active(&vcpu->wait) &&
3014 			    !vcpu_dy_runnable(vcpu))
3015 				continue;
3016 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3017 				!kvm_arch_vcpu_in_kernel(vcpu))
3018 				continue;
3019 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3020 				continue;
3021 
3022 			yielded = kvm_vcpu_yield_to(vcpu);
3023 			if (yielded > 0) {
3024 				kvm->last_boosted_vcpu = i;
3025 				break;
3026 			} else if (yielded < 0) {
3027 				try--;
3028 				if (!try)
3029 					break;
3030 			}
3031 		}
3032 	}
3033 	kvm_vcpu_set_in_spin_loop(me, false);
3034 
3035 	/* Ensure vcpu is not eligible during next spinloop */
3036 	kvm_vcpu_set_dy_eligible(me, false);
3037 }
3038 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3039 
3040 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3041 {
3042 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3043 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3044 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3045 	     kvm->dirty_ring_size / PAGE_SIZE);
3046 #else
3047 	return false;
3048 #endif
3049 }
3050 
3051 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3052 {
3053 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3054 	struct page *page;
3055 
3056 	if (vmf->pgoff == 0)
3057 		page = virt_to_page(vcpu->run);
3058 #ifdef CONFIG_X86
3059 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3060 		page = virt_to_page(vcpu->arch.pio_data);
3061 #endif
3062 #ifdef CONFIG_KVM_MMIO
3063 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3064 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3065 #endif
3066 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3067 		page = kvm_dirty_ring_get_page(
3068 		    &vcpu->dirty_ring,
3069 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3070 	else
3071 		return kvm_arch_vcpu_fault(vcpu, vmf);
3072 	get_page(page);
3073 	vmf->page = page;
3074 	return 0;
3075 }
3076 
3077 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3078 	.fault = kvm_vcpu_fault,
3079 };
3080 
3081 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3082 {
3083 	struct kvm_vcpu *vcpu = file->private_data;
3084 	unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3085 
3086 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3087 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3088 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3089 		return -EINVAL;
3090 
3091 	vma->vm_ops = &kvm_vcpu_vm_ops;
3092 	return 0;
3093 }
3094 
3095 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3096 {
3097 	struct kvm_vcpu *vcpu = filp->private_data;
3098 
3099 	kvm_put_kvm(vcpu->kvm);
3100 	return 0;
3101 }
3102 
3103 static struct file_operations kvm_vcpu_fops = {
3104 	.release        = kvm_vcpu_release,
3105 	.unlocked_ioctl = kvm_vcpu_ioctl,
3106 	.mmap           = kvm_vcpu_mmap,
3107 	.llseek		= noop_llseek,
3108 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3109 };
3110 
3111 /*
3112  * Allocates an inode for the vcpu.
3113  */
3114 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3115 {
3116 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3117 
3118 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3119 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3120 }
3121 
3122 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3123 {
3124 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3125 	struct dentry *debugfs_dentry;
3126 	char dir_name[ITOA_MAX_LEN * 2];
3127 
3128 	if (!debugfs_initialized())
3129 		return;
3130 
3131 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3132 	debugfs_dentry = debugfs_create_dir(dir_name,
3133 					    vcpu->kvm->debugfs_dentry);
3134 
3135 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3136 #endif
3137 }
3138 
3139 /*
3140  * Creates some virtual cpus.  Good luck creating more than one.
3141  */
3142 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3143 {
3144 	int r;
3145 	struct kvm_vcpu *vcpu;
3146 	struct page *page;
3147 
3148 	if (id >= KVM_MAX_VCPU_ID)
3149 		return -EINVAL;
3150 
3151 	mutex_lock(&kvm->lock);
3152 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3153 		mutex_unlock(&kvm->lock);
3154 		return -EINVAL;
3155 	}
3156 
3157 	kvm->created_vcpus++;
3158 	mutex_unlock(&kvm->lock);
3159 
3160 	r = kvm_arch_vcpu_precreate(kvm, id);
3161 	if (r)
3162 		goto vcpu_decrement;
3163 
3164 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3165 	if (!vcpu) {
3166 		r = -ENOMEM;
3167 		goto vcpu_decrement;
3168 	}
3169 
3170 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3171 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3172 	if (!page) {
3173 		r = -ENOMEM;
3174 		goto vcpu_free;
3175 	}
3176 	vcpu->run = page_address(page);
3177 
3178 	kvm_vcpu_init(vcpu, kvm, id);
3179 
3180 	r = kvm_arch_vcpu_create(vcpu);
3181 	if (r)
3182 		goto vcpu_free_run_page;
3183 
3184 	if (kvm->dirty_ring_size) {
3185 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3186 					 id, kvm->dirty_ring_size);
3187 		if (r)
3188 			goto arch_vcpu_destroy;
3189 	}
3190 
3191 	mutex_lock(&kvm->lock);
3192 	if (kvm_get_vcpu_by_id(kvm, id)) {
3193 		r = -EEXIST;
3194 		goto unlock_vcpu_destroy;
3195 	}
3196 
3197 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3198 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3199 
3200 	/* Now it's all set up, let userspace reach it */
3201 	kvm_get_kvm(kvm);
3202 	r = create_vcpu_fd(vcpu);
3203 	if (r < 0) {
3204 		kvm_put_kvm_no_destroy(kvm);
3205 		goto unlock_vcpu_destroy;
3206 	}
3207 
3208 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3209 
3210 	/*
3211 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3212 	 * before kvm->online_vcpu's incremented value.
3213 	 */
3214 	smp_wmb();
3215 	atomic_inc(&kvm->online_vcpus);
3216 
3217 	mutex_unlock(&kvm->lock);
3218 	kvm_arch_vcpu_postcreate(vcpu);
3219 	kvm_create_vcpu_debugfs(vcpu);
3220 	return r;
3221 
3222 unlock_vcpu_destroy:
3223 	mutex_unlock(&kvm->lock);
3224 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3225 arch_vcpu_destroy:
3226 	kvm_arch_vcpu_destroy(vcpu);
3227 vcpu_free_run_page:
3228 	free_page((unsigned long)vcpu->run);
3229 vcpu_free:
3230 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3231 vcpu_decrement:
3232 	mutex_lock(&kvm->lock);
3233 	kvm->created_vcpus--;
3234 	mutex_unlock(&kvm->lock);
3235 	return r;
3236 }
3237 
3238 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3239 {
3240 	if (sigset) {
3241 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3242 		vcpu->sigset_active = 1;
3243 		vcpu->sigset = *sigset;
3244 	} else
3245 		vcpu->sigset_active = 0;
3246 	return 0;
3247 }
3248 
3249 static long kvm_vcpu_ioctl(struct file *filp,
3250 			   unsigned int ioctl, unsigned long arg)
3251 {
3252 	struct kvm_vcpu *vcpu = filp->private_data;
3253 	void __user *argp = (void __user *)arg;
3254 	int r;
3255 	struct kvm_fpu *fpu = NULL;
3256 	struct kvm_sregs *kvm_sregs = NULL;
3257 
3258 	if (vcpu->kvm->mm != current->mm)
3259 		return -EIO;
3260 
3261 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3262 		return -EINVAL;
3263 
3264 	/*
3265 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3266 	 * execution; mutex_lock() would break them.
3267 	 */
3268 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3269 	if (r != -ENOIOCTLCMD)
3270 		return r;
3271 
3272 	if (mutex_lock_killable(&vcpu->mutex))
3273 		return -EINTR;
3274 	switch (ioctl) {
3275 	case KVM_RUN: {
3276 		struct pid *oldpid;
3277 		r = -EINVAL;
3278 		if (arg)
3279 			goto out;
3280 		oldpid = rcu_access_pointer(vcpu->pid);
3281 		if (unlikely(oldpid != task_pid(current))) {
3282 			/* The thread running this VCPU changed. */
3283 			struct pid *newpid;
3284 
3285 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3286 			if (r)
3287 				break;
3288 
3289 			newpid = get_task_pid(current, PIDTYPE_PID);
3290 			rcu_assign_pointer(vcpu->pid, newpid);
3291 			if (oldpid)
3292 				synchronize_rcu();
3293 			put_pid(oldpid);
3294 		}
3295 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3296 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3297 		break;
3298 	}
3299 	case KVM_GET_REGS: {
3300 		struct kvm_regs *kvm_regs;
3301 
3302 		r = -ENOMEM;
3303 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3304 		if (!kvm_regs)
3305 			goto out;
3306 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3307 		if (r)
3308 			goto out_free1;
3309 		r = -EFAULT;
3310 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3311 			goto out_free1;
3312 		r = 0;
3313 out_free1:
3314 		kfree(kvm_regs);
3315 		break;
3316 	}
3317 	case KVM_SET_REGS: {
3318 		struct kvm_regs *kvm_regs;
3319 
3320 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3321 		if (IS_ERR(kvm_regs)) {
3322 			r = PTR_ERR(kvm_regs);
3323 			goto out;
3324 		}
3325 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3326 		kfree(kvm_regs);
3327 		break;
3328 	}
3329 	case KVM_GET_SREGS: {
3330 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3331 				    GFP_KERNEL_ACCOUNT);
3332 		r = -ENOMEM;
3333 		if (!kvm_sregs)
3334 			goto out;
3335 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3336 		if (r)
3337 			goto out;
3338 		r = -EFAULT;
3339 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3340 			goto out;
3341 		r = 0;
3342 		break;
3343 	}
3344 	case KVM_SET_SREGS: {
3345 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3346 		if (IS_ERR(kvm_sregs)) {
3347 			r = PTR_ERR(kvm_sregs);
3348 			kvm_sregs = NULL;
3349 			goto out;
3350 		}
3351 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3352 		break;
3353 	}
3354 	case KVM_GET_MP_STATE: {
3355 		struct kvm_mp_state mp_state;
3356 
3357 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3358 		if (r)
3359 			goto out;
3360 		r = -EFAULT;
3361 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3362 			goto out;
3363 		r = 0;
3364 		break;
3365 	}
3366 	case KVM_SET_MP_STATE: {
3367 		struct kvm_mp_state mp_state;
3368 
3369 		r = -EFAULT;
3370 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3371 			goto out;
3372 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3373 		break;
3374 	}
3375 	case KVM_TRANSLATE: {
3376 		struct kvm_translation tr;
3377 
3378 		r = -EFAULT;
3379 		if (copy_from_user(&tr, argp, sizeof(tr)))
3380 			goto out;
3381 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3382 		if (r)
3383 			goto out;
3384 		r = -EFAULT;
3385 		if (copy_to_user(argp, &tr, sizeof(tr)))
3386 			goto out;
3387 		r = 0;
3388 		break;
3389 	}
3390 	case KVM_SET_GUEST_DEBUG: {
3391 		struct kvm_guest_debug dbg;
3392 
3393 		r = -EFAULT;
3394 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3395 			goto out;
3396 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3397 		break;
3398 	}
3399 	case KVM_SET_SIGNAL_MASK: {
3400 		struct kvm_signal_mask __user *sigmask_arg = argp;
3401 		struct kvm_signal_mask kvm_sigmask;
3402 		sigset_t sigset, *p;
3403 
3404 		p = NULL;
3405 		if (argp) {
3406 			r = -EFAULT;
3407 			if (copy_from_user(&kvm_sigmask, argp,
3408 					   sizeof(kvm_sigmask)))
3409 				goto out;
3410 			r = -EINVAL;
3411 			if (kvm_sigmask.len != sizeof(sigset))
3412 				goto out;
3413 			r = -EFAULT;
3414 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3415 					   sizeof(sigset)))
3416 				goto out;
3417 			p = &sigset;
3418 		}
3419 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3420 		break;
3421 	}
3422 	case KVM_GET_FPU: {
3423 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3424 		r = -ENOMEM;
3425 		if (!fpu)
3426 			goto out;
3427 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3428 		if (r)
3429 			goto out;
3430 		r = -EFAULT;
3431 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3432 			goto out;
3433 		r = 0;
3434 		break;
3435 	}
3436 	case KVM_SET_FPU: {
3437 		fpu = memdup_user(argp, sizeof(*fpu));
3438 		if (IS_ERR(fpu)) {
3439 			r = PTR_ERR(fpu);
3440 			fpu = NULL;
3441 			goto out;
3442 		}
3443 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3444 		break;
3445 	}
3446 	default:
3447 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3448 	}
3449 out:
3450 	mutex_unlock(&vcpu->mutex);
3451 	kfree(fpu);
3452 	kfree(kvm_sregs);
3453 	return r;
3454 }
3455 
3456 #ifdef CONFIG_KVM_COMPAT
3457 static long kvm_vcpu_compat_ioctl(struct file *filp,
3458 				  unsigned int ioctl, unsigned long arg)
3459 {
3460 	struct kvm_vcpu *vcpu = filp->private_data;
3461 	void __user *argp = compat_ptr(arg);
3462 	int r;
3463 
3464 	if (vcpu->kvm->mm != current->mm)
3465 		return -EIO;
3466 
3467 	switch (ioctl) {
3468 	case KVM_SET_SIGNAL_MASK: {
3469 		struct kvm_signal_mask __user *sigmask_arg = argp;
3470 		struct kvm_signal_mask kvm_sigmask;
3471 		sigset_t sigset;
3472 
3473 		if (argp) {
3474 			r = -EFAULT;
3475 			if (copy_from_user(&kvm_sigmask, argp,
3476 					   sizeof(kvm_sigmask)))
3477 				goto out;
3478 			r = -EINVAL;
3479 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3480 				goto out;
3481 			r = -EFAULT;
3482 			if (get_compat_sigset(&sigset,
3483 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3484 				goto out;
3485 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3486 		} else
3487 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3488 		break;
3489 	}
3490 	default:
3491 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3492 	}
3493 
3494 out:
3495 	return r;
3496 }
3497 #endif
3498 
3499 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3500 {
3501 	struct kvm_device *dev = filp->private_data;
3502 
3503 	if (dev->ops->mmap)
3504 		return dev->ops->mmap(dev, vma);
3505 
3506 	return -ENODEV;
3507 }
3508 
3509 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3510 				 int (*accessor)(struct kvm_device *dev,
3511 						 struct kvm_device_attr *attr),
3512 				 unsigned long arg)
3513 {
3514 	struct kvm_device_attr attr;
3515 
3516 	if (!accessor)
3517 		return -EPERM;
3518 
3519 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3520 		return -EFAULT;
3521 
3522 	return accessor(dev, &attr);
3523 }
3524 
3525 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3526 			     unsigned long arg)
3527 {
3528 	struct kvm_device *dev = filp->private_data;
3529 
3530 	if (dev->kvm->mm != current->mm)
3531 		return -EIO;
3532 
3533 	switch (ioctl) {
3534 	case KVM_SET_DEVICE_ATTR:
3535 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3536 	case KVM_GET_DEVICE_ATTR:
3537 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3538 	case KVM_HAS_DEVICE_ATTR:
3539 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3540 	default:
3541 		if (dev->ops->ioctl)
3542 			return dev->ops->ioctl(dev, ioctl, arg);
3543 
3544 		return -ENOTTY;
3545 	}
3546 }
3547 
3548 static int kvm_device_release(struct inode *inode, struct file *filp)
3549 {
3550 	struct kvm_device *dev = filp->private_data;
3551 	struct kvm *kvm = dev->kvm;
3552 
3553 	if (dev->ops->release) {
3554 		mutex_lock(&kvm->lock);
3555 		list_del(&dev->vm_node);
3556 		dev->ops->release(dev);
3557 		mutex_unlock(&kvm->lock);
3558 	}
3559 
3560 	kvm_put_kvm(kvm);
3561 	return 0;
3562 }
3563 
3564 static const struct file_operations kvm_device_fops = {
3565 	.unlocked_ioctl = kvm_device_ioctl,
3566 	.release = kvm_device_release,
3567 	KVM_COMPAT(kvm_device_ioctl),
3568 	.mmap = kvm_device_mmap,
3569 };
3570 
3571 struct kvm_device *kvm_device_from_filp(struct file *filp)
3572 {
3573 	if (filp->f_op != &kvm_device_fops)
3574 		return NULL;
3575 
3576 	return filp->private_data;
3577 }
3578 
3579 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3580 #ifdef CONFIG_KVM_MPIC
3581 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3582 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3583 #endif
3584 };
3585 
3586 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3587 {
3588 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3589 		return -ENOSPC;
3590 
3591 	if (kvm_device_ops_table[type] != NULL)
3592 		return -EEXIST;
3593 
3594 	kvm_device_ops_table[type] = ops;
3595 	return 0;
3596 }
3597 
3598 void kvm_unregister_device_ops(u32 type)
3599 {
3600 	if (kvm_device_ops_table[type] != NULL)
3601 		kvm_device_ops_table[type] = NULL;
3602 }
3603 
3604 static int kvm_ioctl_create_device(struct kvm *kvm,
3605 				   struct kvm_create_device *cd)
3606 {
3607 	const struct kvm_device_ops *ops = NULL;
3608 	struct kvm_device *dev;
3609 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3610 	int type;
3611 	int ret;
3612 
3613 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3614 		return -ENODEV;
3615 
3616 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3617 	ops = kvm_device_ops_table[type];
3618 	if (ops == NULL)
3619 		return -ENODEV;
3620 
3621 	if (test)
3622 		return 0;
3623 
3624 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3625 	if (!dev)
3626 		return -ENOMEM;
3627 
3628 	dev->ops = ops;
3629 	dev->kvm = kvm;
3630 
3631 	mutex_lock(&kvm->lock);
3632 	ret = ops->create(dev, type);
3633 	if (ret < 0) {
3634 		mutex_unlock(&kvm->lock);
3635 		kfree(dev);
3636 		return ret;
3637 	}
3638 	list_add(&dev->vm_node, &kvm->devices);
3639 	mutex_unlock(&kvm->lock);
3640 
3641 	if (ops->init)
3642 		ops->init(dev);
3643 
3644 	kvm_get_kvm(kvm);
3645 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3646 	if (ret < 0) {
3647 		kvm_put_kvm_no_destroy(kvm);
3648 		mutex_lock(&kvm->lock);
3649 		list_del(&dev->vm_node);
3650 		mutex_unlock(&kvm->lock);
3651 		ops->destroy(dev);
3652 		return ret;
3653 	}
3654 
3655 	cd->fd = ret;
3656 	return 0;
3657 }
3658 
3659 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3660 {
3661 	switch (arg) {
3662 	case KVM_CAP_USER_MEMORY:
3663 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3664 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3665 	case KVM_CAP_INTERNAL_ERROR_DATA:
3666 #ifdef CONFIG_HAVE_KVM_MSI
3667 	case KVM_CAP_SIGNAL_MSI:
3668 #endif
3669 #ifdef CONFIG_HAVE_KVM_IRQFD
3670 	case KVM_CAP_IRQFD:
3671 	case KVM_CAP_IRQFD_RESAMPLE:
3672 #endif
3673 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3674 	case KVM_CAP_CHECK_EXTENSION_VM:
3675 	case KVM_CAP_ENABLE_CAP_VM:
3676 	case KVM_CAP_HALT_POLL:
3677 		return 1;
3678 #ifdef CONFIG_KVM_MMIO
3679 	case KVM_CAP_COALESCED_MMIO:
3680 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3681 	case KVM_CAP_COALESCED_PIO:
3682 		return 1;
3683 #endif
3684 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3685 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3686 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3687 #endif
3688 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3689 	case KVM_CAP_IRQ_ROUTING:
3690 		return KVM_MAX_IRQ_ROUTES;
3691 #endif
3692 #if KVM_ADDRESS_SPACE_NUM > 1
3693 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3694 		return KVM_ADDRESS_SPACE_NUM;
3695 #endif
3696 	case KVM_CAP_NR_MEMSLOTS:
3697 		return KVM_USER_MEM_SLOTS;
3698 	case KVM_CAP_DIRTY_LOG_RING:
3699 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3700 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3701 #else
3702 		return 0;
3703 #endif
3704 	default:
3705 		break;
3706 	}
3707 	return kvm_vm_ioctl_check_extension(kvm, arg);
3708 }
3709 
3710 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3711 {
3712 	int r;
3713 
3714 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3715 		return -EINVAL;
3716 
3717 	/* the size should be power of 2 */
3718 	if (!size || (size & (size - 1)))
3719 		return -EINVAL;
3720 
3721 	/* Should be bigger to keep the reserved entries, or a page */
3722 	if (size < kvm_dirty_ring_get_rsvd_entries() *
3723 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3724 		return -EINVAL;
3725 
3726 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3727 	    sizeof(struct kvm_dirty_gfn))
3728 		return -E2BIG;
3729 
3730 	/* We only allow it to set once */
3731 	if (kvm->dirty_ring_size)
3732 		return -EINVAL;
3733 
3734 	mutex_lock(&kvm->lock);
3735 
3736 	if (kvm->created_vcpus) {
3737 		/* We don't allow to change this value after vcpu created */
3738 		r = -EINVAL;
3739 	} else {
3740 		kvm->dirty_ring_size = size;
3741 		r = 0;
3742 	}
3743 
3744 	mutex_unlock(&kvm->lock);
3745 	return r;
3746 }
3747 
3748 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3749 {
3750 	int i;
3751 	struct kvm_vcpu *vcpu;
3752 	int cleared = 0;
3753 
3754 	if (!kvm->dirty_ring_size)
3755 		return -EINVAL;
3756 
3757 	mutex_lock(&kvm->slots_lock);
3758 
3759 	kvm_for_each_vcpu(i, vcpu, kvm)
3760 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3761 
3762 	mutex_unlock(&kvm->slots_lock);
3763 
3764 	if (cleared)
3765 		kvm_flush_remote_tlbs(kvm);
3766 
3767 	return cleared;
3768 }
3769 
3770 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3771 						  struct kvm_enable_cap *cap)
3772 {
3773 	return -EINVAL;
3774 }
3775 
3776 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3777 					   struct kvm_enable_cap *cap)
3778 {
3779 	switch (cap->cap) {
3780 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3781 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3782 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3783 
3784 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3785 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3786 
3787 		if (cap->flags || (cap->args[0] & ~allowed_options))
3788 			return -EINVAL;
3789 		kvm->manual_dirty_log_protect = cap->args[0];
3790 		return 0;
3791 	}
3792 #endif
3793 	case KVM_CAP_HALT_POLL: {
3794 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3795 			return -EINVAL;
3796 
3797 		kvm->max_halt_poll_ns = cap->args[0];
3798 		return 0;
3799 	}
3800 	case KVM_CAP_DIRTY_LOG_RING:
3801 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
3802 	default:
3803 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3804 	}
3805 }
3806 
3807 static long kvm_vm_ioctl(struct file *filp,
3808 			   unsigned int ioctl, unsigned long arg)
3809 {
3810 	struct kvm *kvm = filp->private_data;
3811 	void __user *argp = (void __user *)arg;
3812 	int r;
3813 
3814 	if (kvm->mm != current->mm)
3815 		return -EIO;
3816 	switch (ioctl) {
3817 	case KVM_CREATE_VCPU:
3818 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3819 		break;
3820 	case KVM_ENABLE_CAP: {
3821 		struct kvm_enable_cap cap;
3822 
3823 		r = -EFAULT;
3824 		if (copy_from_user(&cap, argp, sizeof(cap)))
3825 			goto out;
3826 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3827 		break;
3828 	}
3829 	case KVM_SET_USER_MEMORY_REGION: {
3830 		struct kvm_userspace_memory_region kvm_userspace_mem;
3831 
3832 		r = -EFAULT;
3833 		if (copy_from_user(&kvm_userspace_mem, argp,
3834 						sizeof(kvm_userspace_mem)))
3835 			goto out;
3836 
3837 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3838 		break;
3839 	}
3840 	case KVM_GET_DIRTY_LOG: {
3841 		struct kvm_dirty_log log;
3842 
3843 		r = -EFAULT;
3844 		if (copy_from_user(&log, argp, sizeof(log)))
3845 			goto out;
3846 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3847 		break;
3848 	}
3849 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3850 	case KVM_CLEAR_DIRTY_LOG: {
3851 		struct kvm_clear_dirty_log log;
3852 
3853 		r = -EFAULT;
3854 		if (copy_from_user(&log, argp, sizeof(log)))
3855 			goto out;
3856 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3857 		break;
3858 	}
3859 #endif
3860 #ifdef CONFIG_KVM_MMIO
3861 	case KVM_REGISTER_COALESCED_MMIO: {
3862 		struct kvm_coalesced_mmio_zone zone;
3863 
3864 		r = -EFAULT;
3865 		if (copy_from_user(&zone, argp, sizeof(zone)))
3866 			goto out;
3867 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3868 		break;
3869 	}
3870 	case KVM_UNREGISTER_COALESCED_MMIO: {
3871 		struct kvm_coalesced_mmio_zone zone;
3872 
3873 		r = -EFAULT;
3874 		if (copy_from_user(&zone, argp, sizeof(zone)))
3875 			goto out;
3876 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3877 		break;
3878 	}
3879 #endif
3880 	case KVM_IRQFD: {
3881 		struct kvm_irqfd data;
3882 
3883 		r = -EFAULT;
3884 		if (copy_from_user(&data, argp, sizeof(data)))
3885 			goto out;
3886 		r = kvm_irqfd(kvm, &data);
3887 		break;
3888 	}
3889 	case KVM_IOEVENTFD: {
3890 		struct kvm_ioeventfd data;
3891 
3892 		r = -EFAULT;
3893 		if (copy_from_user(&data, argp, sizeof(data)))
3894 			goto out;
3895 		r = kvm_ioeventfd(kvm, &data);
3896 		break;
3897 	}
3898 #ifdef CONFIG_HAVE_KVM_MSI
3899 	case KVM_SIGNAL_MSI: {
3900 		struct kvm_msi msi;
3901 
3902 		r = -EFAULT;
3903 		if (copy_from_user(&msi, argp, sizeof(msi)))
3904 			goto out;
3905 		r = kvm_send_userspace_msi(kvm, &msi);
3906 		break;
3907 	}
3908 #endif
3909 #ifdef __KVM_HAVE_IRQ_LINE
3910 	case KVM_IRQ_LINE_STATUS:
3911 	case KVM_IRQ_LINE: {
3912 		struct kvm_irq_level irq_event;
3913 
3914 		r = -EFAULT;
3915 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3916 			goto out;
3917 
3918 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3919 					ioctl == KVM_IRQ_LINE_STATUS);
3920 		if (r)
3921 			goto out;
3922 
3923 		r = -EFAULT;
3924 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3925 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3926 				goto out;
3927 		}
3928 
3929 		r = 0;
3930 		break;
3931 	}
3932 #endif
3933 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3934 	case KVM_SET_GSI_ROUTING: {
3935 		struct kvm_irq_routing routing;
3936 		struct kvm_irq_routing __user *urouting;
3937 		struct kvm_irq_routing_entry *entries = NULL;
3938 
3939 		r = -EFAULT;
3940 		if (copy_from_user(&routing, argp, sizeof(routing)))
3941 			goto out;
3942 		r = -EINVAL;
3943 		if (!kvm_arch_can_set_irq_routing(kvm))
3944 			goto out;
3945 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3946 			goto out;
3947 		if (routing.flags)
3948 			goto out;
3949 		if (routing.nr) {
3950 			urouting = argp;
3951 			entries = vmemdup_user(urouting->entries,
3952 					       array_size(sizeof(*entries),
3953 							  routing.nr));
3954 			if (IS_ERR(entries)) {
3955 				r = PTR_ERR(entries);
3956 				goto out;
3957 			}
3958 		}
3959 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3960 					routing.flags);
3961 		kvfree(entries);
3962 		break;
3963 	}
3964 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3965 	case KVM_CREATE_DEVICE: {
3966 		struct kvm_create_device cd;
3967 
3968 		r = -EFAULT;
3969 		if (copy_from_user(&cd, argp, sizeof(cd)))
3970 			goto out;
3971 
3972 		r = kvm_ioctl_create_device(kvm, &cd);
3973 		if (r)
3974 			goto out;
3975 
3976 		r = -EFAULT;
3977 		if (copy_to_user(argp, &cd, sizeof(cd)))
3978 			goto out;
3979 
3980 		r = 0;
3981 		break;
3982 	}
3983 	case KVM_CHECK_EXTENSION:
3984 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3985 		break;
3986 	case KVM_RESET_DIRTY_RINGS:
3987 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
3988 		break;
3989 	default:
3990 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3991 	}
3992 out:
3993 	return r;
3994 }
3995 
3996 #ifdef CONFIG_KVM_COMPAT
3997 struct compat_kvm_dirty_log {
3998 	__u32 slot;
3999 	__u32 padding1;
4000 	union {
4001 		compat_uptr_t dirty_bitmap; /* one bit per page */
4002 		__u64 padding2;
4003 	};
4004 };
4005 
4006 static long kvm_vm_compat_ioctl(struct file *filp,
4007 			   unsigned int ioctl, unsigned long arg)
4008 {
4009 	struct kvm *kvm = filp->private_data;
4010 	int r;
4011 
4012 	if (kvm->mm != current->mm)
4013 		return -EIO;
4014 	switch (ioctl) {
4015 	case KVM_GET_DIRTY_LOG: {
4016 		struct compat_kvm_dirty_log compat_log;
4017 		struct kvm_dirty_log log;
4018 
4019 		if (copy_from_user(&compat_log, (void __user *)arg,
4020 				   sizeof(compat_log)))
4021 			return -EFAULT;
4022 		log.slot	 = compat_log.slot;
4023 		log.padding1	 = compat_log.padding1;
4024 		log.padding2	 = compat_log.padding2;
4025 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4026 
4027 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4028 		break;
4029 	}
4030 	default:
4031 		r = kvm_vm_ioctl(filp, ioctl, arg);
4032 	}
4033 	return r;
4034 }
4035 #endif
4036 
4037 static struct file_operations kvm_vm_fops = {
4038 	.release        = kvm_vm_release,
4039 	.unlocked_ioctl = kvm_vm_ioctl,
4040 	.llseek		= noop_llseek,
4041 	KVM_COMPAT(kvm_vm_compat_ioctl),
4042 };
4043 
4044 static int kvm_dev_ioctl_create_vm(unsigned long type)
4045 {
4046 	int r;
4047 	struct kvm *kvm;
4048 	struct file *file;
4049 
4050 	kvm = kvm_create_vm(type);
4051 	if (IS_ERR(kvm))
4052 		return PTR_ERR(kvm);
4053 #ifdef CONFIG_KVM_MMIO
4054 	r = kvm_coalesced_mmio_init(kvm);
4055 	if (r < 0)
4056 		goto put_kvm;
4057 #endif
4058 	r = get_unused_fd_flags(O_CLOEXEC);
4059 	if (r < 0)
4060 		goto put_kvm;
4061 
4062 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4063 	if (IS_ERR(file)) {
4064 		put_unused_fd(r);
4065 		r = PTR_ERR(file);
4066 		goto put_kvm;
4067 	}
4068 
4069 	/*
4070 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4071 	 * already set, with ->release() being kvm_vm_release().  In error
4072 	 * cases it will be called by the final fput(file) and will take
4073 	 * care of doing kvm_put_kvm(kvm).
4074 	 */
4075 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4076 		put_unused_fd(r);
4077 		fput(file);
4078 		return -ENOMEM;
4079 	}
4080 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4081 
4082 	fd_install(r, file);
4083 	return r;
4084 
4085 put_kvm:
4086 	kvm_put_kvm(kvm);
4087 	return r;
4088 }
4089 
4090 static long kvm_dev_ioctl(struct file *filp,
4091 			  unsigned int ioctl, unsigned long arg)
4092 {
4093 	long r = -EINVAL;
4094 
4095 	switch (ioctl) {
4096 	case KVM_GET_API_VERSION:
4097 		if (arg)
4098 			goto out;
4099 		r = KVM_API_VERSION;
4100 		break;
4101 	case KVM_CREATE_VM:
4102 		r = kvm_dev_ioctl_create_vm(arg);
4103 		break;
4104 	case KVM_CHECK_EXTENSION:
4105 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4106 		break;
4107 	case KVM_GET_VCPU_MMAP_SIZE:
4108 		if (arg)
4109 			goto out;
4110 		r = PAGE_SIZE;     /* struct kvm_run */
4111 #ifdef CONFIG_X86
4112 		r += PAGE_SIZE;    /* pio data page */
4113 #endif
4114 #ifdef CONFIG_KVM_MMIO
4115 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4116 #endif
4117 		break;
4118 	case KVM_TRACE_ENABLE:
4119 	case KVM_TRACE_PAUSE:
4120 	case KVM_TRACE_DISABLE:
4121 		r = -EOPNOTSUPP;
4122 		break;
4123 	default:
4124 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4125 	}
4126 out:
4127 	return r;
4128 }
4129 
4130 static struct file_operations kvm_chardev_ops = {
4131 	.unlocked_ioctl = kvm_dev_ioctl,
4132 	.llseek		= noop_llseek,
4133 	KVM_COMPAT(kvm_dev_ioctl),
4134 };
4135 
4136 static struct miscdevice kvm_dev = {
4137 	KVM_MINOR,
4138 	"kvm",
4139 	&kvm_chardev_ops,
4140 };
4141 
4142 static void hardware_enable_nolock(void *junk)
4143 {
4144 	int cpu = raw_smp_processor_id();
4145 	int r;
4146 
4147 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4148 		return;
4149 
4150 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4151 
4152 	r = kvm_arch_hardware_enable();
4153 
4154 	if (r) {
4155 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4156 		atomic_inc(&hardware_enable_failed);
4157 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4158 	}
4159 }
4160 
4161 static int kvm_starting_cpu(unsigned int cpu)
4162 {
4163 	raw_spin_lock(&kvm_count_lock);
4164 	if (kvm_usage_count)
4165 		hardware_enable_nolock(NULL);
4166 	raw_spin_unlock(&kvm_count_lock);
4167 	return 0;
4168 }
4169 
4170 static void hardware_disable_nolock(void *junk)
4171 {
4172 	int cpu = raw_smp_processor_id();
4173 
4174 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4175 		return;
4176 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4177 	kvm_arch_hardware_disable();
4178 }
4179 
4180 static int kvm_dying_cpu(unsigned int cpu)
4181 {
4182 	raw_spin_lock(&kvm_count_lock);
4183 	if (kvm_usage_count)
4184 		hardware_disable_nolock(NULL);
4185 	raw_spin_unlock(&kvm_count_lock);
4186 	return 0;
4187 }
4188 
4189 static void hardware_disable_all_nolock(void)
4190 {
4191 	BUG_ON(!kvm_usage_count);
4192 
4193 	kvm_usage_count--;
4194 	if (!kvm_usage_count)
4195 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4196 }
4197 
4198 static void hardware_disable_all(void)
4199 {
4200 	raw_spin_lock(&kvm_count_lock);
4201 	hardware_disable_all_nolock();
4202 	raw_spin_unlock(&kvm_count_lock);
4203 }
4204 
4205 static int hardware_enable_all(void)
4206 {
4207 	int r = 0;
4208 
4209 	raw_spin_lock(&kvm_count_lock);
4210 
4211 	kvm_usage_count++;
4212 	if (kvm_usage_count == 1) {
4213 		atomic_set(&hardware_enable_failed, 0);
4214 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4215 
4216 		if (atomic_read(&hardware_enable_failed)) {
4217 			hardware_disable_all_nolock();
4218 			r = -EBUSY;
4219 		}
4220 	}
4221 
4222 	raw_spin_unlock(&kvm_count_lock);
4223 
4224 	return r;
4225 }
4226 
4227 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4228 		      void *v)
4229 {
4230 	/*
4231 	 * Some (well, at least mine) BIOSes hang on reboot if
4232 	 * in vmx root mode.
4233 	 *
4234 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4235 	 */
4236 	pr_info("kvm: exiting hardware virtualization\n");
4237 	kvm_rebooting = true;
4238 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4239 	return NOTIFY_OK;
4240 }
4241 
4242 static struct notifier_block kvm_reboot_notifier = {
4243 	.notifier_call = kvm_reboot,
4244 	.priority = 0,
4245 };
4246 
4247 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4248 {
4249 	int i;
4250 
4251 	for (i = 0; i < bus->dev_count; i++) {
4252 		struct kvm_io_device *pos = bus->range[i].dev;
4253 
4254 		kvm_iodevice_destructor(pos);
4255 	}
4256 	kfree(bus);
4257 }
4258 
4259 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4260 				 const struct kvm_io_range *r2)
4261 {
4262 	gpa_t addr1 = r1->addr;
4263 	gpa_t addr2 = r2->addr;
4264 
4265 	if (addr1 < addr2)
4266 		return -1;
4267 
4268 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4269 	 * accept any overlapping write.  Any order is acceptable for
4270 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4271 	 * we process all of them.
4272 	 */
4273 	if (r2->len) {
4274 		addr1 += r1->len;
4275 		addr2 += r2->len;
4276 	}
4277 
4278 	if (addr1 > addr2)
4279 		return 1;
4280 
4281 	return 0;
4282 }
4283 
4284 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4285 {
4286 	return kvm_io_bus_cmp(p1, p2);
4287 }
4288 
4289 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4290 			     gpa_t addr, int len)
4291 {
4292 	struct kvm_io_range *range, key;
4293 	int off;
4294 
4295 	key = (struct kvm_io_range) {
4296 		.addr = addr,
4297 		.len = len,
4298 	};
4299 
4300 	range = bsearch(&key, bus->range, bus->dev_count,
4301 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4302 	if (range == NULL)
4303 		return -ENOENT;
4304 
4305 	off = range - bus->range;
4306 
4307 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4308 		off--;
4309 
4310 	return off;
4311 }
4312 
4313 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4314 			      struct kvm_io_range *range, const void *val)
4315 {
4316 	int idx;
4317 
4318 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4319 	if (idx < 0)
4320 		return -EOPNOTSUPP;
4321 
4322 	while (idx < bus->dev_count &&
4323 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4324 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4325 					range->len, val))
4326 			return idx;
4327 		idx++;
4328 	}
4329 
4330 	return -EOPNOTSUPP;
4331 }
4332 
4333 /* kvm_io_bus_write - called under kvm->slots_lock */
4334 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4335 		     int len, const void *val)
4336 {
4337 	struct kvm_io_bus *bus;
4338 	struct kvm_io_range range;
4339 	int r;
4340 
4341 	range = (struct kvm_io_range) {
4342 		.addr = addr,
4343 		.len = len,
4344 	};
4345 
4346 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4347 	if (!bus)
4348 		return -ENOMEM;
4349 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4350 	return r < 0 ? r : 0;
4351 }
4352 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4353 
4354 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4355 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4356 			    gpa_t addr, int len, const void *val, long cookie)
4357 {
4358 	struct kvm_io_bus *bus;
4359 	struct kvm_io_range range;
4360 
4361 	range = (struct kvm_io_range) {
4362 		.addr = addr,
4363 		.len = len,
4364 	};
4365 
4366 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4367 	if (!bus)
4368 		return -ENOMEM;
4369 
4370 	/* First try the device referenced by cookie. */
4371 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4372 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4373 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4374 					val))
4375 			return cookie;
4376 
4377 	/*
4378 	 * cookie contained garbage; fall back to search and return the
4379 	 * correct cookie value.
4380 	 */
4381 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4382 }
4383 
4384 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4385 			     struct kvm_io_range *range, void *val)
4386 {
4387 	int idx;
4388 
4389 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4390 	if (idx < 0)
4391 		return -EOPNOTSUPP;
4392 
4393 	while (idx < bus->dev_count &&
4394 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4395 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4396 				       range->len, val))
4397 			return idx;
4398 		idx++;
4399 	}
4400 
4401 	return -EOPNOTSUPP;
4402 }
4403 
4404 /* kvm_io_bus_read - called under kvm->slots_lock */
4405 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4406 		    int len, void *val)
4407 {
4408 	struct kvm_io_bus *bus;
4409 	struct kvm_io_range range;
4410 	int r;
4411 
4412 	range = (struct kvm_io_range) {
4413 		.addr = addr,
4414 		.len = len,
4415 	};
4416 
4417 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4418 	if (!bus)
4419 		return -ENOMEM;
4420 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4421 	return r < 0 ? r : 0;
4422 }
4423 
4424 /* Caller must hold slots_lock. */
4425 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4426 			    int len, struct kvm_io_device *dev)
4427 {
4428 	int i;
4429 	struct kvm_io_bus *new_bus, *bus;
4430 	struct kvm_io_range range;
4431 
4432 	bus = kvm_get_bus(kvm, bus_idx);
4433 	if (!bus)
4434 		return -ENOMEM;
4435 
4436 	/* exclude ioeventfd which is limited by maximum fd */
4437 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4438 		return -ENOSPC;
4439 
4440 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4441 			  GFP_KERNEL_ACCOUNT);
4442 	if (!new_bus)
4443 		return -ENOMEM;
4444 
4445 	range = (struct kvm_io_range) {
4446 		.addr = addr,
4447 		.len = len,
4448 		.dev = dev,
4449 	};
4450 
4451 	for (i = 0; i < bus->dev_count; i++)
4452 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4453 			break;
4454 
4455 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4456 	new_bus->dev_count++;
4457 	new_bus->range[i] = range;
4458 	memcpy(new_bus->range + i + 1, bus->range + i,
4459 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4460 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4461 	synchronize_srcu_expedited(&kvm->srcu);
4462 	kfree(bus);
4463 
4464 	return 0;
4465 }
4466 
4467 /* Caller must hold slots_lock. */
4468 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4469 			       struct kvm_io_device *dev)
4470 {
4471 	int i, j;
4472 	struct kvm_io_bus *new_bus, *bus;
4473 
4474 	bus = kvm_get_bus(kvm, bus_idx);
4475 	if (!bus)
4476 		return;
4477 
4478 	for (i = 0; i < bus->dev_count; i++)
4479 		if (bus->range[i].dev == dev) {
4480 			break;
4481 		}
4482 
4483 	if (i == bus->dev_count)
4484 		return;
4485 
4486 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4487 			  GFP_KERNEL_ACCOUNT);
4488 	if (new_bus) {
4489 		memcpy(new_bus, bus, struct_size(bus, range, i));
4490 		new_bus->dev_count--;
4491 		memcpy(new_bus->range + i, bus->range + i + 1,
4492 				flex_array_size(new_bus, range, new_bus->dev_count - i));
4493 	} else {
4494 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4495 		for (j = 0; j < bus->dev_count; j++) {
4496 			if (j == i)
4497 				continue;
4498 			kvm_iodevice_destructor(bus->range[j].dev);
4499 		}
4500 	}
4501 
4502 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4503 	synchronize_srcu_expedited(&kvm->srcu);
4504 	kfree(bus);
4505 	return;
4506 }
4507 
4508 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4509 					 gpa_t addr)
4510 {
4511 	struct kvm_io_bus *bus;
4512 	int dev_idx, srcu_idx;
4513 	struct kvm_io_device *iodev = NULL;
4514 
4515 	srcu_idx = srcu_read_lock(&kvm->srcu);
4516 
4517 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4518 	if (!bus)
4519 		goto out_unlock;
4520 
4521 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4522 	if (dev_idx < 0)
4523 		goto out_unlock;
4524 
4525 	iodev = bus->range[dev_idx].dev;
4526 
4527 out_unlock:
4528 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4529 
4530 	return iodev;
4531 }
4532 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4533 
4534 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4535 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4536 			   const char *fmt)
4537 {
4538 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4539 					  inode->i_private;
4540 
4541 	/* The debugfs files are a reference to the kvm struct which
4542 	 * is still valid when kvm_destroy_vm is called.
4543 	 * To avoid the race between open and the removal of the debugfs
4544 	 * directory we test against the users count.
4545 	 */
4546 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4547 		return -ENOENT;
4548 
4549 	if (simple_attr_open(inode, file, get,
4550 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4551 		    ? set : NULL,
4552 		    fmt)) {
4553 		kvm_put_kvm(stat_data->kvm);
4554 		return -ENOMEM;
4555 	}
4556 
4557 	return 0;
4558 }
4559 
4560 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4561 {
4562 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4563 					  inode->i_private;
4564 
4565 	simple_attr_release(inode, file);
4566 	kvm_put_kvm(stat_data->kvm);
4567 
4568 	return 0;
4569 }
4570 
4571 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4572 {
4573 	*val = *(ulong *)((void *)kvm + offset);
4574 
4575 	return 0;
4576 }
4577 
4578 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4579 {
4580 	*(ulong *)((void *)kvm + offset) = 0;
4581 
4582 	return 0;
4583 }
4584 
4585 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4586 {
4587 	int i;
4588 	struct kvm_vcpu *vcpu;
4589 
4590 	*val = 0;
4591 
4592 	kvm_for_each_vcpu(i, vcpu, kvm)
4593 		*val += *(u64 *)((void *)vcpu + offset);
4594 
4595 	return 0;
4596 }
4597 
4598 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4599 {
4600 	int i;
4601 	struct kvm_vcpu *vcpu;
4602 
4603 	kvm_for_each_vcpu(i, vcpu, kvm)
4604 		*(u64 *)((void *)vcpu + offset) = 0;
4605 
4606 	return 0;
4607 }
4608 
4609 static int kvm_stat_data_get(void *data, u64 *val)
4610 {
4611 	int r = -EFAULT;
4612 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4613 
4614 	switch (stat_data->dbgfs_item->kind) {
4615 	case KVM_STAT_VM:
4616 		r = kvm_get_stat_per_vm(stat_data->kvm,
4617 					stat_data->dbgfs_item->offset, val);
4618 		break;
4619 	case KVM_STAT_VCPU:
4620 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4621 					  stat_data->dbgfs_item->offset, val);
4622 		break;
4623 	}
4624 
4625 	return r;
4626 }
4627 
4628 static int kvm_stat_data_clear(void *data, u64 val)
4629 {
4630 	int r = -EFAULT;
4631 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4632 
4633 	if (val)
4634 		return -EINVAL;
4635 
4636 	switch (stat_data->dbgfs_item->kind) {
4637 	case KVM_STAT_VM:
4638 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4639 					  stat_data->dbgfs_item->offset);
4640 		break;
4641 	case KVM_STAT_VCPU:
4642 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4643 					    stat_data->dbgfs_item->offset);
4644 		break;
4645 	}
4646 
4647 	return r;
4648 }
4649 
4650 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4651 {
4652 	__simple_attr_check_format("%llu\n", 0ull);
4653 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4654 				kvm_stat_data_clear, "%llu\n");
4655 }
4656 
4657 static const struct file_operations stat_fops_per_vm = {
4658 	.owner = THIS_MODULE,
4659 	.open = kvm_stat_data_open,
4660 	.release = kvm_debugfs_release,
4661 	.read = simple_attr_read,
4662 	.write = simple_attr_write,
4663 	.llseek = no_llseek,
4664 };
4665 
4666 static int vm_stat_get(void *_offset, u64 *val)
4667 {
4668 	unsigned offset = (long)_offset;
4669 	struct kvm *kvm;
4670 	u64 tmp_val;
4671 
4672 	*val = 0;
4673 	mutex_lock(&kvm_lock);
4674 	list_for_each_entry(kvm, &vm_list, vm_list) {
4675 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4676 		*val += tmp_val;
4677 	}
4678 	mutex_unlock(&kvm_lock);
4679 	return 0;
4680 }
4681 
4682 static int vm_stat_clear(void *_offset, u64 val)
4683 {
4684 	unsigned offset = (long)_offset;
4685 	struct kvm *kvm;
4686 
4687 	if (val)
4688 		return -EINVAL;
4689 
4690 	mutex_lock(&kvm_lock);
4691 	list_for_each_entry(kvm, &vm_list, vm_list) {
4692 		kvm_clear_stat_per_vm(kvm, offset);
4693 	}
4694 	mutex_unlock(&kvm_lock);
4695 
4696 	return 0;
4697 }
4698 
4699 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4700 
4701 static int vcpu_stat_get(void *_offset, u64 *val)
4702 {
4703 	unsigned offset = (long)_offset;
4704 	struct kvm *kvm;
4705 	u64 tmp_val;
4706 
4707 	*val = 0;
4708 	mutex_lock(&kvm_lock);
4709 	list_for_each_entry(kvm, &vm_list, vm_list) {
4710 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4711 		*val += tmp_val;
4712 	}
4713 	mutex_unlock(&kvm_lock);
4714 	return 0;
4715 }
4716 
4717 static int vcpu_stat_clear(void *_offset, u64 val)
4718 {
4719 	unsigned offset = (long)_offset;
4720 	struct kvm *kvm;
4721 
4722 	if (val)
4723 		return -EINVAL;
4724 
4725 	mutex_lock(&kvm_lock);
4726 	list_for_each_entry(kvm, &vm_list, vm_list) {
4727 		kvm_clear_stat_per_vcpu(kvm, offset);
4728 	}
4729 	mutex_unlock(&kvm_lock);
4730 
4731 	return 0;
4732 }
4733 
4734 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4735 			"%llu\n");
4736 
4737 static const struct file_operations *stat_fops[] = {
4738 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4739 	[KVM_STAT_VM]   = &vm_stat_fops,
4740 };
4741 
4742 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4743 {
4744 	struct kobj_uevent_env *env;
4745 	unsigned long long created, active;
4746 
4747 	if (!kvm_dev.this_device || !kvm)
4748 		return;
4749 
4750 	mutex_lock(&kvm_lock);
4751 	if (type == KVM_EVENT_CREATE_VM) {
4752 		kvm_createvm_count++;
4753 		kvm_active_vms++;
4754 	} else if (type == KVM_EVENT_DESTROY_VM) {
4755 		kvm_active_vms--;
4756 	}
4757 	created = kvm_createvm_count;
4758 	active = kvm_active_vms;
4759 	mutex_unlock(&kvm_lock);
4760 
4761 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4762 	if (!env)
4763 		return;
4764 
4765 	add_uevent_var(env, "CREATED=%llu", created);
4766 	add_uevent_var(env, "COUNT=%llu", active);
4767 
4768 	if (type == KVM_EVENT_CREATE_VM) {
4769 		add_uevent_var(env, "EVENT=create");
4770 		kvm->userspace_pid = task_pid_nr(current);
4771 	} else if (type == KVM_EVENT_DESTROY_VM) {
4772 		add_uevent_var(env, "EVENT=destroy");
4773 	}
4774 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4775 
4776 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4777 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4778 
4779 		if (p) {
4780 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4781 			if (!IS_ERR(tmp))
4782 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4783 			kfree(p);
4784 		}
4785 	}
4786 	/* no need for checks, since we are adding at most only 5 keys */
4787 	env->envp[env->envp_idx++] = NULL;
4788 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4789 	kfree(env);
4790 }
4791 
4792 static void kvm_init_debug(void)
4793 {
4794 	struct kvm_stats_debugfs_item *p;
4795 
4796 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4797 
4798 	kvm_debugfs_num_entries = 0;
4799 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4800 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4801 				    kvm_debugfs_dir, (void *)(long)p->offset,
4802 				    stat_fops[p->kind]);
4803 	}
4804 }
4805 
4806 static int kvm_suspend(void)
4807 {
4808 	if (kvm_usage_count)
4809 		hardware_disable_nolock(NULL);
4810 	return 0;
4811 }
4812 
4813 static void kvm_resume(void)
4814 {
4815 	if (kvm_usage_count) {
4816 #ifdef CONFIG_LOCKDEP
4817 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4818 #endif
4819 		hardware_enable_nolock(NULL);
4820 	}
4821 }
4822 
4823 static struct syscore_ops kvm_syscore_ops = {
4824 	.suspend = kvm_suspend,
4825 	.resume = kvm_resume,
4826 };
4827 
4828 static inline
4829 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4830 {
4831 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4832 }
4833 
4834 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4835 {
4836 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4837 
4838 	WRITE_ONCE(vcpu->preempted, false);
4839 	WRITE_ONCE(vcpu->ready, false);
4840 
4841 	__this_cpu_write(kvm_running_vcpu, vcpu);
4842 	kvm_arch_sched_in(vcpu, cpu);
4843 	kvm_arch_vcpu_load(vcpu, cpu);
4844 }
4845 
4846 static void kvm_sched_out(struct preempt_notifier *pn,
4847 			  struct task_struct *next)
4848 {
4849 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4850 
4851 	if (current->state == TASK_RUNNING) {
4852 		WRITE_ONCE(vcpu->preempted, true);
4853 		WRITE_ONCE(vcpu->ready, true);
4854 	}
4855 	kvm_arch_vcpu_put(vcpu);
4856 	__this_cpu_write(kvm_running_vcpu, NULL);
4857 }
4858 
4859 /**
4860  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4861  *
4862  * We can disable preemption locally around accessing the per-CPU variable,
4863  * and use the resolved vcpu pointer after enabling preemption again,
4864  * because even if the current thread is migrated to another CPU, reading
4865  * the per-CPU value later will give us the same value as we update the
4866  * per-CPU variable in the preempt notifier handlers.
4867  */
4868 struct kvm_vcpu *kvm_get_running_vcpu(void)
4869 {
4870 	struct kvm_vcpu *vcpu;
4871 
4872 	preempt_disable();
4873 	vcpu = __this_cpu_read(kvm_running_vcpu);
4874 	preempt_enable();
4875 
4876 	return vcpu;
4877 }
4878 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4879 
4880 /**
4881  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4882  */
4883 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4884 {
4885         return &kvm_running_vcpu;
4886 }
4887 
4888 struct kvm_cpu_compat_check {
4889 	void *opaque;
4890 	int *ret;
4891 };
4892 
4893 static void check_processor_compat(void *data)
4894 {
4895 	struct kvm_cpu_compat_check *c = data;
4896 
4897 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4898 }
4899 
4900 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4901 		  struct module *module)
4902 {
4903 	struct kvm_cpu_compat_check c;
4904 	int r;
4905 	int cpu;
4906 
4907 	r = kvm_arch_init(opaque);
4908 	if (r)
4909 		goto out_fail;
4910 
4911 	/*
4912 	 * kvm_arch_init makes sure there's at most one caller
4913 	 * for architectures that support multiple implementations,
4914 	 * like intel and amd on x86.
4915 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4916 	 * conflicts in case kvm is already setup for another implementation.
4917 	 */
4918 	r = kvm_irqfd_init();
4919 	if (r)
4920 		goto out_irqfd;
4921 
4922 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4923 		r = -ENOMEM;
4924 		goto out_free_0;
4925 	}
4926 
4927 	r = kvm_arch_hardware_setup(opaque);
4928 	if (r < 0)
4929 		goto out_free_1;
4930 
4931 	c.ret = &r;
4932 	c.opaque = opaque;
4933 	for_each_online_cpu(cpu) {
4934 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4935 		if (r < 0)
4936 			goto out_free_2;
4937 	}
4938 
4939 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4940 				      kvm_starting_cpu, kvm_dying_cpu);
4941 	if (r)
4942 		goto out_free_2;
4943 	register_reboot_notifier(&kvm_reboot_notifier);
4944 
4945 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4946 	if (!vcpu_align)
4947 		vcpu_align = __alignof__(struct kvm_vcpu);
4948 	kvm_vcpu_cache =
4949 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4950 					   SLAB_ACCOUNT,
4951 					   offsetof(struct kvm_vcpu, arch),
4952 					   sizeof_field(struct kvm_vcpu, arch),
4953 					   NULL);
4954 	if (!kvm_vcpu_cache) {
4955 		r = -ENOMEM;
4956 		goto out_free_3;
4957 	}
4958 
4959 	r = kvm_async_pf_init();
4960 	if (r)
4961 		goto out_free;
4962 
4963 	kvm_chardev_ops.owner = module;
4964 	kvm_vm_fops.owner = module;
4965 	kvm_vcpu_fops.owner = module;
4966 
4967 	r = misc_register(&kvm_dev);
4968 	if (r) {
4969 		pr_err("kvm: misc device register failed\n");
4970 		goto out_unreg;
4971 	}
4972 
4973 	register_syscore_ops(&kvm_syscore_ops);
4974 
4975 	kvm_preempt_ops.sched_in = kvm_sched_in;
4976 	kvm_preempt_ops.sched_out = kvm_sched_out;
4977 
4978 	kvm_init_debug();
4979 
4980 	r = kvm_vfio_ops_init();
4981 	WARN_ON(r);
4982 
4983 	return 0;
4984 
4985 out_unreg:
4986 	kvm_async_pf_deinit();
4987 out_free:
4988 	kmem_cache_destroy(kvm_vcpu_cache);
4989 out_free_3:
4990 	unregister_reboot_notifier(&kvm_reboot_notifier);
4991 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4992 out_free_2:
4993 	kvm_arch_hardware_unsetup();
4994 out_free_1:
4995 	free_cpumask_var(cpus_hardware_enabled);
4996 out_free_0:
4997 	kvm_irqfd_exit();
4998 out_irqfd:
4999 	kvm_arch_exit();
5000 out_fail:
5001 	return r;
5002 }
5003 EXPORT_SYMBOL_GPL(kvm_init);
5004 
5005 void kvm_exit(void)
5006 {
5007 	debugfs_remove_recursive(kvm_debugfs_dir);
5008 	misc_deregister(&kvm_dev);
5009 	kmem_cache_destroy(kvm_vcpu_cache);
5010 	kvm_async_pf_deinit();
5011 	unregister_syscore_ops(&kvm_syscore_ops);
5012 	unregister_reboot_notifier(&kvm_reboot_notifier);
5013 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5014 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5015 	kvm_arch_hardware_unsetup();
5016 	kvm_arch_exit();
5017 	kvm_irqfd_exit();
5018 	free_cpumask_var(cpus_hardware_enabled);
5019 	kvm_vfio_ops_exit();
5020 }
5021 EXPORT_SYMBOL_GPL(kvm_exit);
5022 
5023 struct kvm_vm_worker_thread_context {
5024 	struct kvm *kvm;
5025 	struct task_struct *parent;
5026 	struct completion init_done;
5027 	kvm_vm_thread_fn_t thread_fn;
5028 	uintptr_t data;
5029 	int err;
5030 };
5031 
5032 static int kvm_vm_worker_thread(void *context)
5033 {
5034 	/*
5035 	 * The init_context is allocated on the stack of the parent thread, so
5036 	 * we have to locally copy anything that is needed beyond initialization
5037 	 */
5038 	struct kvm_vm_worker_thread_context *init_context = context;
5039 	struct kvm *kvm = init_context->kvm;
5040 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5041 	uintptr_t data = init_context->data;
5042 	int err;
5043 
5044 	err = kthread_park(current);
5045 	/* kthread_park(current) is never supposed to return an error */
5046 	WARN_ON(err != 0);
5047 	if (err)
5048 		goto init_complete;
5049 
5050 	err = cgroup_attach_task_all(init_context->parent, current);
5051 	if (err) {
5052 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5053 			__func__, err);
5054 		goto init_complete;
5055 	}
5056 
5057 	set_user_nice(current, task_nice(init_context->parent));
5058 
5059 init_complete:
5060 	init_context->err = err;
5061 	complete(&init_context->init_done);
5062 	init_context = NULL;
5063 
5064 	if (err)
5065 		return err;
5066 
5067 	/* Wait to be woken up by the spawner before proceeding. */
5068 	kthread_parkme();
5069 
5070 	if (!kthread_should_stop())
5071 		err = thread_fn(kvm, data);
5072 
5073 	return err;
5074 }
5075 
5076 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5077 				uintptr_t data, const char *name,
5078 				struct task_struct **thread_ptr)
5079 {
5080 	struct kvm_vm_worker_thread_context init_context = {};
5081 	struct task_struct *thread;
5082 
5083 	*thread_ptr = NULL;
5084 	init_context.kvm = kvm;
5085 	init_context.parent = current;
5086 	init_context.thread_fn = thread_fn;
5087 	init_context.data = data;
5088 	init_completion(&init_context.init_done);
5089 
5090 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5091 			     "%s-%d", name, task_pid_nr(current));
5092 	if (IS_ERR(thread))
5093 		return PTR_ERR(thread);
5094 
5095 	/* kthread_run is never supposed to return NULL */
5096 	WARN_ON(thread == NULL);
5097 
5098 	wait_for_completion(&init_context.init_done);
5099 
5100 	if (!init_context.err)
5101 		*thread_ptr = thread;
5102 
5103 	return init_context.err;
5104 }
5105