xref: /openbmc/linux/tools/testing/selftests/seccomp/seccomp_bpf.c (revision 67bb66d32905627e29400e2cb7f87a7c4c8cf667)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
4  *
5  * Test code for seccomp bpf.
6  */
7 
8 #define _GNU_SOURCE
9 #include <sys/types.h>
10 
11 /*
12  * glibc 2.26 and later have SIGSYS in siginfo_t. Before that,
13  * we need to use the kernel's siginfo.h file and trick glibc
14  * into accepting it.
15  */
16 #if !__GLIBC_PREREQ(2, 26)
17 # include <asm/siginfo.h>
18 # define __have_siginfo_t 1
19 # define __have_sigval_t 1
20 # define __have_sigevent_t 1
21 #endif
22 
23 #include <errno.h>
24 #include <linux/filter.h>
25 #include <sys/prctl.h>
26 #include <sys/ptrace.h>
27 #include <sys/user.h>
28 #include <linux/prctl.h>
29 #include <linux/ptrace.h>
30 #include <linux/seccomp.h>
31 #include <pthread.h>
32 #include <semaphore.h>
33 #include <signal.h>
34 #include <stddef.h>
35 #include <stdbool.h>
36 #include <string.h>
37 #include <time.h>
38 #include <limits.h>
39 #include <linux/elf.h>
40 #include <sys/uio.h>
41 #include <sys/utsname.h>
42 #include <sys/fcntl.h>
43 #include <sys/mman.h>
44 #include <sys/times.h>
45 #include <sys/socket.h>
46 #include <sys/ioctl.h>
47 #include <linux/kcmp.h>
48 #include <sys/resource.h>
49 
50 #include <unistd.h>
51 #include <sys/syscall.h>
52 #include <poll.h>
53 
54 #include "../kselftest_harness.h"
55 #include "../clone3/clone3_selftests.h"
56 
57 /* Attempt to de-conflict with the selftests tree. */
58 #ifndef SKIP
59 #define SKIP(s, ...)	XFAIL(s, ##__VA_ARGS__)
60 #endif
61 
62 #ifndef PR_SET_PTRACER
63 # define PR_SET_PTRACER 0x59616d61
64 #endif
65 
66 #ifndef PR_SET_NO_NEW_PRIVS
67 #define PR_SET_NO_NEW_PRIVS 38
68 #define PR_GET_NO_NEW_PRIVS 39
69 #endif
70 
71 #ifndef PR_SECCOMP_EXT
72 #define PR_SECCOMP_EXT 43
73 #endif
74 
75 #ifndef SECCOMP_EXT_ACT
76 #define SECCOMP_EXT_ACT 1
77 #endif
78 
79 #ifndef SECCOMP_EXT_ACT_TSYNC
80 #define SECCOMP_EXT_ACT_TSYNC 1
81 #endif
82 
83 #ifndef SECCOMP_MODE_STRICT
84 #define SECCOMP_MODE_STRICT 1
85 #endif
86 
87 #ifndef SECCOMP_MODE_FILTER
88 #define SECCOMP_MODE_FILTER 2
89 #endif
90 
91 #ifndef SECCOMP_RET_ALLOW
92 struct seccomp_data {
93 	int nr;
94 	__u32 arch;
95 	__u64 instruction_pointer;
96 	__u64 args[6];
97 };
98 #endif
99 
100 #ifndef SECCOMP_RET_KILL_PROCESS
101 #define SECCOMP_RET_KILL_PROCESS 0x80000000U /* kill the process */
102 #define SECCOMP_RET_KILL_THREAD	 0x00000000U /* kill the thread */
103 #endif
104 #ifndef SECCOMP_RET_KILL
105 #define SECCOMP_RET_KILL	 SECCOMP_RET_KILL_THREAD
106 #define SECCOMP_RET_TRAP	 0x00030000U /* disallow and force a SIGSYS */
107 #define SECCOMP_RET_ERRNO	 0x00050000U /* returns an errno */
108 #define SECCOMP_RET_TRACE	 0x7ff00000U /* pass to a tracer or disallow */
109 #define SECCOMP_RET_ALLOW	 0x7fff0000U /* allow */
110 #endif
111 #ifndef SECCOMP_RET_LOG
112 #define SECCOMP_RET_LOG		 0x7ffc0000U /* allow after logging */
113 #endif
114 
115 #ifndef __NR_seccomp
116 # if defined(__i386__)
117 #  define __NR_seccomp 354
118 # elif defined(__x86_64__)
119 #  define __NR_seccomp 317
120 # elif defined(__arm__)
121 #  define __NR_seccomp 383
122 # elif defined(__aarch64__)
123 #  define __NR_seccomp 277
124 # elif defined(__riscv)
125 #  define __NR_seccomp 277
126 # elif defined(__csky__)
127 #  define __NR_seccomp 277
128 # elif defined(__hppa__)
129 #  define __NR_seccomp 338
130 # elif defined(__powerpc__)
131 #  define __NR_seccomp 358
132 # elif defined(__s390__)
133 #  define __NR_seccomp 348
134 # elif defined(__xtensa__)
135 #  define __NR_seccomp 337
136 # elif defined(__sh__)
137 #  define __NR_seccomp 372
138 # else
139 #  warning "seccomp syscall number unknown for this architecture"
140 #  define __NR_seccomp 0xffff
141 # endif
142 #endif
143 
144 #ifndef SECCOMP_SET_MODE_STRICT
145 #define SECCOMP_SET_MODE_STRICT 0
146 #endif
147 
148 #ifndef SECCOMP_SET_MODE_FILTER
149 #define SECCOMP_SET_MODE_FILTER 1
150 #endif
151 
152 #ifndef SECCOMP_GET_ACTION_AVAIL
153 #define SECCOMP_GET_ACTION_AVAIL 2
154 #endif
155 
156 #ifndef SECCOMP_GET_NOTIF_SIZES
157 #define SECCOMP_GET_NOTIF_SIZES 3
158 #endif
159 
160 #ifndef SECCOMP_FILTER_FLAG_TSYNC
161 #define SECCOMP_FILTER_FLAG_TSYNC (1UL << 0)
162 #endif
163 
164 #ifndef SECCOMP_FILTER_FLAG_LOG
165 #define SECCOMP_FILTER_FLAG_LOG (1UL << 1)
166 #endif
167 
168 #ifndef SECCOMP_FILTER_FLAG_SPEC_ALLOW
169 #define SECCOMP_FILTER_FLAG_SPEC_ALLOW (1UL << 2)
170 #endif
171 
172 #ifndef PTRACE_SECCOMP_GET_METADATA
173 #define PTRACE_SECCOMP_GET_METADATA	0x420d
174 
175 struct seccomp_metadata {
176 	__u64 filter_off;       /* Input: which filter */
177 	__u64 flags;             /* Output: filter's flags */
178 };
179 #endif
180 
181 #ifndef SECCOMP_FILTER_FLAG_NEW_LISTENER
182 #define SECCOMP_FILTER_FLAG_NEW_LISTENER	(1UL << 3)
183 #endif
184 
185 #ifndef SECCOMP_RET_USER_NOTIF
186 #define SECCOMP_RET_USER_NOTIF 0x7fc00000U
187 
188 #define SECCOMP_IOC_MAGIC		'!'
189 #define SECCOMP_IO(nr)			_IO(SECCOMP_IOC_MAGIC, nr)
190 #define SECCOMP_IOR(nr, type)		_IOR(SECCOMP_IOC_MAGIC, nr, type)
191 #define SECCOMP_IOW(nr, type)		_IOW(SECCOMP_IOC_MAGIC, nr, type)
192 #define SECCOMP_IOWR(nr, type)		_IOWR(SECCOMP_IOC_MAGIC, nr, type)
193 
194 /* Flags for seccomp notification fd ioctl. */
195 #define SECCOMP_IOCTL_NOTIF_RECV	SECCOMP_IOWR(0, struct seccomp_notif)
196 #define SECCOMP_IOCTL_NOTIF_SEND	SECCOMP_IOWR(1,	\
197 						struct seccomp_notif_resp)
198 #define SECCOMP_IOCTL_NOTIF_ID_VALID	SECCOMP_IOW(2, __u64)
199 
200 struct seccomp_notif {
201 	__u64 id;
202 	__u32 pid;
203 	__u32 flags;
204 	struct seccomp_data data;
205 };
206 
207 struct seccomp_notif_resp {
208 	__u64 id;
209 	__s64 val;
210 	__s32 error;
211 	__u32 flags;
212 };
213 
214 struct seccomp_notif_sizes {
215 	__u16 seccomp_notif;
216 	__u16 seccomp_notif_resp;
217 	__u16 seccomp_data;
218 };
219 #endif
220 
221 #ifndef SECCOMP_IOCTL_NOTIF_ADDFD
222 /* On success, the return value is the remote process's added fd number */
223 #define SECCOMP_IOCTL_NOTIF_ADDFD	SECCOMP_IOW(3,	\
224 						struct seccomp_notif_addfd)
225 
226 /* valid flags for seccomp_notif_addfd */
227 #define SECCOMP_ADDFD_FLAG_SETFD	(1UL << 0) /* Specify remote fd */
228 
229 struct seccomp_notif_addfd {
230 	__u64 id;
231 	__u32 flags;
232 	__u32 srcfd;
233 	__u32 newfd;
234 	__u32 newfd_flags;
235 };
236 #endif
237 
238 #ifndef SECCOMP_ADDFD_FLAG_SEND
239 #define SECCOMP_ADDFD_FLAG_SEND	(1UL << 1) /* Addfd and return it, atomically */
240 #endif
241 
242 struct seccomp_notif_addfd_small {
243 	__u64 id;
244 	char weird[4];
245 };
246 #define SECCOMP_IOCTL_NOTIF_ADDFD_SMALL	\
247 	SECCOMP_IOW(3, struct seccomp_notif_addfd_small)
248 
249 struct seccomp_notif_addfd_big {
250 	union {
251 		struct seccomp_notif_addfd addfd;
252 		char buf[sizeof(struct seccomp_notif_addfd) + 8];
253 	};
254 };
255 #define SECCOMP_IOCTL_NOTIF_ADDFD_BIG	\
256 	SECCOMP_IOWR(3, struct seccomp_notif_addfd_big)
257 
258 #ifndef PTRACE_EVENTMSG_SYSCALL_ENTRY
259 #define PTRACE_EVENTMSG_SYSCALL_ENTRY	1
260 #define PTRACE_EVENTMSG_SYSCALL_EXIT	2
261 #endif
262 
263 #ifndef SECCOMP_USER_NOTIF_FLAG_CONTINUE
264 #define SECCOMP_USER_NOTIF_FLAG_CONTINUE 0x00000001
265 #endif
266 
267 #ifndef SECCOMP_FILTER_FLAG_TSYNC_ESRCH
268 #define SECCOMP_FILTER_FLAG_TSYNC_ESRCH (1UL << 4)
269 #endif
270 
271 #ifndef seccomp
272 int seccomp(unsigned int op, unsigned int flags, void *args)
273 {
274 	errno = 0;
275 	return syscall(__NR_seccomp, op, flags, args);
276 }
277 #endif
278 
279 #if __BYTE_ORDER == __LITTLE_ENDIAN
280 #define syscall_arg(_n) (offsetof(struct seccomp_data, args[_n]))
281 #elif __BYTE_ORDER == __BIG_ENDIAN
282 #define syscall_arg(_n) (offsetof(struct seccomp_data, args[_n]) + sizeof(__u32))
283 #else
284 #error "wut? Unknown __BYTE_ORDER?!"
285 #endif
286 
287 #define SIBLING_EXIT_UNKILLED	0xbadbeef
288 #define SIBLING_EXIT_FAILURE	0xbadface
289 #define SIBLING_EXIT_NEWPRIVS	0xbadfeed
290 
291 static int __filecmp(pid_t pid1, pid_t pid2, int fd1, int fd2)
292 {
293 #ifdef __NR_kcmp
294 	errno = 0;
295 	return syscall(__NR_kcmp, pid1, pid2, KCMP_FILE, fd1, fd2);
296 #else
297 	errno = ENOSYS;
298 	return -1;
299 #endif
300 }
301 
302 /* Have TH_LOG report actual location filecmp() is used. */
303 #define filecmp(pid1, pid2, fd1, fd2)	({		\
304 	int _ret;					\
305 							\
306 	_ret = __filecmp(pid1, pid2, fd1, fd2);		\
307 	if (_ret != 0) {				\
308 		if (_ret < 0 && errno == ENOSYS) {	\
309 			TH_LOG("kcmp() syscall missing (test is less accurate)");\
310 			_ret = 0;			\
311 		}					\
312 	}						\
313 	_ret; })
314 
315 TEST(kcmp)
316 {
317 	int ret;
318 
319 	ret = __filecmp(getpid(), getpid(), 1, 1);
320 	EXPECT_EQ(ret, 0);
321 	if (ret != 0 && errno == ENOSYS)
322 		SKIP(return, "Kernel does not support kcmp() (missing CONFIG_KCMP?)");
323 }
324 
325 TEST(mode_strict_support)
326 {
327 	long ret;
328 
329 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, NULL, NULL, NULL);
330 	ASSERT_EQ(0, ret) {
331 		TH_LOG("Kernel does not support CONFIG_SECCOMP");
332 	}
333 	syscall(__NR_exit, 0);
334 }
335 
336 TEST_SIGNAL(mode_strict_cannot_call_prctl, SIGKILL)
337 {
338 	long ret;
339 
340 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, NULL, NULL, NULL);
341 	ASSERT_EQ(0, ret) {
342 		TH_LOG("Kernel does not support CONFIG_SECCOMP");
343 	}
344 	syscall(__NR_prctl, PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
345 		NULL, NULL, NULL);
346 	EXPECT_FALSE(true) {
347 		TH_LOG("Unreachable!");
348 	}
349 }
350 
351 /* Note! This doesn't test no new privs behavior */
352 TEST(no_new_privs_support)
353 {
354 	long ret;
355 
356 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
357 	EXPECT_EQ(0, ret) {
358 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
359 	}
360 }
361 
362 /* Tests kernel support by checking for a copy_from_user() fault on NULL. */
363 TEST(mode_filter_support)
364 {
365 	long ret;
366 
367 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, NULL, 0, 0);
368 	ASSERT_EQ(0, ret) {
369 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
370 	}
371 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL, NULL, NULL);
372 	EXPECT_EQ(-1, ret);
373 	EXPECT_EQ(EFAULT, errno) {
374 		TH_LOG("Kernel does not support CONFIG_SECCOMP_FILTER!");
375 	}
376 }
377 
378 TEST(mode_filter_without_nnp)
379 {
380 	struct sock_filter filter[] = {
381 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
382 	};
383 	struct sock_fprog prog = {
384 		.len = (unsigned short)ARRAY_SIZE(filter),
385 		.filter = filter,
386 	};
387 	long ret;
388 
389 	ret = prctl(PR_GET_NO_NEW_PRIVS, 0, NULL, 0, 0);
390 	ASSERT_LE(0, ret) {
391 		TH_LOG("Expected 0 or unsupported for NO_NEW_PRIVS");
392 	}
393 	errno = 0;
394 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0);
395 	/* Succeeds with CAP_SYS_ADMIN, fails without */
396 	/* TODO(wad) check caps not euid */
397 	if (geteuid()) {
398 		EXPECT_EQ(-1, ret);
399 		EXPECT_EQ(EACCES, errno);
400 	} else {
401 		EXPECT_EQ(0, ret);
402 	}
403 }
404 
405 #define MAX_INSNS_PER_PATH 32768
406 
407 TEST(filter_size_limits)
408 {
409 	int i;
410 	int count = BPF_MAXINSNS + 1;
411 	struct sock_filter allow[] = {
412 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
413 	};
414 	struct sock_filter *filter;
415 	struct sock_fprog prog = { };
416 	long ret;
417 
418 	filter = calloc(count, sizeof(*filter));
419 	ASSERT_NE(NULL, filter);
420 
421 	for (i = 0; i < count; i++)
422 		filter[i] = allow[0];
423 
424 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
425 	ASSERT_EQ(0, ret);
426 
427 	prog.filter = filter;
428 	prog.len = count;
429 
430 	/* Too many filter instructions in a single filter. */
431 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0);
432 	ASSERT_NE(0, ret) {
433 		TH_LOG("Installing %d insn filter was allowed", prog.len);
434 	}
435 
436 	/* One less is okay, though. */
437 	prog.len -= 1;
438 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0);
439 	ASSERT_EQ(0, ret) {
440 		TH_LOG("Installing %d insn filter wasn't allowed", prog.len);
441 	}
442 }
443 
444 TEST(filter_chain_limits)
445 {
446 	int i;
447 	int count = BPF_MAXINSNS;
448 	struct sock_filter allow[] = {
449 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
450 	};
451 	struct sock_filter *filter;
452 	struct sock_fprog prog = { };
453 	long ret;
454 
455 	filter = calloc(count, sizeof(*filter));
456 	ASSERT_NE(NULL, filter);
457 
458 	for (i = 0; i < count; i++)
459 		filter[i] = allow[0];
460 
461 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
462 	ASSERT_EQ(0, ret);
463 
464 	prog.filter = filter;
465 	prog.len = 1;
466 
467 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0);
468 	ASSERT_EQ(0, ret);
469 
470 	prog.len = count;
471 
472 	/* Too many total filter instructions. */
473 	for (i = 0; i < MAX_INSNS_PER_PATH; i++) {
474 		ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0);
475 		if (ret != 0)
476 			break;
477 	}
478 	ASSERT_NE(0, ret) {
479 		TH_LOG("Allowed %d %d-insn filters (total with penalties:%d)",
480 		       i, count, i * (count + 4));
481 	}
482 }
483 
484 TEST(mode_filter_cannot_move_to_strict)
485 {
486 	struct sock_filter filter[] = {
487 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
488 	};
489 	struct sock_fprog prog = {
490 		.len = (unsigned short)ARRAY_SIZE(filter),
491 		.filter = filter,
492 	};
493 	long ret;
494 
495 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
496 	ASSERT_EQ(0, ret);
497 
498 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0);
499 	ASSERT_EQ(0, ret);
500 
501 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, NULL, 0, 0);
502 	EXPECT_EQ(-1, ret);
503 	EXPECT_EQ(EINVAL, errno);
504 }
505 
506 
507 TEST(mode_filter_get_seccomp)
508 {
509 	struct sock_filter filter[] = {
510 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
511 	};
512 	struct sock_fprog prog = {
513 		.len = (unsigned short)ARRAY_SIZE(filter),
514 		.filter = filter,
515 	};
516 	long ret;
517 
518 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
519 	ASSERT_EQ(0, ret);
520 
521 	ret = prctl(PR_GET_SECCOMP, 0, 0, 0, 0);
522 	EXPECT_EQ(0, ret);
523 
524 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0);
525 	ASSERT_EQ(0, ret);
526 
527 	ret = prctl(PR_GET_SECCOMP, 0, 0, 0, 0);
528 	EXPECT_EQ(2, ret);
529 }
530 
531 
532 TEST(ALLOW_all)
533 {
534 	struct sock_filter filter[] = {
535 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
536 	};
537 	struct sock_fprog prog = {
538 		.len = (unsigned short)ARRAY_SIZE(filter),
539 		.filter = filter,
540 	};
541 	long ret;
542 
543 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
544 	ASSERT_EQ(0, ret);
545 
546 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
547 	ASSERT_EQ(0, ret);
548 }
549 
550 TEST(empty_prog)
551 {
552 	struct sock_filter filter[] = {
553 	};
554 	struct sock_fprog prog = {
555 		.len = (unsigned short)ARRAY_SIZE(filter),
556 		.filter = filter,
557 	};
558 	long ret;
559 
560 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
561 	ASSERT_EQ(0, ret);
562 
563 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
564 	EXPECT_EQ(-1, ret);
565 	EXPECT_EQ(EINVAL, errno);
566 }
567 
568 TEST(log_all)
569 {
570 	struct sock_filter filter[] = {
571 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_LOG),
572 	};
573 	struct sock_fprog prog = {
574 		.len = (unsigned short)ARRAY_SIZE(filter),
575 		.filter = filter,
576 	};
577 	long ret;
578 	pid_t parent = getppid();
579 
580 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
581 	ASSERT_EQ(0, ret);
582 
583 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
584 	ASSERT_EQ(0, ret);
585 
586 	/* getppid() should succeed and be logged (no check for logging) */
587 	EXPECT_EQ(parent, syscall(__NR_getppid));
588 }
589 
590 TEST_SIGNAL(unknown_ret_is_kill_inside, SIGSYS)
591 {
592 	struct sock_filter filter[] = {
593 		BPF_STMT(BPF_RET|BPF_K, 0x10000000U),
594 	};
595 	struct sock_fprog prog = {
596 		.len = (unsigned short)ARRAY_SIZE(filter),
597 		.filter = filter,
598 	};
599 	long ret;
600 
601 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
602 	ASSERT_EQ(0, ret);
603 
604 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
605 	ASSERT_EQ(0, ret);
606 	EXPECT_EQ(0, syscall(__NR_getpid)) {
607 		TH_LOG("getpid() shouldn't ever return");
608 	}
609 }
610 
611 /* return code >= 0x80000000 is unused. */
612 TEST_SIGNAL(unknown_ret_is_kill_above_allow, SIGSYS)
613 {
614 	struct sock_filter filter[] = {
615 		BPF_STMT(BPF_RET|BPF_K, 0x90000000U),
616 	};
617 	struct sock_fprog prog = {
618 		.len = (unsigned short)ARRAY_SIZE(filter),
619 		.filter = filter,
620 	};
621 	long ret;
622 
623 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
624 	ASSERT_EQ(0, ret);
625 
626 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
627 	ASSERT_EQ(0, ret);
628 	EXPECT_EQ(0, syscall(__NR_getpid)) {
629 		TH_LOG("getpid() shouldn't ever return");
630 	}
631 }
632 
633 TEST_SIGNAL(KILL_all, SIGSYS)
634 {
635 	struct sock_filter filter[] = {
636 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL),
637 	};
638 	struct sock_fprog prog = {
639 		.len = (unsigned short)ARRAY_SIZE(filter),
640 		.filter = filter,
641 	};
642 	long ret;
643 
644 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
645 	ASSERT_EQ(0, ret);
646 
647 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
648 	ASSERT_EQ(0, ret);
649 }
650 
651 TEST_SIGNAL(KILL_one, SIGSYS)
652 {
653 	struct sock_filter filter[] = {
654 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
655 			offsetof(struct seccomp_data, nr)),
656 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 0, 1),
657 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL),
658 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
659 	};
660 	struct sock_fprog prog = {
661 		.len = (unsigned short)ARRAY_SIZE(filter),
662 		.filter = filter,
663 	};
664 	long ret;
665 	pid_t parent = getppid();
666 
667 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
668 	ASSERT_EQ(0, ret);
669 
670 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
671 	ASSERT_EQ(0, ret);
672 
673 	EXPECT_EQ(parent, syscall(__NR_getppid));
674 	/* getpid() should never return. */
675 	EXPECT_EQ(0, syscall(__NR_getpid));
676 }
677 
678 TEST_SIGNAL(KILL_one_arg_one, SIGSYS)
679 {
680 	void *fatal_address;
681 	struct sock_filter filter[] = {
682 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
683 			offsetof(struct seccomp_data, nr)),
684 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_times, 1, 0),
685 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
686 		/* Only both with lower 32-bit for now. */
687 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS, syscall_arg(0)),
688 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K,
689 			(unsigned long)&fatal_address, 0, 1),
690 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL),
691 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
692 	};
693 	struct sock_fprog prog = {
694 		.len = (unsigned short)ARRAY_SIZE(filter),
695 		.filter = filter,
696 	};
697 	long ret;
698 	pid_t parent = getppid();
699 	struct tms timebuf;
700 	clock_t clock = times(&timebuf);
701 
702 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
703 	ASSERT_EQ(0, ret);
704 
705 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
706 	ASSERT_EQ(0, ret);
707 
708 	EXPECT_EQ(parent, syscall(__NR_getppid));
709 	EXPECT_LE(clock, syscall(__NR_times, &timebuf));
710 	/* times() should never return. */
711 	EXPECT_EQ(0, syscall(__NR_times, &fatal_address));
712 }
713 
714 TEST_SIGNAL(KILL_one_arg_six, SIGSYS)
715 {
716 #ifndef __NR_mmap2
717 	int sysno = __NR_mmap;
718 #else
719 	int sysno = __NR_mmap2;
720 #endif
721 	struct sock_filter filter[] = {
722 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
723 			offsetof(struct seccomp_data, nr)),
724 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, sysno, 1, 0),
725 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
726 		/* Only both with lower 32-bit for now. */
727 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS, syscall_arg(5)),
728 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 0x0C0FFEE, 0, 1),
729 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL),
730 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
731 	};
732 	struct sock_fprog prog = {
733 		.len = (unsigned short)ARRAY_SIZE(filter),
734 		.filter = filter,
735 	};
736 	long ret;
737 	pid_t parent = getppid();
738 	int fd;
739 	void *map1, *map2;
740 	int page_size = sysconf(_SC_PAGESIZE);
741 
742 	ASSERT_LT(0, page_size);
743 
744 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
745 	ASSERT_EQ(0, ret);
746 
747 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
748 	ASSERT_EQ(0, ret);
749 
750 	fd = open("/dev/zero", O_RDONLY);
751 	ASSERT_NE(-1, fd);
752 
753 	EXPECT_EQ(parent, syscall(__NR_getppid));
754 	map1 = (void *)syscall(sysno,
755 		NULL, page_size, PROT_READ, MAP_PRIVATE, fd, page_size);
756 	EXPECT_NE(MAP_FAILED, map1);
757 	/* mmap2() should never return. */
758 	map2 = (void *)syscall(sysno,
759 		 NULL, page_size, PROT_READ, MAP_PRIVATE, fd, 0x0C0FFEE);
760 	EXPECT_EQ(MAP_FAILED, map2);
761 
762 	/* The test failed, so clean up the resources. */
763 	munmap(map1, page_size);
764 	munmap(map2, page_size);
765 	close(fd);
766 }
767 
768 /* This is a thread task to die via seccomp filter violation. */
769 void *kill_thread(void *data)
770 {
771 	bool die = (bool)data;
772 
773 	if (die) {
774 		prctl(PR_GET_SECCOMP, 0, 0, 0, 0);
775 		return (void *)SIBLING_EXIT_FAILURE;
776 	}
777 
778 	return (void *)SIBLING_EXIT_UNKILLED;
779 }
780 
781 enum kill_t {
782 	KILL_THREAD,
783 	KILL_PROCESS,
784 	RET_UNKNOWN
785 };
786 
787 /* Prepare a thread that will kill itself or both of us. */
788 void kill_thread_or_group(struct __test_metadata *_metadata,
789 			  enum kill_t kill_how)
790 {
791 	pthread_t thread;
792 	void *status;
793 	/* Kill only when calling __NR_prctl. */
794 	struct sock_filter filter_thread[] = {
795 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
796 			offsetof(struct seccomp_data, nr)),
797 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_prctl, 0, 1),
798 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL_THREAD),
799 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
800 	};
801 	struct sock_fprog prog_thread = {
802 		.len = (unsigned short)ARRAY_SIZE(filter_thread),
803 		.filter = filter_thread,
804 	};
805 	int kill = kill_how == KILL_PROCESS ? SECCOMP_RET_KILL_PROCESS : 0xAAAAAAAAA;
806 	struct sock_filter filter_process[] = {
807 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
808 			offsetof(struct seccomp_data, nr)),
809 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_prctl, 0, 1),
810 		BPF_STMT(BPF_RET|BPF_K, kill),
811 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
812 	};
813 	struct sock_fprog prog_process = {
814 		.len = (unsigned short)ARRAY_SIZE(filter_process),
815 		.filter = filter_process,
816 	};
817 
818 	ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
819 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
820 	}
821 
822 	ASSERT_EQ(0, seccomp(SECCOMP_SET_MODE_FILTER, 0,
823 			     kill_how == KILL_THREAD ? &prog_thread
824 						     : &prog_process));
825 
826 	/*
827 	 * Add the KILL_THREAD rule again to make sure that the KILL_PROCESS
828 	 * flag cannot be downgraded by a new filter.
829 	 */
830 	if (kill_how == KILL_PROCESS)
831 		ASSERT_EQ(0, seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog_thread));
832 
833 	/* Start a thread that will exit immediately. */
834 	ASSERT_EQ(0, pthread_create(&thread, NULL, kill_thread, (void *)false));
835 	ASSERT_EQ(0, pthread_join(thread, &status));
836 	ASSERT_EQ(SIBLING_EXIT_UNKILLED, (unsigned long)status);
837 
838 	/* Start a thread that will die immediately. */
839 	ASSERT_EQ(0, pthread_create(&thread, NULL, kill_thread, (void *)true));
840 	ASSERT_EQ(0, pthread_join(thread, &status));
841 	ASSERT_NE(SIBLING_EXIT_FAILURE, (unsigned long)status);
842 
843 	/*
844 	 * If we get here, only the spawned thread died. Let the parent know
845 	 * the whole process didn't die (i.e. this thread, the spawner,
846 	 * stayed running).
847 	 */
848 	exit(42);
849 }
850 
851 TEST(KILL_thread)
852 {
853 	int status;
854 	pid_t child_pid;
855 
856 	child_pid = fork();
857 	ASSERT_LE(0, child_pid);
858 	if (child_pid == 0) {
859 		kill_thread_or_group(_metadata, KILL_THREAD);
860 		_exit(38);
861 	}
862 
863 	ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0));
864 
865 	/* If only the thread was killed, we'll see exit 42. */
866 	ASSERT_TRUE(WIFEXITED(status));
867 	ASSERT_EQ(42, WEXITSTATUS(status));
868 }
869 
870 TEST(KILL_process)
871 {
872 	int status;
873 	pid_t child_pid;
874 
875 	child_pid = fork();
876 	ASSERT_LE(0, child_pid);
877 	if (child_pid == 0) {
878 		kill_thread_or_group(_metadata, KILL_PROCESS);
879 		_exit(38);
880 	}
881 
882 	ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0));
883 
884 	/* If the entire process was killed, we'll see SIGSYS. */
885 	ASSERT_TRUE(WIFSIGNALED(status));
886 	ASSERT_EQ(SIGSYS, WTERMSIG(status));
887 }
888 
889 TEST(KILL_unknown)
890 {
891 	int status;
892 	pid_t child_pid;
893 
894 	child_pid = fork();
895 	ASSERT_LE(0, child_pid);
896 	if (child_pid == 0) {
897 		kill_thread_or_group(_metadata, RET_UNKNOWN);
898 		_exit(38);
899 	}
900 
901 	ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0));
902 
903 	/* If the entire process was killed, we'll see SIGSYS. */
904 	EXPECT_TRUE(WIFSIGNALED(status)) {
905 		TH_LOG("Unknown SECCOMP_RET is only killing the thread?");
906 	}
907 	ASSERT_EQ(SIGSYS, WTERMSIG(status));
908 }
909 
910 /* TODO(wad) add 64-bit versus 32-bit arg tests. */
911 TEST(arg_out_of_range)
912 {
913 	struct sock_filter filter[] = {
914 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS, syscall_arg(6)),
915 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
916 	};
917 	struct sock_fprog prog = {
918 		.len = (unsigned short)ARRAY_SIZE(filter),
919 		.filter = filter,
920 	};
921 	long ret;
922 
923 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
924 	ASSERT_EQ(0, ret);
925 
926 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog);
927 	EXPECT_EQ(-1, ret);
928 	EXPECT_EQ(EINVAL, errno);
929 }
930 
931 #define ERRNO_FILTER(name, errno)					\
932 	struct sock_filter _read_filter_##name[] = {			\
933 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,				\
934 			offsetof(struct seccomp_data, nr)),		\
935 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1),	\
936 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | errno),	\
937 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),		\
938 	};								\
939 	struct sock_fprog prog_##name = {				\
940 		.len = (unsigned short)ARRAY_SIZE(_read_filter_##name),	\
941 		.filter = _read_filter_##name,				\
942 	}
943 
944 /* Make sure basic errno values are correctly passed through a filter. */
945 TEST(ERRNO_valid)
946 {
947 	ERRNO_FILTER(valid, E2BIG);
948 	long ret;
949 	pid_t parent = getppid();
950 
951 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
952 	ASSERT_EQ(0, ret);
953 
954 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog_valid);
955 	ASSERT_EQ(0, ret);
956 
957 	EXPECT_EQ(parent, syscall(__NR_getppid));
958 	EXPECT_EQ(-1, read(0, NULL, 0));
959 	EXPECT_EQ(E2BIG, errno);
960 }
961 
962 /* Make sure an errno of zero is correctly handled by the arch code. */
963 TEST(ERRNO_zero)
964 {
965 	ERRNO_FILTER(zero, 0);
966 	long ret;
967 	pid_t parent = getppid();
968 
969 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
970 	ASSERT_EQ(0, ret);
971 
972 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog_zero);
973 	ASSERT_EQ(0, ret);
974 
975 	EXPECT_EQ(parent, syscall(__NR_getppid));
976 	/* "errno" of 0 is ok. */
977 	EXPECT_EQ(0, read(0, NULL, 0));
978 }
979 
980 /*
981  * The SECCOMP_RET_DATA mask is 16 bits wide, but errno is smaller.
982  * This tests that the errno value gets capped correctly, fixed by
983  * 580c57f10768 ("seccomp: cap SECCOMP_RET_ERRNO data to MAX_ERRNO").
984  */
985 TEST(ERRNO_capped)
986 {
987 	ERRNO_FILTER(capped, 4096);
988 	long ret;
989 	pid_t parent = getppid();
990 
991 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
992 	ASSERT_EQ(0, ret);
993 
994 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog_capped);
995 	ASSERT_EQ(0, ret);
996 
997 	EXPECT_EQ(parent, syscall(__NR_getppid));
998 	EXPECT_EQ(-1, read(0, NULL, 0));
999 	EXPECT_EQ(4095, errno);
1000 }
1001 
1002 /*
1003  * Filters are processed in reverse order: last applied is executed first.
1004  * Since only the SECCOMP_RET_ACTION mask is tested for return values, the
1005  * SECCOMP_RET_DATA mask results will follow the most recently applied
1006  * matching filter return (and not the lowest or highest value).
1007  */
1008 TEST(ERRNO_order)
1009 {
1010 	ERRNO_FILTER(first,  11);
1011 	ERRNO_FILTER(second, 13);
1012 	ERRNO_FILTER(third,  12);
1013 	long ret;
1014 	pid_t parent = getppid();
1015 
1016 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1017 	ASSERT_EQ(0, ret);
1018 
1019 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog_first);
1020 	ASSERT_EQ(0, ret);
1021 
1022 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog_second);
1023 	ASSERT_EQ(0, ret);
1024 
1025 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog_third);
1026 	ASSERT_EQ(0, ret);
1027 
1028 	EXPECT_EQ(parent, syscall(__NR_getppid));
1029 	EXPECT_EQ(-1, read(0, NULL, 0));
1030 	EXPECT_EQ(12, errno);
1031 }
1032 
1033 FIXTURE(TRAP) {
1034 	struct sock_fprog prog;
1035 };
1036 
1037 FIXTURE_SETUP(TRAP)
1038 {
1039 	struct sock_filter filter[] = {
1040 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
1041 			offsetof(struct seccomp_data, nr)),
1042 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 0, 1),
1043 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRAP),
1044 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
1045 	};
1046 
1047 	memset(&self->prog, 0, sizeof(self->prog));
1048 	self->prog.filter = malloc(sizeof(filter));
1049 	ASSERT_NE(NULL, self->prog.filter);
1050 	memcpy(self->prog.filter, filter, sizeof(filter));
1051 	self->prog.len = (unsigned short)ARRAY_SIZE(filter);
1052 }
1053 
1054 FIXTURE_TEARDOWN(TRAP)
1055 {
1056 	if (self->prog.filter)
1057 		free(self->prog.filter);
1058 }
1059 
1060 TEST_F_SIGNAL(TRAP, dfl, SIGSYS)
1061 {
1062 	long ret;
1063 
1064 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1065 	ASSERT_EQ(0, ret);
1066 
1067 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog);
1068 	ASSERT_EQ(0, ret);
1069 	syscall(__NR_getpid);
1070 }
1071 
1072 /* Ensure that SIGSYS overrides SIG_IGN */
1073 TEST_F_SIGNAL(TRAP, ign, SIGSYS)
1074 {
1075 	long ret;
1076 
1077 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1078 	ASSERT_EQ(0, ret);
1079 
1080 	signal(SIGSYS, SIG_IGN);
1081 
1082 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog);
1083 	ASSERT_EQ(0, ret);
1084 	syscall(__NR_getpid);
1085 }
1086 
1087 static siginfo_t TRAP_info;
1088 static volatile int TRAP_nr;
1089 static void TRAP_action(int nr, siginfo_t *info, void *void_context)
1090 {
1091 	memcpy(&TRAP_info, info, sizeof(TRAP_info));
1092 	TRAP_nr = nr;
1093 }
1094 
1095 TEST_F(TRAP, handler)
1096 {
1097 	int ret, test;
1098 	struct sigaction act;
1099 	sigset_t mask;
1100 
1101 	memset(&act, 0, sizeof(act));
1102 	sigemptyset(&mask);
1103 	sigaddset(&mask, SIGSYS);
1104 
1105 	act.sa_sigaction = &TRAP_action;
1106 	act.sa_flags = SA_SIGINFO;
1107 	ret = sigaction(SIGSYS, &act, NULL);
1108 	ASSERT_EQ(0, ret) {
1109 		TH_LOG("sigaction failed");
1110 	}
1111 	ret = sigprocmask(SIG_UNBLOCK, &mask, NULL);
1112 	ASSERT_EQ(0, ret) {
1113 		TH_LOG("sigprocmask failed");
1114 	}
1115 
1116 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1117 	ASSERT_EQ(0, ret);
1118 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog);
1119 	ASSERT_EQ(0, ret);
1120 	TRAP_nr = 0;
1121 	memset(&TRAP_info, 0, sizeof(TRAP_info));
1122 	/* Expect the registers to be rolled back. (nr = error) may vary
1123 	 * based on arch. */
1124 	ret = syscall(__NR_getpid);
1125 	/* Silence gcc warning about volatile. */
1126 	test = TRAP_nr;
1127 	EXPECT_EQ(SIGSYS, test);
1128 	struct local_sigsys {
1129 		void *_call_addr;	/* calling user insn */
1130 		int _syscall;		/* triggering system call number */
1131 		unsigned int _arch;	/* AUDIT_ARCH_* of syscall */
1132 	} *sigsys = (struct local_sigsys *)
1133 #ifdef si_syscall
1134 		&(TRAP_info.si_call_addr);
1135 #else
1136 		&TRAP_info.si_pid;
1137 #endif
1138 	EXPECT_EQ(__NR_getpid, sigsys->_syscall);
1139 	/* Make sure arch is non-zero. */
1140 	EXPECT_NE(0, sigsys->_arch);
1141 	EXPECT_NE(0, (unsigned long)sigsys->_call_addr);
1142 }
1143 
1144 FIXTURE(precedence) {
1145 	struct sock_fprog allow;
1146 	struct sock_fprog log;
1147 	struct sock_fprog trace;
1148 	struct sock_fprog error;
1149 	struct sock_fprog trap;
1150 	struct sock_fprog kill;
1151 };
1152 
1153 FIXTURE_SETUP(precedence)
1154 {
1155 	struct sock_filter allow_insns[] = {
1156 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
1157 	};
1158 	struct sock_filter log_insns[] = {
1159 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
1160 			offsetof(struct seccomp_data, nr)),
1161 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0),
1162 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
1163 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_LOG),
1164 	};
1165 	struct sock_filter trace_insns[] = {
1166 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
1167 			offsetof(struct seccomp_data, nr)),
1168 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0),
1169 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
1170 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE),
1171 	};
1172 	struct sock_filter error_insns[] = {
1173 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
1174 			offsetof(struct seccomp_data, nr)),
1175 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0),
1176 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
1177 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO),
1178 	};
1179 	struct sock_filter trap_insns[] = {
1180 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
1181 			offsetof(struct seccomp_data, nr)),
1182 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0),
1183 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
1184 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRAP),
1185 	};
1186 	struct sock_filter kill_insns[] = {
1187 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
1188 			offsetof(struct seccomp_data, nr)),
1189 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0),
1190 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
1191 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL),
1192 	};
1193 
1194 	memset(self, 0, sizeof(*self));
1195 #define FILTER_ALLOC(_x) \
1196 	self->_x.filter = malloc(sizeof(_x##_insns)); \
1197 	ASSERT_NE(NULL, self->_x.filter); \
1198 	memcpy(self->_x.filter, &_x##_insns, sizeof(_x##_insns)); \
1199 	self->_x.len = (unsigned short)ARRAY_SIZE(_x##_insns)
1200 	FILTER_ALLOC(allow);
1201 	FILTER_ALLOC(log);
1202 	FILTER_ALLOC(trace);
1203 	FILTER_ALLOC(error);
1204 	FILTER_ALLOC(trap);
1205 	FILTER_ALLOC(kill);
1206 }
1207 
1208 FIXTURE_TEARDOWN(precedence)
1209 {
1210 #define FILTER_FREE(_x) if (self->_x.filter) free(self->_x.filter)
1211 	FILTER_FREE(allow);
1212 	FILTER_FREE(log);
1213 	FILTER_FREE(trace);
1214 	FILTER_FREE(error);
1215 	FILTER_FREE(trap);
1216 	FILTER_FREE(kill);
1217 }
1218 
1219 TEST_F(precedence, allow_ok)
1220 {
1221 	pid_t parent, res = 0;
1222 	long ret;
1223 
1224 	parent = getppid();
1225 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1226 	ASSERT_EQ(0, ret);
1227 
1228 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow);
1229 	ASSERT_EQ(0, ret);
1230 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->log);
1231 	ASSERT_EQ(0, ret);
1232 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace);
1233 	ASSERT_EQ(0, ret);
1234 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error);
1235 	ASSERT_EQ(0, ret);
1236 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap);
1237 	ASSERT_EQ(0, ret);
1238 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->kill);
1239 	ASSERT_EQ(0, ret);
1240 	/* Should work just fine. */
1241 	res = syscall(__NR_getppid);
1242 	EXPECT_EQ(parent, res);
1243 }
1244 
1245 TEST_F_SIGNAL(precedence, kill_is_highest, SIGSYS)
1246 {
1247 	pid_t parent, res = 0;
1248 	long ret;
1249 
1250 	parent = getppid();
1251 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1252 	ASSERT_EQ(0, ret);
1253 
1254 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow);
1255 	ASSERT_EQ(0, ret);
1256 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->log);
1257 	ASSERT_EQ(0, ret);
1258 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace);
1259 	ASSERT_EQ(0, ret);
1260 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error);
1261 	ASSERT_EQ(0, ret);
1262 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap);
1263 	ASSERT_EQ(0, ret);
1264 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->kill);
1265 	ASSERT_EQ(0, ret);
1266 	/* Should work just fine. */
1267 	res = syscall(__NR_getppid);
1268 	EXPECT_EQ(parent, res);
1269 	/* getpid() should never return. */
1270 	res = syscall(__NR_getpid);
1271 	EXPECT_EQ(0, res);
1272 }
1273 
1274 TEST_F_SIGNAL(precedence, kill_is_highest_in_any_order, SIGSYS)
1275 {
1276 	pid_t parent;
1277 	long ret;
1278 
1279 	parent = getppid();
1280 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1281 	ASSERT_EQ(0, ret);
1282 
1283 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow);
1284 	ASSERT_EQ(0, ret);
1285 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->kill);
1286 	ASSERT_EQ(0, ret);
1287 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error);
1288 	ASSERT_EQ(0, ret);
1289 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->log);
1290 	ASSERT_EQ(0, ret);
1291 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace);
1292 	ASSERT_EQ(0, ret);
1293 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap);
1294 	ASSERT_EQ(0, ret);
1295 	/* Should work just fine. */
1296 	EXPECT_EQ(parent, syscall(__NR_getppid));
1297 	/* getpid() should never return. */
1298 	EXPECT_EQ(0, syscall(__NR_getpid));
1299 }
1300 
1301 TEST_F_SIGNAL(precedence, trap_is_second, SIGSYS)
1302 {
1303 	pid_t parent;
1304 	long ret;
1305 
1306 	parent = getppid();
1307 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1308 	ASSERT_EQ(0, ret);
1309 
1310 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow);
1311 	ASSERT_EQ(0, ret);
1312 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->log);
1313 	ASSERT_EQ(0, ret);
1314 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace);
1315 	ASSERT_EQ(0, ret);
1316 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error);
1317 	ASSERT_EQ(0, ret);
1318 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap);
1319 	ASSERT_EQ(0, ret);
1320 	/* Should work just fine. */
1321 	EXPECT_EQ(parent, syscall(__NR_getppid));
1322 	/* getpid() should never return. */
1323 	EXPECT_EQ(0, syscall(__NR_getpid));
1324 }
1325 
1326 TEST_F_SIGNAL(precedence, trap_is_second_in_any_order, SIGSYS)
1327 {
1328 	pid_t parent;
1329 	long ret;
1330 
1331 	parent = getppid();
1332 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1333 	ASSERT_EQ(0, ret);
1334 
1335 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow);
1336 	ASSERT_EQ(0, ret);
1337 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap);
1338 	ASSERT_EQ(0, ret);
1339 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->log);
1340 	ASSERT_EQ(0, ret);
1341 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace);
1342 	ASSERT_EQ(0, ret);
1343 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error);
1344 	ASSERT_EQ(0, ret);
1345 	/* Should work just fine. */
1346 	EXPECT_EQ(parent, syscall(__NR_getppid));
1347 	/* getpid() should never return. */
1348 	EXPECT_EQ(0, syscall(__NR_getpid));
1349 }
1350 
1351 TEST_F(precedence, errno_is_third)
1352 {
1353 	pid_t parent;
1354 	long ret;
1355 
1356 	parent = getppid();
1357 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1358 	ASSERT_EQ(0, ret);
1359 
1360 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow);
1361 	ASSERT_EQ(0, ret);
1362 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->log);
1363 	ASSERT_EQ(0, ret);
1364 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace);
1365 	ASSERT_EQ(0, ret);
1366 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error);
1367 	ASSERT_EQ(0, ret);
1368 	/* Should work just fine. */
1369 	EXPECT_EQ(parent, syscall(__NR_getppid));
1370 	EXPECT_EQ(0, syscall(__NR_getpid));
1371 }
1372 
1373 TEST_F(precedence, errno_is_third_in_any_order)
1374 {
1375 	pid_t parent;
1376 	long ret;
1377 
1378 	parent = getppid();
1379 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1380 	ASSERT_EQ(0, ret);
1381 
1382 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->log);
1383 	ASSERT_EQ(0, ret);
1384 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error);
1385 	ASSERT_EQ(0, ret);
1386 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace);
1387 	ASSERT_EQ(0, ret);
1388 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow);
1389 	ASSERT_EQ(0, ret);
1390 	/* Should work just fine. */
1391 	EXPECT_EQ(parent, syscall(__NR_getppid));
1392 	EXPECT_EQ(0, syscall(__NR_getpid));
1393 }
1394 
1395 TEST_F(precedence, trace_is_fourth)
1396 {
1397 	pid_t parent;
1398 	long ret;
1399 
1400 	parent = getppid();
1401 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1402 	ASSERT_EQ(0, ret);
1403 
1404 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow);
1405 	ASSERT_EQ(0, ret);
1406 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->log);
1407 	ASSERT_EQ(0, ret);
1408 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace);
1409 	ASSERT_EQ(0, ret);
1410 	/* Should work just fine. */
1411 	EXPECT_EQ(parent, syscall(__NR_getppid));
1412 	/* No ptracer */
1413 	EXPECT_EQ(-1, syscall(__NR_getpid));
1414 }
1415 
1416 TEST_F(precedence, trace_is_fourth_in_any_order)
1417 {
1418 	pid_t parent;
1419 	long ret;
1420 
1421 	parent = getppid();
1422 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1423 	ASSERT_EQ(0, ret);
1424 
1425 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace);
1426 	ASSERT_EQ(0, ret);
1427 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow);
1428 	ASSERT_EQ(0, ret);
1429 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->log);
1430 	ASSERT_EQ(0, ret);
1431 	/* Should work just fine. */
1432 	EXPECT_EQ(parent, syscall(__NR_getppid));
1433 	/* No ptracer */
1434 	EXPECT_EQ(-1, syscall(__NR_getpid));
1435 }
1436 
1437 TEST_F(precedence, log_is_fifth)
1438 {
1439 	pid_t mypid, parent;
1440 	long ret;
1441 
1442 	mypid = getpid();
1443 	parent = getppid();
1444 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1445 	ASSERT_EQ(0, ret);
1446 
1447 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow);
1448 	ASSERT_EQ(0, ret);
1449 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->log);
1450 	ASSERT_EQ(0, ret);
1451 	/* Should work just fine. */
1452 	EXPECT_EQ(parent, syscall(__NR_getppid));
1453 	/* Should also work just fine */
1454 	EXPECT_EQ(mypid, syscall(__NR_getpid));
1455 }
1456 
1457 TEST_F(precedence, log_is_fifth_in_any_order)
1458 {
1459 	pid_t mypid, parent;
1460 	long ret;
1461 
1462 	mypid = getpid();
1463 	parent = getppid();
1464 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1465 	ASSERT_EQ(0, ret);
1466 
1467 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->log);
1468 	ASSERT_EQ(0, ret);
1469 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow);
1470 	ASSERT_EQ(0, ret);
1471 	/* Should work just fine. */
1472 	EXPECT_EQ(parent, syscall(__NR_getppid));
1473 	/* Should also work just fine */
1474 	EXPECT_EQ(mypid, syscall(__NR_getpid));
1475 }
1476 
1477 #ifndef PTRACE_O_TRACESECCOMP
1478 #define PTRACE_O_TRACESECCOMP	0x00000080
1479 #endif
1480 
1481 /* Catch the Ubuntu 12.04 value error. */
1482 #if PTRACE_EVENT_SECCOMP != 7
1483 #undef PTRACE_EVENT_SECCOMP
1484 #endif
1485 
1486 #ifndef PTRACE_EVENT_SECCOMP
1487 #define PTRACE_EVENT_SECCOMP 7
1488 #endif
1489 
1490 #define IS_SECCOMP_EVENT(status) ((status >> 16) == PTRACE_EVENT_SECCOMP)
1491 bool tracer_running;
1492 void tracer_stop(int sig)
1493 {
1494 	tracer_running = false;
1495 }
1496 
1497 typedef void tracer_func_t(struct __test_metadata *_metadata,
1498 			   pid_t tracee, int status, void *args);
1499 
1500 void start_tracer(struct __test_metadata *_metadata, int fd, pid_t tracee,
1501 	    tracer_func_t tracer_func, void *args, bool ptrace_syscall)
1502 {
1503 	int ret = -1;
1504 	struct sigaction action = {
1505 		.sa_handler = tracer_stop,
1506 	};
1507 
1508 	/* Allow external shutdown. */
1509 	tracer_running = true;
1510 	ASSERT_EQ(0, sigaction(SIGUSR1, &action, NULL));
1511 
1512 	errno = 0;
1513 	while (ret == -1 && errno != EINVAL)
1514 		ret = ptrace(PTRACE_ATTACH, tracee, NULL, 0);
1515 	ASSERT_EQ(0, ret) {
1516 		kill(tracee, SIGKILL);
1517 	}
1518 	/* Wait for attach stop */
1519 	wait(NULL);
1520 
1521 	ret = ptrace(PTRACE_SETOPTIONS, tracee, NULL, ptrace_syscall ?
1522 						      PTRACE_O_TRACESYSGOOD :
1523 						      PTRACE_O_TRACESECCOMP);
1524 	ASSERT_EQ(0, ret) {
1525 		TH_LOG("Failed to set PTRACE_O_TRACESECCOMP");
1526 		kill(tracee, SIGKILL);
1527 	}
1528 	ret = ptrace(ptrace_syscall ? PTRACE_SYSCALL : PTRACE_CONT,
1529 		     tracee, NULL, 0);
1530 	ASSERT_EQ(0, ret);
1531 
1532 	/* Unblock the tracee */
1533 	ASSERT_EQ(1, write(fd, "A", 1));
1534 	ASSERT_EQ(0, close(fd));
1535 
1536 	/* Run until we're shut down. Must assert to stop execution. */
1537 	while (tracer_running) {
1538 		int status;
1539 
1540 		if (wait(&status) != tracee)
1541 			continue;
1542 		if (WIFSIGNALED(status) || WIFEXITED(status))
1543 			/* Child is dead. Time to go. */
1544 			return;
1545 
1546 		/* Check if this is a seccomp event. */
1547 		ASSERT_EQ(!ptrace_syscall, IS_SECCOMP_EVENT(status));
1548 
1549 		tracer_func(_metadata, tracee, status, args);
1550 
1551 		ret = ptrace(ptrace_syscall ? PTRACE_SYSCALL : PTRACE_CONT,
1552 			     tracee, NULL, 0);
1553 		ASSERT_EQ(0, ret);
1554 	}
1555 	/* Directly report the status of our test harness results. */
1556 	syscall(__NR_exit, _metadata->passed ? EXIT_SUCCESS : EXIT_FAILURE);
1557 }
1558 
1559 /* Common tracer setup/teardown functions. */
1560 void cont_handler(int num)
1561 { }
1562 pid_t setup_trace_fixture(struct __test_metadata *_metadata,
1563 			  tracer_func_t func, void *args, bool ptrace_syscall)
1564 {
1565 	char sync;
1566 	int pipefd[2];
1567 	pid_t tracer_pid;
1568 	pid_t tracee = getpid();
1569 
1570 	/* Setup a pipe for clean synchronization. */
1571 	ASSERT_EQ(0, pipe(pipefd));
1572 
1573 	/* Fork a child which we'll promote to tracer */
1574 	tracer_pid = fork();
1575 	ASSERT_LE(0, tracer_pid);
1576 	signal(SIGALRM, cont_handler);
1577 	if (tracer_pid == 0) {
1578 		close(pipefd[0]);
1579 		start_tracer(_metadata, pipefd[1], tracee, func, args,
1580 			     ptrace_syscall);
1581 		syscall(__NR_exit, 0);
1582 	}
1583 	close(pipefd[1]);
1584 	prctl(PR_SET_PTRACER, tracer_pid, 0, 0, 0);
1585 	read(pipefd[0], &sync, 1);
1586 	close(pipefd[0]);
1587 
1588 	return tracer_pid;
1589 }
1590 
1591 void teardown_trace_fixture(struct __test_metadata *_metadata,
1592 			    pid_t tracer)
1593 {
1594 	if (tracer) {
1595 		int status;
1596 		/*
1597 		 * Extract the exit code from the other process and
1598 		 * adopt it for ourselves in case its asserts failed.
1599 		 */
1600 		ASSERT_EQ(0, kill(tracer, SIGUSR1));
1601 		ASSERT_EQ(tracer, waitpid(tracer, &status, 0));
1602 		if (WEXITSTATUS(status))
1603 			_metadata->passed = 0;
1604 	}
1605 }
1606 
1607 /* "poke" tracer arguments and function. */
1608 struct tracer_args_poke_t {
1609 	unsigned long poke_addr;
1610 };
1611 
1612 void tracer_poke(struct __test_metadata *_metadata, pid_t tracee, int status,
1613 		 void *args)
1614 {
1615 	int ret;
1616 	unsigned long msg;
1617 	struct tracer_args_poke_t *info = (struct tracer_args_poke_t *)args;
1618 
1619 	ret = ptrace(PTRACE_GETEVENTMSG, tracee, NULL, &msg);
1620 	EXPECT_EQ(0, ret);
1621 	/* If this fails, don't try to recover. */
1622 	ASSERT_EQ(0x1001, msg) {
1623 		kill(tracee, SIGKILL);
1624 	}
1625 	/*
1626 	 * Poke in the message.
1627 	 * Registers are not touched to try to keep this relatively arch
1628 	 * agnostic.
1629 	 */
1630 	ret = ptrace(PTRACE_POKEDATA, tracee, info->poke_addr, 0x1001);
1631 	EXPECT_EQ(0, ret);
1632 }
1633 
1634 FIXTURE(TRACE_poke) {
1635 	struct sock_fprog prog;
1636 	pid_t tracer;
1637 	long poked;
1638 	struct tracer_args_poke_t tracer_args;
1639 };
1640 
1641 FIXTURE_SETUP(TRACE_poke)
1642 {
1643 	struct sock_filter filter[] = {
1644 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
1645 			offsetof(struct seccomp_data, nr)),
1646 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1),
1647 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1001),
1648 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
1649 	};
1650 
1651 	self->poked = 0;
1652 	memset(&self->prog, 0, sizeof(self->prog));
1653 	self->prog.filter = malloc(sizeof(filter));
1654 	ASSERT_NE(NULL, self->prog.filter);
1655 	memcpy(self->prog.filter, filter, sizeof(filter));
1656 	self->prog.len = (unsigned short)ARRAY_SIZE(filter);
1657 
1658 	/* Set up tracer args. */
1659 	self->tracer_args.poke_addr = (unsigned long)&self->poked;
1660 
1661 	/* Launch tracer. */
1662 	self->tracer = setup_trace_fixture(_metadata, tracer_poke,
1663 					   &self->tracer_args, false);
1664 }
1665 
1666 FIXTURE_TEARDOWN(TRACE_poke)
1667 {
1668 	teardown_trace_fixture(_metadata, self->tracer);
1669 	if (self->prog.filter)
1670 		free(self->prog.filter);
1671 }
1672 
1673 TEST_F(TRACE_poke, read_has_side_effects)
1674 {
1675 	ssize_t ret;
1676 
1677 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1678 	ASSERT_EQ(0, ret);
1679 
1680 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0);
1681 	ASSERT_EQ(0, ret);
1682 
1683 	EXPECT_EQ(0, self->poked);
1684 	ret = read(-1, NULL, 0);
1685 	EXPECT_EQ(-1, ret);
1686 	EXPECT_EQ(0x1001, self->poked);
1687 }
1688 
1689 TEST_F(TRACE_poke, getpid_runs_normally)
1690 {
1691 	long ret;
1692 
1693 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
1694 	ASSERT_EQ(0, ret);
1695 
1696 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0);
1697 	ASSERT_EQ(0, ret);
1698 
1699 	EXPECT_EQ(0, self->poked);
1700 	EXPECT_NE(0, syscall(__NR_getpid));
1701 	EXPECT_EQ(0, self->poked);
1702 }
1703 
1704 #if defined(__x86_64__)
1705 # define ARCH_REGS		struct user_regs_struct
1706 # define SYSCALL_NUM(_regs)	(_regs).orig_rax
1707 # define SYSCALL_RET(_regs)	(_regs).rax
1708 #elif defined(__i386__)
1709 # define ARCH_REGS		struct user_regs_struct
1710 # define SYSCALL_NUM(_regs)	(_regs).orig_eax
1711 # define SYSCALL_RET(_regs)	(_regs).eax
1712 #elif defined(__arm__)
1713 # define ARCH_REGS		struct pt_regs
1714 # define SYSCALL_NUM(_regs)	(_regs).ARM_r7
1715 # ifndef PTRACE_SET_SYSCALL
1716 #  define PTRACE_SET_SYSCALL   23
1717 # endif
1718 # define SYSCALL_NUM_SET(_regs, _nr)	\
1719 		EXPECT_EQ(0, ptrace(PTRACE_SET_SYSCALL, tracee, NULL, _nr))
1720 # define SYSCALL_RET(_regs)	(_regs).ARM_r0
1721 #elif defined(__aarch64__)
1722 # define ARCH_REGS		struct user_pt_regs
1723 # define SYSCALL_NUM(_regs)	(_regs).regs[8]
1724 # ifndef NT_ARM_SYSTEM_CALL
1725 #  define NT_ARM_SYSTEM_CALL 0x404
1726 # endif
1727 # define SYSCALL_NUM_SET(_regs, _nr)				\
1728 	do {							\
1729 		struct iovec __v;				\
1730 		typeof(_nr) __nr = (_nr);			\
1731 		__v.iov_base = &__nr;				\
1732 		__v.iov_len = sizeof(__nr);			\
1733 		EXPECT_EQ(0, ptrace(PTRACE_SETREGSET, tracee,	\
1734 				    NT_ARM_SYSTEM_CALL, &__v));	\
1735 	} while (0)
1736 # define SYSCALL_RET(_regs)	(_regs).regs[0]
1737 #elif defined(__riscv) && __riscv_xlen == 64
1738 # define ARCH_REGS		struct user_regs_struct
1739 # define SYSCALL_NUM(_regs)	(_regs).a7
1740 # define SYSCALL_RET(_regs)	(_regs).a0
1741 #elif defined(__csky__)
1742 # define ARCH_REGS		struct pt_regs
1743 #  if defined(__CSKYABIV2__)
1744 #   define SYSCALL_NUM(_regs)	(_regs).regs[3]
1745 #  else
1746 #   define SYSCALL_NUM(_regs)	(_regs).regs[9]
1747 #  endif
1748 # define SYSCALL_RET(_regs)	(_regs).a0
1749 #elif defined(__hppa__)
1750 # define ARCH_REGS		struct user_regs_struct
1751 # define SYSCALL_NUM(_regs)	(_regs).gr[20]
1752 # define SYSCALL_RET(_regs)	(_regs).gr[28]
1753 #elif defined(__powerpc__)
1754 # define ARCH_REGS		struct pt_regs
1755 # define SYSCALL_NUM(_regs)	(_regs).gpr[0]
1756 # define SYSCALL_RET(_regs)	(_regs).gpr[3]
1757 # define SYSCALL_RET_SET(_regs, _val)				\
1758 	do {							\
1759 		typeof(_val) _result = (_val);			\
1760 		if ((_regs.trap & 0xfff0) == 0x3000) {		\
1761 			/*					\
1762 			 * scv 0 system call uses -ve result	\
1763 			 * for error, so no need to adjust.	\
1764 			 */					\
1765 			SYSCALL_RET(_regs) = _result;		\
1766 		} else {					\
1767 			/*					\
1768 			 * A syscall error is signaled by the	\
1769 			 * CR0 SO bit and the code is stored as	\
1770 			 * a positive value.			\
1771 			 */					\
1772 			if (_result < 0) {			\
1773 				SYSCALL_RET(_regs) = -_result;	\
1774 				(_regs).ccr |= 0x10000000;	\
1775 			} else {				\
1776 				SYSCALL_RET(_regs) = _result;	\
1777 				(_regs).ccr &= ~0x10000000;	\
1778 			}					\
1779 		}						\
1780 	} while (0)
1781 # define SYSCALL_RET_SET_ON_PTRACE_EXIT
1782 #elif defined(__s390__)
1783 # define ARCH_REGS		s390_regs
1784 # define SYSCALL_NUM(_regs)	(_regs).gprs[2]
1785 # define SYSCALL_RET_SET(_regs, _val)			\
1786 		TH_LOG("Can't modify syscall return on this architecture")
1787 #elif defined(__mips__)
1788 # include <asm/unistd_nr_n32.h>
1789 # include <asm/unistd_nr_n64.h>
1790 # include <asm/unistd_nr_o32.h>
1791 # define ARCH_REGS		struct pt_regs
1792 # define SYSCALL_NUM(_regs)				\
1793 	({						\
1794 		typeof((_regs).regs[2]) _nr;		\
1795 		if ((_regs).regs[2] == __NR_O32_Linux)	\
1796 			_nr = (_regs).regs[4];		\
1797 		else					\
1798 			_nr = (_regs).regs[2];		\
1799 		_nr;					\
1800 	})
1801 # define SYSCALL_NUM_SET(_regs, _nr)			\
1802 	do {						\
1803 		if ((_regs).regs[2] == __NR_O32_Linux)	\
1804 			(_regs).regs[4] = _nr;		\
1805 		else					\
1806 			(_regs).regs[2] = _nr;		\
1807 	} while (0)
1808 # define SYSCALL_RET_SET(_regs, _val)			\
1809 		TH_LOG("Can't modify syscall return on this architecture")
1810 #elif defined(__xtensa__)
1811 # define ARCH_REGS		struct user_pt_regs
1812 # define SYSCALL_NUM(_regs)	(_regs).syscall
1813 /*
1814  * On xtensa syscall return value is in the register
1815  * a2 of the current window which is not fixed.
1816  */
1817 #define SYSCALL_RET(_regs)	(_regs).a[(_regs).windowbase * 4 + 2]
1818 #elif defined(__sh__)
1819 # define ARCH_REGS		struct pt_regs
1820 # define SYSCALL_NUM(_regs)	(_regs).regs[3]
1821 # define SYSCALL_RET(_regs)	(_regs).regs[0]
1822 #else
1823 # error "Do not know how to find your architecture's registers and syscalls"
1824 #endif
1825 
1826 /*
1827  * Most architectures can change the syscall by just updating the
1828  * associated register. This is the default if not defined above.
1829  */
1830 #ifndef SYSCALL_NUM_SET
1831 # define SYSCALL_NUM_SET(_regs, _nr)		\
1832 	do {					\
1833 		SYSCALL_NUM(_regs) = (_nr);	\
1834 	} while (0)
1835 #endif
1836 /*
1837  * Most architectures can change the syscall return value by just
1838  * writing to the SYSCALL_RET register. This is the default if not
1839  * defined above. If an architecture cannot set the return value
1840  * (for example when the syscall and return value register is
1841  * shared), report it with TH_LOG() in an arch-specific definition
1842  * of SYSCALL_RET_SET() above, and leave SYSCALL_RET undefined.
1843  */
1844 #if !defined(SYSCALL_RET) && !defined(SYSCALL_RET_SET)
1845 # error "One of SYSCALL_RET or SYSCALL_RET_SET is needed for this arch"
1846 #endif
1847 #ifndef SYSCALL_RET_SET
1848 # define SYSCALL_RET_SET(_regs, _val)		\
1849 	do {					\
1850 		SYSCALL_RET(_regs) = (_val);	\
1851 	} while (0)
1852 #endif
1853 
1854 /* When the syscall return can't be changed, stub out the tests for it. */
1855 #ifndef SYSCALL_RET
1856 # define EXPECT_SYSCALL_RETURN(val, action)	EXPECT_EQ(-1, action)
1857 #else
1858 # define EXPECT_SYSCALL_RETURN(val, action)		\
1859 	do {						\
1860 		errno = 0;				\
1861 		if (val < 0) {				\
1862 			EXPECT_EQ(-1, action);		\
1863 			EXPECT_EQ(-(val), errno);	\
1864 		} else {				\
1865 			EXPECT_EQ(val, action);		\
1866 		}					\
1867 	} while (0)
1868 #endif
1869 
1870 /*
1871  * Some architectures (e.g. powerpc) can only set syscall
1872  * return values on syscall exit during ptrace.
1873  */
1874 const bool ptrace_entry_set_syscall_nr = true;
1875 const bool ptrace_entry_set_syscall_ret =
1876 #ifndef SYSCALL_RET_SET_ON_PTRACE_EXIT
1877 	true;
1878 #else
1879 	false;
1880 #endif
1881 
1882 /*
1883  * Use PTRACE_GETREGS and PTRACE_SETREGS when available. This is useful for
1884  * architectures without HAVE_ARCH_TRACEHOOK (e.g. User-mode Linux).
1885  */
1886 #if defined(__x86_64__) || defined(__i386__) || defined(__mips__)
1887 # define ARCH_GETREGS(_regs)	ptrace(PTRACE_GETREGS, tracee, 0, &(_regs))
1888 # define ARCH_SETREGS(_regs)	ptrace(PTRACE_SETREGS, tracee, 0, &(_regs))
1889 #else
1890 # define ARCH_GETREGS(_regs)	({					\
1891 		struct iovec __v;					\
1892 		__v.iov_base = &(_regs);				\
1893 		__v.iov_len = sizeof(_regs);				\
1894 		ptrace(PTRACE_GETREGSET, tracee, NT_PRSTATUS, &__v);	\
1895 	})
1896 # define ARCH_SETREGS(_regs)	({					\
1897 		struct iovec __v;					\
1898 		__v.iov_base = &(_regs);				\
1899 		__v.iov_len = sizeof(_regs);				\
1900 		ptrace(PTRACE_SETREGSET, tracee, NT_PRSTATUS, &__v);	\
1901 	})
1902 #endif
1903 
1904 /* Architecture-specific syscall fetching routine. */
1905 int get_syscall(struct __test_metadata *_metadata, pid_t tracee)
1906 {
1907 	ARCH_REGS regs;
1908 
1909 	EXPECT_EQ(0, ARCH_GETREGS(regs)) {
1910 		return -1;
1911 	}
1912 
1913 	return SYSCALL_NUM(regs);
1914 }
1915 
1916 /* Architecture-specific syscall changing routine. */
1917 void __change_syscall(struct __test_metadata *_metadata,
1918 		    pid_t tracee, long *syscall, long *ret)
1919 {
1920 	ARCH_REGS orig, regs;
1921 
1922 	/* Do not get/set registers if we have nothing to do. */
1923 	if (!syscall && !ret)
1924 		return;
1925 
1926 	EXPECT_EQ(0, ARCH_GETREGS(regs)) {
1927 		return;
1928 	}
1929 	orig = regs;
1930 
1931 	if (syscall)
1932 		SYSCALL_NUM_SET(regs, *syscall);
1933 
1934 	if (ret)
1935 		SYSCALL_RET_SET(regs, *ret);
1936 
1937 	/* Flush any register changes made. */
1938 	if (memcmp(&orig, &regs, sizeof(orig)) != 0)
1939 		EXPECT_EQ(0, ARCH_SETREGS(regs));
1940 }
1941 
1942 /* Change only syscall number. */
1943 void change_syscall_nr(struct __test_metadata *_metadata,
1944 		       pid_t tracee, long syscall)
1945 {
1946 	__change_syscall(_metadata, tracee, &syscall, NULL);
1947 }
1948 
1949 /* Change syscall return value (and set syscall number to -1). */
1950 void change_syscall_ret(struct __test_metadata *_metadata,
1951 			pid_t tracee, long ret)
1952 {
1953 	long syscall = -1;
1954 
1955 	__change_syscall(_metadata, tracee, &syscall, &ret);
1956 }
1957 
1958 void tracer_seccomp(struct __test_metadata *_metadata, pid_t tracee,
1959 		    int status, void *args)
1960 {
1961 	int ret;
1962 	unsigned long msg;
1963 
1964 	/* Make sure we got the right message. */
1965 	ret = ptrace(PTRACE_GETEVENTMSG, tracee, NULL, &msg);
1966 	EXPECT_EQ(0, ret);
1967 
1968 	/* Validate and take action on expected syscalls. */
1969 	switch (msg) {
1970 	case 0x1002:
1971 		/* change getpid to getppid. */
1972 		EXPECT_EQ(__NR_getpid, get_syscall(_metadata, tracee));
1973 		change_syscall_nr(_metadata, tracee, __NR_getppid);
1974 		break;
1975 	case 0x1003:
1976 		/* skip gettid with valid return code. */
1977 		EXPECT_EQ(__NR_gettid, get_syscall(_metadata, tracee));
1978 		change_syscall_ret(_metadata, tracee, 45000);
1979 		break;
1980 	case 0x1004:
1981 		/* skip openat with error. */
1982 		EXPECT_EQ(__NR_openat, get_syscall(_metadata, tracee));
1983 		change_syscall_ret(_metadata, tracee, -ESRCH);
1984 		break;
1985 	case 0x1005:
1986 		/* do nothing (allow getppid) */
1987 		EXPECT_EQ(__NR_getppid, get_syscall(_metadata, tracee));
1988 		break;
1989 	default:
1990 		EXPECT_EQ(0, msg) {
1991 			TH_LOG("Unknown PTRACE_GETEVENTMSG: 0x%lx", msg);
1992 			kill(tracee, SIGKILL);
1993 		}
1994 	}
1995 
1996 }
1997 
1998 FIXTURE(TRACE_syscall) {
1999 	struct sock_fprog prog;
2000 	pid_t tracer, mytid, mypid, parent;
2001 	long syscall_nr;
2002 };
2003 
2004 void tracer_ptrace(struct __test_metadata *_metadata, pid_t tracee,
2005 		   int status, void *args)
2006 {
2007 	int ret;
2008 	unsigned long msg;
2009 	static bool entry;
2010 	long syscall_nr_val, syscall_ret_val;
2011 	long *syscall_nr = NULL, *syscall_ret = NULL;
2012 	FIXTURE_DATA(TRACE_syscall) *self = args;
2013 
2014 	/*
2015 	 * The traditional way to tell PTRACE_SYSCALL entry/exit
2016 	 * is by counting.
2017 	 */
2018 	entry = !entry;
2019 
2020 	/* Make sure we got an appropriate message. */
2021 	ret = ptrace(PTRACE_GETEVENTMSG, tracee, NULL, &msg);
2022 	EXPECT_EQ(0, ret);
2023 	EXPECT_EQ(entry ? PTRACE_EVENTMSG_SYSCALL_ENTRY
2024 			: PTRACE_EVENTMSG_SYSCALL_EXIT, msg);
2025 
2026 	/*
2027 	 * Some architectures only support setting return values during
2028 	 * syscall exit under ptrace, and on exit the syscall number may
2029 	 * no longer be available. Therefore, save the initial sycall
2030 	 * number here, so it can be examined during both entry and exit
2031 	 * phases.
2032 	 */
2033 	if (entry)
2034 		self->syscall_nr = get_syscall(_metadata, tracee);
2035 
2036 	/*
2037 	 * Depending on the architecture's syscall setting abilities, we
2038 	 * pick which things to set during this phase (entry or exit).
2039 	 */
2040 	if (entry == ptrace_entry_set_syscall_nr)
2041 		syscall_nr = &syscall_nr_val;
2042 	if (entry == ptrace_entry_set_syscall_ret)
2043 		syscall_ret = &syscall_ret_val;
2044 
2045 	/* Now handle the actual rewriting cases. */
2046 	switch (self->syscall_nr) {
2047 	case __NR_getpid:
2048 		syscall_nr_val = __NR_getppid;
2049 		/* Never change syscall return for this case. */
2050 		syscall_ret = NULL;
2051 		break;
2052 	case __NR_gettid:
2053 		syscall_nr_val = -1;
2054 		syscall_ret_val = 45000;
2055 		break;
2056 	case __NR_openat:
2057 		syscall_nr_val = -1;
2058 		syscall_ret_val = -ESRCH;
2059 		break;
2060 	default:
2061 		/* Unhandled, do nothing. */
2062 		return;
2063 	}
2064 
2065 	__change_syscall(_metadata, tracee, syscall_nr, syscall_ret);
2066 }
2067 
2068 FIXTURE_VARIANT(TRACE_syscall) {
2069 	/*
2070 	 * All of the SECCOMP_RET_TRACE behaviors can be tested with either
2071 	 * SECCOMP_RET_TRACE+PTRACE_CONT or plain ptrace()+PTRACE_SYSCALL.
2072 	 * This indicates if we should use SECCOMP_RET_TRACE (false), or
2073 	 * ptrace (true).
2074 	 */
2075 	bool use_ptrace;
2076 };
2077 
2078 FIXTURE_VARIANT_ADD(TRACE_syscall, ptrace) {
2079 	.use_ptrace = true,
2080 };
2081 
2082 FIXTURE_VARIANT_ADD(TRACE_syscall, seccomp) {
2083 	.use_ptrace = false,
2084 };
2085 
2086 FIXTURE_SETUP(TRACE_syscall)
2087 {
2088 	struct sock_filter filter[] = {
2089 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
2090 			offsetof(struct seccomp_data, nr)),
2091 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 0, 1),
2092 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1002),
2093 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_gettid, 0, 1),
2094 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1003),
2095 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_openat, 0, 1),
2096 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1004),
2097 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getppid, 0, 1),
2098 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1005),
2099 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
2100 	};
2101 	struct sock_fprog prog = {
2102 		.len = (unsigned short)ARRAY_SIZE(filter),
2103 		.filter = filter,
2104 	};
2105 	long ret;
2106 
2107 	/* Prepare some testable syscall results. */
2108 	self->mytid = syscall(__NR_gettid);
2109 	ASSERT_GT(self->mytid, 0);
2110 	ASSERT_NE(self->mytid, 1) {
2111 		TH_LOG("Running this test as init is not supported. :)");
2112 	}
2113 
2114 	self->mypid = getpid();
2115 	ASSERT_GT(self->mypid, 0);
2116 	ASSERT_EQ(self->mytid, self->mypid);
2117 
2118 	self->parent = getppid();
2119 	ASSERT_GT(self->parent, 0);
2120 	ASSERT_NE(self->parent, self->mypid);
2121 
2122 	/* Launch tracer. */
2123 	self->tracer = setup_trace_fixture(_metadata,
2124 					   variant->use_ptrace ? tracer_ptrace
2125 							       : tracer_seccomp,
2126 					   self, variant->use_ptrace);
2127 
2128 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
2129 	ASSERT_EQ(0, ret);
2130 
2131 	if (variant->use_ptrace)
2132 		return;
2133 
2134 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0);
2135 	ASSERT_EQ(0, ret);
2136 }
2137 
2138 FIXTURE_TEARDOWN(TRACE_syscall)
2139 {
2140 	teardown_trace_fixture(_metadata, self->tracer);
2141 }
2142 
2143 TEST(negative_ENOSYS)
2144 {
2145 	/*
2146 	 * There should be no difference between an "internal" skip
2147 	 * and userspace asking for syscall "-1".
2148 	 */
2149 	errno = 0;
2150 	EXPECT_EQ(-1, syscall(-1));
2151 	EXPECT_EQ(errno, ENOSYS);
2152 	/* And no difference for "still not valid but not -1". */
2153 	errno = 0;
2154 	EXPECT_EQ(-1, syscall(-101));
2155 	EXPECT_EQ(errno, ENOSYS);
2156 }
2157 
2158 TEST_F(TRACE_syscall, negative_ENOSYS)
2159 {
2160 	negative_ENOSYS(_metadata);
2161 }
2162 
2163 TEST_F(TRACE_syscall, syscall_allowed)
2164 {
2165 	/* getppid works as expected (no changes). */
2166 	EXPECT_EQ(self->parent, syscall(__NR_getppid));
2167 	EXPECT_NE(self->mypid, syscall(__NR_getppid));
2168 }
2169 
2170 TEST_F(TRACE_syscall, syscall_redirected)
2171 {
2172 	/* getpid has been redirected to getppid as expected. */
2173 	EXPECT_EQ(self->parent, syscall(__NR_getpid));
2174 	EXPECT_NE(self->mypid, syscall(__NR_getpid));
2175 }
2176 
2177 TEST_F(TRACE_syscall, syscall_errno)
2178 {
2179 	/* Tracer should skip the open syscall, resulting in ESRCH. */
2180 	EXPECT_SYSCALL_RETURN(-ESRCH, syscall(__NR_openat));
2181 }
2182 
2183 TEST_F(TRACE_syscall, syscall_faked)
2184 {
2185 	/* Tracer skips the gettid syscall and store altered return value. */
2186 	EXPECT_SYSCALL_RETURN(45000, syscall(__NR_gettid));
2187 }
2188 
2189 TEST_F(TRACE_syscall, skip_after)
2190 {
2191 	struct sock_filter filter[] = {
2192 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
2193 			offsetof(struct seccomp_data, nr)),
2194 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getppid, 0, 1),
2195 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | EPERM),
2196 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
2197 	};
2198 	struct sock_fprog prog = {
2199 		.len = (unsigned short)ARRAY_SIZE(filter),
2200 		.filter = filter,
2201 	};
2202 	long ret;
2203 
2204 	/* Install additional "errno on getppid" filter. */
2205 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0);
2206 	ASSERT_EQ(0, ret);
2207 
2208 	/* Tracer will redirect getpid to getppid, and we should see EPERM. */
2209 	errno = 0;
2210 	EXPECT_EQ(-1, syscall(__NR_getpid));
2211 	EXPECT_EQ(EPERM, errno);
2212 }
2213 
2214 TEST_F_SIGNAL(TRACE_syscall, kill_after, SIGSYS)
2215 {
2216 	struct sock_filter filter[] = {
2217 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
2218 			offsetof(struct seccomp_data, nr)),
2219 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getppid, 0, 1),
2220 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL),
2221 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
2222 	};
2223 	struct sock_fprog prog = {
2224 		.len = (unsigned short)ARRAY_SIZE(filter),
2225 		.filter = filter,
2226 	};
2227 	long ret;
2228 
2229 	/* Install additional "death on getppid" filter. */
2230 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0);
2231 	ASSERT_EQ(0, ret);
2232 
2233 	/* Tracer will redirect getpid to getppid, and we should die. */
2234 	EXPECT_NE(self->mypid, syscall(__NR_getpid));
2235 }
2236 
2237 TEST(seccomp_syscall)
2238 {
2239 	struct sock_filter filter[] = {
2240 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
2241 	};
2242 	struct sock_fprog prog = {
2243 		.len = (unsigned short)ARRAY_SIZE(filter),
2244 		.filter = filter,
2245 	};
2246 	long ret;
2247 
2248 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
2249 	ASSERT_EQ(0, ret) {
2250 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
2251 	}
2252 
2253 	/* Reject insane operation. */
2254 	ret = seccomp(-1, 0, &prog);
2255 	ASSERT_NE(ENOSYS, errno) {
2256 		TH_LOG("Kernel does not support seccomp syscall!");
2257 	}
2258 	EXPECT_EQ(EINVAL, errno) {
2259 		TH_LOG("Did not reject crazy op value!");
2260 	}
2261 
2262 	/* Reject strict with flags or pointer. */
2263 	ret = seccomp(SECCOMP_SET_MODE_STRICT, -1, NULL);
2264 	EXPECT_EQ(EINVAL, errno) {
2265 		TH_LOG("Did not reject mode strict with flags!");
2266 	}
2267 	ret = seccomp(SECCOMP_SET_MODE_STRICT, 0, &prog);
2268 	EXPECT_EQ(EINVAL, errno) {
2269 		TH_LOG("Did not reject mode strict with uargs!");
2270 	}
2271 
2272 	/* Reject insane args for filter. */
2273 	ret = seccomp(SECCOMP_SET_MODE_FILTER, -1, &prog);
2274 	EXPECT_EQ(EINVAL, errno) {
2275 		TH_LOG("Did not reject crazy filter flags!");
2276 	}
2277 	ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, NULL);
2278 	EXPECT_EQ(EFAULT, errno) {
2279 		TH_LOG("Did not reject NULL filter!");
2280 	}
2281 
2282 	ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog);
2283 	EXPECT_EQ(0, errno) {
2284 		TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER: %s",
2285 			strerror(errno));
2286 	}
2287 }
2288 
2289 TEST(seccomp_syscall_mode_lock)
2290 {
2291 	struct sock_filter filter[] = {
2292 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
2293 	};
2294 	struct sock_fprog prog = {
2295 		.len = (unsigned short)ARRAY_SIZE(filter),
2296 		.filter = filter,
2297 	};
2298 	long ret;
2299 
2300 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, NULL, 0, 0);
2301 	ASSERT_EQ(0, ret) {
2302 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
2303 	}
2304 
2305 	ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog);
2306 	ASSERT_NE(ENOSYS, errno) {
2307 		TH_LOG("Kernel does not support seccomp syscall!");
2308 	}
2309 	EXPECT_EQ(0, ret) {
2310 		TH_LOG("Could not install filter!");
2311 	}
2312 
2313 	/* Make sure neither entry point will switch to strict. */
2314 	ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, 0, 0, 0);
2315 	EXPECT_EQ(EINVAL, errno) {
2316 		TH_LOG("Switched to mode strict!");
2317 	}
2318 
2319 	ret = seccomp(SECCOMP_SET_MODE_STRICT, 0, NULL);
2320 	EXPECT_EQ(EINVAL, errno) {
2321 		TH_LOG("Switched to mode strict!");
2322 	}
2323 }
2324 
2325 /*
2326  * Test detection of known and unknown filter flags. Userspace needs to be able
2327  * to check if a filter flag is supported by the current kernel and a good way
2328  * of doing that is by attempting to enter filter mode, with the flag bit in
2329  * question set, and a NULL pointer for the _args_ parameter. EFAULT indicates
2330  * that the flag is valid and EINVAL indicates that the flag is invalid.
2331  */
2332 TEST(detect_seccomp_filter_flags)
2333 {
2334 	unsigned int flags[] = { SECCOMP_FILTER_FLAG_TSYNC,
2335 				 SECCOMP_FILTER_FLAG_LOG,
2336 				 SECCOMP_FILTER_FLAG_SPEC_ALLOW,
2337 				 SECCOMP_FILTER_FLAG_NEW_LISTENER,
2338 				 SECCOMP_FILTER_FLAG_TSYNC_ESRCH };
2339 	unsigned int exclusive[] = {
2340 				SECCOMP_FILTER_FLAG_TSYNC,
2341 				SECCOMP_FILTER_FLAG_NEW_LISTENER };
2342 	unsigned int flag, all_flags, exclusive_mask;
2343 	int i;
2344 	long ret;
2345 
2346 	/* Test detection of individual known-good filter flags */
2347 	for (i = 0, all_flags = 0; i < ARRAY_SIZE(flags); i++) {
2348 		int bits = 0;
2349 
2350 		flag = flags[i];
2351 		/* Make sure the flag is a single bit! */
2352 		while (flag) {
2353 			if (flag & 0x1)
2354 				bits ++;
2355 			flag >>= 1;
2356 		}
2357 		ASSERT_EQ(1, bits);
2358 		flag = flags[i];
2359 
2360 		ret = seccomp(SECCOMP_SET_MODE_FILTER, flag, NULL);
2361 		ASSERT_NE(ENOSYS, errno) {
2362 			TH_LOG("Kernel does not support seccomp syscall!");
2363 		}
2364 		EXPECT_EQ(-1, ret);
2365 		EXPECT_EQ(EFAULT, errno) {
2366 			TH_LOG("Failed to detect that a known-good filter flag (0x%X) is supported!",
2367 			       flag);
2368 		}
2369 
2370 		all_flags |= flag;
2371 	}
2372 
2373 	/*
2374 	 * Test detection of all known-good filter flags combined. But
2375 	 * for the exclusive flags we need to mask them out and try them
2376 	 * individually for the "all flags" testing.
2377 	 */
2378 	exclusive_mask = 0;
2379 	for (i = 0; i < ARRAY_SIZE(exclusive); i++)
2380 		exclusive_mask |= exclusive[i];
2381 	for (i = 0; i < ARRAY_SIZE(exclusive); i++) {
2382 		flag = all_flags & ~exclusive_mask;
2383 		flag |= exclusive[i];
2384 
2385 		ret = seccomp(SECCOMP_SET_MODE_FILTER, flag, NULL);
2386 		EXPECT_EQ(-1, ret);
2387 		EXPECT_EQ(EFAULT, errno) {
2388 			TH_LOG("Failed to detect that all known-good filter flags (0x%X) are supported!",
2389 			       flag);
2390 		}
2391 	}
2392 
2393 	/* Test detection of an unknown filter flags, without exclusives. */
2394 	flag = -1;
2395 	flag &= ~exclusive_mask;
2396 	ret = seccomp(SECCOMP_SET_MODE_FILTER, flag, NULL);
2397 	EXPECT_EQ(-1, ret);
2398 	EXPECT_EQ(EINVAL, errno) {
2399 		TH_LOG("Failed to detect that an unknown filter flag (0x%X) is unsupported!",
2400 		       flag);
2401 	}
2402 
2403 	/*
2404 	 * Test detection of an unknown filter flag that may simply need to be
2405 	 * added to this test
2406 	 */
2407 	flag = flags[ARRAY_SIZE(flags) - 1] << 1;
2408 	ret = seccomp(SECCOMP_SET_MODE_FILTER, flag, NULL);
2409 	EXPECT_EQ(-1, ret);
2410 	EXPECT_EQ(EINVAL, errno) {
2411 		TH_LOG("Failed to detect that an unknown filter flag (0x%X) is unsupported! Does a new flag need to be added to this test?",
2412 		       flag);
2413 	}
2414 }
2415 
2416 TEST(TSYNC_first)
2417 {
2418 	struct sock_filter filter[] = {
2419 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
2420 	};
2421 	struct sock_fprog prog = {
2422 		.len = (unsigned short)ARRAY_SIZE(filter),
2423 		.filter = filter,
2424 	};
2425 	long ret;
2426 
2427 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, NULL, 0, 0);
2428 	ASSERT_EQ(0, ret) {
2429 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
2430 	}
2431 
2432 	ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC,
2433 		      &prog);
2434 	ASSERT_NE(ENOSYS, errno) {
2435 		TH_LOG("Kernel does not support seccomp syscall!");
2436 	}
2437 	EXPECT_EQ(0, ret) {
2438 		TH_LOG("Could not install initial filter with TSYNC!");
2439 	}
2440 }
2441 
2442 #define TSYNC_SIBLINGS 2
2443 struct tsync_sibling {
2444 	pthread_t tid;
2445 	pid_t system_tid;
2446 	sem_t *started;
2447 	pthread_cond_t *cond;
2448 	pthread_mutex_t *mutex;
2449 	int diverge;
2450 	int num_waits;
2451 	struct sock_fprog *prog;
2452 	struct __test_metadata *metadata;
2453 };
2454 
2455 /*
2456  * To avoid joining joined threads (which is not allowed by Bionic),
2457  * make sure we both successfully join and clear the tid to skip a
2458  * later join attempt during fixture teardown. Any remaining threads
2459  * will be directly killed during teardown.
2460  */
2461 #define PTHREAD_JOIN(tid, status)					\
2462 	do {								\
2463 		int _rc = pthread_join(tid, status);			\
2464 		if (_rc) {						\
2465 			TH_LOG("pthread_join of tid %u failed: %d\n",	\
2466 				(unsigned int)tid, _rc);		\
2467 		} else {						\
2468 			tid = 0;					\
2469 		}							\
2470 	} while (0)
2471 
2472 FIXTURE(TSYNC) {
2473 	struct sock_fprog root_prog, apply_prog;
2474 	struct tsync_sibling sibling[TSYNC_SIBLINGS];
2475 	sem_t started;
2476 	pthread_cond_t cond;
2477 	pthread_mutex_t mutex;
2478 	int sibling_count;
2479 };
2480 
2481 FIXTURE_SETUP(TSYNC)
2482 {
2483 	struct sock_filter root_filter[] = {
2484 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
2485 	};
2486 	struct sock_filter apply_filter[] = {
2487 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
2488 			offsetof(struct seccomp_data, nr)),
2489 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1),
2490 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL),
2491 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
2492 	};
2493 
2494 	memset(&self->root_prog, 0, sizeof(self->root_prog));
2495 	memset(&self->apply_prog, 0, sizeof(self->apply_prog));
2496 	memset(&self->sibling, 0, sizeof(self->sibling));
2497 	self->root_prog.filter = malloc(sizeof(root_filter));
2498 	ASSERT_NE(NULL, self->root_prog.filter);
2499 	memcpy(self->root_prog.filter, &root_filter, sizeof(root_filter));
2500 	self->root_prog.len = (unsigned short)ARRAY_SIZE(root_filter);
2501 
2502 	self->apply_prog.filter = malloc(sizeof(apply_filter));
2503 	ASSERT_NE(NULL, self->apply_prog.filter);
2504 	memcpy(self->apply_prog.filter, &apply_filter, sizeof(apply_filter));
2505 	self->apply_prog.len = (unsigned short)ARRAY_SIZE(apply_filter);
2506 
2507 	self->sibling_count = 0;
2508 	pthread_mutex_init(&self->mutex, NULL);
2509 	pthread_cond_init(&self->cond, NULL);
2510 	sem_init(&self->started, 0, 0);
2511 	self->sibling[0].tid = 0;
2512 	self->sibling[0].cond = &self->cond;
2513 	self->sibling[0].started = &self->started;
2514 	self->sibling[0].mutex = &self->mutex;
2515 	self->sibling[0].diverge = 0;
2516 	self->sibling[0].num_waits = 1;
2517 	self->sibling[0].prog = &self->root_prog;
2518 	self->sibling[0].metadata = _metadata;
2519 	self->sibling[1].tid = 0;
2520 	self->sibling[1].cond = &self->cond;
2521 	self->sibling[1].started = &self->started;
2522 	self->sibling[1].mutex = &self->mutex;
2523 	self->sibling[1].diverge = 0;
2524 	self->sibling[1].prog = &self->root_prog;
2525 	self->sibling[1].num_waits = 1;
2526 	self->sibling[1].metadata = _metadata;
2527 }
2528 
2529 FIXTURE_TEARDOWN(TSYNC)
2530 {
2531 	int sib = 0;
2532 
2533 	if (self->root_prog.filter)
2534 		free(self->root_prog.filter);
2535 	if (self->apply_prog.filter)
2536 		free(self->apply_prog.filter);
2537 
2538 	for ( ; sib < self->sibling_count; ++sib) {
2539 		struct tsync_sibling *s = &self->sibling[sib];
2540 
2541 		if (!s->tid)
2542 			continue;
2543 		/*
2544 		 * If a thread is still running, it may be stuck, so hit
2545 		 * it over the head really hard.
2546 		 */
2547 		pthread_kill(s->tid, 9);
2548 	}
2549 	pthread_mutex_destroy(&self->mutex);
2550 	pthread_cond_destroy(&self->cond);
2551 	sem_destroy(&self->started);
2552 }
2553 
2554 void *tsync_sibling(void *data)
2555 {
2556 	long ret = 0;
2557 	struct tsync_sibling *me = data;
2558 
2559 	me->system_tid = syscall(__NR_gettid);
2560 
2561 	pthread_mutex_lock(me->mutex);
2562 	if (me->diverge) {
2563 		/* Just re-apply the root prog to fork the tree */
2564 		ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
2565 				me->prog, 0, 0);
2566 	}
2567 	sem_post(me->started);
2568 	/* Return outside of started so parent notices failures. */
2569 	if (ret) {
2570 		pthread_mutex_unlock(me->mutex);
2571 		return (void *)SIBLING_EXIT_FAILURE;
2572 	}
2573 	do {
2574 		pthread_cond_wait(me->cond, me->mutex);
2575 		me->num_waits = me->num_waits - 1;
2576 	} while (me->num_waits);
2577 	pthread_mutex_unlock(me->mutex);
2578 
2579 	ret = prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0);
2580 	if (!ret)
2581 		return (void *)SIBLING_EXIT_NEWPRIVS;
2582 	read(0, NULL, 0);
2583 	return (void *)SIBLING_EXIT_UNKILLED;
2584 }
2585 
2586 void tsync_start_sibling(struct tsync_sibling *sibling)
2587 {
2588 	pthread_create(&sibling->tid, NULL, tsync_sibling, (void *)sibling);
2589 }
2590 
2591 TEST_F(TSYNC, siblings_fail_prctl)
2592 {
2593 	long ret;
2594 	void *status;
2595 	struct sock_filter filter[] = {
2596 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
2597 			offsetof(struct seccomp_data, nr)),
2598 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_prctl, 0, 1),
2599 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | EINVAL),
2600 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
2601 	};
2602 	struct sock_fprog prog = {
2603 		.len = (unsigned short)ARRAY_SIZE(filter),
2604 		.filter = filter,
2605 	};
2606 
2607 	ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
2608 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
2609 	}
2610 
2611 	/* Check prctl failure detection by requesting sib 0 diverge. */
2612 	ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog);
2613 	ASSERT_NE(ENOSYS, errno) {
2614 		TH_LOG("Kernel does not support seccomp syscall!");
2615 	}
2616 	ASSERT_EQ(0, ret) {
2617 		TH_LOG("setting filter failed");
2618 	}
2619 
2620 	self->sibling[0].diverge = 1;
2621 	tsync_start_sibling(&self->sibling[0]);
2622 	tsync_start_sibling(&self->sibling[1]);
2623 
2624 	while (self->sibling_count < TSYNC_SIBLINGS) {
2625 		sem_wait(&self->started);
2626 		self->sibling_count++;
2627 	}
2628 
2629 	/* Signal the threads to clean up*/
2630 	pthread_mutex_lock(&self->mutex);
2631 	ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) {
2632 		TH_LOG("cond broadcast non-zero");
2633 	}
2634 	pthread_mutex_unlock(&self->mutex);
2635 
2636 	/* Ensure diverging sibling failed to call prctl. */
2637 	PTHREAD_JOIN(self->sibling[0].tid, &status);
2638 	EXPECT_EQ(SIBLING_EXIT_FAILURE, (long)status);
2639 	PTHREAD_JOIN(self->sibling[1].tid, &status);
2640 	EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status);
2641 }
2642 
2643 TEST_F(TSYNC, two_siblings_with_ancestor)
2644 {
2645 	long ret;
2646 	void *status;
2647 
2648 	ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
2649 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
2650 	}
2651 
2652 	ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &self->root_prog);
2653 	ASSERT_NE(ENOSYS, errno) {
2654 		TH_LOG("Kernel does not support seccomp syscall!");
2655 	}
2656 	ASSERT_EQ(0, ret) {
2657 		TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER!");
2658 	}
2659 	tsync_start_sibling(&self->sibling[0]);
2660 	tsync_start_sibling(&self->sibling[1]);
2661 
2662 	while (self->sibling_count < TSYNC_SIBLINGS) {
2663 		sem_wait(&self->started);
2664 		self->sibling_count++;
2665 	}
2666 
2667 	ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC,
2668 		      &self->apply_prog);
2669 	ASSERT_EQ(0, ret) {
2670 		TH_LOG("Could install filter on all threads!");
2671 	}
2672 	/* Tell the siblings to test the policy */
2673 	pthread_mutex_lock(&self->mutex);
2674 	ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) {
2675 		TH_LOG("cond broadcast non-zero");
2676 	}
2677 	pthread_mutex_unlock(&self->mutex);
2678 	/* Ensure they are both killed and don't exit cleanly. */
2679 	PTHREAD_JOIN(self->sibling[0].tid, &status);
2680 	EXPECT_EQ(0x0, (long)status);
2681 	PTHREAD_JOIN(self->sibling[1].tid, &status);
2682 	EXPECT_EQ(0x0, (long)status);
2683 }
2684 
2685 TEST_F(TSYNC, two_sibling_want_nnp)
2686 {
2687 	void *status;
2688 
2689 	/* start siblings before any prctl() operations */
2690 	tsync_start_sibling(&self->sibling[0]);
2691 	tsync_start_sibling(&self->sibling[1]);
2692 	while (self->sibling_count < TSYNC_SIBLINGS) {
2693 		sem_wait(&self->started);
2694 		self->sibling_count++;
2695 	}
2696 
2697 	/* Tell the siblings to test no policy */
2698 	pthread_mutex_lock(&self->mutex);
2699 	ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) {
2700 		TH_LOG("cond broadcast non-zero");
2701 	}
2702 	pthread_mutex_unlock(&self->mutex);
2703 
2704 	/* Ensure they are both upset about lacking nnp. */
2705 	PTHREAD_JOIN(self->sibling[0].tid, &status);
2706 	EXPECT_EQ(SIBLING_EXIT_NEWPRIVS, (long)status);
2707 	PTHREAD_JOIN(self->sibling[1].tid, &status);
2708 	EXPECT_EQ(SIBLING_EXIT_NEWPRIVS, (long)status);
2709 }
2710 
2711 TEST_F(TSYNC, two_siblings_with_no_filter)
2712 {
2713 	long ret;
2714 	void *status;
2715 
2716 	/* start siblings before any prctl() operations */
2717 	tsync_start_sibling(&self->sibling[0]);
2718 	tsync_start_sibling(&self->sibling[1]);
2719 	while (self->sibling_count < TSYNC_SIBLINGS) {
2720 		sem_wait(&self->started);
2721 		self->sibling_count++;
2722 	}
2723 
2724 	ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
2725 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
2726 	}
2727 
2728 	ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC,
2729 		      &self->apply_prog);
2730 	ASSERT_NE(ENOSYS, errno) {
2731 		TH_LOG("Kernel does not support seccomp syscall!");
2732 	}
2733 	ASSERT_EQ(0, ret) {
2734 		TH_LOG("Could install filter on all threads!");
2735 	}
2736 
2737 	/* Tell the siblings to test the policy */
2738 	pthread_mutex_lock(&self->mutex);
2739 	ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) {
2740 		TH_LOG("cond broadcast non-zero");
2741 	}
2742 	pthread_mutex_unlock(&self->mutex);
2743 
2744 	/* Ensure they are both killed and don't exit cleanly. */
2745 	PTHREAD_JOIN(self->sibling[0].tid, &status);
2746 	EXPECT_EQ(0x0, (long)status);
2747 	PTHREAD_JOIN(self->sibling[1].tid, &status);
2748 	EXPECT_EQ(0x0, (long)status);
2749 }
2750 
2751 TEST_F(TSYNC, two_siblings_with_one_divergence)
2752 {
2753 	long ret;
2754 	void *status;
2755 
2756 	ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
2757 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
2758 	}
2759 
2760 	ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &self->root_prog);
2761 	ASSERT_NE(ENOSYS, errno) {
2762 		TH_LOG("Kernel does not support seccomp syscall!");
2763 	}
2764 	ASSERT_EQ(0, ret) {
2765 		TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER!");
2766 	}
2767 	self->sibling[0].diverge = 1;
2768 	tsync_start_sibling(&self->sibling[0]);
2769 	tsync_start_sibling(&self->sibling[1]);
2770 
2771 	while (self->sibling_count < TSYNC_SIBLINGS) {
2772 		sem_wait(&self->started);
2773 		self->sibling_count++;
2774 	}
2775 
2776 	ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC,
2777 		      &self->apply_prog);
2778 	ASSERT_EQ(self->sibling[0].system_tid, ret) {
2779 		TH_LOG("Did not fail on diverged sibling.");
2780 	}
2781 
2782 	/* Wake the threads */
2783 	pthread_mutex_lock(&self->mutex);
2784 	ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) {
2785 		TH_LOG("cond broadcast non-zero");
2786 	}
2787 	pthread_mutex_unlock(&self->mutex);
2788 
2789 	/* Ensure they are both unkilled. */
2790 	PTHREAD_JOIN(self->sibling[0].tid, &status);
2791 	EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status);
2792 	PTHREAD_JOIN(self->sibling[1].tid, &status);
2793 	EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status);
2794 }
2795 
2796 TEST_F(TSYNC, two_siblings_with_one_divergence_no_tid_in_err)
2797 {
2798 	long ret, flags;
2799 	void *status;
2800 
2801 	ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
2802 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
2803 	}
2804 
2805 	ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &self->root_prog);
2806 	ASSERT_NE(ENOSYS, errno) {
2807 		TH_LOG("Kernel does not support seccomp syscall!");
2808 	}
2809 	ASSERT_EQ(0, ret) {
2810 		TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER!");
2811 	}
2812 	self->sibling[0].diverge = 1;
2813 	tsync_start_sibling(&self->sibling[0]);
2814 	tsync_start_sibling(&self->sibling[1]);
2815 
2816 	while (self->sibling_count < TSYNC_SIBLINGS) {
2817 		sem_wait(&self->started);
2818 		self->sibling_count++;
2819 	}
2820 
2821 	flags = SECCOMP_FILTER_FLAG_TSYNC | \
2822 		SECCOMP_FILTER_FLAG_TSYNC_ESRCH;
2823 	ret = seccomp(SECCOMP_SET_MODE_FILTER, flags, &self->apply_prog);
2824 	ASSERT_EQ(ESRCH, errno) {
2825 		TH_LOG("Did not return ESRCH for diverged sibling.");
2826 	}
2827 	ASSERT_EQ(-1, ret) {
2828 		TH_LOG("Did not fail on diverged sibling.");
2829 	}
2830 
2831 	/* Wake the threads */
2832 	pthread_mutex_lock(&self->mutex);
2833 	ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) {
2834 		TH_LOG("cond broadcast non-zero");
2835 	}
2836 	pthread_mutex_unlock(&self->mutex);
2837 
2838 	/* Ensure they are both unkilled. */
2839 	PTHREAD_JOIN(self->sibling[0].tid, &status);
2840 	EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status);
2841 	PTHREAD_JOIN(self->sibling[1].tid, &status);
2842 	EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status);
2843 }
2844 
2845 TEST_F(TSYNC, two_siblings_not_under_filter)
2846 {
2847 	long ret, sib;
2848 	void *status;
2849 	struct timespec delay = { .tv_nsec = 100000000 };
2850 
2851 	ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
2852 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
2853 	}
2854 
2855 	/*
2856 	 * Sibling 0 will have its own seccomp policy
2857 	 * and Sibling 1 will not be under seccomp at
2858 	 * all. Sibling 1 will enter seccomp and 0
2859 	 * will cause failure.
2860 	 */
2861 	self->sibling[0].diverge = 1;
2862 	tsync_start_sibling(&self->sibling[0]);
2863 	tsync_start_sibling(&self->sibling[1]);
2864 
2865 	while (self->sibling_count < TSYNC_SIBLINGS) {
2866 		sem_wait(&self->started);
2867 		self->sibling_count++;
2868 	}
2869 
2870 	ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &self->root_prog);
2871 	ASSERT_NE(ENOSYS, errno) {
2872 		TH_LOG("Kernel does not support seccomp syscall!");
2873 	}
2874 	ASSERT_EQ(0, ret) {
2875 		TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER!");
2876 	}
2877 
2878 	ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC,
2879 		      &self->apply_prog);
2880 	ASSERT_EQ(ret, self->sibling[0].system_tid) {
2881 		TH_LOG("Did not fail on diverged sibling.");
2882 	}
2883 	sib = 1;
2884 	if (ret == self->sibling[0].system_tid)
2885 		sib = 0;
2886 
2887 	pthread_mutex_lock(&self->mutex);
2888 
2889 	/* Increment the other siblings num_waits so we can clean up
2890 	 * the one we just saw.
2891 	 */
2892 	self->sibling[!sib].num_waits += 1;
2893 
2894 	/* Signal the thread to clean up*/
2895 	ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) {
2896 		TH_LOG("cond broadcast non-zero");
2897 	}
2898 	pthread_mutex_unlock(&self->mutex);
2899 	PTHREAD_JOIN(self->sibling[sib].tid, &status);
2900 	EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status);
2901 	/* Poll for actual task death. pthread_join doesn't guarantee it. */
2902 	while (!kill(self->sibling[sib].system_tid, 0))
2903 		nanosleep(&delay, NULL);
2904 	/* Switch to the remaining sibling */
2905 	sib = !sib;
2906 
2907 	ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC,
2908 		      &self->apply_prog);
2909 	ASSERT_EQ(0, ret) {
2910 		TH_LOG("Expected the remaining sibling to sync");
2911 	};
2912 
2913 	pthread_mutex_lock(&self->mutex);
2914 
2915 	/* If remaining sibling didn't have a chance to wake up during
2916 	 * the first broadcast, manually reduce the num_waits now.
2917 	 */
2918 	if (self->sibling[sib].num_waits > 1)
2919 		self->sibling[sib].num_waits = 1;
2920 	ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) {
2921 		TH_LOG("cond broadcast non-zero");
2922 	}
2923 	pthread_mutex_unlock(&self->mutex);
2924 	PTHREAD_JOIN(self->sibling[sib].tid, &status);
2925 	EXPECT_EQ(0, (long)status);
2926 	/* Poll for actual task death. pthread_join doesn't guarantee it. */
2927 	while (!kill(self->sibling[sib].system_tid, 0))
2928 		nanosleep(&delay, NULL);
2929 
2930 	ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC,
2931 		      &self->apply_prog);
2932 	ASSERT_EQ(0, ret);  /* just us chickens */
2933 }
2934 
2935 /* Make sure restarted syscalls are seen directly as "restart_syscall". */
2936 TEST(syscall_restart)
2937 {
2938 	long ret;
2939 	unsigned long msg;
2940 	pid_t child_pid;
2941 	int pipefd[2];
2942 	int status;
2943 	siginfo_t info = { };
2944 	struct sock_filter filter[] = {
2945 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
2946 			 offsetof(struct seccomp_data, nr)),
2947 
2948 #ifdef __NR_sigreturn
2949 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_sigreturn, 7, 0),
2950 #endif
2951 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 6, 0),
2952 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_exit, 5, 0),
2953 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_rt_sigreturn, 4, 0),
2954 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_nanosleep, 5, 0),
2955 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_clock_nanosleep, 4, 0),
2956 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_restart_syscall, 4, 0),
2957 
2958 		/* Allow __NR_write for easy logging. */
2959 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_write, 0, 1),
2960 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
2961 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL),
2962 		/* The nanosleep jump target. */
2963 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE|0x100),
2964 		/* The restart_syscall jump target. */
2965 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE|0x200),
2966 	};
2967 	struct sock_fprog prog = {
2968 		.len = (unsigned short)ARRAY_SIZE(filter),
2969 		.filter = filter,
2970 	};
2971 #if defined(__arm__)
2972 	struct utsname utsbuf;
2973 #endif
2974 
2975 	ASSERT_EQ(0, pipe(pipefd));
2976 
2977 	child_pid = fork();
2978 	ASSERT_LE(0, child_pid);
2979 	if (child_pid == 0) {
2980 		/* Child uses EXPECT not ASSERT to deliver status correctly. */
2981 		char buf = ' ';
2982 		struct timespec timeout = { };
2983 
2984 		/* Attach parent as tracer and stop. */
2985 		EXPECT_EQ(0, ptrace(PTRACE_TRACEME));
2986 		EXPECT_EQ(0, raise(SIGSTOP));
2987 
2988 		EXPECT_EQ(0, close(pipefd[1]));
2989 
2990 		EXPECT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
2991 			TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
2992 		}
2993 
2994 		ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0);
2995 		EXPECT_EQ(0, ret) {
2996 			TH_LOG("Failed to install filter!");
2997 		}
2998 
2999 		EXPECT_EQ(1, read(pipefd[0], &buf, 1)) {
3000 			TH_LOG("Failed to read() sync from parent");
3001 		}
3002 		EXPECT_EQ('.', buf) {
3003 			TH_LOG("Failed to get sync data from read()");
3004 		}
3005 
3006 		/* Start nanosleep to be interrupted. */
3007 		timeout.tv_sec = 1;
3008 		errno = 0;
3009 		EXPECT_EQ(0, nanosleep(&timeout, NULL)) {
3010 			TH_LOG("Call to nanosleep() failed (errno %d)", errno);
3011 		}
3012 
3013 		/* Read final sync from parent. */
3014 		EXPECT_EQ(1, read(pipefd[0], &buf, 1)) {
3015 			TH_LOG("Failed final read() from parent");
3016 		}
3017 		EXPECT_EQ('!', buf) {
3018 			TH_LOG("Failed to get final data from read()");
3019 		}
3020 
3021 		/* Directly report the status of our test harness results. */
3022 		syscall(__NR_exit, _metadata->passed ? EXIT_SUCCESS
3023 						     : EXIT_FAILURE);
3024 	}
3025 	EXPECT_EQ(0, close(pipefd[0]));
3026 
3027 	/* Attach to child, setup options, and release. */
3028 	ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0));
3029 	ASSERT_EQ(true, WIFSTOPPED(status));
3030 	ASSERT_EQ(0, ptrace(PTRACE_SETOPTIONS, child_pid, NULL,
3031 			    PTRACE_O_TRACESECCOMP));
3032 	ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0));
3033 	ASSERT_EQ(1, write(pipefd[1], ".", 1));
3034 
3035 	/* Wait for nanosleep() to start. */
3036 	ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0));
3037 	ASSERT_EQ(true, WIFSTOPPED(status));
3038 	ASSERT_EQ(SIGTRAP, WSTOPSIG(status));
3039 	ASSERT_EQ(PTRACE_EVENT_SECCOMP, (status >> 16));
3040 	ASSERT_EQ(0, ptrace(PTRACE_GETEVENTMSG, child_pid, NULL, &msg));
3041 	ASSERT_EQ(0x100, msg);
3042 	ret = get_syscall(_metadata, child_pid);
3043 	EXPECT_TRUE(ret == __NR_nanosleep || ret == __NR_clock_nanosleep);
3044 
3045 	/* Might as well check siginfo for sanity while we're here. */
3046 	ASSERT_EQ(0, ptrace(PTRACE_GETSIGINFO, child_pid, NULL, &info));
3047 	ASSERT_EQ(SIGTRAP, info.si_signo);
3048 	ASSERT_EQ(SIGTRAP | (PTRACE_EVENT_SECCOMP << 8), info.si_code);
3049 	EXPECT_EQ(0, info.si_errno);
3050 	EXPECT_EQ(getuid(), info.si_uid);
3051 	/* Verify signal delivery came from child (seccomp-triggered). */
3052 	EXPECT_EQ(child_pid, info.si_pid);
3053 
3054 	/* Interrupt nanosleep with SIGSTOP (which we'll need to handle). */
3055 	ASSERT_EQ(0, kill(child_pid, SIGSTOP));
3056 	ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0));
3057 	ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0));
3058 	ASSERT_EQ(true, WIFSTOPPED(status));
3059 	ASSERT_EQ(SIGSTOP, WSTOPSIG(status));
3060 	ASSERT_EQ(0, ptrace(PTRACE_GETSIGINFO, child_pid, NULL, &info));
3061 	/*
3062 	 * There is no siginfo on SIGSTOP any more, so we can't verify
3063 	 * signal delivery came from parent now (getpid() == info.si_pid).
3064 	 * https://lkml.kernel.org/r/CAGXu5jJaZAOzP1qFz66tYrtbuywqb+UN2SOA1VLHpCCOiYvYeg@mail.gmail.com
3065 	 * At least verify the SIGSTOP via PTRACE_GETSIGINFO.
3066 	 */
3067 	EXPECT_EQ(SIGSTOP, info.si_signo);
3068 
3069 	/* Restart nanosleep with SIGCONT, which triggers restart_syscall. */
3070 	ASSERT_EQ(0, kill(child_pid, SIGCONT));
3071 	ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0));
3072 	ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0));
3073 	ASSERT_EQ(true, WIFSTOPPED(status));
3074 	ASSERT_EQ(SIGCONT, WSTOPSIG(status));
3075 	ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0));
3076 
3077 	/* Wait for restart_syscall() to start. */
3078 	ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0));
3079 	ASSERT_EQ(true, WIFSTOPPED(status));
3080 	ASSERT_EQ(SIGTRAP, WSTOPSIG(status));
3081 	ASSERT_EQ(PTRACE_EVENT_SECCOMP, (status >> 16));
3082 	ASSERT_EQ(0, ptrace(PTRACE_GETEVENTMSG, child_pid, NULL, &msg));
3083 
3084 	ASSERT_EQ(0x200, msg);
3085 	ret = get_syscall(_metadata, child_pid);
3086 #if defined(__arm__)
3087 	/*
3088 	 * FIXME:
3089 	 * - native ARM registers do NOT expose true syscall.
3090 	 * - compat ARM registers on ARM64 DO expose true syscall.
3091 	 */
3092 	ASSERT_EQ(0, uname(&utsbuf));
3093 	if (strncmp(utsbuf.machine, "arm", 3) == 0) {
3094 		EXPECT_EQ(__NR_nanosleep, ret);
3095 	} else
3096 #endif
3097 	{
3098 		EXPECT_EQ(__NR_restart_syscall, ret);
3099 	}
3100 
3101 	/* Write again to end test. */
3102 	ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0));
3103 	ASSERT_EQ(1, write(pipefd[1], "!", 1));
3104 	EXPECT_EQ(0, close(pipefd[1]));
3105 
3106 	ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0));
3107 	if (WIFSIGNALED(status) || WEXITSTATUS(status))
3108 		_metadata->passed = 0;
3109 }
3110 
3111 TEST_SIGNAL(filter_flag_log, SIGSYS)
3112 {
3113 	struct sock_filter allow_filter[] = {
3114 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
3115 	};
3116 	struct sock_filter kill_filter[] = {
3117 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
3118 			offsetof(struct seccomp_data, nr)),
3119 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 0, 1),
3120 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL),
3121 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
3122 	};
3123 	struct sock_fprog allow_prog = {
3124 		.len = (unsigned short)ARRAY_SIZE(allow_filter),
3125 		.filter = allow_filter,
3126 	};
3127 	struct sock_fprog kill_prog = {
3128 		.len = (unsigned short)ARRAY_SIZE(kill_filter),
3129 		.filter = kill_filter,
3130 	};
3131 	long ret;
3132 	pid_t parent = getppid();
3133 
3134 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3135 	ASSERT_EQ(0, ret);
3136 
3137 	/* Verify that the FILTER_FLAG_LOG flag isn't accepted in strict mode */
3138 	ret = seccomp(SECCOMP_SET_MODE_STRICT, SECCOMP_FILTER_FLAG_LOG,
3139 		      &allow_prog);
3140 	ASSERT_NE(ENOSYS, errno) {
3141 		TH_LOG("Kernel does not support seccomp syscall!");
3142 	}
3143 	EXPECT_NE(0, ret) {
3144 		TH_LOG("Kernel accepted FILTER_FLAG_LOG flag in strict mode!");
3145 	}
3146 	EXPECT_EQ(EINVAL, errno) {
3147 		TH_LOG("Kernel returned unexpected errno for FILTER_FLAG_LOG flag in strict mode!");
3148 	}
3149 
3150 	/* Verify that a simple, permissive filter can be added with no flags */
3151 	ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &allow_prog);
3152 	EXPECT_EQ(0, ret);
3153 
3154 	/* See if the same filter can be added with the FILTER_FLAG_LOG flag */
3155 	ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_LOG,
3156 		      &allow_prog);
3157 	ASSERT_NE(EINVAL, errno) {
3158 		TH_LOG("Kernel does not support the FILTER_FLAG_LOG flag!");
3159 	}
3160 	EXPECT_EQ(0, ret);
3161 
3162 	/* Ensure that the kill filter works with the FILTER_FLAG_LOG flag */
3163 	ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_LOG,
3164 		      &kill_prog);
3165 	EXPECT_EQ(0, ret);
3166 
3167 	EXPECT_EQ(parent, syscall(__NR_getppid));
3168 	/* getpid() should never return. */
3169 	EXPECT_EQ(0, syscall(__NR_getpid));
3170 }
3171 
3172 TEST(get_action_avail)
3173 {
3174 	__u32 actions[] = { SECCOMP_RET_KILL_THREAD, SECCOMP_RET_TRAP,
3175 			    SECCOMP_RET_ERRNO, SECCOMP_RET_TRACE,
3176 			    SECCOMP_RET_LOG,   SECCOMP_RET_ALLOW };
3177 	__u32 unknown_action = 0x10000000U;
3178 	int i;
3179 	long ret;
3180 
3181 	ret = seccomp(SECCOMP_GET_ACTION_AVAIL, 0, &actions[0]);
3182 	ASSERT_NE(ENOSYS, errno) {
3183 		TH_LOG("Kernel does not support seccomp syscall!");
3184 	}
3185 	ASSERT_NE(EINVAL, errno) {
3186 		TH_LOG("Kernel does not support SECCOMP_GET_ACTION_AVAIL operation!");
3187 	}
3188 	EXPECT_EQ(ret, 0);
3189 
3190 	for (i = 0; i < ARRAY_SIZE(actions); i++) {
3191 		ret = seccomp(SECCOMP_GET_ACTION_AVAIL, 0, &actions[i]);
3192 		EXPECT_EQ(ret, 0) {
3193 			TH_LOG("Expected action (0x%X) not available!",
3194 			       actions[i]);
3195 		}
3196 	}
3197 
3198 	/* Check that an unknown action is handled properly (EOPNOTSUPP) */
3199 	ret = seccomp(SECCOMP_GET_ACTION_AVAIL, 0, &unknown_action);
3200 	EXPECT_EQ(ret, -1);
3201 	EXPECT_EQ(errno, EOPNOTSUPP);
3202 }
3203 
3204 TEST(get_metadata)
3205 {
3206 	pid_t pid;
3207 	int pipefd[2];
3208 	char buf;
3209 	struct seccomp_metadata md;
3210 	long ret;
3211 
3212 	/* Only real root can get metadata. */
3213 	if (geteuid()) {
3214 		SKIP(return, "get_metadata requires real root");
3215 		return;
3216 	}
3217 
3218 	ASSERT_EQ(0, pipe(pipefd));
3219 
3220 	pid = fork();
3221 	ASSERT_GE(pid, 0);
3222 	if (pid == 0) {
3223 		struct sock_filter filter[] = {
3224 			BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
3225 		};
3226 		struct sock_fprog prog = {
3227 			.len = (unsigned short)ARRAY_SIZE(filter),
3228 			.filter = filter,
3229 		};
3230 
3231 		/* one with log, one without */
3232 		EXPECT_EQ(0, seccomp(SECCOMP_SET_MODE_FILTER,
3233 				     SECCOMP_FILTER_FLAG_LOG, &prog));
3234 		EXPECT_EQ(0, seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog));
3235 
3236 		EXPECT_EQ(0, close(pipefd[0]));
3237 		ASSERT_EQ(1, write(pipefd[1], "1", 1));
3238 		ASSERT_EQ(0, close(pipefd[1]));
3239 
3240 		while (1)
3241 			sleep(100);
3242 	}
3243 
3244 	ASSERT_EQ(0, close(pipefd[1]));
3245 	ASSERT_EQ(1, read(pipefd[0], &buf, 1));
3246 
3247 	ASSERT_EQ(0, ptrace(PTRACE_ATTACH, pid));
3248 	ASSERT_EQ(pid, waitpid(pid, NULL, 0));
3249 
3250 	/* Past here must not use ASSERT or child process is never killed. */
3251 
3252 	md.filter_off = 0;
3253 	errno = 0;
3254 	ret = ptrace(PTRACE_SECCOMP_GET_METADATA, pid, sizeof(md), &md);
3255 	EXPECT_EQ(sizeof(md), ret) {
3256 		if (errno == EINVAL)
3257 			SKIP(goto skip, "Kernel does not support PTRACE_SECCOMP_GET_METADATA (missing CONFIG_CHECKPOINT_RESTORE?)");
3258 	}
3259 
3260 	EXPECT_EQ(md.flags, SECCOMP_FILTER_FLAG_LOG);
3261 	EXPECT_EQ(md.filter_off, 0);
3262 
3263 	md.filter_off = 1;
3264 	ret = ptrace(PTRACE_SECCOMP_GET_METADATA, pid, sizeof(md), &md);
3265 	EXPECT_EQ(sizeof(md), ret);
3266 	EXPECT_EQ(md.flags, 0);
3267 	EXPECT_EQ(md.filter_off, 1);
3268 
3269 skip:
3270 	ASSERT_EQ(0, kill(pid, SIGKILL));
3271 }
3272 
3273 static int user_notif_syscall(int nr, unsigned int flags)
3274 {
3275 	struct sock_filter filter[] = {
3276 		BPF_STMT(BPF_LD|BPF_W|BPF_ABS,
3277 			offsetof(struct seccomp_data, nr)),
3278 		BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, nr, 0, 1),
3279 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_USER_NOTIF),
3280 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
3281 	};
3282 
3283 	struct sock_fprog prog = {
3284 		.len = (unsigned short)ARRAY_SIZE(filter),
3285 		.filter = filter,
3286 	};
3287 
3288 	return seccomp(SECCOMP_SET_MODE_FILTER, flags, &prog);
3289 }
3290 
3291 #define USER_NOTIF_MAGIC INT_MAX
3292 TEST(user_notification_basic)
3293 {
3294 	pid_t pid;
3295 	long ret;
3296 	int status, listener;
3297 	struct seccomp_notif req = {};
3298 	struct seccomp_notif_resp resp = {};
3299 	struct pollfd pollfd;
3300 
3301 	struct sock_filter filter[] = {
3302 		BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW),
3303 	};
3304 	struct sock_fprog prog = {
3305 		.len = (unsigned short)ARRAY_SIZE(filter),
3306 		.filter = filter,
3307 	};
3308 
3309 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3310 	ASSERT_EQ(0, ret) {
3311 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
3312 	}
3313 
3314 	pid = fork();
3315 	ASSERT_GE(pid, 0);
3316 
3317 	/* Check that we get -ENOSYS with no listener attached */
3318 	if (pid == 0) {
3319 		if (user_notif_syscall(__NR_getppid, 0) < 0)
3320 			exit(1);
3321 		ret = syscall(__NR_getppid);
3322 		exit(ret >= 0 || errno != ENOSYS);
3323 	}
3324 
3325 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
3326 	EXPECT_EQ(true, WIFEXITED(status));
3327 	EXPECT_EQ(0, WEXITSTATUS(status));
3328 
3329 	/* Add some no-op filters for grins. */
3330 	EXPECT_EQ(seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog), 0);
3331 	EXPECT_EQ(seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog), 0);
3332 	EXPECT_EQ(seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog), 0);
3333 	EXPECT_EQ(seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog), 0);
3334 
3335 	/* Check that the basic notification machinery works */
3336 	listener = user_notif_syscall(__NR_getppid,
3337 				      SECCOMP_FILTER_FLAG_NEW_LISTENER);
3338 	ASSERT_GE(listener, 0);
3339 
3340 	/* Installing a second listener in the chain should EBUSY */
3341 	EXPECT_EQ(user_notif_syscall(__NR_getppid,
3342 				     SECCOMP_FILTER_FLAG_NEW_LISTENER),
3343 		  -1);
3344 	EXPECT_EQ(errno, EBUSY);
3345 
3346 	pid = fork();
3347 	ASSERT_GE(pid, 0);
3348 
3349 	if (pid == 0) {
3350 		ret = syscall(__NR_getppid);
3351 		exit(ret != USER_NOTIF_MAGIC);
3352 	}
3353 
3354 	pollfd.fd = listener;
3355 	pollfd.events = POLLIN | POLLOUT;
3356 
3357 	EXPECT_GT(poll(&pollfd, 1, -1), 0);
3358 	EXPECT_EQ(pollfd.revents, POLLIN);
3359 
3360 	/* Test that we can't pass garbage to the kernel. */
3361 	memset(&req, 0, sizeof(req));
3362 	req.pid = -1;
3363 	errno = 0;
3364 	ret = ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req);
3365 	EXPECT_EQ(-1, ret);
3366 	EXPECT_EQ(EINVAL, errno);
3367 
3368 	if (ret) {
3369 		req.pid = 0;
3370 		EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
3371 	}
3372 
3373 	pollfd.fd = listener;
3374 	pollfd.events = POLLIN | POLLOUT;
3375 
3376 	EXPECT_GT(poll(&pollfd, 1, -1), 0);
3377 	EXPECT_EQ(pollfd.revents, POLLOUT);
3378 
3379 	EXPECT_EQ(req.data.nr,  __NR_getppid);
3380 
3381 	resp.id = req.id;
3382 	resp.error = 0;
3383 	resp.val = USER_NOTIF_MAGIC;
3384 
3385 	/* check that we make sure flags == 0 */
3386 	resp.flags = 1;
3387 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), -1);
3388 	EXPECT_EQ(errno, EINVAL);
3389 
3390 	resp.flags = 0;
3391 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), 0);
3392 
3393 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
3394 	EXPECT_EQ(true, WIFEXITED(status));
3395 	EXPECT_EQ(0, WEXITSTATUS(status));
3396 }
3397 
3398 TEST(user_notification_with_tsync)
3399 {
3400 	int ret;
3401 	unsigned int flags;
3402 
3403 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3404 	ASSERT_EQ(0, ret) {
3405 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
3406 	}
3407 
3408 	/* these were exclusive */
3409 	flags = SECCOMP_FILTER_FLAG_NEW_LISTENER |
3410 		SECCOMP_FILTER_FLAG_TSYNC;
3411 	ASSERT_EQ(-1, user_notif_syscall(__NR_getppid, flags));
3412 	ASSERT_EQ(EINVAL, errno);
3413 
3414 	/* but now they're not */
3415 	flags |= SECCOMP_FILTER_FLAG_TSYNC_ESRCH;
3416 	ret = user_notif_syscall(__NR_getppid, flags);
3417 	close(ret);
3418 	ASSERT_LE(0, ret);
3419 }
3420 
3421 TEST(user_notification_kill_in_middle)
3422 {
3423 	pid_t pid;
3424 	long ret;
3425 	int listener;
3426 	struct seccomp_notif req = {};
3427 	struct seccomp_notif_resp resp = {};
3428 
3429 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3430 	ASSERT_EQ(0, ret) {
3431 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
3432 	}
3433 
3434 	listener = user_notif_syscall(__NR_getppid,
3435 				      SECCOMP_FILTER_FLAG_NEW_LISTENER);
3436 	ASSERT_GE(listener, 0);
3437 
3438 	/*
3439 	 * Check that nothing bad happens when we kill the task in the middle
3440 	 * of a syscall.
3441 	 */
3442 	pid = fork();
3443 	ASSERT_GE(pid, 0);
3444 
3445 	if (pid == 0) {
3446 		ret = syscall(__NR_getppid);
3447 		exit(ret != USER_NOTIF_MAGIC);
3448 	}
3449 
3450 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
3451 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_ID_VALID, &req.id), 0);
3452 
3453 	EXPECT_EQ(kill(pid, SIGKILL), 0);
3454 	EXPECT_EQ(waitpid(pid, NULL, 0), pid);
3455 
3456 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_ID_VALID, &req.id), -1);
3457 
3458 	resp.id = req.id;
3459 	ret = ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp);
3460 	EXPECT_EQ(ret, -1);
3461 	EXPECT_EQ(errno, ENOENT);
3462 }
3463 
3464 static int handled = -1;
3465 
3466 static void signal_handler(int signal)
3467 {
3468 	if (write(handled, "c", 1) != 1)
3469 		perror("write from signal");
3470 }
3471 
3472 TEST(user_notification_signal)
3473 {
3474 	pid_t pid;
3475 	long ret;
3476 	int status, listener, sk_pair[2];
3477 	struct seccomp_notif req = {};
3478 	struct seccomp_notif_resp resp = {};
3479 	char c;
3480 
3481 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3482 	ASSERT_EQ(0, ret) {
3483 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
3484 	}
3485 
3486 	ASSERT_EQ(socketpair(PF_LOCAL, SOCK_SEQPACKET, 0, sk_pair), 0);
3487 
3488 	listener = user_notif_syscall(__NR_gettid,
3489 				      SECCOMP_FILTER_FLAG_NEW_LISTENER);
3490 	ASSERT_GE(listener, 0);
3491 
3492 	pid = fork();
3493 	ASSERT_GE(pid, 0);
3494 
3495 	if (pid == 0) {
3496 		close(sk_pair[0]);
3497 		handled = sk_pair[1];
3498 		if (signal(SIGUSR1, signal_handler) == SIG_ERR) {
3499 			perror("signal");
3500 			exit(1);
3501 		}
3502 		/*
3503 		 * ERESTARTSYS behavior is a bit hard to test, because we need
3504 		 * to rely on a signal that has not yet been handled. Let's at
3505 		 * least check that the error code gets propagated through, and
3506 		 * hope that it doesn't break when there is actually a signal :)
3507 		 */
3508 		ret = syscall(__NR_gettid);
3509 		exit(!(ret == -1 && errno == 512));
3510 	}
3511 
3512 	close(sk_pair[1]);
3513 
3514 	memset(&req, 0, sizeof(req));
3515 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
3516 
3517 	EXPECT_EQ(kill(pid, SIGUSR1), 0);
3518 
3519 	/*
3520 	 * Make sure the signal really is delivered, which means we're not
3521 	 * stuck in the user notification code any more and the notification
3522 	 * should be dead.
3523 	 */
3524 	EXPECT_EQ(read(sk_pair[0], &c, 1), 1);
3525 
3526 	resp.id = req.id;
3527 	resp.error = -EPERM;
3528 	resp.val = 0;
3529 
3530 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), -1);
3531 	EXPECT_EQ(errno, ENOENT);
3532 
3533 	memset(&req, 0, sizeof(req));
3534 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
3535 
3536 	resp.id = req.id;
3537 	resp.error = -512; /* -ERESTARTSYS */
3538 	resp.val = 0;
3539 
3540 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), 0);
3541 
3542 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
3543 	EXPECT_EQ(true, WIFEXITED(status));
3544 	EXPECT_EQ(0, WEXITSTATUS(status));
3545 }
3546 
3547 TEST(user_notification_closed_listener)
3548 {
3549 	pid_t pid;
3550 	long ret;
3551 	int status, listener;
3552 
3553 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3554 	ASSERT_EQ(0, ret) {
3555 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
3556 	}
3557 
3558 	listener = user_notif_syscall(__NR_getppid,
3559 				      SECCOMP_FILTER_FLAG_NEW_LISTENER);
3560 	ASSERT_GE(listener, 0);
3561 
3562 	/*
3563 	 * Check that we get an ENOSYS when the listener is closed.
3564 	 */
3565 	pid = fork();
3566 	ASSERT_GE(pid, 0);
3567 	if (pid == 0) {
3568 		close(listener);
3569 		ret = syscall(__NR_getppid);
3570 		exit(ret != -1 && errno != ENOSYS);
3571 	}
3572 
3573 	close(listener);
3574 
3575 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
3576 	EXPECT_EQ(true, WIFEXITED(status));
3577 	EXPECT_EQ(0, WEXITSTATUS(status));
3578 }
3579 
3580 /*
3581  * Check that a pid in a child namespace still shows up as valid in ours.
3582  */
3583 TEST(user_notification_child_pid_ns)
3584 {
3585 	pid_t pid;
3586 	int status, listener;
3587 	struct seccomp_notif req = {};
3588 	struct seccomp_notif_resp resp = {};
3589 
3590 	ASSERT_EQ(unshare(CLONE_NEWUSER | CLONE_NEWPID), 0) {
3591 		if (errno == EINVAL)
3592 			SKIP(return, "kernel missing CLONE_NEWUSER support");
3593 	};
3594 
3595 	listener = user_notif_syscall(__NR_getppid,
3596 				      SECCOMP_FILTER_FLAG_NEW_LISTENER);
3597 	ASSERT_GE(listener, 0);
3598 
3599 	pid = fork();
3600 	ASSERT_GE(pid, 0);
3601 
3602 	if (pid == 0)
3603 		exit(syscall(__NR_getppid) != USER_NOTIF_MAGIC);
3604 
3605 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
3606 	EXPECT_EQ(req.pid, pid);
3607 
3608 	resp.id = req.id;
3609 	resp.error = 0;
3610 	resp.val = USER_NOTIF_MAGIC;
3611 
3612 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), 0);
3613 
3614 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
3615 	EXPECT_EQ(true, WIFEXITED(status));
3616 	EXPECT_EQ(0, WEXITSTATUS(status));
3617 	close(listener);
3618 }
3619 
3620 /*
3621  * Check that a pid in a sibling (i.e. unrelated) namespace shows up as 0, i.e.
3622  * invalid.
3623  */
3624 TEST(user_notification_sibling_pid_ns)
3625 {
3626 	pid_t pid, pid2;
3627 	int status, listener;
3628 	struct seccomp_notif req = {};
3629 	struct seccomp_notif_resp resp = {};
3630 
3631 	ASSERT_EQ(prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0), 0) {
3632 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
3633 	}
3634 
3635 	listener = user_notif_syscall(__NR_getppid,
3636 				      SECCOMP_FILTER_FLAG_NEW_LISTENER);
3637 	ASSERT_GE(listener, 0);
3638 
3639 	pid = fork();
3640 	ASSERT_GE(pid, 0);
3641 
3642 	if (pid == 0) {
3643 		ASSERT_EQ(unshare(CLONE_NEWPID), 0);
3644 
3645 		pid2 = fork();
3646 		ASSERT_GE(pid2, 0);
3647 
3648 		if (pid2 == 0)
3649 			exit(syscall(__NR_getppid) != USER_NOTIF_MAGIC);
3650 
3651 		EXPECT_EQ(waitpid(pid2, &status, 0), pid2);
3652 		EXPECT_EQ(true, WIFEXITED(status));
3653 		EXPECT_EQ(0, WEXITSTATUS(status));
3654 		exit(WEXITSTATUS(status));
3655 	}
3656 
3657 	/* Create the sibling ns, and sibling in it. */
3658 	ASSERT_EQ(unshare(CLONE_NEWPID), 0) {
3659 		if (errno == EPERM)
3660 			SKIP(return, "CLONE_NEWPID requires CAP_SYS_ADMIN");
3661 	}
3662 	ASSERT_EQ(errno, 0);
3663 
3664 	pid2 = fork();
3665 	ASSERT_GE(pid2, 0);
3666 
3667 	if (pid2 == 0) {
3668 		ASSERT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
3669 		/*
3670 		 * The pid should be 0, i.e. the task is in some namespace that
3671 		 * we can't "see".
3672 		 */
3673 		EXPECT_EQ(req.pid, 0);
3674 
3675 		resp.id = req.id;
3676 		resp.error = 0;
3677 		resp.val = USER_NOTIF_MAGIC;
3678 
3679 		ASSERT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), 0);
3680 		exit(0);
3681 	}
3682 
3683 	close(listener);
3684 
3685 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
3686 	EXPECT_EQ(true, WIFEXITED(status));
3687 	EXPECT_EQ(0, WEXITSTATUS(status));
3688 
3689 	EXPECT_EQ(waitpid(pid2, &status, 0), pid2);
3690 	EXPECT_EQ(true, WIFEXITED(status));
3691 	EXPECT_EQ(0, WEXITSTATUS(status));
3692 }
3693 
3694 TEST(user_notification_fault_recv)
3695 {
3696 	pid_t pid;
3697 	int status, listener;
3698 	struct seccomp_notif req = {};
3699 	struct seccomp_notif_resp resp = {};
3700 
3701 	ASSERT_EQ(unshare(CLONE_NEWUSER), 0);
3702 
3703 	listener = user_notif_syscall(__NR_getppid,
3704 				      SECCOMP_FILTER_FLAG_NEW_LISTENER);
3705 	ASSERT_GE(listener, 0);
3706 
3707 	pid = fork();
3708 	ASSERT_GE(pid, 0);
3709 
3710 	if (pid == 0)
3711 		exit(syscall(__NR_getppid) != USER_NOTIF_MAGIC);
3712 
3713 	/* Do a bad recv() */
3714 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, NULL), -1);
3715 	EXPECT_EQ(errno, EFAULT);
3716 
3717 	/* We should still be able to receive this notification, though. */
3718 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
3719 	EXPECT_EQ(req.pid, pid);
3720 
3721 	resp.id = req.id;
3722 	resp.error = 0;
3723 	resp.val = USER_NOTIF_MAGIC;
3724 
3725 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), 0);
3726 
3727 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
3728 	EXPECT_EQ(true, WIFEXITED(status));
3729 	EXPECT_EQ(0, WEXITSTATUS(status));
3730 }
3731 
3732 TEST(seccomp_get_notif_sizes)
3733 {
3734 	struct seccomp_notif_sizes sizes;
3735 
3736 	ASSERT_EQ(seccomp(SECCOMP_GET_NOTIF_SIZES, 0, &sizes), 0);
3737 	EXPECT_EQ(sizes.seccomp_notif, sizeof(struct seccomp_notif));
3738 	EXPECT_EQ(sizes.seccomp_notif_resp, sizeof(struct seccomp_notif_resp));
3739 }
3740 
3741 TEST(user_notification_continue)
3742 {
3743 	pid_t pid;
3744 	long ret;
3745 	int status, listener;
3746 	struct seccomp_notif req = {};
3747 	struct seccomp_notif_resp resp = {};
3748 	struct pollfd pollfd;
3749 
3750 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3751 	ASSERT_EQ(0, ret) {
3752 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
3753 	}
3754 
3755 	listener = user_notif_syscall(__NR_dup, SECCOMP_FILTER_FLAG_NEW_LISTENER);
3756 	ASSERT_GE(listener, 0);
3757 
3758 	pid = fork();
3759 	ASSERT_GE(pid, 0);
3760 
3761 	if (pid == 0) {
3762 		int dup_fd, pipe_fds[2];
3763 		pid_t self;
3764 
3765 		ASSERT_GE(pipe(pipe_fds), 0);
3766 
3767 		dup_fd = dup(pipe_fds[0]);
3768 		ASSERT_GE(dup_fd, 0);
3769 		EXPECT_NE(pipe_fds[0], dup_fd);
3770 
3771 		self = getpid();
3772 		ASSERT_EQ(filecmp(self, self, pipe_fds[0], dup_fd), 0);
3773 		exit(0);
3774 	}
3775 
3776 	pollfd.fd = listener;
3777 	pollfd.events = POLLIN | POLLOUT;
3778 
3779 	EXPECT_GT(poll(&pollfd, 1, -1), 0);
3780 	EXPECT_EQ(pollfd.revents, POLLIN);
3781 
3782 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
3783 
3784 	pollfd.fd = listener;
3785 	pollfd.events = POLLIN | POLLOUT;
3786 
3787 	EXPECT_GT(poll(&pollfd, 1, -1), 0);
3788 	EXPECT_EQ(pollfd.revents, POLLOUT);
3789 
3790 	EXPECT_EQ(req.data.nr, __NR_dup);
3791 
3792 	resp.id = req.id;
3793 	resp.flags = SECCOMP_USER_NOTIF_FLAG_CONTINUE;
3794 
3795 	/*
3796 	 * Verify that setting SECCOMP_USER_NOTIF_FLAG_CONTINUE enforces other
3797 	 * args be set to 0.
3798 	 */
3799 	resp.error = 0;
3800 	resp.val = USER_NOTIF_MAGIC;
3801 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), -1);
3802 	EXPECT_EQ(errno, EINVAL);
3803 
3804 	resp.error = USER_NOTIF_MAGIC;
3805 	resp.val = 0;
3806 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), -1);
3807 	EXPECT_EQ(errno, EINVAL);
3808 
3809 	resp.error = 0;
3810 	resp.val = 0;
3811 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), 0) {
3812 		if (errno == EINVAL)
3813 			SKIP(goto skip, "Kernel does not support SECCOMP_USER_NOTIF_FLAG_CONTINUE");
3814 	}
3815 
3816 skip:
3817 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
3818 	EXPECT_EQ(true, WIFEXITED(status));
3819 	EXPECT_EQ(0, WEXITSTATUS(status)) {
3820 		if (WEXITSTATUS(status) == 2) {
3821 			SKIP(return, "Kernel does not support kcmp() syscall");
3822 			return;
3823 		}
3824 	}
3825 }
3826 
3827 TEST(user_notification_filter_empty)
3828 {
3829 	pid_t pid;
3830 	long ret;
3831 	int status;
3832 	struct pollfd pollfd;
3833 	struct __clone_args args = {
3834 		.flags = CLONE_FILES,
3835 		.exit_signal = SIGCHLD,
3836 	};
3837 
3838 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3839 	ASSERT_EQ(0, ret) {
3840 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
3841 	}
3842 
3843 	pid = sys_clone3(&args, sizeof(args));
3844 	ASSERT_GE(pid, 0);
3845 
3846 	if (pid == 0) {
3847 		int listener;
3848 
3849 		listener = user_notif_syscall(__NR_mknodat, SECCOMP_FILTER_FLAG_NEW_LISTENER);
3850 		if (listener < 0)
3851 			_exit(EXIT_FAILURE);
3852 
3853 		if (dup2(listener, 200) != 200)
3854 			_exit(EXIT_FAILURE);
3855 
3856 		close(listener);
3857 
3858 		_exit(EXIT_SUCCESS);
3859 	}
3860 
3861 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
3862 	EXPECT_EQ(true, WIFEXITED(status));
3863 	EXPECT_EQ(0, WEXITSTATUS(status));
3864 
3865 	/*
3866 	 * The seccomp filter has become unused so we should be notified once
3867 	 * the kernel gets around to cleaning up task struct.
3868 	 */
3869 	pollfd.fd = 200;
3870 	pollfd.events = POLLHUP;
3871 
3872 	EXPECT_GT(poll(&pollfd, 1, 2000), 0);
3873 	EXPECT_GT((pollfd.revents & POLLHUP) ?: 0, 0);
3874 }
3875 
3876 static void *do_thread(void *data)
3877 {
3878 	return NULL;
3879 }
3880 
3881 TEST(user_notification_filter_empty_threaded)
3882 {
3883 	pid_t pid;
3884 	long ret;
3885 	int status;
3886 	struct pollfd pollfd;
3887 	struct __clone_args args = {
3888 		.flags = CLONE_FILES,
3889 		.exit_signal = SIGCHLD,
3890 	};
3891 
3892 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3893 	ASSERT_EQ(0, ret) {
3894 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
3895 	}
3896 
3897 	pid = sys_clone3(&args, sizeof(args));
3898 	ASSERT_GE(pid, 0);
3899 
3900 	if (pid == 0) {
3901 		pid_t pid1, pid2;
3902 		int listener, status;
3903 		pthread_t thread;
3904 
3905 		listener = user_notif_syscall(__NR_dup, SECCOMP_FILTER_FLAG_NEW_LISTENER);
3906 		if (listener < 0)
3907 			_exit(EXIT_FAILURE);
3908 
3909 		if (dup2(listener, 200) != 200)
3910 			_exit(EXIT_FAILURE);
3911 
3912 		close(listener);
3913 
3914 		pid1 = fork();
3915 		if (pid1 < 0)
3916 			_exit(EXIT_FAILURE);
3917 
3918 		if (pid1 == 0)
3919 			_exit(EXIT_SUCCESS);
3920 
3921 		pid2 = fork();
3922 		if (pid2 < 0)
3923 			_exit(EXIT_FAILURE);
3924 
3925 		if (pid2 == 0)
3926 			_exit(EXIT_SUCCESS);
3927 
3928 		if (pthread_create(&thread, NULL, do_thread, NULL) ||
3929 		    pthread_join(thread, NULL))
3930 			_exit(EXIT_FAILURE);
3931 
3932 		if (pthread_create(&thread, NULL, do_thread, NULL) ||
3933 		    pthread_join(thread, NULL))
3934 			_exit(EXIT_FAILURE);
3935 
3936 		if (waitpid(pid1, &status, 0) != pid1 || !WIFEXITED(status) ||
3937 		    WEXITSTATUS(status))
3938 			_exit(EXIT_FAILURE);
3939 
3940 		if (waitpid(pid2, &status, 0) != pid2 || !WIFEXITED(status) ||
3941 		    WEXITSTATUS(status))
3942 			_exit(EXIT_FAILURE);
3943 
3944 		exit(EXIT_SUCCESS);
3945 	}
3946 
3947 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
3948 	EXPECT_EQ(true, WIFEXITED(status));
3949 	EXPECT_EQ(0, WEXITSTATUS(status));
3950 
3951 	/*
3952 	 * The seccomp filter has become unused so we should be notified once
3953 	 * the kernel gets around to cleaning up task struct.
3954 	 */
3955 	pollfd.fd = 200;
3956 	pollfd.events = POLLHUP;
3957 
3958 	EXPECT_GT(poll(&pollfd, 1, 2000), 0);
3959 	EXPECT_GT((pollfd.revents & POLLHUP) ?: 0, 0);
3960 }
3961 
3962 TEST(user_notification_addfd)
3963 {
3964 	pid_t pid;
3965 	long ret;
3966 	int status, listener, memfd, fd, nextfd;
3967 	struct seccomp_notif_addfd addfd = {};
3968 	struct seccomp_notif_addfd_small small = {};
3969 	struct seccomp_notif_addfd_big big = {};
3970 	struct seccomp_notif req = {};
3971 	struct seccomp_notif_resp resp = {};
3972 	/* 100 ms */
3973 	struct timespec delay = { .tv_nsec = 100000000 };
3974 
3975 	/* There may be arbitrary already-open fds at test start. */
3976 	memfd = memfd_create("test", 0);
3977 	ASSERT_GE(memfd, 0);
3978 	nextfd = memfd + 1;
3979 
3980 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
3981 	ASSERT_EQ(0, ret) {
3982 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
3983 	}
3984 
3985 	/* fd: 4 */
3986 	/* Check that the basic notification machinery works */
3987 	listener = user_notif_syscall(__NR_getppid,
3988 				      SECCOMP_FILTER_FLAG_NEW_LISTENER);
3989 	ASSERT_EQ(listener, nextfd++);
3990 
3991 	pid = fork();
3992 	ASSERT_GE(pid, 0);
3993 
3994 	if (pid == 0) {
3995 		/* fds will be added and this value is expected */
3996 		if (syscall(__NR_getppid) != USER_NOTIF_MAGIC)
3997 			exit(1);
3998 
3999 		/* Atomic addfd+send is received here. Check it is a valid fd */
4000 		if (fcntl(syscall(__NR_getppid), F_GETFD) == -1)
4001 			exit(1);
4002 
4003 		exit(syscall(__NR_getppid) != USER_NOTIF_MAGIC);
4004 	}
4005 
4006 	ASSERT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
4007 
4008 	addfd.srcfd = memfd;
4009 	addfd.newfd = 0;
4010 	addfd.id = req.id;
4011 	addfd.flags = 0x0;
4012 
4013 	/* Verify bad newfd_flags cannot be set */
4014 	addfd.newfd_flags = ~O_CLOEXEC;
4015 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd), -1);
4016 	EXPECT_EQ(errno, EINVAL);
4017 	addfd.newfd_flags = O_CLOEXEC;
4018 
4019 	/* Verify bad flags cannot be set */
4020 	addfd.flags = 0xff;
4021 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd), -1);
4022 	EXPECT_EQ(errno, EINVAL);
4023 	addfd.flags = 0;
4024 
4025 	/* Verify that remote_fd cannot be set without setting flags */
4026 	addfd.newfd = 1;
4027 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd), -1);
4028 	EXPECT_EQ(errno, EINVAL);
4029 	addfd.newfd = 0;
4030 
4031 	/* Verify small size cannot be set */
4032 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD_SMALL, &small), -1);
4033 	EXPECT_EQ(errno, EINVAL);
4034 
4035 	/* Verify we can't send bits filled in unknown buffer area */
4036 	memset(&big, 0xAA, sizeof(big));
4037 	big.addfd = addfd;
4038 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD_BIG, &big), -1);
4039 	EXPECT_EQ(errno, E2BIG);
4040 
4041 
4042 	/* Verify we can set an arbitrary remote fd */
4043 	fd = ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd);
4044 	EXPECT_EQ(fd, nextfd++);
4045 	EXPECT_EQ(filecmp(getpid(), pid, memfd, fd), 0);
4046 
4047 	/* Verify we can set an arbitrary remote fd with large size */
4048 	memset(&big, 0x0, sizeof(big));
4049 	big.addfd = addfd;
4050 	fd = ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD_BIG, &big);
4051 	EXPECT_EQ(fd, nextfd++);
4052 
4053 	/* Verify we can set a specific remote fd */
4054 	addfd.newfd = 42;
4055 	addfd.flags = SECCOMP_ADDFD_FLAG_SETFD;
4056 	fd = ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd);
4057 	EXPECT_EQ(fd, 42);
4058 	EXPECT_EQ(filecmp(getpid(), pid, memfd, fd), 0);
4059 
4060 	/* Resume syscall */
4061 	resp.id = req.id;
4062 	resp.error = 0;
4063 	resp.val = USER_NOTIF_MAGIC;
4064 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), 0);
4065 
4066 	/*
4067 	 * This sets the ID of the ADD FD to the last request plus 1. The
4068 	 * notification ID increments 1 per notification.
4069 	 */
4070 	addfd.id = req.id + 1;
4071 
4072 	/* This spins until the underlying notification is generated */
4073 	while (ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd) != -1 &&
4074 	       errno != -EINPROGRESS)
4075 		nanosleep(&delay, NULL);
4076 
4077 	memset(&req, 0, sizeof(req));
4078 	ASSERT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
4079 	ASSERT_EQ(addfd.id, req.id);
4080 
4081 	/* Verify we can do an atomic addfd and send */
4082 	addfd.newfd = 0;
4083 	addfd.flags = SECCOMP_ADDFD_FLAG_SEND;
4084 	fd = ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd);
4085 	/*
4086 	 * Child has earlier "low" fds and now 42, so we expect the next
4087 	 * lowest available fd to be assigned here.
4088 	 */
4089 	EXPECT_EQ(fd, nextfd++);
4090 	EXPECT_EQ(filecmp(getpid(), pid, memfd, fd), 0);
4091 
4092 	/*
4093 	 * This sets the ID of the ADD FD to the last request plus 1. The
4094 	 * notification ID increments 1 per notification.
4095 	 */
4096 	addfd.id = req.id + 1;
4097 
4098 	/* This spins until the underlying notification is generated */
4099 	while (ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd) != -1 &&
4100 	       errno != -EINPROGRESS)
4101 		nanosleep(&delay, NULL);
4102 
4103 	memset(&req, 0, sizeof(req));
4104 	ASSERT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
4105 	ASSERT_EQ(addfd.id, req.id);
4106 
4107 	resp.id = req.id;
4108 	resp.error = 0;
4109 	resp.val = USER_NOTIF_MAGIC;
4110 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), 0);
4111 
4112 	/* Wait for child to finish. */
4113 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
4114 	EXPECT_EQ(true, WIFEXITED(status));
4115 	EXPECT_EQ(0, WEXITSTATUS(status));
4116 
4117 	close(memfd);
4118 }
4119 
4120 TEST(user_notification_addfd_rlimit)
4121 {
4122 	pid_t pid;
4123 	long ret;
4124 	int status, listener, memfd;
4125 	struct seccomp_notif_addfd addfd = {};
4126 	struct seccomp_notif req = {};
4127 	struct seccomp_notif_resp resp = {};
4128 	const struct rlimit lim = {
4129 		.rlim_cur	= 0,
4130 		.rlim_max	= 0,
4131 	};
4132 
4133 	memfd = memfd_create("test", 0);
4134 	ASSERT_GE(memfd, 0);
4135 
4136 	ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
4137 	ASSERT_EQ(0, ret) {
4138 		TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!");
4139 	}
4140 
4141 	/* Check that the basic notification machinery works */
4142 	listener = user_notif_syscall(__NR_getppid,
4143 				      SECCOMP_FILTER_FLAG_NEW_LISTENER);
4144 	ASSERT_GE(listener, 0);
4145 
4146 	pid = fork();
4147 	ASSERT_GE(pid, 0);
4148 
4149 	if (pid == 0)
4150 		exit(syscall(__NR_getppid) != USER_NOTIF_MAGIC);
4151 
4152 
4153 	ASSERT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_RECV, &req), 0);
4154 
4155 	ASSERT_EQ(prlimit(pid, RLIMIT_NOFILE, &lim, NULL), 0);
4156 
4157 	addfd.srcfd = memfd;
4158 	addfd.newfd_flags = O_CLOEXEC;
4159 	addfd.newfd = 0;
4160 	addfd.id = req.id;
4161 	addfd.flags = 0;
4162 
4163 	/* Should probably spot check /proc/sys/fs/file-nr */
4164 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd), -1);
4165 	EXPECT_EQ(errno, EMFILE);
4166 
4167 	addfd.flags = SECCOMP_ADDFD_FLAG_SEND;
4168 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd), -1);
4169 	EXPECT_EQ(errno, EMFILE);
4170 
4171 	addfd.newfd = 100;
4172 	addfd.flags = SECCOMP_ADDFD_FLAG_SETFD;
4173 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd), -1);
4174 	EXPECT_EQ(errno, EBADF);
4175 
4176 	resp.id = req.id;
4177 	resp.error = 0;
4178 	resp.val = USER_NOTIF_MAGIC;
4179 
4180 	EXPECT_EQ(ioctl(listener, SECCOMP_IOCTL_NOTIF_SEND, &resp), 0);
4181 
4182 	/* Wait for child to finish. */
4183 	EXPECT_EQ(waitpid(pid, &status, 0), pid);
4184 	EXPECT_EQ(true, WIFEXITED(status));
4185 	EXPECT_EQ(0, WEXITSTATUS(status));
4186 
4187 	close(memfd);
4188 }
4189 
4190 /*
4191  * TODO:
4192  * - expand NNP testing
4193  * - better arch-specific TRACE and TRAP handlers.
4194  * - endianness checking when appropriate
4195  * - 64-bit arg prodding
4196  * - arch value testing (x86 modes especially)
4197  * - verify that FILTER_FLAG_LOG filters generate log messages
4198  * - verify that RET_LOG generates log messages
4199  */
4200 
4201 TEST_HARNESS_MAIN
4202