1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #define _GNU_SOURCE /* for program_invocation_name */ 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "kvm_util_internal.h" 12 #include "processor.h" 13 14 #include <assert.h> 15 #include <sys/mman.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 static int vcpu_mmap_sz(void); 24 25 /* Aligns x up to the next multiple of size. Size must be a power of 2. */ 26 static void *align(void *x, size_t size) 27 { 28 size_t mask = size - 1; 29 TEST_ASSERT(size != 0 && !(size & (size - 1)), 30 "size not a power of 2: %lu", size); 31 return (void *) (((size_t) x + mask) & ~mask); 32 } 33 34 int open_path_or_exit(const char *path, int flags) 35 { 36 int fd; 37 38 fd = open(path, flags); 39 if (fd < 0) { 40 print_skip("%s not available (errno: %d)", path, errno); 41 exit(KSFT_SKIP); 42 } 43 44 return fd; 45 } 46 47 /* 48 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 49 * 50 * Input Args: 51 * flags - The flags to pass when opening KVM_DEV_PATH. 52 * 53 * Return: 54 * The opened file descriptor of /dev/kvm. 55 */ 56 static int _open_kvm_dev_path_or_exit(int flags) 57 { 58 return open_path_or_exit(KVM_DEV_PATH, flags); 59 } 60 61 int open_kvm_dev_path_or_exit(void) 62 { 63 return _open_kvm_dev_path_or_exit(O_RDONLY); 64 } 65 66 /* 67 * Capability 68 * 69 * Input Args: 70 * cap - Capability 71 * 72 * Output Args: None 73 * 74 * Return: 75 * On success, the Value corresponding to the capability (KVM_CAP_*) 76 * specified by the value of cap. On failure a TEST_ASSERT failure 77 * is produced. 78 * 79 * Looks up and returns the value corresponding to the capability 80 * (KVM_CAP_*) given by cap. 81 */ 82 int kvm_check_cap(long cap) 83 { 84 int ret; 85 int kvm_fd; 86 87 kvm_fd = open_kvm_dev_path_or_exit(); 88 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap); 89 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n" 90 " rc: %i errno: %i", ret, errno); 91 92 close(kvm_fd); 93 94 return ret; 95 } 96 97 /* VM Enable Capability 98 * 99 * Input Args: 100 * vm - Virtual Machine 101 * cap - Capability 102 * 103 * Output Args: None 104 * 105 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 106 * 107 * Enables a capability (KVM_CAP_*) on the VM. 108 */ 109 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap) 110 { 111 int ret; 112 113 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap); 114 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n" 115 " rc: %i errno: %i", ret, errno); 116 117 return ret; 118 } 119 120 /* VCPU Enable Capability 121 * 122 * Input Args: 123 * vm - Virtual Machine 124 * vcpu_id - VCPU 125 * cap - Capability 126 * 127 * Output Args: None 128 * 129 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 130 * 131 * Enables a capability (KVM_CAP_*) on the VCPU. 132 */ 133 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id, 134 struct kvm_enable_cap *cap) 135 { 136 struct vcpu *vcpu = vcpu_find(vm, vcpu_id); 137 int r; 138 139 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id); 140 141 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap); 142 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n" 143 " rc: %i, errno: %i", r, errno); 144 145 return r; 146 } 147 148 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 149 { 150 struct kvm_enable_cap cap = { 0 }; 151 152 cap.cap = KVM_CAP_DIRTY_LOG_RING; 153 cap.args[0] = ring_size; 154 vm_enable_cap(vm, &cap); 155 vm->dirty_ring_size = ring_size; 156 } 157 158 static void vm_open(struct kvm_vm *vm, int perm) 159 { 160 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm); 161 162 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) { 163 print_skip("immediate_exit not available"); 164 exit(KSFT_SKIP); 165 } 166 167 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type); 168 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, " 169 "rc: %i errno: %i", vm->fd, errno); 170 } 171 172 const char *vm_guest_mode_string(uint32_t i) 173 { 174 static const char * const strings[] = { 175 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 176 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 177 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 178 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 179 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 180 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 181 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 182 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 183 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 184 }; 185 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 186 "Missing new mode strings?"); 187 188 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 189 190 return strings[i]; 191 } 192 193 const struct vm_guest_mode_params vm_guest_mode_params[] = { 194 { 52, 48, 0x1000, 12 }, 195 { 52, 48, 0x10000, 16 }, 196 { 48, 48, 0x1000, 12 }, 197 { 48, 48, 0x10000, 16 }, 198 { 40, 48, 0x1000, 12 }, 199 { 40, 48, 0x10000, 16 }, 200 { 0, 0, 0x1000, 12 }, 201 { 47, 64, 0x1000, 12 }, 202 { 44, 64, 0x1000, 12 }, 203 }; 204 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 205 "Missing new mode params?"); 206 207 /* 208 * VM Create 209 * 210 * Input Args: 211 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 212 * phy_pages - Physical memory pages 213 * perm - permission 214 * 215 * Output Args: None 216 * 217 * Return: 218 * Pointer to opaque structure that describes the created VM. 219 * 220 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 221 * When phy_pages is non-zero, a memory region of phy_pages physical pages 222 * is created and mapped starting at guest physical address 0. The file 223 * descriptor to control the created VM is created with the permissions 224 * given by perm (e.g. O_RDWR). 225 */ 226 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm) 227 { 228 struct kvm_vm *vm; 229 230 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__, 231 vm_guest_mode_string(mode), phy_pages, perm); 232 233 vm = calloc(1, sizeof(*vm)); 234 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 235 236 INIT_LIST_HEAD(&vm->vcpus); 237 vm->regions.gpa_tree = RB_ROOT; 238 vm->regions.hva_tree = RB_ROOT; 239 hash_init(vm->regions.slot_hash); 240 241 vm->mode = mode; 242 vm->type = 0; 243 244 vm->pa_bits = vm_guest_mode_params[mode].pa_bits; 245 vm->va_bits = vm_guest_mode_params[mode].va_bits; 246 vm->page_size = vm_guest_mode_params[mode].page_size; 247 vm->page_shift = vm_guest_mode_params[mode].page_shift; 248 249 /* Setup mode specific traits. */ 250 switch (vm->mode) { 251 case VM_MODE_P52V48_4K: 252 vm->pgtable_levels = 4; 253 break; 254 case VM_MODE_P52V48_64K: 255 vm->pgtable_levels = 3; 256 break; 257 case VM_MODE_P48V48_4K: 258 vm->pgtable_levels = 4; 259 break; 260 case VM_MODE_P48V48_64K: 261 vm->pgtable_levels = 3; 262 break; 263 case VM_MODE_P40V48_4K: 264 vm->pgtable_levels = 4; 265 break; 266 case VM_MODE_P40V48_64K: 267 vm->pgtable_levels = 3; 268 break; 269 case VM_MODE_PXXV48_4K: 270 #ifdef __x86_64__ 271 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 272 /* 273 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 274 * it doesn't take effect unless a CR4.LA57 is set, which it 275 * isn't for this VM_MODE. 276 */ 277 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 278 "Linear address width (%d bits) not supported", 279 vm->va_bits); 280 pr_debug("Guest physical address width detected: %d\n", 281 vm->pa_bits); 282 vm->pgtable_levels = 4; 283 vm->va_bits = 48; 284 #else 285 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 286 #endif 287 break; 288 case VM_MODE_P47V64_4K: 289 vm->pgtable_levels = 5; 290 break; 291 case VM_MODE_P44V64_4K: 292 vm->pgtable_levels = 5; 293 break; 294 default: 295 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode); 296 } 297 298 #ifdef __aarch64__ 299 if (vm->pa_bits != 40) 300 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 301 #endif 302 303 vm_open(vm, perm); 304 305 /* Limit to VA-bit canonical virtual addresses. */ 306 vm->vpages_valid = sparsebit_alloc(); 307 sparsebit_set_num(vm->vpages_valid, 308 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 309 sparsebit_set_num(vm->vpages_valid, 310 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 311 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 312 313 /* Limit physical addresses to PA-bits. */ 314 vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 315 316 /* Allocate and setup memory for guest. */ 317 vm->vpages_mapped = sparsebit_alloc(); 318 if (phy_pages != 0) 319 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 320 0, 0, phy_pages, 0); 321 322 return vm; 323 } 324 325 /* 326 * VM Create with customized parameters 327 * 328 * Input Args: 329 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 330 * nr_vcpus - VCPU count 331 * slot0_mem_pages - Slot0 physical memory size 332 * extra_mem_pages - Non-slot0 physical memory total size 333 * num_percpu_pages - Per-cpu physical memory pages 334 * guest_code - Guest entry point 335 * vcpuids - VCPU IDs 336 * 337 * Output Args: None 338 * 339 * Return: 340 * Pointer to opaque structure that describes the created VM. 341 * 342 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K), 343 * with customized slot0 memory size, at least 512 pages currently. 344 * extra_mem_pages is only used to calculate the maximum page table size, 345 * no real memory allocation for non-slot0 memory in this function. 346 */ 347 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus, 348 uint64_t slot0_mem_pages, uint64_t extra_mem_pages, 349 uint32_t num_percpu_pages, void *guest_code, 350 uint32_t vcpuids[]) 351 { 352 uint64_t vcpu_pages, extra_pg_pages, pages; 353 struct kvm_vm *vm; 354 int i; 355 356 /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */ 357 if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES) 358 slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES; 359 360 /* The maximum page table size for a memory region will be when the 361 * smallest pages are used. Considering each page contains x page 362 * table descriptors, the total extra size for page tables (for extra 363 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 364 * than N/x*2. 365 */ 366 vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus; 367 extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2; 368 pages = slot0_mem_pages + vcpu_pages + extra_pg_pages; 369 370 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 371 "nr_vcpus = %d too large for host, max-vcpus = %d", 372 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 373 374 pages = vm_adjust_num_guest_pages(mode, pages); 375 vm = vm_create(mode, pages, O_RDWR); 376 377 kvm_vm_elf_load(vm, program_invocation_name); 378 379 #ifdef __x86_64__ 380 vm_create_irqchip(vm); 381 #endif 382 383 for (i = 0; i < nr_vcpus; ++i) { 384 uint32_t vcpuid = vcpuids ? vcpuids[i] : i; 385 386 vm_vcpu_add_default(vm, vcpuid, guest_code); 387 } 388 389 return vm; 390 } 391 392 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages, 393 uint32_t num_percpu_pages, void *guest_code, 394 uint32_t vcpuids[]) 395 { 396 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES, 397 extra_mem_pages, num_percpu_pages, guest_code, vcpuids); 398 } 399 400 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages, 401 void *guest_code) 402 { 403 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code, 404 (uint32_t []){ vcpuid }); 405 } 406 407 /* 408 * VM Restart 409 * 410 * Input Args: 411 * vm - VM that has been released before 412 * perm - permission 413 * 414 * Output Args: None 415 * 416 * Reopens the file descriptors associated to the VM and reinstates the 417 * global state, such as the irqchip and the memory regions that are mapped 418 * into the guest. 419 */ 420 void kvm_vm_restart(struct kvm_vm *vmp, int perm) 421 { 422 int ctr; 423 struct userspace_mem_region *region; 424 425 vm_open(vmp, perm); 426 if (vmp->has_irqchip) 427 vm_create_irqchip(vmp); 428 429 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 430 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 431 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 432 " rc: %i errno: %i\n" 433 " slot: %u flags: 0x%x\n" 434 " guest_phys_addr: 0x%llx size: 0x%llx", 435 ret, errno, region->region.slot, 436 region->region.flags, 437 region->region.guest_phys_addr, 438 region->region.memory_size); 439 } 440 } 441 442 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 443 { 444 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 445 int ret; 446 447 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args); 448 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s", 449 __func__, strerror(-ret)); 450 } 451 452 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 453 uint64_t first_page, uint32_t num_pages) 454 { 455 struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot, 456 .first_page = first_page, 457 .num_pages = num_pages }; 458 int ret; 459 460 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args); 461 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s", 462 __func__, strerror(-ret)); 463 } 464 465 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 466 { 467 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS); 468 } 469 470 /* 471 * Userspace Memory Region Find 472 * 473 * Input Args: 474 * vm - Virtual Machine 475 * start - Starting VM physical address 476 * end - Ending VM physical address, inclusive. 477 * 478 * Output Args: None 479 * 480 * Return: 481 * Pointer to overlapping region, NULL if no such region. 482 * 483 * Searches for a region with any physical memory that overlaps with 484 * any portion of the guest physical addresses from start to end 485 * inclusive. If multiple overlapping regions exist, a pointer to any 486 * of the regions is returned. Null is returned only when no overlapping 487 * region exists. 488 */ 489 static struct userspace_mem_region * 490 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 491 { 492 struct rb_node *node; 493 494 for (node = vm->regions.gpa_tree.rb_node; node; ) { 495 struct userspace_mem_region *region = 496 container_of(node, struct userspace_mem_region, gpa_node); 497 uint64_t existing_start = region->region.guest_phys_addr; 498 uint64_t existing_end = region->region.guest_phys_addr 499 + region->region.memory_size - 1; 500 if (start <= existing_end && end >= existing_start) 501 return region; 502 503 if (start < existing_start) 504 node = node->rb_left; 505 else 506 node = node->rb_right; 507 } 508 509 return NULL; 510 } 511 512 /* 513 * KVM Userspace Memory Region Find 514 * 515 * Input Args: 516 * vm - Virtual Machine 517 * start - Starting VM physical address 518 * end - Ending VM physical address, inclusive. 519 * 520 * Output Args: None 521 * 522 * Return: 523 * Pointer to overlapping region, NULL if no such region. 524 * 525 * Public interface to userspace_mem_region_find. Allows tests to look up 526 * the memslot datastructure for a given range of guest physical memory. 527 */ 528 struct kvm_userspace_memory_region * 529 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, 530 uint64_t end) 531 { 532 struct userspace_mem_region *region; 533 534 region = userspace_mem_region_find(vm, start, end); 535 if (!region) 536 return NULL; 537 538 return ®ion->region; 539 } 540 541 /* 542 * VCPU Find 543 * 544 * Input Args: 545 * vm - Virtual Machine 546 * vcpuid - VCPU ID 547 * 548 * Output Args: None 549 * 550 * Return: 551 * Pointer to VCPU structure 552 * 553 * Locates a vcpu structure that describes the VCPU specified by vcpuid and 554 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU 555 * for the specified vcpuid. 556 */ 557 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid) 558 { 559 struct vcpu *vcpu; 560 561 list_for_each_entry(vcpu, &vm->vcpus, list) { 562 if (vcpu->id == vcpuid) 563 return vcpu; 564 } 565 566 return NULL; 567 } 568 569 /* 570 * VM VCPU Remove 571 * 572 * Input Args: 573 * vcpu - VCPU to remove 574 * 575 * Output Args: None 576 * 577 * Return: None, TEST_ASSERT failures for all error conditions 578 * 579 * Removes a vCPU from a VM and frees its resources. 580 */ 581 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu) 582 { 583 int ret; 584 585 if (vcpu->dirty_gfns) { 586 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 587 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, " 588 "rc: %i errno: %i", ret, errno); 589 vcpu->dirty_gfns = NULL; 590 } 591 592 ret = munmap(vcpu->state, vcpu_mmap_sz()); 593 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i " 594 "errno: %i", ret, errno); 595 ret = close(vcpu->fd); 596 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i " 597 "errno: %i", ret, errno); 598 599 list_del(&vcpu->list); 600 free(vcpu); 601 } 602 603 void kvm_vm_release(struct kvm_vm *vmp) 604 { 605 struct vcpu *vcpu, *tmp; 606 int ret; 607 608 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 609 vm_vcpu_rm(vmp, vcpu); 610 611 ret = close(vmp->fd); 612 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n" 613 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno); 614 615 ret = close(vmp->kvm_fd); 616 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n" 617 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno); 618 } 619 620 static void __vm_mem_region_delete(struct kvm_vm *vm, 621 struct userspace_mem_region *region, 622 bool unlink) 623 { 624 int ret; 625 626 if (unlink) { 627 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 628 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 629 hash_del(®ion->slot_node); 630 } 631 632 region->region.memory_size = 0; 633 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 634 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, " 635 "rc: %i errno: %i", ret, errno); 636 637 sparsebit_free(®ion->unused_phy_pages); 638 ret = munmap(region->mmap_start, region->mmap_size); 639 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno); 640 641 free(region); 642 } 643 644 /* 645 * Destroys and frees the VM pointed to by vmp. 646 */ 647 void kvm_vm_free(struct kvm_vm *vmp) 648 { 649 int ctr; 650 struct hlist_node *node; 651 struct userspace_mem_region *region; 652 653 if (vmp == NULL) 654 return; 655 656 /* Free userspace_mem_regions. */ 657 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 658 __vm_mem_region_delete(vmp, region, false); 659 660 /* Free sparsebit arrays. */ 661 sparsebit_free(&vmp->vpages_valid); 662 sparsebit_free(&vmp->vpages_mapped); 663 664 kvm_vm_release(vmp); 665 666 /* Free the structure describing the VM. */ 667 free(vmp); 668 } 669 670 /* 671 * Memory Compare, host virtual to guest virtual 672 * 673 * Input Args: 674 * hva - Starting host virtual address 675 * vm - Virtual Machine 676 * gva - Starting guest virtual address 677 * len - number of bytes to compare 678 * 679 * Output Args: None 680 * 681 * Input/Output Args: None 682 * 683 * Return: 684 * Returns 0 if the bytes starting at hva for a length of len 685 * are equal the guest virtual bytes starting at gva. Returns 686 * a value < 0, if bytes at hva are less than those at gva. 687 * Otherwise a value > 0 is returned. 688 * 689 * Compares the bytes starting at the host virtual address hva, for 690 * a length of len, to the guest bytes starting at the guest virtual 691 * address given by gva. 692 */ 693 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 694 { 695 size_t amt; 696 697 /* 698 * Compare a batch of bytes until either a match is found 699 * or all the bytes have been compared. 700 */ 701 for (uintptr_t offset = 0; offset < len; offset += amt) { 702 uintptr_t ptr1 = (uintptr_t)hva + offset; 703 704 /* 705 * Determine host address for guest virtual address 706 * at offset. 707 */ 708 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 709 710 /* 711 * Determine amount to compare on this pass. 712 * Don't allow the comparsion to cross a page boundary. 713 */ 714 amt = len - offset; 715 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 716 amt = vm->page_size - (ptr1 % vm->page_size); 717 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 718 amt = vm->page_size - (ptr2 % vm->page_size); 719 720 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 721 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 722 723 /* 724 * Perform the comparison. If there is a difference 725 * return that result to the caller, otherwise need 726 * to continue on looking for a mismatch. 727 */ 728 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 729 if (ret != 0) 730 return ret; 731 } 732 733 /* 734 * No mismatch found. Let the caller know the two memory 735 * areas are equal. 736 */ 737 return 0; 738 } 739 740 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 741 struct userspace_mem_region *region) 742 { 743 struct rb_node **cur, *parent; 744 745 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 746 struct userspace_mem_region *cregion; 747 748 cregion = container_of(*cur, typeof(*cregion), gpa_node); 749 parent = *cur; 750 if (region->region.guest_phys_addr < 751 cregion->region.guest_phys_addr) 752 cur = &(*cur)->rb_left; 753 else { 754 TEST_ASSERT(region->region.guest_phys_addr != 755 cregion->region.guest_phys_addr, 756 "Duplicate GPA in region tree"); 757 758 cur = &(*cur)->rb_right; 759 } 760 } 761 762 rb_link_node(®ion->gpa_node, parent, cur); 763 rb_insert_color(®ion->gpa_node, gpa_tree); 764 } 765 766 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 767 struct userspace_mem_region *region) 768 { 769 struct rb_node **cur, *parent; 770 771 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 772 struct userspace_mem_region *cregion; 773 774 cregion = container_of(*cur, typeof(*cregion), hva_node); 775 parent = *cur; 776 if (region->host_mem < cregion->host_mem) 777 cur = &(*cur)->rb_left; 778 else { 779 TEST_ASSERT(region->host_mem != 780 cregion->host_mem, 781 "Duplicate HVA in region tree"); 782 783 cur = &(*cur)->rb_right; 784 } 785 } 786 787 rb_link_node(®ion->hva_node, parent, cur); 788 rb_insert_color(®ion->hva_node, hva_tree); 789 } 790 791 /* 792 * VM Userspace Memory Region Add 793 * 794 * Input Args: 795 * vm - Virtual Machine 796 * src_type - Storage source for this region. 797 * NULL to use anonymous memory. 798 * guest_paddr - Starting guest physical address 799 * slot - KVM region slot 800 * npages - Number of physical pages 801 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES) 802 * 803 * Output Args: None 804 * 805 * Return: None 806 * 807 * Allocates a memory area of the number of pages specified by npages 808 * and maps it to the VM specified by vm, at a starting physical address 809 * given by guest_paddr. The region is created with a KVM region slot 810 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The 811 * region is created with the flags given by flags. 812 */ 813 void vm_userspace_mem_region_add(struct kvm_vm *vm, 814 enum vm_mem_backing_src_type src_type, 815 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 816 uint32_t flags) 817 { 818 int ret; 819 struct userspace_mem_region *region; 820 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 821 size_t alignment; 822 823 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 824 "Number of guest pages is not compatible with the host. " 825 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 826 827 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 828 "address not on a page boundary.\n" 829 " guest_paddr: 0x%lx vm->page_size: 0x%x", 830 guest_paddr, vm->page_size); 831 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 832 <= vm->max_gfn, "Physical range beyond maximum " 833 "supported physical address,\n" 834 " guest_paddr: 0x%lx npages: 0x%lx\n" 835 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 836 guest_paddr, npages, vm->max_gfn, vm->page_size); 837 838 /* 839 * Confirm a mem region with an overlapping address doesn't 840 * already exist. 841 */ 842 region = (struct userspace_mem_region *) userspace_mem_region_find( 843 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 844 if (region != NULL) 845 TEST_FAIL("overlapping userspace_mem_region already " 846 "exists\n" 847 " requested guest_paddr: 0x%lx npages: 0x%lx " 848 "page_size: 0x%x\n" 849 " existing guest_paddr: 0x%lx size: 0x%lx", 850 guest_paddr, npages, vm->page_size, 851 (uint64_t) region->region.guest_phys_addr, 852 (uint64_t) region->region.memory_size); 853 854 /* Confirm no region with the requested slot already exists. */ 855 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 856 slot) { 857 if (region->region.slot != slot) 858 continue; 859 860 TEST_FAIL("A mem region with the requested slot " 861 "already exists.\n" 862 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 863 " existing slot: %u paddr: 0x%lx size: 0x%lx", 864 slot, guest_paddr, npages, 865 region->region.slot, 866 (uint64_t) region->region.guest_phys_addr, 867 (uint64_t) region->region.memory_size); 868 } 869 870 /* Allocate and initialize new mem region structure. */ 871 region = calloc(1, sizeof(*region)); 872 TEST_ASSERT(region != NULL, "Insufficient Memory"); 873 region->mmap_size = npages * vm->page_size; 874 875 #ifdef __s390x__ 876 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 877 alignment = 0x100000; 878 #else 879 alignment = 1; 880 #endif 881 882 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 883 alignment = max(backing_src_pagesz, alignment); 884 885 /* Add enough memory to align up if necessary */ 886 if (alignment > 1) 887 region->mmap_size += alignment; 888 889 region->fd = -1; 890 if (backing_src_is_shared(src_type)) { 891 int memfd_flags = MFD_CLOEXEC; 892 893 if (src_type == VM_MEM_SRC_SHARED_HUGETLB) 894 memfd_flags |= MFD_HUGETLB; 895 896 region->fd = memfd_create("kvm_selftest", memfd_flags); 897 TEST_ASSERT(region->fd != -1, 898 "memfd_create failed, errno: %i", errno); 899 900 ret = ftruncate(region->fd, region->mmap_size); 901 TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno); 902 903 ret = fallocate(region->fd, 904 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, 905 region->mmap_size); 906 TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno); 907 } 908 909 region->mmap_start = mmap(NULL, region->mmap_size, 910 PROT_READ | PROT_WRITE, 911 vm_mem_backing_src_alias(src_type)->flag, 912 region->fd, 0); 913 TEST_ASSERT(region->mmap_start != MAP_FAILED, 914 "test_malloc failed, mmap_start: %p errno: %i", 915 region->mmap_start, errno); 916 917 /* Align host address */ 918 region->host_mem = align(region->mmap_start, alignment); 919 920 /* As needed perform madvise */ 921 if ((src_type == VM_MEM_SRC_ANONYMOUS || 922 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 923 ret = madvise(region->host_mem, npages * vm->page_size, 924 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 925 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 926 region->host_mem, npages * vm->page_size, 927 vm_mem_backing_src_alias(src_type)->name); 928 } 929 930 region->unused_phy_pages = sparsebit_alloc(); 931 sparsebit_set_num(region->unused_phy_pages, 932 guest_paddr >> vm->page_shift, npages); 933 region->region.slot = slot; 934 region->region.flags = flags; 935 region->region.guest_phys_addr = guest_paddr; 936 region->region.memory_size = npages * vm->page_size; 937 region->region.userspace_addr = (uintptr_t) region->host_mem; 938 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 939 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 940 " rc: %i errno: %i\n" 941 " slot: %u flags: 0x%x\n" 942 " guest_phys_addr: 0x%lx size: 0x%lx", 943 ret, errno, slot, flags, 944 guest_paddr, (uint64_t) region->region.memory_size); 945 946 /* Add to quick lookup data structures */ 947 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 948 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 949 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 950 951 /* If shared memory, create an alias. */ 952 if (region->fd >= 0) { 953 region->mmap_alias = mmap(NULL, region->mmap_size, 954 PROT_READ | PROT_WRITE, 955 vm_mem_backing_src_alias(src_type)->flag, 956 region->fd, 0); 957 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 958 "mmap of alias failed, errno: %i", errno); 959 960 /* Align host alias address */ 961 region->host_alias = align(region->mmap_alias, alignment); 962 } 963 } 964 965 /* 966 * Memslot to region 967 * 968 * Input Args: 969 * vm - Virtual Machine 970 * memslot - KVM memory slot ID 971 * 972 * Output Args: None 973 * 974 * Return: 975 * Pointer to memory region structure that describe memory region 976 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 977 * on error (e.g. currently no memory region using memslot as a KVM 978 * memory slot ID). 979 */ 980 struct userspace_mem_region * 981 memslot2region(struct kvm_vm *vm, uint32_t memslot) 982 { 983 struct userspace_mem_region *region; 984 985 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 986 memslot) 987 if (region->region.slot == memslot) 988 return region; 989 990 fprintf(stderr, "No mem region with the requested slot found,\n" 991 " requested slot: %u\n", memslot); 992 fputs("---- vm dump ----\n", stderr); 993 vm_dump(stderr, vm, 2); 994 TEST_FAIL("Mem region not found"); 995 return NULL; 996 } 997 998 /* 999 * VM Memory Region Flags Set 1000 * 1001 * Input Args: 1002 * vm - Virtual Machine 1003 * flags - Starting guest physical address 1004 * 1005 * Output Args: None 1006 * 1007 * Return: None 1008 * 1009 * Sets the flags of the memory region specified by the value of slot, 1010 * to the values given by flags. 1011 */ 1012 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1013 { 1014 int ret; 1015 struct userspace_mem_region *region; 1016 1017 region = memslot2region(vm, slot); 1018 1019 region->region.flags = flags; 1020 1021 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1022 1023 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 1024 " rc: %i errno: %i slot: %u flags: 0x%x", 1025 ret, errno, slot, flags); 1026 } 1027 1028 /* 1029 * VM Memory Region Move 1030 * 1031 * Input Args: 1032 * vm - Virtual Machine 1033 * slot - Slot of the memory region to move 1034 * new_gpa - Starting guest physical address 1035 * 1036 * Output Args: None 1037 * 1038 * Return: None 1039 * 1040 * Change the gpa of a memory region. 1041 */ 1042 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1043 { 1044 struct userspace_mem_region *region; 1045 int ret; 1046 1047 region = memslot2region(vm, slot); 1048 1049 region->region.guest_phys_addr = new_gpa; 1050 1051 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1052 1053 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n" 1054 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1055 ret, errno, slot, new_gpa); 1056 } 1057 1058 /* 1059 * VM Memory Region Delete 1060 * 1061 * Input Args: 1062 * vm - Virtual Machine 1063 * slot - Slot of the memory region to delete 1064 * 1065 * Output Args: None 1066 * 1067 * Return: None 1068 * 1069 * Delete a memory region. 1070 */ 1071 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1072 { 1073 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1074 } 1075 1076 /* 1077 * VCPU mmap Size 1078 * 1079 * Input Args: None 1080 * 1081 * Output Args: None 1082 * 1083 * Return: 1084 * Size of VCPU state 1085 * 1086 * Returns the size of the structure pointed to by the return value 1087 * of vcpu_state(). 1088 */ 1089 static int vcpu_mmap_sz(void) 1090 { 1091 int dev_fd, ret; 1092 1093 dev_fd = open_kvm_dev_path_or_exit(); 1094 1095 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1096 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1097 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i", 1098 __func__, ret, errno); 1099 1100 close(dev_fd); 1101 1102 return ret; 1103 } 1104 1105 /* 1106 * VM VCPU Add 1107 * 1108 * Input Args: 1109 * vm - Virtual Machine 1110 * vcpuid - VCPU ID 1111 * 1112 * Output Args: None 1113 * 1114 * Return: None 1115 * 1116 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid. 1117 * No additional VCPU setup is done. 1118 */ 1119 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid) 1120 { 1121 struct vcpu *vcpu; 1122 1123 /* Confirm a vcpu with the specified id doesn't already exist. */ 1124 vcpu = vcpu_find(vm, vcpuid); 1125 if (vcpu != NULL) 1126 TEST_FAIL("vcpu with the specified id " 1127 "already exists,\n" 1128 " requested vcpuid: %u\n" 1129 " existing vcpuid: %u state: %p", 1130 vcpuid, vcpu->id, vcpu->state); 1131 1132 /* Allocate and initialize new vcpu structure. */ 1133 vcpu = calloc(1, sizeof(*vcpu)); 1134 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1135 vcpu->id = vcpuid; 1136 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid); 1137 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i", 1138 vcpu->fd, errno); 1139 1140 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size " 1141 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1142 vcpu_mmap_sz(), sizeof(*vcpu->state)); 1143 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1144 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1145 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, " 1146 "vcpu id: %u errno: %i", vcpuid, errno); 1147 1148 /* Add to linked-list of VCPUs. */ 1149 list_add(&vcpu->list, &vm->vcpus); 1150 } 1151 1152 /* 1153 * VM Virtual Address Unused Gap 1154 * 1155 * Input Args: 1156 * vm - Virtual Machine 1157 * sz - Size (bytes) 1158 * vaddr_min - Minimum Virtual Address 1159 * 1160 * Output Args: None 1161 * 1162 * Return: 1163 * Lowest virtual address at or below vaddr_min, with at least 1164 * sz unused bytes. TEST_ASSERT failure if no area of at least 1165 * size sz is available. 1166 * 1167 * Within the VM specified by vm, locates the lowest starting virtual 1168 * address >= vaddr_min, that has at least sz unallocated bytes. A 1169 * TEST_ASSERT failure occurs for invalid input or no area of at least 1170 * sz unallocated bytes >= vaddr_min is available. 1171 */ 1172 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1173 vm_vaddr_t vaddr_min) 1174 { 1175 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1176 1177 /* Determine lowest permitted virtual page index. */ 1178 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1179 if ((pgidx_start * vm->page_size) < vaddr_min) 1180 goto no_va_found; 1181 1182 /* Loop over section with enough valid virtual page indexes. */ 1183 if (!sparsebit_is_set_num(vm->vpages_valid, 1184 pgidx_start, pages)) 1185 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1186 pgidx_start, pages); 1187 do { 1188 /* 1189 * Are there enough unused virtual pages available at 1190 * the currently proposed starting virtual page index. 1191 * If not, adjust proposed starting index to next 1192 * possible. 1193 */ 1194 if (sparsebit_is_clear_num(vm->vpages_mapped, 1195 pgidx_start, pages)) 1196 goto va_found; 1197 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1198 pgidx_start, pages); 1199 if (pgidx_start == 0) 1200 goto no_va_found; 1201 1202 /* 1203 * If needed, adjust proposed starting virtual address, 1204 * to next range of valid virtual addresses. 1205 */ 1206 if (!sparsebit_is_set_num(vm->vpages_valid, 1207 pgidx_start, pages)) { 1208 pgidx_start = sparsebit_next_set_num( 1209 vm->vpages_valid, pgidx_start, pages); 1210 if (pgidx_start == 0) 1211 goto no_va_found; 1212 } 1213 } while (pgidx_start != 0); 1214 1215 no_va_found: 1216 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1217 1218 /* NOT REACHED */ 1219 return -1; 1220 1221 va_found: 1222 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1223 pgidx_start, pages), 1224 "Unexpected, invalid virtual page index range,\n" 1225 " pgidx_start: 0x%lx\n" 1226 " pages: 0x%lx", 1227 pgidx_start, pages); 1228 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1229 pgidx_start, pages), 1230 "Unexpected, pages already mapped,\n" 1231 " pgidx_start: 0x%lx\n" 1232 " pages: 0x%lx", 1233 pgidx_start, pages); 1234 1235 return pgidx_start * vm->page_size; 1236 } 1237 1238 /* 1239 * VM Virtual Address Allocate 1240 * 1241 * Input Args: 1242 * vm - Virtual Machine 1243 * sz - Size in bytes 1244 * vaddr_min - Minimum starting virtual address 1245 * data_memslot - Memory region slot for data pages 1246 * pgd_memslot - Memory region slot for new virtual translation tables 1247 * 1248 * Output Args: None 1249 * 1250 * Return: 1251 * Starting guest virtual address 1252 * 1253 * Allocates at least sz bytes within the virtual address space of the vm 1254 * given by vm. The allocated bytes are mapped to a virtual address >= 1255 * the address given by vaddr_min. Note that each allocation uses a 1256 * a unique set of pages, with the minimum real allocation being at least 1257 * a page. 1258 */ 1259 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1260 { 1261 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1262 1263 virt_pgd_alloc(vm); 1264 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages, 1265 KVM_UTIL_MIN_PFN * vm->page_size, 0); 1266 1267 /* 1268 * Find an unused range of virtual page addresses of at least 1269 * pages in length. 1270 */ 1271 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1272 1273 /* Map the virtual pages. */ 1274 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1275 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1276 1277 virt_pg_map(vm, vaddr, paddr); 1278 1279 sparsebit_set(vm->vpages_mapped, 1280 vaddr >> vm->page_shift); 1281 } 1282 1283 return vaddr_start; 1284 } 1285 1286 /* 1287 * VM Virtual Address Allocate Pages 1288 * 1289 * Input Args: 1290 * vm - Virtual Machine 1291 * 1292 * Output Args: None 1293 * 1294 * Return: 1295 * Starting guest virtual address 1296 * 1297 * Allocates at least N system pages worth of bytes within the virtual address 1298 * space of the vm. 1299 */ 1300 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1301 { 1302 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1303 } 1304 1305 /* 1306 * VM Virtual Address Allocate Page 1307 * 1308 * Input Args: 1309 * vm - Virtual Machine 1310 * 1311 * Output Args: None 1312 * 1313 * Return: 1314 * Starting guest virtual address 1315 * 1316 * Allocates at least one system page worth of bytes within the virtual address 1317 * space of the vm. 1318 */ 1319 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1320 { 1321 return vm_vaddr_alloc_pages(vm, 1); 1322 } 1323 1324 /* 1325 * Map a range of VM virtual address to the VM's physical address 1326 * 1327 * Input Args: 1328 * vm - Virtual Machine 1329 * vaddr - Virtuall address to map 1330 * paddr - VM Physical Address 1331 * npages - The number of pages to map 1332 * pgd_memslot - Memory region slot for new virtual translation tables 1333 * 1334 * Output Args: None 1335 * 1336 * Return: None 1337 * 1338 * Within the VM given by @vm, creates a virtual translation for 1339 * @npages starting at @vaddr to the page range starting at @paddr. 1340 */ 1341 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1342 unsigned int npages) 1343 { 1344 size_t page_size = vm->page_size; 1345 size_t size = npages * page_size; 1346 1347 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1348 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1349 1350 while (npages--) { 1351 virt_pg_map(vm, vaddr, paddr); 1352 vaddr += page_size; 1353 paddr += page_size; 1354 } 1355 } 1356 1357 /* 1358 * Address VM Physical to Host Virtual 1359 * 1360 * Input Args: 1361 * vm - Virtual Machine 1362 * gpa - VM physical address 1363 * 1364 * Output Args: None 1365 * 1366 * Return: 1367 * Equivalent host virtual address 1368 * 1369 * Locates the memory region containing the VM physical address given 1370 * by gpa, within the VM given by vm. When found, the host virtual 1371 * address providing the memory to the vm physical address is returned. 1372 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1373 */ 1374 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1375 { 1376 struct userspace_mem_region *region; 1377 1378 region = userspace_mem_region_find(vm, gpa, gpa); 1379 if (!region) { 1380 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1381 return NULL; 1382 } 1383 1384 return (void *)((uintptr_t)region->host_mem 1385 + (gpa - region->region.guest_phys_addr)); 1386 } 1387 1388 /* 1389 * Address Host Virtual to VM Physical 1390 * 1391 * Input Args: 1392 * vm - Virtual Machine 1393 * hva - Host virtual address 1394 * 1395 * Output Args: None 1396 * 1397 * Return: 1398 * Equivalent VM physical address 1399 * 1400 * Locates the memory region containing the host virtual address given 1401 * by hva, within the VM given by vm. When found, the equivalent 1402 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1403 * region containing hva exists. 1404 */ 1405 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1406 { 1407 struct rb_node *node; 1408 1409 for (node = vm->regions.hva_tree.rb_node; node; ) { 1410 struct userspace_mem_region *region = 1411 container_of(node, struct userspace_mem_region, hva_node); 1412 1413 if (hva >= region->host_mem) { 1414 if (hva <= (region->host_mem 1415 + region->region.memory_size - 1)) 1416 return (vm_paddr_t)((uintptr_t) 1417 region->region.guest_phys_addr 1418 + (hva - (uintptr_t)region->host_mem)); 1419 1420 node = node->rb_right; 1421 } else 1422 node = node->rb_left; 1423 } 1424 1425 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1426 return -1; 1427 } 1428 1429 /* 1430 * Address VM physical to Host Virtual *alias*. 1431 * 1432 * Input Args: 1433 * vm - Virtual Machine 1434 * gpa - VM physical address 1435 * 1436 * Output Args: None 1437 * 1438 * Return: 1439 * Equivalent address within the host virtual *alias* area, or NULL 1440 * (without failing the test) if the guest memory is not shared (so 1441 * no alias exists). 1442 * 1443 * When vm_create() and related functions are called with a shared memory 1444 * src_type, we also create a writable, shared alias mapping of the 1445 * underlying guest memory. This allows the host to manipulate guest memory 1446 * without mapping that memory in the guest's address space. And, for 1447 * userfaultfd-based demand paging, we can do so without triggering userfaults. 1448 */ 1449 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1450 { 1451 struct userspace_mem_region *region; 1452 uintptr_t offset; 1453 1454 region = userspace_mem_region_find(vm, gpa, gpa); 1455 if (!region) 1456 return NULL; 1457 1458 if (!region->host_alias) 1459 return NULL; 1460 1461 offset = gpa - region->region.guest_phys_addr; 1462 return (void *) ((uintptr_t) region->host_alias + offset); 1463 } 1464 1465 /* 1466 * VM Create IRQ Chip 1467 * 1468 * Input Args: 1469 * vm - Virtual Machine 1470 * 1471 * Output Args: None 1472 * 1473 * Return: None 1474 * 1475 * Creates an interrupt controller chip for the VM specified by vm. 1476 */ 1477 void vm_create_irqchip(struct kvm_vm *vm) 1478 { 1479 int ret; 1480 1481 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0); 1482 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, " 1483 "rc: %i errno: %i", ret, errno); 1484 1485 vm->has_irqchip = true; 1486 } 1487 1488 /* 1489 * VM VCPU State 1490 * 1491 * Input Args: 1492 * vm - Virtual Machine 1493 * vcpuid - VCPU ID 1494 * 1495 * Output Args: None 1496 * 1497 * Return: 1498 * Pointer to structure that describes the state of the VCPU. 1499 * 1500 * Locates and returns a pointer to a structure that describes the 1501 * state of the VCPU with the given vcpuid. 1502 */ 1503 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid) 1504 { 1505 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1506 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1507 1508 return vcpu->state; 1509 } 1510 1511 /* 1512 * VM VCPU Run 1513 * 1514 * Input Args: 1515 * vm - Virtual Machine 1516 * vcpuid - VCPU ID 1517 * 1518 * Output Args: None 1519 * 1520 * Return: None 1521 * 1522 * Switch to executing the code for the VCPU given by vcpuid, within the VM 1523 * given by vm. 1524 */ 1525 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1526 { 1527 int ret = _vcpu_run(vm, vcpuid); 1528 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " 1529 "rc: %i errno: %i", ret, errno); 1530 } 1531 1532 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1533 { 1534 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1535 int rc; 1536 1537 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1538 do { 1539 rc = ioctl(vcpu->fd, KVM_RUN, NULL); 1540 } while (rc == -1 && errno == EINTR); 1541 1542 assert_on_unhandled_exception(vm, vcpuid); 1543 1544 return rc; 1545 } 1546 1547 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid) 1548 { 1549 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1550 1551 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1552 1553 return vcpu->fd; 1554 } 1555 1556 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid) 1557 { 1558 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1559 int ret; 1560 1561 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1562 1563 vcpu->state->immediate_exit = 1; 1564 ret = ioctl(vcpu->fd, KVM_RUN, NULL); 1565 vcpu->state->immediate_exit = 0; 1566 1567 TEST_ASSERT(ret == -1 && errno == EINTR, 1568 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1569 ret, errno); 1570 } 1571 1572 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid, 1573 struct kvm_guest_debug *debug) 1574 { 1575 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1576 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug); 1577 1578 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret); 1579 } 1580 1581 /* 1582 * VM VCPU Set MP State 1583 * 1584 * Input Args: 1585 * vm - Virtual Machine 1586 * vcpuid - VCPU ID 1587 * mp_state - mp_state to be set 1588 * 1589 * Output Args: None 1590 * 1591 * Return: None 1592 * 1593 * Sets the MP state of the VCPU given by vcpuid, to the state given 1594 * by mp_state. 1595 */ 1596 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid, 1597 struct kvm_mp_state *mp_state) 1598 { 1599 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1600 int ret; 1601 1602 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1603 1604 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state); 1605 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, " 1606 "rc: %i errno: %i", ret, errno); 1607 } 1608 1609 /* 1610 * VM VCPU Get Reg List 1611 * 1612 * Input Args: 1613 * vm - Virtual Machine 1614 * vcpuid - VCPU ID 1615 * 1616 * Output Args: 1617 * None 1618 * 1619 * Return: 1620 * A pointer to an allocated struct kvm_reg_list 1621 * 1622 * Get the list of guest registers which are supported for 1623 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls 1624 */ 1625 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid) 1626 { 1627 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1628 int ret; 1629 1630 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n); 1631 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1632 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1633 reg_list->n = reg_list_n.n; 1634 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list); 1635 return reg_list; 1636 } 1637 1638 /* 1639 * VM VCPU Regs Get 1640 * 1641 * Input Args: 1642 * vm - Virtual Machine 1643 * vcpuid - VCPU ID 1644 * 1645 * Output Args: 1646 * regs - current state of VCPU regs 1647 * 1648 * Return: None 1649 * 1650 * Obtains the current register state for the VCPU specified by vcpuid 1651 * and stores it at the location given by regs. 1652 */ 1653 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1654 { 1655 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1656 int ret; 1657 1658 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1659 1660 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs); 1661 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i", 1662 ret, errno); 1663 } 1664 1665 /* 1666 * VM VCPU Regs Set 1667 * 1668 * Input Args: 1669 * vm - Virtual Machine 1670 * vcpuid - VCPU ID 1671 * regs - Values to set VCPU regs to 1672 * 1673 * Output Args: None 1674 * 1675 * Return: None 1676 * 1677 * Sets the regs of the VCPU specified by vcpuid to the values 1678 * given by regs. 1679 */ 1680 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1681 { 1682 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1683 int ret; 1684 1685 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1686 1687 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs); 1688 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i", 1689 ret, errno); 1690 } 1691 1692 #ifdef __KVM_HAVE_VCPU_EVENTS 1693 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid, 1694 struct kvm_vcpu_events *events) 1695 { 1696 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1697 int ret; 1698 1699 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1700 1701 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events); 1702 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i", 1703 ret, errno); 1704 } 1705 1706 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid, 1707 struct kvm_vcpu_events *events) 1708 { 1709 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1710 int ret; 1711 1712 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1713 1714 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events); 1715 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i", 1716 ret, errno); 1717 } 1718 #endif 1719 1720 #ifdef __x86_64__ 1721 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid, 1722 struct kvm_nested_state *state) 1723 { 1724 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1725 int ret; 1726 1727 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1728 1729 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state); 1730 TEST_ASSERT(ret == 0, 1731 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1732 ret, errno); 1733 } 1734 1735 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid, 1736 struct kvm_nested_state *state, bool ignore_error) 1737 { 1738 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1739 int ret; 1740 1741 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1742 1743 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state); 1744 if (!ignore_error) { 1745 TEST_ASSERT(ret == 0, 1746 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1747 ret, errno); 1748 } 1749 1750 return ret; 1751 } 1752 #endif 1753 1754 /* 1755 * VM VCPU System Regs Get 1756 * 1757 * Input Args: 1758 * vm - Virtual Machine 1759 * vcpuid - VCPU ID 1760 * 1761 * Output Args: 1762 * sregs - current state of VCPU system regs 1763 * 1764 * Return: None 1765 * 1766 * Obtains the current system register state for the VCPU specified by 1767 * vcpuid and stores it at the location given by sregs. 1768 */ 1769 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1770 { 1771 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1772 int ret; 1773 1774 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1775 1776 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs); 1777 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i", 1778 ret, errno); 1779 } 1780 1781 /* 1782 * VM VCPU System Regs Set 1783 * 1784 * Input Args: 1785 * vm - Virtual Machine 1786 * vcpuid - VCPU ID 1787 * sregs - Values to set VCPU system regs to 1788 * 1789 * Output Args: None 1790 * 1791 * Return: None 1792 * 1793 * Sets the system regs of the VCPU specified by vcpuid to the values 1794 * given by sregs. 1795 */ 1796 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1797 { 1798 int ret = _vcpu_sregs_set(vm, vcpuid, sregs); 1799 TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, " 1800 "rc: %i errno: %i", ret, errno); 1801 } 1802 1803 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1804 { 1805 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1806 1807 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1808 1809 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs); 1810 } 1811 1812 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1813 { 1814 int ret; 1815 1816 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu); 1817 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)", 1818 ret, errno, strerror(errno)); 1819 } 1820 1821 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1822 { 1823 int ret; 1824 1825 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu); 1826 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)", 1827 ret, errno, strerror(errno)); 1828 } 1829 1830 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1831 { 1832 int ret; 1833 1834 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg); 1835 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)", 1836 ret, errno, strerror(errno)); 1837 } 1838 1839 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1840 { 1841 int ret; 1842 1843 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg); 1844 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)", 1845 ret, errno, strerror(errno)); 1846 } 1847 1848 /* 1849 * VCPU Ioctl 1850 * 1851 * Input Args: 1852 * vm - Virtual Machine 1853 * vcpuid - VCPU ID 1854 * cmd - Ioctl number 1855 * arg - Argument to pass to the ioctl 1856 * 1857 * Return: None 1858 * 1859 * Issues an arbitrary ioctl on a VCPU fd. 1860 */ 1861 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1862 unsigned long cmd, void *arg) 1863 { 1864 int ret; 1865 1866 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg); 1867 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)", 1868 cmd, ret, errno, strerror(errno)); 1869 } 1870 1871 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1872 unsigned long cmd, void *arg) 1873 { 1874 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1875 int ret; 1876 1877 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1878 1879 ret = ioctl(vcpu->fd, cmd, arg); 1880 1881 return ret; 1882 } 1883 1884 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid) 1885 { 1886 struct vcpu *vcpu; 1887 uint32_t size = vm->dirty_ring_size; 1888 1889 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1890 1891 vcpu = vcpu_find(vm, vcpuid); 1892 1893 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid); 1894 1895 if (!vcpu->dirty_gfns) { 1896 void *addr; 1897 1898 addr = mmap(NULL, size, PROT_READ, 1899 MAP_PRIVATE, vcpu->fd, 1900 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1901 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1902 1903 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, 1904 MAP_PRIVATE, vcpu->fd, 1905 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1906 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1907 1908 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, 1909 MAP_SHARED, vcpu->fd, 1910 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1911 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1912 1913 vcpu->dirty_gfns = addr; 1914 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1915 } 1916 1917 return vcpu->dirty_gfns; 1918 } 1919 1920 /* 1921 * VM Ioctl 1922 * 1923 * Input Args: 1924 * vm - Virtual Machine 1925 * cmd - Ioctl number 1926 * arg - Argument to pass to the ioctl 1927 * 1928 * Return: None 1929 * 1930 * Issues an arbitrary ioctl on a VM fd. 1931 */ 1932 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1933 { 1934 int ret; 1935 1936 ret = _vm_ioctl(vm, cmd, arg); 1937 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)", 1938 cmd, ret, errno, strerror(errno)); 1939 } 1940 1941 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1942 { 1943 return ioctl(vm->fd, cmd, arg); 1944 } 1945 1946 /* 1947 * KVM system ioctl 1948 * 1949 * Input Args: 1950 * vm - Virtual Machine 1951 * cmd - Ioctl number 1952 * arg - Argument to pass to the ioctl 1953 * 1954 * Return: None 1955 * 1956 * Issues an arbitrary ioctl on a KVM fd. 1957 */ 1958 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1959 { 1960 int ret; 1961 1962 ret = ioctl(vm->kvm_fd, cmd, arg); 1963 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)", 1964 cmd, ret, errno, strerror(errno)); 1965 } 1966 1967 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1968 { 1969 return ioctl(vm->kvm_fd, cmd, arg); 1970 } 1971 1972 /* 1973 * Device Ioctl 1974 */ 1975 1976 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 1977 { 1978 struct kvm_device_attr attribute = { 1979 .group = group, 1980 .attr = attr, 1981 .flags = 0, 1982 }; 1983 1984 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1985 } 1986 1987 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 1988 { 1989 int ret = _kvm_device_check_attr(dev_fd, group, attr); 1990 1991 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 1992 return ret; 1993 } 1994 1995 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd) 1996 { 1997 struct kvm_create_device create_dev; 1998 int ret; 1999 2000 create_dev.type = type; 2001 create_dev.fd = -1; 2002 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2003 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev); 2004 *fd = create_dev.fd; 2005 return ret; 2006 } 2007 2008 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test) 2009 { 2010 int fd, ret; 2011 2012 ret = _kvm_create_device(vm, type, test, &fd); 2013 2014 if (!test) { 2015 TEST_ASSERT(!ret, 2016 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno); 2017 return fd; 2018 } 2019 return ret; 2020 } 2021 2022 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2023 void *val, bool write) 2024 { 2025 struct kvm_device_attr kvmattr = { 2026 .group = group, 2027 .attr = attr, 2028 .flags = 0, 2029 .addr = (uintptr_t)val, 2030 }; 2031 int ret; 2032 2033 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2034 &kvmattr); 2035 return ret; 2036 } 2037 2038 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2039 void *val, bool write) 2040 { 2041 int ret = _kvm_device_access(dev_fd, group, attr, val, write); 2042 2043 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2044 return ret; 2045 } 2046 2047 int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2048 uint64_t attr) 2049 { 2050 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2051 2052 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid); 2053 2054 return _kvm_device_check_attr(vcpu->fd, group, attr); 2055 } 2056 2057 int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2058 uint64_t attr) 2059 { 2060 int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr); 2061 2062 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2063 return ret; 2064 } 2065 2066 int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2067 uint64_t attr, void *val, bool write) 2068 { 2069 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2070 2071 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid); 2072 2073 return _kvm_device_access(vcpu->fd, group, attr, val, write); 2074 } 2075 2076 int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2077 uint64_t attr, void *val, bool write) 2078 { 2079 int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write); 2080 2081 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2082 return ret; 2083 } 2084 2085 /* 2086 * VM Dump 2087 * 2088 * Input Args: 2089 * vm - Virtual Machine 2090 * indent - Left margin indent amount 2091 * 2092 * Output Args: 2093 * stream - Output FILE stream 2094 * 2095 * Return: None 2096 * 2097 * Dumps the current state of the VM given by vm, to the FILE stream 2098 * given by stream. 2099 */ 2100 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 2101 { 2102 int ctr; 2103 struct userspace_mem_region *region; 2104 struct vcpu *vcpu; 2105 2106 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 2107 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 2108 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 2109 fprintf(stream, "%*sMem Regions:\n", indent, ""); 2110 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 2111 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 2112 "host_virt: %p\n", indent + 2, "", 2113 (uint64_t) region->region.guest_phys_addr, 2114 (uint64_t) region->region.memory_size, 2115 region->host_mem); 2116 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 2117 sparsebit_dump(stream, region->unused_phy_pages, 0); 2118 } 2119 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 2120 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 2121 fprintf(stream, "%*spgd_created: %u\n", indent, "", 2122 vm->pgd_created); 2123 if (vm->pgd_created) { 2124 fprintf(stream, "%*sVirtual Translation Tables:\n", 2125 indent + 2, ""); 2126 virt_dump(stream, vm, indent + 4); 2127 } 2128 fprintf(stream, "%*sVCPUs:\n", indent, ""); 2129 list_for_each_entry(vcpu, &vm->vcpus, list) 2130 vcpu_dump(stream, vm, vcpu->id, indent + 2); 2131 } 2132 2133 /* Known KVM exit reasons */ 2134 static struct exit_reason { 2135 unsigned int reason; 2136 const char *name; 2137 } exit_reasons_known[] = { 2138 {KVM_EXIT_UNKNOWN, "UNKNOWN"}, 2139 {KVM_EXIT_EXCEPTION, "EXCEPTION"}, 2140 {KVM_EXIT_IO, "IO"}, 2141 {KVM_EXIT_HYPERCALL, "HYPERCALL"}, 2142 {KVM_EXIT_DEBUG, "DEBUG"}, 2143 {KVM_EXIT_HLT, "HLT"}, 2144 {KVM_EXIT_MMIO, "MMIO"}, 2145 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"}, 2146 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"}, 2147 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"}, 2148 {KVM_EXIT_INTR, "INTR"}, 2149 {KVM_EXIT_SET_TPR, "SET_TPR"}, 2150 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"}, 2151 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"}, 2152 {KVM_EXIT_S390_RESET, "S390_RESET"}, 2153 {KVM_EXIT_DCR, "DCR"}, 2154 {KVM_EXIT_NMI, "NMI"}, 2155 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"}, 2156 {KVM_EXIT_OSI, "OSI"}, 2157 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"}, 2158 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"}, 2159 {KVM_EXIT_X86_RDMSR, "RDMSR"}, 2160 {KVM_EXIT_X86_WRMSR, "WRMSR"}, 2161 {KVM_EXIT_XEN, "XEN"}, 2162 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 2163 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"}, 2164 #endif 2165 }; 2166 2167 /* 2168 * Exit Reason String 2169 * 2170 * Input Args: 2171 * exit_reason - Exit reason 2172 * 2173 * Output Args: None 2174 * 2175 * Return: 2176 * Constant string pointer describing the exit reason. 2177 * 2178 * Locates and returns a constant string that describes the KVM exit 2179 * reason given by exit_reason. If no such string is found, a constant 2180 * string of "Unknown" is returned. 2181 */ 2182 const char *exit_reason_str(unsigned int exit_reason) 2183 { 2184 unsigned int n1; 2185 2186 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2187 if (exit_reason == exit_reasons_known[n1].reason) 2188 return exit_reasons_known[n1].name; 2189 } 2190 2191 return "Unknown"; 2192 } 2193 2194 /* 2195 * Physical Contiguous Page Allocator 2196 * 2197 * Input Args: 2198 * vm - Virtual Machine 2199 * num - number of pages 2200 * paddr_min - Physical address minimum 2201 * memslot - Memory region to allocate page from 2202 * 2203 * Output Args: None 2204 * 2205 * Return: 2206 * Starting physical address 2207 * 2208 * Within the VM specified by vm, locates a range of available physical 2209 * pages at or above paddr_min. If found, the pages are marked as in use 2210 * and their base address is returned. A TEST_ASSERT failure occurs if 2211 * not enough pages are available at or above paddr_min. 2212 */ 2213 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2214 vm_paddr_t paddr_min, uint32_t memslot) 2215 { 2216 struct userspace_mem_region *region; 2217 sparsebit_idx_t pg, base; 2218 2219 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2220 2221 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2222 "not divisible by page size.\n" 2223 " paddr_min: 0x%lx page_size: 0x%x", 2224 paddr_min, vm->page_size); 2225 2226 region = memslot2region(vm, memslot); 2227 base = pg = paddr_min >> vm->page_shift; 2228 2229 do { 2230 for (; pg < base + num; ++pg) { 2231 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2232 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2233 break; 2234 } 2235 } 2236 } while (pg && pg != base + num); 2237 2238 if (pg == 0) { 2239 fprintf(stderr, "No guest physical page available, " 2240 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2241 paddr_min, vm->page_size, memslot); 2242 fputs("---- vm dump ----\n", stderr); 2243 vm_dump(stderr, vm, 2); 2244 abort(); 2245 } 2246 2247 for (pg = base; pg < base + num; ++pg) 2248 sparsebit_clear(region->unused_phy_pages, pg); 2249 2250 return base * vm->page_size; 2251 } 2252 2253 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2254 uint32_t memslot) 2255 { 2256 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2257 } 2258 2259 /* Arbitrary minimum physical address used for virtual translation tables. */ 2260 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 2261 2262 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2263 { 2264 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0); 2265 } 2266 2267 /* 2268 * Address Guest Virtual to Host Virtual 2269 * 2270 * Input Args: 2271 * vm - Virtual Machine 2272 * gva - VM virtual address 2273 * 2274 * Output Args: None 2275 * 2276 * Return: 2277 * Equivalent host virtual address 2278 */ 2279 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2280 { 2281 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2282 } 2283 2284 /* 2285 * Is Unrestricted Guest 2286 * 2287 * Input Args: 2288 * vm - Virtual Machine 2289 * 2290 * Output Args: None 2291 * 2292 * Return: True if the unrestricted guest is set to 'Y', otherwise return false. 2293 * 2294 * Check if the unrestricted guest flag is enabled. 2295 */ 2296 bool vm_is_unrestricted_guest(struct kvm_vm *vm) 2297 { 2298 char val = 'N'; 2299 size_t count; 2300 FILE *f; 2301 2302 if (vm == NULL) { 2303 /* Ensure that the KVM vendor-specific module is loaded. */ 2304 close(open_kvm_dev_path_or_exit()); 2305 } 2306 2307 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r"); 2308 if (f) { 2309 count = fread(&val, sizeof(char), 1, f); 2310 TEST_ASSERT(count == 1, "Unable to read from param file."); 2311 fclose(f); 2312 } 2313 2314 return val == 'Y'; 2315 } 2316 2317 unsigned int vm_get_page_size(struct kvm_vm *vm) 2318 { 2319 return vm->page_size; 2320 } 2321 2322 unsigned int vm_get_page_shift(struct kvm_vm *vm) 2323 { 2324 return vm->page_shift; 2325 } 2326 2327 uint64_t vm_get_max_gfn(struct kvm_vm *vm) 2328 { 2329 return vm->max_gfn; 2330 } 2331 2332 int vm_get_fd(struct kvm_vm *vm) 2333 { 2334 return vm->fd; 2335 } 2336 2337 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2338 unsigned int page_shift, 2339 unsigned int new_page_shift, 2340 bool ceil) 2341 { 2342 unsigned int n = 1 << (new_page_shift - page_shift); 2343 2344 if (page_shift >= new_page_shift) 2345 return num_pages * (1 << (page_shift - new_page_shift)); 2346 2347 return num_pages / n + !!(ceil && num_pages % n); 2348 } 2349 2350 static inline int getpageshift(void) 2351 { 2352 return __builtin_ffs(getpagesize()) - 1; 2353 } 2354 2355 unsigned int 2356 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2357 { 2358 return vm_calc_num_pages(num_guest_pages, 2359 vm_guest_mode_params[mode].page_shift, 2360 getpageshift(), true); 2361 } 2362 2363 unsigned int 2364 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2365 { 2366 return vm_calc_num_pages(num_host_pages, getpageshift(), 2367 vm_guest_mode_params[mode].page_shift, false); 2368 } 2369 2370 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2371 { 2372 unsigned int n; 2373 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2374 return vm_adjust_num_guest_pages(mode, n); 2375 } 2376 2377 int vm_get_stats_fd(struct kvm_vm *vm) 2378 { 2379 return ioctl(vm->fd, KVM_GET_STATS_FD, NULL); 2380 } 2381 2382 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid) 2383 { 2384 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2385 2386 return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL); 2387 } 2388