xref: /openbmc/linux/tools/testing/selftests/kvm/kvm_page_table_test.c (revision 29e1c1ad3ff7f345d80c7b81b08175f5a8c84122)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KVM page table test
4  *
5  * Copyright (C) 2021, Huawei, Inc.
6  *
7  * Make sure that THP has been enabled or enough HUGETLB pages with specific
8  * page size have been pre-allocated on your system, if you are planning to
9  * use hugepages to back the guest memory for testing.
10  */
11 
12 #define _GNU_SOURCE /* for program_invocation_name */
13 
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <time.h>
17 #include <pthread.h>
18 #include <semaphore.h>
19 
20 #include "test_util.h"
21 #include "kvm_util.h"
22 #include "processor.h"
23 #include "guest_modes.h"
24 
25 #define TEST_MEM_SLOT_INDEX             1
26 
27 /* Default size(1GB) of the memory for testing */
28 #define DEFAULT_TEST_MEM_SIZE		(1 << 30)
29 
30 /* Default guest test virtual memory offset */
31 #define DEFAULT_GUEST_TEST_MEM		0xc0000000
32 
33 /* Different guest memory accessing stages */
34 enum test_stage {
35 	KVM_BEFORE_MAPPINGS,
36 	KVM_CREATE_MAPPINGS,
37 	KVM_UPDATE_MAPPINGS,
38 	KVM_ADJUST_MAPPINGS,
39 	NUM_TEST_STAGES,
40 };
41 
42 static const char * const test_stage_string[] = {
43 	"KVM_BEFORE_MAPPINGS",
44 	"KVM_CREATE_MAPPINGS",
45 	"KVM_UPDATE_MAPPINGS",
46 	"KVM_ADJUST_MAPPINGS",
47 };
48 
49 struct vcpu_args {
50 	int vcpu_id;
51 	bool vcpu_write;
52 };
53 
54 struct test_args {
55 	struct kvm_vm *vm;
56 	uint64_t guest_test_virt_mem;
57 	uint64_t host_page_size;
58 	uint64_t host_num_pages;
59 	uint64_t large_page_size;
60 	uint64_t large_num_pages;
61 	uint64_t host_pages_per_lpage;
62 	enum vm_mem_backing_src_type src_type;
63 	struct vcpu_args vcpu_args[KVM_MAX_VCPUS];
64 };
65 
66 /*
67  * Guest variables. Use addr_gva2hva() if these variables need
68  * to be changed in host.
69  */
70 static enum test_stage guest_test_stage;
71 
72 /* Host variables */
73 static uint32_t nr_vcpus = 1;
74 static struct test_args test_args;
75 static enum test_stage *current_stage;
76 static bool host_quit;
77 
78 /* Whether the test stage is updated, or completed */
79 static sem_t test_stage_updated;
80 static sem_t test_stage_completed;
81 
82 /*
83  * Guest physical memory offset of the testing memory slot.
84  * This will be set to the topmost valid physical address minus
85  * the test memory size.
86  */
87 static uint64_t guest_test_phys_mem;
88 
89 /*
90  * Guest virtual memory offset of the testing memory slot.
91  * Must not conflict with identity mapped test code.
92  */
93 static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
94 
95 static void guest_code(int vcpu_id)
96 {
97 	struct test_args *p = &test_args;
98 	struct vcpu_args *vcpu_args = &p->vcpu_args[vcpu_id];
99 	enum test_stage *current_stage = &guest_test_stage;
100 	uint64_t addr;
101 	int i, j;
102 
103 	/* Make sure vCPU args data structure is not corrupt */
104 	GUEST_ASSERT(vcpu_args->vcpu_id == vcpu_id);
105 
106 	while (true) {
107 		addr = p->guest_test_virt_mem;
108 
109 		switch (READ_ONCE(*current_stage)) {
110 		/*
111 		 * All vCPU threads will be started in this stage,
112 		 * where guest code of each vCPU will do nothing.
113 		 */
114 		case KVM_BEFORE_MAPPINGS:
115 			break;
116 
117 		/*
118 		 * Before dirty logging, vCPUs concurrently access the first
119 		 * 8 bytes of each page (host page/large page) within the same
120 		 * memory region with different accessing types (read/write).
121 		 * Then KVM will create normal page mappings or huge block
122 		 * mappings for them.
123 		 */
124 		case KVM_CREATE_MAPPINGS:
125 			for (i = 0; i < p->large_num_pages; i++) {
126 				if (vcpu_args->vcpu_write)
127 					*(uint64_t *)addr = 0x0123456789ABCDEF;
128 				else
129 					READ_ONCE(*(uint64_t *)addr);
130 
131 				addr += p->large_page_size;
132 			}
133 			break;
134 
135 		/*
136 		 * During dirty logging, KVM will only update attributes of the
137 		 * normal page mappings from RO to RW if memory backing src type
138 		 * is anonymous. In other cases, KVM will split the huge block
139 		 * mappings into normal page mappings if memory backing src type
140 		 * is THP or HUGETLB.
141 		 */
142 		case KVM_UPDATE_MAPPINGS:
143 			if (p->src_type == VM_MEM_SRC_ANONYMOUS) {
144 				for (i = 0; i < p->host_num_pages; i++) {
145 					*(uint64_t *)addr = 0x0123456789ABCDEF;
146 					addr += p->host_page_size;
147 				}
148 				break;
149 			}
150 
151 			for (i = 0; i < p->large_num_pages; i++) {
152 				/*
153 				 * Write to the first host page in each large
154 				 * page region, and triger break of large pages.
155 				 */
156 				*(uint64_t *)addr = 0x0123456789ABCDEF;
157 
158 				/*
159 				 * Access the middle host pages in each large
160 				 * page region. Since dirty logging is enabled,
161 				 * this will create new mappings at the smallest
162 				 * granularity.
163 				 */
164 				addr += p->large_page_size / 2;
165 				for (j = 0; j < p->host_pages_per_lpage / 2; j++) {
166 					READ_ONCE(*(uint64_t *)addr);
167 					addr += p->host_page_size;
168 				}
169 			}
170 			break;
171 
172 		/*
173 		 * After dirty logging is stopped, vCPUs concurrently read
174 		 * from every single host page. Then KVM will coalesce the
175 		 * split page mappings back to block mappings. And a TLB
176 		 * conflict abort could occur here if TLB entries of the
177 		 * page mappings are not fully invalidated.
178 		 */
179 		case KVM_ADJUST_MAPPINGS:
180 			for (i = 0; i < p->host_num_pages; i++) {
181 				READ_ONCE(*(uint64_t *)addr);
182 				addr += p->host_page_size;
183 			}
184 			break;
185 
186 		default:
187 			GUEST_ASSERT(0);
188 		}
189 
190 		GUEST_SYNC(1);
191 	}
192 }
193 
194 static void *vcpu_worker(void *data)
195 {
196 	int ret;
197 	struct vcpu_args *vcpu_args = data;
198 	struct kvm_vm *vm = test_args.vm;
199 	int vcpu_id = vcpu_args->vcpu_id;
200 	struct kvm_run *run;
201 	struct timespec start;
202 	struct timespec ts_diff;
203 	enum test_stage stage;
204 
205 	vcpu_args_set(vm, vcpu_id, 1, vcpu_id);
206 	run = vcpu_state(vm, vcpu_id);
207 
208 	while (!READ_ONCE(host_quit)) {
209 		ret = sem_wait(&test_stage_updated);
210 		TEST_ASSERT(ret == 0, "Error in sem_wait");
211 
212 		if (READ_ONCE(host_quit))
213 			return NULL;
214 
215 		clock_gettime(CLOCK_MONOTONIC_RAW, &start);
216 		ret = _vcpu_run(vm, vcpu_id);
217 		ts_diff = timespec_elapsed(start);
218 
219 		TEST_ASSERT(ret == 0, "vcpu_run failed: %d\n", ret);
220 		TEST_ASSERT(get_ucall(vm, vcpu_id, NULL) == UCALL_SYNC,
221 			    "Invalid guest sync status: exit_reason=%s\n",
222 			    exit_reason_str(run->exit_reason));
223 
224 		pr_debug("Got sync event from vCPU %d\n", vcpu_id);
225 		stage = READ_ONCE(*current_stage);
226 
227 		/*
228 		 * Here we can know the execution time of every
229 		 * single vcpu running in different test stages.
230 		 */
231 		pr_debug("vCPU %d has completed stage %s\n"
232 			 "execution time is: %ld.%.9lds\n\n",
233 			 vcpu_id, test_stage_string[stage],
234 			 ts_diff.tv_sec, ts_diff.tv_nsec);
235 
236 		ret = sem_post(&test_stage_completed);
237 		TEST_ASSERT(ret == 0, "Error in sem_post");
238 	}
239 
240 	return NULL;
241 }
242 
243 struct test_params {
244 	uint64_t phys_offset;
245 	uint64_t test_mem_size;
246 	enum vm_mem_backing_src_type src_type;
247 };
248 
249 static struct kvm_vm *pre_init_before_test(enum vm_guest_mode mode, void *arg)
250 {
251 	int ret;
252 	struct test_params *p = arg;
253 	struct vcpu_args *vcpu_args;
254 	enum vm_mem_backing_src_type src_type = p->src_type;
255 	uint64_t large_page_size = get_backing_src_pagesz(src_type);
256 	uint64_t guest_page_size = vm_guest_mode_params[mode].page_size;
257 	uint64_t host_page_size = getpagesize();
258 	uint64_t test_mem_size = p->test_mem_size;
259 	uint64_t guest_num_pages;
260 	uint64_t alignment;
261 	void *host_test_mem;
262 	struct kvm_vm *vm;
263 	int vcpu_id;
264 
265 	/* Align up the test memory size */
266 	alignment = max(large_page_size, guest_page_size);
267 	test_mem_size = (test_mem_size + alignment - 1) & ~(alignment - 1);
268 
269 	/* Create a VM with enough guest pages */
270 	guest_num_pages = test_mem_size / guest_page_size;
271 	vm = vm_create_with_vcpus(mode, nr_vcpus,
272 				  guest_num_pages, 0, guest_code, NULL);
273 
274 	/* Align down GPA of the testing memslot */
275 	if (!p->phys_offset)
276 		guest_test_phys_mem = (vm_get_max_gfn(vm) - guest_num_pages) *
277 				       guest_page_size;
278 	else
279 		guest_test_phys_mem = p->phys_offset;
280 #ifdef __s390x__
281 	alignment = max(0x100000, alignment);
282 #endif
283 	guest_test_phys_mem &= ~(alignment - 1);
284 
285 	/* Set up the shared data structure test_args */
286 	test_args.vm = vm;
287 	test_args.guest_test_virt_mem = guest_test_virt_mem;
288 	test_args.host_page_size = host_page_size;
289 	test_args.host_num_pages = test_mem_size / host_page_size;
290 	test_args.large_page_size = large_page_size;
291 	test_args.large_num_pages = test_mem_size / large_page_size;
292 	test_args.host_pages_per_lpage = large_page_size / host_page_size;
293 	test_args.src_type = src_type;
294 
295 	for (vcpu_id = 0; vcpu_id < KVM_MAX_VCPUS; vcpu_id++) {
296 		vcpu_args = &test_args.vcpu_args[vcpu_id];
297 		vcpu_args->vcpu_id = vcpu_id;
298 		vcpu_args->vcpu_write = !(vcpu_id % 2);
299 	}
300 
301 	/* Add an extra memory slot with specified backing src type */
302 	vm_userspace_mem_region_add(vm, src_type, guest_test_phys_mem,
303 				    TEST_MEM_SLOT_INDEX, guest_num_pages, 0);
304 
305 	/* Do mapping(GVA->GPA) for the testing memory slot */
306 	virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages, 0);
307 
308 	/* Cache the HVA pointer of the region */
309 	host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem);
310 
311 	/* Export shared structure test_args to guest */
312 	ucall_init(vm, NULL);
313 	sync_global_to_guest(vm, test_args);
314 
315 	ret = sem_init(&test_stage_updated, 0, 0);
316 	TEST_ASSERT(ret == 0, "Error in sem_init");
317 
318 	ret = sem_init(&test_stage_completed, 0, 0);
319 	TEST_ASSERT(ret == 0, "Error in sem_init");
320 
321 	current_stage = addr_gva2hva(vm, (vm_vaddr_t)(&guest_test_stage));
322 	*current_stage = NUM_TEST_STAGES;
323 
324 	pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
325 	pr_info("Testing memory backing src type: %s\n",
326 		vm_mem_backing_src_alias(src_type)->name);
327 	pr_info("Testing memory backing src granularity: 0x%lx\n",
328 		large_page_size);
329 	pr_info("Testing memory size(aligned): 0x%lx\n", test_mem_size);
330 	pr_info("Guest physical test memory offset: 0x%lx\n",
331 		guest_test_phys_mem);
332 	pr_info("Host  virtual  test memory offset: 0x%lx\n",
333 		(uint64_t)host_test_mem);
334 	pr_info("Number of testing vCPUs: %d\n", nr_vcpus);
335 
336 	return vm;
337 }
338 
339 static void vcpus_complete_new_stage(enum test_stage stage)
340 {
341 	int ret;
342 	int vcpus;
343 
344 	/* Wake up all the vcpus to run new test stage */
345 	for (vcpus = 0; vcpus < nr_vcpus; vcpus++) {
346 		ret = sem_post(&test_stage_updated);
347 		TEST_ASSERT(ret == 0, "Error in sem_post");
348 	}
349 	pr_debug("All vcpus have been notified to continue\n");
350 
351 	/* Wait for all the vcpus to complete new test stage */
352 	for (vcpus = 0; vcpus < nr_vcpus; vcpus++) {
353 		ret = sem_wait(&test_stage_completed);
354 		TEST_ASSERT(ret == 0, "Error in sem_wait");
355 
356 		pr_debug("%d vcpus have completed stage %s\n",
357 			 vcpus + 1, test_stage_string[stage]);
358 	}
359 
360 	pr_debug("All vcpus have completed stage %s\n",
361 		 test_stage_string[stage]);
362 }
363 
364 static void run_test(enum vm_guest_mode mode, void *arg)
365 {
366 	int ret;
367 	pthread_t *vcpu_threads;
368 	struct kvm_vm *vm;
369 	int vcpu_id;
370 	struct timespec start;
371 	struct timespec ts_diff;
372 
373 	/* Create VM with vCPUs and make some pre-initialization */
374 	vm = pre_init_before_test(mode, arg);
375 
376 	vcpu_threads = malloc(nr_vcpus * sizeof(*vcpu_threads));
377 	TEST_ASSERT(vcpu_threads, "Memory allocation failed");
378 
379 	host_quit = false;
380 	*current_stage = KVM_BEFORE_MAPPINGS;
381 
382 	for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) {
383 		pthread_create(&vcpu_threads[vcpu_id], NULL, vcpu_worker,
384 			       &test_args.vcpu_args[vcpu_id]);
385 	}
386 
387 	vcpus_complete_new_stage(*current_stage);
388 	pr_info("Started all vCPUs successfully\n");
389 
390 	/* Test the stage of KVM creating mappings */
391 	*current_stage = KVM_CREATE_MAPPINGS;
392 
393 	clock_gettime(CLOCK_MONOTONIC_RAW, &start);
394 	vcpus_complete_new_stage(*current_stage);
395 	ts_diff = timespec_elapsed(start);
396 
397 	pr_info("KVM_CREATE_MAPPINGS: total execution time: %ld.%.9lds\n\n",
398 		ts_diff.tv_sec, ts_diff.tv_nsec);
399 
400 	/* Test the stage of KVM updating mappings */
401 	vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX,
402 				KVM_MEM_LOG_DIRTY_PAGES);
403 
404 	*current_stage = KVM_UPDATE_MAPPINGS;
405 
406 	clock_gettime(CLOCK_MONOTONIC_RAW, &start);
407 	vcpus_complete_new_stage(*current_stage);
408 	ts_diff = timespec_elapsed(start);
409 
410 	pr_info("KVM_UPDATE_MAPPINGS: total execution time: %ld.%.9lds\n\n",
411 		ts_diff.tv_sec, ts_diff.tv_nsec);
412 
413 	/* Test the stage of KVM adjusting mappings */
414 	vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX, 0);
415 
416 	*current_stage = KVM_ADJUST_MAPPINGS;
417 
418 	clock_gettime(CLOCK_MONOTONIC_RAW, &start);
419 	vcpus_complete_new_stage(*current_stage);
420 	ts_diff = timespec_elapsed(start);
421 
422 	pr_info("KVM_ADJUST_MAPPINGS: total execution time: %ld.%.9lds\n\n",
423 		ts_diff.tv_sec, ts_diff.tv_nsec);
424 
425 	/* Tell the vcpu thread to quit */
426 	host_quit = true;
427 	for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) {
428 		ret = sem_post(&test_stage_updated);
429 		TEST_ASSERT(ret == 0, "Error in sem_post");
430 	}
431 
432 	for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++)
433 		pthread_join(vcpu_threads[vcpu_id], NULL);
434 
435 	ret = sem_destroy(&test_stage_updated);
436 	TEST_ASSERT(ret == 0, "Error in sem_destroy");
437 
438 	ret = sem_destroy(&test_stage_completed);
439 	TEST_ASSERT(ret == 0, "Error in sem_destroy");
440 
441 	free(vcpu_threads);
442 	ucall_uninit(vm);
443 	kvm_vm_free(vm);
444 }
445 
446 static void help(char *name)
447 {
448 	puts("");
449 	printf("usage: %s [-h] [-p offset] [-m mode] "
450 	       "[-b mem-size] [-v vcpus] [-s mem-type]\n", name);
451 	puts("");
452 	printf(" -p: specify guest physical test memory offset\n"
453 	       "     Warning: a low offset can conflict with the loaded test code.\n");
454 	guest_modes_help();
455 	printf(" -b: specify size of the memory region for testing. e.g. 10M or 3G.\n"
456 	       "     (default: 1G)\n");
457 	printf(" -v: specify the number of vCPUs to run\n"
458 	       "     (default: 1)\n");
459 	printf(" -s: specify the type of memory that should be used to\n"
460 	       "     back the guest data region.\n"
461 	       "     (default: anonymous)\n\n");
462 	backing_src_help();
463 	puts("");
464 }
465 
466 int main(int argc, char *argv[])
467 {
468 	int max_vcpus = kvm_check_cap(KVM_CAP_MAX_VCPUS);
469 	struct test_params p = {
470 		.test_mem_size = DEFAULT_TEST_MEM_SIZE,
471 		.src_type = VM_MEM_SRC_ANONYMOUS,
472 	};
473 	int opt;
474 
475 	guest_modes_append_default();
476 
477 	while ((opt = getopt(argc, argv, "hp:m:b:v:s:")) != -1) {
478 		switch (opt) {
479 		case 'p':
480 			p.phys_offset = strtoull(optarg, NULL, 0);
481 			break;
482 		case 'm':
483 			guest_modes_cmdline(optarg);
484 			break;
485 		case 'b':
486 			p.test_mem_size = parse_size(optarg);
487 			break;
488 		case 'v':
489 			nr_vcpus = atoi(optarg);
490 			TEST_ASSERT(nr_vcpus > 0 && nr_vcpus <= max_vcpus,
491 				    "Invalid number of vcpus, must be between 1 and %d", max_vcpus);
492 			break;
493 		case 's':
494 			p.src_type = parse_backing_src_type(optarg);
495 			break;
496 		case 'h':
497 		default:
498 			help(argv[0]);
499 			exit(0);
500 		}
501 	}
502 
503 	for_each_guest_mode(run_test, &p);
504 
505 	return 0;
506 }
507