xref: /openbmc/linux/tools/testing/selftests/kvm/include/kvm_util_base.h (revision 22c9bb1ed13ea3b8e8ee320573fa9f4573db1d53)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * tools/testing/selftests/kvm/include/kvm_util_base.h
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 #ifndef SELFTEST_KVM_UTIL_BASE_H
8 #define SELFTEST_KVM_UTIL_BASE_H
9 
10 #include "test_util.h"
11 
12 #include <linux/compiler.h>
13 #include "linux/hashtable.h"
14 #include "linux/list.h"
15 #include <linux/kernel.h>
16 #include <linux/kvm.h>
17 #include "linux/rbtree.h"
18 #include <linux/types.h>
19 
20 #include <asm/atomic.h>
21 
22 #include <sys/ioctl.h>
23 
24 #include "sparsebit.h"
25 
26 /*
27  * Provide a version of static_assert() that is guaranteed to have an optional
28  * message param.  If _ISOC11_SOURCE is defined, glibc (/usr/include/assert.h)
29  * #undefs and #defines static_assert() as a direct alias to _Static_assert(),
30  * i.e. effectively makes the message mandatory.  Many KVM selftests #define
31  * _GNU_SOURCE for various reasons, and _GNU_SOURCE implies _ISOC11_SOURCE.  As
32  * a result, static_assert() behavior is non-deterministic and may or may not
33  * require a message depending on #include order.
34  */
35 #define __kvm_static_assert(expr, msg, ...) _Static_assert(expr, msg)
36 #define kvm_static_assert(expr, ...) __kvm_static_assert(expr, ##__VA_ARGS__, #expr)
37 
38 #define KVM_DEV_PATH "/dev/kvm"
39 #define KVM_MAX_VCPUS 512
40 
41 #define NSEC_PER_SEC 1000000000L
42 
43 typedef uint64_t vm_paddr_t; /* Virtual Machine (Guest) physical address */
44 typedef uint64_t vm_vaddr_t; /* Virtual Machine (Guest) virtual address */
45 
46 struct userspace_mem_region {
47 	struct kvm_userspace_memory_region region;
48 	struct sparsebit *unused_phy_pages;
49 	int fd;
50 	off_t offset;
51 	enum vm_mem_backing_src_type backing_src_type;
52 	void *host_mem;
53 	void *host_alias;
54 	void *mmap_start;
55 	void *mmap_alias;
56 	size_t mmap_size;
57 	struct rb_node gpa_node;
58 	struct rb_node hva_node;
59 	struct hlist_node slot_node;
60 };
61 
62 struct kvm_vcpu {
63 	struct list_head list;
64 	uint32_t id;
65 	int fd;
66 	struct kvm_vm *vm;
67 	struct kvm_run *run;
68 #ifdef __x86_64__
69 	struct kvm_cpuid2 *cpuid;
70 #endif
71 	struct kvm_dirty_gfn *dirty_gfns;
72 	uint32_t fetch_index;
73 	uint32_t dirty_gfns_count;
74 };
75 
76 struct userspace_mem_regions {
77 	struct rb_root gpa_tree;
78 	struct rb_root hva_tree;
79 	DECLARE_HASHTABLE(slot_hash, 9);
80 };
81 
82 enum kvm_mem_region_type {
83 	MEM_REGION_CODE,
84 	MEM_REGION_DATA,
85 	MEM_REGION_PT,
86 	MEM_REGION_TEST_DATA,
87 	NR_MEM_REGIONS,
88 };
89 
90 struct kvm_vm {
91 	int mode;
92 	unsigned long type;
93 	int kvm_fd;
94 	int fd;
95 	unsigned int pgtable_levels;
96 	unsigned int page_size;
97 	unsigned int page_shift;
98 	unsigned int pa_bits;
99 	unsigned int va_bits;
100 	uint64_t max_gfn;
101 	struct list_head vcpus;
102 	struct userspace_mem_regions regions;
103 	struct sparsebit *vpages_valid;
104 	struct sparsebit *vpages_mapped;
105 	bool has_irqchip;
106 	bool pgd_created;
107 	vm_paddr_t ucall_mmio_addr;
108 	vm_paddr_t pgd;
109 	vm_vaddr_t gdt;
110 	vm_vaddr_t tss;
111 	vm_vaddr_t idt;
112 	vm_vaddr_t handlers;
113 	uint32_t dirty_ring_size;
114 
115 	/* Cache of information for binary stats interface */
116 	int stats_fd;
117 	struct kvm_stats_header stats_header;
118 	struct kvm_stats_desc *stats_desc;
119 
120 	/*
121 	 * KVM region slots. These are the default memslots used by page
122 	 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
123 	 * memslot.
124 	 */
125 	uint32_t memslots[NR_MEM_REGIONS];
126 };
127 
128 struct vcpu_reg_sublist {
129 	const char *name;
130 	long capability;
131 	int feature;
132 	bool finalize;
133 	__u64 *regs;
134 	__u64 regs_n;
135 	__u64 *rejects_set;
136 	__u64 rejects_set_n;
137 	__u64 *skips_set;
138 	__u64 skips_set_n;
139 };
140 
141 struct vcpu_reg_list {
142 	char *name;
143 	struct vcpu_reg_sublist sublists[];
144 };
145 
146 #define for_each_sublist(c, s)		\
147 	for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
148 
149 #define kvm_for_each_vcpu(vm, i, vcpu)			\
150 	for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++)	\
151 		if (!((vcpu) = vm->vcpus[i]))		\
152 			continue;			\
153 		else
154 
155 struct userspace_mem_region *
156 memslot2region(struct kvm_vm *vm, uint32_t memslot);
157 
158 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
159 							     enum kvm_mem_region_type type)
160 {
161 	assert(type < NR_MEM_REGIONS);
162 	return memslot2region(vm, vm->memslots[type]);
163 }
164 
165 /* Minimum allocated guest virtual and physical addresses */
166 #define KVM_UTIL_MIN_VADDR		0x2000
167 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR	0x180000
168 
169 #define DEFAULT_GUEST_STACK_VADDR_MIN	0xab6000
170 #define DEFAULT_STACK_PGS		5
171 
172 enum vm_guest_mode {
173 	VM_MODE_P52V48_4K,
174 	VM_MODE_P52V48_64K,
175 	VM_MODE_P48V48_4K,
176 	VM_MODE_P48V48_16K,
177 	VM_MODE_P48V48_64K,
178 	VM_MODE_P40V48_4K,
179 	VM_MODE_P40V48_16K,
180 	VM_MODE_P40V48_64K,
181 	VM_MODE_PXXV48_4K,	/* For 48bits VA but ANY bits PA */
182 	VM_MODE_P47V64_4K,
183 	VM_MODE_P44V64_4K,
184 	VM_MODE_P36V48_4K,
185 	VM_MODE_P36V48_16K,
186 	VM_MODE_P36V48_64K,
187 	VM_MODE_P36V47_16K,
188 	NUM_VM_MODES,
189 };
190 
191 #if defined(__aarch64__)
192 
193 extern enum vm_guest_mode vm_mode_default;
194 
195 #define VM_MODE_DEFAULT			vm_mode_default
196 #define MIN_PAGE_SHIFT			12U
197 #define ptes_per_page(page_size)	((page_size) / 8)
198 
199 #elif defined(__x86_64__)
200 
201 #define VM_MODE_DEFAULT			VM_MODE_PXXV48_4K
202 #define MIN_PAGE_SHIFT			12U
203 #define ptes_per_page(page_size)	((page_size) / 8)
204 
205 #elif defined(__s390x__)
206 
207 #define VM_MODE_DEFAULT			VM_MODE_P44V64_4K
208 #define MIN_PAGE_SHIFT			12U
209 #define ptes_per_page(page_size)	((page_size) / 16)
210 
211 #elif defined(__riscv)
212 
213 #if __riscv_xlen == 32
214 #error "RISC-V 32-bit kvm selftests not supported"
215 #endif
216 
217 #define VM_MODE_DEFAULT			VM_MODE_P40V48_4K
218 #define MIN_PAGE_SHIFT			12U
219 #define ptes_per_page(page_size)	((page_size) / 8)
220 
221 #endif
222 
223 #define MIN_PAGE_SIZE		(1U << MIN_PAGE_SHIFT)
224 #define PTES_PER_MIN_PAGE	ptes_per_page(MIN_PAGE_SIZE)
225 
226 struct vm_guest_mode_params {
227 	unsigned int pa_bits;
228 	unsigned int va_bits;
229 	unsigned int page_size;
230 	unsigned int page_shift;
231 };
232 extern const struct vm_guest_mode_params vm_guest_mode_params[];
233 
234 int open_path_or_exit(const char *path, int flags);
235 int open_kvm_dev_path_or_exit(void);
236 
237 bool get_kvm_param_bool(const char *param);
238 bool get_kvm_intel_param_bool(const char *param);
239 bool get_kvm_amd_param_bool(const char *param);
240 
241 unsigned int kvm_check_cap(long cap);
242 
243 static inline bool kvm_has_cap(long cap)
244 {
245 	return kvm_check_cap(cap);
246 }
247 
248 #define __KVM_SYSCALL_ERROR(_name, _ret) \
249 	"%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
250 
251 #define __KVM_IOCTL_ERROR(_name, _ret)	__KVM_SYSCALL_ERROR(_name, _ret)
252 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
253 
254 #define kvm_do_ioctl(fd, cmd, arg)						\
255 ({										\
256 	kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd));	\
257 	ioctl(fd, cmd, arg);							\
258 })
259 
260 #define __kvm_ioctl(kvm_fd, cmd, arg)				\
261 	kvm_do_ioctl(kvm_fd, cmd, arg)
262 
263 
264 #define _kvm_ioctl(kvm_fd, cmd, name, arg)			\
265 ({								\
266 	int ret = __kvm_ioctl(kvm_fd, cmd, arg);		\
267 								\
268 	TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret));	\
269 })
270 
271 #define kvm_ioctl(kvm_fd, cmd, arg) \
272 	_kvm_ioctl(kvm_fd, cmd, #cmd, arg)
273 
274 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
275 
276 #define __vm_ioctl(vm, cmd, arg)				\
277 ({								\
278 	static_assert_is_vm(vm);				\
279 	kvm_do_ioctl((vm)->fd, cmd, arg);			\
280 })
281 
282 #define _vm_ioctl(vm, cmd, name, arg)				\
283 ({								\
284 	int ret = __vm_ioctl(vm, cmd, arg);			\
285 								\
286 	TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret));	\
287 })
288 
289 #define vm_ioctl(vm, cmd, arg)					\
290 	_vm_ioctl(vm, cmd, #cmd, arg)
291 
292 
293 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
294 
295 #define __vcpu_ioctl(vcpu, cmd, arg)				\
296 ({								\
297 	static_assert_is_vcpu(vcpu);				\
298 	kvm_do_ioctl((vcpu)->fd, cmd, arg);			\
299 })
300 
301 #define _vcpu_ioctl(vcpu, cmd, name, arg)			\
302 ({								\
303 	int ret = __vcpu_ioctl(vcpu, cmd, arg);			\
304 								\
305 	TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret));	\
306 })
307 
308 #define vcpu_ioctl(vcpu, cmd, arg)				\
309 	_vcpu_ioctl(vcpu, cmd, #cmd, arg)
310 
311 /*
312  * Looks up and returns the value corresponding to the capability
313  * (KVM_CAP_*) given by cap.
314  */
315 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
316 {
317 	int ret =  __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
318 
319 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
320 	return ret;
321 }
322 
323 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
324 {
325 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
326 
327 	return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
328 }
329 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
330 {
331 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
332 
333 	vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
334 }
335 
336 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
337 const char *vm_guest_mode_string(uint32_t i);
338 
339 void kvm_vm_free(struct kvm_vm *vmp);
340 void kvm_vm_restart(struct kvm_vm *vmp);
341 void kvm_vm_release(struct kvm_vm *vmp);
342 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, const vm_vaddr_t gva,
343 		       size_t len);
344 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
345 int kvm_memfd_alloc(size_t size, bool hugepages);
346 
347 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
348 
349 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
350 {
351 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
352 
353 	vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
354 }
355 
356 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
357 					  uint64_t first_page, uint32_t num_pages)
358 {
359 	struct kvm_clear_dirty_log args = {
360 		.dirty_bitmap = log,
361 		.slot = slot,
362 		.first_page = first_page,
363 		.num_pages = num_pages
364 	};
365 
366 	vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
367 }
368 
369 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
370 {
371 	return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
372 }
373 
374 static inline int vm_get_stats_fd(struct kvm_vm *vm)
375 {
376 	int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
377 
378 	TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_GET_STATS_FD, fd));
379 	return fd;
380 }
381 
382 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
383 {
384 	ssize_t ret;
385 
386 	ret = pread(stats_fd, header, sizeof(*header), 0);
387 	TEST_ASSERT(ret == sizeof(*header),
388 		    "Failed to read '%lu' header bytes, ret = '%ld'",
389 		    sizeof(*header), ret);
390 }
391 
392 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
393 					      struct kvm_stats_header *header);
394 
395 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
396 {
397 	 /*
398 	  * The base size of the descriptor is defined by KVM's ABI, but the
399 	  * size of the name field is variable, as far as KVM's ABI is
400 	  * concerned. For a given instance of KVM, the name field is the same
401 	  * size for all stats and is provided in the overall stats header.
402 	  */
403 	return sizeof(struct kvm_stats_desc) + header->name_size;
404 }
405 
406 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
407 							  int index,
408 							  struct kvm_stats_header *header)
409 {
410 	/*
411 	 * Note, size_desc includes the size of the name field, which is
412 	 * variable. i.e. this is NOT equivalent to &stats_desc[i].
413 	 */
414 	return (void *)stats + index * get_stats_descriptor_size(header);
415 }
416 
417 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
418 		    struct kvm_stats_desc *desc, uint64_t *data,
419 		    size_t max_elements);
420 
421 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
422 		   size_t max_elements);
423 
424 static inline uint64_t vm_get_stat(struct kvm_vm *vm, const char *stat_name)
425 {
426 	uint64_t data;
427 
428 	__vm_get_stat(vm, stat_name, &data, 1);
429 	return data;
430 }
431 
432 void vm_create_irqchip(struct kvm_vm *vm);
433 
434 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
435 			       uint64_t gpa, uint64_t size, void *hva);
436 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
437 				uint64_t gpa, uint64_t size, void *hva);
438 void vm_userspace_mem_region_add(struct kvm_vm *vm,
439 	enum vm_mem_backing_src_type src_type,
440 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
441 	uint32_t flags);
442 
443 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
444 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
445 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
446 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
447 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
448 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
449 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
450 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
451 			    enum kvm_mem_region_type type);
452 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
453 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
454 				 enum kvm_mem_region_type type);
455 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
456 
457 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
458 	      unsigned int npages);
459 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
460 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
461 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
462 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
463 
464 void vcpu_run(struct kvm_vcpu *vcpu);
465 int _vcpu_run(struct kvm_vcpu *vcpu);
466 
467 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
468 {
469 	return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
470 }
471 
472 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
473 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
474 
475 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
476 				   uint64_t arg0)
477 {
478 	struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
479 
480 	vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
481 }
482 
483 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
484 					struct kvm_guest_debug *debug)
485 {
486 	vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
487 }
488 
489 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
490 				     struct kvm_mp_state *mp_state)
491 {
492 	vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
493 }
494 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
495 				     struct kvm_mp_state *mp_state)
496 {
497 	vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
498 }
499 
500 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
501 {
502 	vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
503 }
504 
505 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
506 {
507 	vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
508 }
509 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
510 {
511 	vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
512 
513 }
514 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
515 {
516 	vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
517 }
518 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
519 {
520 	return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
521 }
522 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
523 {
524 	vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
525 }
526 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
527 {
528 	vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
529 }
530 
531 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
532 {
533 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
534 
535 	return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
536 }
537 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
538 {
539 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
540 
541 	return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
542 }
543 static inline void vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
544 {
545 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
546 
547 	vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
548 }
549 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
550 {
551 	struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
552 
553 	vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
554 }
555 
556 #ifdef __KVM_HAVE_VCPU_EVENTS
557 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
558 				   struct kvm_vcpu_events *events)
559 {
560 	vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
561 }
562 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
563 				   struct kvm_vcpu_events *events)
564 {
565 	vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
566 }
567 #endif
568 #ifdef __x86_64__
569 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
570 					 struct kvm_nested_state *state)
571 {
572 	vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
573 }
574 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
575 					  struct kvm_nested_state *state)
576 {
577 	return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
578 }
579 
580 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
581 					 struct kvm_nested_state *state)
582 {
583 	vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
584 }
585 #endif
586 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
587 {
588 	int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
589 
590 	TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_GET_STATS_FD, fd));
591 	return fd;
592 }
593 
594 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
595 
596 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
597 {
598 	int ret = __kvm_has_device_attr(dev_fd, group, attr);
599 
600 	TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
601 }
602 
603 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
604 
605 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
606 				       uint64_t attr, void *val)
607 {
608 	int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
609 
610 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
611 }
612 
613 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
614 
615 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
616 				       uint64_t attr, void *val)
617 {
618 	int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
619 
620 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
621 }
622 
623 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
624 					 uint64_t attr)
625 {
626 	return __kvm_has_device_attr(vcpu->fd, group, attr);
627 }
628 
629 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
630 					uint64_t attr)
631 {
632 	kvm_has_device_attr(vcpu->fd, group, attr);
633 }
634 
635 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
636 					 uint64_t attr, void *val)
637 {
638 	return __kvm_device_attr_get(vcpu->fd, group, attr, val);
639 }
640 
641 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
642 					uint64_t attr, void *val)
643 {
644 	kvm_device_attr_get(vcpu->fd, group, attr, val);
645 }
646 
647 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
648 					 uint64_t attr, void *val)
649 {
650 	return __kvm_device_attr_set(vcpu->fd, group, attr, val);
651 }
652 
653 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
654 					uint64_t attr, void *val)
655 {
656 	kvm_device_attr_set(vcpu->fd, group, attr, val);
657 }
658 
659 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
660 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
661 
662 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
663 {
664 	int fd = __kvm_create_device(vm, type);
665 
666 	TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
667 	return fd;
668 }
669 
670 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
671 
672 /*
673  * VM VCPU Args Set
674  *
675  * Input Args:
676  *   vm - Virtual Machine
677  *   num - number of arguments
678  *   ... - arguments, each of type uint64_t
679  *
680  * Output Args: None
681  *
682  * Return: None
683  *
684  * Sets the first @num input parameters for the function at @vcpu's entry point,
685  * per the C calling convention of the architecture, to the values given as
686  * variable args. Each of the variable args is expected to be of type uint64_t.
687  * The maximum @num can be is specific to the architecture.
688  */
689 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
690 
691 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
692 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
693 
694 #define KVM_MAX_IRQ_ROUTES		4096
695 
696 struct kvm_irq_routing *kvm_gsi_routing_create(void);
697 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
698 		uint32_t gsi, uint32_t pin);
699 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
700 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
701 
702 const char *exit_reason_str(unsigned int exit_reason);
703 
704 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
705 			     uint32_t memslot);
706 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
707 			      vm_paddr_t paddr_min, uint32_t memslot);
708 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
709 
710 /*
711  * ____vm_create() does KVM_CREATE_VM and little else.  __vm_create() also
712  * loads the test binary into guest memory and creates an IRQ chip (x86 only).
713  * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
714  * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
715  */
716 struct kvm_vm *____vm_create(enum vm_guest_mode mode);
717 struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
718 			   uint64_t nr_extra_pages);
719 
720 static inline struct kvm_vm *vm_create_barebones(void)
721 {
722 	return ____vm_create(VM_MODE_DEFAULT);
723 }
724 
725 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
726 {
727 	return __vm_create(VM_MODE_DEFAULT, nr_runnable_vcpus, 0);
728 }
729 
730 struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
731 				      uint64_t extra_mem_pages,
732 				      void *guest_code, struct kvm_vcpu *vcpus[]);
733 
734 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
735 						  void *guest_code,
736 						  struct kvm_vcpu *vcpus[])
737 {
738 	return __vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, 0,
739 				      guest_code, vcpus);
740 }
741 
742 /*
743  * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
744  * additional pages of guest memory.  Returns the VM and vCPU (via out param).
745  */
746 struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
747 					 uint64_t extra_mem_pages,
748 					 void *guest_code);
749 
750 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
751 						     void *guest_code)
752 {
753 	return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
754 }
755 
756 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
757 
758 void kvm_pin_this_task_to_pcpu(uint32_t pcpu);
759 void kvm_print_vcpu_pinning_help(void);
760 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
761 			    int nr_vcpus);
762 
763 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
764 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
765 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
766 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
767 static inline unsigned int
768 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
769 {
770 	unsigned int n;
771 	n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
772 #ifdef __s390x__
773 	/* s390 requires 1M aligned guest sizes */
774 	n = (n + 255) & ~255;
775 #endif
776 	return n;
777 }
778 
779 struct kvm_userspace_memory_region *
780 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
781 				 uint64_t end);
782 
783 #define sync_global_to_guest(vm, g) ({				\
784 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
785 	memcpy(_p, &(g), sizeof(g));				\
786 })
787 
788 #define sync_global_from_guest(vm, g) ({			\
789 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
790 	memcpy(&(g), _p, sizeof(g));				\
791 })
792 
793 /*
794  * Write a global value, but only in the VM's (guest's) domain.  Primarily used
795  * for "globals" that hold per-VM values (VMs always duplicate code and global
796  * data into their own region of physical memory), but can be used anytime it's
797  * undesirable to change the host's copy of the global.
798  */
799 #define write_guest_global(vm, g, val) ({			\
800 	typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g));	\
801 	typeof(g) _val = val;					\
802 								\
803 	memcpy(_p, &(_val), sizeof(g));				\
804 })
805 
806 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
807 
808 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
809 		    uint8_t indent);
810 
811 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
812 			     uint8_t indent)
813 {
814 	vcpu_arch_dump(stream, vcpu, indent);
815 }
816 
817 /*
818  * Adds a vCPU with reasonable defaults (e.g. a stack)
819  *
820  * Input Args:
821  *   vm - Virtual Machine
822  *   vcpu_id - The id of the VCPU to add to the VM.
823  *   guest_code - The vCPU's entry point
824  */
825 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
826 				  void *guest_code);
827 
828 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
829 					   void *guest_code)
830 {
831 	return vm_arch_vcpu_add(vm, vcpu_id, guest_code);
832 }
833 
834 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
835 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
836 
837 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
838 						uint32_t vcpu_id)
839 {
840 	return vm_arch_vcpu_recreate(vm, vcpu_id);
841 }
842 
843 void vcpu_arch_free(struct kvm_vcpu *vcpu);
844 
845 void virt_arch_pgd_alloc(struct kvm_vm *vm);
846 
847 static inline void virt_pgd_alloc(struct kvm_vm *vm)
848 {
849 	virt_arch_pgd_alloc(vm);
850 }
851 
852 /*
853  * VM Virtual Page Map
854  *
855  * Input Args:
856  *   vm - Virtual Machine
857  *   vaddr - VM Virtual Address
858  *   paddr - VM Physical Address
859  *   memslot - Memory region slot for new virtual translation tables
860  *
861  * Output Args: None
862  *
863  * Return: None
864  *
865  * Within @vm, creates a virtual translation for the page starting
866  * at @vaddr to the page starting at @paddr.
867  */
868 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
869 
870 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
871 {
872 	virt_arch_pg_map(vm, vaddr, paddr);
873 }
874 
875 
876 /*
877  * Address Guest Virtual to Guest Physical
878  *
879  * Input Args:
880  *   vm - Virtual Machine
881  *   gva - VM virtual address
882  *
883  * Output Args: None
884  *
885  * Return:
886  *   Equivalent VM physical address
887  *
888  * Returns the VM physical address of the translated VM virtual
889  * address given by @gva.
890  */
891 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
892 
893 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
894 {
895 	return addr_arch_gva2gpa(vm, gva);
896 }
897 
898 /*
899  * Virtual Translation Tables Dump
900  *
901  * Input Args:
902  *   stream - Output FILE stream
903  *   vm     - Virtual Machine
904  *   indent - Left margin indent amount
905  *
906  * Output Args: None
907  *
908  * Return: None
909  *
910  * Dumps to the FILE stream given by @stream, the contents of all the
911  * virtual translation tables for the VM given by @vm.
912  */
913 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
914 
915 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
916 {
917 	virt_arch_dump(stream, vm, indent);
918 }
919 
920 
921 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
922 {
923 	return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
924 }
925 
926 /*
927  * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
928  * to allow for arch-specific setup that is common to all tests, e.g. computing
929  * the default guest "mode".
930  */
931 void kvm_selftest_arch_init(void);
932 
933 void kvm_arch_vm_post_create(struct kvm_vm *vm);
934 
935 #endif /* SELFTEST_KVM_UTIL_BASE_H */
936