xref: /openbmc/linux/tools/testing/selftests/kvm/dirty_log_test.c (revision bdaedca74d6293b6ac643a8ebe8231b52bf1171b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KVM dirty page logging test
4  *
5  * Copyright (C) 2018, Red Hat, Inc.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <pthread.h>
13 #include <semaphore.h>
14 #include <sys/types.h>
15 #include <signal.h>
16 #include <errno.h>
17 #include <linux/bitmap.h>
18 #include <linux/bitops.h>
19 #include <asm/barrier.h>
20 #include <linux/atomic.h>
21 
22 #include "kvm_util.h"
23 #include "test_util.h"
24 #include "guest_modes.h"
25 #include "processor.h"
26 
27 #define VCPU_ID				1
28 
29 /* The memory slot index to track dirty pages */
30 #define TEST_MEM_SLOT_INDEX		1
31 
32 /* Default guest test virtual memory offset */
33 #define DEFAULT_GUEST_TEST_MEM		0xc0000000
34 
35 /* How many pages to dirty for each guest loop */
36 #define TEST_PAGES_PER_LOOP		1024
37 
38 /* How many host loops to run (one KVM_GET_DIRTY_LOG for each loop) */
39 #define TEST_HOST_LOOP_N		32UL
40 
41 /* Interval for each host loop (ms) */
42 #define TEST_HOST_LOOP_INTERVAL		10UL
43 
44 /* Dirty bitmaps are always little endian, so we need to swap on big endian */
45 #if defined(__s390x__)
46 # define BITOP_LE_SWIZZLE	((BITS_PER_LONG-1) & ~0x7)
47 # define test_bit_le(nr, addr) \
48 	test_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
49 # define set_bit_le(nr, addr) \
50 	set_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
51 # define clear_bit_le(nr, addr) \
52 	clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
53 # define test_and_set_bit_le(nr, addr) \
54 	test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
55 # define test_and_clear_bit_le(nr, addr) \
56 	test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
57 #else
58 # define test_bit_le		test_bit
59 # define set_bit_le		set_bit
60 # define clear_bit_le		clear_bit
61 # define test_and_set_bit_le	test_and_set_bit
62 # define test_and_clear_bit_le	test_and_clear_bit
63 #endif
64 
65 #define TEST_DIRTY_RING_COUNT		65536
66 
67 #define SIG_IPI SIGUSR1
68 
69 /*
70  * Guest/Host shared variables. Ensure addr_gva2hva() and/or
71  * sync_global_to/from_guest() are used when accessing from
72  * the host. READ/WRITE_ONCE() should also be used with anything
73  * that may change.
74  */
75 static uint64_t host_page_size;
76 static uint64_t guest_page_size;
77 static uint64_t guest_num_pages;
78 static uint64_t random_array[TEST_PAGES_PER_LOOP];
79 static uint64_t iteration;
80 
81 /*
82  * Guest physical memory offset of the testing memory slot.
83  * This will be set to the topmost valid physical address minus
84  * the test memory size.
85  */
86 static uint64_t guest_test_phys_mem;
87 
88 /*
89  * Guest virtual memory offset of the testing memory slot.
90  * Must not conflict with identity mapped test code.
91  */
92 static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
93 
94 /*
95  * Continuously write to the first 8 bytes of a random pages within
96  * the testing memory region.
97  */
98 static void guest_code(void)
99 {
100 	uint64_t addr;
101 	int i;
102 
103 	/*
104 	 * On s390x, all pages of a 1M segment are initially marked as dirty
105 	 * when a page of the segment is written to for the very first time.
106 	 * To compensate this specialty in this test, we need to touch all
107 	 * pages during the first iteration.
108 	 */
109 	for (i = 0; i < guest_num_pages; i++) {
110 		addr = guest_test_virt_mem + i * guest_page_size;
111 		*(uint64_t *)addr = READ_ONCE(iteration);
112 	}
113 
114 	while (true) {
115 		for (i = 0; i < TEST_PAGES_PER_LOOP; i++) {
116 			addr = guest_test_virt_mem;
117 			addr += (READ_ONCE(random_array[i]) % guest_num_pages)
118 				* guest_page_size;
119 			addr &= ~(host_page_size - 1);
120 			*(uint64_t *)addr = READ_ONCE(iteration);
121 		}
122 
123 		/* Tell the host that we need more random numbers */
124 		GUEST_SYNC(1);
125 	}
126 }
127 
128 /* Host variables */
129 static bool host_quit;
130 
131 /* Points to the test VM memory region on which we track dirty logs */
132 static void *host_test_mem;
133 static uint64_t host_num_pages;
134 
135 /* For statistics only */
136 static uint64_t host_dirty_count;
137 static uint64_t host_clear_count;
138 static uint64_t host_track_next_count;
139 
140 /* Whether dirty ring reset is requested, or finished */
141 static sem_t sem_vcpu_stop;
142 static sem_t sem_vcpu_cont;
143 /*
144  * This is only set by main thread, and only cleared by vcpu thread.  It is
145  * used to request vcpu thread to stop at the next GUEST_SYNC, since GUEST_SYNC
146  * is the only place that we'll guarantee both "dirty bit" and "dirty data"
147  * will match.  E.g., SIG_IPI won't guarantee that if the vcpu is interrupted
148  * after setting dirty bit but before the data is written.
149  */
150 static atomic_t vcpu_sync_stop_requested;
151 /*
152  * This is updated by the vcpu thread to tell the host whether it's a
153  * ring-full event.  It should only be read until a sem_wait() of
154  * sem_vcpu_stop and before vcpu continues to run.
155  */
156 static bool dirty_ring_vcpu_ring_full;
157 /*
158  * This is only used for verifying the dirty pages.  Dirty ring has a very
159  * tricky case when the ring just got full, kvm will do userspace exit due to
160  * ring full.  When that happens, the very last PFN is set but actually the
161  * data is not changed (the guest WRITE is not really applied yet), because
162  * we found that the dirty ring is full, refused to continue the vcpu, and
163  * recorded the dirty gfn with the old contents.
164  *
165  * For this specific case, it's safe to skip checking this pfn for this
166  * bit, because it's a redundant bit, and when the write happens later the bit
167  * will be set again.  We use this variable to always keep track of the latest
168  * dirty gfn we've collected, so that if a mismatch of data found later in the
169  * verifying process, we let it pass.
170  */
171 static uint64_t dirty_ring_last_page;
172 
173 enum log_mode_t {
174 	/* Only use KVM_GET_DIRTY_LOG for logging */
175 	LOG_MODE_DIRTY_LOG = 0,
176 
177 	/* Use both KVM_[GET|CLEAR]_DIRTY_LOG for logging */
178 	LOG_MODE_CLEAR_LOG = 1,
179 
180 	/* Use dirty ring for logging */
181 	LOG_MODE_DIRTY_RING = 2,
182 
183 	LOG_MODE_NUM,
184 
185 	/* Run all supported modes */
186 	LOG_MODE_ALL = LOG_MODE_NUM,
187 };
188 
189 /* Mode of logging to test.  Default is to run all supported modes */
190 static enum log_mode_t host_log_mode_option = LOG_MODE_ALL;
191 /* Logging mode for current run */
192 static enum log_mode_t host_log_mode;
193 static pthread_t vcpu_thread;
194 static uint32_t test_dirty_ring_count = TEST_DIRTY_RING_COUNT;
195 
196 static void vcpu_kick(void)
197 {
198 	pthread_kill(vcpu_thread, SIG_IPI);
199 }
200 
201 /*
202  * In our test we do signal tricks, let's use a better version of
203  * sem_wait to avoid signal interrupts
204  */
205 static void sem_wait_until(sem_t *sem)
206 {
207 	int ret;
208 
209 	do
210 		ret = sem_wait(sem);
211 	while (ret == -1 && errno == EINTR);
212 }
213 
214 static bool clear_log_supported(void)
215 {
216 	return kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
217 }
218 
219 static void clear_log_create_vm_done(struct kvm_vm *vm)
220 {
221 	struct kvm_enable_cap cap = {};
222 	u64 manual_caps;
223 
224 	manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
225 	TEST_ASSERT(manual_caps, "MANUAL_CAPS is zero!");
226 	manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
227 			KVM_DIRTY_LOG_INITIALLY_SET);
228 	cap.cap = KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2;
229 	cap.args[0] = manual_caps;
230 	vm_enable_cap(vm, &cap);
231 }
232 
233 static void dirty_log_collect_dirty_pages(struct kvm_vm *vm, int slot,
234 					  void *bitmap, uint32_t num_pages)
235 {
236 	kvm_vm_get_dirty_log(vm, slot, bitmap);
237 }
238 
239 static void clear_log_collect_dirty_pages(struct kvm_vm *vm, int slot,
240 					  void *bitmap, uint32_t num_pages)
241 {
242 	kvm_vm_get_dirty_log(vm, slot, bitmap);
243 	kvm_vm_clear_dirty_log(vm, slot, bitmap, 0, num_pages);
244 }
245 
246 /* Should only be called after a GUEST_SYNC */
247 static void vcpu_handle_sync_stop(void)
248 {
249 	if (atomic_read(&vcpu_sync_stop_requested)) {
250 		/* It means main thread is sleeping waiting */
251 		atomic_set(&vcpu_sync_stop_requested, false);
252 		sem_post(&sem_vcpu_stop);
253 		sem_wait_until(&sem_vcpu_cont);
254 	}
255 }
256 
257 static void default_after_vcpu_run(struct kvm_vm *vm, int ret, int err)
258 {
259 	struct kvm_run *run = vcpu_state(vm, VCPU_ID);
260 
261 	TEST_ASSERT(ret == 0 || (ret == -1 && err == EINTR),
262 		    "vcpu run failed: errno=%d", err);
263 
264 	TEST_ASSERT(get_ucall(vm, VCPU_ID, NULL) == UCALL_SYNC,
265 		    "Invalid guest sync status: exit_reason=%s\n",
266 		    exit_reason_str(run->exit_reason));
267 
268 	vcpu_handle_sync_stop();
269 }
270 
271 static bool dirty_ring_supported(void)
272 {
273 	return kvm_check_cap(KVM_CAP_DIRTY_LOG_RING);
274 }
275 
276 static void dirty_ring_create_vm_done(struct kvm_vm *vm)
277 {
278 	/*
279 	 * Switch to dirty ring mode after VM creation but before any
280 	 * of the vcpu creation.
281 	 */
282 	vm_enable_dirty_ring(vm, test_dirty_ring_count *
283 			     sizeof(struct kvm_dirty_gfn));
284 }
285 
286 static inline bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
287 {
288 	return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
289 }
290 
291 static inline void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
292 {
293 	gfn->flags = KVM_DIRTY_GFN_F_RESET;
294 }
295 
296 static uint32_t dirty_ring_collect_one(struct kvm_dirty_gfn *dirty_gfns,
297 				       int slot, void *bitmap,
298 				       uint32_t num_pages, uint32_t *fetch_index)
299 {
300 	struct kvm_dirty_gfn *cur;
301 	uint32_t count = 0;
302 
303 	while (true) {
304 		cur = &dirty_gfns[*fetch_index % test_dirty_ring_count];
305 		if (!dirty_gfn_is_dirtied(cur))
306 			break;
307 		TEST_ASSERT(cur->slot == slot, "Slot number didn't match: "
308 			    "%u != %u", cur->slot, slot);
309 		TEST_ASSERT(cur->offset < num_pages, "Offset overflow: "
310 			    "0x%llx >= 0x%x", cur->offset, num_pages);
311 		//pr_info("fetch 0x%x page %llu\n", *fetch_index, cur->offset);
312 		set_bit_le(cur->offset, bitmap);
313 		dirty_ring_last_page = cur->offset;
314 		dirty_gfn_set_collected(cur);
315 		(*fetch_index)++;
316 		count++;
317 	}
318 
319 	return count;
320 }
321 
322 static void dirty_ring_wait_vcpu(void)
323 {
324 	/* This makes sure that hardware PML cache flushed */
325 	vcpu_kick();
326 	sem_wait_until(&sem_vcpu_stop);
327 }
328 
329 static void dirty_ring_continue_vcpu(void)
330 {
331 	pr_info("Notifying vcpu to continue\n");
332 	sem_post(&sem_vcpu_cont);
333 }
334 
335 static void dirty_ring_collect_dirty_pages(struct kvm_vm *vm, int slot,
336 					   void *bitmap, uint32_t num_pages)
337 {
338 	/* We only have one vcpu */
339 	static uint32_t fetch_index = 0;
340 	uint32_t count = 0, cleared;
341 	bool continued_vcpu = false;
342 
343 	dirty_ring_wait_vcpu();
344 
345 	if (!dirty_ring_vcpu_ring_full) {
346 		/*
347 		 * This is not a ring-full event, it's safe to allow
348 		 * vcpu to continue
349 		 */
350 		dirty_ring_continue_vcpu();
351 		continued_vcpu = true;
352 	}
353 
354 	/* Only have one vcpu */
355 	count = dirty_ring_collect_one(vcpu_map_dirty_ring(vm, VCPU_ID),
356 				       slot, bitmap, num_pages, &fetch_index);
357 
358 	cleared = kvm_vm_reset_dirty_ring(vm);
359 
360 	/* Cleared pages should be the same as collected */
361 	TEST_ASSERT(cleared == count, "Reset dirty pages (%u) mismatch "
362 		    "with collected (%u)", cleared, count);
363 
364 	if (!continued_vcpu) {
365 		TEST_ASSERT(dirty_ring_vcpu_ring_full,
366 			    "Didn't continue vcpu even without ring full");
367 		dirty_ring_continue_vcpu();
368 	}
369 
370 	pr_info("Iteration %ld collected %u pages\n", iteration, count);
371 }
372 
373 static void dirty_ring_after_vcpu_run(struct kvm_vm *vm, int ret, int err)
374 {
375 	struct kvm_run *run = vcpu_state(vm, VCPU_ID);
376 
377 	/* A ucall-sync or ring-full event is allowed */
378 	if (get_ucall(vm, VCPU_ID, NULL) == UCALL_SYNC) {
379 		/* We should allow this to continue */
380 		;
381 	} else if (run->exit_reason == KVM_EXIT_DIRTY_RING_FULL ||
382 		   (ret == -1 && err == EINTR)) {
383 		/* Update the flag first before pause */
384 		WRITE_ONCE(dirty_ring_vcpu_ring_full,
385 			   run->exit_reason == KVM_EXIT_DIRTY_RING_FULL);
386 		sem_post(&sem_vcpu_stop);
387 		pr_info("vcpu stops because %s...\n",
388 			dirty_ring_vcpu_ring_full ?
389 			"dirty ring is full" : "vcpu is kicked out");
390 		sem_wait_until(&sem_vcpu_cont);
391 		pr_info("vcpu continues now.\n");
392 	} else {
393 		TEST_ASSERT(false, "Invalid guest sync status: "
394 			    "exit_reason=%s\n",
395 			    exit_reason_str(run->exit_reason));
396 	}
397 }
398 
399 static void dirty_ring_before_vcpu_join(void)
400 {
401 	/* Kick another round of vcpu just to make sure it will quit */
402 	sem_post(&sem_vcpu_cont);
403 }
404 
405 struct log_mode {
406 	const char *name;
407 	/* Return true if this mode is supported, otherwise false */
408 	bool (*supported)(void);
409 	/* Hook when the vm creation is done (before vcpu creation) */
410 	void (*create_vm_done)(struct kvm_vm *vm);
411 	/* Hook to collect the dirty pages into the bitmap provided */
412 	void (*collect_dirty_pages) (struct kvm_vm *vm, int slot,
413 				     void *bitmap, uint32_t num_pages);
414 	/* Hook to call when after each vcpu run */
415 	void (*after_vcpu_run)(struct kvm_vm *vm, int ret, int err);
416 	void (*before_vcpu_join) (void);
417 } log_modes[LOG_MODE_NUM] = {
418 	{
419 		.name = "dirty-log",
420 		.collect_dirty_pages = dirty_log_collect_dirty_pages,
421 		.after_vcpu_run = default_after_vcpu_run,
422 	},
423 	{
424 		.name = "clear-log",
425 		.supported = clear_log_supported,
426 		.create_vm_done = clear_log_create_vm_done,
427 		.collect_dirty_pages = clear_log_collect_dirty_pages,
428 		.after_vcpu_run = default_after_vcpu_run,
429 	},
430 	{
431 		.name = "dirty-ring",
432 		.supported = dirty_ring_supported,
433 		.create_vm_done = dirty_ring_create_vm_done,
434 		.collect_dirty_pages = dirty_ring_collect_dirty_pages,
435 		.before_vcpu_join = dirty_ring_before_vcpu_join,
436 		.after_vcpu_run = dirty_ring_after_vcpu_run,
437 	},
438 };
439 
440 /*
441  * We use this bitmap to track some pages that should have its dirty
442  * bit set in the _next_ iteration.  For example, if we detected the
443  * page value changed to current iteration but at the same time the
444  * page bit is cleared in the latest bitmap, then the system must
445  * report that write in the next get dirty log call.
446  */
447 static unsigned long *host_bmap_track;
448 
449 static void log_modes_dump(void)
450 {
451 	int i;
452 
453 	printf("all");
454 	for (i = 0; i < LOG_MODE_NUM; i++)
455 		printf(", %s", log_modes[i].name);
456 	printf("\n");
457 }
458 
459 static bool log_mode_supported(void)
460 {
461 	struct log_mode *mode = &log_modes[host_log_mode];
462 
463 	if (mode->supported)
464 		return mode->supported();
465 
466 	return true;
467 }
468 
469 static void log_mode_create_vm_done(struct kvm_vm *vm)
470 {
471 	struct log_mode *mode = &log_modes[host_log_mode];
472 
473 	if (mode->create_vm_done)
474 		mode->create_vm_done(vm);
475 }
476 
477 static void log_mode_collect_dirty_pages(struct kvm_vm *vm, int slot,
478 					 void *bitmap, uint32_t num_pages)
479 {
480 	struct log_mode *mode = &log_modes[host_log_mode];
481 
482 	TEST_ASSERT(mode->collect_dirty_pages != NULL,
483 		    "collect_dirty_pages() is required for any log mode!");
484 	mode->collect_dirty_pages(vm, slot, bitmap, num_pages);
485 }
486 
487 static void log_mode_after_vcpu_run(struct kvm_vm *vm, int ret, int err)
488 {
489 	struct log_mode *mode = &log_modes[host_log_mode];
490 
491 	if (mode->after_vcpu_run)
492 		mode->after_vcpu_run(vm, ret, err);
493 }
494 
495 static void log_mode_before_vcpu_join(void)
496 {
497 	struct log_mode *mode = &log_modes[host_log_mode];
498 
499 	if (mode->before_vcpu_join)
500 		mode->before_vcpu_join();
501 }
502 
503 static void generate_random_array(uint64_t *guest_array, uint64_t size)
504 {
505 	uint64_t i;
506 
507 	for (i = 0; i < size; i++)
508 		guest_array[i] = random();
509 }
510 
511 static void *vcpu_worker(void *data)
512 {
513 	int ret, vcpu_fd;
514 	struct kvm_vm *vm = data;
515 	uint64_t *guest_array;
516 	uint64_t pages_count = 0;
517 	struct kvm_signal_mask *sigmask = alloca(offsetof(struct kvm_signal_mask, sigset)
518 						 + sizeof(sigset_t));
519 	sigset_t *sigset = (sigset_t *) &sigmask->sigset;
520 
521 	vcpu_fd = vcpu_get_fd(vm, VCPU_ID);
522 
523 	/*
524 	 * SIG_IPI is unblocked atomically while in KVM_RUN.  It causes the
525 	 * ioctl to return with -EINTR, but it is still pending and we need
526 	 * to accept it with the sigwait.
527 	 */
528 	sigmask->len = 8;
529 	pthread_sigmask(0, NULL, sigset);
530 	sigdelset(sigset, SIG_IPI);
531 	vcpu_ioctl(vm, VCPU_ID, KVM_SET_SIGNAL_MASK, sigmask);
532 
533 	sigemptyset(sigset);
534 	sigaddset(sigset, SIG_IPI);
535 
536 	guest_array = addr_gva2hva(vm, (vm_vaddr_t)random_array);
537 
538 	while (!READ_ONCE(host_quit)) {
539 		/* Clear any existing kick signals */
540 		generate_random_array(guest_array, TEST_PAGES_PER_LOOP);
541 		pages_count += TEST_PAGES_PER_LOOP;
542 		/* Let the guest dirty the random pages */
543 		ret = ioctl(vcpu_fd, KVM_RUN, NULL);
544 		if (ret == -1 && errno == EINTR) {
545 			int sig = -1;
546 			sigwait(sigset, &sig);
547 			assert(sig == SIG_IPI);
548 		}
549 		log_mode_after_vcpu_run(vm, ret, errno);
550 	}
551 
552 	pr_info("Dirtied %"PRIu64" pages\n", pages_count);
553 
554 	return NULL;
555 }
556 
557 static void vm_dirty_log_verify(enum vm_guest_mode mode, unsigned long *bmap)
558 {
559 	uint64_t step = vm_num_host_pages(mode, 1);
560 	uint64_t page;
561 	uint64_t *value_ptr;
562 	uint64_t min_iter = 0;
563 
564 	for (page = 0; page < host_num_pages; page += step) {
565 		value_ptr = host_test_mem + page * host_page_size;
566 
567 		/* If this is a special page that we were tracking... */
568 		if (test_and_clear_bit_le(page, host_bmap_track)) {
569 			host_track_next_count++;
570 			TEST_ASSERT(test_bit_le(page, bmap),
571 				    "Page %"PRIu64" should have its dirty bit "
572 				    "set in this iteration but it is missing",
573 				    page);
574 		}
575 
576 		if (test_and_clear_bit_le(page, bmap)) {
577 			bool matched;
578 
579 			host_dirty_count++;
580 
581 			/*
582 			 * If the bit is set, the value written onto
583 			 * the corresponding page should be either the
584 			 * previous iteration number or the current one.
585 			 */
586 			matched = (*value_ptr == iteration ||
587 				   *value_ptr == iteration - 1);
588 
589 			if (host_log_mode == LOG_MODE_DIRTY_RING && !matched) {
590 				if (*value_ptr == iteration - 2 && min_iter <= iteration - 2) {
591 					/*
592 					 * Short answer: this case is special
593 					 * only for dirty ring test where the
594 					 * page is the last page before a kvm
595 					 * dirty ring full in iteration N-2.
596 					 *
597 					 * Long answer: Assuming ring size R,
598 					 * one possible condition is:
599 					 *
600 					 *      main thr       vcpu thr
601 					 *      --------       --------
602 					 *    iter=1
603 					 *                   write 1 to page 0~(R-1)
604 					 *                   full, vmexit
605 					 *    collect 0~(R-1)
606 					 *    kick vcpu
607 					 *                   write 1 to (R-1)~(2R-2)
608 					 *                   full, vmexit
609 					 *    iter=2
610 					 *    collect (R-1)~(2R-2)
611 					 *    kick vcpu
612 					 *                   write 1 to (2R-2)
613 					 *                   (NOTE!!! "1" cached in cpu reg)
614 					 *                   write 2 to (2R-1)~(3R-3)
615 					 *                   full, vmexit
616 					 *    iter=3
617 					 *    collect (2R-2)~(3R-3)
618 					 *    (here if we read value on page
619 					 *     "2R-2" is 1, while iter=3!!!)
620 					 *
621 					 * This however can only happen once per iteration.
622 					 */
623 					min_iter = iteration - 1;
624 					continue;
625 				} else if (page == dirty_ring_last_page) {
626 					/*
627 					 * Please refer to comments in
628 					 * dirty_ring_last_page.
629 					 */
630 					continue;
631 				}
632 			}
633 
634 			TEST_ASSERT(matched,
635 				    "Set page %"PRIu64" value %"PRIu64
636 				    " incorrect (iteration=%"PRIu64")",
637 				    page, *value_ptr, iteration);
638 		} else {
639 			host_clear_count++;
640 			/*
641 			 * If cleared, the value written can be any
642 			 * value smaller or equals to the iteration
643 			 * number.  Note that the value can be exactly
644 			 * (iteration-1) if that write can happen
645 			 * like this:
646 			 *
647 			 * (1) increase loop count to "iteration-1"
648 			 * (2) write to page P happens (with value
649 			 *     "iteration-1")
650 			 * (3) get dirty log for "iteration-1"; we'll
651 			 *     see that page P bit is set (dirtied),
652 			 *     and not set the bit in host_bmap_track
653 			 * (4) increase loop count to "iteration"
654 			 *     (which is current iteration)
655 			 * (5) get dirty log for current iteration,
656 			 *     we'll see that page P is cleared, with
657 			 *     value "iteration-1".
658 			 */
659 			TEST_ASSERT(*value_ptr <= iteration,
660 				    "Clear page %"PRIu64" value %"PRIu64
661 				    " incorrect (iteration=%"PRIu64")",
662 				    page, *value_ptr, iteration);
663 			if (*value_ptr == iteration) {
664 				/*
665 				 * This page is _just_ modified; it
666 				 * should report its dirtyness in the
667 				 * next run
668 				 */
669 				set_bit_le(page, host_bmap_track);
670 			}
671 		}
672 	}
673 }
674 
675 static struct kvm_vm *create_vm(enum vm_guest_mode mode, uint32_t vcpuid,
676 				uint64_t extra_mem_pages, void *guest_code)
677 {
678 	struct kvm_vm *vm;
679 	uint64_t extra_pg_pages = extra_mem_pages / 512 * 2;
680 
681 	pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
682 
683 	vm = vm_create(mode, DEFAULT_GUEST_PHY_PAGES + extra_pg_pages, O_RDWR);
684 	kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
685 #ifdef __x86_64__
686 	vm_create_irqchip(vm);
687 #endif
688 	log_mode_create_vm_done(vm);
689 	vm_vcpu_add_default(vm, vcpuid, guest_code);
690 	return vm;
691 }
692 
693 #define DIRTY_MEM_BITS 30 /* 1G */
694 #define PAGE_SHIFT_4K  12
695 
696 struct test_params {
697 	unsigned long iterations;
698 	unsigned long interval;
699 	uint64_t phys_offset;
700 };
701 
702 static void run_test(enum vm_guest_mode mode, void *arg)
703 {
704 	struct test_params *p = arg;
705 	struct kvm_vm *vm;
706 	unsigned long *bmap;
707 
708 	if (!log_mode_supported()) {
709 		print_skip("Log mode '%s' not supported",
710 			   log_modes[host_log_mode].name);
711 		return;
712 	}
713 
714 	/*
715 	 * We reserve page table for 2 times of extra dirty mem which
716 	 * will definitely cover the original (1G+) test range.  Here
717 	 * we do the calculation with 4K page size which is the
718 	 * smallest so the page number will be enough for all archs
719 	 * (e.g., 64K page size guest will need even less memory for
720 	 * page tables).
721 	 */
722 	vm = create_vm(mode, VCPU_ID,
723 		       2ul << (DIRTY_MEM_BITS - PAGE_SHIFT_4K),
724 		       guest_code);
725 
726 	guest_page_size = vm_get_page_size(vm);
727 	/*
728 	 * A little more than 1G of guest page sized pages.  Cover the
729 	 * case where the size is not aligned to 64 pages.
730 	 */
731 	guest_num_pages = (1ul << (DIRTY_MEM_BITS -
732 				   vm_get_page_shift(vm))) + 3;
733 	guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages);
734 
735 	host_page_size = getpagesize();
736 	host_num_pages = vm_num_host_pages(mode, guest_num_pages);
737 
738 	if (!p->phys_offset) {
739 		guest_test_phys_mem = (vm_get_max_gfn(vm) -
740 				       guest_num_pages) * guest_page_size;
741 		guest_test_phys_mem &= ~(host_page_size - 1);
742 	} else {
743 		guest_test_phys_mem = p->phys_offset;
744 	}
745 
746 #ifdef __s390x__
747 	/* Align to 1M (segment size) */
748 	guest_test_phys_mem &= ~((1 << 20) - 1);
749 #endif
750 
751 	pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem);
752 
753 	bmap = bitmap_alloc(host_num_pages);
754 	host_bmap_track = bitmap_alloc(host_num_pages);
755 
756 	/* Add an extra memory slot for testing dirty logging */
757 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
758 				    guest_test_phys_mem,
759 				    TEST_MEM_SLOT_INDEX,
760 				    guest_num_pages,
761 				    KVM_MEM_LOG_DIRTY_PAGES);
762 
763 	/* Do mapping for the dirty track memory slot */
764 	virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages, 0);
765 
766 	/* Cache the HVA pointer of the region */
767 	host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem);
768 
769 	ucall_init(vm, NULL);
770 
771 	/* Export the shared variables to the guest */
772 	sync_global_to_guest(vm, host_page_size);
773 	sync_global_to_guest(vm, guest_page_size);
774 	sync_global_to_guest(vm, guest_test_virt_mem);
775 	sync_global_to_guest(vm, guest_num_pages);
776 
777 	/* Start the iterations */
778 	iteration = 1;
779 	sync_global_to_guest(vm, iteration);
780 	host_quit = false;
781 	host_dirty_count = 0;
782 	host_clear_count = 0;
783 	host_track_next_count = 0;
784 
785 	pthread_create(&vcpu_thread, NULL, vcpu_worker, vm);
786 
787 	while (iteration < p->iterations) {
788 		/* Give the vcpu thread some time to dirty some pages */
789 		usleep(p->interval * 1000);
790 		log_mode_collect_dirty_pages(vm, TEST_MEM_SLOT_INDEX,
791 					     bmap, host_num_pages);
792 
793 		/*
794 		 * See vcpu_sync_stop_requested definition for details on why
795 		 * we need to stop vcpu when verify data.
796 		 */
797 		atomic_set(&vcpu_sync_stop_requested, true);
798 		sem_wait_until(&sem_vcpu_stop);
799 		/*
800 		 * NOTE: for dirty ring, it's possible that we didn't stop at
801 		 * GUEST_SYNC but instead we stopped because ring is full;
802 		 * that's okay too because ring full means we're only missing
803 		 * the flush of the last page, and since we handle the last
804 		 * page specially verification will succeed anyway.
805 		 */
806 		assert(host_log_mode == LOG_MODE_DIRTY_RING ||
807 		       atomic_read(&vcpu_sync_stop_requested) == false);
808 		vm_dirty_log_verify(mode, bmap);
809 		sem_post(&sem_vcpu_cont);
810 
811 		iteration++;
812 		sync_global_to_guest(vm, iteration);
813 	}
814 
815 	/* Tell the vcpu thread to quit */
816 	host_quit = true;
817 	log_mode_before_vcpu_join();
818 	pthread_join(vcpu_thread, NULL);
819 
820 	pr_info("Total bits checked: dirty (%"PRIu64"), clear (%"PRIu64"), "
821 		"track_next (%"PRIu64")\n", host_dirty_count, host_clear_count,
822 		host_track_next_count);
823 
824 	free(bmap);
825 	free(host_bmap_track);
826 	ucall_uninit(vm);
827 	kvm_vm_free(vm);
828 }
829 
830 static void help(char *name)
831 {
832 	puts("");
833 	printf("usage: %s [-h] [-i iterations] [-I interval] "
834 	       "[-p offset] [-m mode]\n", name);
835 	puts("");
836 	printf(" -c: specify dirty ring size, in number of entries\n");
837 	printf("     (only useful for dirty-ring test; default: %"PRIu32")\n",
838 	       TEST_DIRTY_RING_COUNT);
839 	printf(" -i: specify iteration counts (default: %"PRIu64")\n",
840 	       TEST_HOST_LOOP_N);
841 	printf(" -I: specify interval in ms (default: %"PRIu64" ms)\n",
842 	       TEST_HOST_LOOP_INTERVAL);
843 	printf(" -p: specify guest physical test memory offset\n"
844 	       "     Warning: a low offset can conflict with the loaded test code.\n");
845 	printf(" -M: specify the host logging mode "
846 	       "(default: run all log modes).  Supported modes: \n\t");
847 	log_modes_dump();
848 	guest_modes_help();
849 	puts("");
850 	exit(0);
851 }
852 
853 int main(int argc, char *argv[])
854 {
855 	struct test_params p = {
856 		.iterations = TEST_HOST_LOOP_N,
857 		.interval = TEST_HOST_LOOP_INTERVAL,
858 	};
859 	int opt, i;
860 	sigset_t sigset;
861 
862 	sem_init(&sem_vcpu_stop, 0, 0);
863 	sem_init(&sem_vcpu_cont, 0, 0);
864 
865 	guest_modes_append_default();
866 
867 	while ((opt = getopt(argc, argv, "c:hi:I:p:m:M:")) != -1) {
868 		switch (opt) {
869 		case 'c':
870 			test_dirty_ring_count = strtol(optarg, NULL, 10);
871 			break;
872 		case 'i':
873 			p.iterations = strtol(optarg, NULL, 10);
874 			break;
875 		case 'I':
876 			p.interval = strtol(optarg, NULL, 10);
877 			break;
878 		case 'p':
879 			p.phys_offset = strtoull(optarg, NULL, 0);
880 			break;
881 		case 'm':
882 			guest_modes_cmdline(optarg);
883 			break;
884 		case 'M':
885 			if (!strcmp(optarg, "all")) {
886 				host_log_mode_option = LOG_MODE_ALL;
887 				break;
888 			}
889 			for (i = 0; i < LOG_MODE_NUM; i++) {
890 				if (!strcmp(optarg, log_modes[i].name)) {
891 					pr_info("Setting log mode to: '%s'\n",
892 						optarg);
893 					host_log_mode_option = i;
894 					break;
895 				}
896 			}
897 			if (i == LOG_MODE_NUM) {
898 				printf("Log mode '%s' invalid. Please choose "
899 				       "from: ", optarg);
900 				log_modes_dump();
901 				exit(1);
902 			}
903 			break;
904 		case 'h':
905 		default:
906 			help(argv[0]);
907 			break;
908 		}
909 	}
910 
911 	TEST_ASSERT(p.iterations > 2, "Iterations must be greater than two");
912 	TEST_ASSERT(p.interval > 0, "Interval must be greater than zero");
913 
914 	pr_info("Test iterations: %"PRIu64", interval: %"PRIu64" (ms)\n",
915 		p.iterations, p.interval);
916 
917 	srandom(time(0));
918 
919 	/* Ensure that vCPU threads start with SIG_IPI blocked.  */
920 	sigemptyset(&sigset);
921 	sigaddset(&sigset, SIG_IPI);
922 	pthread_sigmask(SIG_BLOCK, &sigset, NULL);
923 
924 	if (host_log_mode_option == LOG_MODE_ALL) {
925 		/* Run each log mode */
926 		for (i = 0; i < LOG_MODE_NUM; i++) {
927 			pr_info("Testing Log Mode '%s'\n", log_modes[i].name);
928 			host_log_mode = i;
929 			for_each_guest_mode(run_test, &p);
930 		}
931 	} else {
932 		host_log_mode = host_log_mode_option;
933 		for_each_guest_mode(run_test, &p);
934 	}
935 
936 	return 0;
937 }
938