xref: /openbmc/linux/tools/testing/selftests/bpf/test_verifier.c (revision c1b2093dce23158e758818443e059e3fcd54633e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9 
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24 
25 #include <linux/unistd.h>
26 #include <linux/filter.h>
27 #include <linux/bpf_perf_event.h>
28 #include <linux/bpf.h>
29 #include <linux/if_ether.h>
30 #include <linux/btf.h>
31 
32 #include <bpf/btf.h>
33 #include <bpf/bpf.h>
34 #include <bpf/libbpf.h>
35 
36 #include "autoconf_helper.h"
37 #include "unpriv_helpers.h"
38 #include "cap_helpers.h"
39 #include "bpf_rand.h"
40 #include "bpf_util.h"
41 #include "test_btf.h"
42 #include "../../../include/linux/filter.h"
43 
44 #ifndef ENOTSUPP
45 #define ENOTSUPP 524
46 #endif
47 
48 #define MAX_INSNS	BPF_MAXINSNS
49 #define MAX_EXPECTED_INSNS	32
50 #define MAX_UNEXPECTED_INSNS	32
51 #define MAX_TEST_INSNS	1000000
52 #define MAX_FIXUPS	8
53 #define MAX_NR_MAPS	23
54 #define MAX_TEST_RUNS	8
55 #define POINTER_VALUE	0xcafe4all
56 #define TEST_DATA_LEN	64
57 #define MAX_FUNC_INFOS	8
58 #define MAX_BTF_STRINGS	256
59 #define MAX_BTF_TYPES	256
60 
61 #define INSN_OFF_MASK	((__s16)0xFFFF)
62 #define INSN_IMM_MASK	((__s32)0xFFFFFFFF)
63 #define SKIP_INSNS()	BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)
64 
65 #define DEFAULT_LIBBPF_LOG_LEVEL	4
66 
67 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
68 #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
69 
70 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
71 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN |	\
72 		    1ULL << CAP_PERFMON |	\
73 		    1ULL << CAP_BPF)
74 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
75 static bool unpriv_disabled = false;
76 static int skips;
77 static bool verbose = false;
78 static int verif_log_level = 0;
79 
80 struct kfunc_btf_id_pair {
81 	const char *kfunc;
82 	int insn_idx;
83 };
84 
85 struct bpf_test {
86 	const char *descr;
87 	struct bpf_insn	insns[MAX_INSNS];
88 	struct bpf_insn	*fill_insns;
89 	/* If specified, test engine looks for this sequence of
90 	 * instructions in the BPF program after loading. Allows to
91 	 * test rewrites applied by verifier.  Use values
92 	 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
93 	 * fields if content does not matter.  The test case fails if
94 	 * specified instructions are not found.
95 	 *
96 	 * The sequence could be split into sub-sequences by adding
97 	 * SKIP_INSNS instruction at the end of each sub-sequence. In
98 	 * such case sub-sequences are searched for one after another.
99 	 */
100 	struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
101 	/* If specified, test engine applies same pattern matching
102 	 * logic as for `expected_insns`. If the specified pattern is
103 	 * matched test case is marked as failed.
104 	 */
105 	struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
106 	int fixup_map_hash_8b[MAX_FIXUPS];
107 	int fixup_map_hash_48b[MAX_FIXUPS];
108 	int fixup_map_hash_16b[MAX_FIXUPS];
109 	int fixup_map_array_48b[MAX_FIXUPS];
110 	int fixup_map_sockmap[MAX_FIXUPS];
111 	int fixup_map_sockhash[MAX_FIXUPS];
112 	int fixup_map_xskmap[MAX_FIXUPS];
113 	int fixup_map_stacktrace[MAX_FIXUPS];
114 	int fixup_prog1[MAX_FIXUPS];
115 	int fixup_prog2[MAX_FIXUPS];
116 	int fixup_map_in_map[MAX_FIXUPS];
117 	int fixup_cgroup_storage[MAX_FIXUPS];
118 	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
119 	int fixup_map_spin_lock[MAX_FIXUPS];
120 	int fixup_map_array_ro[MAX_FIXUPS];
121 	int fixup_map_array_wo[MAX_FIXUPS];
122 	int fixup_map_array_small[MAX_FIXUPS];
123 	int fixup_sk_storage_map[MAX_FIXUPS];
124 	int fixup_map_event_output[MAX_FIXUPS];
125 	int fixup_map_reuseport_array[MAX_FIXUPS];
126 	int fixup_map_ringbuf[MAX_FIXUPS];
127 	int fixup_map_timer[MAX_FIXUPS];
128 	int fixup_map_kptr[MAX_FIXUPS];
129 	struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
130 	/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
131 	 * Can be a tab-separated sequence of expected strings. An empty string
132 	 * means no log verification.
133 	 */
134 	const char *errstr;
135 	const char *errstr_unpriv;
136 	uint32_t insn_processed;
137 	int prog_len;
138 	enum {
139 		UNDEF,
140 		ACCEPT,
141 		REJECT,
142 		VERBOSE_ACCEPT,
143 	} result, result_unpriv;
144 	enum bpf_prog_type prog_type;
145 	uint8_t flags;
146 	void (*fill_helper)(struct bpf_test *self);
147 	int runs;
148 #define bpf_testdata_struct_t					\
149 	struct {						\
150 		uint32_t retval, retval_unpriv;			\
151 		union {						\
152 			__u8 data[TEST_DATA_LEN];		\
153 			__u64 data64[TEST_DATA_LEN / 8];	\
154 		};						\
155 	}
156 	union {
157 		bpf_testdata_struct_t;
158 		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
159 	};
160 	enum bpf_attach_type expected_attach_type;
161 	const char *kfunc;
162 	struct bpf_func_info func_info[MAX_FUNC_INFOS];
163 	int func_info_cnt;
164 	char btf_strings[MAX_BTF_STRINGS];
165 	/* A set of BTF types to load when specified,
166 	 * use macro definitions from test_btf.h,
167 	 * must end with BTF_END_RAW
168 	 */
169 	__u32 btf_types[MAX_BTF_TYPES];
170 };
171 
172 /* Note we want this to be 64 bit aligned so that the end of our array is
173  * actually the end of the structure.
174  */
175 #define MAX_ENTRIES 11
176 
177 struct test_val {
178 	unsigned int index;
179 	int foo[MAX_ENTRIES];
180 };
181 
182 struct other_val {
183 	long long foo;
184 	long long bar;
185 };
186 
187 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
188 {
189 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
190 #define PUSH_CNT 51
191 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
192 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
193 	struct bpf_insn *insn = self->fill_insns;
194 	int i = 0, j, k = 0;
195 
196 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
197 loop:
198 	for (j = 0; j < PUSH_CNT; j++) {
199 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
200 		/* jump to error label */
201 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
202 		i++;
203 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
204 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
205 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
206 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
207 					 BPF_FUNC_skb_vlan_push);
208 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
209 		i++;
210 	}
211 
212 	for (j = 0; j < PUSH_CNT; j++) {
213 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
214 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
215 		i++;
216 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
217 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
218 					 BPF_FUNC_skb_vlan_pop);
219 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
220 		i++;
221 	}
222 	if (++k < 5)
223 		goto loop;
224 
225 	for (; i < len - 3; i++)
226 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
227 	insn[len - 3] = BPF_JMP_A(1);
228 	/* error label */
229 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
230 	insn[len - 1] = BPF_EXIT_INSN();
231 	self->prog_len = len;
232 }
233 
234 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
235 {
236 	struct bpf_insn *insn = self->fill_insns;
237 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
238 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
239 	 * to extend the error value of the inlined ld_abs sequence which then
240 	 * contains 7 insns. so, set the dividend to 7 so the testcase could
241 	 * work on all arches.
242 	 */
243 	unsigned int len = (1 << 15) / 7;
244 	int i = 0;
245 
246 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
247 	insn[i++] = BPF_LD_ABS(BPF_B, 0);
248 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
249 	i++;
250 	while (i < len - 1)
251 		insn[i++] = BPF_LD_ABS(BPF_B, 1);
252 	insn[i] = BPF_EXIT_INSN();
253 	self->prog_len = i + 1;
254 }
255 
256 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
257 {
258 	struct bpf_insn *insn = self->fill_insns;
259 	uint64_t res = 0;
260 	int i = 0;
261 
262 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
263 	while (i < self->retval) {
264 		uint64_t val = bpf_semi_rand_get();
265 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
266 
267 		res ^= val;
268 		insn[i++] = tmp[0];
269 		insn[i++] = tmp[1];
270 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
271 	}
272 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
273 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
274 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
275 	insn[i] = BPF_EXIT_INSN();
276 	self->prog_len = i + 1;
277 	res ^= (res >> 32);
278 	self->retval = (uint32_t)res;
279 }
280 
281 #define MAX_JMP_SEQ 8192
282 
283 /* test the sequence of 8k jumps */
284 static void bpf_fill_scale1(struct bpf_test *self)
285 {
286 	struct bpf_insn *insn = self->fill_insns;
287 	int i = 0, k = 0;
288 
289 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
290 	/* test to check that the long sequence of jumps is acceptable */
291 	while (k++ < MAX_JMP_SEQ) {
292 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
293 					 BPF_FUNC_get_prandom_u32);
294 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
295 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
296 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
297 					-8 * (k % 64 + 1));
298 	}
299 	/* is_state_visited() doesn't allocate state for pruning for every jump.
300 	 * Hence multiply jmps by 4 to accommodate that heuristic
301 	 */
302 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
303 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
304 	insn[i] = BPF_EXIT_INSN();
305 	self->prog_len = i + 1;
306 	self->retval = 42;
307 }
308 
309 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
310 static void bpf_fill_scale2(struct bpf_test *self)
311 {
312 	struct bpf_insn *insn = self->fill_insns;
313 	int i = 0, k = 0;
314 
315 #define FUNC_NEST 7
316 	for (k = 0; k < FUNC_NEST; k++) {
317 		insn[i++] = BPF_CALL_REL(1);
318 		insn[i++] = BPF_EXIT_INSN();
319 	}
320 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
321 	/* test to check that the long sequence of jumps is acceptable */
322 	k = 0;
323 	while (k++ < MAX_JMP_SEQ) {
324 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
325 					 BPF_FUNC_get_prandom_u32);
326 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
327 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
328 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
329 					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
330 	}
331 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
332 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
333 	insn[i] = BPF_EXIT_INSN();
334 	self->prog_len = i + 1;
335 	self->retval = 42;
336 }
337 
338 static void bpf_fill_scale(struct bpf_test *self)
339 {
340 	switch (self->retval) {
341 	case 1:
342 		return bpf_fill_scale1(self);
343 	case 2:
344 		return bpf_fill_scale2(self);
345 	default:
346 		self->prog_len = 0;
347 		break;
348 	}
349 }
350 
351 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
352 {
353 	unsigned int len = 259, hlen = 128;
354 	int i;
355 
356 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
357 	for (i = 1; i <= hlen; i++) {
358 		insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
359 		insn[i + hlen] = BPF_JMP_A(hlen - i);
360 	}
361 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
362 	insn[len - 1] = BPF_EXIT_INSN();
363 
364 	return len;
365 }
366 
367 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
368 {
369 	unsigned int len = 4100, jmp_off = 2048;
370 	int i, j;
371 
372 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
373 	for (i = 1; i <= jmp_off; i++) {
374 		insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
375 	}
376 	insn[i++] = BPF_JMP_A(jmp_off);
377 	for (; i <= jmp_off * 2 + 1; i+=16) {
378 		for (j = 0; j < 16; j++) {
379 			insn[i + j] = BPF_JMP_A(16 - j - 1);
380 		}
381 	}
382 
383 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
384 	insn[len - 1] = BPF_EXIT_INSN();
385 
386 	return len;
387 }
388 
389 static void bpf_fill_torturous_jumps(struct bpf_test *self)
390 {
391 	struct bpf_insn *insn = self->fill_insns;
392 	int i = 0;
393 
394 	switch (self->retval) {
395 	case 1:
396 		self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
397 		return;
398 	case 2:
399 		self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
400 		return;
401 	case 3:
402 		/* main */
403 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
404 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
405 		insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
406 		insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
407 		insn[i++] = BPF_EXIT_INSN();
408 
409 		/* subprog 1 */
410 		i += bpf_fill_torturous_jumps_insn_1(insn + i);
411 
412 		/* subprog 2 */
413 		i += bpf_fill_torturous_jumps_insn_2(insn + i);
414 
415 		self->prog_len = i;
416 		return;
417 	default:
418 		self->prog_len = 0;
419 		break;
420 	}
421 }
422 
423 static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self)
424 {
425 	struct bpf_insn *insn = self->fill_insns;
426 	/* This test was added to catch a specific use after free
427 	 * error, which happened upon BPF program reallocation.
428 	 * Reallocation is handled by core.c:bpf_prog_realloc, which
429 	 * reuses old memory if page boundary is not crossed. The
430 	 * value of `len` is chosen to cross this boundary on bpf_loop
431 	 * patching.
432 	 */
433 	const int len = getpagesize() - 25;
434 	int callback_load_idx;
435 	int callback_idx;
436 	int i = 0;
437 
438 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1);
439 	callback_load_idx = i;
440 	insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW,
441 				 BPF_REG_2, BPF_PSEUDO_FUNC, 0,
442 				 777 /* filled below */);
443 	insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0);
444 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0);
445 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0);
446 	insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop);
447 
448 	while (i < len - 3)
449 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
450 	insn[i++] = BPF_EXIT_INSN();
451 
452 	callback_idx = i;
453 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
454 	insn[i++] = BPF_EXIT_INSN();
455 
456 	insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1;
457 	self->func_info[1].insn_off = callback_idx;
458 	self->prog_len = i;
459 	assert(i == len);
460 }
461 
462 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
463 #define BPF_SK_LOOKUP(func)						\
464 	/* struct bpf_sock_tuple tuple = {} */				\
465 	BPF_MOV64_IMM(BPF_REG_2, 0),					\
466 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
467 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
468 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
469 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
470 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
471 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
472 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
473 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
474 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
475 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
476 	BPF_MOV64_IMM(BPF_REG_4, 0),					\
477 	BPF_MOV64_IMM(BPF_REG_5, 0),					\
478 	BPF_EMIT_CALL(BPF_FUNC_ ## func)
479 
480 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
481  * value into 0 and does necessary preparation for direct packet access
482  * through r2. The allowed access range is 8 bytes.
483  */
484 #define BPF_DIRECT_PKT_R2						\
485 	BPF_MOV64_IMM(BPF_REG_0, 0),					\
486 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
487 		    offsetof(struct __sk_buff, data)),			\
488 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
489 		    offsetof(struct __sk_buff, data_end)),		\
490 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
491 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
492 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
493 	BPF_EXIT_INSN()
494 
495 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
496  * positive u32, and zero-extend it into 64-bit.
497  */
498 #define BPF_RAND_UEXT_R7						\
499 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
500 		     BPF_FUNC_get_prandom_u32),				\
501 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
502 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
503 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
504 
505 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
506  * negative u32, and sign-extend it into 64-bit.
507  */
508 #define BPF_RAND_SEXT_R7						\
509 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
510 		     BPF_FUNC_get_prandom_u32),				\
511 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
512 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
513 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
514 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
515 
516 static struct bpf_test tests[] = {
517 #define FILL_ARRAY
518 #include <verifier/tests.h>
519 #undef FILL_ARRAY
520 };
521 
522 static int probe_filter_length(const struct bpf_insn *fp)
523 {
524 	int len;
525 
526 	for (len = MAX_INSNS - 1; len > 0; --len)
527 		if (fp[len].code != 0 || fp[len].imm != 0)
528 			break;
529 	return len + 1;
530 }
531 
532 static bool skip_unsupported_map(enum bpf_map_type map_type)
533 {
534 	if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
535 		printf("SKIP (unsupported map type %d)\n", map_type);
536 		skips++;
537 		return true;
538 	}
539 	return false;
540 }
541 
542 static int __create_map(uint32_t type, uint32_t size_key,
543 			uint32_t size_value, uint32_t max_elem,
544 			uint32_t extra_flags)
545 {
546 	LIBBPF_OPTS(bpf_map_create_opts, opts);
547 	int fd;
548 
549 	opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
550 	fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
551 	if (fd < 0) {
552 		if (skip_unsupported_map(type))
553 			return -1;
554 		printf("Failed to create hash map '%s'!\n", strerror(errno));
555 	}
556 
557 	return fd;
558 }
559 
560 static int create_map(uint32_t type, uint32_t size_key,
561 		      uint32_t size_value, uint32_t max_elem)
562 {
563 	return __create_map(type, size_key, size_value, max_elem, 0);
564 }
565 
566 static void update_map(int fd, int index)
567 {
568 	struct test_val value = {
569 		.index = (6 + 1) * sizeof(int),
570 		.foo[6] = 0xabcdef12,
571 	};
572 
573 	assert(!bpf_map_update_elem(fd, &index, &value, 0));
574 }
575 
576 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
577 {
578 	struct bpf_insn prog[] = {
579 		BPF_MOV64_IMM(BPF_REG_0, ret),
580 		BPF_EXIT_INSN(),
581 	};
582 
583 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
584 }
585 
586 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
587 				  int idx, int ret)
588 {
589 	struct bpf_insn prog[] = {
590 		BPF_MOV64_IMM(BPF_REG_3, idx),
591 		BPF_LD_MAP_FD(BPF_REG_2, mfd),
592 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
593 			     BPF_FUNC_tail_call),
594 		BPF_MOV64_IMM(BPF_REG_0, ret),
595 		BPF_EXIT_INSN(),
596 	};
597 
598 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
599 }
600 
601 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
602 			     int p1key, int p2key, int p3key)
603 {
604 	int mfd, p1fd, p2fd, p3fd;
605 
606 	mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
607 			     sizeof(int), max_elem, NULL);
608 	if (mfd < 0) {
609 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
610 			return -1;
611 		printf("Failed to create prog array '%s'!\n", strerror(errno));
612 		return -1;
613 	}
614 
615 	p1fd = create_prog_dummy_simple(prog_type, 42);
616 	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
617 	p3fd = create_prog_dummy_simple(prog_type, 24);
618 	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
619 		goto err;
620 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
621 		goto err;
622 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
623 		goto err;
624 	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
625 err:
626 		close(mfd);
627 		mfd = -1;
628 	}
629 	close(p3fd);
630 	close(p2fd);
631 	close(p1fd);
632 	return mfd;
633 }
634 
635 static int create_map_in_map(void)
636 {
637 	LIBBPF_OPTS(bpf_map_create_opts, opts);
638 	int inner_map_fd, outer_map_fd;
639 
640 	inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
641 				      sizeof(int), 1, NULL);
642 	if (inner_map_fd < 0) {
643 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
644 			return -1;
645 		printf("Failed to create array '%s'!\n", strerror(errno));
646 		return inner_map_fd;
647 	}
648 
649 	opts.inner_map_fd = inner_map_fd;
650 	outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
651 				      sizeof(int), sizeof(int), 1, &opts);
652 	if (outer_map_fd < 0) {
653 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
654 			return -1;
655 		printf("Failed to create array of maps '%s'!\n",
656 		       strerror(errno));
657 	}
658 
659 	close(inner_map_fd);
660 
661 	return outer_map_fd;
662 }
663 
664 static int create_cgroup_storage(bool percpu)
665 {
666 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
667 		BPF_MAP_TYPE_CGROUP_STORAGE;
668 	int fd;
669 
670 	fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
671 			    TEST_DATA_LEN, 0, NULL);
672 	if (fd < 0) {
673 		if (skip_unsupported_map(type))
674 			return -1;
675 		printf("Failed to create cgroup storage '%s'!\n",
676 		       strerror(errno));
677 	}
678 
679 	return fd;
680 }
681 
682 /* struct bpf_spin_lock {
683  *   int val;
684  * };
685  * struct val {
686  *   int cnt;
687  *   struct bpf_spin_lock l;
688  * };
689  * struct bpf_timer {
690  *   __u64 :64;
691  *   __u64 :64;
692  * } __attribute__((aligned(8)));
693  * struct timer {
694  *   struct bpf_timer t;
695  * };
696  * struct btf_ptr {
697  *   struct prog_test_ref_kfunc __kptr_untrusted *ptr;
698  *   struct prog_test_ref_kfunc __kptr *ptr;
699  *   struct prog_test_member __kptr *ptr;
700  * }
701  */
702 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
703 				  "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted"
704 				  "\0prog_test_member";
705 static __u32 btf_raw_types[] = {
706 	/* int */
707 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
708 	/* struct bpf_spin_lock */                      /* [2] */
709 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
710 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
711 	/* struct val */                                /* [3] */
712 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
713 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
714 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
715 	/* struct bpf_timer */                          /* [4] */
716 	BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
717 	/* struct timer */                              /* [5] */
718 	BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
719 	BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
720 	/* struct prog_test_ref_kfunc */		/* [6] */
721 	BTF_STRUCT_ENC(51, 0, 0),
722 	BTF_STRUCT_ENC(95, 0, 0),			/* [7] */
723 	/* type tag "kptr_untrusted" */
724 	BTF_TYPE_TAG_ENC(80, 6),			/* [8] */
725 	/* type tag "kptr" */
726 	BTF_TYPE_TAG_ENC(75, 6),			/* [9] */
727 	BTF_TYPE_TAG_ENC(75, 7),			/* [10] */
728 	BTF_PTR_ENC(8),					/* [11] */
729 	BTF_PTR_ENC(9),					/* [12] */
730 	BTF_PTR_ENC(10),				/* [13] */
731 	/* struct btf_ptr */				/* [14] */
732 	BTF_STRUCT_ENC(43, 3, 24),
733 	BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */
734 	BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */
735 	BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */
736 };
737 
738 static char bpf_vlog[UINT_MAX >> 8];
739 
740 static int load_btf_spec(__u32 *types, int types_len,
741 			 const char *strings, int strings_len)
742 {
743 	struct btf_header hdr = {
744 		.magic = BTF_MAGIC,
745 		.version = BTF_VERSION,
746 		.hdr_len = sizeof(struct btf_header),
747 		.type_len = types_len,
748 		.str_off = types_len,
749 		.str_len = strings_len,
750 	};
751 	void *ptr, *raw_btf;
752 	int btf_fd;
753 	LIBBPF_OPTS(bpf_btf_load_opts, opts,
754 		    .log_buf = bpf_vlog,
755 		    .log_size = sizeof(bpf_vlog),
756 		    .log_level = (verbose
757 				  ? verif_log_level
758 				  : DEFAULT_LIBBPF_LOG_LEVEL),
759 	);
760 
761 	raw_btf = malloc(sizeof(hdr) + types_len + strings_len);
762 
763 	ptr = raw_btf;
764 	memcpy(ptr, &hdr, sizeof(hdr));
765 	ptr += sizeof(hdr);
766 	memcpy(ptr, types, hdr.type_len);
767 	ptr += hdr.type_len;
768 	memcpy(ptr, strings, hdr.str_len);
769 	ptr += hdr.str_len;
770 
771 	btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
772 	if (btf_fd < 0)
773 		printf("Failed to load BTF spec: '%s'\n", strerror(errno));
774 
775 	free(raw_btf);
776 
777 	return btf_fd < 0 ? -1 : btf_fd;
778 }
779 
780 static int load_btf(void)
781 {
782 	return load_btf_spec(btf_raw_types, sizeof(btf_raw_types),
783 			     btf_str_sec, sizeof(btf_str_sec));
784 }
785 
786 static int load_btf_for_test(struct bpf_test *test)
787 {
788 	int types_num = 0;
789 
790 	while (types_num < MAX_BTF_TYPES &&
791 	       test->btf_types[types_num] != BTF_END_RAW)
792 		++types_num;
793 
794 	int types_len = types_num * sizeof(test->btf_types[0]);
795 
796 	return load_btf_spec(test->btf_types, types_len,
797 			     test->btf_strings, sizeof(test->btf_strings));
798 }
799 
800 static int create_map_spin_lock(void)
801 {
802 	LIBBPF_OPTS(bpf_map_create_opts, opts,
803 		.btf_key_type_id = 1,
804 		.btf_value_type_id = 3,
805 	);
806 	int fd, btf_fd;
807 
808 	btf_fd = load_btf();
809 	if (btf_fd < 0)
810 		return -1;
811 	opts.btf_fd = btf_fd;
812 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
813 	if (fd < 0)
814 		printf("Failed to create map with spin_lock\n");
815 	return fd;
816 }
817 
818 static int create_sk_storage_map(void)
819 {
820 	LIBBPF_OPTS(bpf_map_create_opts, opts,
821 		.map_flags = BPF_F_NO_PREALLOC,
822 		.btf_key_type_id = 1,
823 		.btf_value_type_id = 3,
824 	);
825 	int fd, btf_fd;
826 
827 	btf_fd = load_btf();
828 	if (btf_fd < 0)
829 		return -1;
830 	opts.btf_fd = btf_fd;
831 	fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
832 	close(opts.btf_fd);
833 	if (fd < 0)
834 		printf("Failed to create sk_storage_map\n");
835 	return fd;
836 }
837 
838 static int create_map_timer(void)
839 {
840 	LIBBPF_OPTS(bpf_map_create_opts, opts,
841 		.btf_key_type_id = 1,
842 		.btf_value_type_id = 5,
843 	);
844 	int fd, btf_fd;
845 
846 	btf_fd = load_btf();
847 	if (btf_fd < 0)
848 		return -1;
849 
850 	opts.btf_fd = btf_fd;
851 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
852 	if (fd < 0)
853 		printf("Failed to create map with timer\n");
854 	return fd;
855 }
856 
857 static int create_map_kptr(void)
858 {
859 	LIBBPF_OPTS(bpf_map_create_opts, opts,
860 		.btf_key_type_id = 1,
861 		.btf_value_type_id = 14,
862 	);
863 	int fd, btf_fd;
864 
865 	btf_fd = load_btf();
866 	if (btf_fd < 0)
867 		return -1;
868 
869 	opts.btf_fd = btf_fd;
870 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
871 	if (fd < 0)
872 		printf("Failed to create map with btf_id pointer\n");
873 	return fd;
874 }
875 
876 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
877 			  struct bpf_insn *prog, int *map_fds)
878 {
879 	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
880 	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
881 	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
882 	int *fixup_map_array_48b = test->fixup_map_array_48b;
883 	int *fixup_map_sockmap = test->fixup_map_sockmap;
884 	int *fixup_map_sockhash = test->fixup_map_sockhash;
885 	int *fixup_map_xskmap = test->fixup_map_xskmap;
886 	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
887 	int *fixup_prog1 = test->fixup_prog1;
888 	int *fixup_prog2 = test->fixup_prog2;
889 	int *fixup_map_in_map = test->fixup_map_in_map;
890 	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
891 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
892 	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
893 	int *fixup_map_array_ro = test->fixup_map_array_ro;
894 	int *fixup_map_array_wo = test->fixup_map_array_wo;
895 	int *fixup_map_array_small = test->fixup_map_array_small;
896 	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
897 	int *fixup_map_event_output = test->fixup_map_event_output;
898 	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
899 	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
900 	int *fixup_map_timer = test->fixup_map_timer;
901 	int *fixup_map_kptr = test->fixup_map_kptr;
902 	struct kfunc_btf_id_pair *fixup_kfunc_btf_id = test->fixup_kfunc_btf_id;
903 
904 	if (test->fill_helper) {
905 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
906 		test->fill_helper(test);
907 	}
908 
909 	/* Allocating HTs with 1 elem is fine here, since we only test
910 	 * for verifier and not do a runtime lookup, so the only thing
911 	 * that really matters is value size in this case.
912 	 */
913 	if (*fixup_map_hash_8b) {
914 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
915 					sizeof(long long), 1);
916 		do {
917 			prog[*fixup_map_hash_8b].imm = map_fds[0];
918 			fixup_map_hash_8b++;
919 		} while (*fixup_map_hash_8b);
920 	}
921 
922 	if (*fixup_map_hash_48b) {
923 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
924 					sizeof(struct test_val), 1);
925 		do {
926 			prog[*fixup_map_hash_48b].imm = map_fds[1];
927 			fixup_map_hash_48b++;
928 		} while (*fixup_map_hash_48b);
929 	}
930 
931 	if (*fixup_map_hash_16b) {
932 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
933 					sizeof(struct other_val), 1);
934 		do {
935 			prog[*fixup_map_hash_16b].imm = map_fds[2];
936 			fixup_map_hash_16b++;
937 		} while (*fixup_map_hash_16b);
938 	}
939 
940 	if (*fixup_map_array_48b) {
941 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
942 					sizeof(struct test_val), 1);
943 		update_map(map_fds[3], 0);
944 		do {
945 			prog[*fixup_map_array_48b].imm = map_fds[3];
946 			fixup_map_array_48b++;
947 		} while (*fixup_map_array_48b);
948 	}
949 
950 	if (*fixup_prog1) {
951 		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
952 		do {
953 			prog[*fixup_prog1].imm = map_fds[4];
954 			fixup_prog1++;
955 		} while (*fixup_prog1);
956 	}
957 
958 	if (*fixup_prog2) {
959 		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
960 		do {
961 			prog[*fixup_prog2].imm = map_fds[5];
962 			fixup_prog2++;
963 		} while (*fixup_prog2);
964 	}
965 
966 	if (*fixup_map_in_map) {
967 		map_fds[6] = create_map_in_map();
968 		do {
969 			prog[*fixup_map_in_map].imm = map_fds[6];
970 			fixup_map_in_map++;
971 		} while (*fixup_map_in_map);
972 	}
973 
974 	if (*fixup_cgroup_storage) {
975 		map_fds[7] = create_cgroup_storage(false);
976 		do {
977 			prog[*fixup_cgroup_storage].imm = map_fds[7];
978 			fixup_cgroup_storage++;
979 		} while (*fixup_cgroup_storage);
980 	}
981 
982 	if (*fixup_percpu_cgroup_storage) {
983 		map_fds[8] = create_cgroup_storage(true);
984 		do {
985 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
986 			fixup_percpu_cgroup_storage++;
987 		} while (*fixup_percpu_cgroup_storage);
988 	}
989 	if (*fixup_map_sockmap) {
990 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
991 					sizeof(int), 1);
992 		do {
993 			prog[*fixup_map_sockmap].imm = map_fds[9];
994 			fixup_map_sockmap++;
995 		} while (*fixup_map_sockmap);
996 	}
997 	if (*fixup_map_sockhash) {
998 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
999 					sizeof(int), 1);
1000 		do {
1001 			prog[*fixup_map_sockhash].imm = map_fds[10];
1002 			fixup_map_sockhash++;
1003 		} while (*fixup_map_sockhash);
1004 	}
1005 	if (*fixup_map_xskmap) {
1006 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
1007 					sizeof(int), 1);
1008 		do {
1009 			prog[*fixup_map_xskmap].imm = map_fds[11];
1010 			fixup_map_xskmap++;
1011 		} while (*fixup_map_xskmap);
1012 	}
1013 	if (*fixup_map_stacktrace) {
1014 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
1015 					 sizeof(u64), 1);
1016 		do {
1017 			prog[*fixup_map_stacktrace].imm = map_fds[12];
1018 			fixup_map_stacktrace++;
1019 		} while (*fixup_map_stacktrace);
1020 	}
1021 	if (*fixup_map_spin_lock) {
1022 		map_fds[13] = create_map_spin_lock();
1023 		do {
1024 			prog[*fixup_map_spin_lock].imm = map_fds[13];
1025 			fixup_map_spin_lock++;
1026 		} while (*fixup_map_spin_lock);
1027 	}
1028 	if (*fixup_map_array_ro) {
1029 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1030 					   sizeof(struct test_val), 1,
1031 					   BPF_F_RDONLY_PROG);
1032 		update_map(map_fds[14], 0);
1033 		do {
1034 			prog[*fixup_map_array_ro].imm = map_fds[14];
1035 			fixup_map_array_ro++;
1036 		} while (*fixup_map_array_ro);
1037 	}
1038 	if (*fixup_map_array_wo) {
1039 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1040 					   sizeof(struct test_val), 1,
1041 					   BPF_F_WRONLY_PROG);
1042 		update_map(map_fds[15], 0);
1043 		do {
1044 			prog[*fixup_map_array_wo].imm = map_fds[15];
1045 			fixup_map_array_wo++;
1046 		} while (*fixup_map_array_wo);
1047 	}
1048 	if (*fixup_map_array_small) {
1049 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1050 					   1, 1, 0);
1051 		update_map(map_fds[16], 0);
1052 		do {
1053 			prog[*fixup_map_array_small].imm = map_fds[16];
1054 			fixup_map_array_small++;
1055 		} while (*fixup_map_array_small);
1056 	}
1057 	if (*fixup_sk_storage_map) {
1058 		map_fds[17] = create_sk_storage_map();
1059 		do {
1060 			prog[*fixup_sk_storage_map].imm = map_fds[17];
1061 			fixup_sk_storage_map++;
1062 		} while (*fixup_sk_storage_map);
1063 	}
1064 	if (*fixup_map_event_output) {
1065 		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
1066 					   sizeof(int), sizeof(int), 1, 0);
1067 		do {
1068 			prog[*fixup_map_event_output].imm = map_fds[18];
1069 			fixup_map_event_output++;
1070 		} while (*fixup_map_event_output);
1071 	}
1072 	if (*fixup_map_reuseport_array) {
1073 		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1074 					   sizeof(u32), sizeof(u64), 1, 0);
1075 		do {
1076 			prog[*fixup_map_reuseport_array].imm = map_fds[19];
1077 			fixup_map_reuseport_array++;
1078 		} while (*fixup_map_reuseport_array);
1079 	}
1080 	if (*fixup_map_ringbuf) {
1081 		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
1082 					 0, getpagesize());
1083 		do {
1084 			prog[*fixup_map_ringbuf].imm = map_fds[20];
1085 			fixup_map_ringbuf++;
1086 		} while (*fixup_map_ringbuf);
1087 	}
1088 	if (*fixup_map_timer) {
1089 		map_fds[21] = create_map_timer();
1090 		do {
1091 			prog[*fixup_map_timer].imm = map_fds[21];
1092 			fixup_map_timer++;
1093 		} while (*fixup_map_timer);
1094 	}
1095 	if (*fixup_map_kptr) {
1096 		map_fds[22] = create_map_kptr();
1097 		do {
1098 			prog[*fixup_map_kptr].imm = map_fds[22];
1099 			fixup_map_kptr++;
1100 		} while (*fixup_map_kptr);
1101 	}
1102 
1103 	/* Patch in kfunc BTF IDs */
1104 	if (fixup_kfunc_btf_id->kfunc) {
1105 		struct btf *btf;
1106 		int btf_id;
1107 
1108 		do {
1109 			btf_id = 0;
1110 			btf = btf__load_vmlinux_btf();
1111 			if (btf) {
1112 				btf_id = btf__find_by_name_kind(btf,
1113 								fixup_kfunc_btf_id->kfunc,
1114 								BTF_KIND_FUNC);
1115 				btf_id = btf_id < 0 ? 0 : btf_id;
1116 			}
1117 			btf__free(btf);
1118 			prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
1119 			fixup_kfunc_btf_id++;
1120 		} while (fixup_kfunc_btf_id->kfunc);
1121 	}
1122 }
1123 
1124 struct libcap {
1125 	struct __user_cap_header_struct hdr;
1126 	struct __user_cap_data_struct data[2];
1127 };
1128 
1129 static int set_admin(bool admin)
1130 {
1131 	int err;
1132 
1133 	if (admin) {
1134 		err = cap_enable_effective(ADMIN_CAPS, NULL);
1135 		if (err)
1136 			perror("cap_enable_effective(ADMIN_CAPS)");
1137 	} else {
1138 		err = cap_disable_effective(ADMIN_CAPS, NULL);
1139 		if (err)
1140 			perror("cap_disable_effective(ADMIN_CAPS)");
1141 	}
1142 
1143 	return err;
1144 }
1145 
1146 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1147 			    void *data, size_t size_data)
1148 {
1149 	__u8 tmp[TEST_DATA_LEN << 2];
1150 	__u32 size_tmp = sizeof(tmp);
1151 	int err, saved_errno;
1152 	LIBBPF_OPTS(bpf_test_run_opts, topts,
1153 		.data_in = data,
1154 		.data_size_in = size_data,
1155 		.data_out = tmp,
1156 		.data_size_out = size_tmp,
1157 		.repeat = 1,
1158 	);
1159 
1160 	if (unpriv)
1161 		set_admin(true);
1162 	err = bpf_prog_test_run_opts(fd_prog, &topts);
1163 	saved_errno = errno;
1164 
1165 	if (unpriv)
1166 		set_admin(false);
1167 
1168 	if (err) {
1169 		switch (saved_errno) {
1170 		case ENOTSUPP:
1171 			printf("Did not run the program (not supported) ");
1172 			return 0;
1173 		case EPERM:
1174 			if (unpriv) {
1175 				printf("Did not run the program (no permission) ");
1176 				return 0;
1177 			}
1178 			/* fallthrough; */
1179 		default:
1180 			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1181 				strerror(saved_errno));
1182 			return err;
1183 		}
1184 	}
1185 
1186 	if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
1187 		printf("FAIL retval %d != %d ", topts.retval, expected_val);
1188 		return 1;
1189 	}
1190 
1191 	return 0;
1192 }
1193 
1194 /* Returns true if every part of exp (tab-separated) appears in log, in order.
1195  *
1196  * If exp is an empty string, returns true.
1197  */
1198 static bool cmp_str_seq(const char *log, const char *exp)
1199 {
1200 	char needle[200];
1201 	const char *p, *q;
1202 	int len;
1203 
1204 	do {
1205 		if (!strlen(exp))
1206 			break;
1207 		p = strchr(exp, '\t');
1208 		if (!p)
1209 			p = exp + strlen(exp);
1210 
1211 		len = p - exp;
1212 		if (len >= sizeof(needle) || !len) {
1213 			printf("FAIL\nTestcase bug\n");
1214 			return false;
1215 		}
1216 		strncpy(needle, exp, len);
1217 		needle[len] = 0;
1218 		q = strstr(log, needle);
1219 		if (!q) {
1220 			printf("FAIL\nUnexpected verifier log!\n"
1221 			       "EXP: %s\nRES:\n", needle);
1222 			return false;
1223 		}
1224 		log = q + len;
1225 		exp = p + 1;
1226 	} while (*p);
1227 	return true;
1228 }
1229 
1230 static int get_xlated_program(int fd_prog, struct bpf_insn **buf, int *cnt)
1231 {
1232 	struct bpf_prog_info info = {};
1233 	__u32 info_len = sizeof(info);
1234 	__u32 xlated_prog_len;
1235 	__u32 buf_element_size = sizeof(struct bpf_insn);
1236 
1237 	if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) {
1238 		perror("bpf_prog_get_info_by_fd failed");
1239 		return -1;
1240 	}
1241 
1242 	xlated_prog_len = info.xlated_prog_len;
1243 	if (xlated_prog_len % buf_element_size) {
1244 		printf("Program length %d is not multiple of %d\n",
1245 		       xlated_prog_len, buf_element_size);
1246 		return -1;
1247 	}
1248 
1249 	*cnt = xlated_prog_len / buf_element_size;
1250 	*buf = calloc(*cnt, buf_element_size);
1251 	if (!buf) {
1252 		perror("can't allocate xlated program buffer");
1253 		return -ENOMEM;
1254 	}
1255 
1256 	bzero(&info, sizeof(info));
1257 	info.xlated_prog_len = xlated_prog_len;
1258 	info.xlated_prog_insns = (__u64)(unsigned long)*buf;
1259 	if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) {
1260 		perror("second bpf_prog_get_info_by_fd failed");
1261 		goto out_free_buf;
1262 	}
1263 
1264 	return 0;
1265 
1266 out_free_buf:
1267 	free(*buf);
1268 	return -1;
1269 }
1270 
1271 static bool is_null_insn(struct bpf_insn *insn)
1272 {
1273 	struct bpf_insn null_insn = {};
1274 
1275 	return memcmp(insn, &null_insn, sizeof(null_insn)) == 0;
1276 }
1277 
1278 static bool is_skip_insn(struct bpf_insn *insn)
1279 {
1280 	struct bpf_insn skip_insn = SKIP_INSNS();
1281 
1282 	return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0;
1283 }
1284 
1285 static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
1286 {
1287 	int i;
1288 
1289 	for (i = 0; i < max_len; ++i) {
1290 		if (is_null_insn(&seq[i]))
1291 			return i;
1292 	}
1293 	return max_len;
1294 }
1295 
1296 static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
1297 {
1298 	struct bpf_insn orig_masked;
1299 
1300 	memcpy(&orig_masked, orig, sizeof(orig_masked));
1301 	if (masked->imm == INSN_IMM_MASK)
1302 		orig_masked.imm = INSN_IMM_MASK;
1303 	if (masked->off == INSN_OFF_MASK)
1304 		orig_masked.off = INSN_OFF_MASK;
1305 
1306 	return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0;
1307 }
1308 
1309 static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
1310 			    int seq_len, int subseq_len)
1311 {
1312 	int i, j;
1313 
1314 	if (subseq_len > seq_len)
1315 		return -1;
1316 
1317 	for (i = 0; i < seq_len - subseq_len + 1; ++i) {
1318 		bool found = true;
1319 
1320 		for (j = 0; j < subseq_len; ++j) {
1321 			if (!compare_masked_insn(&seq[i + j], &subseq[j])) {
1322 				found = false;
1323 				break;
1324 			}
1325 		}
1326 		if (found)
1327 			return i;
1328 	}
1329 
1330 	return -1;
1331 }
1332 
1333 static int find_skip_insn_marker(struct bpf_insn *seq, int len)
1334 {
1335 	int i;
1336 
1337 	for (i = 0; i < len; ++i)
1338 		if (is_skip_insn(&seq[i]))
1339 			return i;
1340 
1341 	return -1;
1342 }
1343 
1344 /* Return true if all sub-sequences in `subseqs` could be found in
1345  * `seq` one after another. Sub-sequences are separated by a single
1346  * nil instruction.
1347  */
1348 static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
1349 				  int seq_len, int max_subseqs_len)
1350 {
1351 	int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len);
1352 
1353 	while (subseqs_len > 0) {
1354 		int skip_idx = find_skip_insn_marker(subseqs, subseqs_len);
1355 		int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
1356 		int subseq_idx = find_insn_subseq(seq, subseqs,
1357 						  seq_len, cur_subseq_len);
1358 
1359 		if (subseq_idx < 0)
1360 			return false;
1361 		seq += subseq_idx + cur_subseq_len;
1362 		seq_len -= subseq_idx + cur_subseq_len;
1363 		subseqs += cur_subseq_len + 1;
1364 		subseqs_len -= cur_subseq_len + 1;
1365 	}
1366 
1367 	return true;
1368 }
1369 
1370 static void print_insn(struct bpf_insn *buf, int cnt)
1371 {
1372 	int i;
1373 
1374 	printf("  addr  op d s off  imm\n");
1375 	for (i = 0; i < cnt; ++i) {
1376 		struct bpf_insn *insn = &buf[i];
1377 
1378 		if (is_null_insn(insn))
1379 			break;
1380 
1381 		if (is_skip_insn(insn))
1382 			printf("  ...\n");
1383 		else
1384 			printf("  %04x: %02x %1x %x %04hx %08x\n",
1385 			       i, insn->code, insn->dst_reg,
1386 			       insn->src_reg, insn->off, insn->imm);
1387 	}
1388 }
1389 
1390 static bool check_xlated_program(struct bpf_test *test, int fd_prog)
1391 {
1392 	struct bpf_insn *buf;
1393 	int cnt;
1394 	bool result = true;
1395 	bool check_expected = !is_null_insn(test->expected_insns);
1396 	bool check_unexpected = !is_null_insn(test->unexpected_insns);
1397 
1398 	if (!check_expected && !check_unexpected)
1399 		goto out;
1400 
1401 	if (get_xlated_program(fd_prog, &buf, &cnt)) {
1402 		printf("FAIL: can't get xlated program\n");
1403 		result = false;
1404 		goto out;
1405 	}
1406 
1407 	if (check_expected &&
1408 	    !find_all_insn_subseqs(buf, test->expected_insns,
1409 				   cnt, MAX_EXPECTED_INSNS)) {
1410 		printf("FAIL: can't find expected subsequence of instructions\n");
1411 		result = false;
1412 		if (verbose) {
1413 			printf("Program:\n");
1414 			print_insn(buf, cnt);
1415 			printf("Expected subsequence:\n");
1416 			print_insn(test->expected_insns, MAX_EXPECTED_INSNS);
1417 		}
1418 	}
1419 
1420 	if (check_unexpected &&
1421 	    find_all_insn_subseqs(buf, test->unexpected_insns,
1422 				  cnt, MAX_UNEXPECTED_INSNS)) {
1423 		printf("FAIL: found unexpected subsequence of instructions\n");
1424 		result = false;
1425 		if (verbose) {
1426 			printf("Program:\n");
1427 			print_insn(buf, cnt);
1428 			printf("Un-expected subsequence:\n");
1429 			print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS);
1430 		}
1431 	}
1432 
1433 	free(buf);
1434  out:
1435 	return result;
1436 }
1437 
1438 static void do_test_single(struct bpf_test *test, bool unpriv,
1439 			   int *passes, int *errors)
1440 {
1441 	int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
1442 	int prog_len, prog_type = test->prog_type;
1443 	struct bpf_insn *prog = test->insns;
1444 	LIBBPF_OPTS(bpf_prog_load_opts, opts);
1445 	int run_errs, run_successes;
1446 	int map_fds[MAX_NR_MAPS];
1447 	const char *expected_err;
1448 	int saved_errno;
1449 	int fixup_skips;
1450 	__u32 pflags;
1451 	int i, err;
1452 
1453 	fd_prog = -1;
1454 	for (i = 0; i < MAX_NR_MAPS; i++)
1455 		map_fds[i] = -1;
1456 	btf_fd = -1;
1457 
1458 	if (!prog_type)
1459 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1460 	fixup_skips = skips;
1461 	do_test_fixup(test, prog_type, prog, map_fds);
1462 	if (test->fill_insns) {
1463 		prog = test->fill_insns;
1464 		prog_len = test->prog_len;
1465 	} else {
1466 		prog_len = probe_filter_length(prog);
1467 	}
1468 	/* If there were some map skips during fixup due to missing bpf
1469 	 * features, skip this test.
1470 	 */
1471 	if (fixup_skips != skips)
1472 		return;
1473 
1474 	pflags = BPF_F_TEST_RND_HI32;
1475 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1476 		pflags |= BPF_F_STRICT_ALIGNMENT;
1477 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1478 		pflags |= BPF_F_ANY_ALIGNMENT;
1479 	if (test->flags & ~3)
1480 		pflags |= test->flags;
1481 
1482 	expected_ret = unpriv && test->result_unpriv != UNDEF ?
1483 		       test->result_unpriv : test->result;
1484 	expected_err = unpriv && test->errstr_unpriv ?
1485 		       test->errstr_unpriv : test->errstr;
1486 
1487 	opts.expected_attach_type = test->expected_attach_type;
1488 	if (verbose)
1489 		opts.log_level = verif_log_level | 4; /* force stats */
1490 	else if (expected_ret == VERBOSE_ACCEPT)
1491 		opts.log_level = 2;
1492 	else
1493 		opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
1494 	opts.prog_flags = pflags;
1495 
1496 	if ((prog_type == BPF_PROG_TYPE_TRACING ||
1497 	     prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) {
1498 		int attach_btf_id;
1499 
1500 		attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1501 						opts.expected_attach_type);
1502 		if (attach_btf_id < 0) {
1503 			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1504 				test->kfunc);
1505 			(*errors)++;
1506 			return;
1507 		}
1508 
1509 		opts.attach_btf_id = attach_btf_id;
1510 	}
1511 
1512 	if (test->btf_types[0] != 0) {
1513 		btf_fd = load_btf_for_test(test);
1514 		if (btf_fd < 0)
1515 			goto fail_log;
1516 		opts.prog_btf_fd = btf_fd;
1517 	}
1518 
1519 	if (test->func_info_cnt != 0) {
1520 		opts.func_info = test->func_info;
1521 		opts.func_info_cnt = test->func_info_cnt;
1522 		opts.func_info_rec_size = sizeof(test->func_info[0]);
1523 	}
1524 
1525 	opts.log_buf = bpf_vlog;
1526 	opts.log_size = sizeof(bpf_vlog);
1527 	fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1528 	saved_errno = errno;
1529 
1530 	/* BPF_PROG_TYPE_TRACING requires more setup and
1531 	 * bpf_probe_prog_type won't give correct answer
1532 	 */
1533 	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1534 	    !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
1535 		printf("SKIP (unsupported program type %d)\n", prog_type);
1536 		skips++;
1537 		goto close_fds;
1538 	}
1539 
1540 	if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1541 		printf("SKIP (program uses an unsupported feature)\n");
1542 		skips++;
1543 		goto close_fds;
1544 	}
1545 
1546 	alignment_prevented_execution = 0;
1547 
1548 	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1549 		if (fd_prog < 0) {
1550 			printf("FAIL\nFailed to load prog '%s'!\n",
1551 			       strerror(saved_errno));
1552 			goto fail_log;
1553 		}
1554 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1555 		if (fd_prog >= 0 &&
1556 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1557 			alignment_prevented_execution = 1;
1558 #endif
1559 		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1560 			goto fail_log;
1561 		}
1562 	} else {
1563 		if (fd_prog >= 0) {
1564 			printf("FAIL\nUnexpected success to load!\n");
1565 			goto fail_log;
1566 		}
1567 		if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1568 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1569 			      expected_err, bpf_vlog);
1570 			goto fail_log;
1571 		}
1572 	}
1573 
1574 	if (!unpriv && test->insn_processed) {
1575 		uint32_t insn_processed;
1576 		char *proc;
1577 
1578 		proc = strstr(bpf_vlog, "processed ");
1579 		insn_processed = atoi(proc + 10);
1580 		if (test->insn_processed != insn_processed) {
1581 			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1582 			       insn_processed, test->insn_processed);
1583 			goto fail_log;
1584 		}
1585 	}
1586 
1587 	if (verbose)
1588 		printf(", verifier log:\n%s", bpf_vlog);
1589 
1590 	if (!check_xlated_program(test, fd_prog))
1591 		goto fail_log;
1592 
1593 	run_errs = 0;
1594 	run_successes = 0;
1595 	if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1596 		uint32_t expected_val;
1597 		int i;
1598 
1599 		if (!test->runs)
1600 			test->runs = 1;
1601 
1602 		for (i = 0; i < test->runs; i++) {
1603 			if (unpriv && test->retvals[i].retval_unpriv)
1604 				expected_val = test->retvals[i].retval_unpriv;
1605 			else
1606 				expected_val = test->retvals[i].retval;
1607 
1608 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1609 					       test->retvals[i].data,
1610 					       sizeof(test->retvals[i].data));
1611 			if (err) {
1612 				printf("(run %d/%d) ", i + 1, test->runs);
1613 				run_errs++;
1614 			} else {
1615 				run_successes++;
1616 			}
1617 		}
1618 	}
1619 
1620 	if (!run_errs) {
1621 		(*passes)++;
1622 		if (run_successes > 1)
1623 			printf("%d cases ", run_successes);
1624 		printf("OK");
1625 		if (alignment_prevented_execution)
1626 			printf(" (NOTE: not executed due to unknown alignment)");
1627 		printf("\n");
1628 	} else {
1629 		printf("\n");
1630 		goto fail_log;
1631 	}
1632 close_fds:
1633 	if (test->fill_insns)
1634 		free(test->fill_insns);
1635 	close(fd_prog);
1636 	close(btf_fd);
1637 	for (i = 0; i < MAX_NR_MAPS; i++)
1638 		close(map_fds[i]);
1639 	sched_yield();
1640 	return;
1641 fail_log:
1642 	(*errors)++;
1643 	printf("%s", bpf_vlog);
1644 	goto close_fds;
1645 }
1646 
1647 static bool is_admin(void)
1648 {
1649 	__u64 caps;
1650 
1651 	/* The test checks for finer cap as CAP_NET_ADMIN,
1652 	 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
1653 	 * Thus, disable CAP_SYS_ADMIN at the beginning.
1654 	 */
1655 	if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) {
1656 		perror("cap_disable_effective(CAP_SYS_ADMIN)");
1657 		return false;
1658 	}
1659 
1660 	return (caps & ADMIN_CAPS) == ADMIN_CAPS;
1661 }
1662 
1663 static bool test_as_unpriv(struct bpf_test *test)
1664 {
1665 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1666 	/* Some architectures have strict alignment requirements. In
1667 	 * that case, the BPF verifier detects if a program has
1668 	 * unaligned accesses and rejects them. A user can pass
1669 	 * BPF_F_ANY_ALIGNMENT to a program to override this
1670 	 * check. That, however, will only work when a privileged user
1671 	 * loads a program. An unprivileged user loading a program
1672 	 * with this flag will be rejected prior entering the
1673 	 * verifier.
1674 	 */
1675 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1676 		return false;
1677 #endif
1678 	return !test->prog_type ||
1679 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1680 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1681 }
1682 
1683 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1684 {
1685 	int i, passes = 0, errors = 0;
1686 
1687 	for (i = from; i < to; i++) {
1688 		struct bpf_test *test = &tests[i];
1689 
1690 		/* Program types that are not supported by non-root we
1691 		 * skip right away.
1692 		 */
1693 		if (test_as_unpriv(test) && unpriv_disabled) {
1694 			printf("#%d/u %s SKIP\n", i, test->descr);
1695 			skips++;
1696 		} else if (test_as_unpriv(test)) {
1697 			if (!unpriv)
1698 				set_admin(false);
1699 			printf("#%d/u %s ", i, test->descr);
1700 			do_test_single(test, true, &passes, &errors);
1701 			if (!unpriv)
1702 				set_admin(true);
1703 		}
1704 
1705 		if (unpriv) {
1706 			printf("#%d/p %s SKIP\n", i, test->descr);
1707 			skips++;
1708 		} else {
1709 			printf("#%d/p %s ", i, test->descr);
1710 			do_test_single(test, false, &passes, &errors);
1711 		}
1712 	}
1713 
1714 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1715 	       skips, errors);
1716 	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1717 }
1718 
1719 int main(int argc, char **argv)
1720 {
1721 	unsigned int from = 0, to = ARRAY_SIZE(tests);
1722 	bool unpriv = !is_admin();
1723 	int arg = 1;
1724 
1725 	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1726 		arg++;
1727 		verbose = true;
1728 		verif_log_level = 1;
1729 		argc--;
1730 	}
1731 	if (argc > 1 && strcmp(argv[1], "-vv") == 0) {
1732 		arg++;
1733 		verbose = true;
1734 		verif_log_level = 2;
1735 		argc--;
1736 	}
1737 
1738 	if (argc == 3) {
1739 		unsigned int l = atoi(argv[arg]);
1740 		unsigned int u = atoi(argv[arg + 1]);
1741 
1742 		if (l < to && u < to) {
1743 			from = l;
1744 			to   = u + 1;
1745 		}
1746 	} else if (argc == 2) {
1747 		unsigned int t = atoi(argv[arg]);
1748 
1749 		if (t < to) {
1750 			from = t;
1751 			to   = t + 1;
1752 		}
1753 	}
1754 
1755 	get_unpriv_disabled();
1756 	if (unpriv && unpriv_disabled) {
1757 		printf("Cannot run as unprivileged user with sysctl %s.\n",
1758 		       UNPRIV_SYSCTL);
1759 		return EXIT_FAILURE;
1760 	}
1761 
1762 	/* Use libbpf 1.0 API mode */
1763 	libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1764 
1765 	bpf_semi_rand_init();
1766 	return do_test(unpriv, from, to);
1767 }
1768