1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <sys/capability.h> 26 27 #include <linux/unistd.h> 28 #include <linux/filter.h> 29 #include <linux/bpf_perf_event.h> 30 #include <linux/bpf.h> 31 #include <linux/if_ether.h> 32 #include <linux/btf.h> 33 34 #include <bpf/bpf.h> 35 #include <bpf/libbpf.h> 36 37 #ifdef HAVE_GENHDR 38 # include "autoconf.h" 39 #else 40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 41 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 42 # endif 43 #endif 44 #include "bpf_rlimit.h" 45 #include "bpf_rand.h" 46 #include "bpf_util.h" 47 #include "test_btf.h" 48 #include "../../../include/linux/filter.h" 49 50 #define MAX_INSNS BPF_MAXINSNS 51 #define MAX_TEST_INSNS 1000000 52 #define MAX_FIXUPS 8 53 #define MAX_NR_MAPS 20 54 #define MAX_TEST_RUNS 8 55 #define POINTER_VALUE 0xcafe4all 56 #define TEST_DATA_LEN 64 57 58 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 59 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 60 61 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 62 static bool unpriv_disabled = false; 63 static int skips; 64 static bool verbose = false; 65 66 struct bpf_test { 67 const char *descr; 68 struct bpf_insn insns[MAX_INSNS]; 69 struct bpf_insn *fill_insns; 70 int fixup_map_hash_8b[MAX_FIXUPS]; 71 int fixup_map_hash_48b[MAX_FIXUPS]; 72 int fixup_map_hash_16b[MAX_FIXUPS]; 73 int fixup_map_array_48b[MAX_FIXUPS]; 74 int fixup_map_sockmap[MAX_FIXUPS]; 75 int fixup_map_sockhash[MAX_FIXUPS]; 76 int fixup_map_xskmap[MAX_FIXUPS]; 77 int fixup_map_stacktrace[MAX_FIXUPS]; 78 int fixup_prog1[MAX_FIXUPS]; 79 int fixup_prog2[MAX_FIXUPS]; 80 int fixup_map_in_map[MAX_FIXUPS]; 81 int fixup_cgroup_storage[MAX_FIXUPS]; 82 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 83 int fixup_map_spin_lock[MAX_FIXUPS]; 84 int fixup_map_array_ro[MAX_FIXUPS]; 85 int fixup_map_array_wo[MAX_FIXUPS]; 86 int fixup_map_array_small[MAX_FIXUPS]; 87 int fixup_sk_storage_map[MAX_FIXUPS]; 88 int fixup_map_event_output[MAX_FIXUPS]; 89 int fixup_map_reuseport_array[MAX_FIXUPS]; 90 const char *errstr; 91 const char *errstr_unpriv; 92 uint32_t insn_processed; 93 int prog_len; 94 enum { 95 UNDEF, 96 ACCEPT, 97 REJECT, 98 VERBOSE_ACCEPT, 99 } result, result_unpriv; 100 enum bpf_prog_type prog_type; 101 uint8_t flags; 102 void (*fill_helper)(struct bpf_test *self); 103 uint8_t runs; 104 #define bpf_testdata_struct_t \ 105 struct { \ 106 uint32_t retval, retval_unpriv; \ 107 union { \ 108 __u8 data[TEST_DATA_LEN]; \ 109 __u64 data64[TEST_DATA_LEN / 8]; \ 110 }; \ 111 } 112 union { 113 bpf_testdata_struct_t; 114 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 115 }; 116 enum bpf_attach_type expected_attach_type; 117 const char *kfunc; 118 }; 119 120 /* Note we want this to be 64 bit aligned so that the end of our array is 121 * actually the end of the structure. 122 */ 123 #define MAX_ENTRIES 11 124 125 struct test_val { 126 unsigned int index; 127 int foo[MAX_ENTRIES]; 128 }; 129 130 struct other_val { 131 long long foo; 132 long long bar; 133 }; 134 135 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 136 { 137 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 138 #define PUSH_CNT 51 139 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 140 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 141 struct bpf_insn *insn = self->fill_insns; 142 int i = 0, j, k = 0; 143 144 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 145 loop: 146 for (j = 0; j < PUSH_CNT; j++) { 147 insn[i++] = BPF_LD_ABS(BPF_B, 0); 148 /* jump to error label */ 149 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 150 i++; 151 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 152 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 153 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 154 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 155 BPF_FUNC_skb_vlan_push), 156 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 157 i++; 158 } 159 160 for (j = 0; j < PUSH_CNT; j++) { 161 insn[i++] = BPF_LD_ABS(BPF_B, 0); 162 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 163 i++; 164 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 165 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 166 BPF_FUNC_skb_vlan_pop), 167 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 168 i++; 169 } 170 if (++k < 5) 171 goto loop; 172 173 for (; i < len - 3; i++) 174 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 175 insn[len - 3] = BPF_JMP_A(1); 176 /* error label */ 177 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 178 insn[len - 1] = BPF_EXIT_INSN(); 179 self->prog_len = len; 180 } 181 182 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 183 { 184 struct bpf_insn *insn = self->fill_insns; 185 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 186 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 187 * to extend the error value of the inlined ld_abs sequence which then 188 * contains 7 insns. so, set the dividend to 7 so the testcase could 189 * work on all arches. 190 */ 191 unsigned int len = (1 << 15) / 7; 192 int i = 0; 193 194 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 195 insn[i++] = BPF_LD_ABS(BPF_B, 0); 196 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 197 i++; 198 while (i < len - 1) 199 insn[i++] = BPF_LD_ABS(BPF_B, 1); 200 insn[i] = BPF_EXIT_INSN(); 201 self->prog_len = i + 1; 202 } 203 204 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 205 { 206 struct bpf_insn *insn = self->fill_insns; 207 uint64_t res = 0; 208 int i = 0; 209 210 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 211 while (i < self->retval) { 212 uint64_t val = bpf_semi_rand_get(); 213 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 214 215 res ^= val; 216 insn[i++] = tmp[0]; 217 insn[i++] = tmp[1]; 218 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 219 } 220 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 221 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 222 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 223 insn[i] = BPF_EXIT_INSN(); 224 self->prog_len = i + 1; 225 res ^= (res >> 32); 226 self->retval = (uint32_t)res; 227 } 228 229 #define MAX_JMP_SEQ 8192 230 231 /* test the sequence of 8k jumps */ 232 static void bpf_fill_scale1(struct bpf_test *self) 233 { 234 struct bpf_insn *insn = self->fill_insns; 235 int i = 0, k = 0; 236 237 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 238 /* test to check that the long sequence of jumps is acceptable */ 239 while (k++ < MAX_JMP_SEQ) { 240 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 241 BPF_FUNC_get_prandom_u32); 242 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 243 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 244 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 245 -8 * (k % 64 + 1)); 246 } 247 /* is_state_visited() doesn't allocate state for pruning for every jump. 248 * Hence multiply jmps by 4 to accommodate that heuristic 249 */ 250 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 251 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 252 insn[i] = BPF_EXIT_INSN(); 253 self->prog_len = i + 1; 254 self->retval = 42; 255 } 256 257 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 258 static void bpf_fill_scale2(struct bpf_test *self) 259 { 260 struct bpf_insn *insn = self->fill_insns; 261 int i = 0, k = 0; 262 263 #define FUNC_NEST 7 264 for (k = 0; k < FUNC_NEST; k++) { 265 insn[i++] = BPF_CALL_REL(1); 266 insn[i++] = BPF_EXIT_INSN(); 267 } 268 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 269 /* test to check that the long sequence of jumps is acceptable */ 270 k = 0; 271 while (k++ < MAX_JMP_SEQ) { 272 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 273 BPF_FUNC_get_prandom_u32); 274 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 275 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 276 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 277 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 278 } 279 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 280 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 281 insn[i] = BPF_EXIT_INSN(); 282 self->prog_len = i + 1; 283 self->retval = 42; 284 } 285 286 static void bpf_fill_scale(struct bpf_test *self) 287 { 288 switch (self->retval) { 289 case 1: 290 return bpf_fill_scale1(self); 291 case 2: 292 return bpf_fill_scale2(self); 293 default: 294 self->prog_len = 0; 295 break; 296 } 297 } 298 299 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 300 #define BPF_SK_LOOKUP(func) \ 301 /* struct bpf_sock_tuple tuple = {} */ \ 302 BPF_MOV64_IMM(BPF_REG_2, 0), \ 303 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 304 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 305 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 306 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 307 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 308 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 309 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 310 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 311 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 312 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 313 BPF_MOV64_IMM(BPF_REG_4, 0), \ 314 BPF_MOV64_IMM(BPF_REG_5, 0), \ 315 BPF_EMIT_CALL(BPF_FUNC_ ## func) 316 317 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 318 * value into 0 and does necessary preparation for direct packet access 319 * through r2. The allowed access range is 8 bytes. 320 */ 321 #define BPF_DIRECT_PKT_R2 \ 322 BPF_MOV64_IMM(BPF_REG_0, 0), \ 323 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 324 offsetof(struct __sk_buff, data)), \ 325 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 326 offsetof(struct __sk_buff, data_end)), \ 327 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 328 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 329 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 330 BPF_EXIT_INSN() 331 332 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 333 * positive u32, and zero-extend it into 64-bit. 334 */ 335 #define BPF_RAND_UEXT_R7 \ 336 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 337 BPF_FUNC_get_prandom_u32), \ 338 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 339 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 340 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 341 342 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 343 * negative u32, and sign-extend it into 64-bit. 344 */ 345 #define BPF_RAND_SEXT_R7 \ 346 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 347 BPF_FUNC_get_prandom_u32), \ 348 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 349 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 350 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 351 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 352 353 static struct bpf_test tests[] = { 354 #define FILL_ARRAY 355 #include <verifier/tests.h> 356 #undef FILL_ARRAY 357 }; 358 359 static int probe_filter_length(const struct bpf_insn *fp) 360 { 361 int len; 362 363 for (len = MAX_INSNS - 1; len > 0; --len) 364 if (fp[len].code != 0 || fp[len].imm != 0) 365 break; 366 return len + 1; 367 } 368 369 static bool skip_unsupported_map(enum bpf_map_type map_type) 370 { 371 if (!bpf_probe_map_type(map_type, 0)) { 372 printf("SKIP (unsupported map type %d)\n", map_type); 373 skips++; 374 return true; 375 } 376 return false; 377 } 378 379 static int __create_map(uint32_t type, uint32_t size_key, 380 uint32_t size_value, uint32_t max_elem, 381 uint32_t extra_flags) 382 { 383 int fd; 384 385 fd = bpf_create_map(type, size_key, size_value, max_elem, 386 (type == BPF_MAP_TYPE_HASH ? 387 BPF_F_NO_PREALLOC : 0) | extra_flags); 388 if (fd < 0) { 389 if (skip_unsupported_map(type)) 390 return -1; 391 printf("Failed to create hash map '%s'!\n", strerror(errno)); 392 } 393 394 return fd; 395 } 396 397 static int create_map(uint32_t type, uint32_t size_key, 398 uint32_t size_value, uint32_t max_elem) 399 { 400 return __create_map(type, size_key, size_value, max_elem, 0); 401 } 402 403 static void update_map(int fd, int index) 404 { 405 struct test_val value = { 406 .index = (6 + 1) * sizeof(int), 407 .foo[6] = 0xabcdef12, 408 }; 409 410 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 411 } 412 413 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) 414 { 415 struct bpf_insn prog[] = { 416 BPF_MOV64_IMM(BPF_REG_0, ret), 417 BPF_EXIT_INSN(), 418 }; 419 420 return bpf_load_program(prog_type, prog, 421 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 422 } 423 424 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, 425 int idx, int ret) 426 { 427 struct bpf_insn prog[] = { 428 BPF_MOV64_IMM(BPF_REG_3, idx), 429 BPF_LD_MAP_FD(BPF_REG_2, mfd), 430 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 431 BPF_FUNC_tail_call), 432 BPF_MOV64_IMM(BPF_REG_0, ret), 433 BPF_EXIT_INSN(), 434 }; 435 436 return bpf_load_program(prog_type, prog, 437 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 438 } 439 440 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 441 int p1key, int p2key, int p3key) 442 { 443 int mfd, p1fd, p2fd, p3fd; 444 445 mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), 446 sizeof(int), max_elem, 0); 447 if (mfd < 0) { 448 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 449 return -1; 450 printf("Failed to create prog array '%s'!\n", strerror(errno)); 451 return -1; 452 } 453 454 p1fd = create_prog_dummy_simple(prog_type, 42); 455 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); 456 p3fd = create_prog_dummy_simple(prog_type, 24); 457 if (p1fd < 0 || p2fd < 0 || p3fd < 0) 458 goto err; 459 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 460 goto err; 461 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 462 goto err; 463 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { 464 err: 465 close(mfd); 466 mfd = -1; 467 } 468 close(p3fd); 469 close(p2fd); 470 close(p1fd); 471 return mfd; 472 } 473 474 static int create_map_in_map(void) 475 { 476 int inner_map_fd, outer_map_fd; 477 478 inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 479 sizeof(int), 1, 0); 480 if (inner_map_fd < 0) { 481 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 482 return -1; 483 printf("Failed to create array '%s'!\n", strerror(errno)); 484 return inner_map_fd; 485 } 486 487 outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 488 sizeof(int), inner_map_fd, 1, 0); 489 if (outer_map_fd < 0) { 490 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 491 return -1; 492 printf("Failed to create array of maps '%s'!\n", 493 strerror(errno)); 494 } 495 496 close(inner_map_fd); 497 498 return outer_map_fd; 499 } 500 501 static int create_cgroup_storage(bool percpu) 502 { 503 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 504 BPF_MAP_TYPE_CGROUP_STORAGE; 505 int fd; 506 507 fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key), 508 TEST_DATA_LEN, 0, 0); 509 if (fd < 0) { 510 if (skip_unsupported_map(type)) 511 return -1; 512 printf("Failed to create cgroup storage '%s'!\n", 513 strerror(errno)); 514 } 515 516 return fd; 517 } 518 519 /* struct bpf_spin_lock { 520 * int val; 521 * }; 522 * struct val { 523 * int cnt; 524 * struct bpf_spin_lock l; 525 * }; 526 */ 527 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l"; 528 static __u32 btf_raw_types[] = { 529 /* int */ 530 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 531 /* struct bpf_spin_lock */ /* [2] */ 532 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 533 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 534 /* struct val */ /* [3] */ 535 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 536 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 537 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 538 }; 539 540 static int load_btf(void) 541 { 542 struct btf_header hdr = { 543 .magic = BTF_MAGIC, 544 .version = BTF_VERSION, 545 .hdr_len = sizeof(struct btf_header), 546 .type_len = sizeof(btf_raw_types), 547 .str_off = sizeof(btf_raw_types), 548 .str_len = sizeof(btf_str_sec), 549 }; 550 void *ptr, *raw_btf; 551 int btf_fd; 552 553 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + 554 sizeof(btf_str_sec)); 555 556 memcpy(ptr, &hdr, sizeof(hdr)); 557 ptr += sizeof(hdr); 558 memcpy(ptr, btf_raw_types, hdr.type_len); 559 ptr += hdr.type_len; 560 memcpy(ptr, btf_str_sec, hdr.str_len); 561 ptr += hdr.str_len; 562 563 btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0); 564 free(raw_btf); 565 if (btf_fd < 0) 566 return -1; 567 return btf_fd; 568 } 569 570 static int create_map_spin_lock(void) 571 { 572 struct bpf_create_map_attr attr = { 573 .name = "test_map", 574 .map_type = BPF_MAP_TYPE_ARRAY, 575 .key_size = 4, 576 .value_size = 8, 577 .max_entries = 1, 578 .btf_key_type_id = 1, 579 .btf_value_type_id = 3, 580 }; 581 int fd, btf_fd; 582 583 btf_fd = load_btf(); 584 if (btf_fd < 0) 585 return -1; 586 attr.btf_fd = btf_fd; 587 fd = bpf_create_map_xattr(&attr); 588 if (fd < 0) 589 printf("Failed to create map with spin_lock\n"); 590 return fd; 591 } 592 593 static int create_sk_storage_map(void) 594 { 595 struct bpf_create_map_attr attr = { 596 .name = "test_map", 597 .map_type = BPF_MAP_TYPE_SK_STORAGE, 598 .key_size = 4, 599 .value_size = 8, 600 .max_entries = 0, 601 .map_flags = BPF_F_NO_PREALLOC, 602 .btf_key_type_id = 1, 603 .btf_value_type_id = 3, 604 }; 605 int fd, btf_fd; 606 607 btf_fd = load_btf(); 608 if (btf_fd < 0) 609 return -1; 610 attr.btf_fd = btf_fd; 611 fd = bpf_create_map_xattr(&attr); 612 close(attr.btf_fd); 613 if (fd < 0) 614 printf("Failed to create sk_storage_map\n"); 615 return fd; 616 } 617 618 static char bpf_vlog[UINT_MAX >> 8]; 619 620 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 621 struct bpf_insn *prog, int *map_fds) 622 { 623 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 624 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 625 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 626 int *fixup_map_array_48b = test->fixup_map_array_48b; 627 int *fixup_map_sockmap = test->fixup_map_sockmap; 628 int *fixup_map_sockhash = test->fixup_map_sockhash; 629 int *fixup_map_xskmap = test->fixup_map_xskmap; 630 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 631 int *fixup_prog1 = test->fixup_prog1; 632 int *fixup_prog2 = test->fixup_prog2; 633 int *fixup_map_in_map = test->fixup_map_in_map; 634 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 635 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 636 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 637 int *fixup_map_array_ro = test->fixup_map_array_ro; 638 int *fixup_map_array_wo = test->fixup_map_array_wo; 639 int *fixup_map_array_small = test->fixup_map_array_small; 640 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 641 int *fixup_map_event_output = test->fixup_map_event_output; 642 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; 643 644 if (test->fill_helper) { 645 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 646 test->fill_helper(test); 647 } 648 649 /* Allocating HTs with 1 elem is fine here, since we only test 650 * for verifier and not do a runtime lookup, so the only thing 651 * that really matters is value size in this case. 652 */ 653 if (*fixup_map_hash_8b) { 654 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 655 sizeof(long long), 1); 656 do { 657 prog[*fixup_map_hash_8b].imm = map_fds[0]; 658 fixup_map_hash_8b++; 659 } while (*fixup_map_hash_8b); 660 } 661 662 if (*fixup_map_hash_48b) { 663 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 664 sizeof(struct test_val), 1); 665 do { 666 prog[*fixup_map_hash_48b].imm = map_fds[1]; 667 fixup_map_hash_48b++; 668 } while (*fixup_map_hash_48b); 669 } 670 671 if (*fixup_map_hash_16b) { 672 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 673 sizeof(struct other_val), 1); 674 do { 675 prog[*fixup_map_hash_16b].imm = map_fds[2]; 676 fixup_map_hash_16b++; 677 } while (*fixup_map_hash_16b); 678 } 679 680 if (*fixup_map_array_48b) { 681 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 682 sizeof(struct test_val), 1); 683 update_map(map_fds[3], 0); 684 do { 685 prog[*fixup_map_array_48b].imm = map_fds[3]; 686 fixup_map_array_48b++; 687 } while (*fixup_map_array_48b); 688 } 689 690 if (*fixup_prog1) { 691 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); 692 do { 693 prog[*fixup_prog1].imm = map_fds[4]; 694 fixup_prog1++; 695 } while (*fixup_prog1); 696 } 697 698 if (*fixup_prog2) { 699 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); 700 do { 701 prog[*fixup_prog2].imm = map_fds[5]; 702 fixup_prog2++; 703 } while (*fixup_prog2); 704 } 705 706 if (*fixup_map_in_map) { 707 map_fds[6] = create_map_in_map(); 708 do { 709 prog[*fixup_map_in_map].imm = map_fds[6]; 710 fixup_map_in_map++; 711 } while (*fixup_map_in_map); 712 } 713 714 if (*fixup_cgroup_storage) { 715 map_fds[7] = create_cgroup_storage(false); 716 do { 717 prog[*fixup_cgroup_storage].imm = map_fds[7]; 718 fixup_cgroup_storage++; 719 } while (*fixup_cgroup_storage); 720 } 721 722 if (*fixup_percpu_cgroup_storage) { 723 map_fds[8] = create_cgroup_storage(true); 724 do { 725 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 726 fixup_percpu_cgroup_storage++; 727 } while (*fixup_percpu_cgroup_storage); 728 } 729 if (*fixup_map_sockmap) { 730 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 731 sizeof(int), 1); 732 do { 733 prog[*fixup_map_sockmap].imm = map_fds[9]; 734 fixup_map_sockmap++; 735 } while (*fixup_map_sockmap); 736 } 737 if (*fixup_map_sockhash) { 738 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 739 sizeof(int), 1); 740 do { 741 prog[*fixup_map_sockhash].imm = map_fds[10]; 742 fixup_map_sockhash++; 743 } while (*fixup_map_sockhash); 744 } 745 if (*fixup_map_xskmap) { 746 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 747 sizeof(int), 1); 748 do { 749 prog[*fixup_map_xskmap].imm = map_fds[11]; 750 fixup_map_xskmap++; 751 } while (*fixup_map_xskmap); 752 } 753 if (*fixup_map_stacktrace) { 754 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 755 sizeof(u64), 1); 756 do { 757 prog[*fixup_map_stacktrace].imm = map_fds[12]; 758 fixup_map_stacktrace++; 759 } while (*fixup_map_stacktrace); 760 } 761 if (*fixup_map_spin_lock) { 762 map_fds[13] = create_map_spin_lock(); 763 do { 764 prog[*fixup_map_spin_lock].imm = map_fds[13]; 765 fixup_map_spin_lock++; 766 } while (*fixup_map_spin_lock); 767 } 768 if (*fixup_map_array_ro) { 769 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 770 sizeof(struct test_val), 1, 771 BPF_F_RDONLY_PROG); 772 update_map(map_fds[14], 0); 773 do { 774 prog[*fixup_map_array_ro].imm = map_fds[14]; 775 fixup_map_array_ro++; 776 } while (*fixup_map_array_ro); 777 } 778 if (*fixup_map_array_wo) { 779 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 780 sizeof(struct test_val), 1, 781 BPF_F_WRONLY_PROG); 782 update_map(map_fds[15], 0); 783 do { 784 prog[*fixup_map_array_wo].imm = map_fds[15]; 785 fixup_map_array_wo++; 786 } while (*fixup_map_array_wo); 787 } 788 if (*fixup_map_array_small) { 789 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 790 1, 1, 0); 791 update_map(map_fds[16], 0); 792 do { 793 prog[*fixup_map_array_small].imm = map_fds[16]; 794 fixup_map_array_small++; 795 } while (*fixup_map_array_small); 796 } 797 if (*fixup_sk_storage_map) { 798 map_fds[17] = create_sk_storage_map(); 799 do { 800 prog[*fixup_sk_storage_map].imm = map_fds[17]; 801 fixup_sk_storage_map++; 802 } while (*fixup_sk_storage_map); 803 } 804 if (*fixup_map_event_output) { 805 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 806 sizeof(int), sizeof(int), 1, 0); 807 do { 808 prog[*fixup_map_event_output].imm = map_fds[18]; 809 fixup_map_event_output++; 810 } while (*fixup_map_event_output); 811 } 812 if (*fixup_map_reuseport_array) { 813 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 814 sizeof(u32), sizeof(u64), 1, 0); 815 do { 816 prog[*fixup_map_reuseport_array].imm = map_fds[19]; 817 fixup_map_reuseport_array++; 818 } while (*fixup_map_reuseport_array); 819 } 820 } 821 822 struct libcap { 823 struct __user_cap_header_struct hdr; 824 struct __user_cap_data_struct data[2]; 825 }; 826 827 static int set_admin(bool admin) 828 { 829 cap_t caps; 830 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ 831 const cap_value_t cap_net_admin = CAP_NET_ADMIN; 832 const cap_value_t cap_sys_admin = CAP_SYS_ADMIN; 833 struct libcap *cap; 834 int ret = -1; 835 836 caps = cap_get_proc(); 837 if (!caps) { 838 perror("cap_get_proc"); 839 return -1; 840 } 841 cap = (struct libcap *)caps; 842 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) { 843 perror("cap_set_flag clear admin"); 844 goto out; 845 } 846 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin, 847 admin ? CAP_SET : CAP_CLEAR)) { 848 perror("cap_set_flag set_or_clear net"); 849 goto out; 850 } 851 /* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON, 852 * so update effective bits manually 853 */ 854 if (admin) { 855 cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32); 856 cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32); 857 } else { 858 cap->data[1].effective &= ~(1 << (38 - 32)); 859 cap->data[1].effective &= ~(1 << (39 - 32)); 860 } 861 if (cap_set_proc(caps)) { 862 perror("cap_set_proc"); 863 goto out; 864 } 865 ret = 0; 866 out: 867 if (cap_free(caps)) 868 perror("cap_free"); 869 return ret; 870 } 871 872 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 873 void *data, size_t size_data) 874 { 875 __u8 tmp[TEST_DATA_LEN << 2]; 876 __u32 size_tmp = sizeof(tmp); 877 uint32_t retval; 878 int err, saved_errno; 879 880 if (unpriv) 881 set_admin(true); 882 err = bpf_prog_test_run(fd_prog, 1, data, size_data, 883 tmp, &size_tmp, &retval, NULL); 884 saved_errno = errno; 885 886 if (unpriv) 887 set_admin(false); 888 889 if (err) { 890 switch (saved_errno) { 891 case 524/*ENOTSUPP*/: 892 printf("Did not run the program (not supported) "); 893 return 0; 894 case EPERM: 895 if (unpriv) { 896 printf("Did not run the program (no permission) "); 897 return 0; 898 } 899 /* fallthrough; */ 900 default: 901 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", 902 strerror(saved_errno)); 903 return err; 904 } 905 } 906 907 if (retval != expected_val && 908 expected_val != POINTER_VALUE) { 909 printf("FAIL retval %d != %d ", retval, expected_val); 910 return 1; 911 } 912 913 return 0; 914 } 915 916 static bool cmp_str_seq(const char *log, const char *exp) 917 { 918 char needle[80]; 919 const char *p, *q; 920 int len; 921 922 do { 923 p = strchr(exp, '\t'); 924 if (!p) 925 p = exp + strlen(exp); 926 927 len = p - exp; 928 if (len >= sizeof(needle) || !len) { 929 printf("FAIL\nTestcase bug\n"); 930 return false; 931 } 932 strncpy(needle, exp, len); 933 needle[len] = 0; 934 q = strstr(log, needle); 935 if (!q) { 936 printf("FAIL\nUnexpected verifier log in successful load!\n" 937 "EXP: %s\nRES:\n", needle); 938 return false; 939 } 940 log = q + len; 941 exp = p + 1; 942 } while (*p); 943 return true; 944 } 945 946 static void do_test_single(struct bpf_test *test, bool unpriv, 947 int *passes, int *errors) 948 { 949 int fd_prog, expected_ret, alignment_prevented_execution; 950 int prog_len, prog_type = test->prog_type; 951 struct bpf_insn *prog = test->insns; 952 struct bpf_load_program_attr attr; 953 int run_errs, run_successes; 954 int map_fds[MAX_NR_MAPS]; 955 const char *expected_err; 956 int saved_errno; 957 int fixup_skips; 958 __u32 pflags; 959 int i, err; 960 961 for (i = 0; i < MAX_NR_MAPS; i++) 962 map_fds[i] = -1; 963 964 if (!prog_type) 965 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 966 fixup_skips = skips; 967 do_test_fixup(test, prog_type, prog, map_fds); 968 if (test->fill_insns) { 969 prog = test->fill_insns; 970 prog_len = test->prog_len; 971 } else { 972 prog_len = probe_filter_length(prog); 973 } 974 /* If there were some map skips during fixup due to missing bpf 975 * features, skip this test. 976 */ 977 if (fixup_skips != skips) 978 return; 979 980 pflags = BPF_F_TEST_RND_HI32; 981 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 982 pflags |= BPF_F_STRICT_ALIGNMENT; 983 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 984 pflags |= BPF_F_ANY_ALIGNMENT; 985 if (test->flags & ~3) 986 pflags |= test->flags; 987 988 expected_ret = unpriv && test->result_unpriv != UNDEF ? 989 test->result_unpriv : test->result; 990 expected_err = unpriv && test->errstr_unpriv ? 991 test->errstr_unpriv : test->errstr; 992 memset(&attr, 0, sizeof(attr)); 993 attr.prog_type = prog_type; 994 attr.expected_attach_type = test->expected_attach_type; 995 attr.insns = prog; 996 attr.insns_cnt = prog_len; 997 attr.license = "GPL"; 998 if (verbose) 999 attr.log_level = 1; 1000 else if (expected_ret == VERBOSE_ACCEPT) 1001 attr.log_level = 2; 1002 else 1003 attr.log_level = 4; 1004 attr.prog_flags = pflags; 1005 1006 if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) { 1007 attr.attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, 1008 attr.expected_attach_type); 1009 if (attr.attach_btf_id < 0) { 1010 printf("FAIL\nFailed to find BTF ID for '%s'!\n", 1011 test->kfunc); 1012 (*errors)++; 1013 return; 1014 } 1015 } 1016 1017 fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog)); 1018 saved_errno = errno; 1019 1020 /* BPF_PROG_TYPE_TRACING requires more setup and 1021 * bpf_probe_prog_type won't give correct answer 1022 */ 1023 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && 1024 !bpf_probe_prog_type(prog_type, 0)) { 1025 printf("SKIP (unsupported program type %d)\n", prog_type); 1026 skips++; 1027 goto close_fds; 1028 } 1029 1030 alignment_prevented_execution = 0; 1031 1032 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { 1033 if (fd_prog < 0) { 1034 printf("FAIL\nFailed to load prog '%s'!\n", 1035 strerror(saved_errno)); 1036 goto fail_log; 1037 } 1038 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1039 if (fd_prog >= 0 && 1040 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 1041 alignment_prevented_execution = 1; 1042 #endif 1043 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { 1044 goto fail_log; 1045 } 1046 } else { 1047 if (fd_prog >= 0) { 1048 printf("FAIL\nUnexpected success to load!\n"); 1049 goto fail_log; 1050 } 1051 if (!expected_err || !strstr(bpf_vlog, expected_err)) { 1052 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 1053 expected_err, bpf_vlog); 1054 goto fail_log; 1055 } 1056 } 1057 1058 if (test->insn_processed) { 1059 uint32_t insn_processed; 1060 char *proc; 1061 1062 proc = strstr(bpf_vlog, "processed "); 1063 insn_processed = atoi(proc + 10); 1064 if (test->insn_processed != insn_processed) { 1065 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 1066 insn_processed, test->insn_processed); 1067 goto fail_log; 1068 } 1069 } 1070 1071 if (verbose) 1072 printf(", verifier log:\n%s", bpf_vlog); 1073 1074 run_errs = 0; 1075 run_successes = 0; 1076 if (!alignment_prevented_execution && fd_prog >= 0) { 1077 uint32_t expected_val; 1078 int i; 1079 1080 if (!test->runs) 1081 test->runs = 1; 1082 1083 for (i = 0; i < test->runs; i++) { 1084 if (unpriv && test->retvals[i].retval_unpriv) 1085 expected_val = test->retvals[i].retval_unpriv; 1086 else 1087 expected_val = test->retvals[i].retval; 1088 1089 err = do_prog_test_run(fd_prog, unpriv, expected_val, 1090 test->retvals[i].data, 1091 sizeof(test->retvals[i].data)); 1092 if (err) { 1093 printf("(run %d/%d) ", i + 1, test->runs); 1094 run_errs++; 1095 } else { 1096 run_successes++; 1097 } 1098 } 1099 } 1100 1101 if (!run_errs) { 1102 (*passes)++; 1103 if (run_successes > 1) 1104 printf("%d cases ", run_successes); 1105 printf("OK"); 1106 if (alignment_prevented_execution) 1107 printf(" (NOTE: not executed due to unknown alignment)"); 1108 printf("\n"); 1109 } else { 1110 printf("\n"); 1111 goto fail_log; 1112 } 1113 close_fds: 1114 if (test->fill_insns) 1115 free(test->fill_insns); 1116 close(fd_prog); 1117 for (i = 0; i < MAX_NR_MAPS; i++) 1118 close(map_fds[i]); 1119 sched_yield(); 1120 return; 1121 fail_log: 1122 (*errors)++; 1123 printf("%s", bpf_vlog); 1124 goto close_fds; 1125 } 1126 1127 static bool is_admin(void) 1128 { 1129 cap_flag_value_t net_priv = CAP_CLEAR; 1130 bool perfmon_priv = false; 1131 bool bpf_priv = false; 1132 struct libcap *cap; 1133 cap_t caps; 1134 1135 #ifdef CAP_IS_SUPPORTED 1136 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { 1137 perror("cap_get_flag"); 1138 return false; 1139 } 1140 #endif 1141 caps = cap_get_proc(); 1142 if (!caps) { 1143 perror("cap_get_proc"); 1144 return false; 1145 } 1146 cap = (struct libcap *)caps; 1147 bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32)); 1148 perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32)); 1149 if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv)) 1150 perror("cap_get_flag NET"); 1151 if (cap_free(caps)) 1152 perror("cap_free"); 1153 return bpf_priv && perfmon_priv && net_priv == CAP_SET; 1154 } 1155 1156 static void get_unpriv_disabled() 1157 { 1158 char buf[2]; 1159 FILE *fd; 1160 1161 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1162 if (!fd) { 1163 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1164 unpriv_disabled = true; 1165 return; 1166 } 1167 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1168 unpriv_disabled = true; 1169 fclose(fd); 1170 } 1171 1172 static bool test_as_unpriv(struct bpf_test *test) 1173 { 1174 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1175 /* Some architectures have strict alignment requirements. In 1176 * that case, the BPF verifier detects if a program has 1177 * unaligned accesses and rejects them. A user can pass 1178 * BPF_F_ANY_ALIGNMENT to a program to override this 1179 * check. That, however, will only work when a privileged user 1180 * loads a program. An unprivileged user loading a program 1181 * with this flag will be rejected prior entering the 1182 * verifier. 1183 */ 1184 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1185 return false; 1186 #endif 1187 return !test->prog_type || 1188 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1189 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1190 } 1191 1192 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1193 { 1194 int i, passes = 0, errors = 0; 1195 1196 for (i = from; i < to; i++) { 1197 struct bpf_test *test = &tests[i]; 1198 1199 /* Program types that are not supported by non-root we 1200 * skip right away. 1201 */ 1202 if (test_as_unpriv(test) && unpriv_disabled) { 1203 printf("#%d/u %s SKIP\n", i, test->descr); 1204 skips++; 1205 } else if (test_as_unpriv(test)) { 1206 if (!unpriv) 1207 set_admin(false); 1208 printf("#%d/u %s ", i, test->descr); 1209 do_test_single(test, true, &passes, &errors); 1210 if (!unpriv) 1211 set_admin(true); 1212 } 1213 1214 if (unpriv) { 1215 printf("#%d/p %s SKIP\n", i, test->descr); 1216 skips++; 1217 } else { 1218 printf("#%d/p %s ", i, test->descr); 1219 do_test_single(test, false, &passes, &errors); 1220 } 1221 } 1222 1223 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1224 skips, errors); 1225 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1226 } 1227 1228 int main(int argc, char **argv) 1229 { 1230 unsigned int from = 0, to = ARRAY_SIZE(tests); 1231 bool unpriv = !is_admin(); 1232 int arg = 1; 1233 1234 if (argc > 1 && strcmp(argv[1], "-v") == 0) { 1235 arg++; 1236 verbose = true; 1237 argc--; 1238 } 1239 1240 if (argc == 3) { 1241 unsigned int l = atoi(argv[arg]); 1242 unsigned int u = atoi(argv[arg + 1]); 1243 1244 if (l < to && u < to) { 1245 from = l; 1246 to = u + 1; 1247 } 1248 } else if (argc == 2) { 1249 unsigned int t = atoi(argv[arg]); 1250 1251 if (t < to) { 1252 from = t; 1253 to = t + 1; 1254 } 1255 } 1256 1257 get_unpriv_disabled(); 1258 if (unpriv && unpriv_disabled) { 1259 printf("Cannot run as unprivileged user with sysctl %s.\n", 1260 UNPRIV_SYSCTL); 1261 return EXIT_FAILURE; 1262 } 1263 1264 bpf_semi_rand_init(); 1265 return do_test(unpriv, from, to); 1266 } 1267