1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "dso.h" 11 #include "map.h" 12 #include "maps.h" 13 #include "symbol.h" 14 #include "symsrc.h" 15 #include "demangle-ocaml.h" 16 #include "demangle-java.h" 17 #include "demangle-rust.h" 18 #include "machine.h" 19 #include "vdso.h" 20 #include "debug.h" 21 #include "util/copyfile.h" 22 #include <linux/ctype.h> 23 #include <linux/kernel.h> 24 #include <linux/zalloc.h> 25 #include <symbol/kallsyms.h> 26 #include <internal/lib.h> 27 28 #ifndef EM_AARCH64 29 #define EM_AARCH64 183 /* ARM 64 bit */ 30 #endif 31 32 #ifndef ELF32_ST_VISIBILITY 33 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 34 #endif 35 36 /* For ELF64 the definitions are the same. */ 37 #ifndef ELF64_ST_VISIBILITY 38 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 39 #endif 40 41 /* How to extract information held in the st_other field. */ 42 #ifndef GELF_ST_VISIBILITY 43 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 44 #endif 45 46 typedef Elf64_Nhdr GElf_Nhdr; 47 48 #ifndef DMGL_PARAMS 49 #define DMGL_NO_OPTS 0 /* For readability... */ 50 #define DMGL_PARAMS (1 << 0) /* Include function args */ 51 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */ 52 #endif 53 54 #ifdef HAVE_LIBBFD_SUPPORT 55 #define PACKAGE 'perf' 56 #include <bfd.h> 57 #else 58 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT 59 extern char *cplus_demangle(const char *, int); 60 61 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i) 62 { 63 return cplus_demangle(c, i); 64 } 65 #else 66 #ifdef NO_DEMANGLE 67 static inline char *bfd_demangle(void __maybe_unused *v, 68 const char __maybe_unused *c, 69 int __maybe_unused i) 70 { 71 return NULL; 72 } 73 #endif 74 #endif 75 #endif 76 77 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 78 static int elf_getphdrnum(Elf *elf, size_t *dst) 79 { 80 GElf_Ehdr gehdr; 81 GElf_Ehdr *ehdr; 82 83 ehdr = gelf_getehdr(elf, &gehdr); 84 if (!ehdr) 85 return -1; 86 87 *dst = ehdr->e_phnum; 88 89 return 0; 90 } 91 #endif 92 93 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 94 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 95 { 96 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 97 return -1; 98 } 99 #endif 100 101 #ifndef NT_GNU_BUILD_ID 102 #define NT_GNU_BUILD_ID 3 103 #endif 104 105 /** 106 * elf_symtab__for_each_symbol - iterate thru all the symbols 107 * 108 * @syms: struct elf_symtab instance to iterate 109 * @idx: uint32_t idx 110 * @sym: GElf_Sym iterator 111 */ 112 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 113 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 114 idx < nr_syms; \ 115 idx++, gelf_getsym(syms, idx, &sym)) 116 117 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 118 { 119 return GELF_ST_TYPE(sym->st_info); 120 } 121 122 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 123 { 124 return GELF_ST_VISIBILITY(sym->st_other); 125 } 126 127 #ifndef STT_GNU_IFUNC 128 #define STT_GNU_IFUNC 10 129 #endif 130 131 static inline int elf_sym__is_function(const GElf_Sym *sym) 132 { 133 return (elf_sym__type(sym) == STT_FUNC || 134 elf_sym__type(sym) == STT_GNU_IFUNC) && 135 sym->st_name != 0 && 136 sym->st_shndx != SHN_UNDEF; 137 } 138 139 static inline bool elf_sym__is_object(const GElf_Sym *sym) 140 { 141 return elf_sym__type(sym) == STT_OBJECT && 142 sym->st_name != 0 && 143 sym->st_shndx != SHN_UNDEF; 144 } 145 146 static inline int elf_sym__is_label(const GElf_Sym *sym) 147 { 148 return elf_sym__type(sym) == STT_NOTYPE && 149 sym->st_name != 0 && 150 sym->st_shndx != SHN_UNDEF && 151 sym->st_shndx != SHN_ABS && 152 elf_sym__visibility(sym) != STV_HIDDEN && 153 elf_sym__visibility(sym) != STV_INTERNAL; 154 } 155 156 static bool elf_sym__filter(GElf_Sym *sym) 157 { 158 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 159 } 160 161 static inline const char *elf_sym__name(const GElf_Sym *sym, 162 const Elf_Data *symstrs) 163 { 164 return symstrs->d_buf + sym->st_name; 165 } 166 167 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 168 const Elf_Data *secstrs) 169 { 170 return secstrs->d_buf + shdr->sh_name; 171 } 172 173 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 174 const Elf_Data *secstrs) 175 { 176 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 177 } 178 179 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 180 const Elf_Data *secstrs) 181 { 182 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 183 } 184 185 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 186 { 187 return elf_sec__is_text(shdr, secstrs) || 188 elf_sec__is_data(shdr, secstrs); 189 } 190 191 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 192 { 193 Elf_Scn *sec = NULL; 194 GElf_Shdr shdr; 195 size_t cnt = 1; 196 197 while ((sec = elf_nextscn(elf, sec)) != NULL) { 198 gelf_getshdr(sec, &shdr); 199 200 if ((addr >= shdr.sh_addr) && 201 (addr < (shdr.sh_addr + shdr.sh_size))) 202 return cnt; 203 204 ++cnt; 205 } 206 207 return -1; 208 } 209 210 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 211 GElf_Shdr *shp, const char *name, size_t *idx) 212 { 213 Elf_Scn *sec = NULL; 214 size_t cnt = 1; 215 216 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 217 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 218 return NULL; 219 220 while ((sec = elf_nextscn(elf, sec)) != NULL) { 221 char *str; 222 223 gelf_getshdr(sec, shp); 224 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 225 if (str && !strcmp(name, str)) { 226 if (idx) 227 *idx = cnt; 228 return sec; 229 } 230 ++cnt; 231 } 232 233 return NULL; 234 } 235 236 bool filename__has_section(const char *filename, const char *sec) 237 { 238 int fd; 239 Elf *elf; 240 GElf_Ehdr ehdr; 241 GElf_Shdr shdr; 242 bool found = false; 243 244 fd = open(filename, O_RDONLY); 245 if (fd < 0) 246 return false; 247 248 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 249 if (elf == NULL) 250 goto out; 251 252 if (gelf_getehdr(elf, &ehdr) == NULL) 253 goto elf_out; 254 255 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL); 256 257 elf_out: 258 elf_end(elf); 259 out: 260 close(fd); 261 return found; 262 } 263 264 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr) 265 { 266 size_t i, phdrnum; 267 u64 sz; 268 269 if (elf_getphdrnum(elf, &phdrnum)) 270 return -1; 271 272 for (i = 0; i < phdrnum; i++) { 273 if (gelf_getphdr(elf, i, phdr) == NULL) 274 return -1; 275 276 if (phdr->p_type != PT_LOAD) 277 continue; 278 279 sz = max(phdr->p_memsz, phdr->p_filesz); 280 if (!sz) 281 continue; 282 283 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz)) 284 return 0; 285 } 286 287 /* Not found any valid program header */ 288 return -1; 289 } 290 291 static bool want_demangle(bool is_kernel_sym) 292 { 293 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 294 } 295 296 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 297 { 298 int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS; 299 char *demangled = NULL; 300 301 /* 302 * We need to figure out if the object was created from C++ sources 303 * DWARF DW_compile_unit has this, but we don't always have access 304 * to it... 305 */ 306 if (!want_demangle(dso->kernel || kmodule)) 307 return demangled; 308 309 demangled = bfd_demangle(NULL, elf_name, demangle_flags); 310 if (demangled == NULL) { 311 demangled = ocaml_demangle_sym(elf_name); 312 if (demangled == NULL) { 313 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 314 } 315 } 316 else if (rust_is_mangled(demangled)) 317 /* 318 * Input to Rust demangling is the BFD-demangled 319 * name which it Rust-demangles in place. 320 */ 321 rust_demangle_sym(demangled); 322 323 return demangled; 324 } 325 326 static void get_plt_sizes(GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt, 327 u64 *plt_header_size, u64 *plt_entry_size) 328 { 329 switch (ehdr->e_machine) { 330 case EM_ARM: 331 *plt_header_size = 20; 332 *plt_entry_size = 12; 333 return; 334 case EM_AARCH64: 335 *plt_header_size = 32; 336 *plt_entry_size = 16; 337 return; 338 case EM_SPARC: 339 *plt_header_size = 48; 340 *plt_entry_size = 12; 341 return; 342 case EM_SPARCV9: 343 *plt_header_size = 128; 344 *plt_entry_size = 32; 345 return; 346 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 347 *plt_header_size = shdr_plt->sh_entsize; 348 *plt_entry_size = shdr_plt->sh_entsize; 349 return; 350 } 351 } 352 353 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \ 354 for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \ 355 idx < nr_entries; \ 356 ++idx, pos = gelf_getrel(reldata, idx, &pos_mem)) 357 358 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \ 359 for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \ 360 idx < nr_entries; \ 361 ++idx, pos = gelf_getrela(reldata, idx, &pos_mem)) 362 363 /* 364 * We need to check if we have a .dynsym, so that we can handle the 365 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 366 * .dynsym or .symtab). 367 * And always look at the original dso, not at debuginfo packages, that 368 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 369 */ 370 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 371 { 372 uint32_t nr_rel_entries, idx; 373 GElf_Sym sym; 374 u64 plt_offset, plt_header_size, plt_entry_size; 375 GElf_Shdr shdr_plt; 376 struct symbol *f; 377 GElf_Shdr shdr_rel_plt, shdr_dynsym; 378 Elf_Data *reldata, *syms, *symstrs; 379 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 380 size_t dynsym_idx; 381 GElf_Ehdr ehdr; 382 char sympltname[1024]; 383 Elf *elf; 384 int nr = 0, symidx, err = 0; 385 386 if (!ss->dynsym) 387 return 0; 388 389 elf = ss->elf; 390 ehdr = ss->ehdr; 391 392 scn_dynsym = ss->dynsym; 393 shdr_dynsym = ss->dynshdr; 394 dynsym_idx = ss->dynsym_idx; 395 396 if (scn_dynsym == NULL) 397 goto out_elf_end; 398 399 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 400 ".rela.plt", NULL); 401 if (scn_plt_rel == NULL) { 402 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 403 ".rel.plt", NULL); 404 if (scn_plt_rel == NULL) 405 goto out_elf_end; 406 } 407 408 err = -1; 409 410 if (shdr_rel_plt.sh_link != dynsym_idx) 411 goto out_elf_end; 412 413 if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL) 414 goto out_elf_end; 415 416 /* 417 * Fetch the relocation section to find the idxes to the GOT 418 * and the symbols in the .dynsym they refer to. 419 */ 420 reldata = elf_getdata(scn_plt_rel, NULL); 421 if (reldata == NULL) 422 goto out_elf_end; 423 424 syms = elf_getdata(scn_dynsym, NULL); 425 if (syms == NULL) 426 goto out_elf_end; 427 428 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 429 if (scn_symstrs == NULL) 430 goto out_elf_end; 431 432 symstrs = elf_getdata(scn_symstrs, NULL); 433 if (symstrs == NULL) 434 goto out_elf_end; 435 436 if (symstrs->d_size == 0) 437 goto out_elf_end; 438 439 nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 440 plt_offset = shdr_plt.sh_offset; 441 get_plt_sizes(&ehdr, &shdr_plt, &plt_header_size, &plt_entry_size); 442 plt_offset += plt_header_size; 443 444 if (shdr_rel_plt.sh_type == SHT_RELA) { 445 GElf_Rela pos_mem, *pos; 446 447 elf_section__for_each_rela(reldata, pos, pos_mem, idx, 448 nr_rel_entries) { 449 const char *elf_name = NULL; 450 char *demangled = NULL; 451 symidx = GELF_R_SYM(pos->r_info); 452 gelf_getsym(syms, symidx, &sym); 453 454 elf_name = elf_sym__name(&sym, symstrs); 455 demangled = demangle_sym(dso, 0, elf_name); 456 if (demangled != NULL) 457 elf_name = demangled; 458 snprintf(sympltname, sizeof(sympltname), 459 "%s@plt", elf_name); 460 free(demangled); 461 462 f = symbol__new(plt_offset, plt_entry_size, 463 STB_GLOBAL, STT_FUNC, sympltname); 464 if (!f) 465 goto out_elf_end; 466 467 plt_offset += plt_entry_size; 468 symbols__insert(&dso->symbols, f); 469 ++nr; 470 } 471 } else if (shdr_rel_plt.sh_type == SHT_REL) { 472 GElf_Rel pos_mem, *pos; 473 elf_section__for_each_rel(reldata, pos, pos_mem, idx, 474 nr_rel_entries) { 475 const char *elf_name = NULL; 476 char *demangled = NULL; 477 symidx = GELF_R_SYM(pos->r_info); 478 gelf_getsym(syms, symidx, &sym); 479 480 elf_name = elf_sym__name(&sym, symstrs); 481 demangled = demangle_sym(dso, 0, elf_name); 482 if (demangled != NULL) 483 elf_name = demangled; 484 snprintf(sympltname, sizeof(sympltname), 485 "%s@plt", elf_name); 486 free(demangled); 487 488 f = symbol__new(plt_offset, plt_entry_size, 489 STB_GLOBAL, STT_FUNC, sympltname); 490 if (!f) 491 goto out_elf_end; 492 493 plt_offset += plt_entry_size; 494 symbols__insert(&dso->symbols, f); 495 ++nr; 496 } 497 } 498 499 err = 0; 500 out_elf_end: 501 if (err == 0) 502 return nr; 503 pr_debug("%s: problems reading %s PLT info.\n", 504 __func__, dso->long_name); 505 return 0; 506 } 507 508 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 509 { 510 return demangle_sym(dso, kmodule, elf_name); 511 } 512 513 /* 514 * Align offset to 4 bytes as needed for note name and descriptor data. 515 */ 516 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 517 518 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 519 { 520 int err = -1; 521 GElf_Ehdr ehdr; 522 GElf_Shdr shdr; 523 Elf_Data *data; 524 Elf_Scn *sec; 525 Elf_Kind ek; 526 void *ptr; 527 528 if (size < BUILD_ID_SIZE) 529 goto out; 530 531 ek = elf_kind(elf); 532 if (ek != ELF_K_ELF) 533 goto out; 534 535 if (gelf_getehdr(elf, &ehdr) == NULL) { 536 pr_err("%s: cannot get elf header.\n", __func__); 537 goto out; 538 } 539 540 /* 541 * Check following sections for notes: 542 * '.note.gnu.build-id' 543 * '.notes' 544 * '.note' (VDSO specific) 545 */ 546 do { 547 sec = elf_section_by_name(elf, &ehdr, &shdr, 548 ".note.gnu.build-id", NULL); 549 if (sec) 550 break; 551 552 sec = elf_section_by_name(elf, &ehdr, &shdr, 553 ".notes", NULL); 554 if (sec) 555 break; 556 557 sec = elf_section_by_name(elf, &ehdr, &shdr, 558 ".note", NULL); 559 if (sec) 560 break; 561 562 return err; 563 564 } while (0); 565 566 data = elf_getdata(sec, NULL); 567 if (data == NULL) 568 goto out; 569 570 ptr = data->d_buf; 571 while (ptr < (data->d_buf + data->d_size)) { 572 GElf_Nhdr *nhdr = ptr; 573 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 574 descsz = NOTE_ALIGN(nhdr->n_descsz); 575 const char *name; 576 577 ptr += sizeof(*nhdr); 578 name = ptr; 579 ptr += namesz; 580 if (nhdr->n_type == NT_GNU_BUILD_ID && 581 nhdr->n_namesz == sizeof("GNU")) { 582 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 583 size_t sz = min(size, descsz); 584 memcpy(bf, ptr, sz); 585 memset(bf + sz, 0, size - sz); 586 err = descsz; 587 break; 588 } 589 } 590 ptr += descsz; 591 } 592 593 out: 594 return err; 595 } 596 597 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT 598 599 static int read_build_id(const char *filename, struct build_id *bid) 600 { 601 size_t size = sizeof(bid->data); 602 int err = -1; 603 bfd *abfd; 604 605 abfd = bfd_openr(filename, NULL); 606 if (!abfd) 607 return -1; 608 609 if (!bfd_check_format(abfd, bfd_object)) { 610 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 611 goto out_close; 612 } 613 614 if (!abfd->build_id || abfd->build_id->size > size) 615 goto out_close; 616 617 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size); 618 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size); 619 err = bid->size = abfd->build_id->size; 620 621 out_close: 622 bfd_close(abfd); 623 return err; 624 } 625 626 #else // HAVE_LIBBFD_BUILDID_SUPPORT 627 628 static int read_build_id(const char *filename, struct build_id *bid) 629 { 630 size_t size = sizeof(bid->data); 631 int fd, err = -1; 632 Elf *elf; 633 634 if (size < BUILD_ID_SIZE) 635 goto out; 636 637 fd = open(filename, O_RDONLY); 638 if (fd < 0) 639 goto out; 640 641 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 642 if (elf == NULL) { 643 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 644 goto out_close; 645 } 646 647 err = elf_read_build_id(elf, bid->data, size); 648 if (err > 0) 649 bid->size = err; 650 651 elf_end(elf); 652 out_close: 653 close(fd); 654 out: 655 return err; 656 } 657 658 #endif // HAVE_LIBBFD_BUILDID_SUPPORT 659 660 int filename__read_build_id(const char *filename, struct build_id *bid) 661 { 662 struct kmod_path m = { .name = NULL, }; 663 char path[PATH_MAX]; 664 int err; 665 666 if (!filename) 667 return -EFAULT; 668 669 err = kmod_path__parse(&m, filename); 670 if (err) 671 return -1; 672 673 if (m.comp) { 674 int error = 0, fd; 675 676 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error); 677 if (fd < 0) { 678 pr_debug("Failed to decompress (error %d) %s\n", 679 error, filename); 680 return -1; 681 } 682 close(fd); 683 filename = path; 684 } 685 686 err = read_build_id(filename, bid); 687 688 if (m.comp) 689 unlink(filename); 690 return err; 691 } 692 693 int sysfs__read_build_id(const char *filename, struct build_id *bid) 694 { 695 size_t size = sizeof(bid->data); 696 int fd, err = -1; 697 698 fd = open(filename, O_RDONLY); 699 if (fd < 0) 700 goto out; 701 702 while (1) { 703 char bf[BUFSIZ]; 704 GElf_Nhdr nhdr; 705 size_t namesz, descsz; 706 707 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 708 break; 709 710 namesz = NOTE_ALIGN(nhdr.n_namesz); 711 descsz = NOTE_ALIGN(nhdr.n_descsz); 712 if (nhdr.n_type == NT_GNU_BUILD_ID && 713 nhdr.n_namesz == sizeof("GNU")) { 714 if (read(fd, bf, namesz) != (ssize_t)namesz) 715 break; 716 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 717 size_t sz = min(descsz, size); 718 if (read(fd, bid->data, sz) == (ssize_t)sz) { 719 memset(bid->data + sz, 0, size - sz); 720 bid->size = sz; 721 err = 0; 722 break; 723 } 724 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 725 break; 726 } else { 727 int n = namesz + descsz; 728 729 if (n > (int)sizeof(bf)) { 730 n = sizeof(bf); 731 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 732 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 733 } 734 if (read(fd, bf, n) != n) 735 break; 736 } 737 } 738 close(fd); 739 out: 740 return err; 741 } 742 743 #ifdef HAVE_LIBBFD_SUPPORT 744 745 int filename__read_debuglink(const char *filename, char *debuglink, 746 size_t size) 747 { 748 int err = -1; 749 asection *section; 750 bfd *abfd; 751 752 abfd = bfd_openr(filename, NULL); 753 if (!abfd) 754 return -1; 755 756 if (!bfd_check_format(abfd, bfd_object)) { 757 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 758 goto out_close; 759 } 760 761 section = bfd_get_section_by_name(abfd, ".gnu_debuglink"); 762 if (!section) 763 goto out_close; 764 765 if (section->size > size) 766 goto out_close; 767 768 if (!bfd_get_section_contents(abfd, section, debuglink, 0, 769 section->size)) 770 goto out_close; 771 772 err = 0; 773 774 out_close: 775 bfd_close(abfd); 776 return err; 777 } 778 779 #else 780 781 int filename__read_debuglink(const char *filename, char *debuglink, 782 size_t size) 783 { 784 int fd, err = -1; 785 Elf *elf; 786 GElf_Ehdr ehdr; 787 GElf_Shdr shdr; 788 Elf_Data *data; 789 Elf_Scn *sec; 790 Elf_Kind ek; 791 792 fd = open(filename, O_RDONLY); 793 if (fd < 0) 794 goto out; 795 796 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 797 if (elf == NULL) { 798 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 799 goto out_close; 800 } 801 802 ek = elf_kind(elf); 803 if (ek != ELF_K_ELF) 804 goto out_elf_end; 805 806 if (gelf_getehdr(elf, &ehdr) == NULL) { 807 pr_err("%s: cannot get elf header.\n", __func__); 808 goto out_elf_end; 809 } 810 811 sec = elf_section_by_name(elf, &ehdr, &shdr, 812 ".gnu_debuglink", NULL); 813 if (sec == NULL) 814 goto out_elf_end; 815 816 data = elf_getdata(sec, NULL); 817 if (data == NULL) 818 goto out_elf_end; 819 820 /* the start of this section is a zero-terminated string */ 821 strncpy(debuglink, data->d_buf, size); 822 823 err = 0; 824 825 out_elf_end: 826 elf_end(elf); 827 out_close: 828 close(fd); 829 out: 830 return err; 831 } 832 833 #endif 834 835 static int dso__swap_init(struct dso *dso, unsigned char eidata) 836 { 837 static unsigned int const endian = 1; 838 839 dso->needs_swap = DSO_SWAP__NO; 840 841 switch (eidata) { 842 case ELFDATA2LSB: 843 /* We are big endian, DSO is little endian. */ 844 if (*(unsigned char const *)&endian != 1) 845 dso->needs_swap = DSO_SWAP__YES; 846 break; 847 848 case ELFDATA2MSB: 849 /* We are little endian, DSO is big endian. */ 850 if (*(unsigned char const *)&endian != 0) 851 dso->needs_swap = DSO_SWAP__YES; 852 break; 853 854 default: 855 pr_err("unrecognized DSO data encoding %d\n", eidata); 856 return -EINVAL; 857 } 858 859 return 0; 860 } 861 862 bool symsrc__possibly_runtime(struct symsrc *ss) 863 { 864 return ss->dynsym || ss->opdsec; 865 } 866 867 bool symsrc__has_symtab(struct symsrc *ss) 868 { 869 return ss->symtab != NULL; 870 } 871 872 void symsrc__destroy(struct symsrc *ss) 873 { 874 zfree(&ss->name); 875 elf_end(ss->elf); 876 close(ss->fd); 877 } 878 879 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 880 { 881 /* 882 * Usually vmlinux is an ELF file with type ET_EXEC for most 883 * architectures; except Arm64 kernel is linked with option 884 * '-share', so need to check type ET_DYN. 885 */ 886 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 887 ehdr.e_type == ET_DYN; 888 } 889 890 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 891 enum dso_binary_type type) 892 { 893 GElf_Ehdr ehdr; 894 Elf *elf; 895 int fd; 896 897 if (dso__needs_decompress(dso)) { 898 fd = dso__decompress_kmodule_fd(dso, name); 899 if (fd < 0) 900 return -1; 901 902 type = dso->symtab_type; 903 } else { 904 fd = open(name, O_RDONLY); 905 if (fd < 0) { 906 dso->load_errno = errno; 907 return -1; 908 } 909 } 910 911 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 912 if (elf == NULL) { 913 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 914 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 915 goto out_close; 916 } 917 918 if (gelf_getehdr(elf, &ehdr) == NULL) { 919 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 920 pr_debug("%s: cannot get elf header.\n", __func__); 921 goto out_elf_end; 922 } 923 924 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 925 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR; 926 goto out_elf_end; 927 } 928 929 /* Always reject images with a mismatched build-id: */ 930 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) { 931 u8 build_id[BUILD_ID_SIZE]; 932 struct build_id bid; 933 int size; 934 935 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE); 936 if (size <= 0) { 937 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 938 goto out_elf_end; 939 } 940 941 build_id__init(&bid, build_id, size); 942 if (!dso__build_id_equal(dso, &bid)) { 943 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 944 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 945 goto out_elf_end; 946 } 947 } 948 949 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 950 951 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 952 NULL); 953 if (ss->symshdr.sh_type != SHT_SYMTAB) 954 ss->symtab = NULL; 955 956 ss->dynsym_idx = 0; 957 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 958 &ss->dynsym_idx); 959 if (ss->dynshdr.sh_type != SHT_DYNSYM) 960 ss->dynsym = NULL; 961 962 ss->opdidx = 0; 963 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 964 &ss->opdidx); 965 if (ss->opdshdr.sh_type != SHT_PROGBITS) 966 ss->opdsec = NULL; 967 968 if (dso->kernel == DSO_SPACE__USER) 969 ss->adjust_symbols = true; 970 else 971 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 972 973 ss->name = strdup(name); 974 if (!ss->name) { 975 dso->load_errno = errno; 976 goto out_elf_end; 977 } 978 979 ss->elf = elf; 980 ss->fd = fd; 981 ss->ehdr = ehdr; 982 ss->type = type; 983 984 return 0; 985 986 out_elf_end: 987 elf_end(elf); 988 out_close: 989 close(fd); 990 return -1; 991 } 992 993 /** 994 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 995 * @kmap: kernel maps and relocation reference symbol 996 * 997 * This function returns %true if we are dealing with the kernel maps and the 998 * relocation reference symbol has not yet been found. Otherwise %false is 999 * returned. 1000 */ 1001 static bool ref_reloc_sym_not_found(struct kmap *kmap) 1002 { 1003 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 1004 !kmap->ref_reloc_sym->unrelocated_addr; 1005 } 1006 1007 /** 1008 * ref_reloc - kernel relocation offset. 1009 * @kmap: kernel maps and relocation reference symbol 1010 * 1011 * This function returns the offset of kernel addresses as determined by using 1012 * the relocation reference symbol i.e. if the kernel has not been relocated 1013 * then the return value is zero. 1014 */ 1015 static u64 ref_reloc(struct kmap *kmap) 1016 { 1017 if (kmap && kmap->ref_reloc_sym && 1018 kmap->ref_reloc_sym->unrelocated_addr) 1019 return kmap->ref_reloc_sym->addr - 1020 kmap->ref_reloc_sym->unrelocated_addr; 1021 return 0; 1022 } 1023 1024 void __weak arch__sym_update(struct symbol *s __maybe_unused, 1025 GElf_Sym *sym __maybe_unused) { } 1026 1027 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 1028 GElf_Sym *sym, GElf_Shdr *shdr, 1029 struct maps *kmaps, struct kmap *kmap, 1030 struct dso **curr_dsop, struct map **curr_mapp, 1031 const char *section_name, 1032 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel) 1033 { 1034 struct dso *curr_dso = *curr_dsop; 1035 struct map *curr_map; 1036 char dso_name[PATH_MAX]; 1037 1038 /* Adjust symbol to map to file offset */ 1039 if (adjust_kernel_syms) 1040 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 1041 1042 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0) 1043 return 0; 1044 1045 if (strcmp(section_name, ".text") == 0) { 1046 /* 1047 * The initial kernel mapping is based on 1048 * kallsyms and identity maps. Overwrite it to 1049 * map to the kernel dso. 1050 */ 1051 if (*remap_kernel && dso->kernel && !kmodule) { 1052 *remap_kernel = false; 1053 map->start = shdr->sh_addr + ref_reloc(kmap); 1054 map->end = map->start + shdr->sh_size; 1055 map->pgoff = shdr->sh_offset; 1056 map->map_ip = map__map_ip; 1057 map->unmap_ip = map__unmap_ip; 1058 /* Ensure maps are correctly ordered */ 1059 if (kmaps) { 1060 map__get(map); 1061 maps__remove(kmaps, map); 1062 maps__insert(kmaps, map); 1063 map__put(map); 1064 } 1065 } 1066 1067 /* 1068 * The initial module mapping is based on 1069 * /proc/modules mapped to offset zero. 1070 * Overwrite it to map to the module dso. 1071 */ 1072 if (*remap_kernel && kmodule) { 1073 *remap_kernel = false; 1074 map->pgoff = shdr->sh_offset; 1075 } 1076 1077 *curr_mapp = map; 1078 *curr_dsop = dso; 1079 return 0; 1080 } 1081 1082 if (!kmap) 1083 return 0; 1084 1085 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name); 1086 1087 curr_map = maps__find_by_name(kmaps, dso_name); 1088 if (curr_map == NULL) { 1089 u64 start = sym->st_value; 1090 1091 if (kmodule) 1092 start += map->start + shdr->sh_offset; 1093 1094 curr_dso = dso__new(dso_name); 1095 if (curr_dso == NULL) 1096 return -1; 1097 curr_dso->kernel = dso->kernel; 1098 curr_dso->long_name = dso->long_name; 1099 curr_dso->long_name_len = dso->long_name_len; 1100 curr_map = map__new2(start, curr_dso); 1101 dso__put(curr_dso); 1102 if (curr_map == NULL) 1103 return -1; 1104 1105 if (curr_dso->kernel) 1106 map__kmap(curr_map)->kmaps = kmaps; 1107 1108 if (adjust_kernel_syms) { 1109 curr_map->start = shdr->sh_addr + ref_reloc(kmap); 1110 curr_map->end = curr_map->start + shdr->sh_size; 1111 curr_map->pgoff = shdr->sh_offset; 1112 } else { 1113 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip; 1114 } 1115 curr_dso->symtab_type = dso->symtab_type; 1116 maps__insert(kmaps, curr_map); 1117 /* 1118 * Add it before we drop the reference to curr_map, i.e. while 1119 * we still are sure to have a reference to this DSO via 1120 * *curr_map->dso. 1121 */ 1122 dsos__add(&kmaps->machine->dsos, curr_dso); 1123 /* kmaps already got it */ 1124 map__put(curr_map); 1125 dso__set_loaded(curr_dso); 1126 *curr_mapp = curr_map; 1127 *curr_dsop = curr_dso; 1128 } else 1129 *curr_dsop = curr_map->dso; 1130 1131 return 0; 1132 } 1133 1134 static int 1135 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1136 struct symsrc *runtime_ss, int kmodule, int dynsym) 1137 { 1138 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL; 1139 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 1140 struct map *curr_map = map; 1141 struct dso *curr_dso = dso; 1142 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym; 1143 uint32_t nr_syms; 1144 int err = -1; 1145 uint32_t idx; 1146 GElf_Ehdr ehdr; 1147 GElf_Shdr shdr; 1148 GElf_Shdr tshdr; 1149 Elf_Data *syms, *opddata = NULL; 1150 GElf_Sym sym; 1151 Elf_Scn *sec, *sec_strndx; 1152 Elf *elf; 1153 int nr = 0; 1154 bool remap_kernel = false, adjust_kernel_syms = false; 1155 1156 if (kmap && !kmaps) 1157 return -1; 1158 1159 elf = syms_ss->elf; 1160 ehdr = syms_ss->ehdr; 1161 if (dynsym) { 1162 sec = syms_ss->dynsym; 1163 shdr = syms_ss->dynshdr; 1164 } else { 1165 sec = syms_ss->symtab; 1166 shdr = syms_ss->symshdr; 1167 } 1168 1169 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1170 ".text", NULL)) 1171 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset; 1172 1173 if (runtime_ss->opdsec) 1174 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1175 1176 syms = elf_getdata(sec, NULL); 1177 if (syms == NULL) 1178 goto out_elf_end; 1179 1180 sec = elf_getscn(elf, shdr.sh_link); 1181 if (sec == NULL) 1182 goto out_elf_end; 1183 1184 symstrs = elf_getdata(sec, NULL); 1185 if (symstrs == NULL) 1186 goto out_elf_end; 1187 1188 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1189 if (sec_strndx == NULL) 1190 goto out_elf_end; 1191 1192 secstrs_run = elf_getdata(sec_strndx, NULL); 1193 if (secstrs_run == NULL) 1194 goto out_elf_end; 1195 1196 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx); 1197 if (sec_strndx == NULL) 1198 goto out_elf_end; 1199 1200 secstrs_sym = elf_getdata(sec_strndx, NULL); 1201 if (secstrs_sym == NULL) 1202 goto out_elf_end; 1203 1204 nr_syms = shdr.sh_size / shdr.sh_entsize; 1205 1206 memset(&sym, 0, sizeof(sym)); 1207 1208 /* 1209 * The kernel relocation symbol is needed in advance in order to adjust 1210 * kernel maps correctly. 1211 */ 1212 if (ref_reloc_sym_not_found(kmap)) { 1213 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1214 const char *elf_name = elf_sym__name(&sym, symstrs); 1215 1216 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1217 continue; 1218 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1219 map->reloc = kmap->ref_reloc_sym->addr - 1220 kmap->ref_reloc_sym->unrelocated_addr; 1221 break; 1222 } 1223 } 1224 1225 /* 1226 * Handle any relocation of vdso necessary because older kernels 1227 * attempted to prelink vdso to its virtual address. 1228 */ 1229 if (dso__is_vdso(dso)) 1230 map->reloc = map->start - dso->text_offset; 1231 1232 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap); 1233 /* 1234 * Initial kernel and module mappings do not map to the dso. 1235 * Flag the fixups. 1236 */ 1237 if (dso->kernel) { 1238 remap_kernel = true; 1239 adjust_kernel_syms = dso->adjust_symbols; 1240 } 1241 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1242 struct symbol *f; 1243 const char *elf_name = elf_sym__name(&sym, symstrs); 1244 char *demangled = NULL; 1245 int is_label = elf_sym__is_label(&sym); 1246 const char *section_name; 1247 bool used_opd = false; 1248 1249 if (!is_label && !elf_sym__filter(&sym)) 1250 continue; 1251 1252 /* Reject ARM ELF "mapping symbols": these aren't unique and 1253 * don't identify functions, so will confuse the profile 1254 * output: */ 1255 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1256 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1257 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1258 continue; 1259 } 1260 1261 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1262 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1263 u64 *opd = opddata->d_buf + offset; 1264 sym.st_value = DSO__SWAP(dso, u64, *opd); 1265 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1266 sym.st_value); 1267 used_opd = true; 1268 } 1269 1270 /* 1271 * When loading symbols in a data mapping, ABS symbols (which 1272 * has a value of SHN_ABS in its st_shndx) failed at 1273 * elf_getscn(). And it marks the loading as a failure so 1274 * already loaded symbols cannot be fixed up. 1275 * 1276 * I'm not sure what should be done. Just ignore them for now. 1277 * - Namhyung Kim 1278 */ 1279 if (sym.st_shndx == SHN_ABS) 1280 continue; 1281 1282 sec = elf_getscn(syms_ss->elf, sym.st_shndx); 1283 if (!sec) 1284 goto out_elf_end; 1285 1286 gelf_getshdr(sec, &shdr); 1287 1288 /* 1289 * If the attribute bit SHF_ALLOC is not set, the section 1290 * doesn't occupy memory during process execution. 1291 * E.g. ".gnu.warning.*" section is used by linker to generate 1292 * warnings when calling deprecated functions, the symbols in 1293 * the section aren't loaded to memory during process execution, 1294 * so skip them. 1295 */ 1296 if (!(shdr.sh_flags & SHF_ALLOC)) 1297 continue; 1298 1299 secstrs = secstrs_sym; 1300 1301 /* 1302 * We have to fallback to runtime when syms' section header has 1303 * NOBITS set. NOBITS results in file offset (sh_offset) not 1304 * being incremented. So sh_offset used below has different 1305 * values for syms (invalid) and runtime (valid). 1306 */ 1307 if (shdr.sh_type == SHT_NOBITS) { 1308 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1309 if (!sec) 1310 goto out_elf_end; 1311 1312 gelf_getshdr(sec, &shdr); 1313 secstrs = secstrs_run; 1314 } 1315 1316 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1317 continue; 1318 1319 section_name = elf_sec__name(&shdr, secstrs); 1320 1321 /* On ARM, symbols for thumb functions have 1 added to 1322 * the symbol address as a flag - remove it */ 1323 if ((ehdr.e_machine == EM_ARM) && 1324 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1325 (sym.st_value & 1)) 1326 --sym.st_value; 1327 1328 if (dso->kernel) { 1329 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map, 1330 section_name, adjust_kernel_syms, kmodule, &remap_kernel)) 1331 goto out_elf_end; 1332 } else if ((used_opd && runtime_ss->adjust_symbols) || 1333 (!used_opd && syms_ss->adjust_symbols)) { 1334 GElf_Phdr phdr; 1335 1336 if (elf_read_program_header(runtime_ss->elf, 1337 (u64)sym.st_value, &phdr)) { 1338 pr_debug4("%s: failed to find program header for " 1339 "symbol: %s st_value: %#" PRIx64 "\n", 1340 __func__, elf_name, (u64)sym.st_value); 1341 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1342 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", 1343 __func__, (u64)sym.st_value, (u64)shdr.sh_addr, 1344 (u64)shdr.sh_offset); 1345 /* 1346 * Fail to find program header, let's rollback 1347 * to use shdr.sh_addr and shdr.sh_offset to 1348 * calibrate symbol's file address, though this 1349 * is not necessary for normal C ELF file, we 1350 * still need to handle java JIT symbols in this 1351 * case. 1352 */ 1353 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1354 } else { 1355 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1356 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n", 1357 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr, 1358 (u64)phdr.p_offset); 1359 sym.st_value -= phdr.p_vaddr - phdr.p_offset; 1360 } 1361 } 1362 1363 demangled = demangle_sym(dso, kmodule, elf_name); 1364 if (demangled != NULL) 1365 elf_name = demangled; 1366 1367 f = symbol__new(sym.st_value, sym.st_size, 1368 GELF_ST_BIND(sym.st_info), 1369 GELF_ST_TYPE(sym.st_info), elf_name); 1370 free(demangled); 1371 if (!f) 1372 goto out_elf_end; 1373 1374 arch__sym_update(f, &sym); 1375 1376 __symbols__insert(&curr_dso->symbols, f, dso->kernel); 1377 nr++; 1378 } 1379 1380 /* 1381 * For misannotated, zeroed, ASM function sizes. 1382 */ 1383 if (nr > 0) { 1384 symbols__fixup_end(&dso->symbols, false); 1385 symbols__fixup_duplicate(&dso->symbols); 1386 if (kmap) { 1387 /* 1388 * We need to fixup this here too because we create new 1389 * maps here, for things like vsyscall sections. 1390 */ 1391 maps__fixup_end(kmaps); 1392 } 1393 } 1394 err = nr; 1395 out_elf_end: 1396 return err; 1397 } 1398 1399 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1400 struct symsrc *runtime_ss, int kmodule) 1401 { 1402 int nr = 0; 1403 int err = -1; 1404 1405 dso->symtab_type = syms_ss->type; 1406 dso->is_64_bit = syms_ss->is_64_bit; 1407 dso->rel = syms_ss->ehdr.e_type == ET_REL; 1408 1409 /* 1410 * Modules may already have symbols from kallsyms, but those symbols 1411 * have the wrong values for the dso maps, so remove them. 1412 */ 1413 if (kmodule && syms_ss->symtab) 1414 symbols__delete(&dso->symbols); 1415 1416 if (!syms_ss->symtab) { 1417 /* 1418 * If the vmlinux is stripped, fail so we will fall back 1419 * to using kallsyms. The vmlinux runtime symbols aren't 1420 * of much use. 1421 */ 1422 if (dso->kernel) 1423 return err; 1424 } else { 1425 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1426 kmodule, 0); 1427 if (err < 0) 1428 return err; 1429 nr = err; 1430 } 1431 1432 if (syms_ss->dynsym) { 1433 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1434 kmodule, 1); 1435 if (err < 0) 1436 return err; 1437 err += nr; 1438 } 1439 1440 return err; 1441 } 1442 1443 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1444 { 1445 GElf_Phdr phdr; 1446 size_t i, phdrnum; 1447 int err; 1448 u64 sz; 1449 1450 if (elf_getphdrnum(elf, &phdrnum)) 1451 return -1; 1452 1453 for (i = 0; i < phdrnum; i++) { 1454 if (gelf_getphdr(elf, i, &phdr) == NULL) 1455 return -1; 1456 if (phdr.p_type != PT_LOAD) 1457 continue; 1458 if (exe) { 1459 if (!(phdr.p_flags & PF_X)) 1460 continue; 1461 } else { 1462 if (!(phdr.p_flags & PF_R)) 1463 continue; 1464 } 1465 sz = min(phdr.p_memsz, phdr.p_filesz); 1466 if (!sz) 1467 continue; 1468 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1469 if (err) 1470 return err; 1471 } 1472 return 0; 1473 } 1474 1475 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1476 bool *is_64_bit) 1477 { 1478 int err; 1479 Elf *elf; 1480 1481 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1482 if (elf == NULL) 1483 return -1; 1484 1485 if (is_64_bit) 1486 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1487 1488 err = elf_read_maps(elf, exe, mapfn, data); 1489 1490 elf_end(elf); 1491 return err; 1492 } 1493 1494 enum dso_type dso__type_fd(int fd) 1495 { 1496 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1497 GElf_Ehdr ehdr; 1498 Elf_Kind ek; 1499 Elf *elf; 1500 1501 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1502 if (elf == NULL) 1503 goto out; 1504 1505 ek = elf_kind(elf); 1506 if (ek != ELF_K_ELF) 1507 goto out_end; 1508 1509 if (gelf_getclass(elf) == ELFCLASS64) { 1510 dso_type = DSO__TYPE_64BIT; 1511 goto out_end; 1512 } 1513 1514 if (gelf_getehdr(elf, &ehdr) == NULL) 1515 goto out_end; 1516 1517 if (ehdr.e_machine == EM_X86_64) 1518 dso_type = DSO__TYPE_X32BIT; 1519 else 1520 dso_type = DSO__TYPE_32BIT; 1521 out_end: 1522 elf_end(elf); 1523 out: 1524 return dso_type; 1525 } 1526 1527 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1528 { 1529 ssize_t r; 1530 size_t n; 1531 int err = -1; 1532 char *buf = malloc(page_size); 1533 1534 if (buf == NULL) 1535 return -1; 1536 1537 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1538 goto out; 1539 1540 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1541 goto out; 1542 1543 while (len) { 1544 n = page_size; 1545 if (len < n) 1546 n = len; 1547 /* Use read because mmap won't work on proc files */ 1548 r = read(from, buf, n); 1549 if (r < 0) 1550 goto out; 1551 if (!r) 1552 break; 1553 n = r; 1554 r = write(to, buf, n); 1555 if (r < 0) 1556 goto out; 1557 if ((size_t)r != n) 1558 goto out; 1559 len -= n; 1560 } 1561 1562 err = 0; 1563 out: 1564 free(buf); 1565 return err; 1566 } 1567 1568 struct kcore { 1569 int fd; 1570 int elfclass; 1571 Elf *elf; 1572 GElf_Ehdr ehdr; 1573 }; 1574 1575 static int kcore__open(struct kcore *kcore, const char *filename) 1576 { 1577 GElf_Ehdr *ehdr; 1578 1579 kcore->fd = open(filename, O_RDONLY); 1580 if (kcore->fd == -1) 1581 return -1; 1582 1583 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 1584 if (!kcore->elf) 1585 goto out_close; 1586 1587 kcore->elfclass = gelf_getclass(kcore->elf); 1588 if (kcore->elfclass == ELFCLASSNONE) 1589 goto out_end; 1590 1591 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 1592 if (!ehdr) 1593 goto out_end; 1594 1595 return 0; 1596 1597 out_end: 1598 elf_end(kcore->elf); 1599 out_close: 1600 close(kcore->fd); 1601 return -1; 1602 } 1603 1604 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 1605 bool temp) 1606 { 1607 kcore->elfclass = elfclass; 1608 1609 if (temp) 1610 kcore->fd = mkstemp(filename); 1611 else 1612 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 1613 if (kcore->fd == -1) 1614 return -1; 1615 1616 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 1617 if (!kcore->elf) 1618 goto out_close; 1619 1620 if (!gelf_newehdr(kcore->elf, elfclass)) 1621 goto out_end; 1622 1623 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 1624 1625 return 0; 1626 1627 out_end: 1628 elf_end(kcore->elf); 1629 out_close: 1630 close(kcore->fd); 1631 unlink(filename); 1632 return -1; 1633 } 1634 1635 static void kcore__close(struct kcore *kcore) 1636 { 1637 elf_end(kcore->elf); 1638 close(kcore->fd); 1639 } 1640 1641 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 1642 { 1643 GElf_Ehdr *ehdr = &to->ehdr; 1644 GElf_Ehdr *kehdr = &from->ehdr; 1645 1646 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 1647 ehdr->e_type = kehdr->e_type; 1648 ehdr->e_machine = kehdr->e_machine; 1649 ehdr->e_version = kehdr->e_version; 1650 ehdr->e_entry = 0; 1651 ehdr->e_shoff = 0; 1652 ehdr->e_flags = kehdr->e_flags; 1653 ehdr->e_phnum = count; 1654 ehdr->e_shentsize = 0; 1655 ehdr->e_shnum = 0; 1656 ehdr->e_shstrndx = 0; 1657 1658 if (from->elfclass == ELFCLASS32) { 1659 ehdr->e_phoff = sizeof(Elf32_Ehdr); 1660 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 1661 ehdr->e_phentsize = sizeof(Elf32_Phdr); 1662 } else { 1663 ehdr->e_phoff = sizeof(Elf64_Ehdr); 1664 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 1665 ehdr->e_phentsize = sizeof(Elf64_Phdr); 1666 } 1667 1668 if (!gelf_update_ehdr(to->elf, ehdr)) 1669 return -1; 1670 1671 if (!gelf_newphdr(to->elf, count)) 1672 return -1; 1673 1674 return 0; 1675 } 1676 1677 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 1678 u64 addr, u64 len) 1679 { 1680 GElf_Phdr phdr = { 1681 .p_type = PT_LOAD, 1682 .p_flags = PF_R | PF_W | PF_X, 1683 .p_offset = offset, 1684 .p_vaddr = addr, 1685 .p_paddr = 0, 1686 .p_filesz = len, 1687 .p_memsz = len, 1688 .p_align = page_size, 1689 }; 1690 1691 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 1692 return -1; 1693 1694 return 0; 1695 } 1696 1697 static off_t kcore__write(struct kcore *kcore) 1698 { 1699 return elf_update(kcore->elf, ELF_C_WRITE); 1700 } 1701 1702 struct phdr_data { 1703 off_t offset; 1704 off_t rel; 1705 u64 addr; 1706 u64 len; 1707 struct list_head node; 1708 struct phdr_data *remaps; 1709 }; 1710 1711 struct sym_data { 1712 u64 addr; 1713 struct list_head node; 1714 }; 1715 1716 struct kcore_copy_info { 1717 u64 stext; 1718 u64 etext; 1719 u64 first_symbol; 1720 u64 last_symbol; 1721 u64 first_module; 1722 u64 first_module_symbol; 1723 u64 last_module_symbol; 1724 size_t phnum; 1725 struct list_head phdrs; 1726 struct list_head syms; 1727 }; 1728 1729 #define kcore_copy__for_each_phdr(k, p) \ 1730 list_for_each_entry((p), &(k)->phdrs, node) 1731 1732 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 1733 { 1734 struct phdr_data *p = zalloc(sizeof(*p)); 1735 1736 if (p) { 1737 p->addr = addr; 1738 p->len = len; 1739 p->offset = offset; 1740 } 1741 1742 return p; 1743 } 1744 1745 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 1746 u64 addr, u64 len, 1747 off_t offset) 1748 { 1749 struct phdr_data *p = phdr_data__new(addr, len, offset); 1750 1751 if (p) 1752 list_add_tail(&p->node, &kci->phdrs); 1753 1754 return p; 1755 } 1756 1757 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 1758 { 1759 struct phdr_data *p, *tmp; 1760 1761 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 1762 list_del_init(&p->node); 1763 free(p); 1764 } 1765 } 1766 1767 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 1768 u64 addr) 1769 { 1770 struct sym_data *s = zalloc(sizeof(*s)); 1771 1772 if (s) { 1773 s->addr = addr; 1774 list_add_tail(&s->node, &kci->syms); 1775 } 1776 1777 return s; 1778 } 1779 1780 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 1781 { 1782 struct sym_data *s, *tmp; 1783 1784 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 1785 list_del_init(&s->node); 1786 free(s); 1787 } 1788 } 1789 1790 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 1791 u64 start) 1792 { 1793 struct kcore_copy_info *kci = arg; 1794 1795 if (!kallsyms__is_function(type)) 1796 return 0; 1797 1798 if (strchr(name, '[')) { 1799 if (!kci->first_module_symbol || start < kci->first_module_symbol) 1800 kci->first_module_symbol = start; 1801 if (start > kci->last_module_symbol) 1802 kci->last_module_symbol = start; 1803 return 0; 1804 } 1805 1806 if (!kci->first_symbol || start < kci->first_symbol) 1807 kci->first_symbol = start; 1808 1809 if (!kci->last_symbol || start > kci->last_symbol) 1810 kci->last_symbol = start; 1811 1812 if (!strcmp(name, "_stext")) { 1813 kci->stext = start; 1814 return 0; 1815 } 1816 1817 if (!strcmp(name, "_etext")) { 1818 kci->etext = start; 1819 return 0; 1820 } 1821 1822 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 1823 return -1; 1824 1825 return 0; 1826 } 1827 1828 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 1829 const char *dir) 1830 { 1831 char kallsyms_filename[PATH_MAX]; 1832 1833 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 1834 1835 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 1836 return -1; 1837 1838 if (kallsyms__parse(kallsyms_filename, kci, 1839 kcore_copy__process_kallsyms) < 0) 1840 return -1; 1841 1842 return 0; 1843 } 1844 1845 static int kcore_copy__process_modules(void *arg, 1846 const char *name __maybe_unused, 1847 u64 start, u64 size __maybe_unused) 1848 { 1849 struct kcore_copy_info *kci = arg; 1850 1851 if (!kci->first_module || start < kci->first_module) 1852 kci->first_module = start; 1853 1854 return 0; 1855 } 1856 1857 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 1858 const char *dir) 1859 { 1860 char modules_filename[PATH_MAX]; 1861 1862 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 1863 1864 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 1865 return -1; 1866 1867 if (modules__parse(modules_filename, kci, 1868 kcore_copy__process_modules) < 0) 1869 return -1; 1870 1871 return 0; 1872 } 1873 1874 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 1875 u64 pgoff, u64 s, u64 e) 1876 { 1877 u64 len, offset; 1878 1879 if (s < start || s >= end) 1880 return 0; 1881 1882 offset = (s - start) + pgoff; 1883 len = e < end ? e - s : end - s; 1884 1885 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 1886 } 1887 1888 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 1889 { 1890 struct kcore_copy_info *kci = data; 1891 u64 end = start + len; 1892 struct sym_data *sdat; 1893 1894 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 1895 return -1; 1896 1897 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 1898 kci->last_module_symbol)) 1899 return -1; 1900 1901 list_for_each_entry(sdat, &kci->syms, node) { 1902 u64 s = round_down(sdat->addr, page_size); 1903 1904 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 1905 return -1; 1906 } 1907 1908 return 0; 1909 } 1910 1911 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 1912 { 1913 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 1914 return -1; 1915 1916 return 0; 1917 } 1918 1919 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 1920 { 1921 struct phdr_data *p, *k = NULL; 1922 u64 kend; 1923 1924 if (!kci->stext) 1925 return; 1926 1927 /* Find phdr that corresponds to the kernel map (contains stext) */ 1928 kcore_copy__for_each_phdr(kci, p) { 1929 u64 pend = p->addr + p->len - 1; 1930 1931 if (p->addr <= kci->stext && pend >= kci->stext) { 1932 k = p; 1933 break; 1934 } 1935 } 1936 1937 if (!k) 1938 return; 1939 1940 kend = k->offset + k->len; 1941 1942 /* Find phdrs that remap the kernel */ 1943 kcore_copy__for_each_phdr(kci, p) { 1944 u64 pend = p->offset + p->len; 1945 1946 if (p == k) 1947 continue; 1948 1949 if (p->offset >= k->offset && pend <= kend) 1950 p->remaps = k; 1951 } 1952 } 1953 1954 static void kcore_copy__layout(struct kcore_copy_info *kci) 1955 { 1956 struct phdr_data *p; 1957 off_t rel = 0; 1958 1959 kcore_copy__find_remaps(kci); 1960 1961 kcore_copy__for_each_phdr(kci, p) { 1962 if (!p->remaps) { 1963 p->rel = rel; 1964 rel += p->len; 1965 } 1966 kci->phnum += 1; 1967 } 1968 1969 kcore_copy__for_each_phdr(kci, p) { 1970 struct phdr_data *k = p->remaps; 1971 1972 if (k) 1973 p->rel = p->offset - k->offset + k->rel; 1974 } 1975 } 1976 1977 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 1978 Elf *elf) 1979 { 1980 if (kcore_copy__parse_kallsyms(kci, dir)) 1981 return -1; 1982 1983 if (kcore_copy__parse_modules(kci, dir)) 1984 return -1; 1985 1986 if (kci->stext) 1987 kci->stext = round_down(kci->stext, page_size); 1988 else 1989 kci->stext = round_down(kci->first_symbol, page_size); 1990 1991 if (kci->etext) { 1992 kci->etext = round_up(kci->etext, page_size); 1993 } else if (kci->last_symbol) { 1994 kci->etext = round_up(kci->last_symbol, page_size); 1995 kci->etext += page_size; 1996 } 1997 1998 if (kci->first_module_symbol && 1999 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 2000 kci->first_module = kci->first_module_symbol; 2001 2002 kci->first_module = round_down(kci->first_module, page_size); 2003 2004 if (kci->last_module_symbol) { 2005 kci->last_module_symbol = round_up(kci->last_module_symbol, 2006 page_size); 2007 kci->last_module_symbol += page_size; 2008 } 2009 2010 if (!kci->stext || !kci->etext) 2011 return -1; 2012 2013 if (kci->first_module && !kci->last_module_symbol) 2014 return -1; 2015 2016 if (kcore_copy__read_maps(kci, elf)) 2017 return -1; 2018 2019 kcore_copy__layout(kci); 2020 2021 return 0; 2022 } 2023 2024 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 2025 const char *name) 2026 { 2027 char from_filename[PATH_MAX]; 2028 char to_filename[PATH_MAX]; 2029 2030 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2031 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2032 2033 return copyfile_mode(from_filename, to_filename, 0400); 2034 } 2035 2036 static int kcore_copy__unlink(const char *dir, const char *name) 2037 { 2038 char filename[PATH_MAX]; 2039 2040 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 2041 2042 return unlink(filename); 2043 } 2044 2045 static int kcore_copy__compare_fds(int from, int to) 2046 { 2047 char *buf_from; 2048 char *buf_to; 2049 ssize_t ret; 2050 size_t len; 2051 int err = -1; 2052 2053 buf_from = malloc(page_size); 2054 buf_to = malloc(page_size); 2055 if (!buf_from || !buf_to) 2056 goto out; 2057 2058 while (1) { 2059 /* Use read because mmap won't work on proc files */ 2060 ret = read(from, buf_from, page_size); 2061 if (ret < 0) 2062 goto out; 2063 2064 if (!ret) 2065 break; 2066 2067 len = ret; 2068 2069 if (readn(to, buf_to, len) != (int)len) 2070 goto out; 2071 2072 if (memcmp(buf_from, buf_to, len)) 2073 goto out; 2074 } 2075 2076 err = 0; 2077 out: 2078 free(buf_to); 2079 free(buf_from); 2080 return err; 2081 } 2082 2083 static int kcore_copy__compare_files(const char *from_filename, 2084 const char *to_filename) 2085 { 2086 int from, to, err = -1; 2087 2088 from = open(from_filename, O_RDONLY); 2089 if (from < 0) 2090 return -1; 2091 2092 to = open(to_filename, O_RDONLY); 2093 if (to < 0) 2094 goto out_close_from; 2095 2096 err = kcore_copy__compare_fds(from, to); 2097 2098 close(to); 2099 out_close_from: 2100 close(from); 2101 return err; 2102 } 2103 2104 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 2105 const char *name) 2106 { 2107 char from_filename[PATH_MAX]; 2108 char to_filename[PATH_MAX]; 2109 2110 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2111 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2112 2113 return kcore_copy__compare_files(from_filename, to_filename); 2114 } 2115 2116 /** 2117 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 2118 * @from_dir: from directory 2119 * @to_dir: to directory 2120 * 2121 * This function copies kallsyms, modules and kcore files from one directory to 2122 * another. kallsyms and modules are copied entirely. Only code segments are 2123 * copied from kcore. It is assumed that two segments suffice: one for the 2124 * kernel proper and one for all the modules. The code segments are determined 2125 * from kallsyms and modules files. The kernel map starts at _stext or the 2126 * lowest function symbol, and ends at _etext or the highest function symbol. 2127 * The module map starts at the lowest module address and ends at the highest 2128 * module symbol. Start addresses are rounded down to the nearest page. End 2129 * addresses are rounded up to the nearest page. An extra page is added to the 2130 * highest kernel symbol and highest module symbol to, hopefully, encompass that 2131 * symbol too. Because it contains only code sections, the resulting kcore is 2132 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 2133 * is not the same for the kernel map and the modules map. That happens because 2134 * the data is copied adjacently whereas the original kcore has gaps. Finally, 2135 * kallsyms file is compared with its copy to check that modules have not been 2136 * loaded or unloaded while the copies were taking place. 2137 * 2138 * Return: %0 on success, %-1 on failure. 2139 */ 2140 int kcore_copy(const char *from_dir, const char *to_dir) 2141 { 2142 struct kcore kcore; 2143 struct kcore extract; 2144 int idx = 0, err = -1; 2145 off_t offset, sz; 2146 struct kcore_copy_info kci = { .stext = 0, }; 2147 char kcore_filename[PATH_MAX]; 2148 char extract_filename[PATH_MAX]; 2149 struct phdr_data *p; 2150 2151 INIT_LIST_HEAD(&kci.phdrs); 2152 INIT_LIST_HEAD(&kci.syms); 2153 2154 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 2155 return -1; 2156 2157 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 2158 goto out_unlink_kallsyms; 2159 2160 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 2161 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 2162 2163 if (kcore__open(&kcore, kcore_filename)) 2164 goto out_unlink_modules; 2165 2166 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 2167 goto out_kcore_close; 2168 2169 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 2170 goto out_kcore_close; 2171 2172 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 2173 goto out_extract_close; 2174 2175 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 2176 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 2177 offset = round_up(offset, page_size); 2178 2179 kcore_copy__for_each_phdr(&kci, p) { 2180 off_t offs = p->rel + offset; 2181 2182 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 2183 goto out_extract_close; 2184 } 2185 2186 sz = kcore__write(&extract); 2187 if (sz < 0 || sz > offset) 2188 goto out_extract_close; 2189 2190 kcore_copy__for_each_phdr(&kci, p) { 2191 off_t offs = p->rel + offset; 2192 2193 if (p->remaps) 2194 continue; 2195 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 2196 goto out_extract_close; 2197 } 2198 2199 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 2200 goto out_extract_close; 2201 2202 err = 0; 2203 2204 out_extract_close: 2205 kcore__close(&extract); 2206 if (err) 2207 unlink(extract_filename); 2208 out_kcore_close: 2209 kcore__close(&kcore); 2210 out_unlink_modules: 2211 if (err) 2212 kcore_copy__unlink(to_dir, "modules"); 2213 out_unlink_kallsyms: 2214 if (err) 2215 kcore_copy__unlink(to_dir, "kallsyms"); 2216 2217 kcore_copy__free_phdrs(&kci); 2218 kcore_copy__free_syms(&kci); 2219 2220 return err; 2221 } 2222 2223 int kcore_extract__create(struct kcore_extract *kce) 2224 { 2225 struct kcore kcore; 2226 struct kcore extract; 2227 size_t count = 1; 2228 int idx = 0, err = -1; 2229 off_t offset = page_size, sz; 2230 2231 if (kcore__open(&kcore, kce->kcore_filename)) 2232 return -1; 2233 2234 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 2235 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 2236 goto out_kcore_close; 2237 2238 if (kcore__copy_hdr(&kcore, &extract, count)) 2239 goto out_extract_close; 2240 2241 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 2242 goto out_extract_close; 2243 2244 sz = kcore__write(&extract); 2245 if (sz < 0 || sz > offset) 2246 goto out_extract_close; 2247 2248 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 2249 goto out_extract_close; 2250 2251 err = 0; 2252 2253 out_extract_close: 2254 kcore__close(&extract); 2255 if (err) 2256 unlink(kce->extract_filename); 2257 out_kcore_close: 2258 kcore__close(&kcore); 2259 2260 return err; 2261 } 2262 2263 void kcore_extract__delete(struct kcore_extract *kce) 2264 { 2265 unlink(kce->extract_filename); 2266 } 2267 2268 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2269 2270 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2271 { 2272 if (!base_off) 2273 return; 2274 2275 if (tmp->bit32) 2276 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2277 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2278 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2279 else 2280 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2281 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2282 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2283 } 2284 2285 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2286 GElf_Addr base_off) 2287 { 2288 if (!base_off) 2289 return; 2290 2291 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2292 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2293 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2294 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2295 } 2296 2297 /** 2298 * populate_sdt_note : Parse raw data and identify SDT note 2299 * @elf: elf of the opened file 2300 * @data: raw data of a section with description offset applied 2301 * @len: note description size 2302 * @type: type of the note 2303 * @sdt_notes: List to add the SDT note 2304 * 2305 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2306 * if its an SDT note, it appends to @sdt_notes list. 2307 */ 2308 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2309 struct list_head *sdt_notes) 2310 { 2311 const char *provider, *name, *args; 2312 struct sdt_note *tmp = NULL; 2313 GElf_Ehdr ehdr; 2314 GElf_Shdr shdr; 2315 int ret = -EINVAL; 2316 2317 union { 2318 Elf64_Addr a64[NR_ADDR]; 2319 Elf32_Addr a32[NR_ADDR]; 2320 } buf; 2321 2322 Elf_Data dst = { 2323 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2324 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2325 .d_off = 0, .d_align = 0 2326 }; 2327 Elf_Data src = { 2328 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2329 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2330 .d_align = 0 2331 }; 2332 2333 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2334 if (!tmp) { 2335 ret = -ENOMEM; 2336 goto out_err; 2337 } 2338 2339 INIT_LIST_HEAD(&tmp->note_list); 2340 2341 if (len < dst.d_size + 3) 2342 goto out_free_note; 2343 2344 /* Translation from file representation to memory representation */ 2345 if (gelf_xlatetom(*elf, &dst, &src, 2346 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2347 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2348 goto out_free_note; 2349 } 2350 2351 /* Populate the fields of sdt_note */ 2352 provider = data + dst.d_size; 2353 2354 name = (const char *)memchr(provider, '\0', data + len - provider); 2355 if (name++ == NULL) 2356 goto out_free_note; 2357 2358 tmp->provider = strdup(provider); 2359 if (!tmp->provider) { 2360 ret = -ENOMEM; 2361 goto out_free_note; 2362 } 2363 tmp->name = strdup(name); 2364 if (!tmp->name) { 2365 ret = -ENOMEM; 2366 goto out_free_prov; 2367 } 2368 2369 args = memchr(name, '\0', data + len - name); 2370 2371 /* 2372 * There is no argument if: 2373 * - We reached the end of the note; 2374 * - There is not enough room to hold a potential string; 2375 * - The argument string is empty or just contains ':'. 2376 */ 2377 if (args == NULL || data + len - args < 2 || 2378 args[1] == ':' || args[1] == '\0') 2379 tmp->args = NULL; 2380 else { 2381 tmp->args = strdup(++args); 2382 if (!tmp->args) { 2383 ret = -ENOMEM; 2384 goto out_free_name; 2385 } 2386 } 2387 2388 if (gelf_getclass(*elf) == ELFCLASS32) { 2389 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2390 tmp->bit32 = true; 2391 } else { 2392 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2393 tmp->bit32 = false; 2394 } 2395 2396 if (!gelf_getehdr(*elf, &ehdr)) { 2397 pr_debug("%s : cannot get elf header.\n", __func__); 2398 ret = -EBADF; 2399 goto out_free_args; 2400 } 2401 2402 /* Adjust the prelink effect : 2403 * Find out the .stapsdt.base section. 2404 * This scn will help us to handle prelinking (if present). 2405 * Compare the retrieved file offset of the base section with the 2406 * base address in the description of the SDT note. If its different, 2407 * then accordingly, adjust the note location. 2408 */ 2409 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2410 sdt_adjust_loc(tmp, shdr.sh_offset); 2411 2412 /* Adjust reference counter offset */ 2413 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2414 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2415 2416 list_add_tail(&tmp->note_list, sdt_notes); 2417 return 0; 2418 2419 out_free_args: 2420 zfree(&tmp->args); 2421 out_free_name: 2422 zfree(&tmp->name); 2423 out_free_prov: 2424 zfree(&tmp->provider); 2425 out_free_note: 2426 free(tmp); 2427 out_err: 2428 return ret; 2429 } 2430 2431 /** 2432 * construct_sdt_notes_list : constructs a list of SDT notes 2433 * @elf : elf to look into 2434 * @sdt_notes : empty list_head 2435 * 2436 * Scans the sections in 'elf' for the section 2437 * .note.stapsdt. It, then calls populate_sdt_note to find 2438 * out the SDT events and populates the 'sdt_notes'. 2439 */ 2440 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2441 { 2442 GElf_Ehdr ehdr; 2443 Elf_Scn *scn = NULL; 2444 Elf_Data *data; 2445 GElf_Shdr shdr; 2446 size_t shstrndx, next; 2447 GElf_Nhdr nhdr; 2448 size_t name_off, desc_off, offset; 2449 int ret = 0; 2450 2451 if (gelf_getehdr(elf, &ehdr) == NULL) { 2452 ret = -EBADF; 2453 goto out_ret; 2454 } 2455 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2456 ret = -EBADF; 2457 goto out_ret; 2458 } 2459 2460 /* Look for the required section */ 2461 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2462 if (!scn) { 2463 ret = -ENOENT; 2464 goto out_ret; 2465 } 2466 2467 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2468 ret = -ENOENT; 2469 goto out_ret; 2470 } 2471 2472 data = elf_getdata(scn, NULL); 2473 2474 /* Get the SDT notes */ 2475 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2476 &desc_off)) > 0; offset = next) { 2477 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2478 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2479 sizeof(SDT_NOTE_NAME))) { 2480 /* Check the type of the note */ 2481 if (nhdr.n_type != SDT_NOTE_TYPE) 2482 goto out_ret; 2483 2484 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2485 nhdr.n_descsz, sdt_notes); 2486 if (ret < 0) 2487 goto out_ret; 2488 } 2489 } 2490 if (list_empty(sdt_notes)) 2491 ret = -ENOENT; 2492 2493 out_ret: 2494 return ret; 2495 } 2496 2497 /** 2498 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2499 * @head : empty list_head 2500 * @target : file to find SDT notes from 2501 * 2502 * This opens the file, initializes 2503 * the ELF and then calls construct_sdt_notes_list. 2504 */ 2505 int get_sdt_note_list(struct list_head *head, const char *target) 2506 { 2507 Elf *elf; 2508 int fd, ret; 2509 2510 fd = open(target, O_RDONLY); 2511 if (fd < 0) 2512 return -EBADF; 2513 2514 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2515 if (!elf) { 2516 ret = -EBADF; 2517 goto out_close; 2518 } 2519 ret = construct_sdt_notes_list(elf, head); 2520 elf_end(elf); 2521 out_close: 2522 close(fd); 2523 return ret; 2524 } 2525 2526 /** 2527 * cleanup_sdt_note_list : free the sdt notes' list 2528 * @sdt_notes: sdt notes' list 2529 * 2530 * Free up the SDT notes in @sdt_notes. 2531 * Returns the number of SDT notes free'd. 2532 */ 2533 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2534 { 2535 struct sdt_note *tmp, *pos; 2536 int nr_free = 0; 2537 2538 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2539 list_del_init(&pos->note_list); 2540 zfree(&pos->args); 2541 zfree(&pos->name); 2542 zfree(&pos->provider); 2543 free(pos); 2544 nr_free++; 2545 } 2546 return nr_free; 2547 } 2548 2549 /** 2550 * sdt_notes__get_count: Counts the number of sdt events 2551 * @start: list_head to sdt_notes list 2552 * 2553 * Returns the number of SDT notes in a list 2554 */ 2555 int sdt_notes__get_count(struct list_head *start) 2556 { 2557 struct sdt_note *sdt_ptr; 2558 int count = 0; 2559 2560 list_for_each_entry(sdt_ptr, start, note_list) 2561 count++; 2562 return count; 2563 } 2564 #endif 2565 2566 void symbol__elf_init(void) 2567 { 2568 elf_version(EV_CURRENT); 2569 } 2570