1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "dso.h" 11 #include "map.h" 12 #include "maps.h" 13 #include "symbol.h" 14 #include "symsrc.h" 15 #include "demangle-ocaml.h" 16 #include "demangle-java.h" 17 #include "demangle-rust.h" 18 #include "machine.h" 19 #include "vdso.h" 20 #include "debug.h" 21 #include "util/copyfile.h" 22 #include <linux/ctype.h> 23 #include <linux/kernel.h> 24 #include <linux/zalloc.h> 25 #include <symbol/kallsyms.h> 26 #include <internal/lib.h> 27 28 #ifndef EM_AARCH64 29 #define EM_AARCH64 183 /* ARM 64 bit */ 30 #endif 31 32 #ifndef ELF32_ST_VISIBILITY 33 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 34 #endif 35 36 /* For ELF64 the definitions are the same. */ 37 #ifndef ELF64_ST_VISIBILITY 38 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 39 #endif 40 41 /* How to extract information held in the st_other field. */ 42 #ifndef GELF_ST_VISIBILITY 43 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 44 #endif 45 46 typedef Elf64_Nhdr GElf_Nhdr; 47 48 #ifndef DMGL_PARAMS 49 #define DMGL_NO_OPTS 0 /* For readability... */ 50 #define DMGL_PARAMS (1 << 0) /* Include function args */ 51 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */ 52 #endif 53 54 #ifdef HAVE_LIBBFD_SUPPORT 55 #define PACKAGE 'perf' 56 #include <bfd.h> 57 #else 58 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT 59 extern char *cplus_demangle(const char *, int); 60 61 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i) 62 { 63 return cplus_demangle(c, i); 64 } 65 #else 66 #ifdef NO_DEMANGLE 67 static inline char *bfd_demangle(void __maybe_unused *v, 68 const char __maybe_unused *c, 69 int __maybe_unused i) 70 { 71 return NULL; 72 } 73 #endif 74 #endif 75 #endif 76 77 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 78 static int elf_getphdrnum(Elf *elf, size_t *dst) 79 { 80 GElf_Ehdr gehdr; 81 GElf_Ehdr *ehdr; 82 83 ehdr = gelf_getehdr(elf, &gehdr); 84 if (!ehdr) 85 return -1; 86 87 *dst = ehdr->e_phnum; 88 89 return 0; 90 } 91 #endif 92 93 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 94 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 95 { 96 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 97 return -1; 98 } 99 #endif 100 101 #ifndef NT_GNU_BUILD_ID 102 #define NT_GNU_BUILD_ID 3 103 #endif 104 105 /** 106 * elf_symtab__for_each_symbol - iterate thru all the symbols 107 * 108 * @syms: struct elf_symtab instance to iterate 109 * @idx: uint32_t idx 110 * @sym: GElf_Sym iterator 111 */ 112 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 113 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 114 idx < nr_syms; \ 115 idx++, gelf_getsym(syms, idx, &sym)) 116 117 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 118 { 119 return GELF_ST_TYPE(sym->st_info); 120 } 121 122 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 123 { 124 return GELF_ST_VISIBILITY(sym->st_other); 125 } 126 127 #ifndef STT_GNU_IFUNC 128 #define STT_GNU_IFUNC 10 129 #endif 130 131 static inline int elf_sym__is_function(const GElf_Sym *sym) 132 { 133 return (elf_sym__type(sym) == STT_FUNC || 134 elf_sym__type(sym) == STT_GNU_IFUNC) && 135 sym->st_name != 0 && 136 sym->st_shndx != SHN_UNDEF; 137 } 138 139 static inline bool elf_sym__is_object(const GElf_Sym *sym) 140 { 141 return elf_sym__type(sym) == STT_OBJECT && 142 sym->st_name != 0 && 143 sym->st_shndx != SHN_UNDEF; 144 } 145 146 static inline int elf_sym__is_label(const GElf_Sym *sym) 147 { 148 return elf_sym__type(sym) == STT_NOTYPE && 149 sym->st_name != 0 && 150 sym->st_shndx != SHN_UNDEF && 151 sym->st_shndx != SHN_ABS && 152 elf_sym__visibility(sym) != STV_HIDDEN && 153 elf_sym__visibility(sym) != STV_INTERNAL; 154 } 155 156 static bool elf_sym__filter(GElf_Sym *sym) 157 { 158 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 159 } 160 161 static inline const char *elf_sym__name(const GElf_Sym *sym, 162 const Elf_Data *symstrs) 163 { 164 return symstrs->d_buf + sym->st_name; 165 } 166 167 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 168 const Elf_Data *secstrs) 169 { 170 return secstrs->d_buf + shdr->sh_name; 171 } 172 173 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 174 const Elf_Data *secstrs) 175 { 176 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 177 } 178 179 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 180 const Elf_Data *secstrs) 181 { 182 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 183 } 184 185 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 186 { 187 return elf_sec__is_text(shdr, secstrs) || 188 elf_sec__is_data(shdr, secstrs); 189 } 190 191 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 192 { 193 Elf_Scn *sec = NULL; 194 GElf_Shdr shdr; 195 size_t cnt = 1; 196 197 while ((sec = elf_nextscn(elf, sec)) != NULL) { 198 gelf_getshdr(sec, &shdr); 199 200 if ((addr >= shdr.sh_addr) && 201 (addr < (shdr.sh_addr + shdr.sh_size))) 202 return cnt; 203 204 ++cnt; 205 } 206 207 return -1; 208 } 209 210 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 211 GElf_Shdr *shp, const char *name, size_t *idx) 212 { 213 Elf_Scn *sec = NULL; 214 size_t cnt = 1; 215 216 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 217 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 218 return NULL; 219 220 while ((sec = elf_nextscn(elf, sec)) != NULL) { 221 char *str; 222 223 gelf_getshdr(sec, shp); 224 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 225 if (str && !strcmp(name, str)) { 226 if (idx) 227 *idx = cnt; 228 return sec; 229 } 230 ++cnt; 231 } 232 233 return NULL; 234 } 235 236 bool filename__has_section(const char *filename, const char *sec) 237 { 238 int fd; 239 Elf *elf; 240 GElf_Ehdr ehdr; 241 GElf_Shdr shdr; 242 bool found = false; 243 244 fd = open(filename, O_RDONLY); 245 if (fd < 0) 246 return false; 247 248 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 249 if (elf == NULL) 250 goto out; 251 252 if (gelf_getehdr(elf, &ehdr) == NULL) 253 goto elf_out; 254 255 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL); 256 257 elf_out: 258 elf_end(elf); 259 out: 260 close(fd); 261 return found; 262 } 263 264 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr) 265 { 266 size_t i, phdrnum; 267 u64 sz; 268 269 if (elf_getphdrnum(elf, &phdrnum)) 270 return -1; 271 272 for (i = 0; i < phdrnum; i++) { 273 if (gelf_getphdr(elf, i, phdr) == NULL) 274 return -1; 275 276 if (phdr->p_type != PT_LOAD) 277 continue; 278 279 sz = max(phdr->p_memsz, phdr->p_filesz); 280 if (!sz) 281 continue; 282 283 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz)) 284 return 0; 285 } 286 287 /* Not found any valid program header */ 288 return -1; 289 } 290 291 static bool want_demangle(bool is_kernel_sym) 292 { 293 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 294 } 295 296 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 297 { 298 int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS; 299 char *demangled = NULL; 300 301 /* 302 * We need to figure out if the object was created from C++ sources 303 * DWARF DW_compile_unit has this, but we don't always have access 304 * to it... 305 */ 306 if (!want_demangle(dso->kernel || kmodule)) 307 return demangled; 308 309 demangled = bfd_demangle(NULL, elf_name, demangle_flags); 310 if (demangled == NULL) { 311 demangled = ocaml_demangle_sym(elf_name); 312 if (demangled == NULL) { 313 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 314 } 315 } 316 else if (rust_is_mangled(demangled)) 317 /* 318 * Input to Rust demangling is the BFD-demangled 319 * name which it Rust-demangles in place. 320 */ 321 rust_demangle_sym(demangled); 322 323 return demangled; 324 } 325 326 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt, 327 u64 *plt_header_size, u64 *plt_entry_size) 328 { 329 switch (ehdr->e_machine) { 330 case EM_ARM: 331 *plt_header_size = 20; 332 *plt_entry_size = 12; 333 return true; 334 case EM_AARCH64: 335 *plt_header_size = 32; 336 *plt_entry_size = 16; 337 return true; 338 case EM_SPARC: 339 *plt_header_size = 48; 340 *plt_entry_size = 12; 341 return true; 342 case EM_SPARCV9: 343 *plt_header_size = 128; 344 *plt_entry_size = 32; 345 return true; 346 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 347 *plt_header_size = shdr_plt->sh_entsize; 348 *plt_entry_size = shdr_plt->sh_entsize; 349 if (*plt_entry_size) 350 return true; 351 pr_debug("Missing PLT entry size for %s\n", dso->long_name); 352 return false; 353 } 354 } 355 356 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \ 357 for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \ 358 idx < nr_entries; \ 359 ++idx, pos = gelf_getrel(reldata, idx, &pos_mem)) 360 361 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \ 362 for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \ 363 idx < nr_entries; \ 364 ++idx, pos = gelf_getrela(reldata, idx, &pos_mem)) 365 366 /* 367 * We need to check if we have a .dynsym, so that we can handle the 368 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 369 * .dynsym or .symtab). 370 * And always look at the original dso, not at debuginfo packages, that 371 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 372 */ 373 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 374 { 375 uint32_t nr_rel_entries, idx; 376 GElf_Sym sym; 377 u64 plt_offset, plt_header_size, plt_entry_size; 378 GElf_Shdr shdr_plt; 379 struct symbol *f; 380 GElf_Shdr shdr_rel_plt, shdr_dynsym; 381 Elf_Data *reldata, *syms, *symstrs; 382 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 383 size_t dynsym_idx; 384 GElf_Ehdr ehdr; 385 char sympltname[1024]; 386 Elf *elf; 387 int nr = 0, symidx, err = 0; 388 389 if (!ss->dynsym) 390 return 0; 391 392 elf = ss->elf; 393 ehdr = ss->ehdr; 394 395 scn_dynsym = ss->dynsym; 396 shdr_dynsym = ss->dynshdr; 397 dynsym_idx = ss->dynsym_idx; 398 399 if (scn_dynsym == NULL) 400 goto out_elf_end; 401 402 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 403 ".rela.plt", NULL); 404 if (scn_plt_rel == NULL) { 405 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 406 ".rel.plt", NULL); 407 if (scn_plt_rel == NULL) 408 goto out_elf_end; 409 } 410 411 err = -1; 412 413 if (shdr_rel_plt.sh_link != dynsym_idx) 414 goto out_elf_end; 415 416 if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL) 417 goto out_elf_end; 418 419 /* 420 * Fetch the relocation section to find the idxes to the GOT 421 * and the symbols in the .dynsym they refer to. 422 */ 423 reldata = elf_getdata(scn_plt_rel, NULL); 424 if (reldata == NULL) 425 goto out_elf_end; 426 427 syms = elf_getdata(scn_dynsym, NULL); 428 if (syms == NULL) 429 goto out_elf_end; 430 431 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 432 if (scn_symstrs == NULL) 433 goto out_elf_end; 434 435 symstrs = elf_getdata(scn_symstrs, NULL); 436 if (symstrs == NULL) 437 goto out_elf_end; 438 439 if (symstrs->d_size == 0) 440 goto out_elf_end; 441 442 nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 443 plt_offset = shdr_plt.sh_offset; 444 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size)) 445 return 0; 446 plt_offset += plt_header_size; 447 448 if (shdr_rel_plt.sh_type == SHT_RELA) { 449 GElf_Rela pos_mem, *pos; 450 451 elf_section__for_each_rela(reldata, pos, pos_mem, idx, 452 nr_rel_entries) { 453 const char *elf_name = NULL; 454 char *demangled = NULL; 455 symidx = GELF_R_SYM(pos->r_info); 456 gelf_getsym(syms, symidx, &sym); 457 458 elf_name = elf_sym__name(&sym, symstrs); 459 demangled = demangle_sym(dso, 0, elf_name); 460 if (demangled != NULL) 461 elf_name = demangled; 462 snprintf(sympltname, sizeof(sympltname), 463 "%s@plt", elf_name); 464 free(demangled); 465 466 f = symbol__new(plt_offset, plt_entry_size, 467 STB_GLOBAL, STT_FUNC, sympltname); 468 if (!f) 469 goto out_elf_end; 470 471 plt_offset += plt_entry_size; 472 symbols__insert(&dso->symbols, f); 473 ++nr; 474 } 475 } else if (shdr_rel_plt.sh_type == SHT_REL) { 476 GElf_Rel pos_mem, *pos; 477 elf_section__for_each_rel(reldata, pos, pos_mem, idx, 478 nr_rel_entries) { 479 const char *elf_name = NULL; 480 char *demangled = NULL; 481 symidx = GELF_R_SYM(pos->r_info); 482 gelf_getsym(syms, symidx, &sym); 483 484 elf_name = elf_sym__name(&sym, symstrs); 485 demangled = demangle_sym(dso, 0, elf_name); 486 if (demangled != NULL) 487 elf_name = demangled; 488 snprintf(sympltname, sizeof(sympltname), 489 "%s@plt", elf_name); 490 free(demangled); 491 492 f = symbol__new(plt_offset, plt_entry_size, 493 STB_GLOBAL, STT_FUNC, sympltname); 494 if (!f) 495 goto out_elf_end; 496 497 plt_offset += plt_entry_size; 498 symbols__insert(&dso->symbols, f); 499 ++nr; 500 } 501 } 502 503 err = 0; 504 out_elf_end: 505 if (err == 0) 506 return nr; 507 pr_debug("%s: problems reading %s PLT info.\n", 508 __func__, dso->long_name); 509 return 0; 510 } 511 512 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 513 { 514 return demangle_sym(dso, kmodule, elf_name); 515 } 516 517 /* 518 * Align offset to 4 bytes as needed for note name and descriptor data. 519 */ 520 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 521 522 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 523 { 524 int err = -1; 525 GElf_Ehdr ehdr; 526 GElf_Shdr shdr; 527 Elf_Data *data; 528 Elf_Scn *sec; 529 Elf_Kind ek; 530 void *ptr; 531 532 if (size < BUILD_ID_SIZE) 533 goto out; 534 535 ek = elf_kind(elf); 536 if (ek != ELF_K_ELF) 537 goto out; 538 539 if (gelf_getehdr(elf, &ehdr) == NULL) { 540 pr_err("%s: cannot get elf header.\n", __func__); 541 goto out; 542 } 543 544 /* 545 * Check following sections for notes: 546 * '.note.gnu.build-id' 547 * '.notes' 548 * '.note' (VDSO specific) 549 */ 550 do { 551 sec = elf_section_by_name(elf, &ehdr, &shdr, 552 ".note.gnu.build-id", NULL); 553 if (sec) 554 break; 555 556 sec = elf_section_by_name(elf, &ehdr, &shdr, 557 ".notes", NULL); 558 if (sec) 559 break; 560 561 sec = elf_section_by_name(elf, &ehdr, &shdr, 562 ".note", NULL); 563 if (sec) 564 break; 565 566 return err; 567 568 } while (0); 569 570 data = elf_getdata(sec, NULL); 571 if (data == NULL) 572 goto out; 573 574 ptr = data->d_buf; 575 while (ptr < (data->d_buf + data->d_size)) { 576 GElf_Nhdr *nhdr = ptr; 577 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 578 descsz = NOTE_ALIGN(nhdr->n_descsz); 579 const char *name; 580 581 ptr += sizeof(*nhdr); 582 name = ptr; 583 ptr += namesz; 584 if (nhdr->n_type == NT_GNU_BUILD_ID && 585 nhdr->n_namesz == sizeof("GNU")) { 586 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 587 size_t sz = min(size, descsz); 588 memcpy(bf, ptr, sz); 589 memset(bf + sz, 0, size - sz); 590 err = descsz; 591 break; 592 } 593 } 594 ptr += descsz; 595 } 596 597 out: 598 return err; 599 } 600 601 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT 602 603 static int read_build_id(const char *filename, struct build_id *bid) 604 { 605 size_t size = sizeof(bid->data); 606 int err = -1; 607 bfd *abfd; 608 609 abfd = bfd_openr(filename, NULL); 610 if (!abfd) 611 return -1; 612 613 if (!bfd_check_format(abfd, bfd_object)) { 614 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 615 goto out_close; 616 } 617 618 if (!abfd->build_id || abfd->build_id->size > size) 619 goto out_close; 620 621 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size); 622 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size); 623 err = bid->size = abfd->build_id->size; 624 625 out_close: 626 bfd_close(abfd); 627 return err; 628 } 629 630 #else // HAVE_LIBBFD_BUILDID_SUPPORT 631 632 static int read_build_id(const char *filename, struct build_id *bid) 633 { 634 size_t size = sizeof(bid->data); 635 int fd, err = -1; 636 Elf *elf; 637 638 if (size < BUILD_ID_SIZE) 639 goto out; 640 641 fd = open(filename, O_RDONLY); 642 if (fd < 0) 643 goto out; 644 645 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 646 if (elf == NULL) { 647 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 648 goto out_close; 649 } 650 651 err = elf_read_build_id(elf, bid->data, size); 652 if (err > 0) 653 bid->size = err; 654 655 elf_end(elf); 656 out_close: 657 close(fd); 658 out: 659 return err; 660 } 661 662 #endif // HAVE_LIBBFD_BUILDID_SUPPORT 663 664 int filename__read_build_id(const char *filename, struct build_id *bid) 665 { 666 struct kmod_path m = { .name = NULL, }; 667 char path[PATH_MAX]; 668 int err; 669 670 if (!filename) 671 return -EFAULT; 672 673 err = kmod_path__parse(&m, filename); 674 if (err) 675 return -1; 676 677 if (m.comp) { 678 int error = 0, fd; 679 680 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error); 681 if (fd < 0) { 682 pr_debug("Failed to decompress (error %d) %s\n", 683 error, filename); 684 return -1; 685 } 686 close(fd); 687 filename = path; 688 } 689 690 err = read_build_id(filename, bid); 691 692 if (m.comp) 693 unlink(filename); 694 return err; 695 } 696 697 int sysfs__read_build_id(const char *filename, struct build_id *bid) 698 { 699 size_t size = sizeof(bid->data); 700 int fd, err = -1; 701 702 fd = open(filename, O_RDONLY); 703 if (fd < 0) 704 goto out; 705 706 while (1) { 707 char bf[BUFSIZ]; 708 GElf_Nhdr nhdr; 709 size_t namesz, descsz; 710 711 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 712 break; 713 714 namesz = NOTE_ALIGN(nhdr.n_namesz); 715 descsz = NOTE_ALIGN(nhdr.n_descsz); 716 if (nhdr.n_type == NT_GNU_BUILD_ID && 717 nhdr.n_namesz == sizeof("GNU")) { 718 if (read(fd, bf, namesz) != (ssize_t)namesz) 719 break; 720 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 721 size_t sz = min(descsz, size); 722 if (read(fd, bid->data, sz) == (ssize_t)sz) { 723 memset(bid->data + sz, 0, size - sz); 724 bid->size = sz; 725 err = 0; 726 break; 727 } 728 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 729 break; 730 } else { 731 int n = namesz + descsz; 732 733 if (n > (int)sizeof(bf)) { 734 n = sizeof(bf); 735 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 736 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 737 } 738 if (read(fd, bf, n) != n) 739 break; 740 } 741 } 742 close(fd); 743 out: 744 return err; 745 } 746 747 #ifdef HAVE_LIBBFD_SUPPORT 748 749 int filename__read_debuglink(const char *filename, char *debuglink, 750 size_t size) 751 { 752 int err = -1; 753 asection *section; 754 bfd *abfd; 755 756 abfd = bfd_openr(filename, NULL); 757 if (!abfd) 758 return -1; 759 760 if (!bfd_check_format(abfd, bfd_object)) { 761 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 762 goto out_close; 763 } 764 765 section = bfd_get_section_by_name(abfd, ".gnu_debuglink"); 766 if (!section) 767 goto out_close; 768 769 if (section->size > size) 770 goto out_close; 771 772 if (!bfd_get_section_contents(abfd, section, debuglink, 0, 773 section->size)) 774 goto out_close; 775 776 err = 0; 777 778 out_close: 779 bfd_close(abfd); 780 return err; 781 } 782 783 #else 784 785 int filename__read_debuglink(const char *filename, char *debuglink, 786 size_t size) 787 { 788 int fd, err = -1; 789 Elf *elf; 790 GElf_Ehdr ehdr; 791 GElf_Shdr shdr; 792 Elf_Data *data; 793 Elf_Scn *sec; 794 Elf_Kind ek; 795 796 fd = open(filename, O_RDONLY); 797 if (fd < 0) 798 goto out; 799 800 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 801 if (elf == NULL) { 802 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 803 goto out_close; 804 } 805 806 ek = elf_kind(elf); 807 if (ek != ELF_K_ELF) 808 goto out_elf_end; 809 810 if (gelf_getehdr(elf, &ehdr) == NULL) { 811 pr_err("%s: cannot get elf header.\n", __func__); 812 goto out_elf_end; 813 } 814 815 sec = elf_section_by_name(elf, &ehdr, &shdr, 816 ".gnu_debuglink", NULL); 817 if (sec == NULL) 818 goto out_elf_end; 819 820 data = elf_getdata(sec, NULL); 821 if (data == NULL) 822 goto out_elf_end; 823 824 /* the start of this section is a zero-terminated string */ 825 strncpy(debuglink, data->d_buf, size); 826 827 err = 0; 828 829 out_elf_end: 830 elf_end(elf); 831 out_close: 832 close(fd); 833 out: 834 return err; 835 } 836 837 #endif 838 839 static int dso__swap_init(struct dso *dso, unsigned char eidata) 840 { 841 static unsigned int const endian = 1; 842 843 dso->needs_swap = DSO_SWAP__NO; 844 845 switch (eidata) { 846 case ELFDATA2LSB: 847 /* We are big endian, DSO is little endian. */ 848 if (*(unsigned char const *)&endian != 1) 849 dso->needs_swap = DSO_SWAP__YES; 850 break; 851 852 case ELFDATA2MSB: 853 /* We are little endian, DSO is big endian. */ 854 if (*(unsigned char const *)&endian != 0) 855 dso->needs_swap = DSO_SWAP__YES; 856 break; 857 858 default: 859 pr_err("unrecognized DSO data encoding %d\n", eidata); 860 return -EINVAL; 861 } 862 863 return 0; 864 } 865 866 bool symsrc__possibly_runtime(struct symsrc *ss) 867 { 868 return ss->dynsym || ss->opdsec; 869 } 870 871 bool symsrc__has_symtab(struct symsrc *ss) 872 { 873 return ss->symtab != NULL; 874 } 875 876 void symsrc__destroy(struct symsrc *ss) 877 { 878 zfree(&ss->name); 879 elf_end(ss->elf); 880 close(ss->fd); 881 } 882 883 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 884 { 885 /* 886 * Usually vmlinux is an ELF file with type ET_EXEC for most 887 * architectures; except Arm64 kernel is linked with option 888 * '-share', so need to check type ET_DYN. 889 */ 890 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 891 ehdr.e_type == ET_DYN; 892 } 893 894 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 895 enum dso_binary_type type) 896 { 897 GElf_Ehdr ehdr; 898 Elf *elf; 899 int fd; 900 901 if (dso__needs_decompress(dso)) { 902 fd = dso__decompress_kmodule_fd(dso, name); 903 if (fd < 0) 904 return -1; 905 906 type = dso->symtab_type; 907 } else { 908 fd = open(name, O_RDONLY); 909 if (fd < 0) { 910 dso->load_errno = errno; 911 return -1; 912 } 913 } 914 915 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 916 if (elf == NULL) { 917 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 918 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 919 goto out_close; 920 } 921 922 if (gelf_getehdr(elf, &ehdr) == NULL) { 923 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 924 pr_debug("%s: cannot get elf header.\n", __func__); 925 goto out_elf_end; 926 } 927 928 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 929 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR; 930 goto out_elf_end; 931 } 932 933 /* Always reject images with a mismatched build-id: */ 934 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) { 935 u8 build_id[BUILD_ID_SIZE]; 936 struct build_id bid; 937 int size; 938 939 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE); 940 if (size <= 0) { 941 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 942 goto out_elf_end; 943 } 944 945 build_id__init(&bid, build_id, size); 946 if (!dso__build_id_equal(dso, &bid)) { 947 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 948 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 949 goto out_elf_end; 950 } 951 } 952 953 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 954 955 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 956 NULL); 957 if (ss->symshdr.sh_type != SHT_SYMTAB) 958 ss->symtab = NULL; 959 960 ss->dynsym_idx = 0; 961 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 962 &ss->dynsym_idx); 963 if (ss->dynshdr.sh_type != SHT_DYNSYM) 964 ss->dynsym = NULL; 965 966 ss->opdidx = 0; 967 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 968 &ss->opdidx); 969 if (ss->opdshdr.sh_type != SHT_PROGBITS) 970 ss->opdsec = NULL; 971 972 if (dso->kernel == DSO_SPACE__USER) 973 ss->adjust_symbols = true; 974 else 975 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 976 977 ss->name = strdup(name); 978 if (!ss->name) { 979 dso->load_errno = errno; 980 goto out_elf_end; 981 } 982 983 ss->elf = elf; 984 ss->fd = fd; 985 ss->ehdr = ehdr; 986 ss->type = type; 987 988 return 0; 989 990 out_elf_end: 991 elf_end(elf); 992 out_close: 993 close(fd); 994 return -1; 995 } 996 997 /** 998 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 999 * @kmap: kernel maps and relocation reference symbol 1000 * 1001 * This function returns %true if we are dealing with the kernel maps and the 1002 * relocation reference symbol has not yet been found. Otherwise %false is 1003 * returned. 1004 */ 1005 static bool ref_reloc_sym_not_found(struct kmap *kmap) 1006 { 1007 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 1008 !kmap->ref_reloc_sym->unrelocated_addr; 1009 } 1010 1011 /** 1012 * ref_reloc - kernel relocation offset. 1013 * @kmap: kernel maps and relocation reference symbol 1014 * 1015 * This function returns the offset of kernel addresses as determined by using 1016 * the relocation reference symbol i.e. if the kernel has not been relocated 1017 * then the return value is zero. 1018 */ 1019 static u64 ref_reloc(struct kmap *kmap) 1020 { 1021 if (kmap && kmap->ref_reloc_sym && 1022 kmap->ref_reloc_sym->unrelocated_addr) 1023 return kmap->ref_reloc_sym->addr - 1024 kmap->ref_reloc_sym->unrelocated_addr; 1025 return 0; 1026 } 1027 1028 void __weak arch__sym_update(struct symbol *s __maybe_unused, 1029 GElf_Sym *sym __maybe_unused) { } 1030 1031 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 1032 GElf_Sym *sym, GElf_Shdr *shdr, 1033 struct maps *kmaps, struct kmap *kmap, 1034 struct dso **curr_dsop, struct map **curr_mapp, 1035 const char *section_name, 1036 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel) 1037 { 1038 struct dso *curr_dso = *curr_dsop; 1039 struct map *curr_map; 1040 char dso_name[PATH_MAX]; 1041 1042 /* Adjust symbol to map to file offset */ 1043 if (adjust_kernel_syms) 1044 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 1045 1046 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0) 1047 return 0; 1048 1049 if (strcmp(section_name, ".text") == 0) { 1050 /* 1051 * The initial kernel mapping is based on 1052 * kallsyms and identity maps. Overwrite it to 1053 * map to the kernel dso. 1054 */ 1055 if (*remap_kernel && dso->kernel && !kmodule) { 1056 *remap_kernel = false; 1057 map->start = shdr->sh_addr + ref_reloc(kmap); 1058 map->end = map->start + shdr->sh_size; 1059 map->pgoff = shdr->sh_offset; 1060 map->map_ip = map__map_ip; 1061 map->unmap_ip = map__unmap_ip; 1062 /* Ensure maps are correctly ordered */ 1063 if (kmaps) { 1064 map__get(map); 1065 maps__remove(kmaps, map); 1066 maps__insert(kmaps, map); 1067 map__put(map); 1068 } 1069 } 1070 1071 /* 1072 * The initial module mapping is based on 1073 * /proc/modules mapped to offset zero. 1074 * Overwrite it to map to the module dso. 1075 */ 1076 if (*remap_kernel && kmodule) { 1077 *remap_kernel = false; 1078 map->pgoff = shdr->sh_offset; 1079 } 1080 1081 *curr_mapp = map; 1082 *curr_dsop = dso; 1083 return 0; 1084 } 1085 1086 if (!kmap) 1087 return 0; 1088 1089 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name); 1090 1091 curr_map = maps__find_by_name(kmaps, dso_name); 1092 if (curr_map == NULL) { 1093 u64 start = sym->st_value; 1094 1095 if (kmodule) 1096 start += map->start + shdr->sh_offset; 1097 1098 curr_dso = dso__new(dso_name); 1099 if (curr_dso == NULL) 1100 return -1; 1101 curr_dso->kernel = dso->kernel; 1102 curr_dso->long_name = dso->long_name; 1103 curr_dso->long_name_len = dso->long_name_len; 1104 curr_map = map__new2(start, curr_dso); 1105 dso__put(curr_dso); 1106 if (curr_map == NULL) 1107 return -1; 1108 1109 if (curr_dso->kernel) 1110 map__kmap(curr_map)->kmaps = kmaps; 1111 1112 if (adjust_kernel_syms) { 1113 curr_map->start = shdr->sh_addr + ref_reloc(kmap); 1114 curr_map->end = curr_map->start + shdr->sh_size; 1115 curr_map->pgoff = shdr->sh_offset; 1116 } else { 1117 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip; 1118 } 1119 curr_dso->symtab_type = dso->symtab_type; 1120 maps__insert(kmaps, curr_map); 1121 /* 1122 * Add it before we drop the reference to curr_map, i.e. while 1123 * we still are sure to have a reference to this DSO via 1124 * *curr_map->dso. 1125 */ 1126 dsos__add(&kmaps->machine->dsos, curr_dso); 1127 /* kmaps already got it */ 1128 map__put(curr_map); 1129 dso__set_loaded(curr_dso); 1130 *curr_mapp = curr_map; 1131 *curr_dsop = curr_dso; 1132 } else 1133 *curr_dsop = curr_map->dso; 1134 1135 return 0; 1136 } 1137 1138 static int 1139 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1140 struct symsrc *runtime_ss, int kmodule, int dynsym) 1141 { 1142 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL; 1143 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 1144 struct map *curr_map = map; 1145 struct dso *curr_dso = dso; 1146 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym; 1147 uint32_t nr_syms; 1148 int err = -1; 1149 uint32_t idx; 1150 GElf_Ehdr ehdr; 1151 GElf_Shdr shdr; 1152 GElf_Shdr tshdr; 1153 Elf_Data *syms, *opddata = NULL; 1154 GElf_Sym sym; 1155 Elf_Scn *sec, *sec_strndx; 1156 Elf *elf; 1157 int nr = 0; 1158 bool remap_kernel = false, adjust_kernel_syms = false; 1159 1160 if (kmap && !kmaps) 1161 return -1; 1162 1163 elf = syms_ss->elf; 1164 ehdr = syms_ss->ehdr; 1165 if (dynsym) { 1166 sec = syms_ss->dynsym; 1167 shdr = syms_ss->dynshdr; 1168 } else { 1169 sec = syms_ss->symtab; 1170 shdr = syms_ss->symshdr; 1171 } 1172 1173 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1174 ".text", NULL)) 1175 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset; 1176 1177 if (runtime_ss->opdsec) 1178 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1179 1180 syms = elf_getdata(sec, NULL); 1181 if (syms == NULL) 1182 goto out_elf_end; 1183 1184 sec = elf_getscn(elf, shdr.sh_link); 1185 if (sec == NULL) 1186 goto out_elf_end; 1187 1188 symstrs = elf_getdata(sec, NULL); 1189 if (symstrs == NULL) 1190 goto out_elf_end; 1191 1192 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1193 if (sec_strndx == NULL) 1194 goto out_elf_end; 1195 1196 secstrs_run = elf_getdata(sec_strndx, NULL); 1197 if (secstrs_run == NULL) 1198 goto out_elf_end; 1199 1200 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx); 1201 if (sec_strndx == NULL) 1202 goto out_elf_end; 1203 1204 secstrs_sym = elf_getdata(sec_strndx, NULL); 1205 if (secstrs_sym == NULL) 1206 goto out_elf_end; 1207 1208 nr_syms = shdr.sh_size / shdr.sh_entsize; 1209 1210 memset(&sym, 0, sizeof(sym)); 1211 1212 /* 1213 * The kernel relocation symbol is needed in advance in order to adjust 1214 * kernel maps correctly. 1215 */ 1216 if (ref_reloc_sym_not_found(kmap)) { 1217 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1218 const char *elf_name = elf_sym__name(&sym, symstrs); 1219 1220 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1221 continue; 1222 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1223 map->reloc = kmap->ref_reloc_sym->addr - 1224 kmap->ref_reloc_sym->unrelocated_addr; 1225 break; 1226 } 1227 } 1228 1229 /* 1230 * Handle any relocation of vdso necessary because older kernels 1231 * attempted to prelink vdso to its virtual address. 1232 */ 1233 if (dso__is_vdso(dso)) 1234 map->reloc = map->start - dso->text_offset; 1235 1236 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap); 1237 /* 1238 * Initial kernel and module mappings do not map to the dso. 1239 * Flag the fixups. 1240 */ 1241 if (dso->kernel) { 1242 remap_kernel = true; 1243 adjust_kernel_syms = dso->adjust_symbols; 1244 } 1245 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1246 struct symbol *f; 1247 const char *elf_name = elf_sym__name(&sym, symstrs); 1248 char *demangled = NULL; 1249 int is_label = elf_sym__is_label(&sym); 1250 const char *section_name; 1251 bool used_opd = false; 1252 1253 if (!is_label && !elf_sym__filter(&sym)) 1254 continue; 1255 1256 /* Reject ARM ELF "mapping symbols": these aren't unique and 1257 * don't identify functions, so will confuse the profile 1258 * output: */ 1259 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1260 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1261 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1262 continue; 1263 } 1264 1265 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1266 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1267 u64 *opd = opddata->d_buf + offset; 1268 sym.st_value = DSO__SWAP(dso, u64, *opd); 1269 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1270 sym.st_value); 1271 used_opd = true; 1272 } 1273 1274 /* 1275 * When loading symbols in a data mapping, ABS symbols (which 1276 * has a value of SHN_ABS in its st_shndx) failed at 1277 * elf_getscn(). And it marks the loading as a failure so 1278 * already loaded symbols cannot be fixed up. 1279 * 1280 * I'm not sure what should be done. Just ignore them for now. 1281 * - Namhyung Kim 1282 */ 1283 if (sym.st_shndx == SHN_ABS) 1284 continue; 1285 1286 sec = elf_getscn(syms_ss->elf, sym.st_shndx); 1287 if (!sec) 1288 goto out_elf_end; 1289 1290 gelf_getshdr(sec, &shdr); 1291 1292 /* 1293 * If the attribute bit SHF_ALLOC is not set, the section 1294 * doesn't occupy memory during process execution. 1295 * E.g. ".gnu.warning.*" section is used by linker to generate 1296 * warnings when calling deprecated functions, the symbols in 1297 * the section aren't loaded to memory during process execution, 1298 * so skip them. 1299 */ 1300 if (!(shdr.sh_flags & SHF_ALLOC)) 1301 continue; 1302 1303 secstrs = secstrs_sym; 1304 1305 /* 1306 * We have to fallback to runtime when syms' section header has 1307 * NOBITS set. NOBITS results in file offset (sh_offset) not 1308 * being incremented. So sh_offset used below has different 1309 * values for syms (invalid) and runtime (valid). 1310 */ 1311 if (shdr.sh_type == SHT_NOBITS) { 1312 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1313 if (!sec) 1314 goto out_elf_end; 1315 1316 gelf_getshdr(sec, &shdr); 1317 secstrs = secstrs_run; 1318 } 1319 1320 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1321 continue; 1322 1323 section_name = elf_sec__name(&shdr, secstrs); 1324 1325 /* On ARM, symbols for thumb functions have 1 added to 1326 * the symbol address as a flag - remove it */ 1327 if ((ehdr.e_machine == EM_ARM) && 1328 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1329 (sym.st_value & 1)) 1330 --sym.st_value; 1331 1332 if (dso->kernel) { 1333 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map, 1334 section_name, adjust_kernel_syms, kmodule, &remap_kernel)) 1335 goto out_elf_end; 1336 } else if ((used_opd && runtime_ss->adjust_symbols) || 1337 (!used_opd && syms_ss->adjust_symbols)) { 1338 GElf_Phdr phdr; 1339 1340 if (elf_read_program_header(runtime_ss->elf, 1341 (u64)sym.st_value, &phdr)) { 1342 pr_debug4("%s: failed to find program header for " 1343 "symbol: %s st_value: %#" PRIx64 "\n", 1344 __func__, elf_name, (u64)sym.st_value); 1345 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1346 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", 1347 __func__, (u64)sym.st_value, (u64)shdr.sh_addr, 1348 (u64)shdr.sh_offset); 1349 /* 1350 * Fail to find program header, let's rollback 1351 * to use shdr.sh_addr and shdr.sh_offset to 1352 * calibrate symbol's file address, though this 1353 * is not necessary for normal C ELF file, we 1354 * still need to handle java JIT symbols in this 1355 * case. 1356 */ 1357 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1358 } else { 1359 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1360 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n", 1361 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr, 1362 (u64)phdr.p_offset); 1363 sym.st_value -= phdr.p_vaddr - phdr.p_offset; 1364 } 1365 } 1366 1367 demangled = demangle_sym(dso, kmodule, elf_name); 1368 if (demangled != NULL) 1369 elf_name = demangled; 1370 1371 f = symbol__new(sym.st_value, sym.st_size, 1372 GELF_ST_BIND(sym.st_info), 1373 GELF_ST_TYPE(sym.st_info), elf_name); 1374 free(demangled); 1375 if (!f) 1376 goto out_elf_end; 1377 1378 arch__sym_update(f, &sym); 1379 1380 __symbols__insert(&curr_dso->symbols, f, dso->kernel); 1381 nr++; 1382 } 1383 1384 /* 1385 * For misannotated, zeroed, ASM function sizes. 1386 */ 1387 if (nr > 0) { 1388 symbols__fixup_end(&dso->symbols, false); 1389 symbols__fixup_duplicate(&dso->symbols); 1390 if (kmap) { 1391 /* 1392 * We need to fixup this here too because we create new 1393 * maps here, for things like vsyscall sections. 1394 */ 1395 maps__fixup_end(kmaps); 1396 } 1397 } 1398 err = nr; 1399 out_elf_end: 1400 return err; 1401 } 1402 1403 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1404 struct symsrc *runtime_ss, int kmodule) 1405 { 1406 int nr = 0; 1407 int err = -1; 1408 1409 dso->symtab_type = syms_ss->type; 1410 dso->is_64_bit = syms_ss->is_64_bit; 1411 dso->rel = syms_ss->ehdr.e_type == ET_REL; 1412 1413 /* 1414 * Modules may already have symbols from kallsyms, but those symbols 1415 * have the wrong values for the dso maps, so remove them. 1416 */ 1417 if (kmodule && syms_ss->symtab) 1418 symbols__delete(&dso->symbols); 1419 1420 if (!syms_ss->symtab) { 1421 /* 1422 * If the vmlinux is stripped, fail so we will fall back 1423 * to using kallsyms. The vmlinux runtime symbols aren't 1424 * of much use. 1425 */ 1426 if (dso->kernel) 1427 return err; 1428 } else { 1429 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1430 kmodule, 0); 1431 if (err < 0) 1432 return err; 1433 nr = err; 1434 } 1435 1436 if (syms_ss->dynsym) { 1437 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1438 kmodule, 1); 1439 if (err < 0) 1440 return err; 1441 err += nr; 1442 } 1443 1444 return err; 1445 } 1446 1447 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1448 { 1449 GElf_Phdr phdr; 1450 size_t i, phdrnum; 1451 int err; 1452 u64 sz; 1453 1454 if (elf_getphdrnum(elf, &phdrnum)) 1455 return -1; 1456 1457 for (i = 0; i < phdrnum; i++) { 1458 if (gelf_getphdr(elf, i, &phdr) == NULL) 1459 return -1; 1460 if (phdr.p_type != PT_LOAD) 1461 continue; 1462 if (exe) { 1463 if (!(phdr.p_flags & PF_X)) 1464 continue; 1465 } else { 1466 if (!(phdr.p_flags & PF_R)) 1467 continue; 1468 } 1469 sz = min(phdr.p_memsz, phdr.p_filesz); 1470 if (!sz) 1471 continue; 1472 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1473 if (err) 1474 return err; 1475 } 1476 return 0; 1477 } 1478 1479 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1480 bool *is_64_bit) 1481 { 1482 int err; 1483 Elf *elf; 1484 1485 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1486 if (elf == NULL) 1487 return -1; 1488 1489 if (is_64_bit) 1490 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1491 1492 err = elf_read_maps(elf, exe, mapfn, data); 1493 1494 elf_end(elf); 1495 return err; 1496 } 1497 1498 enum dso_type dso__type_fd(int fd) 1499 { 1500 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1501 GElf_Ehdr ehdr; 1502 Elf_Kind ek; 1503 Elf *elf; 1504 1505 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1506 if (elf == NULL) 1507 goto out; 1508 1509 ek = elf_kind(elf); 1510 if (ek != ELF_K_ELF) 1511 goto out_end; 1512 1513 if (gelf_getclass(elf) == ELFCLASS64) { 1514 dso_type = DSO__TYPE_64BIT; 1515 goto out_end; 1516 } 1517 1518 if (gelf_getehdr(elf, &ehdr) == NULL) 1519 goto out_end; 1520 1521 if (ehdr.e_machine == EM_X86_64) 1522 dso_type = DSO__TYPE_X32BIT; 1523 else 1524 dso_type = DSO__TYPE_32BIT; 1525 out_end: 1526 elf_end(elf); 1527 out: 1528 return dso_type; 1529 } 1530 1531 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1532 { 1533 ssize_t r; 1534 size_t n; 1535 int err = -1; 1536 char *buf = malloc(page_size); 1537 1538 if (buf == NULL) 1539 return -1; 1540 1541 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1542 goto out; 1543 1544 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1545 goto out; 1546 1547 while (len) { 1548 n = page_size; 1549 if (len < n) 1550 n = len; 1551 /* Use read because mmap won't work on proc files */ 1552 r = read(from, buf, n); 1553 if (r < 0) 1554 goto out; 1555 if (!r) 1556 break; 1557 n = r; 1558 r = write(to, buf, n); 1559 if (r < 0) 1560 goto out; 1561 if ((size_t)r != n) 1562 goto out; 1563 len -= n; 1564 } 1565 1566 err = 0; 1567 out: 1568 free(buf); 1569 return err; 1570 } 1571 1572 struct kcore { 1573 int fd; 1574 int elfclass; 1575 Elf *elf; 1576 GElf_Ehdr ehdr; 1577 }; 1578 1579 static int kcore__open(struct kcore *kcore, const char *filename) 1580 { 1581 GElf_Ehdr *ehdr; 1582 1583 kcore->fd = open(filename, O_RDONLY); 1584 if (kcore->fd == -1) 1585 return -1; 1586 1587 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 1588 if (!kcore->elf) 1589 goto out_close; 1590 1591 kcore->elfclass = gelf_getclass(kcore->elf); 1592 if (kcore->elfclass == ELFCLASSNONE) 1593 goto out_end; 1594 1595 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 1596 if (!ehdr) 1597 goto out_end; 1598 1599 return 0; 1600 1601 out_end: 1602 elf_end(kcore->elf); 1603 out_close: 1604 close(kcore->fd); 1605 return -1; 1606 } 1607 1608 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 1609 bool temp) 1610 { 1611 kcore->elfclass = elfclass; 1612 1613 if (temp) 1614 kcore->fd = mkstemp(filename); 1615 else 1616 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 1617 if (kcore->fd == -1) 1618 return -1; 1619 1620 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 1621 if (!kcore->elf) 1622 goto out_close; 1623 1624 if (!gelf_newehdr(kcore->elf, elfclass)) 1625 goto out_end; 1626 1627 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 1628 1629 return 0; 1630 1631 out_end: 1632 elf_end(kcore->elf); 1633 out_close: 1634 close(kcore->fd); 1635 unlink(filename); 1636 return -1; 1637 } 1638 1639 static void kcore__close(struct kcore *kcore) 1640 { 1641 elf_end(kcore->elf); 1642 close(kcore->fd); 1643 } 1644 1645 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 1646 { 1647 GElf_Ehdr *ehdr = &to->ehdr; 1648 GElf_Ehdr *kehdr = &from->ehdr; 1649 1650 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 1651 ehdr->e_type = kehdr->e_type; 1652 ehdr->e_machine = kehdr->e_machine; 1653 ehdr->e_version = kehdr->e_version; 1654 ehdr->e_entry = 0; 1655 ehdr->e_shoff = 0; 1656 ehdr->e_flags = kehdr->e_flags; 1657 ehdr->e_phnum = count; 1658 ehdr->e_shentsize = 0; 1659 ehdr->e_shnum = 0; 1660 ehdr->e_shstrndx = 0; 1661 1662 if (from->elfclass == ELFCLASS32) { 1663 ehdr->e_phoff = sizeof(Elf32_Ehdr); 1664 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 1665 ehdr->e_phentsize = sizeof(Elf32_Phdr); 1666 } else { 1667 ehdr->e_phoff = sizeof(Elf64_Ehdr); 1668 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 1669 ehdr->e_phentsize = sizeof(Elf64_Phdr); 1670 } 1671 1672 if (!gelf_update_ehdr(to->elf, ehdr)) 1673 return -1; 1674 1675 if (!gelf_newphdr(to->elf, count)) 1676 return -1; 1677 1678 return 0; 1679 } 1680 1681 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 1682 u64 addr, u64 len) 1683 { 1684 GElf_Phdr phdr = { 1685 .p_type = PT_LOAD, 1686 .p_flags = PF_R | PF_W | PF_X, 1687 .p_offset = offset, 1688 .p_vaddr = addr, 1689 .p_paddr = 0, 1690 .p_filesz = len, 1691 .p_memsz = len, 1692 .p_align = page_size, 1693 }; 1694 1695 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 1696 return -1; 1697 1698 return 0; 1699 } 1700 1701 static off_t kcore__write(struct kcore *kcore) 1702 { 1703 return elf_update(kcore->elf, ELF_C_WRITE); 1704 } 1705 1706 struct phdr_data { 1707 off_t offset; 1708 off_t rel; 1709 u64 addr; 1710 u64 len; 1711 struct list_head node; 1712 struct phdr_data *remaps; 1713 }; 1714 1715 struct sym_data { 1716 u64 addr; 1717 struct list_head node; 1718 }; 1719 1720 struct kcore_copy_info { 1721 u64 stext; 1722 u64 etext; 1723 u64 first_symbol; 1724 u64 last_symbol; 1725 u64 first_module; 1726 u64 first_module_symbol; 1727 u64 last_module_symbol; 1728 size_t phnum; 1729 struct list_head phdrs; 1730 struct list_head syms; 1731 }; 1732 1733 #define kcore_copy__for_each_phdr(k, p) \ 1734 list_for_each_entry((p), &(k)->phdrs, node) 1735 1736 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 1737 { 1738 struct phdr_data *p = zalloc(sizeof(*p)); 1739 1740 if (p) { 1741 p->addr = addr; 1742 p->len = len; 1743 p->offset = offset; 1744 } 1745 1746 return p; 1747 } 1748 1749 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 1750 u64 addr, u64 len, 1751 off_t offset) 1752 { 1753 struct phdr_data *p = phdr_data__new(addr, len, offset); 1754 1755 if (p) 1756 list_add_tail(&p->node, &kci->phdrs); 1757 1758 return p; 1759 } 1760 1761 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 1762 { 1763 struct phdr_data *p, *tmp; 1764 1765 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 1766 list_del_init(&p->node); 1767 free(p); 1768 } 1769 } 1770 1771 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 1772 u64 addr) 1773 { 1774 struct sym_data *s = zalloc(sizeof(*s)); 1775 1776 if (s) { 1777 s->addr = addr; 1778 list_add_tail(&s->node, &kci->syms); 1779 } 1780 1781 return s; 1782 } 1783 1784 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 1785 { 1786 struct sym_data *s, *tmp; 1787 1788 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 1789 list_del_init(&s->node); 1790 free(s); 1791 } 1792 } 1793 1794 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 1795 u64 start) 1796 { 1797 struct kcore_copy_info *kci = arg; 1798 1799 if (!kallsyms__is_function(type)) 1800 return 0; 1801 1802 if (strchr(name, '[')) { 1803 if (!kci->first_module_symbol || start < kci->first_module_symbol) 1804 kci->first_module_symbol = start; 1805 if (start > kci->last_module_symbol) 1806 kci->last_module_symbol = start; 1807 return 0; 1808 } 1809 1810 if (!kci->first_symbol || start < kci->first_symbol) 1811 kci->first_symbol = start; 1812 1813 if (!kci->last_symbol || start > kci->last_symbol) 1814 kci->last_symbol = start; 1815 1816 if (!strcmp(name, "_stext")) { 1817 kci->stext = start; 1818 return 0; 1819 } 1820 1821 if (!strcmp(name, "_etext")) { 1822 kci->etext = start; 1823 return 0; 1824 } 1825 1826 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 1827 return -1; 1828 1829 return 0; 1830 } 1831 1832 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 1833 const char *dir) 1834 { 1835 char kallsyms_filename[PATH_MAX]; 1836 1837 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 1838 1839 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 1840 return -1; 1841 1842 if (kallsyms__parse(kallsyms_filename, kci, 1843 kcore_copy__process_kallsyms) < 0) 1844 return -1; 1845 1846 return 0; 1847 } 1848 1849 static int kcore_copy__process_modules(void *arg, 1850 const char *name __maybe_unused, 1851 u64 start, u64 size __maybe_unused) 1852 { 1853 struct kcore_copy_info *kci = arg; 1854 1855 if (!kci->first_module || start < kci->first_module) 1856 kci->first_module = start; 1857 1858 return 0; 1859 } 1860 1861 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 1862 const char *dir) 1863 { 1864 char modules_filename[PATH_MAX]; 1865 1866 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 1867 1868 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 1869 return -1; 1870 1871 if (modules__parse(modules_filename, kci, 1872 kcore_copy__process_modules) < 0) 1873 return -1; 1874 1875 return 0; 1876 } 1877 1878 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 1879 u64 pgoff, u64 s, u64 e) 1880 { 1881 u64 len, offset; 1882 1883 if (s < start || s >= end) 1884 return 0; 1885 1886 offset = (s - start) + pgoff; 1887 len = e < end ? e - s : end - s; 1888 1889 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 1890 } 1891 1892 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 1893 { 1894 struct kcore_copy_info *kci = data; 1895 u64 end = start + len; 1896 struct sym_data *sdat; 1897 1898 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 1899 return -1; 1900 1901 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 1902 kci->last_module_symbol)) 1903 return -1; 1904 1905 list_for_each_entry(sdat, &kci->syms, node) { 1906 u64 s = round_down(sdat->addr, page_size); 1907 1908 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 1909 return -1; 1910 } 1911 1912 return 0; 1913 } 1914 1915 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 1916 { 1917 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 1918 return -1; 1919 1920 return 0; 1921 } 1922 1923 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 1924 { 1925 struct phdr_data *p, *k = NULL; 1926 u64 kend; 1927 1928 if (!kci->stext) 1929 return; 1930 1931 /* Find phdr that corresponds to the kernel map (contains stext) */ 1932 kcore_copy__for_each_phdr(kci, p) { 1933 u64 pend = p->addr + p->len - 1; 1934 1935 if (p->addr <= kci->stext && pend >= kci->stext) { 1936 k = p; 1937 break; 1938 } 1939 } 1940 1941 if (!k) 1942 return; 1943 1944 kend = k->offset + k->len; 1945 1946 /* Find phdrs that remap the kernel */ 1947 kcore_copy__for_each_phdr(kci, p) { 1948 u64 pend = p->offset + p->len; 1949 1950 if (p == k) 1951 continue; 1952 1953 if (p->offset >= k->offset && pend <= kend) 1954 p->remaps = k; 1955 } 1956 } 1957 1958 static void kcore_copy__layout(struct kcore_copy_info *kci) 1959 { 1960 struct phdr_data *p; 1961 off_t rel = 0; 1962 1963 kcore_copy__find_remaps(kci); 1964 1965 kcore_copy__for_each_phdr(kci, p) { 1966 if (!p->remaps) { 1967 p->rel = rel; 1968 rel += p->len; 1969 } 1970 kci->phnum += 1; 1971 } 1972 1973 kcore_copy__for_each_phdr(kci, p) { 1974 struct phdr_data *k = p->remaps; 1975 1976 if (k) 1977 p->rel = p->offset - k->offset + k->rel; 1978 } 1979 } 1980 1981 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 1982 Elf *elf) 1983 { 1984 if (kcore_copy__parse_kallsyms(kci, dir)) 1985 return -1; 1986 1987 if (kcore_copy__parse_modules(kci, dir)) 1988 return -1; 1989 1990 if (kci->stext) 1991 kci->stext = round_down(kci->stext, page_size); 1992 else 1993 kci->stext = round_down(kci->first_symbol, page_size); 1994 1995 if (kci->etext) { 1996 kci->etext = round_up(kci->etext, page_size); 1997 } else if (kci->last_symbol) { 1998 kci->etext = round_up(kci->last_symbol, page_size); 1999 kci->etext += page_size; 2000 } 2001 2002 if (kci->first_module_symbol && 2003 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 2004 kci->first_module = kci->first_module_symbol; 2005 2006 kci->first_module = round_down(kci->first_module, page_size); 2007 2008 if (kci->last_module_symbol) { 2009 kci->last_module_symbol = round_up(kci->last_module_symbol, 2010 page_size); 2011 kci->last_module_symbol += page_size; 2012 } 2013 2014 if (!kci->stext || !kci->etext) 2015 return -1; 2016 2017 if (kci->first_module && !kci->last_module_symbol) 2018 return -1; 2019 2020 if (kcore_copy__read_maps(kci, elf)) 2021 return -1; 2022 2023 kcore_copy__layout(kci); 2024 2025 return 0; 2026 } 2027 2028 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 2029 const char *name) 2030 { 2031 char from_filename[PATH_MAX]; 2032 char to_filename[PATH_MAX]; 2033 2034 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2035 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2036 2037 return copyfile_mode(from_filename, to_filename, 0400); 2038 } 2039 2040 static int kcore_copy__unlink(const char *dir, const char *name) 2041 { 2042 char filename[PATH_MAX]; 2043 2044 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 2045 2046 return unlink(filename); 2047 } 2048 2049 static int kcore_copy__compare_fds(int from, int to) 2050 { 2051 char *buf_from; 2052 char *buf_to; 2053 ssize_t ret; 2054 size_t len; 2055 int err = -1; 2056 2057 buf_from = malloc(page_size); 2058 buf_to = malloc(page_size); 2059 if (!buf_from || !buf_to) 2060 goto out; 2061 2062 while (1) { 2063 /* Use read because mmap won't work on proc files */ 2064 ret = read(from, buf_from, page_size); 2065 if (ret < 0) 2066 goto out; 2067 2068 if (!ret) 2069 break; 2070 2071 len = ret; 2072 2073 if (readn(to, buf_to, len) != (int)len) 2074 goto out; 2075 2076 if (memcmp(buf_from, buf_to, len)) 2077 goto out; 2078 } 2079 2080 err = 0; 2081 out: 2082 free(buf_to); 2083 free(buf_from); 2084 return err; 2085 } 2086 2087 static int kcore_copy__compare_files(const char *from_filename, 2088 const char *to_filename) 2089 { 2090 int from, to, err = -1; 2091 2092 from = open(from_filename, O_RDONLY); 2093 if (from < 0) 2094 return -1; 2095 2096 to = open(to_filename, O_RDONLY); 2097 if (to < 0) 2098 goto out_close_from; 2099 2100 err = kcore_copy__compare_fds(from, to); 2101 2102 close(to); 2103 out_close_from: 2104 close(from); 2105 return err; 2106 } 2107 2108 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 2109 const char *name) 2110 { 2111 char from_filename[PATH_MAX]; 2112 char to_filename[PATH_MAX]; 2113 2114 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2115 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2116 2117 return kcore_copy__compare_files(from_filename, to_filename); 2118 } 2119 2120 /** 2121 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 2122 * @from_dir: from directory 2123 * @to_dir: to directory 2124 * 2125 * This function copies kallsyms, modules and kcore files from one directory to 2126 * another. kallsyms and modules are copied entirely. Only code segments are 2127 * copied from kcore. It is assumed that two segments suffice: one for the 2128 * kernel proper and one for all the modules. The code segments are determined 2129 * from kallsyms and modules files. The kernel map starts at _stext or the 2130 * lowest function symbol, and ends at _etext or the highest function symbol. 2131 * The module map starts at the lowest module address and ends at the highest 2132 * module symbol. Start addresses are rounded down to the nearest page. End 2133 * addresses are rounded up to the nearest page. An extra page is added to the 2134 * highest kernel symbol and highest module symbol to, hopefully, encompass that 2135 * symbol too. Because it contains only code sections, the resulting kcore is 2136 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 2137 * is not the same for the kernel map and the modules map. That happens because 2138 * the data is copied adjacently whereas the original kcore has gaps. Finally, 2139 * kallsyms file is compared with its copy to check that modules have not been 2140 * loaded or unloaded while the copies were taking place. 2141 * 2142 * Return: %0 on success, %-1 on failure. 2143 */ 2144 int kcore_copy(const char *from_dir, const char *to_dir) 2145 { 2146 struct kcore kcore; 2147 struct kcore extract; 2148 int idx = 0, err = -1; 2149 off_t offset, sz; 2150 struct kcore_copy_info kci = { .stext = 0, }; 2151 char kcore_filename[PATH_MAX]; 2152 char extract_filename[PATH_MAX]; 2153 struct phdr_data *p; 2154 2155 INIT_LIST_HEAD(&kci.phdrs); 2156 INIT_LIST_HEAD(&kci.syms); 2157 2158 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 2159 return -1; 2160 2161 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 2162 goto out_unlink_kallsyms; 2163 2164 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 2165 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 2166 2167 if (kcore__open(&kcore, kcore_filename)) 2168 goto out_unlink_modules; 2169 2170 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 2171 goto out_kcore_close; 2172 2173 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 2174 goto out_kcore_close; 2175 2176 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 2177 goto out_extract_close; 2178 2179 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 2180 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 2181 offset = round_up(offset, page_size); 2182 2183 kcore_copy__for_each_phdr(&kci, p) { 2184 off_t offs = p->rel + offset; 2185 2186 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 2187 goto out_extract_close; 2188 } 2189 2190 sz = kcore__write(&extract); 2191 if (sz < 0 || sz > offset) 2192 goto out_extract_close; 2193 2194 kcore_copy__for_each_phdr(&kci, p) { 2195 off_t offs = p->rel + offset; 2196 2197 if (p->remaps) 2198 continue; 2199 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 2200 goto out_extract_close; 2201 } 2202 2203 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 2204 goto out_extract_close; 2205 2206 err = 0; 2207 2208 out_extract_close: 2209 kcore__close(&extract); 2210 if (err) 2211 unlink(extract_filename); 2212 out_kcore_close: 2213 kcore__close(&kcore); 2214 out_unlink_modules: 2215 if (err) 2216 kcore_copy__unlink(to_dir, "modules"); 2217 out_unlink_kallsyms: 2218 if (err) 2219 kcore_copy__unlink(to_dir, "kallsyms"); 2220 2221 kcore_copy__free_phdrs(&kci); 2222 kcore_copy__free_syms(&kci); 2223 2224 return err; 2225 } 2226 2227 int kcore_extract__create(struct kcore_extract *kce) 2228 { 2229 struct kcore kcore; 2230 struct kcore extract; 2231 size_t count = 1; 2232 int idx = 0, err = -1; 2233 off_t offset = page_size, sz; 2234 2235 if (kcore__open(&kcore, kce->kcore_filename)) 2236 return -1; 2237 2238 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 2239 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 2240 goto out_kcore_close; 2241 2242 if (kcore__copy_hdr(&kcore, &extract, count)) 2243 goto out_extract_close; 2244 2245 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 2246 goto out_extract_close; 2247 2248 sz = kcore__write(&extract); 2249 if (sz < 0 || sz > offset) 2250 goto out_extract_close; 2251 2252 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 2253 goto out_extract_close; 2254 2255 err = 0; 2256 2257 out_extract_close: 2258 kcore__close(&extract); 2259 if (err) 2260 unlink(kce->extract_filename); 2261 out_kcore_close: 2262 kcore__close(&kcore); 2263 2264 return err; 2265 } 2266 2267 void kcore_extract__delete(struct kcore_extract *kce) 2268 { 2269 unlink(kce->extract_filename); 2270 } 2271 2272 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2273 2274 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2275 { 2276 if (!base_off) 2277 return; 2278 2279 if (tmp->bit32) 2280 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2281 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2282 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2283 else 2284 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2285 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2286 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2287 } 2288 2289 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2290 GElf_Addr base_off) 2291 { 2292 if (!base_off) 2293 return; 2294 2295 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2296 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2297 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2298 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2299 } 2300 2301 /** 2302 * populate_sdt_note : Parse raw data and identify SDT note 2303 * @elf: elf of the opened file 2304 * @data: raw data of a section with description offset applied 2305 * @len: note description size 2306 * @type: type of the note 2307 * @sdt_notes: List to add the SDT note 2308 * 2309 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2310 * if its an SDT note, it appends to @sdt_notes list. 2311 */ 2312 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2313 struct list_head *sdt_notes) 2314 { 2315 const char *provider, *name, *args; 2316 struct sdt_note *tmp = NULL; 2317 GElf_Ehdr ehdr; 2318 GElf_Shdr shdr; 2319 int ret = -EINVAL; 2320 2321 union { 2322 Elf64_Addr a64[NR_ADDR]; 2323 Elf32_Addr a32[NR_ADDR]; 2324 } buf; 2325 2326 Elf_Data dst = { 2327 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2328 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2329 .d_off = 0, .d_align = 0 2330 }; 2331 Elf_Data src = { 2332 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2333 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2334 .d_align = 0 2335 }; 2336 2337 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2338 if (!tmp) { 2339 ret = -ENOMEM; 2340 goto out_err; 2341 } 2342 2343 INIT_LIST_HEAD(&tmp->note_list); 2344 2345 if (len < dst.d_size + 3) 2346 goto out_free_note; 2347 2348 /* Translation from file representation to memory representation */ 2349 if (gelf_xlatetom(*elf, &dst, &src, 2350 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2351 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2352 goto out_free_note; 2353 } 2354 2355 /* Populate the fields of sdt_note */ 2356 provider = data + dst.d_size; 2357 2358 name = (const char *)memchr(provider, '\0', data + len - provider); 2359 if (name++ == NULL) 2360 goto out_free_note; 2361 2362 tmp->provider = strdup(provider); 2363 if (!tmp->provider) { 2364 ret = -ENOMEM; 2365 goto out_free_note; 2366 } 2367 tmp->name = strdup(name); 2368 if (!tmp->name) { 2369 ret = -ENOMEM; 2370 goto out_free_prov; 2371 } 2372 2373 args = memchr(name, '\0', data + len - name); 2374 2375 /* 2376 * There is no argument if: 2377 * - We reached the end of the note; 2378 * - There is not enough room to hold a potential string; 2379 * - The argument string is empty or just contains ':'. 2380 */ 2381 if (args == NULL || data + len - args < 2 || 2382 args[1] == ':' || args[1] == '\0') 2383 tmp->args = NULL; 2384 else { 2385 tmp->args = strdup(++args); 2386 if (!tmp->args) { 2387 ret = -ENOMEM; 2388 goto out_free_name; 2389 } 2390 } 2391 2392 if (gelf_getclass(*elf) == ELFCLASS32) { 2393 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2394 tmp->bit32 = true; 2395 } else { 2396 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2397 tmp->bit32 = false; 2398 } 2399 2400 if (!gelf_getehdr(*elf, &ehdr)) { 2401 pr_debug("%s : cannot get elf header.\n", __func__); 2402 ret = -EBADF; 2403 goto out_free_args; 2404 } 2405 2406 /* Adjust the prelink effect : 2407 * Find out the .stapsdt.base section. 2408 * This scn will help us to handle prelinking (if present). 2409 * Compare the retrieved file offset of the base section with the 2410 * base address in the description of the SDT note. If its different, 2411 * then accordingly, adjust the note location. 2412 */ 2413 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2414 sdt_adjust_loc(tmp, shdr.sh_offset); 2415 2416 /* Adjust reference counter offset */ 2417 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2418 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2419 2420 list_add_tail(&tmp->note_list, sdt_notes); 2421 return 0; 2422 2423 out_free_args: 2424 zfree(&tmp->args); 2425 out_free_name: 2426 zfree(&tmp->name); 2427 out_free_prov: 2428 zfree(&tmp->provider); 2429 out_free_note: 2430 free(tmp); 2431 out_err: 2432 return ret; 2433 } 2434 2435 /** 2436 * construct_sdt_notes_list : constructs a list of SDT notes 2437 * @elf : elf to look into 2438 * @sdt_notes : empty list_head 2439 * 2440 * Scans the sections in 'elf' for the section 2441 * .note.stapsdt. It, then calls populate_sdt_note to find 2442 * out the SDT events and populates the 'sdt_notes'. 2443 */ 2444 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2445 { 2446 GElf_Ehdr ehdr; 2447 Elf_Scn *scn = NULL; 2448 Elf_Data *data; 2449 GElf_Shdr shdr; 2450 size_t shstrndx, next; 2451 GElf_Nhdr nhdr; 2452 size_t name_off, desc_off, offset; 2453 int ret = 0; 2454 2455 if (gelf_getehdr(elf, &ehdr) == NULL) { 2456 ret = -EBADF; 2457 goto out_ret; 2458 } 2459 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2460 ret = -EBADF; 2461 goto out_ret; 2462 } 2463 2464 /* Look for the required section */ 2465 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2466 if (!scn) { 2467 ret = -ENOENT; 2468 goto out_ret; 2469 } 2470 2471 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2472 ret = -ENOENT; 2473 goto out_ret; 2474 } 2475 2476 data = elf_getdata(scn, NULL); 2477 2478 /* Get the SDT notes */ 2479 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2480 &desc_off)) > 0; offset = next) { 2481 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2482 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2483 sizeof(SDT_NOTE_NAME))) { 2484 /* Check the type of the note */ 2485 if (nhdr.n_type != SDT_NOTE_TYPE) 2486 goto out_ret; 2487 2488 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2489 nhdr.n_descsz, sdt_notes); 2490 if (ret < 0) 2491 goto out_ret; 2492 } 2493 } 2494 if (list_empty(sdt_notes)) 2495 ret = -ENOENT; 2496 2497 out_ret: 2498 return ret; 2499 } 2500 2501 /** 2502 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2503 * @head : empty list_head 2504 * @target : file to find SDT notes from 2505 * 2506 * This opens the file, initializes 2507 * the ELF and then calls construct_sdt_notes_list. 2508 */ 2509 int get_sdt_note_list(struct list_head *head, const char *target) 2510 { 2511 Elf *elf; 2512 int fd, ret; 2513 2514 fd = open(target, O_RDONLY); 2515 if (fd < 0) 2516 return -EBADF; 2517 2518 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2519 if (!elf) { 2520 ret = -EBADF; 2521 goto out_close; 2522 } 2523 ret = construct_sdt_notes_list(elf, head); 2524 elf_end(elf); 2525 out_close: 2526 close(fd); 2527 return ret; 2528 } 2529 2530 /** 2531 * cleanup_sdt_note_list : free the sdt notes' list 2532 * @sdt_notes: sdt notes' list 2533 * 2534 * Free up the SDT notes in @sdt_notes. 2535 * Returns the number of SDT notes free'd. 2536 */ 2537 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2538 { 2539 struct sdt_note *tmp, *pos; 2540 int nr_free = 0; 2541 2542 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2543 list_del_init(&pos->note_list); 2544 zfree(&pos->args); 2545 zfree(&pos->name); 2546 zfree(&pos->provider); 2547 free(pos); 2548 nr_free++; 2549 } 2550 return nr_free; 2551 } 2552 2553 /** 2554 * sdt_notes__get_count: Counts the number of sdt events 2555 * @start: list_head to sdt_notes list 2556 * 2557 * Returns the number of SDT notes in a list 2558 */ 2559 int sdt_notes__get_count(struct list_head *start) 2560 { 2561 struct sdt_note *sdt_ptr; 2562 int count = 0; 2563 2564 list_for_each_entry(sdt_ptr, start, note_list) 2565 count++; 2566 return count; 2567 } 2568 #endif 2569 2570 void symbol__elf_init(void) 2571 { 2572 elf_version(EV_CURRENT); 2573 } 2574