xref: /openbmc/linux/tools/perf/util/symbol-elf.c (revision 5fec9b171cd80616e52e463ae5ae155483078004)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9 
10 #include "dso.h"
11 #include "map.h"
12 #include "maps.h"
13 #include "symbol.h"
14 #include "symsrc.h"
15 #include "demangle-ocaml.h"
16 #include "demangle-java.h"
17 #include "demangle-rust.h"
18 #include "machine.h"
19 #include "vdso.h"
20 #include "debug.h"
21 #include "util/copyfile.h"
22 #include <linux/ctype.h>
23 #include <linux/kernel.h>
24 #include <linux/zalloc.h>
25 #include <symbol/kallsyms.h>
26 #include <internal/lib.h>
27 
28 #ifndef EM_AARCH64
29 #define EM_AARCH64	183  /* ARM 64 bit */
30 #endif
31 
32 #ifndef ELF32_ST_VISIBILITY
33 #define ELF32_ST_VISIBILITY(o)	((o) & 0x03)
34 #endif
35 
36 /* For ELF64 the definitions are the same.  */
37 #ifndef ELF64_ST_VISIBILITY
38 #define ELF64_ST_VISIBILITY(o)	ELF32_ST_VISIBILITY (o)
39 #endif
40 
41 /* How to extract information held in the st_other field.  */
42 #ifndef GELF_ST_VISIBILITY
43 #define GELF_ST_VISIBILITY(val)	ELF64_ST_VISIBILITY (val)
44 #endif
45 
46 typedef Elf64_Nhdr GElf_Nhdr;
47 
48 #ifndef DMGL_PARAMS
49 #define DMGL_NO_OPTS     0              /* For readability... */
50 #define DMGL_PARAMS      (1 << 0)       /* Include function args */
51 #define DMGL_ANSI        (1 << 1)       /* Include const, volatile, etc */
52 #endif
53 
54 #ifdef HAVE_LIBBFD_SUPPORT
55 #define PACKAGE 'perf'
56 #include <bfd.h>
57 #else
58 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
59 extern char *cplus_demangle(const char *, int);
60 
61 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
62 {
63 	return cplus_demangle(c, i);
64 }
65 #else
66 #ifdef NO_DEMANGLE
67 static inline char *bfd_demangle(void __maybe_unused *v,
68 				 const char __maybe_unused *c,
69 				 int __maybe_unused i)
70 {
71 	return NULL;
72 }
73 #endif
74 #endif
75 #endif
76 
77 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
78 static int elf_getphdrnum(Elf *elf, size_t *dst)
79 {
80 	GElf_Ehdr gehdr;
81 	GElf_Ehdr *ehdr;
82 
83 	ehdr = gelf_getehdr(elf, &gehdr);
84 	if (!ehdr)
85 		return -1;
86 
87 	*dst = ehdr->e_phnum;
88 
89 	return 0;
90 }
91 #endif
92 
93 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
94 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
95 {
96 	pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
97 	return -1;
98 }
99 #endif
100 
101 #ifndef NT_GNU_BUILD_ID
102 #define NT_GNU_BUILD_ID 3
103 #endif
104 
105 /**
106  * elf_symtab__for_each_symbol - iterate thru all the symbols
107  *
108  * @syms: struct elf_symtab instance to iterate
109  * @idx: uint32_t idx
110  * @sym: GElf_Sym iterator
111  */
112 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
113 	for (idx = 0, gelf_getsym(syms, idx, &sym);\
114 	     idx < nr_syms; \
115 	     idx++, gelf_getsym(syms, idx, &sym))
116 
117 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
118 {
119 	return GELF_ST_TYPE(sym->st_info);
120 }
121 
122 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
123 {
124 	return GELF_ST_VISIBILITY(sym->st_other);
125 }
126 
127 #ifndef STT_GNU_IFUNC
128 #define STT_GNU_IFUNC 10
129 #endif
130 
131 static inline int elf_sym__is_function(const GElf_Sym *sym)
132 {
133 	return (elf_sym__type(sym) == STT_FUNC ||
134 		elf_sym__type(sym) == STT_GNU_IFUNC) &&
135 	       sym->st_name != 0 &&
136 	       sym->st_shndx != SHN_UNDEF;
137 }
138 
139 static inline bool elf_sym__is_object(const GElf_Sym *sym)
140 {
141 	return elf_sym__type(sym) == STT_OBJECT &&
142 		sym->st_name != 0 &&
143 		sym->st_shndx != SHN_UNDEF;
144 }
145 
146 static inline int elf_sym__is_label(const GElf_Sym *sym)
147 {
148 	return elf_sym__type(sym) == STT_NOTYPE &&
149 		sym->st_name != 0 &&
150 		sym->st_shndx != SHN_UNDEF &&
151 		sym->st_shndx != SHN_ABS &&
152 		elf_sym__visibility(sym) != STV_HIDDEN &&
153 		elf_sym__visibility(sym) != STV_INTERNAL;
154 }
155 
156 static bool elf_sym__filter(GElf_Sym *sym)
157 {
158 	return elf_sym__is_function(sym) || elf_sym__is_object(sym);
159 }
160 
161 static inline const char *elf_sym__name(const GElf_Sym *sym,
162 					const Elf_Data *symstrs)
163 {
164 	return symstrs->d_buf + sym->st_name;
165 }
166 
167 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
168 					const Elf_Data *secstrs)
169 {
170 	return secstrs->d_buf + shdr->sh_name;
171 }
172 
173 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
174 					const Elf_Data *secstrs)
175 {
176 	return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
177 }
178 
179 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
180 				    const Elf_Data *secstrs)
181 {
182 	return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
183 }
184 
185 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
186 {
187 	return elf_sec__is_text(shdr, secstrs) ||
188 	       elf_sec__is_data(shdr, secstrs);
189 }
190 
191 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
192 {
193 	Elf_Scn *sec = NULL;
194 	GElf_Shdr shdr;
195 	size_t cnt = 1;
196 
197 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
198 		gelf_getshdr(sec, &shdr);
199 
200 		if ((addr >= shdr.sh_addr) &&
201 		    (addr < (shdr.sh_addr + shdr.sh_size)))
202 			return cnt;
203 
204 		++cnt;
205 	}
206 
207 	return -1;
208 }
209 
210 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
211 			     GElf_Shdr *shp, const char *name, size_t *idx)
212 {
213 	Elf_Scn *sec = NULL;
214 	size_t cnt = 1;
215 
216 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
217 	if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
218 		return NULL;
219 
220 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
221 		char *str;
222 
223 		gelf_getshdr(sec, shp);
224 		str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
225 		if (str && !strcmp(name, str)) {
226 			if (idx)
227 				*idx = cnt;
228 			return sec;
229 		}
230 		++cnt;
231 	}
232 
233 	return NULL;
234 }
235 
236 bool filename__has_section(const char *filename, const char *sec)
237 {
238 	int fd;
239 	Elf *elf;
240 	GElf_Ehdr ehdr;
241 	GElf_Shdr shdr;
242 	bool found = false;
243 
244 	fd = open(filename, O_RDONLY);
245 	if (fd < 0)
246 		return false;
247 
248 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
249 	if (elf == NULL)
250 		goto out;
251 
252 	if (gelf_getehdr(elf, &ehdr) == NULL)
253 		goto elf_out;
254 
255 	found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
256 
257 elf_out:
258 	elf_end(elf);
259 out:
260 	close(fd);
261 	return found;
262 }
263 
264 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
265 {
266 	size_t i, phdrnum;
267 	u64 sz;
268 
269 	if (elf_getphdrnum(elf, &phdrnum))
270 		return -1;
271 
272 	for (i = 0; i < phdrnum; i++) {
273 		if (gelf_getphdr(elf, i, phdr) == NULL)
274 			return -1;
275 
276 		if (phdr->p_type != PT_LOAD)
277 			continue;
278 
279 		sz = max(phdr->p_memsz, phdr->p_filesz);
280 		if (!sz)
281 			continue;
282 
283 		if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
284 			return 0;
285 	}
286 
287 	/* Not found any valid program header */
288 	return -1;
289 }
290 
291 static bool want_demangle(bool is_kernel_sym)
292 {
293 	return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
294 }
295 
296 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
297 {
298 	int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
299 	char *demangled = NULL;
300 
301 	/*
302 	 * We need to figure out if the object was created from C++ sources
303 	 * DWARF DW_compile_unit has this, but we don't always have access
304 	 * to it...
305 	 */
306 	if (!want_demangle(dso->kernel || kmodule))
307 	    return demangled;
308 
309 	demangled = bfd_demangle(NULL, elf_name, demangle_flags);
310 	if (demangled == NULL) {
311 		demangled = ocaml_demangle_sym(elf_name);
312 		if (demangled == NULL) {
313 			demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
314 		}
315 	}
316 	else if (rust_is_mangled(demangled))
317 		/*
318 		    * Input to Rust demangling is the BFD-demangled
319 		    * name which it Rust-demangles in place.
320 		    */
321 		rust_demangle_sym(demangled);
322 
323 	return demangled;
324 }
325 
326 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt,
327 			  u64 *plt_header_size, u64 *plt_entry_size)
328 {
329 	switch (ehdr->e_machine) {
330 	case EM_ARM:
331 		*plt_header_size = 20;
332 		*plt_entry_size = 12;
333 		return true;
334 	case EM_AARCH64:
335 		*plt_header_size = 32;
336 		*plt_entry_size = 16;
337 		return true;
338 	case EM_SPARC:
339 		*plt_header_size = 48;
340 		*plt_entry_size = 12;
341 		return true;
342 	case EM_SPARCV9:
343 		*plt_header_size = 128;
344 		*plt_entry_size = 32;
345 		return true;
346 	default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
347 		*plt_header_size = shdr_plt->sh_entsize;
348 		*plt_entry_size = shdr_plt->sh_entsize;
349 		if (*plt_entry_size)
350 			return true;
351 		pr_debug("Missing PLT entry size for %s\n", dso->long_name);
352 		return false;
353 	}
354 }
355 
356 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
357 	for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
358 	     idx < nr_entries; \
359 	     ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
360 
361 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
362 	for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
363 	     idx < nr_entries; \
364 	     ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
365 
366 /*
367  * We need to check if we have a .dynsym, so that we can handle the
368  * .plt, synthesizing its symbols, that aren't on the symtabs (be it
369  * .dynsym or .symtab).
370  * And always look at the original dso, not at debuginfo packages, that
371  * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
372  */
373 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
374 {
375 	uint32_t nr_rel_entries, idx;
376 	GElf_Sym sym;
377 	u64 plt_offset, plt_header_size, plt_entry_size;
378 	GElf_Shdr shdr_plt;
379 	struct symbol *f;
380 	GElf_Shdr shdr_rel_plt, shdr_dynsym;
381 	Elf_Data *reldata, *syms, *symstrs;
382 	Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
383 	size_t dynsym_idx;
384 	GElf_Ehdr ehdr;
385 	char sympltname[1024];
386 	Elf *elf;
387 	int nr = 0, symidx, err = -1;
388 
389 	elf = ss->elf;
390 	ehdr = ss->ehdr;
391 
392 	scn_dynsym = ss->dynsym;
393 	shdr_dynsym = ss->dynshdr;
394 	dynsym_idx = ss->dynsym_idx;
395 
396 	if (scn_dynsym == NULL)
397 		return 0;
398 
399 	scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
400 					  ".rela.plt", NULL);
401 	if (scn_plt_rel == NULL) {
402 		scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
403 						  ".rel.plt", NULL);
404 		if (scn_plt_rel == NULL)
405 			return 0;
406 	}
407 
408 	if (shdr_rel_plt.sh_link != dynsym_idx)
409 		goto out_elf_end;
410 
411 	if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
412 		goto out_elf_end;
413 
414 	/*
415 	 * Fetch the relocation section to find the idxes to the GOT
416 	 * and the symbols in the .dynsym they refer to.
417 	 */
418 	reldata = elf_getdata(scn_plt_rel, NULL);
419 	if (reldata == NULL)
420 		goto out_elf_end;
421 
422 	syms = elf_getdata(scn_dynsym, NULL);
423 	if (syms == NULL)
424 		goto out_elf_end;
425 
426 	scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
427 	if (scn_symstrs == NULL)
428 		goto out_elf_end;
429 
430 	symstrs = elf_getdata(scn_symstrs, NULL);
431 	if (symstrs == NULL)
432 		goto out_elf_end;
433 
434 	if (symstrs->d_size == 0)
435 		goto out_elf_end;
436 
437 	nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
438 	plt_offset = shdr_plt.sh_offset;
439 	if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size))
440 		return 0;
441 	plt_offset += plt_header_size;
442 
443 	if (shdr_rel_plt.sh_type == SHT_RELA) {
444 		GElf_Rela pos_mem, *pos;
445 
446 		elf_section__for_each_rela(reldata, pos, pos_mem, idx,
447 					   nr_rel_entries) {
448 			const char *elf_name = NULL;
449 			char *demangled = NULL;
450 			symidx = GELF_R_SYM(pos->r_info);
451 			gelf_getsym(syms, symidx, &sym);
452 
453 			elf_name = elf_sym__name(&sym, symstrs);
454 			demangled = demangle_sym(dso, 0, elf_name);
455 			if (demangled != NULL)
456 				elf_name = demangled;
457 			snprintf(sympltname, sizeof(sympltname),
458 				 "%s@plt", elf_name);
459 			free(demangled);
460 
461 			f = symbol__new(plt_offset, plt_entry_size,
462 					STB_GLOBAL, STT_FUNC, sympltname);
463 			if (!f)
464 				goto out_elf_end;
465 
466 			plt_offset += plt_entry_size;
467 			symbols__insert(&dso->symbols, f);
468 			++nr;
469 		}
470 	} else if (shdr_rel_plt.sh_type == SHT_REL) {
471 		GElf_Rel pos_mem, *pos;
472 		elf_section__for_each_rel(reldata, pos, pos_mem, idx,
473 					  nr_rel_entries) {
474 			const char *elf_name = NULL;
475 			char *demangled = NULL;
476 			symidx = GELF_R_SYM(pos->r_info);
477 			gelf_getsym(syms, symidx, &sym);
478 
479 			elf_name = elf_sym__name(&sym, symstrs);
480 			demangled = demangle_sym(dso, 0, elf_name);
481 			if (demangled != NULL)
482 				elf_name = demangled;
483 			snprintf(sympltname, sizeof(sympltname),
484 				 "%s@plt", elf_name);
485 			free(demangled);
486 
487 			f = symbol__new(plt_offset, plt_entry_size,
488 					STB_GLOBAL, STT_FUNC, sympltname);
489 			if (!f)
490 				goto out_elf_end;
491 
492 			plt_offset += plt_entry_size;
493 			symbols__insert(&dso->symbols, f);
494 			++nr;
495 		}
496 	}
497 
498 	err = 0;
499 out_elf_end:
500 	if (err == 0)
501 		return nr;
502 	pr_debug("%s: problems reading %s PLT info.\n",
503 		 __func__, dso->long_name);
504 	return 0;
505 }
506 
507 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
508 {
509 	return demangle_sym(dso, kmodule, elf_name);
510 }
511 
512 /*
513  * Align offset to 4 bytes as needed for note name and descriptor data.
514  */
515 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
516 
517 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
518 {
519 	int err = -1;
520 	GElf_Ehdr ehdr;
521 	GElf_Shdr shdr;
522 	Elf_Data *data;
523 	Elf_Scn *sec;
524 	Elf_Kind ek;
525 	void *ptr;
526 
527 	if (size < BUILD_ID_SIZE)
528 		goto out;
529 
530 	ek = elf_kind(elf);
531 	if (ek != ELF_K_ELF)
532 		goto out;
533 
534 	if (gelf_getehdr(elf, &ehdr) == NULL) {
535 		pr_err("%s: cannot get elf header.\n", __func__);
536 		goto out;
537 	}
538 
539 	/*
540 	 * Check following sections for notes:
541 	 *   '.note.gnu.build-id'
542 	 *   '.notes'
543 	 *   '.note' (VDSO specific)
544 	 */
545 	do {
546 		sec = elf_section_by_name(elf, &ehdr, &shdr,
547 					  ".note.gnu.build-id", NULL);
548 		if (sec)
549 			break;
550 
551 		sec = elf_section_by_name(elf, &ehdr, &shdr,
552 					  ".notes", NULL);
553 		if (sec)
554 			break;
555 
556 		sec = elf_section_by_name(elf, &ehdr, &shdr,
557 					  ".note", NULL);
558 		if (sec)
559 			break;
560 
561 		return err;
562 
563 	} while (0);
564 
565 	data = elf_getdata(sec, NULL);
566 	if (data == NULL)
567 		goto out;
568 
569 	ptr = data->d_buf;
570 	while (ptr < (data->d_buf + data->d_size)) {
571 		GElf_Nhdr *nhdr = ptr;
572 		size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
573 		       descsz = NOTE_ALIGN(nhdr->n_descsz);
574 		const char *name;
575 
576 		ptr += sizeof(*nhdr);
577 		name = ptr;
578 		ptr += namesz;
579 		if (nhdr->n_type == NT_GNU_BUILD_ID &&
580 		    nhdr->n_namesz == sizeof("GNU")) {
581 			if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
582 				size_t sz = min(size, descsz);
583 				memcpy(bf, ptr, sz);
584 				memset(bf + sz, 0, size - sz);
585 				err = descsz;
586 				break;
587 			}
588 		}
589 		ptr += descsz;
590 	}
591 
592 out:
593 	return err;
594 }
595 
596 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT
597 
598 static int read_build_id(const char *filename, struct build_id *bid)
599 {
600 	size_t size = sizeof(bid->data);
601 	int err = -1;
602 	bfd *abfd;
603 
604 	abfd = bfd_openr(filename, NULL);
605 	if (!abfd)
606 		return -1;
607 
608 	if (!bfd_check_format(abfd, bfd_object)) {
609 		pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
610 		goto out_close;
611 	}
612 
613 	if (!abfd->build_id || abfd->build_id->size > size)
614 		goto out_close;
615 
616 	memcpy(bid->data, abfd->build_id->data, abfd->build_id->size);
617 	memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size);
618 	err = bid->size = abfd->build_id->size;
619 
620 out_close:
621 	bfd_close(abfd);
622 	return err;
623 }
624 
625 #else // HAVE_LIBBFD_BUILDID_SUPPORT
626 
627 static int read_build_id(const char *filename, struct build_id *bid)
628 {
629 	size_t size = sizeof(bid->data);
630 	int fd, err = -1;
631 	Elf *elf;
632 
633 	if (size < BUILD_ID_SIZE)
634 		goto out;
635 
636 	fd = open(filename, O_RDONLY);
637 	if (fd < 0)
638 		goto out;
639 
640 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
641 	if (elf == NULL) {
642 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
643 		goto out_close;
644 	}
645 
646 	err = elf_read_build_id(elf, bid->data, size);
647 	if (err > 0)
648 		bid->size = err;
649 
650 	elf_end(elf);
651 out_close:
652 	close(fd);
653 out:
654 	return err;
655 }
656 
657 #endif // HAVE_LIBBFD_BUILDID_SUPPORT
658 
659 int filename__read_build_id(const char *filename, struct build_id *bid)
660 {
661 	struct kmod_path m = { .name = NULL, };
662 	char path[PATH_MAX];
663 	int err;
664 
665 	if (!filename)
666 		return -EFAULT;
667 
668 	err = kmod_path__parse(&m, filename);
669 	if (err)
670 		return -1;
671 
672 	if (m.comp) {
673 		int error = 0, fd;
674 
675 		fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
676 		if (fd < 0) {
677 			pr_debug("Failed to decompress (error %d) %s\n",
678 				 error, filename);
679 			return -1;
680 		}
681 		close(fd);
682 		filename = path;
683 	}
684 
685 	err = read_build_id(filename, bid);
686 
687 	if (m.comp)
688 		unlink(filename);
689 	return err;
690 }
691 
692 int sysfs__read_build_id(const char *filename, struct build_id *bid)
693 {
694 	size_t size = sizeof(bid->data);
695 	int fd, err = -1;
696 
697 	fd = open(filename, O_RDONLY);
698 	if (fd < 0)
699 		goto out;
700 
701 	while (1) {
702 		char bf[BUFSIZ];
703 		GElf_Nhdr nhdr;
704 		size_t namesz, descsz;
705 
706 		if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
707 			break;
708 
709 		namesz = NOTE_ALIGN(nhdr.n_namesz);
710 		descsz = NOTE_ALIGN(nhdr.n_descsz);
711 		if (nhdr.n_type == NT_GNU_BUILD_ID &&
712 		    nhdr.n_namesz == sizeof("GNU")) {
713 			if (read(fd, bf, namesz) != (ssize_t)namesz)
714 				break;
715 			if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
716 				size_t sz = min(descsz, size);
717 				if (read(fd, bid->data, sz) == (ssize_t)sz) {
718 					memset(bid->data + sz, 0, size - sz);
719 					bid->size = sz;
720 					err = 0;
721 					break;
722 				}
723 			} else if (read(fd, bf, descsz) != (ssize_t)descsz)
724 				break;
725 		} else {
726 			int n = namesz + descsz;
727 
728 			if (n > (int)sizeof(bf)) {
729 				n = sizeof(bf);
730 				pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
731 					 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
732 			}
733 			if (read(fd, bf, n) != n)
734 				break;
735 		}
736 	}
737 	close(fd);
738 out:
739 	return err;
740 }
741 
742 #ifdef HAVE_LIBBFD_SUPPORT
743 
744 int filename__read_debuglink(const char *filename, char *debuglink,
745 			     size_t size)
746 {
747 	int err = -1;
748 	asection *section;
749 	bfd *abfd;
750 
751 	abfd = bfd_openr(filename, NULL);
752 	if (!abfd)
753 		return -1;
754 
755 	if (!bfd_check_format(abfd, bfd_object)) {
756 		pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
757 		goto out_close;
758 	}
759 
760 	section = bfd_get_section_by_name(abfd, ".gnu_debuglink");
761 	if (!section)
762 		goto out_close;
763 
764 	if (section->size > size)
765 		goto out_close;
766 
767 	if (!bfd_get_section_contents(abfd, section, debuglink, 0,
768 				      section->size))
769 		goto out_close;
770 
771 	err = 0;
772 
773 out_close:
774 	bfd_close(abfd);
775 	return err;
776 }
777 
778 #else
779 
780 int filename__read_debuglink(const char *filename, char *debuglink,
781 			     size_t size)
782 {
783 	int fd, err = -1;
784 	Elf *elf;
785 	GElf_Ehdr ehdr;
786 	GElf_Shdr shdr;
787 	Elf_Data *data;
788 	Elf_Scn *sec;
789 	Elf_Kind ek;
790 
791 	fd = open(filename, O_RDONLY);
792 	if (fd < 0)
793 		goto out;
794 
795 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
796 	if (elf == NULL) {
797 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
798 		goto out_close;
799 	}
800 
801 	ek = elf_kind(elf);
802 	if (ek != ELF_K_ELF)
803 		goto out_elf_end;
804 
805 	if (gelf_getehdr(elf, &ehdr) == NULL) {
806 		pr_err("%s: cannot get elf header.\n", __func__);
807 		goto out_elf_end;
808 	}
809 
810 	sec = elf_section_by_name(elf, &ehdr, &shdr,
811 				  ".gnu_debuglink", NULL);
812 	if (sec == NULL)
813 		goto out_elf_end;
814 
815 	data = elf_getdata(sec, NULL);
816 	if (data == NULL)
817 		goto out_elf_end;
818 
819 	/* the start of this section is a zero-terminated string */
820 	strncpy(debuglink, data->d_buf, size);
821 
822 	err = 0;
823 
824 out_elf_end:
825 	elf_end(elf);
826 out_close:
827 	close(fd);
828 out:
829 	return err;
830 }
831 
832 #endif
833 
834 static int dso__swap_init(struct dso *dso, unsigned char eidata)
835 {
836 	static unsigned int const endian = 1;
837 
838 	dso->needs_swap = DSO_SWAP__NO;
839 
840 	switch (eidata) {
841 	case ELFDATA2LSB:
842 		/* We are big endian, DSO is little endian. */
843 		if (*(unsigned char const *)&endian != 1)
844 			dso->needs_swap = DSO_SWAP__YES;
845 		break;
846 
847 	case ELFDATA2MSB:
848 		/* We are little endian, DSO is big endian. */
849 		if (*(unsigned char const *)&endian != 0)
850 			dso->needs_swap = DSO_SWAP__YES;
851 		break;
852 
853 	default:
854 		pr_err("unrecognized DSO data encoding %d\n", eidata);
855 		return -EINVAL;
856 	}
857 
858 	return 0;
859 }
860 
861 bool symsrc__possibly_runtime(struct symsrc *ss)
862 {
863 	return ss->dynsym || ss->opdsec;
864 }
865 
866 bool symsrc__has_symtab(struct symsrc *ss)
867 {
868 	return ss->symtab != NULL;
869 }
870 
871 void symsrc__destroy(struct symsrc *ss)
872 {
873 	zfree(&ss->name);
874 	elf_end(ss->elf);
875 	close(ss->fd);
876 }
877 
878 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
879 {
880 	/*
881 	 * Usually vmlinux is an ELF file with type ET_EXEC for most
882 	 * architectures; except Arm64 kernel is linked with option
883 	 * '-share', so need to check type ET_DYN.
884 	 */
885 	return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
886 	       ehdr.e_type == ET_DYN;
887 }
888 
889 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
890 		 enum dso_binary_type type)
891 {
892 	GElf_Ehdr ehdr;
893 	Elf *elf;
894 	int fd;
895 
896 	if (dso__needs_decompress(dso)) {
897 		fd = dso__decompress_kmodule_fd(dso, name);
898 		if (fd < 0)
899 			return -1;
900 
901 		type = dso->symtab_type;
902 	} else {
903 		fd = open(name, O_RDONLY);
904 		if (fd < 0) {
905 			dso->load_errno = errno;
906 			return -1;
907 		}
908 	}
909 
910 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
911 	if (elf == NULL) {
912 		pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
913 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
914 		goto out_close;
915 	}
916 
917 	if (gelf_getehdr(elf, &ehdr) == NULL) {
918 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
919 		pr_debug("%s: cannot get elf header.\n", __func__);
920 		goto out_elf_end;
921 	}
922 
923 	if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
924 		dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
925 		goto out_elf_end;
926 	}
927 
928 	/* Always reject images with a mismatched build-id: */
929 	if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
930 		u8 build_id[BUILD_ID_SIZE];
931 		struct build_id bid;
932 		int size;
933 
934 		size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
935 		if (size <= 0) {
936 			dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
937 			goto out_elf_end;
938 		}
939 
940 		build_id__init(&bid, build_id, size);
941 		if (!dso__build_id_equal(dso, &bid)) {
942 			pr_debug("%s: build id mismatch for %s.\n", __func__, name);
943 			dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
944 			goto out_elf_end;
945 		}
946 	}
947 
948 	ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
949 
950 	ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
951 			NULL);
952 	if (ss->symshdr.sh_type != SHT_SYMTAB)
953 		ss->symtab = NULL;
954 
955 	ss->dynsym_idx = 0;
956 	ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
957 			&ss->dynsym_idx);
958 	if (ss->dynshdr.sh_type != SHT_DYNSYM)
959 		ss->dynsym = NULL;
960 
961 	ss->opdidx = 0;
962 	ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
963 			&ss->opdidx);
964 	if (ss->opdshdr.sh_type != SHT_PROGBITS)
965 		ss->opdsec = NULL;
966 
967 	if (dso->kernel == DSO_SPACE__USER)
968 		ss->adjust_symbols = true;
969 	else
970 		ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
971 
972 	ss->name   = strdup(name);
973 	if (!ss->name) {
974 		dso->load_errno = errno;
975 		goto out_elf_end;
976 	}
977 
978 	ss->elf    = elf;
979 	ss->fd     = fd;
980 	ss->ehdr   = ehdr;
981 	ss->type   = type;
982 
983 	return 0;
984 
985 out_elf_end:
986 	elf_end(elf);
987 out_close:
988 	close(fd);
989 	return -1;
990 }
991 
992 /**
993  * ref_reloc_sym_not_found - has kernel relocation symbol been found.
994  * @kmap: kernel maps and relocation reference symbol
995  *
996  * This function returns %true if we are dealing with the kernel maps and the
997  * relocation reference symbol has not yet been found.  Otherwise %false is
998  * returned.
999  */
1000 static bool ref_reloc_sym_not_found(struct kmap *kmap)
1001 {
1002 	return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1003 	       !kmap->ref_reloc_sym->unrelocated_addr;
1004 }
1005 
1006 /**
1007  * ref_reloc - kernel relocation offset.
1008  * @kmap: kernel maps and relocation reference symbol
1009  *
1010  * This function returns the offset of kernel addresses as determined by using
1011  * the relocation reference symbol i.e. if the kernel has not been relocated
1012  * then the return value is zero.
1013  */
1014 static u64 ref_reloc(struct kmap *kmap)
1015 {
1016 	if (kmap && kmap->ref_reloc_sym &&
1017 	    kmap->ref_reloc_sym->unrelocated_addr)
1018 		return kmap->ref_reloc_sym->addr -
1019 		       kmap->ref_reloc_sym->unrelocated_addr;
1020 	return 0;
1021 }
1022 
1023 void __weak arch__sym_update(struct symbol *s __maybe_unused,
1024 		GElf_Sym *sym __maybe_unused) { }
1025 
1026 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1027 				      GElf_Sym *sym, GElf_Shdr *shdr,
1028 				      struct maps *kmaps, struct kmap *kmap,
1029 				      struct dso **curr_dsop, struct map **curr_mapp,
1030 				      const char *section_name,
1031 				      bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
1032 {
1033 	struct dso *curr_dso = *curr_dsop;
1034 	struct map *curr_map;
1035 	char dso_name[PATH_MAX];
1036 
1037 	/* Adjust symbol to map to file offset */
1038 	if (adjust_kernel_syms)
1039 		sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1040 
1041 	if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
1042 		return 0;
1043 
1044 	if (strcmp(section_name, ".text") == 0) {
1045 		/*
1046 		 * The initial kernel mapping is based on
1047 		 * kallsyms and identity maps.  Overwrite it to
1048 		 * map to the kernel dso.
1049 		 */
1050 		if (*remap_kernel && dso->kernel && !kmodule) {
1051 			*remap_kernel = false;
1052 			map->start = shdr->sh_addr + ref_reloc(kmap);
1053 			map->end = map->start + shdr->sh_size;
1054 			map->pgoff = shdr->sh_offset;
1055 			map->map_ip = map__map_ip;
1056 			map->unmap_ip = map__unmap_ip;
1057 			/* Ensure maps are correctly ordered */
1058 			if (kmaps) {
1059 				map__get(map);
1060 				maps__remove(kmaps, map);
1061 				maps__insert(kmaps, map);
1062 				map__put(map);
1063 			}
1064 		}
1065 
1066 		/*
1067 		 * The initial module mapping is based on
1068 		 * /proc/modules mapped to offset zero.
1069 		 * Overwrite it to map to the module dso.
1070 		 */
1071 		if (*remap_kernel && kmodule) {
1072 			*remap_kernel = false;
1073 			map->pgoff = shdr->sh_offset;
1074 		}
1075 
1076 		*curr_mapp = map;
1077 		*curr_dsop = dso;
1078 		return 0;
1079 	}
1080 
1081 	if (!kmap)
1082 		return 0;
1083 
1084 	snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
1085 
1086 	curr_map = maps__find_by_name(kmaps, dso_name);
1087 	if (curr_map == NULL) {
1088 		u64 start = sym->st_value;
1089 
1090 		if (kmodule)
1091 			start += map->start + shdr->sh_offset;
1092 
1093 		curr_dso = dso__new(dso_name);
1094 		if (curr_dso == NULL)
1095 			return -1;
1096 		curr_dso->kernel = dso->kernel;
1097 		curr_dso->long_name = dso->long_name;
1098 		curr_dso->long_name_len = dso->long_name_len;
1099 		curr_map = map__new2(start, curr_dso);
1100 		dso__put(curr_dso);
1101 		if (curr_map == NULL)
1102 			return -1;
1103 
1104 		if (curr_dso->kernel)
1105 			map__kmap(curr_map)->kmaps = kmaps;
1106 
1107 		if (adjust_kernel_syms) {
1108 			curr_map->start  = shdr->sh_addr + ref_reloc(kmap);
1109 			curr_map->end	 = curr_map->start + shdr->sh_size;
1110 			curr_map->pgoff	 = shdr->sh_offset;
1111 		} else {
1112 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
1113 		}
1114 		curr_dso->symtab_type = dso->symtab_type;
1115 		maps__insert(kmaps, curr_map);
1116 		/*
1117 		 * Add it before we drop the reference to curr_map, i.e. while
1118 		 * we still are sure to have a reference to this DSO via
1119 		 * *curr_map->dso.
1120 		 */
1121 		dsos__add(&kmaps->machine->dsos, curr_dso);
1122 		/* kmaps already got it */
1123 		map__put(curr_map);
1124 		dso__set_loaded(curr_dso);
1125 		*curr_mapp = curr_map;
1126 		*curr_dsop = curr_dso;
1127 	} else
1128 		*curr_dsop = curr_map->dso;
1129 
1130 	return 0;
1131 }
1132 
1133 static int
1134 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1135 		       struct symsrc *runtime_ss, int kmodule, int dynsym)
1136 {
1137 	struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
1138 	struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1139 	struct map *curr_map = map;
1140 	struct dso *curr_dso = dso;
1141 	Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1142 	uint32_t nr_syms;
1143 	int err = -1;
1144 	uint32_t idx;
1145 	GElf_Ehdr ehdr;
1146 	GElf_Shdr shdr;
1147 	GElf_Shdr tshdr;
1148 	Elf_Data *syms, *opddata = NULL;
1149 	GElf_Sym sym;
1150 	Elf_Scn *sec, *sec_strndx;
1151 	Elf *elf;
1152 	int nr = 0;
1153 	bool remap_kernel = false, adjust_kernel_syms = false;
1154 
1155 	if (kmap && !kmaps)
1156 		return -1;
1157 
1158 	elf = syms_ss->elf;
1159 	ehdr = syms_ss->ehdr;
1160 	if (dynsym) {
1161 		sec  = syms_ss->dynsym;
1162 		shdr = syms_ss->dynshdr;
1163 	} else {
1164 		sec =  syms_ss->symtab;
1165 		shdr = syms_ss->symshdr;
1166 	}
1167 
1168 	if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1169 				".text", NULL))
1170 		dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1171 
1172 	if (runtime_ss->opdsec)
1173 		opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1174 
1175 	syms = elf_getdata(sec, NULL);
1176 	if (syms == NULL)
1177 		goto out_elf_end;
1178 
1179 	sec = elf_getscn(elf, shdr.sh_link);
1180 	if (sec == NULL)
1181 		goto out_elf_end;
1182 
1183 	symstrs = elf_getdata(sec, NULL);
1184 	if (symstrs == NULL)
1185 		goto out_elf_end;
1186 
1187 	sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1188 	if (sec_strndx == NULL)
1189 		goto out_elf_end;
1190 
1191 	secstrs_run = elf_getdata(sec_strndx, NULL);
1192 	if (secstrs_run == NULL)
1193 		goto out_elf_end;
1194 
1195 	sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1196 	if (sec_strndx == NULL)
1197 		goto out_elf_end;
1198 
1199 	secstrs_sym = elf_getdata(sec_strndx, NULL);
1200 	if (secstrs_sym == NULL)
1201 		goto out_elf_end;
1202 
1203 	nr_syms = shdr.sh_size / shdr.sh_entsize;
1204 
1205 	memset(&sym, 0, sizeof(sym));
1206 
1207 	/*
1208 	 * The kernel relocation symbol is needed in advance in order to adjust
1209 	 * kernel maps correctly.
1210 	 */
1211 	if (ref_reloc_sym_not_found(kmap)) {
1212 		elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1213 			const char *elf_name = elf_sym__name(&sym, symstrs);
1214 
1215 			if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1216 				continue;
1217 			kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1218 			map->reloc = kmap->ref_reloc_sym->addr -
1219 				     kmap->ref_reloc_sym->unrelocated_addr;
1220 			break;
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * Handle any relocation of vdso necessary because older kernels
1226 	 * attempted to prelink vdso to its virtual address.
1227 	 */
1228 	if (dso__is_vdso(dso))
1229 		map->reloc = map->start - dso->text_offset;
1230 
1231 	dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1232 	/*
1233 	 * Initial kernel and module mappings do not map to the dso.
1234 	 * Flag the fixups.
1235 	 */
1236 	if (dso->kernel) {
1237 		remap_kernel = true;
1238 		adjust_kernel_syms = dso->adjust_symbols;
1239 	}
1240 	elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1241 		struct symbol *f;
1242 		const char *elf_name = elf_sym__name(&sym, symstrs);
1243 		char *demangled = NULL;
1244 		int is_label = elf_sym__is_label(&sym);
1245 		const char *section_name;
1246 		bool used_opd = false;
1247 
1248 		if (!is_label && !elf_sym__filter(&sym))
1249 			continue;
1250 
1251 		/* Reject ARM ELF "mapping symbols": these aren't unique and
1252 		 * don't identify functions, so will confuse the profile
1253 		 * output: */
1254 		if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1255 			if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1256 			    && (elf_name[2] == '\0' || elf_name[2] == '.'))
1257 				continue;
1258 		}
1259 
1260 		if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1261 			u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1262 			u64 *opd = opddata->d_buf + offset;
1263 			sym.st_value = DSO__SWAP(dso, u64, *opd);
1264 			sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1265 					sym.st_value);
1266 			used_opd = true;
1267 		}
1268 
1269 		/*
1270 		 * When loading symbols in a data mapping, ABS symbols (which
1271 		 * has a value of SHN_ABS in its st_shndx) failed at
1272 		 * elf_getscn().  And it marks the loading as a failure so
1273 		 * already loaded symbols cannot be fixed up.
1274 		 *
1275 		 * I'm not sure what should be done. Just ignore them for now.
1276 		 * - Namhyung Kim
1277 		 */
1278 		if (sym.st_shndx == SHN_ABS)
1279 			continue;
1280 
1281 		sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1282 		if (!sec)
1283 			goto out_elf_end;
1284 
1285 		gelf_getshdr(sec, &shdr);
1286 
1287 		/*
1288 		 * If the attribute bit SHF_ALLOC is not set, the section
1289 		 * doesn't occupy memory during process execution.
1290 		 * E.g. ".gnu.warning.*" section is used by linker to generate
1291 		 * warnings when calling deprecated functions, the symbols in
1292 		 * the section aren't loaded to memory during process execution,
1293 		 * so skip them.
1294 		 */
1295 		if (!(shdr.sh_flags & SHF_ALLOC))
1296 			continue;
1297 
1298 		secstrs = secstrs_sym;
1299 
1300 		/*
1301 		 * We have to fallback to runtime when syms' section header has
1302 		 * NOBITS set. NOBITS results in file offset (sh_offset) not
1303 		 * being incremented. So sh_offset used below has different
1304 		 * values for syms (invalid) and runtime (valid).
1305 		 */
1306 		if (shdr.sh_type == SHT_NOBITS) {
1307 			sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1308 			if (!sec)
1309 				goto out_elf_end;
1310 
1311 			gelf_getshdr(sec, &shdr);
1312 			secstrs = secstrs_run;
1313 		}
1314 
1315 		if (is_label && !elf_sec__filter(&shdr, secstrs))
1316 			continue;
1317 
1318 		section_name = elf_sec__name(&shdr, secstrs);
1319 
1320 		/* On ARM, symbols for thumb functions have 1 added to
1321 		 * the symbol address as a flag - remove it */
1322 		if ((ehdr.e_machine == EM_ARM) &&
1323 		    (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1324 		    (sym.st_value & 1))
1325 			--sym.st_value;
1326 
1327 		if (dso->kernel) {
1328 			if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1329 						       section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1330 				goto out_elf_end;
1331 		} else if ((used_opd && runtime_ss->adjust_symbols) ||
1332 			   (!used_opd && syms_ss->adjust_symbols)) {
1333 			GElf_Phdr phdr;
1334 
1335 			if (elf_read_program_header(runtime_ss->elf,
1336 						    (u64)sym.st_value, &phdr)) {
1337 				pr_debug4("%s: failed to find program header for "
1338 					   "symbol: %s st_value: %#" PRIx64 "\n",
1339 					   __func__, elf_name, (u64)sym.st_value);
1340 				pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1341 					"sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1342 					__func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1343 					(u64)shdr.sh_offset);
1344 				/*
1345 				 * Fail to find program header, let's rollback
1346 				 * to use shdr.sh_addr and shdr.sh_offset to
1347 				 * calibrate symbol's file address, though this
1348 				 * is not necessary for normal C ELF file, we
1349 				 * still need to handle java JIT symbols in this
1350 				 * case.
1351 				 */
1352 				sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1353 			} else {
1354 				pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1355 					"p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1356 					__func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1357 					(u64)phdr.p_offset);
1358 				sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1359 			}
1360 		}
1361 
1362 		demangled = demangle_sym(dso, kmodule, elf_name);
1363 		if (demangled != NULL)
1364 			elf_name = demangled;
1365 
1366 		f = symbol__new(sym.st_value, sym.st_size,
1367 				GELF_ST_BIND(sym.st_info),
1368 				GELF_ST_TYPE(sym.st_info), elf_name);
1369 		free(demangled);
1370 		if (!f)
1371 			goto out_elf_end;
1372 
1373 		arch__sym_update(f, &sym);
1374 
1375 		__symbols__insert(&curr_dso->symbols, f, dso->kernel);
1376 		nr++;
1377 	}
1378 
1379 	/*
1380 	 * For misannotated, zeroed, ASM function sizes.
1381 	 */
1382 	if (nr > 0) {
1383 		symbols__fixup_end(&dso->symbols, false);
1384 		symbols__fixup_duplicate(&dso->symbols);
1385 		if (kmap) {
1386 			/*
1387 			 * We need to fixup this here too because we create new
1388 			 * maps here, for things like vsyscall sections.
1389 			 */
1390 			maps__fixup_end(kmaps);
1391 		}
1392 	}
1393 	err = nr;
1394 out_elf_end:
1395 	return err;
1396 }
1397 
1398 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1399 		  struct symsrc *runtime_ss, int kmodule)
1400 {
1401 	int nr = 0;
1402 	int err = -1;
1403 
1404 	dso->symtab_type = syms_ss->type;
1405 	dso->is_64_bit = syms_ss->is_64_bit;
1406 	dso->rel = syms_ss->ehdr.e_type == ET_REL;
1407 
1408 	/*
1409 	 * Modules may already have symbols from kallsyms, but those symbols
1410 	 * have the wrong values for the dso maps, so remove them.
1411 	 */
1412 	if (kmodule && syms_ss->symtab)
1413 		symbols__delete(&dso->symbols);
1414 
1415 	if (!syms_ss->symtab) {
1416 		/*
1417 		 * If the vmlinux is stripped, fail so we will fall back
1418 		 * to using kallsyms. The vmlinux runtime symbols aren't
1419 		 * of much use.
1420 		 */
1421 		if (dso->kernel)
1422 			return err;
1423 	} else  {
1424 		err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1425 					     kmodule, 0);
1426 		if (err < 0)
1427 			return err;
1428 		nr = err;
1429 	}
1430 
1431 	if (syms_ss->dynsym) {
1432 		err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1433 					     kmodule, 1);
1434 		if (err < 0)
1435 			return err;
1436 		err += nr;
1437 	}
1438 
1439 	return err;
1440 }
1441 
1442 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1443 {
1444 	GElf_Phdr phdr;
1445 	size_t i, phdrnum;
1446 	int err;
1447 	u64 sz;
1448 
1449 	if (elf_getphdrnum(elf, &phdrnum))
1450 		return -1;
1451 
1452 	for (i = 0; i < phdrnum; i++) {
1453 		if (gelf_getphdr(elf, i, &phdr) == NULL)
1454 			return -1;
1455 		if (phdr.p_type != PT_LOAD)
1456 			continue;
1457 		if (exe) {
1458 			if (!(phdr.p_flags & PF_X))
1459 				continue;
1460 		} else {
1461 			if (!(phdr.p_flags & PF_R))
1462 				continue;
1463 		}
1464 		sz = min(phdr.p_memsz, phdr.p_filesz);
1465 		if (!sz)
1466 			continue;
1467 		err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1468 		if (err)
1469 			return err;
1470 	}
1471 	return 0;
1472 }
1473 
1474 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1475 		    bool *is_64_bit)
1476 {
1477 	int err;
1478 	Elf *elf;
1479 
1480 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1481 	if (elf == NULL)
1482 		return -1;
1483 
1484 	if (is_64_bit)
1485 		*is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1486 
1487 	err = elf_read_maps(elf, exe, mapfn, data);
1488 
1489 	elf_end(elf);
1490 	return err;
1491 }
1492 
1493 enum dso_type dso__type_fd(int fd)
1494 {
1495 	enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1496 	GElf_Ehdr ehdr;
1497 	Elf_Kind ek;
1498 	Elf *elf;
1499 
1500 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1501 	if (elf == NULL)
1502 		goto out;
1503 
1504 	ek = elf_kind(elf);
1505 	if (ek != ELF_K_ELF)
1506 		goto out_end;
1507 
1508 	if (gelf_getclass(elf) == ELFCLASS64) {
1509 		dso_type = DSO__TYPE_64BIT;
1510 		goto out_end;
1511 	}
1512 
1513 	if (gelf_getehdr(elf, &ehdr) == NULL)
1514 		goto out_end;
1515 
1516 	if (ehdr.e_machine == EM_X86_64)
1517 		dso_type = DSO__TYPE_X32BIT;
1518 	else
1519 		dso_type = DSO__TYPE_32BIT;
1520 out_end:
1521 	elf_end(elf);
1522 out:
1523 	return dso_type;
1524 }
1525 
1526 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1527 {
1528 	ssize_t r;
1529 	size_t n;
1530 	int err = -1;
1531 	char *buf = malloc(page_size);
1532 
1533 	if (buf == NULL)
1534 		return -1;
1535 
1536 	if (lseek(to, to_offs, SEEK_SET) != to_offs)
1537 		goto out;
1538 
1539 	if (lseek(from, from_offs, SEEK_SET) != from_offs)
1540 		goto out;
1541 
1542 	while (len) {
1543 		n = page_size;
1544 		if (len < n)
1545 			n = len;
1546 		/* Use read because mmap won't work on proc files */
1547 		r = read(from, buf, n);
1548 		if (r < 0)
1549 			goto out;
1550 		if (!r)
1551 			break;
1552 		n = r;
1553 		r = write(to, buf, n);
1554 		if (r < 0)
1555 			goto out;
1556 		if ((size_t)r != n)
1557 			goto out;
1558 		len -= n;
1559 	}
1560 
1561 	err = 0;
1562 out:
1563 	free(buf);
1564 	return err;
1565 }
1566 
1567 struct kcore {
1568 	int fd;
1569 	int elfclass;
1570 	Elf *elf;
1571 	GElf_Ehdr ehdr;
1572 };
1573 
1574 static int kcore__open(struct kcore *kcore, const char *filename)
1575 {
1576 	GElf_Ehdr *ehdr;
1577 
1578 	kcore->fd = open(filename, O_RDONLY);
1579 	if (kcore->fd == -1)
1580 		return -1;
1581 
1582 	kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1583 	if (!kcore->elf)
1584 		goto out_close;
1585 
1586 	kcore->elfclass = gelf_getclass(kcore->elf);
1587 	if (kcore->elfclass == ELFCLASSNONE)
1588 		goto out_end;
1589 
1590 	ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1591 	if (!ehdr)
1592 		goto out_end;
1593 
1594 	return 0;
1595 
1596 out_end:
1597 	elf_end(kcore->elf);
1598 out_close:
1599 	close(kcore->fd);
1600 	return -1;
1601 }
1602 
1603 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1604 		       bool temp)
1605 {
1606 	kcore->elfclass = elfclass;
1607 
1608 	if (temp)
1609 		kcore->fd = mkstemp(filename);
1610 	else
1611 		kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1612 	if (kcore->fd == -1)
1613 		return -1;
1614 
1615 	kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1616 	if (!kcore->elf)
1617 		goto out_close;
1618 
1619 	if (!gelf_newehdr(kcore->elf, elfclass))
1620 		goto out_end;
1621 
1622 	memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1623 
1624 	return 0;
1625 
1626 out_end:
1627 	elf_end(kcore->elf);
1628 out_close:
1629 	close(kcore->fd);
1630 	unlink(filename);
1631 	return -1;
1632 }
1633 
1634 static void kcore__close(struct kcore *kcore)
1635 {
1636 	elf_end(kcore->elf);
1637 	close(kcore->fd);
1638 }
1639 
1640 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1641 {
1642 	GElf_Ehdr *ehdr = &to->ehdr;
1643 	GElf_Ehdr *kehdr = &from->ehdr;
1644 
1645 	memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1646 	ehdr->e_type      = kehdr->e_type;
1647 	ehdr->e_machine   = kehdr->e_machine;
1648 	ehdr->e_version   = kehdr->e_version;
1649 	ehdr->e_entry     = 0;
1650 	ehdr->e_shoff     = 0;
1651 	ehdr->e_flags     = kehdr->e_flags;
1652 	ehdr->e_phnum     = count;
1653 	ehdr->e_shentsize = 0;
1654 	ehdr->e_shnum     = 0;
1655 	ehdr->e_shstrndx  = 0;
1656 
1657 	if (from->elfclass == ELFCLASS32) {
1658 		ehdr->e_phoff     = sizeof(Elf32_Ehdr);
1659 		ehdr->e_ehsize    = sizeof(Elf32_Ehdr);
1660 		ehdr->e_phentsize = sizeof(Elf32_Phdr);
1661 	} else {
1662 		ehdr->e_phoff     = sizeof(Elf64_Ehdr);
1663 		ehdr->e_ehsize    = sizeof(Elf64_Ehdr);
1664 		ehdr->e_phentsize = sizeof(Elf64_Phdr);
1665 	}
1666 
1667 	if (!gelf_update_ehdr(to->elf, ehdr))
1668 		return -1;
1669 
1670 	if (!gelf_newphdr(to->elf, count))
1671 		return -1;
1672 
1673 	return 0;
1674 }
1675 
1676 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1677 			   u64 addr, u64 len)
1678 {
1679 	GElf_Phdr phdr = {
1680 		.p_type		= PT_LOAD,
1681 		.p_flags	= PF_R | PF_W | PF_X,
1682 		.p_offset	= offset,
1683 		.p_vaddr	= addr,
1684 		.p_paddr	= 0,
1685 		.p_filesz	= len,
1686 		.p_memsz	= len,
1687 		.p_align	= page_size,
1688 	};
1689 
1690 	if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1691 		return -1;
1692 
1693 	return 0;
1694 }
1695 
1696 static off_t kcore__write(struct kcore *kcore)
1697 {
1698 	return elf_update(kcore->elf, ELF_C_WRITE);
1699 }
1700 
1701 struct phdr_data {
1702 	off_t offset;
1703 	off_t rel;
1704 	u64 addr;
1705 	u64 len;
1706 	struct list_head node;
1707 	struct phdr_data *remaps;
1708 };
1709 
1710 struct sym_data {
1711 	u64 addr;
1712 	struct list_head node;
1713 };
1714 
1715 struct kcore_copy_info {
1716 	u64 stext;
1717 	u64 etext;
1718 	u64 first_symbol;
1719 	u64 last_symbol;
1720 	u64 first_module;
1721 	u64 first_module_symbol;
1722 	u64 last_module_symbol;
1723 	size_t phnum;
1724 	struct list_head phdrs;
1725 	struct list_head syms;
1726 };
1727 
1728 #define kcore_copy__for_each_phdr(k, p) \
1729 	list_for_each_entry((p), &(k)->phdrs, node)
1730 
1731 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1732 {
1733 	struct phdr_data *p = zalloc(sizeof(*p));
1734 
1735 	if (p) {
1736 		p->addr   = addr;
1737 		p->len    = len;
1738 		p->offset = offset;
1739 	}
1740 
1741 	return p;
1742 }
1743 
1744 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1745 						 u64 addr, u64 len,
1746 						 off_t offset)
1747 {
1748 	struct phdr_data *p = phdr_data__new(addr, len, offset);
1749 
1750 	if (p)
1751 		list_add_tail(&p->node, &kci->phdrs);
1752 
1753 	return p;
1754 }
1755 
1756 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1757 {
1758 	struct phdr_data *p, *tmp;
1759 
1760 	list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1761 		list_del_init(&p->node);
1762 		free(p);
1763 	}
1764 }
1765 
1766 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1767 					    u64 addr)
1768 {
1769 	struct sym_data *s = zalloc(sizeof(*s));
1770 
1771 	if (s) {
1772 		s->addr = addr;
1773 		list_add_tail(&s->node, &kci->syms);
1774 	}
1775 
1776 	return s;
1777 }
1778 
1779 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1780 {
1781 	struct sym_data *s, *tmp;
1782 
1783 	list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1784 		list_del_init(&s->node);
1785 		free(s);
1786 	}
1787 }
1788 
1789 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1790 					u64 start)
1791 {
1792 	struct kcore_copy_info *kci = arg;
1793 
1794 	if (!kallsyms__is_function(type))
1795 		return 0;
1796 
1797 	if (strchr(name, '[')) {
1798 		if (!kci->first_module_symbol || start < kci->first_module_symbol)
1799 			kci->first_module_symbol = start;
1800 		if (start > kci->last_module_symbol)
1801 			kci->last_module_symbol = start;
1802 		return 0;
1803 	}
1804 
1805 	if (!kci->first_symbol || start < kci->first_symbol)
1806 		kci->first_symbol = start;
1807 
1808 	if (!kci->last_symbol || start > kci->last_symbol)
1809 		kci->last_symbol = start;
1810 
1811 	if (!strcmp(name, "_stext")) {
1812 		kci->stext = start;
1813 		return 0;
1814 	}
1815 
1816 	if (!strcmp(name, "_etext")) {
1817 		kci->etext = start;
1818 		return 0;
1819 	}
1820 
1821 	if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1822 		return -1;
1823 
1824 	return 0;
1825 }
1826 
1827 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1828 				      const char *dir)
1829 {
1830 	char kallsyms_filename[PATH_MAX];
1831 
1832 	scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1833 
1834 	if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1835 		return -1;
1836 
1837 	if (kallsyms__parse(kallsyms_filename, kci,
1838 			    kcore_copy__process_kallsyms) < 0)
1839 		return -1;
1840 
1841 	return 0;
1842 }
1843 
1844 static int kcore_copy__process_modules(void *arg,
1845 				       const char *name __maybe_unused,
1846 				       u64 start, u64 size __maybe_unused)
1847 {
1848 	struct kcore_copy_info *kci = arg;
1849 
1850 	if (!kci->first_module || start < kci->first_module)
1851 		kci->first_module = start;
1852 
1853 	return 0;
1854 }
1855 
1856 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1857 				     const char *dir)
1858 {
1859 	char modules_filename[PATH_MAX];
1860 
1861 	scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1862 
1863 	if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1864 		return -1;
1865 
1866 	if (modules__parse(modules_filename, kci,
1867 			   kcore_copy__process_modules) < 0)
1868 		return -1;
1869 
1870 	return 0;
1871 }
1872 
1873 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1874 			   u64 pgoff, u64 s, u64 e)
1875 {
1876 	u64 len, offset;
1877 
1878 	if (s < start || s >= end)
1879 		return 0;
1880 
1881 	offset = (s - start) + pgoff;
1882 	len = e < end ? e - s : end - s;
1883 
1884 	return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1885 }
1886 
1887 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1888 {
1889 	struct kcore_copy_info *kci = data;
1890 	u64 end = start + len;
1891 	struct sym_data *sdat;
1892 
1893 	if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1894 		return -1;
1895 
1896 	if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1897 			    kci->last_module_symbol))
1898 		return -1;
1899 
1900 	list_for_each_entry(sdat, &kci->syms, node) {
1901 		u64 s = round_down(sdat->addr, page_size);
1902 
1903 		if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1904 			return -1;
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1911 {
1912 	if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1913 		return -1;
1914 
1915 	return 0;
1916 }
1917 
1918 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1919 {
1920 	struct phdr_data *p, *k = NULL;
1921 	u64 kend;
1922 
1923 	if (!kci->stext)
1924 		return;
1925 
1926 	/* Find phdr that corresponds to the kernel map (contains stext) */
1927 	kcore_copy__for_each_phdr(kci, p) {
1928 		u64 pend = p->addr + p->len - 1;
1929 
1930 		if (p->addr <= kci->stext && pend >= kci->stext) {
1931 			k = p;
1932 			break;
1933 		}
1934 	}
1935 
1936 	if (!k)
1937 		return;
1938 
1939 	kend = k->offset + k->len;
1940 
1941 	/* Find phdrs that remap the kernel */
1942 	kcore_copy__for_each_phdr(kci, p) {
1943 		u64 pend = p->offset + p->len;
1944 
1945 		if (p == k)
1946 			continue;
1947 
1948 		if (p->offset >= k->offset && pend <= kend)
1949 			p->remaps = k;
1950 	}
1951 }
1952 
1953 static void kcore_copy__layout(struct kcore_copy_info *kci)
1954 {
1955 	struct phdr_data *p;
1956 	off_t rel = 0;
1957 
1958 	kcore_copy__find_remaps(kci);
1959 
1960 	kcore_copy__for_each_phdr(kci, p) {
1961 		if (!p->remaps) {
1962 			p->rel = rel;
1963 			rel += p->len;
1964 		}
1965 		kci->phnum += 1;
1966 	}
1967 
1968 	kcore_copy__for_each_phdr(kci, p) {
1969 		struct phdr_data *k = p->remaps;
1970 
1971 		if (k)
1972 			p->rel = p->offset - k->offset + k->rel;
1973 	}
1974 }
1975 
1976 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1977 				 Elf *elf)
1978 {
1979 	if (kcore_copy__parse_kallsyms(kci, dir))
1980 		return -1;
1981 
1982 	if (kcore_copy__parse_modules(kci, dir))
1983 		return -1;
1984 
1985 	if (kci->stext)
1986 		kci->stext = round_down(kci->stext, page_size);
1987 	else
1988 		kci->stext = round_down(kci->first_symbol, page_size);
1989 
1990 	if (kci->etext) {
1991 		kci->etext = round_up(kci->etext, page_size);
1992 	} else if (kci->last_symbol) {
1993 		kci->etext = round_up(kci->last_symbol, page_size);
1994 		kci->etext += page_size;
1995 	}
1996 
1997 	if (kci->first_module_symbol &&
1998 	    (!kci->first_module || kci->first_module_symbol < kci->first_module))
1999 		kci->first_module = kci->first_module_symbol;
2000 
2001 	kci->first_module = round_down(kci->first_module, page_size);
2002 
2003 	if (kci->last_module_symbol) {
2004 		kci->last_module_symbol = round_up(kci->last_module_symbol,
2005 						   page_size);
2006 		kci->last_module_symbol += page_size;
2007 	}
2008 
2009 	if (!kci->stext || !kci->etext)
2010 		return -1;
2011 
2012 	if (kci->first_module && !kci->last_module_symbol)
2013 		return -1;
2014 
2015 	if (kcore_copy__read_maps(kci, elf))
2016 		return -1;
2017 
2018 	kcore_copy__layout(kci);
2019 
2020 	return 0;
2021 }
2022 
2023 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2024 				 const char *name)
2025 {
2026 	char from_filename[PATH_MAX];
2027 	char to_filename[PATH_MAX];
2028 
2029 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2030 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2031 
2032 	return copyfile_mode(from_filename, to_filename, 0400);
2033 }
2034 
2035 static int kcore_copy__unlink(const char *dir, const char *name)
2036 {
2037 	char filename[PATH_MAX];
2038 
2039 	scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2040 
2041 	return unlink(filename);
2042 }
2043 
2044 static int kcore_copy__compare_fds(int from, int to)
2045 {
2046 	char *buf_from;
2047 	char *buf_to;
2048 	ssize_t ret;
2049 	size_t len;
2050 	int err = -1;
2051 
2052 	buf_from = malloc(page_size);
2053 	buf_to = malloc(page_size);
2054 	if (!buf_from || !buf_to)
2055 		goto out;
2056 
2057 	while (1) {
2058 		/* Use read because mmap won't work on proc files */
2059 		ret = read(from, buf_from, page_size);
2060 		if (ret < 0)
2061 			goto out;
2062 
2063 		if (!ret)
2064 			break;
2065 
2066 		len = ret;
2067 
2068 		if (readn(to, buf_to, len) != (int)len)
2069 			goto out;
2070 
2071 		if (memcmp(buf_from, buf_to, len))
2072 			goto out;
2073 	}
2074 
2075 	err = 0;
2076 out:
2077 	free(buf_to);
2078 	free(buf_from);
2079 	return err;
2080 }
2081 
2082 static int kcore_copy__compare_files(const char *from_filename,
2083 				     const char *to_filename)
2084 {
2085 	int from, to, err = -1;
2086 
2087 	from = open(from_filename, O_RDONLY);
2088 	if (from < 0)
2089 		return -1;
2090 
2091 	to = open(to_filename, O_RDONLY);
2092 	if (to < 0)
2093 		goto out_close_from;
2094 
2095 	err = kcore_copy__compare_fds(from, to);
2096 
2097 	close(to);
2098 out_close_from:
2099 	close(from);
2100 	return err;
2101 }
2102 
2103 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2104 				    const char *name)
2105 {
2106 	char from_filename[PATH_MAX];
2107 	char to_filename[PATH_MAX];
2108 
2109 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2110 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2111 
2112 	return kcore_copy__compare_files(from_filename, to_filename);
2113 }
2114 
2115 /**
2116  * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2117  * @from_dir: from directory
2118  * @to_dir: to directory
2119  *
2120  * This function copies kallsyms, modules and kcore files from one directory to
2121  * another.  kallsyms and modules are copied entirely.  Only code segments are
2122  * copied from kcore.  It is assumed that two segments suffice: one for the
2123  * kernel proper and one for all the modules.  The code segments are determined
2124  * from kallsyms and modules files.  The kernel map starts at _stext or the
2125  * lowest function symbol, and ends at _etext or the highest function symbol.
2126  * The module map starts at the lowest module address and ends at the highest
2127  * module symbol.  Start addresses are rounded down to the nearest page.  End
2128  * addresses are rounded up to the nearest page.  An extra page is added to the
2129  * highest kernel symbol and highest module symbol to, hopefully, encompass that
2130  * symbol too.  Because it contains only code sections, the resulting kcore is
2131  * unusual.  One significant peculiarity is that the mapping (start -> pgoff)
2132  * is not the same for the kernel map and the modules map.  That happens because
2133  * the data is copied adjacently whereas the original kcore has gaps.  Finally,
2134  * kallsyms file is compared with its copy to check that modules have not been
2135  * loaded or unloaded while the copies were taking place.
2136  *
2137  * Return: %0 on success, %-1 on failure.
2138  */
2139 int kcore_copy(const char *from_dir, const char *to_dir)
2140 {
2141 	struct kcore kcore;
2142 	struct kcore extract;
2143 	int idx = 0, err = -1;
2144 	off_t offset, sz;
2145 	struct kcore_copy_info kci = { .stext = 0, };
2146 	char kcore_filename[PATH_MAX];
2147 	char extract_filename[PATH_MAX];
2148 	struct phdr_data *p;
2149 
2150 	INIT_LIST_HEAD(&kci.phdrs);
2151 	INIT_LIST_HEAD(&kci.syms);
2152 
2153 	if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2154 		return -1;
2155 
2156 	if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2157 		goto out_unlink_kallsyms;
2158 
2159 	scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2160 	scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2161 
2162 	if (kcore__open(&kcore, kcore_filename))
2163 		goto out_unlink_modules;
2164 
2165 	if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2166 		goto out_kcore_close;
2167 
2168 	if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2169 		goto out_kcore_close;
2170 
2171 	if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2172 		goto out_extract_close;
2173 
2174 	offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2175 		 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2176 	offset = round_up(offset, page_size);
2177 
2178 	kcore_copy__for_each_phdr(&kci, p) {
2179 		off_t offs = p->rel + offset;
2180 
2181 		if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2182 			goto out_extract_close;
2183 	}
2184 
2185 	sz = kcore__write(&extract);
2186 	if (sz < 0 || sz > offset)
2187 		goto out_extract_close;
2188 
2189 	kcore_copy__for_each_phdr(&kci, p) {
2190 		off_t offs = p->rel + offset;
2191 
2192 		if (p->remaps)
2193 			continue;
2194 		if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2195 			goto out_extract_close;
2196 	}
2197 
2198 	if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2199 		goto out_extract_close;
2200 
2201 	err = 0;
2202 
2203 out_extract_close:
2204 	kcore__close(&extract);
2205 	if (err)
2206 		unlink(extract_filename);
2207 out_kcore_close:
2208 	kcore__close(&kcore);
2209 out_unlink_modules:
2210 	if (err)
2211 		kcore_copy__unlink(to_dir, "modules");
2212 out_unlink_kallsyms:
2213 	if (err)
2214 		kcore_copy__unlink(to_dir, "kallsyms");
2215 
2216 	kcore_copy__free_phdrs(&kci);
2217 	kcore_copy__free_syms(&kci);
2218 
2219 	return err;
2220 }
2221 
2222 int kcore_extract__create(struct kcore_extract *kce)
2223 {
2224 	struct kcore kcore;
2225 	struct kcore extract;
2226 	size_t count = 1;
2227 	int idx = 0, err = -1;
2228 	off_t offset = page_size, sz;
2229 
2230 	if (kcore__open(&kcore, kce->kcore_filename))
2231 		return -1;
2232 
2233 	strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2234 	if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2235 		goto out_kcore_close;
2236 
2237 	if (kcore__copy_hdr(&kcore, &extract, count))
2238 		goto out_extract_close;
2239 
2240 	if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2241 		goto out_extract_close;
2242 
2243 	sz = kcore__write(&extract);
2244 	if (sz < 0 || sz > offset)
2245 		goto out_extract_close;
2246 
2247 	if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2248 		goto out_extract_close;
2249 
2250 	err = 0;
2251 
2252 out_extract_close:
2253 	kcore__close(&extract);
2254 	if (err)
2255 		unlink(kce->extract_filename);
2256 out_kcore_close:
2257 	kcore__close(&kcore);
2258 
2259 	return err;
2260 }
2261 
2262 void kcore_extract__delete(struct kcore_extract *kce)
2263 {
2264 	unlink(kce->extract_filename);
2265 }
2266 
2267 #ifdef HAVE_GELF_GETNOTE_SUPPORT
2268 
2269 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2270 {
2271 	if (!base_off)
2272 		return;
2273 
2274 	if (tmp->bit32)
2275 		tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2276 			tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2277 			tmp->addr.a32[SDT_NOTE_IDX_BASE];
2278 	else
2279 		tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2280 			tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2281 			tmp->addr.a64[SDT_NOTE_IDX_BASE];
2282 }
2283 
2284 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2285 			      GElf_Addr base_off)
2286 {
2287 	if (!base_off)
2288 		return;
2289 
2290 	if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2291 		tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2292 	else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2293 		tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2294 }
2295 
2296 /**
2297  * populate_sdt_note : Parse raw data and identify SDT note
2298  * @elf: elf of the opened file
2299  * @data: raw data of a section with description offset applied
2300  * @len: note description size
2301  * @type: type of the note
2302  * @sdt_notes: List to add the SDT note
2303  *
2304  * Responsible for parsing the @data in section .note.stapsdt in @elf and
2305  * if its an SDT note, it appends to @sdt_notes list.
2306  */
2307 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2308 			     struct list_head *sdt_notes)
2309 {
2310 	const char *provider, *name, *args;
2311 	struct sdt_note *tmp = NULL;
2312 	GElf_Ehdr ehdr;
2313 	GElf_Shdr shdr;
2314 	int ret = -EINVAL;
2315 
2316 	union {
2317 		Elf64_Addr a64[NR_ADDR];
2318 		Elf32_Addr a32[NR_ADDR];
2319 	} buf;
2320 
2321 	Elf_Data dst = {
2322 		.d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2323 		.d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2324 		.d_off = 0, .d_align = 0
2325 	};
2326 	Elf_Data src = {
2327 		.d_buf = (void *) data, .d_type = ELF_T_ADDR,
2328 		.d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2329 		.d_align = 0
2330 	};
2331 
2332 	tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2333 	if (!tmp) {
2334 		ret = -ENOMEM;
2335 		goto out_err;
2336 	}
2337 
2338 	INIT_LIST_HEAD(&tmp->note_list);
2339 
2340 	if (len < dst.d_size + 3)
2341 		goto out_free_note;
2342 
2343 	/* Translation from file representation to memory representation */
2344 	if (gelf_xlatetom(*elf, &dst, &src,
2345 			  elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2346 		pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2347 		goto out_free_note;
2348 	}
2349 
2350 	/* Populate the fields of sdt_note */
2351 	provider = data + dst.d_size;
2352 
2353 	name = (const char *)memchr(provider, '\0', data + len - provider);
2354 	if (name++ == NULL)
2355 		goto out_free_note;
2356 
2357 	tmp->provider = strdup(provider);
2358 	if (!tmp->provider) {
2359 		ret = -ENOMEM;
2360 		goto out_free_note;
2361 	}
2362 	tmp->name = strdup(name);
2363 	if (!tmp->name) {
2364 		ret = -ENOMEM;
2365 		goto out_free_prov;
2366 	}
2367 
2368 	args = memchr(name, '\0', data + len - name);
2369 
2370 	/*
2371 	 * There is no argument if:
2372 	 * - We reached the end of the note;
2373 	 * - There is not enough room to hold a potential string;
2374 	 * - The argument string is empty or just contains ':'.
2375 	 */
2376 	if (args == NULL || data + len - args < 2 ||
2377 		args[1] == ':' || args[1] == '\0')
2378 		tmp->args = NULL;
2379 	else {
2380 		tmp->args = strdup(++args);
2381 		if (!tmp->args) {
2382 			ret = -ENOMEM;
2383 			goto out_free_name;
2384 		}
2385 	}
2386 
2387 	if (gelf_getclass(*elf) == ELFCLASS32) {
2388 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2389 		tmp->bit32 = true;
2390 	} else {
2391 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2392 		tmp->bit32 = false;
2393 	}
2394 
2395 	if (!gelf_getehdr(*elf, &ehdr)) {
2396 		pr_debug("%s : cannot get elf header.\n", __func__);
2397 		ret = -EBADF;
2398 		goto out_free_args;
2399 	}
2400 
2401 	/* Adjust the prelink effect :
2402 	 * Find out the .stapsdt.base section.
2403 	 * This scn will help us to handle prelinking (if present).
2404 	 * Compare the retrieved file offset of the base section with the
2405 	 * base address in the description of the SDT note. If its different,
2406 	 * then accordingly, adjust the note location.
2407 	 */
2408 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2409 		sdt_adjust_loc(tmp, shdr.sh_offset);
2410 
2411 	/* Adjust reference counter offset */
2412 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2413 		sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2414 
2415 	list_add_tail(&tmp->note_list, sdt_notes);
2416 	return 0;
2417 
2418 out_free_args:
2419 	zfree(&tmp->args);
2420 out_free_name:
2421 	zfree(&tmp->name);
2422 out_free_prov:
2423 	zfree(&tmp->provider);
2424 out_free_note:
2425 	free(tmp);
2426 out_err:
2427 	return ret;
2428 }
2429 
2430 /**
2431  * construct_sdt_notes_list : constructs a list of SDT notes
2432  * @elf : elf to look into
2433  * @sdt_notes : empty list_head
2434  *
2435  * Scans the sections in 'elf' for the section
2436  * .note.stapsdt. It, then calls populate_sdt_note to find
2437  * out the SDT events and populates the 'sdt_notes'.
2438  */
2439 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2440 {
2441 	GElf_Ehdr ehdr;
2442 	Elf_Scn *scn = NULL;
2443 	Elf_Data *data;
2444 	GElf_Shdr shdr;
2445 	size_t shstrndx, next;
2446 	GElf_Nhdr nhdr;
2447 	size_t name_off, desc_off, offset;
2448 	int ret = 0;
2449 
2450 	if (gelf_getehdr(elf, &ehdr) == NULL) {
2451 		ret = -EBADF;
2452 		goto out_ret;
2453 	}
2454 	if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2455 		ret = -EBADF;
2456 		goto out_ret;
2457 	}
2458 
2459 	/* Look for the required section */
2460 	scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2461 	if (!scn) {
2462 		ret = -ENOENT;
2463 		goto out_ret;
2464 	}
2465 
2466 	if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2467 		ret = -ENOENT;
2468 		goto out_ret;
2469 	}
2470 
2471 	data = elf_getdata(scn, NULL);
2472 
2473 	/* Get the SDT notes */
2474 	for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2475 					      &desc_off)) > 0; offset = next) {
2476 		if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2477 		    !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2478 			    sizeof(SDT_NOTE_NAME))) {
2479 			/* Check the type of the note */
2480 			if (nhdr.n_type != SDT_NOTE_TYPE)
2481 				goto out_ret;
2482 
2483 			ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2484 						nhdr.n_descsz, sdt_notes);
2485 			if (ret < 0)
2486 				goto out_ret;
2487 		}
2488 	}
2489 	if (list_empty(sdt_notes))
2490 		ret = -ENOENT;
2491 
2492 out_ret:
2493 	return ret;
2494 }
2495 
2496 /**
2497  * get_sdt_note_list : Wrapper to construct a list of sdt notes
2498  * @head : empty list_head
2499  * @target : file to find SDT notes from
2500  *
2501  * This opens the file, initializes
2502  * the ELF and then calls construct_sdt_notes_list.
2503  */
2504 int get_sdt_note_list(struct list_head *head, const char *target)
2505 {
2506 	Elf *elf;
2507 	int fd, ret;
2508 
2509 	fd = open(target, O_RDONLY);
2510 	if (fd < 0)
2511 		return -EBADF;
2512 
2513 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2514 	if (!elf) {
2515 		ret = -EBADF;
2516 		goto out_close;
2517 	}
2518 	ret = construct_sdt_notes_list(elf, head);
2519 	elf_end(elf);
2520 out_close:
2521 	close(fd);
2522 	return ret;
2523 }
2524 
2525 /**
2526  * cleanup_sdt_note_list : free the sdt notes' list
2527  * @sdt_notes: sdt notes' list
2528  *
2529  * Free up the SDT notes in @sdt_notes.
2530  * Returns the number of SDT notes free'd.
2531  */
2532 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2533 {
2534 	struct sdt_note *tmp, *pos;
2535 	int nr_free = 0;
2536 
2537 	list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2538 		list_del_init(&pos->note_list);
2539 		zfree(&pos->args);
2540 		zfree(&pos->name);
2541 		zfree(&pos->provider);
2542 		free(pos);
2543 		nr_free++;
2544 	}
2545 	return nr_free;
2546 }
2547 
2548 /**
2549  * sdt_notes__get_count: Counts the number of sdt events
2550  * @start: list_head to sdt_notes list
2551  *
2552  * Returns the number of SDT notes in a list
2553  */
2554 int sdt_notes__get_count(struct list_head *start)
2555 {
2556 	struct sdt_note *sdt_ptr;
2557 	int count = 0;
2558 
2559 	list_for_each_entry(sdt_ptr, start, note_list)
2560 		count++;
2561 	return count;
2562 }
2563 #endif
2564 
2565 void symbol__elf_init(void)
2566 {
2567 	elf_version(EV_CURRENT);
2568 }
2569