1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "dso.h" 11 #include "map.h" 12 #include "maps.h" 13 #include "symbol.h" 14 #include "symsrc.h" 15 #include "demangle-ocaml.h" 16 #include "demangle-java.h" 17 #include "demangle-rust.h" 18 #include "machine.h" 19 #include "vdso.h" 20 #include "debug.h" 21 #include "util/copyfile.h" 22 #include <linux/ctype.h> 23 #include <linux/kernel.h> 24 #include <linux/zalloc.h> 25 #include <symbol/kallsyms.h> 26 #include <internal/lib.h> 27 28 #ifndef EM_AARCH64 29 #define EM_AARCH64 183 /* ARM 64 bit */ 30 #endif 31 32 #ifndef ELF32_ST_VISIBILITY 33 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 34 #endif 35 36 /* For ELF64 the definitions are the same. */ 37 #ifndef ELF64_ST_VISIBILITY 38 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 39 #endif 40 41 /* How to extract information held in the st_other field. */ 42 #ifndef GELF_ST_VISIBILITY 43 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 44 #endif 45 46 typedef Elf64_Nhdr GElf_Nhdr; 47 48 #ifndef DMGL_PARAMS 49 #define DMGL_NO_OPTS 0 /* For readability... */ 50 #define DMGL_PARAMS (1 << 0) /* Include function args */ 51 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */ 52 #endif 53 54 #ifdef HAVE_LIBBFD_SUPPORT 55 #define PACKAGE 'perf' 56 #include <bfd.h> 57 #else 58 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT 59 extern char *cplus_demangle(const char *, int); 60 61 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i) 62 { 63 return cplus_demangle(c, i); 64 } 65 #else 66 #ifdef NO_DEMANGLE 67 static inline char *bfd_demangle(void __maybe_unused *v, 68 const char __maybe_unused *c, 69 int __maybe_unused i) 70 { 71 return NULL; 72 } 73 #endif 74 #endif 75 #endif 76 77 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 78 static int elf_getphdrnum(Elf *elf, size_t *dst) 79 { 80 GElf_Ehdr gehdr; 81 GElf_Ehdr *ehdr; 82 83 ehdr = gelf_getehdr(elf, &gehdr); 84 if (!ehdr) 85 return -1; 86 87 *dst = ehdr->e_phnum; 88 89 return 0; 90 } 91 #endif 92 93 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 94 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 95 { 96 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 97 return -1; 98 } 99 #endif 100 101 #ifndef NT_GNU_BUILD_ID 102 #define NT_GNU_BUILD_ID 3 103 #endif 104 105 /** 106 * elf_symtab__for_each_symbol - iterate thru all the symbols 107 * 108 * @syms: struct elf_symtab instance to iterate 109 * @idx: uint32_t idx 110 * @sym: GElf_Sym iterator 111 */ 112 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 113 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 114 idx < nr_syms; \ 115 idx++, gelf_getsym(syms, idx, &sym)) 116 117 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 118 { 119 return GELF_ST_TYPE(sym->st_info); 120 } 121 122 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 123 { 124 return GELF_ST_VISIBILITY(sym->st_other); 125 } 126 127 #ifndef STT_GNU_IFUNC 128 #define STT_GNU_IFUNC 10 129 #endif 130 131 static inline int elf_sym__is_function(const GElf_Sym *sym) 132 { 133 return (elf_sym__type(sym) == STT_FUNC || 134 elf_sym__type(sym) == STT_GNU_IFUNC) && 135 sym->st_name != 0 && 136 sym->st_shndx != SHN_UNDEF; 137 } 138 139 static inline bool elf_sym__is_object(const GElf_Sym *sym) 140 { 141 return elf_sym__type(sym) == STT_OBJECT && 142 sym->st_name != 0 && 143 sym->st_shndx != SHN_UNDEF; 144 } 145 146 static inline int elf_sym__is_label(const GElf_Sym *sym) 147 { 148 return elf_sym__type(sym) == STT_NOTYPE && 149 sym->st_name != 0 && 150 sym->st_shndx != SHN_UNDEF && 151 sym->st_shndx != SHN_ABS && 152 elf_sym__visibility(sym) != STV_HIDDEN && 153 elf_sym__visibility(sym) != STV_INTERNAL; 154 } 155 156 static bool elf_sym__filter(GElf_Sym *sym) 157 { 158 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 159 } 160 161 static inline const char *elf_sym__name(const GElf_Sym *sym, 162 const Elf_Data *symstrs) 163 { 164 return symstrs->d_buf + sym->st_name; 165 } 166 167 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 168 const Elf_Data *secstrs) 169 { 170 return secstrs->d_buf + shdr->sh_name; 171 } 172 173 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 174 const Elf_Data *secstrs) 175 { 176 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 177 } 178 179 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 180 const Elf_Data *secstrs) 181 { 182 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 183 } 184 185 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 186 { 187 return elf_sec__is_text(shdr, secstrs) || 188 elf_sec__is_data(shdr, secstrs); 189 } 190 191 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 192 { 193 Elf_Scn *sec = NULL; 194 GElf_Shdr shdr; 195 size_t cnt = 1; 196 197 while ((sec = elf_nextscn(elf, sec)) != NULL) { 198 gelf_getshdr(sec, &shdr); 199 200 if ((addr >= shdr.sh_addr) && 201 (addr < (shdr.sh_addr + shdr.sh_size))) 202 return cnt; 203 204 ++cnt; 205 } 206 207 return -1; 208 } 209 210 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 211 GElf_Shdr *shp, const char *name, size_t *idx) 212 { 213 Elf_Scn *sec = NULL; 214 size_t cnt = 1; 215 216 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 217 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 218 return NULL; 219 220 while ((sec = elf_nextscn(elf, sec)) != NULL) { 221 char *str; 222 223 gelf_getshdr(sec, shp); 224 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 225 if (str && !strcmp(name, str)) { 226 if (idx) 227 *idx = cnt; 228 return sec; 229 } 230 ++cnt; 231 } 232 233 return NULL; 234 } 235 236 bool filename__has_section(const char *filename, const char *sec) 237 { 238 int fd; 239 Elf *elf; 240 GElf_Ehdr ehdr; 241 GElf_Shdr shdr; 242 bool found = false; 243 244 fd = open(filename, O_RDONLY); 245 if (fd < 0) 246 return false; 247 248 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 249 if (elf == NULL) 250 goto out; 251 252 if (gelf_getehdr(elf, &ehdr) == NULL) 253 goto elf_out; 254 255 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL); 256 257 elf_out: 258 elf_end(elf); 259 out: 260 close(fd); 261 return found; 262 } 263 264 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr) 265 { 266 size_t i, phdrnum; 267 u64 sz; 268 269 if (elf_getphdrnum(elf, &phdrnum)) 270 return -1; 271 272 for (i = 0; i < phdrnum; i++) { 273 if (gelf_getphdr(elf, i, phdr) == NULL) 274 return -1; 275 276 if (phdr->p_type != PT_LOAD) 277 continue; 278 279 sz = max(phdr->p_memsz, phdr->p_filesz); 280 if (!sz) 281 continue; 282 283 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz)) 284 return 0; 285 } 286 287 /* Not found any valid program header */ 288 return -1; 289 } 290 291 static bool want_demangle(bool is_kernel_sym) 292 { 293 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 294 } 295 296 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 297 { 298 int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS; 299 char *demangled = NULL; 300 301 /* 302 * We need to figure out if the object was created from C++ sources 303 * DWARF DW_compile_unit has this, but we don't always have access 304 * to it... 305 */ 306 if (!want_demangle(dso->kernel || kmodule)) 307 return demangled; 308 309 demangled = bfd_demangle(NULL, elf_name, demangle_flags); 310 if (demangled == NULL) { 311 demangled = ocaml_demangle_sym(elf_name); 312 if (demangled == NULL) { 313 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 314 } 315 } 316 else if (rust_is_mangled(demangled)) 317 /* 318 * Input to Rust demangling is the BFD-demangled 319 * name which it Rust-demangles in place. 320 */ 321 rust_demangle_sym(demangled); 322 323 return demangled; 324 } 325 326 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt, 327 u64 *plt_header_size, u64 *plt_entry_size) 328 { 329 switch (ehdr->e_machine) { 330 case EM_ARM: 331 *plt_header_size = 20; 332 *plt_entry_size = 12; 333 return true; 334 case EM_AARCH64: 335 *plt_header_size = 32; 336 *plt_entry_size = 16; 337 return true; 338 case EM_SPARC: 339 *plt_header_size = 48; 340 *plt_entry_size = 12; 341 return true; 342 case EM_SPARCV9: 343 *plt_header_size = 128; 344 *plt_entry_size = 32; 345 return true; 346 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 347 *plt_header_size = shdr_plt->sh_entsize; 348 *plt_entry_size = shdr_plt->sh_entsize; 349 if (*plt_entry_size) 350 return true; 351 pr_debug("Missing PLT entry size for %s\n", dso->long_name); 352 return false; 353 } 354 } 355 356 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \ 357 for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \ 358 idx < nr_entries; \ 359 ++idx, pos = gelf_getrel(reldata, idx, &pos_mem)) 360 361 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \ 362 for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \ 363 idx < nr_entries; \ 364 ++idx, pos = gelf_getrela(reldata, idx, &pos_mem)) 365 366 /* 367 * We need to check if we have a .dynsym, so that we can handle the 368 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 369 * .dynsym or .symtab). 370 * And always look at the original dso, not at debuginfo packages, that 371 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 372 */ 373 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 374 { 375 uint32_t nr_rel_entries, idx; 376 GElf_Sym sym; 377 u64 plt_offset, plt_header_size, plt_entry_size; 378 GElf_Shdr shdr_plt; 379 struct symbol *f; 380 GElf_Shdr shdr_rel_plt, shdr_dynsym; 381 Elf_Data *reldata, *syms, *symstrs; 382 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 383 size_t dynsym_idx; 384 GElf_Ehdr ehdr; 385 char sympltname[1024]; 386 Elf *elf; 387 int nr = 0, symidx, err = -1; 388 389 if (!ss->dynsym) 390 return 0; 391 392 elf = ss->elf; 393 ehdr = ss->ehdr; 394 395 scn_dynsym = ss->dynsym; 396 shdr_dynsym = ss->dynshdr; 397 dynsym_idx = ss->dynsym_idx; 398 399 if (scn_dynsym == NULL) 400 return 0; 401 402 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 403 ".rela.plt", NULL); 404 if (scn_plt_rel == NULL) { 405 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 406 ".rel.plt", NULL); 407 if (scn_plt_rel == NULL) 408 return 0; 409 } 410 411 if (shdr_rel_plt.sh_link != dynsym_idx) 412 goto out_elf_end; 413 414 if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL) 415 goto out_elf_end; 416 417 /* 418 * Fetch the relocation section to find the idxes to the GOT 419 * and the symbols in the .dynsym they refer to. 420 */ 421 reldata = elf_getdata(scn_plt_rel, NULL); 422 if (reldata == NULL) 423 goto out_elf_end; 424 425 syms = elf_getdata(scn_dynsym, NULL); 426 if (syms == NULL) 427 goto out_elf_end; 428 429 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 430 if (scn_symstrs == NULL) 431 goto out_elf_end; 432 433 symstrs = elf_getdata(scn_symstrs, NULL); 434 if (symstrs == NULL) 435 goto out_elf_end; 436 437 if (symstrs->d_size == 0) 438 goto out_elf_end; 439 440 nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 441 plt_offset = shdr_plt.sh_offset; 442 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size)) 443 return 0; 444 plt_offset += plt_header_size; 445 446 if (shdr_rel_plt.sh_type == SHT_RELA) { 447 GElf_Rela pos_mem, *pos; 448 449 elf_section__for_each_rela(reldata, pos, pos_mem, idx, 450 nr_rel_entries) { 451 const char *elf_name = NULL; 452 char *demangled = NULL; 453 symidx = GELF_R_SYM(pos->r_info); 454 gelf_getsym(syms, symidx, &sym); 455 456 elf_name = elf_sym__name(&sym, symstrs); 457 demangled = demangle_sym(dso, 0, elf_name); 458 if (demangled != NULL) 459 elf_name = demangled; 460 snprintf(sympltname, sizeof(sympltname), 461 "%s@plt", elf_name); 462 free(demangled); 463 464 f = symbol__new(plt_offset, plt_entry_size, 465 STB_GLOBAL, STT_FUNC, sympltname); 466 if (!f) 467 goto out_elf_end; 468 469 plt_offset += plt_entry_size; 470 symbols__insert(&dso->symbols, f); 471 ++nr; 472 } 473 } else if (shdr_rel_plt.sh_type == SHT_REL) { 474 GElf_Rel pos_mem, *pos; 475 elf_section__for_each_rel(reldata, pos, pos_mem, idx, 476 nr_rel_entries) { 477 const char *elf_name = NULL; 478 char *demangled = NULL; 479 symidx = GELF_R_SYM(pos->r_info); 480 gelf_getsym(syms, symidx, &sym); 481 482 elf_name = elf_sym__name(&sym, symstrs); 483 demangled = demangle_sym(dso, 0, elf_name); 484 if (demangled != NULL) 485 elf_name = demangled; 486 snprintf(sympltname, sizeof(sympltname), 487 "%s@plt", elf_name); 488 free(demangled); 489 490 f = symbol__new(plt_offset, plt_entry_size, 491 STB_GLOBAL, STT_FUNC, sympltname); 492 if (!f) 493 goto out_elf_end; 494 495 plt_offset += plt_entry_size; 496 symbols__insert(&dso->symbols, f); 497 ++nr; 498 } 499 } 500 501 err = 0; 502 out_elf_end: 503 if (err == 0) 504 return nr; 505 pr_debug("%s: problems reading %s PLT info.\n", 506 __func__, dso->long_name); 507 return 0; 508 } 509 510 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 511 { 512 return demangle_sym(dso, kmodule, elf_name); 513 } 514 515 /* 516 * Align offset to 4 bytes as needed for note name and descriptor data. 517 */ 518 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 519 520 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 521 { 522 int err = -1; 523 GElf_Ehdr ehdr; 524 GElf_Shdr shdr; 525 Elf_Data *data; 526 Elf_Scn *sec; 527 Elf_Kind ek; 528 void *ptr; 529 530 if (size < BUILD_ID_SIZE) 531 goto out; 532 533 ek = elf_kind(elf); 534 if (ek != ELF_K_ELF) 535 goto out; 536 537 if (gelf_getehdr(elf, &ehdr) == NULL) { 538 pr_err("%s: cannot get elf header.\n", __func__); 539 goto out; 540 } 541 542 /* 543 * Check following sections for notes: 544 * '.note.gnu.build-id' 545 * '.notes' 546 * '.note' (VDSO specific) 547 */ 548 do { 549 sec = elf_section_by_name(elf, &ehdr, &shdr, 550 ".note.gnu.build-id", NULL); 551 if (sec) 552 break; 553 554 sec = elf_section_by_name(elf, &ehdr, &shdr, 555 ".notes", NULL); 556 if (sec) 557 break; 558 559 sec = elf_section_by_name(elf, &ehdr, &shdr, 560 ".note", NULL); 561 if (sec) 562 break; 563 564 return err; 565 566 } while (0); 567 568 data = elf_getdata(sec, NULL); 569 if (data == NULL) 570 goto out; 571 572 ptr = data->d_buf; 573 while (ptr < (data->d_buf + data->d_size)) { 574 GElf_Nhdr *nhdr = ptr; 575 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 576 descsz = NOTE_ALIGN(nhdr->n_descsz); 577 const char *name; 578 579 ptr += sizeof(*nhdr); 580 name = ptr; 581 ptr += namesz; 582 if (nhdr->n_type == NT_GNU_BUILD_ID && 583 nhdr->n_namesz == sizeof("GNU")) { 584 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 585 size_t sz = min(size, descsz); 586 memcpy(bf, ptr, sz); 587 memset(bf + sz, 0, size - sz); 588 err = descsz; 589 break; 590 } 591 } 592 ptr += descsz; 593 } 594 595 out: 596 return err; 597 } 598 599 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT 600 601 static int read_build_id(const char *filename, struct build_id *bid) 602 { 603 size_t size = sizeof(bid->data); 604 int err = -1; 605 bfd *abfd; 606 607 abfd = bfd_openr(filename, NULL); 608 if (!abfd) 609 return -1; 610 611 if (!bfd_check_format(abfd, bfd_object)) { 612 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 613 goto out_close; 614 } 615 616 if (!abfd->build_id || abfd->build_id->size > size) 617 goto out_close; 618 619 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size); 620 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size); 621 err = bid->size = abfd->build_id->size; 622 623 out_close: 624 bfd_close(abfd); 625 return err; 626 } 627 628 #else // HAVE_LIBBFD_BUILDID_SUPPORT 629 630 static int read_build_id(const char *filename, struct build_id *bid) 631 { 632 size_t size = sizeof(bid->data); 633 int fd, err = -1; 634 Elf *elf; 635 636 if (size < BUILD_ID_SIZE) 637 goto out; 638 639 fd = open(filename, O_RDONLY); 640 if (fd < 0) 641 goto out; 642 643 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 644 if (elf == NULL) { 645 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 646 goto out_close; 647 } 648 649 err = elf_read_build_id(elf, bid->data, size); 650 if (err > 0) 651 bid->size = err; 652 653 elf_end(elf); 654 out_close: 655 close(fd); 656 out: 657 return err; 658 } 659 660 #endif // HAVE_LIBBFD_BUILDID_SUPPORT 661 662 int filename__read_build_id(const char *filename, struct build_id *bid) 663 { 664 struct kmod_path m = { .name = NULL, }; 665 char path[PATH_MAX]; 666 int err; 667 668 if (!filename) 669 return -EFAULT; 670 671 err = kmod_path__parse(&m, filename); 672 if (err) 673 return -1; 674 675 if (m.comp) { 676 int error = 0, fd; 677 678 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error); 679 if (fd < 0) { 680 pr_debug("Failed to decompress (error %d) %s\n", 681 error, filename); 682 return -1; 683 } 684 close(fd); 685 filename = path; 686 } 687 688 err = read_build_id(filename, bid); 689 690 if (m.comp) 691 unlink(filename); 692 return err; 693 } 694 695 int sysfs__read_build_id(const char *filename, struct build_id *bid) 696 { 697 size_t size = sizeof(bid->data); 698 int fd, err = -1; 699 700 fd = open(filename, O_RDONLY); 701 if (fd < 0) 702 goto out; 703 704 while (1) { 705 char bf[BUFSIZ]; 706 GElf_Nhdr nhdr; 707 size_t namesz, descsz; 708 709 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 710 break; 711 712 namesz = NOTE_ALIGN(nhdr.n_namesz); 713 descsz = NOTE_ALIGN(nhdr.n_descsz); 714 if (nhdr.n_type == NT_GNU_BUILD_ID && 715 nhdr.n_namesz == sizeof("GNU")) { 716 if (read(fd, bf, namesz) != (ssize_t)namesz) 717 break; 718 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 719 size_t sz = min(descsz, size); 720 if (read(fd, bid->data, sz) == (ssize_t)sz) { 721 memset(bid->data + sz, 0, size - sz); 722 bid->size = sz; 723 err = 0; 724 break; 725 } 726 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 727 break; 728 } else { 729 int n = namesz + descsz; 730 731 if (n > (int)sizeof(bf)) { 732 n = sizeof(bf); 733 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 734 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 735 } 736 if (read(fd, bf, n) != n) 737 break; 738 } 739 } 740 close(fd); 741 out: 742 return err; 743 } 744 745 #ifdef HAVE_LIBBFD_SUPPORT 746 747 int filename__read_debuglink(const char *filename, char *debuglink, 748 size_t size) 749 { 750 int err = -1; 751 asection *section; 752 bfd *abfd; 753 754 abfd = bfd_openr(filename, NULL); 755 if (!abfd) 756 return -1; 757 758 if (!bfd_check_format(abfd, bfd_object)) { 759 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 760 goto out_close; 761 } 762 763 section = bfd_get_section_by_name(abfd, ".gnu_debuglink"); 764 if (!section) 765 goto out_close; 766 767 if (section->size > size) 768 goto out_close; 769 770 if (!bfd_get_section_contents(abfd, section, debuglink, 0, 771 section->size)) 772 goto out_close; 773 774 err = 0; 775 776 out_close: 777 bfd_close(abfd); 778 return err; 779 } 780 781 #else 782 783 int filename__read_debuglink(const char *filename, char *debuglink, 784 size_t size) 785 { 786 int fd, err = -1; 787 Elf *elf; 788 GElf_Ehdr ehdr; 789 GElf_Shdr shdr; 790 Elf_Data *data; 791 Elf_Scn *sec; 792 Elf_Kind ek; 793 794 fd = open(filename, O_RDONLY); 795 if (fd < 0) 796 goto out; 797 798 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 799 if (elf == NULL) { 800 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 801 goto out_close; 802 } 803 804 ek = elf_kind(elf); 805 if (ek != ELF_K_ELF) 806 goto out_elf_end; 807 808 if (gelf_getehdr(elf, &ehdr) == NULL) { 809 pr_err("%s: cannot get elf header.\n", __func__); 810 goto out_elf_end; 811 } 812 813 sec = elf_section_by_name(elf, &ehdr, &shdr, 814 ".gnu_debuglink", NULL); 815 if (sec == NULL) 816 goto out_elf_end; 817 818 data = elf_getdata(sec, NULL); 819 if (data == NULL) 820 goto out_elf_end; 821 822 /* the start of this section is a zero-terminated string */ 823 strncpy(debuglink, data->d_buf, size); 824 825 err = 0; 826 827 out_elf_end: 828 elf_end(elf); 829 out_close: 830 close(fd); 831 out: 832 return err; 833 } 834 835 #endif 836 837 static int dso__swap_init(struct dso *dso, unsigned char eidata) 838 { 839 static unsigned int const endian = 1; 840 841 dso->needs_swap = DSO_SWAP__NO; 842 843 switch (eidata) { 844 case ELFDATA2LSB: 845 /* We are big endian, DSO is little endian. */ 846 if (*(unsigned char const *)&endian != 1) 847 dso->needs_swap = DSO_SWAP__YES; 848 break; 849 850 case ELFDATA2MSB: 851 /* We are little endian, DSO is big endian. */ 852 if (*(unsigned char const *)&endian != 0) 853 dso->needs_swap = DSO_SWAP__YES; 854 break; 855 856 default: 857 pr_err("unrecognized DSO data encoding %d\n", eidata); 858 return -EINVAL; 859 } 860 861 return 0; 862 } 863 864 bool symsrc__possibly_runtime(struct symsrc *ss) 865 { 866 return ss->dynsym || ss->opdsec; 867 } 868 869 bool symsrc__has_symtab(struct symsrc *ss) 870 { 871 return ss->symtab != NULL; 872 } 873 874 void symsrc__destroy(struct symsrc *ss) 875 { 876 zfree(&ss->name); 877 elf_end(ss->elf); 878 close(ss->fd); 879 } 880 881 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 882 { 883 /* 884 * Usually vmlinux is an ELF file with type ET_EXEC for most 885 * architectures; except Arm64 kernel is linked with option 886 * '-share', so need to check type ET_DYN. 887 */ 888 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 889 ehdr.e_type == ET_DYN; 890 } 891 892 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 893 enum dso_binary_type type) 894 { 895 GElf_Ehdr ehdr; 896 Elf *elf; 897 int fd; 898 899 if (dso__needs_decompress(dso)) { 900 fd = dso__decompress_kmodule_fd(dso, name); 901 if (fd < 0) 902 return -1; 903 904 type = dso->symtab_type; 905 } else { 906 fd = open(name, O_RDONLY); 907 if (fd < 0) { 908 dso->load_errno = errno; 909 return -1; 910 } 911 } 912 913 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 914 if (elf == NULL) { 915 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 916 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 917 goto out_close; 918 } 919 920 if (gelf_getehdr(elf, &ehdr) == NULL) { 921 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 922 pr_debug("%s: cannot get elf header.\n", __func__); 923 goto out_elf_end; 924 } 925 926 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 927 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR; 928 goto out_elf_end; 929 } 930 931 /* Always reject images with a mismatched build-id: */ 932 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) { 933 u8 build_id[BUILD_ID_SIZE]; 934 struct build_id bid; 935 int size; 936 937 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE); 938 if (size <= 0) { 939 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 940 goto out_elf_end; 941 } 942 943 build_id__init(&bid, build_id, size); 944 if (!dso__build_id_equal(dso, &bid)) { 945 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 946 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 947 goto out_elf_end; 948 } 949 } 950 951 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 952 953 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 954 NULL); 955 if (ss->symshdr.sh_type != SHT_SYMTAB) 956 ss->symtab = NULL; 957 958 ss->dynsym_idx = 0; 959 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 960 &ss->dynsym_idx); 961 if (ss->dynshdr.sh_type != SHT_DYNSYM) 962 ss->dynsym = NULL; 963 964 ss->opdidx = 0; 965 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 966 &ss->opdidx); 967 if (ss->opdshdr.sh_type != SHT_PROGBITS) 968 ss->opdsec = NULL; 969 970 if (dso->kernel == DSO_SPACE__USER) 971 ss->adjust_symbols = true; 972 else 973 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 974 975 ss->name = strdup(name); 976 if (!ss->name) { 977 dso->load_errno = errno; 978 goto out_elf_end; 979 } 980 981 ss->elf = elf; 982 ss->fd = fd; 983 ss->ehdr = ehdr; 984 ss->type = type; 985 986 return 0; 987 988 out_elf_end: 989 elf_end(elf); 990 out_close: 991 close(fd); 992 return -1; 993 } 994 995 /** 996 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 997 * @kmap: kernel maps and relocation reference symbol 998 * 999 * This function returns %true if we are dealing with the kernel maps and the 1000 * relocation reference symbol has not yet been found. Otherwise %false is 1001 * returned. 1002 */ 1003 static bool ref_reloc_sym_not_found(struct kmap *kmap) 1004 { 1005 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 1006 !kmap->ref_reloc_sym->unrelocated_addr; 1007 } 1008 1009 /** 1010 * ref_reloc - kernel relocation offset. 1011 * @kmap: kernel maps and relocation reference symbol 1012 * 1013 * This function returns the offset of kernel addresses as determined by using 1014 * the relocation reference symbol i.e. if the kernel has not been relocated 1015 * then the return value is zero. 1016 */ 1017 static u64 ref_reloc(struct kmap *kmap) 1018 { 1019 if (kmap && kmap->ref_reloc_sym && 1020 kmap->ref_reloc_sym->unrelocated_addr) 1021 return kmap->ref_reloc_sym->addr - 1022 kmap->ref_reloc_sym->unrelocated_addr; 1023 return 0; 1024 } 1025 1026 void __weak arch__sym_update(struct symbol *s __maybe_unused, 1027 GElf_Sym *sym __maybe_unused) { } 1028 1029 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 1030 GElf_Sym *sym, GElf_Shdr *shdr, 1031 struct maps *kmaps, struct kmap *kmap, 1032 struct dso **curr_dsop, struct map **curr_mapp, 1033 const char *section_name, 1034 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel) 1035 { 1036 struct dso *curr_dso = *curr_dsop; 1037 struct map *curr_map; 1038 char dso_name[PATH_MAX]; 1039 1040 /* Adjust symbol to map to file offset */ 1041 if (adjust_kernel_syms) 1042 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 1043 1044 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0) 1045 return 0; 1046 1047 if (strcmp(section_name, ".text") == 0) { 1048 /* 1049 * The initial kernel mapping is based on 1050 * kallsyms and identity maps. Overwrite it to 1051 * map to the kernel dso. 1052 */ 1053 if (*remap_kernel && dso->kernel && !kmodule) { 1054 *remap_kernel = false; 1055 map->start = shdr->sh_addr + ref_reloc(kmap); 1056 map->end = map->start + shdr->sh_size; 1057 map->pgoff = shdr->sh_offset; 1058 map->map_ip = map__map_ip; 1059 map->unmap_ip = map__unmap_ip; 1060 /* Ensure maps are correctly ordered */ 1061 if (kmaps) { 1062 map__get(map); 1063 maps__remove(kmaps, map); 1064 maps__insert(kmaps, map); 1065 map__put(map); 1066 } 1067 } 1068 1069 /* 1070 * The initial module mapping is based on 1071 * /proc/modules mapped to offset zero. 1072 * Overwrite it to map to the module dso. 1073 */ 1074 if (*remap_kernel && kmodule) { 1075 *remap_kernel = false; 1076 map->pgoff = shdr->sh_offset; 1077 } 1078 1079 *curr_mapp = map; 1080 *curr_dsop = dso; 1081 return 0; 1082 } 1083 1084 if (!kmap) 1085 return 0; 1086 1087 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name); 1088 1089 curr_map = maps__find_by_name(kmaps, dso_name); 1090 if (curr_map == NULL) { 1091 u64 start = sym->st_value; 1092 1093 if (kmodule) 1094 start += map->start + shdr->sh_offset; 1095 1096 curr_dso = dso__new(dso_name); 1097 if (curr_dso == NULL) 1098 return -1; 1099 curr_dso->kernel = dso->kernel; 1100 curr_dso->long_name = dso->long_name; 1101 curr_dso->long_name_len = dso->long_name_len; 1102 curr_map = map__new2(start, curr_dso); 1103 dso__put(curr_dso); 1104 if (curr_map == NULL) 1105 return -1; 1106 1107 if (curr_dso->kernel) 1108 map__kmap(curr_map)->kmaps = kmaps; 1109 1110 if (adjust_kernel_syms) { 1111 curr_map->start = shdr->sh_addr + ref_reloc(kmap); 1112 curr_map->end = curr_map->start + shdr->sh_size; 1113 curr_map->pgoff = shdr->sh_offset; 1114 } else { 1115 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip; 1116 } 1117 curr_dso->symtab_type = dso->symtab_type; 1118 maps__insert(kmaps, curr_map); 1119 /* 1120 * Add it before we drop the reference to curr_map, i.e. while 1121 * we still are sure to have a reference to this DSO via 1122 * *curr_map->dso. 1123 */ 1124 dsos__add(&kmaps->machine->dsos, curr_dso); 1125 /* kmaps already got it */ 1126 map__put(curr_map); 1127 dso__set_loaded(curr_dso); 1128 *curr_mapp = curr_map; 1129 *curr_dsop = curr_dso; 1130 } else 1131 *curr_dsop = curr_map->dso; 1132 1133 return 0; 1134 } 1135 1136 static int 1137 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1138 struct symsrc *runtime_ss, int kmodule, int dynsym) 1139 { 1140 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL; 1141 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 1142 struct map *curr_map = map; 1143 struct dso *curr_dso = dso; 1144 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym; 1145 uint32_t nr_syms; 1146 int err = -1; 1147 uint32_t idx; 1148 GElf_Ehdr ehdr; 1149 GElf_Shdr shdr; 1150 GElf_Shdr tshdr; 1151 Elf_Data *syms, *opddata = NULL; 1152 GElf_Sym sym; 1153 Elf_Scn *sec, *sec_strndx; 1154 Elf *elf; 1155 int nr = 0; 1156 bool remap_kernel = false, adjust_kernel_syms = false; 1157 1158 if (kmap && !kmaps) 1159 return -1; 1160 1161 elf = syms_ss->elf; 1162 ehdr = syms_ss->ehdr; 1163 if (dynsym) { 1164 sec = syms_ss->dynsym; 1165 shdr = syms_ss->dynshdr; 1166 } else { 1167 sec = syms_ss->symtab; 1168 shdr = syms_ss->symshdr; 1169 } 1170 1171 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1172 ".text", NULL)) 1173 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset; 1174 1175 if (runtime_ss->opdsec) 1176 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1177 1178 syms = elf_getdata(sec, NULL); 1179 if (syms == NULL) 1180 goto out_elf_end; 1181 1182 sec = elf_getscn(elf, shdr.sh_link); 1183 if (sec == NULL) 1184 goto out_elf_end; 1185 1186 symstrs = elf_getdata(sec, NULL); 1187 if (symstrs == NULL) 1188 goto out_elf_end; 1189 1190 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1191 if (sec_strndx == NULL) 1192 goto out_elf_end; 1193 1194 secstrs_run = elf_getdata(sec_strndx, NULL); 1195 if (secstrs_run == NULL) 1196 goto out_elf_end; 1197 1198 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx); 1199 if (sec_strndx == NULL) 1200 goto out_elf_end; 1201 1202 secstrs_sym = elf_getdata(sec_strndx, NULL); 1203 if (secstrs_sym == NULL) 1204 goto out_elf_end; 1205 1206 nr_syms = shdr.sh_size / shdr.sh_entsize; 1207 1208 memset(&sym, 0, sizeof(sym)); 1209 1210 /* 1211 * The kernel relocation symbol is needed in advance in order to adjust 1212 * kernel maps correctly. 1213 */ 1214 if (ref_reloc_sym_not_found(kmap)) { 1215 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1216 const char *elf_name = elf_sym__name(&sym, symstrs); 1217 1218 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1219 continue; 1220 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1221 map->reloc = kmap->ref_reloc_sym->addr - 1222 kmap->ref_reloc_sym->unrelocated_addr; 1223 break; 1224 } 1225 } 1226 1227 /* 1228 * Handle any relocation of vdso necessary because older kernels 1229 * attempted to prelink vdso to its virtual address. 1230 */ 1231 if (dso__is_vdso(dso)) 1232 map->reloc = map->start - dso->text_offset; 1233 1234 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap); 1235 /* 1236 * Initial kernel and module mappings do not map to the dso. 1237 * Flag the fixups. 1238 */ 1239 if (dso->kernel) { 1240 remap_kernel = true; 1241 adjust_kernel_syms = dso->adjust_symbols; 1242 } 1243 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1244 struct symbol *f; 1245 const char *elf_name = elf_sym__name(&sym, symstrs); 1246 char *demangled = NULL; 1247 int is_label = elf_sym__is_label(&sym); 1248 const char *section_name; 1249 bool used_opd = false; 1250 1251 if (!is_label && !elf_sym__filter(&sym)) 1252 continue; 1253 1254 /* Reject ARM ELF "mapping symbols": these aren't unique and 1255 * don't identify functions, so will confuse the profile 1256 * output: */ 1257 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1258 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1259 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1260 continue; 1261 } 1262 1263 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1264 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1265 u64 *opd = opddata->d_buf + offset; 1266 sym.st_value = DSO__SWAP(dso, u64, *opd); 1267 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1268 sym.st_value); 1269 used_opd = true; 1270 } 1271 1272 /* 1273 * When loading symbols in a data mapping, ABS symbols (which 1274 * has a value of SHN_ABS in its st_shndx) failed at 1275 * elf_getscn(). And it marks the loading as a failure so 1276 * already loaded symbols cannot be fixed up. 1277 * 1278 * I'm not sure what should be done. Just ignore them for now. 1279 * - Namhyung Kim 1280 */ 1281 if (sym.st_shndx == SHN_ABS) 1282 continue; 1283 1284 sec = elf_getscn(syms_ss->elf, sym.st_shndx); 1285 if (!sec) 1286 goto out_elf_end; 1287 1288 gelf_getshdr(sec, &shdr); 1289 1290 /* 1291 * If the attribute bit SHF_ALLOC is not set, the section 1292 * doesn't occupy memory during process execution. 1293 * E.g. ".gnu.warning.*" section is used by linker to generate 1294 * warnings when calling deprecated functions, the symbols in 1295 * the section aren't loaded to memory during process execution, 1296 * so skip them. 1297 */ 1298 if (!(shdr.sh_flags & SHF_ALLOC)) 1299 continue; 1300 1301 secstrs = secstrs_sym; 1302 1303 /* 1304 * We have to fallback to runtime when syms' section header has 1305 * NOBITS set. NOBITS results in file offset (sh_offset) not 1306 * being incremented. So sh_offset used below has different 1307 * values for syms (invalid) and runtime (valid). 1308 */ 1309 if (shdr.sh_type == SHT_NOBITS) { 1310 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1311 if (!sec) 1312 goto out_elf_end; 1313 1314 gelf_getshdr(sec, &shdr); 1315 secstrs = secstrs_run; 1316 } 1317 1318 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1319 continue; 1320 1321 section_name = elf_sec__name(&shdr, secstrs); 1322 1323 /* On ARM, symbols for thumb functions have 1 added to 1324 * the symbol address as a flag - remove it */ 1325 if ((ehdr.e_machine == EM_ARM) && 1326 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1327 (sym.st_value & 1)) 1328 --sym.st_value; 1329 1330 if (dso->kernel) { 1331 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map, 1332 section_name, adjust_kernel_syms, kmodule, &remap_kernel)) 1333 goto out_elf_end; 1334 } else if ((used_opd && runtime_ss->adjust_symbols) || 1335 (!used_opd && syms_ss->adjust_symbols)) { 1336 GElf_Phdr phdr; 1337 1338 if (elf_read_program_header(runtime_ss->elf, 1339 (u64)sym.st_value, &phdr)) { 1340 pr_debug4("%s: failed to find program header for " 1341 "symbol: %s st_value: %#" PRIx64 "\n", 1342 __func__, elf_name, (u64)sym.st_value); 1343 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1344 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", 1345 __func__, (u64)sym.st_value, (u64)shdr.sh_addr, 1346 (u64)shdr.sh_offset); 1347 /* 1348 * Fail to find program header, let's rollback 1349 * to use shdr.sh_addr and shdr.sh_offset to 1350 * calibrate symbol's file address, though this 1351 * is not necessary for normal C ELF file, we 1352 * still need to handle java JIT symbols in this 1353 * case. 1354 */ 1355 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1356 } else { 1357 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1358 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n", 1359 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr, 1360 (u64)phdr.p_offset); 1361 sym.st_value -= phdr.p_vaddr - phdr.p_offset; 1362 } 1363 } 1364 1365 demangled = demangle_sym(dso, kmodule, elf_name); 1366 if (demangled != NULL) 1367 elf_name = demangled; 1368 1369 f = symbol__new(sym.st_value, sym.st_size, 1370 GELF_ST_BIND(sym.st_info), 1371 GELF_ST_TYPE(sym.st_info), elf_name); 1372 free(demangled); 1373 if (!f) 1374 goto out_elf_end; 1375 1376 arch__sym_update(f, &sym); 1377 1378 __symbols__insert(&curr_dso->symbols, f, dso->kernel); 1379 nr++; 1380 } 1381 1382 /* 1383 * For misannotated, zeroed, ASM function sizes. 1384 */ 1385 if (nr > 0) { 1386 symbols__fixup_end(&dso->symbols, false); 1387 symbols__fixup_duplicate(&dso->symbols); 1388 if (kmap) { 1389 /* 1390 * We need to fixup this here too because we create new 1391 * maps here, for things like vsyscall sections. 1392 */ 1393 maps__fixup_end(kmaps); 1394 } 1395 } 1396 err = nr; 1397 out_elf_end: 1398 return err; 1399 } 1400 1401 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1402 struct symsrc *runtime_ss, int kmodule) 1403 { 1404 int nr = 0; 1405 int err = -1; 1406 1407 dso->symtab_type = syms_ss->type; 1408 dso->is_64_bit = syms_ss->is_64_bit; 1409 dso->rel = syms_ss->ehdr.e_type == ET_REL; 1410 1411 /* 1412 * Modules may already have symbols from kallsyms, but those symbols 1413 * have the wrong values for the dso maps, so remove them. 1414 */ 1415 if (kmodule && syms_ss->symtab) 1416 symbols__delete(&dso->symbols); 1417 1418 if (!syms_ss->symtab) { 1419 /* 1420 * If the vmlinux is stripped, fail so we will fall back 1421 * to using kallsyms. The vmlinux runtime symbols aren't 1422 * of much use. 1423 */ 1424 if (dso->kernel) 1425 return err; 1426 } else { 1427 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1428 kmodule, 0); 1429 if (err < 0) 1430 return err; 1431 nr = err; 1432 } 1433 1434 if (syms_ss->dynsym) { 1435 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1436 kmodule, 1); 1437 if (err < 0) 1438 return err; 1439 err += nr; 1440 } 1441 1442 return err; 1443 } 1444 1445 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1446 { 1447 GElf_Phdr phdr; 1448 size_t i, phdrnum; 1449 int err; 1450 u64 sz; 1451 1452 if (elf_getphdrnum(elf, &phdrnum)) 1453 return -1; 1454 1455 for (i = 0; i < phdrnum; i++) { 1456 if (gelf_getphdr(elf, i, &phdr) == NULL) 1457 return -1; 1458 if (phdr.p_type != PT_LOAD) 1459 continue; 1460 if (exe) { 1461 if (!(phdr.p_flags & PF_X)) 1462 continue; 1463 } else { 1464 if (!(phdr.p_flags & PF_R)) 1465 continue; 1466 } 1467 sz = min(phdr.p_memsz, phdr.p_filesz); 1468 if (!sz) 1469 continue; 1470 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1471 if (err) 1472 return err; 1473 } 1474 return 0; 1475 } 1476 1477 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1478 bool *is_64_bit) 1479 { 1480 int err; 1481 Elf *elf; 1482 1483 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1484 if (elf == NULL) 1485 return -1; 1486 1487 if (is_64_bit) 1488 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1489 1490 err = elf_read_maps(elf, exe, mapfn, data); 1491 1492 elf_end(elf); 1493 return err; 1494 } 1495 1496 enum dso_type dso__type_fd(int fd) 1497 { 1498 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1499 GElf_Ehdr ehdr; 1500 Elf_Kind ek; 1501 Elf *elf; 1502 1503 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1504 if (elf == NULL) 1505 goto out; 1506 1507 ek = elf_kind(elf); 1508 if (ek != ELF_K_ELF) 1509 goto out_end; 1510 1511 if (gelf_getclass(elf) == ELFCLASS64) { 1512 dso_type = DSO__TYPE_64BIT; 1513 goto out_end; 1514 } 1515 1516 if (gelf_getehdr(elf, &ehdr) == NULL) 1517 goto out_end; 1518 1519 if (ehdr.e_machine == EM_X86_64) 1520 dso_type = DSO__TYPE_X32BIT; 1521 else 1522 dso_type = DSO__TYPE_32BIT; 1523 out_end: 1524 elf_end(elf); 1525 out: 1526 return dso_type; 1527 } 1528 1529 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1530 { 1531 ssize_t r; 1532 size_t n; 1533 int err = -1; 1534 char *buf = malloc(page_size); 1535 1536 if (buf == NULL) 1537 return -1; 1538 1539 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1540 goto out; 1541 1542 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1543 goto out; 1544 1545 while (len) { 1546 n = page_size; 1547 if (len < n) 1548 n = len; 1549 /* Use read because mmap won't work on proc files */ 1550 r = read(from, buf, n); 1551 if (r < 0) 1552 goto out; 1553 if (!r) 1554 break; 1555 n = r; 1556 r = write(to, buf, n); 1557 if (r < 0) 1558 goto out; 1559 if ((size_t)r != n) 1560 goto out; 1561 len -= n; 1562 } 1563 1564 err = 0; 1565 out: 1566 free(buf); 1567 return err; 1568 } 1569 1570 struct kcore { 1571 int fd; 1572 int elfclass; 1573 Elf *elf; 1574 GElf_Ehdr ehdr; 1575 }; 1576 1577 static int kcore__open(struct kcore *kcore, const char *filename) 1578 { 1579 GElf_Ehdr *ehdr; 1580 1581 kcore->fd = open(filename, O_RDONLY); 1582 if (kcore->fd == -1) 1583 return -1; 1584 1585 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 1586 if (!kcore->elf) 1587 goto out_close; 1588 1589 kcore->elfclass = gelf_getclass(kcore->elf); 1590 if (kcore->elfclass == ELFCLASSNONE) 1591 goto out_end; 1592 1593 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 1594 if (!ehdr) 1595 goto out_end; 1596 1597 return 0; 1598 1599 out_end: 1600 elf_end(kcore->elf); 1601 out_close: 1602 close(kcore->fd); 1603 return -1; 1604 } 1605 1606 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 1607 bool temp) 1608 { 1609 kcore->elfclass = elfclass; 1610 1611 if (temp) 1612 kcore->fd = mkstemp(filename); 1613 else 1614 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 1615 if (kcore->fd == -1) 1616 return -1; 1617 1618 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 1619 if (!kcore->elf) 1620 goto out_close; 1621 1622 if (!gelf_newehdr(kcore->elf, elfclass)) 1623 goto out_end; 1624 1625 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 1626 1627 return 0; 1628 1629 out_end: 1630 elf_end(kcore->elf); 1631 out_close: 1632 close(kcore->fd); 1633 unlink(filename); 1634 return -1; 1635 } 1636 1637 static void kcore__close(struct kcore *kcore) 1638 { 1639 elf_end(kcore->elf); 1640 close(kcore->fd); 1641 } 1642 1643 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 1644 { 1645 GElf_Ehdr *ehdr = &to->ehdr; 1646 GElf_Ehdr *kehdr = &from->ehdr; 1647 1648 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 1649 ehdr->e_type = kehdr->e_type; 1650 ehdr->e_machine = kehdr->e_machine; 1651 ehdr->e_version = kehdr->e_version; 1652 ehdr->e_entry = 0; 1653 ehdr->e_shoff = 0; 1654 ehdr->e_flags = kehdr->e_flags; 1655 ehdr->e_phnum = count; 1656 ehdr->e_shentsize = 0; 1657 ehdr->e_shnum = 0; 1658 ehdr->e_shstrndx = 0; 1659 1660 if (from->elfclass == ELFCLASS32) { 1661 ehdr->e_phoff = sizeof(Elf32_Ehdr); 1662 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 1663 ehdr->e_phentsize = sizeof(Elf32_Phdr); 1664 } else { 1665 ehdr->e_phoff = sizeof(Elf64_Ehdr); 1666 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 1667 ehdr->e_phentsize = sizeof(Elf64_Phdr); 1668 } 1669 1670 if (!gelf_update_ehdr(to->elf, ehdr)) 1671 return -1; 1672 1673 if (!gelf_newphdr(to->elf, count)) 1674 return -1; 1675 1676 return 0; 1677 } 1678 1679 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 1680 u64 addr, u64 len) 1681 { 1682 GElf_Phdr phdr = { 1683 .p_type = PT_LOAD, 1684 .p_flags = PF_R | PF_W | PF_X, 1685 .p_offset = offset, 1686 .p_vaddr = addr, 1687 .p_paddr = 0, 1688 .p_filesz = len, 1689 .p_memsz = len, 1690 .p_align = page_size, 1691 }; 1692 1693 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 1694 return -1; 1695 1696 return 0; 1697 } 1698 1699 static off_t kcore__write(struct kcore *kcore) 1700 { 1701 return elf_update(kcore->elf, ELF_C_WRITE); 1702 } 1703 1704 struct phdr_data { 1705 off_t offset; 1706 off_t rel; 1707 u64 addr; 1708 u64 len; 1709 struct list_head node; 1710 struct phdr_data *remaps; 1711 }; 1712 1713 struct sym_data { 1714 u64 addr; 1715 struct list_head node; 1716 }; 1717 1718 struct kcore_copy_info { 1719 u64 stext; 1720 u64 etext; 1721 u64 first_symbol; 1722 u64 last_symbol; 1723 u64 first_module; 1724 u64 first_module_symbol; 1725 u64 last_module_symbol; 1726 size_t phnum; 1727 struct list_head phdrs; 1728 struct list_head syms; 1729 }; 1730 1731 #define kcore_copy__for_each_phdr(k, p) \ 1732 list_for_each_entry((p), &(k)->phdrs, node) 1733 1734 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 1735 { 1736 struct phdr_data *p = zalloc(sizeof(*p)); 1737 1738 if (p) { 1739 p->addr = addr; 1740 p->len = len; 1741 p->offset = offset; 1742 } 1743 1744 return p; 1745 } 1746 1747 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 1748 u64 addr, u64 len, 1749 off_t offset) 1750 { 1751 struct phdr_data *p = phdr_data__new(addr, len, offset); 1752 1753 if (p) 1754 list_add_tail(&p->node, &kci->phdrs); 1755 1756 return p; 1757 } 1758 1759 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 1760 { 1761 struct phdr_data *p, *tmp; 1762 1763 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 1764 list_del_init(&p->node); 1765 free(p); 1766 } 1767 } 1768 1769 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 1770 u64 addr) 1771 { 1772 struct sym_data *s = zalloc(sizeof(*s)); 1773 1774 if (s) { 1775 s->addr = addr; 1776 list_add_tail(&s->node, &kci->syms); 1777 } 1778 1779 return s; 1780 } 1781 1782 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 1783 { 1784 struct sym_data *s, *tmp; 1785 1786 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 1787 list_del_init(&s->node); 1788 free(s); 1789 } 1790 } 1791 1792 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 1793 u64 start) 1794 { 1795 struct kcore_copy_info *kci = arg; 1796 1797 if (!kallsyms__is_function(type)) 1798 return 0; 1799 1800 if (strchr(name, '[')) { 1801 if (!kci->first_module_symbol || start < kci->first_module_symbol) 1802 kci->first_module_symbol = start; 1803 if (start > kci->last_module_symbol) 1804 kci->last_module_symbol = start; 1805 return 0; 1806 } 1807 1808 if (!kci->first_symbol || start < kci->first_symbol) 1809 kci->first_symbol = start; 1810 1811 if (!kci->last_symbol || start > kci->last_symbol) 1812 kci->last_symbol = start; 1813 1814 if (!strcmp(name, "_stext")) { 1815 kci->stext = start; 1816 return 0; 1817 } 1818 1819 if (!strcmp(name, "_etext")) { 1820 kci->etext = start; 1821 return 0; 1822 } 1823 1824 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 1825 return -1; 1826 1827 return 0; 1828 } 1829 1830 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 1831 const char *dir) 1832 { 1833 char kallsyms_filename[PATH_MAX]; 1834 1835 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 1836 1837 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 1838 return -1; 1839 1840 if (kallsyms__parse(kallsyms_filename, kci, 1841 kcore_copy__process_kallsyms) < 0) 1842 return -1; 1843 1844 return 0; 1845 } 1846 1847 static int kcore_copy__process_modules(void *arg, 1848 const char *name __maybe_unused, 1849 u64 start, u64 size __maybe_unused) 1850 { 1851 struct kcore_copy_info *kci = arg; 1852 1853 if (!kci->first_module || start < kci->first_module) 1854 kci->first_module = start; 1855 1856 return 0; 1857 } 1858 1859 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 1860 const char *dir) 1861 { 1862 char modules_filename[PATH_MAX]; 1863 1864 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 1865 1866 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 1867 return -1; 1868 1869 if (modules__parse(modules_filename, kci, 1870 kcore_copy__process_modules) < 0) 1871 return -1; 1872 1873 return 0; 1874 } 1875 1876 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 1877 u64 pgoff, u64 s, u64 e) 1878 { 1879 u64 len, offset; 1880 1881 if (s < start || s >= end) 1882 return 0; 1883 1884 offset = (s - start) + pgoff; 1885 len = e < end ? e - s : end - s; 1886 1887 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 1888 } 1889 1890 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 1891 { 1892 struct kcore_copy_info *kci = data; 1893 u64 end = start + len; 1894 struct sym_data *sdat; 1895 1896 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 1897 return -1; 1898 1899 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 1900 kci->last_module_symbol)) 1901 return -1; 1902 1903 list_for_each_entry(sdat, &kci->syms, node) { 1904 u64 s = round_down(sdat->addr, page_size); 1905 1906 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 1907 return -1; 1908 } 1909 1910 return 0; 1911 } 1912 1913 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 1914 { 1915 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 1916 return -1; 1917 1918 return 0; 1919 } 1920 1921 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 1922 { 1923 struct phdr_data *p, *k = NULL; 1924 u64 kend; 1925 1926 if (!kci->stext) 1927 return; 1928 1929 /* Find phdr that corresponds to the kernel map (contains stext) */ 1930 kcore_copy__for_each_phdr(kci, p) { 1931 u64 pend = p->addr + p->len - 1; 1932 1933 if (p->addr <= kci->stext && pend >= kci->stext) { 1934 k = p; 1935 break; 1936 } 1937 } 1938 1939 if (!k) 1940 return; 1941 1942 kend = k->offset + k->len; 1943 1944 /* Find phdrs that remap the kernel */ 1945 kcore_copy__for_each_phdr(kci, p) { 1946 u64 pend = p->offset + p->len; 1947 1948 if (p == k) 1949 continue; 1950 1951 if (p->offset >= k->offset && pend <= kend) 1952 p->remaps = k; 1953 } 1954 } 1955 1956 static void kcore_copy__layout(struct kcore_copy_info *kci) 1957 { 1958 struct phdr_data *p; 1959 off_t rel = 0; 1960 1961 kcore_copy__find_remaps(kci); 1962 1963 kcore_copy__for_each_phdr(kci, p) { 1964 if (!p->remaps) { 1965 p->rel = rel; 1966 rel += p->len; 1967 } 1968 kci->phnum += 1; 1969 } 1970 1971 kcore_copy__for_each_phdr(kci, p) { 1972 struct phdr_data *k = p->remaps; 1973 1974 if (k) 1975 p->rel = p->offset - k->offset + k->rel; 1976 } 1977 } 1978 1979 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 1980 Elf *elf) 1981 { 1982 if (kcore_copy__parse_kallsyms(kci, dir)) 1983 return -1; 1984 1985 if (kcore_copy__parse_modules(kci, dir)) 1986 return -1; 1987 1988 if (kci->stext) 1989 kci->stext = round_down(kci->stext, page_size); 1990 else 1991 kci->stext = round_down(kci->first_symbol, page_size); 1992 1993 if (kci->etext) { 1994 kci->etext = round_up(kci->etext, page_size); 1995 } else if (kci->last_symbol) { 1996 kci->etext = round_up(kci->last_symbol, page_size); 1997 kci->etext += page_size; 1998 } 1999 2000 if (kci->first_module_symbol && 2001 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 2002 kci->first_module = kci->first_module_symbol; 2003 2004 kci->first_module = round_down(kci->first_module, page_size); 2005 2006 if (kci->last_module_symbol) { 2007 kci->last_module_symbol = round_up(kci->last_module_symbol, 2008 page_size); 2009 kci->last_module_symbol += page_size; 2010 } 2011 2012 if (!kci->stext || !kci->etext) 2013 return -1; 2014 2015 if (kci->first_module && !kci->last_module_symbol) 2016 return -1; 2017 2018 if (kcore_copy__read_maps(kci, elf)) 2019 return -1; 2020 2021 kcore_copy__layout(kci); 2022 2023 return 0; 2024 } 2025 2026 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 2027 const char *name) 2028 { 2029 char from_filename[PATH_MAX]; 2030 char to_filename[PATH_MAX]; 2031 2032 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2033 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2034 2035 return copyfile_mode(from_filename, to_filename, 0400); 2036 } 2037 2038 static int kcore_copy__unlink(const char *dir, const char *name) 2039 { 2040 char filename[PATH_MAX]; 2041 2042 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 2043 2044 return unlink(filename); 2045 } 2046 2047 static int kcore_copy__compare_fds(int from, int to) 2048 { 2049 char *buf_from; 2050 char *buf_to; 2051 ssize_t ret; 2052 size_t len; 2053 int err = -1; 2054 2055 buf_from = malloc(page_size); 2056 buf_to = malloc(page_size); 2057 if (!buf_from || !buf_to) 2058 goto out; 2059 2060 while (1) { 2061 /* Use read because mmap won't work on proc files */ 2062 ret = read(from, buf_from, page_size); 2063 if (ret < 0) 2064 goto out; 2065 2066 if (!ret) 2067 break; 2068 2069 len = ret; 2070 2071 if (readn(to, buf_to, len) != (int)len) 2072 goto out; 2073 2074 if (memcmp(buf_from, buf_to, len)) 2075 goto out; 2076 } 2077 2078 err = 0; 2079 out: 2080 free(buf_to); 2081 free(buf_from); 2082 return err; 2083 } 2084 2085 static int kcore_copy__compare_files(const char *from_filename, 2086 const char *to_filename) 2087 { 2088 int from, to, err = -1; 2089 2090 from = open(from_filename, O_RDONLY); 2091 if (from < 0) 2092 return -1; 2093 2094 to = open(to_filename, O_RDONLY); 2095 if (to < 0) 2096 goto out_close_from; 2097 2098 err = kcore_copy__compare_fds(from, to); 2099 2100 close(to); 2101 out_close_from: 2102 close(from); 2103 return err; 2104 } 2105 2106 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 2107 const char *name) 2108 { 2109 char from_filename[PATH_MAX]; 2110 char to_filename[PATH_MAX]; 2111 2112 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2113 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2114 2115 return kcore_copy__compare_files(from_filename, to_filename); 2116 } 2117 2118 /** 2119 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 2120 * @from_dir: from directory 2121 * @to_dir: to directory 2122 * 2123 * This function copies kallsyms, modules and kcore files from one directory to 2124 * another. kallsyms and modules are copied entirely. Only code segments are 2125 * copied from kcore. It is assumed that two segments suffice: one for the 2126 * kernel proper and one for all the modules. The code segments are determined 2127 * from kallsyms and modules files. The kernel map starts at _stext or the 2128 * lowest function symbol, and ends at _etext or the highest function symbol. 2129 * The module map starts at the lowest module address and ends at the highest 2130 * module symbol. Start addresses are rounded down to the nearest page. End 2131 * addresses are rounded up to the nearest page. An extra page is added to the 2132 * highest kernel symbol and highest module symbol to, hopefully, encompass that 2133 * symbol too. Because it contains only code sections, the resulting kcore is 2134 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 2135 * is not the same for the kernel map and the modules map. That happens because 2136 * the data is copied adjacently whereas the original kcore has gaps. Finally, 2137 * kallsyms file is compared with its copy to check that modules have not been 2138 * loaded or unloaded while the copies were taking place. 2139 * 2140 * Return: %0 on success, %-1 on failure. 2141 */ 2142 int kcore_copy(const char *from_dir, const char *to_dir) 2143 { 2144 struct kcore kcore; 2145 struct kcore extract; 2146 int idx = 0, err = -1; 2147 off_t offset, sz; 2148 struct kcore_copy_info kci = { .stext = 0, }; 2149 char kcore_filename[PATH_MAX]; 2150 char extract_filename[PATH_MAX]; 2151 struct phdr_data *p; 2152 2153 INIT_LIST_HEAD(&kci.phdrs); 2154 INIT_LIST_HEAD(&kci.syms); 2155 2156 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 2157 return -1; 2158 2159 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 2160 goto out_unlink_kallsyms; 2161 2162 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 2163 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 2164 2165 if (kcore__open(&kcore, kcore_filename)) 2166 goto out_unlink_modules; 2167 2168 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 2169 goto out_kcore_close; 2170 2171 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 2172 goto out_kcore_close; 2173 2174 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 2175 goto out_extract_close; 2176 2177 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 2178 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 2179 offset = round_up(offset, page_size); 2180 2181 kcore_copy__for_each_phdr(&kci, p) { 2182 off_t offs = p->rel + offset; 2183 2184 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 2185 goto out_extract_close; 2186 } 2187 2188 sz = kcore__write(&extract); 2189 if (sz < 0 || sz > offset) 2190 goto out_extract_close; 2191 2192 kcore_copy__for_each_phdr(&kci, p) { 2193 off_t offs = p->rel + offset; 2194 2195 if (p->remaps) 2196 continue; 2197 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 2198 goto out_extract_close; 2199 } 2200 2201 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 2202 goto out_extract_close; 2203 2204 err = 0; 2205 2206 out_extract_close: 2207 kcore__close(&extract); 2208 if (err) 2209 unlink(extract_filename); 2210 out_kcore_close: 2211 kcore__close(&kcore); 2212 out_unlink_modules: 2213 if (err) 2214 kcore_copy__unlink(to_dir, "modules"); 2215 out_unlink_kallsyms: 2216 if (err) 2217 kcore_copy__unlink(to_dir, "kallsyms"); 2218 2219 kcore_copy__free_phdrs(&kci); 2220 kcore_copy__free_syms(&kci); 2221 2222 return err; 2223 } 2224 2225 int kcore_extract__create(struct kcore_extract *kce) 2226 { 2227 struct kcore kcore; 2228 struct kcore extract; 2229 size_t count = 1; 2230 int idx = 0, err = -1; 2231 off_t offset = page_size, sz; 2232 2233 if (kcore__open(&kcore, kce->kcore_filename)) 2234 return -1; 2235 2236 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 2237 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 2238 goto out_kcore_close; 2239 2240 if (kcore__copy_hdr(&kcore, &extract, count)) 2241 goto out_extract_close; 2242 2243 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 2244 goto out_extract_close; 2245 2246 sz = kcore__write(&extract); 2247 if (sz < 0 || sz > offset) 2248 goto out_extract_close; 2249 2250 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 2251 goto out_extract_close; 2252 2253 err = 0; 2254 2255 out_extract_close: 2256 kcore__close(&extract); 2257 if (err) 2258 unlink(kce->extract_filename); 2259 out_kcore_close: 2260 kcore__close(&kcore); 2261 2262 return err; 2263 } 2264 2265 void kcore_extract__delete(struct kcore_extract *kce) 2266 { 2267 unlink(kce->extract_filename); 2268 } 2269 2270 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2271 2272 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2273 { 2274 if (!base_off) 2275 return; 2276 2277 if (tmp->bit32) 2278 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2279 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2280 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2281 else 2282 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2283 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2284 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2285 } 2286 2287 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2288 GElf_Addr base_off) 2289 { 2290 if (!base_off) 2291 return; 2292 2293 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2294 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2295 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2296 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2297 } 2298 2299 /** 2300 * populate_sdt_note : Parse raw data and identify SDT note 2301 * @elf: elf of the opened file 2302 * @data: raw data of a section with description offset applied 2303 * @len: note description size 2304 * @type: type of the note 2305 * @sdt_notes: List to add the SDT note 2306 * 2307 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2308 * if its an SDT note, it appends to @sdt_notes list. 2309 */ 2310 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2311 struct list_head *sdt_notes) 2312 { 2313 const char *provider, *name, *args; 2314 struct sdt_note *tmp = NULL; 2315 GElf_Ehdr ehdr; 2316 GElf_Shdr shdr; 2317 int ret = -EINVAL; 2318 2319 union { 2320 Elf64_Addr a64[NR_ADDR]; 2321 Elf32_Addr a32[NR_ADDR]; 2322 } buf; 2323 2324 Elf_Data dst = { 2325 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2326 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2327 .d_off = 0, .d_align = 0 2328 }; 2329 Elf_Data src = { 2330 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2331 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2332 .d_align = 0 2333 }; 2334 2335 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2336 if (!tmp) { 2337 ret = -ENOMEM; 2338 goto out_err; 2339 } 2340 2341 INIT_LIST_HEAD(&tmp->note_list); 2342 2343 if (len < dst.d_size + 3) 2344 goto out_free_note; 2345 2346 /* Translation from file representation to memory representation */ 2347 if (gelf_xlatetom(*elf, &dst, &src, 2348 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2349 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2350 goto out_free_note; 2351 } 2352 2353 /* Populate the fields of sdt_note */ 2354 provider = data + dst.d_size; 2355 2356 name = (const char *)memchr(provider, '\0', data + len - provider); 2357 if (name++ == NULL) 2358 goto out_free_note; 2359 2360 tmp->provider = strdup(provider); 2361 if (!tmp->provider) { 2362 ret = -ENOMEM; 2363 goto out_free_note; 2364 } 2365 tmp->name = strdup(name); 2366 if (!tmp->name) { 2367 ret = -ENOMEM; 2368 goto out_free_prov; 2369 } 2370 2371 args = memchr(name, '\0', data + len - name); 2372 2373 /* 2374 * There is no argument if: 2375 * - We reached the end of the note; 2376 * - There is not enough room to hold a potential string; 2377 * - The argument string is empty or just contains ':'. 2378 */ 2379 if (args == NULL || data + len - args < 2 || 2380 args[1] == ':' || args[1] == '\0') 2381 tmp->args = NULL; 2382 else { 2383 tmp->args = strdup(++args); 2384 if (!tmp->args) { 2385 ret = -ENOMEM; 2386 goto out_free_name; 2387 } 2388 } 2389 2390 if (gelf_getclass(*elf) == ELFCLASS32) { 2391 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2392 tmp->bit32 = true; 2393 } else { 2394 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2395 tmp->bit32 = false; 2396 } 2397 2398 if (!gelf_getehdr(*elf, &ehdr)) { 2399 pr_debug("%s : cannot get elf header.\n", __func__); 2400 ret = -EBADF; 2401 goto out_free_args; 2402 } 2403 2404 /* Adjust the prelink effect : 2405 * Find out the .stapsdt.base section. 2406 * This scn will help us to handle prelinking (if present). 2407 * Compare the retrieved file offset of the base section with the 2408 * base address in the description of the SDT note. If its different, 2409 * then accordingly, adjust the note location. 2410 */ 2411 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2412 sdt_adjust_loc(tmp, shdr.sh_offset); 2413 2414 /* Adjust reference counter offset */ 2415 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2416 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2417 2418 list_add_tail(&tmp->note_list, sdt_notes); 2419 return 0; 2420 2421 out_free_args: 2422 zfree(&tmp->args); 2423 out_free_name: 2424 zfree(&tmp->name); 2425 out_free_prov: 2426 zfree(&tmp->provider); 2427 out_free_note: 2428 free(tmp); 2429 out_err: 2430 return ret; 2431 } 2432 2433 /** 2434 * construct_sdt_notes_list : constructs a list of SDT notes 2435 * @elf : elf to look into 2436 * @sdt_notes : empty list_head 2437 * 2438 * Scans the sections in 'elf' for the section 2439 * .note.stapsdt. It, then calls populate_sdt_note to find 2440 * out the SDT events and populates the 'sdt_notes'. 2441 */ 2442 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2443 { 2444 GElf_Ehdr ehdr; 2445 Elf_Scn *scn = NULL; 2446 Elf_Data *data; 2447 GElf_Shdr shdr; 2448 size_t shstrndx, next; 2449 GElf_Nhdr nhdr; 2450 size_t name_off, desc_off, offset; 2451 int ret = 0; 2452 2453 if (gelf_getehdr(elf, &ehdr) == NULL) { 2454 ret = -EBADF; 2455 goto out_ret; 2456 } 2457 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2458 ret = -EBADF; 2459 goto out_ret; 2460 } 2461 2462 /* Look for the required section */ 2463 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2464 if (!scn) { 2465 ret = -ENOENT; 2466 goto out_ret; 2467 } 2468 2469 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2470 ret = -ENOENT; 2471 goto out_ret; 2472 } 2473 2474 data = elf_getdata(scn, NULL); 2475 2476 /* Get the SDT notes */ 2477 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2478 &desc_off)) > 0; offset = next) { 2479 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2480 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2481 sizeof(SDT_NOTE_NAME))) { 2482 /* Check the type of the note */ 2483 if (nhdr.n_type != SDT_NOTE_TYPE) 2484 goto out_ret; 2485 2486 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2487 nhdr.n_descsz, sdt_notes); 2488 if (ret < 0) 2489 goto out_ret; 2490 } 2491 } 2492 if (list_empty(sdt_notes)) 2493 ret = -ENOENT; 2494 2495 out_ret: 2496 return ret; 2497 } 2498 2499 /** 2500 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2501 * @head : empty list_head 2502 * @target : file to find SDT notes from 2503 * 2504 * This opens the file, initializes 2505 * the ELF and then calls construct_sdt_notes_list. 2506 */ 2507 int get_sdt_note_list(struct list_head *head, const char *target) 2508 { 2509 Elf *elf; 2510 int fd, ret; 2511 2512 fd = open(target, O_RDONLY); 2513 if (fd < 0) 2514 return -EBADF; 2515 2516 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2517 if (!elf) { 2518 ret = -EBADF; 2519 goto out_close; 2520 } 2521 ret = construct_sdt_notes_list(elf, head); 2522 elf_end(elf); 2523 out_close: 2524 close(fd); 2525 return ret; 2526 } 2527 2528 /** 2529 * cleanup_sdt_note_list : free the sdt notes' list 2530 * @sdt_notes: sdt notes' list 2531 * 2532 * Free up the SDT notes in @sdt_notes. 2533 * Returns the number of SDT notes free'd. 2534 */ 2535 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2536 { 2537 struct sdt_note *tmp, *pos; 2538 int nr_free = 0; 2539 2540 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2541 list_del_init(&pos->note_list); 2542 zfree(&pos->args); 2543 zfree(&pos->name); 2544 zfree(&pos->provider); 2545 free(pos); 2546 nr_free++; 2547 } 2548 return nr_free; 2549 } 2550 2551 /** 2552 * sdt_notes__get_count: Counts the number of sdt events 2553 * @start: list_head to sdt_notes list 2554 * 2555 * Returns the number of SDT notes in a list 2556 */ 2557 int sdt_notes__get_count(struct list_head *start) 2558 { 2559 struct sdt_note *sdt_ptr; 2560 int count = 0; 2561 2562 list_for_each_entry(sdt_ptr, start, note_list) 2563 count++; 2564 return count; 2565 } 2566 #endif 2567 2568 void symbol__elf_init(void) 2569 { 2570 elf_version(EV_CURRENT); 2571 } 2572