xref: /openbmc/linux/tools/perf/util/machine.c (revision 78eee7b5f110c9884c8ffd1dfcdd9c29296f3e43)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
37 
38 #include <linux/ctype.h>
39 #include <symbol/kallsyms.h>
40 #include <linux/mman.h>
41 #include <linux/string.h>
42 #include <linux/zalloc.h>
43 
44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45 
46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48 	return machine->vmlinux_map->dso;
49 }
50 
51 static void dsos__init(struct dsos *dsos)
52 {
53 	INIT_LIST_HEAD(&dsos->head);
54 	dsos->root = RB_ROOT;
55 	init_rwsem(&dsos->lock);
56 }
57 
58 static void machine__threads_init(struct machine *machine)
59 {
60 	int i;
61 
62 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 		struct threads *threads = &machine->threads[i];
64 		threads->entries = RB_ROOT_CACHED;
65 		init_rwsem(&threads->lock);
66 		threads->nr = 0;
67 		INIT_LIST_HEAD(&threads->dead);
68 		threads->last_match = NULL;
69 	}
70 }
71 
72 static int machine__set_mmap_name(struct machine *machine)
73 {
74 	if (machine__is_host(machine))
75 		machine->mmap_name = strdup("[kernel.kallsyms]");
76 	else if (machine__is_default_guest(machine))
77 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 			  machine->pid) < 0)
80 		machine->mmap_name = NULL;
81 
82 	return machine->mmap_name ? 0 : -ENOMEM;
83 }
84 
85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86 {
87 	int err = -ENOMEM;
88 
89 	memset(machine, 0, sizeof(*machine));
90 	maps__init(&machine->kmaps, machine);
91 	RB_CLEAR_NODE(&machine->rb_node);
92 	dsos__init(&machine->dsos);
93 
94 	machine__threads_init(machine);
95 
96 	machine->vdso_info = NULL;
97 	machine->env = NULL;
98 
99 	machine->pid = pid;
100 
101 	machine->id_hdr_size = 0;
102 	machine->kptr_restrict_warned = false;
103 	machine->comm_exec = false;
104 	machine->kernel_start = 0;
105 	machine->vmlinux_map = NULL;
106 
107 	machine->root_dir = strdup(root_dir);
108 	if (machine->root_dir == NULL)
109 		return -ENOMEM;
110 
111 	if (machine__set_mmap_name(machine))
112 		goto out;
113 
114 	if (pid != HOST_KERNEL_ID) {
115 		struct thread *thread = machine__findnew_thread(machine, -1,
116 								pid);
117 		char comm[64];
118 
119 		if (thread == NULL)
120 			goto out;
121 
122 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 		thread__set_comm(thread, comm, 0);
124 		thread__put(thread);
125 	}
126 
127 	machine->current_tid = NULL;
128 	err = 0;
129 
130 out:
131 	if (err) {
132 		zfree(&machine->root_dir);
133 		zfree(&machine->mmap_name);
134 	}
135 	return 0;
136 }
137 
138 struct machine *machine__new_host(void)
139 {
140 	struct machine *machine = malloc(sizeof(*machine));
141 
142 	if (machine != NULL) {
143 		machine__init(machine, "", HOST_KERNEL_ID);
144 
145 		if (machine__create_kernel_maps(machine) < 0)
146 			goto out_delete;
147 	}
148 
149 	return machine;
150 out_delete:
151 	free(machine);
152 	return NULL;
153 }
154 
155 struct machine *machine__new_kallsyms(void)
156 {
157 	struct machine *machine = machine__new_host();
158 	/*
159 	 * FIXME:
160 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 	 *    ask for not using the kcore parsing code, once this one is fixed
162 	 *    to create a map per module.
163 	 */
164 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 		machine__delete(machine);
166 		machine = NULL;
167 	}
168 
169 	return machine;
170 }
171 
172 static void dsos__purge(struct dsos *dsos)
173 {
174 	struct dso *pos, *n;
175 
176 	down_write(&dsos->lock);
177 
178 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 		RB_CLEAR_NODE(&pos->rb_node);
180 		pos->root = NULL;
181 		list_del_init(&pos->node);
182 		dso__put(pos);
183 	}
184 
185 	up_write(&dsos->lock);
186 }
187 
188 static void dsos__exit(struct dsos *dsos)
189 {
190 	dsos__purge(dsos);
191 	exit_rwsem(&dsos->lock);
192 }
193 
194 void machine__delete_threads(struct machine *machine)
195 {
196 	struct rb_node *nd;
197 	int i;
198 
199 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 		struct threads *threads = &machine->threads[i];
201 		down_write(&threads->lock);
202 		nd = rb_first_cached(&threads->entries);
203 		while (nd) {
204 			struct thread *t = rb_entry(nd, struct thread, rb_node);
205 
206 			nd = rb_next(nd);
207 			__machine__remove_thread(machine, t, false);
208 		}
209 		up_write(&threads->lock);
210 	}
211 }
212 
213 void machine__exit(struct machine *machine)
214 {
215 	int i;
216 
217 	if (machine == NULL)
218 		return;
219 
220 	machine__destroy_kernel_maps(machine);
221 	maps__exit(&machine->kmaps);
222 	dsos__exit(&machine->dsos);
223 	machine__exit_vdso(machine);
224 	zfree(&machine->root_dir);
225 	zfree(&machine->mmap_name);
226 	zfree(&machine->current_tid);
227 
228 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 		struct threads *threads = &machine->threads[i];
230 		struct thread *thread, *n;
231 		/*
232 		 * Forget about the dead, at this point whatever threads were
233 		 * left in the dead lists better have a reference count taken
234 		 * by who is using them, and then, when they drop those references
235 		 * and it finally hits zero, thread__put() will check and see that
236 		 * its not in the dead threads list and will not try to remove it
237 		 * from there, just calling thread__delete() straight away.
238 		 */
239 		list_for_each_entry_safe(thread, n, &threads->dead, node)
240 			list_del_init(&thread->node);
241 
242 		exit_rwsem(&threads->lock);
243 	}
244 }
245 
246 void machine__delete(struct machine *machine)
247 {
248 	if (machine) {
249 		machine__exit(machine);
250 		free(machine);
251 	}
252 }
253 
254 void machines__init(struct machines *machines)
255 {
256 	machine__init(&machines->host, "", HOST_KERNEL_ID);
257 	machines->guests = RB_ROOT_CACHED;
258 }
259 
260 void machines__exit(struct machines *machines)
261 {
262 	machine__exit(&machines->host);
263 	/* XXX exit guest */
264 }
265 
266 struct machine *machines__add(struct machines *machines, pid_t pid,
267 			      const char *root_dir)
268 {
269 	struct rb_node **p = &machines->guests.rb_root.rb_node;
270 	struct rb_node *parent = NULL;
271 	struct machine *pos, *machine = malloc(sizeof(*machine));
272 	bool leftmost = true;
273 
274 	if (machine == NULL)
275 		return NULL;
276 
277 	if (machine__init(machine, root_dir, pid) != 0) {
278 		free(machine);
279 		return NULL;
280 	}
281 
282 	while (*p != NULL) {
283 		parent = *p;
284 		pos = rb_entry(parent, struct machine, rb_node);
285 		if (pid < pos->pid)
286 			p = &(*p)->rb_left;
287 		else {
288 			p = &(*p)->rb_right;
289 			leftmost = false;
290 		}
291 	}
292 
293 	rb_link_node(&machine->rb_node, parent, p);
294 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295 
296 	return machine;
297 }
298 
299 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300 {
301 	struct rb_node *nd;
302 
303 	machines->host.comm_exec = comm_exec;
304 
305 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
307 
308 		machine->comm_exec = comm_exec;
309 	}
310 }
311 
312 struct machine *machines__find(struct machines *machines, pid_t pid)
313 {
314 	struct rb_node **p = &machines->guests.rb_root.rb_node;
315 	struct rb_node *parent = NULL;
316 	struct machine *machine;
317 	struct machine *default_machine = NULL;
318 
319 	if (pid == HOST_KERNEL_ID)
320 		return &machines->host;
321 
322 	while (*p != NULL) {
323 		parent = *p;
324 		machine = rb_entry(parent, struct machine, rb_node);
325 		if (pid < machine->pid)
326 			p = &(*p)->rb_left;
327 		else if (pid > machine->pid)
328 			p = &(*p)->rb_right;
329 		else
330 			return machine;
331 		if (!machine->pid)
332 			default_machine = machine;
333 	}
334 
335 	return default_machine;
336 }
337 
338 struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 {
340 	char path[PATH_MAX];
341 	const char *root_dir = "";
342 	struct machine *machine = machines__find(machines, pid);
343 
344 	if (machine && (machine->pid == pid))
345 		goto out;
346 
347 	if ((pid != HOST_KERNEL_ID) &&
348 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 	    (symbol_conf.guestmount)) {
350 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 		if (access(path, R_OK)) {
352 			static struct strlist *seen;
353 
354 			if (!seen)
355 				seen = strlist__new(NULL, NULL);
356 
357 			if (!strlist__has_entry(seen, path)) {
358 				pr_err("Can't access file %s\n", path);
359 				strlist__add(seen, path);
360 			}
361 			machine = NULL;
362 			goto out;
363 		}
364 		root_dir = path;
365 	}
366 
367 	machine = machines__add(machines, pid, root_dir);
368 out:
369 	return machine;
370 }
371 
372 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
373 {
374 	struct machine *machine = machines__find(machines, pid);
375 
376 	if (!machine)
377 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
378 	return machine;
379 }
380 
381 void machines__process_guests(struct machines *machines,
382 			      machine__process_t process, void *data)
383 {
384 	struct rb_node *nd;
385 
386 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
387 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
388 		process(pos, data);
389 	}
390 }
391 
392 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
393 {
394 	struct rb_node *node;
395 	struct machine *machine;
396 
397 	machines->host.id_hdr_size = id_hdr_size;
398 
399 	for (node = rb_first_cached(&machines->guests); node;
400 	     node = rb_next(node)) {
401 		machine = rb_entry(node, struct machine, rb_node);
402 		machine->id_hdr_size = id_hdr_size;
403 	}
404 
405 	return;
406 }
407 
408 static void machine__update_thread_pid(struct machine *machine,
409 				       struct thread *th, pid_t pid)
410 {
411 	struct thread *leader;
412 
413 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
414 		return;
415 
416 	th->pid_ = pid;
417 
418 	if (th->pid_ == th->tid)
419 		return;
420 
421 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
422 	if (!leader)
423 		goto out_err;
424 
425 	if (!leader->maps)
426 		leader->maps = maps__new(machine);
427 
428 	if (!leader->maps)
429 		goto out_err;
430 
431 	if (th->maps == leader->maps)
432 		return;
433 
434 	if (th->maps) {
435 		/*
436 		 * Maps are created from MMAP events which provide the pid and
437 		 * tid.  Consequently there never should be any maps on a thread
438 		 * with an unknown pid.  Just print an error if there are.
439 		 */
440 		if (!maps__empty(th->maps))
441 			pr_err("Discarding thread maps for %d:%d\n",
442 			       th->pid_, th->tid);
443 		maps__put(th->maps);
444 	}
445 
446 	th->maps = maps__get(leader->maps);
447 out_put:
448 	thread__put(leader);
449 	return;
450 out_err:
451 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
452 	goto out_put;
453 }
454 
455 /*
456  * Front-end cache - TID lookups come in blocks,
457  * so most of the time we dont have to look up
458  * the full rbtree:
459  */
460 static struct thread*
461 __threads__get_last_match(struct threads *threads, struct machine *machine,
462 			  int pid, int tid)
463 {
464 	struct thread *th;
465 
466 	th = threads->last_match;
467 	if (th != NULL) {
468 		if (th->tid == tid) {
469 			machine__update_thread_pid(machine, th, pid);
470 			return thread__get(th);
471 		}
472 
473 		threads->last_match = NULL;
474 	}
475 
476 	return NULL;
477 }
478 
479 static struct thread*
480 threads__get_last_match(struct threads *threads, struct machine *machine,
481 			int pid, int tid)
482 {
483 	struct thread *th = NULL;
484 
485 	if (perf_singlethreaded)
486 		th = __threads__get_last_match(threads, machine, pid, tid);
487 
488 	return th;
489 }
490 
491 static void
492 __threads__set_last_match(struct threads *threads, struct thread *th)
493 {
494 	threads->last_match = th;
495 }
496 
497 static void
498 threads__set_last_match(struct threads *threads, struct thread *th)
499 {
500 	if (perf_singlethreaded)
501 		__threads__set_last_match(threads, th);
502 }
503 
504 /*
505  * Caller must eventually drop thread->refcnt returned with a successful
506  * lookup/new thread inserted.
507  */
508 static struct thread *____machine__findnew_thread(struct machine *machine,
509 						  struct threads *threads,
510 						  pid_t pid, pid_t tid,
511 						  bool create)
512 {
513 	struct rb_node **p = &threads->entries.rb_root.rb_node;
514 	struct rb_node *parent = NULL;
515 	struct thread *th;
516 	bool leftmost = true;
517 
518 	th = threads__get_last_match(threads, machine, pid, tid);
519 	if (th)
520 		return th;
521 
522 	while (*p != NULL) {
523 		parent = *p;
524 		th = rb_entry(parent, struct thread, rb_node);
525 
526 		if (th->tid == tid) {
527 			threads__set_last_match(threads, th);
528 			machine__update_thread_pid(machine, th, pid);
529 			return thread__get(th);
530 		}
531 
532 		if (tid < th->tid)
533 			p = &(*p)->rb_left;
534 		else {
535 			p = &(*p)->rb_right;
536 			leftmost = false;
537 		}
538 	}
539 
540 	if (!create)
541 		return NULL;
542 
543 	th = thread__new(pid, tid);
544 	if (th != NULL) {
545 		rb_link_node(&th->rb_node, parent, p);
546 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
547 
548 		/*
549 		 * We have to initialize maps separately after rb tree is updated.
550 		 *
551 		 * The reason is that we call machine__findnew_thread
552 		 * within thread__init_maps to find the thread
553 		 * leader and that would screwed the rb tree.
554 		 */
555 		if (thread__init_maps(th, machine)) {
556 			rb_erase_cached(&th->rb_node, &threads->entries);
557 			RB_CLEAR_NODE(&th->rb_node);
558 			thread__put(th);
559 			return NULL;
560 		}
561 		/*
562 		 * It is now in the rbtree, get a ref
563 		 */
564 		thread__get(th);
565 		threads__set_last_match(threads, th);
566 		++threads->nr;
567 	}
568 
569 	return th;
570 }
571 
572 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
573 {
574 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
575 }
576 
577 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
578 				       pid_t tid)
579 {
580 	struct threads *threads = machine__threads(machine, tid);
581 	struct thread *th;
582 
583 	down_write(&threads->lock);
584 	th = __machine__findnew_thread(machine, pid, tid);
585 	up_write(&threads->lock);
586 	return th;
587 }
588 
589 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
590 				    pid_t tid)
591 {
592 	struct threads *threads = machine__threads(machine, tid);
593 	struct thread *th;
594 
595 	down_read(&threads->lock);
596 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
597 	up_read(&threads->lock);
598 	return th;
599 }
600 
601 /*
602  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
603  * So here a single thread is created for that, but actually there is a separate
604  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
605  * is only 1. That causes problems for some tools, requiring workarounds. For
606  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
607  */
608 struct thread *machine__idle_thread(struct machine *machine)
609 {
610 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
611 
612 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
613 	    thread__set_namespaces(thread, 0, NULL))
614 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
615 
616 	return thread;
617 }
618 
619 struct comm *machine__thread_exec_comm(struct machine *machine,
620 				       struct thread *thread)
621 {
622 	if (machine->comm_exec)
623 		return thread__exec_comm(thread);
624 	else
625 		return thread__comm(thread);
626 }
627 
628 int machine__process_comm_event(struct machine *machine, union perf_event *event,
629 				struct perf_sample *sample)
630 {
631 	struct thread *thread = machine__findnew_thread(machine,
632 							event->comm.pid,
633 							event->comm.tid);
634 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
635 	int err = 0;
636 
637 	if (exec)
638 		machine->comm_exec = true;
639 
640 	if (dump_trace)
641 		perf_event__fprintf_comm(event, stdout);
642 
643 	if (thread == NULL ||
644 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
645 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
646 		err = -1;
647 	}
648 
649 	thread__put(thread);
650 
651 	return err;
652 }
653 
654 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
655 				      union perf_event *event,
656 				      struct perf_sample *sample __maybe_unused)
657 {
658 	struct thread *thread = machine__findnew_thread(machine,
659 							event->namespaces.pid,
660 							event->namespaces.tid);
661 	int err = 0;
662 
663 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
664 		  "\nWARNING: kernel seems to support more namespaces than perf"
665 		  " tool.\nTry updating the perf tool..\n\n");
666 
667 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
668 		  "\nWARNING: perf tool seems to support more namespaces than"
669 		  " the kernel.\nTry updating the kernel..\n\n");
670 
671 	if (dump_trace)
672 		perf_event__fprintf_namespaces(event, stdout);
673 
674 	if (thread == NULL ||
675 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
676 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
677 		err = -1;
678 	}
679 
680 	thread__put(thread);
681 
682 	return err;
683 }
684 
685 int machine__process_cgroup_event(struct machine *machine,
686 				  union perf_event *event,
687 				  struct perf_sample *sample __maybe_unused)
688 {
689 	struct cgroup *cgrp;
690 
691 	if (dump_trace)
692 		perf_event__fprintf_cgroup(event, stdout);
693 
694 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
695 	if (cgrp == NULL)
696 		return -ENOMEM;
697 
698 	return 0;
699 }
700 
701 int machine__process_lost_event(struct machine *machine __maybe_unused,
702 				union perf_event *event, struct perf_sample *sample __maybe_unused)
703 {
704 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
705 		    event->lost.id, event->lost.lost);
706 	return 0;
707 }
708 
709 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
710 					union perf_event *event, struct perf_sample *sample)
711 {
712 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
713 		    sample->id, event->lost_samples.lost);
714 	return 0;
715 }
716 
717 static struct dso *machine__findnew_module_dso(struct machine *machine,
718 					       struct kmod_path *m,
719 					       const char *filename)
720 {
721 	struct dso *dso;
722 
723 	down_write(&machine->dsos.lock);
724 
725 	dso = __dsos__find(&machine->dsos, m->name, true);
726 	if (!dso) {
727 		dso = __dsos__addnew(&machine->dsos, m->name);
728 		if (dso == NULL)
729 			goto out_unlock;
730 
731 		dso__set_module_info(dso, m, machine);
732 		dso__set_long_name(dso, strdup(filename), true);
733 		dso->kernel = DSO_SPACE__KERNEL;
734 	}
735 
736 	dso__get(dso);
737 out_unlock:
738 	up_write(&machine->dsos.lock);
739 	return dso;
740 }
741 
742 int machine__process_aux_event(struct machine *machine __maybe_unused,
743 			       union perf_event *event)
744 {
745 	if (dump_trace)
746 		perf_event__fprintf_aux(event, stdout);
747 	return 0;
748 }
749 
750 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
751 					union perf_event *event)
752 {
753 	if (dump_trace)
754 		perf_event__fprintf_itrace_start(event, stdout);
755 	return 0;
756 }
757 
758 int machine__process_switch_event(struct machine *machine __maybe_unused,
759 				  union perf_event *event)
760 {
761 	if (dump_trace)
762 		perf_event__fprintf_switch(event, stdout);
763 	return 0;
764 }
765 
766 static int machine__process_ksymbol_register(struct machine *machine,
767 					     union perf_event *event,
768 					     struct perf_sample *sample __maybe_unused)
769 {
770 	struct symbol *sym;
771 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
772 
773 	if (!map) {
774 		struct dso *dso = dso__new(event->ksymbol.name);
775 
776 		if (dso) {
777 			dso->kernel = DSO_SPACE__KERNEL;
778 			map = map__new2(0, dso);
779 			dso__put(dso);
780 		}
781 
782 		if (!dso || !map) {
783 			return -ENOMEM;
784 		}
785 
786 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
787 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
788 			map->dso->data.file_size = event->ksymbol.len;
789 			dso__set_loaded(map->dso);
790 		}
791 
792 		map->start = event->ksymbol.addr;
793 		map->end = map->start + event->ksymbol.len;
794 		maps__insert(&machine->kmaps, map);
795 		map__put(map);
796 		dso__set_loaded(dso);
797 
798 		if (is_bpf_image(event->ksymbol.name)) {
799 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
800 			dso__set_long_name(dso, "", false);
801 		}
802 	}
803 
804 	sym = symbol__new(map->map_ip(map, map->start),
805 			  event->ksymbol.len,
806 			  0, 0, event->ksymbol.name);
807 	if (!sym)
808 		return -ENOMEM;
809 	dso__insert_symbol(map->dso, sym);
810 	return 0;
811 }
812 
813 static int machine__process_ksymbol_unregister(struct machine *machine,
814 					       union perf_event *event,
815 					       struct perf_sample *sample __maybe_unused)
816 {
817 	struct symbol *sym;
818 	struct map *map;
819 
820 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
821 	if (!map)
822 		return 0;
823 
824 	if (map != machine->vmlinux_map)
825 		maps__remove(&machine->kmaps, map);
826 	else {
827 		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
828 		if (sym)
829 			dso__delete_symbol(map->dso, sym);
830 	}
831 
832 	return 0;
833 }
834 
835 int machine__process_ksymbol(struct machine *machine __maybe_unused,
836 			     union perf_event *event,
837 			     struct perf_sample *sample)
838 {
839 	if (dump_trace)
840 		perf_event__fprintf_ksymbol(event, stdout);
841 
842 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
843 		return machine__process_ksymbol_unregister(machine, event,
844 							   sample);
845 	return machine__process_ksymbol_register(machine, event, sample);
846 }
847 
848 int machine__process_text_poke(struct machine *machine, union perf_event *event,
849 			       struct perf_sample *sample __maybe_unused)
850 {
851 	struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
852 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
853 
854 	if (dump_trace)
855 		perf_event__fprintf_text_poke(event, machine, stdout);
856 
857 	if (!event->text_poke.new_len)
858 		return 0;
859 
860 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
861 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
862 		return 0;
863 	}
864 
865 	if (map && map->dso) {
866 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
867 		int ret;
868 
869 		/*
870 		 * Kernel maps might be changed when loading symbols so loading
871 		 * must be done prior to using kernel maps.
872 		 */
873 		map__load(map);
874 		ret = dso__data_write_cache_addr(map->dso, map, machine,
875 						 event->text_poke.addr,
876 						 new_bytes,
877 						 event->text_poke.new_len);
878 		if (ret != event->text_poke.new_len)
879 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
880 				 event->text_poke.addr);
881 	} else {
882 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
883 			 event->text_poke.addr);
884 	}
885 
886 	return 0;
887 }
888 
889 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
890 					      const char *filename)
891 {
892 	struct map *map = NULL;
893 	struct kmod_path m;
894 	struct dso *dso;
895 
896 	if (kmod_path__parse_name(&m, filename))
897 		return NULL;
898 
899 	dso = machine__findnew_module_dso(machine, &m, filename);
900 	if (dso == NULL)
901 		goto out;
902 
903 	map = map__new2(start, dso);
904 	if (map == NULL)
905 		goto out;
906 
907 	maps__insert(&machine->kmaps, map);
908 
909 	/* Put the map here because maps__insert already got it */
910 	map__put(map);
911 out:
912 	/* put the dso here, corresponding to  machine__findnew_module_dso */
913 	dso__put(dso);
914 	zfree(&m.name);
915 	return map;
916 }
917 
918 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
919 {
920 	struct rb_node *nd;
921 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
922 
923 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
924 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
925 		ret += __dsos__fprintf(&pos->dsos.head, fp);
926 	}
927 
928 	return ret;
929 }
930 
931 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
932 				     bool (skip)(struct dso *dso, int parm), int parm)
933 {
934 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
935 }
936 
937 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
938 				     bool (skip)(struct dso *dso, int parm), int parm)
939 {
940 	struct rb_node *nd;
941 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
942 
943 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
944 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
945 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
946 	}
947 	return ret;
948 }
949 
950 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
951 {
952 	int i;
953 	size_t printed = 0;
954 	struct dso *kdso = machine__kernel_dso(machine);
955 
956 	if (kdso->has_build_id) {
957 		char filename[PATH_MAX];
958 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
959 					   false))
960 			printed += fprintf(fp, "[0] %s\n", filename);
961 	}
962 
963 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
964 		printed += fprintf(fp, "[%d] %s\n",
965 				   i + kdso->has_build_id, vmlinux_path[i]);
966 
967 	return printed;
968 }
969 
970 size_t machine__fprintf(struct machine *machine, FILE *fp)
971 {
972 	struct rb_node *nd;
973 	size_t ret;
974 	int i;
975 
976 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
977 		struct threads *threads = &machine->threads[i];
978 
979 		down_read(&threads->lock);
980 
981 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
982 
983 		for (nd = rb_first_cached(&threads->entries); nd;
984 		     nd = rb_next(nd)) {
985 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
986 
987 			ret += thread__fprintf(pos, fp);
988 		}
989 
990 		up_read(&threads->lock);
991 	}
992 	return ret;
993 }
994 
995 static struct dso *machine__get_kernel(struct machine *machine)
996 {
997 	const char *vmlinux_name = machine->mmap_name;
998 	struct dso *kernel;
999 
1000 	if (machine__is_host(machine)) {
1001 		if (symbol_conf.vmlinux_name)
1002 			vmlinux_name = symbol_conf.vmlinux_name;
1003 
1004 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1005 						 "[kernel]", DSO_SPACE__KERNEL);
1006 	} else {
1007 		if (symbol_conf.default_guest_vmlinux_name)
1008 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1009 
1010 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1011 						 "[guest.kernel]",
1012 						 DSO_SPACE__KERNEL_GUEST);
1013 	}
1014 
1015 	if (kernel != NULL && (!kernel->has_build_id))
1016 		dso__read_running_kernel_build_id(kernel, machine);
1017 
1018 	return kernel;
1019 }
1020 
1021 struct process_args {
1022 	u64 start;
1023 };
1024 
1025 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1026 				    size_t bufsz)
1027 {
1028 	if (machine__is_default_guest(machine))
1029 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1030 	else
1031 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1032 }
1033 
1034 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1035 
1036 /* Figure out the start address of kernel map from /proc/kallsyms.
1037  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1038  * symbol_name if it's not that important.
1039  */
1040 static int machine__get_running_kernel_start(struct machine *machine,
1041 					     const char **symbol_name,
1042 					     u64 *start, u64 *end)
1043 {
1044 	char filename[PATH_MAX];
1045 	int i, err = -1;
1046 	const char *name;
1047 	u64 addr = 0;
1048 
1049 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1050 
1051 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1052 		return 0;
1053 
1054 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1055 		err = kallsyms__get_function_start(filename, name, &addr);
1056 		if (!err)
1057 			break;
1058 	}
1059 
1060 	if (err)
1061 		return -1;
1062 
1063 	if (symbol_name)
1064 		*symbol_name = name;
1065 
1066 	*start = addr;
1067 
1068 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1069 	if (!err)
1070 		*end = addr;
1071 
1072 	return 0;
1073 }
1074 
1075 int machine__create_extra_kernel_map(struct machine *machine,
1076 				     struct dso *kernel,
1077 				     struct extra_kernel_map *xm)
1078 {
1079 	struct kmap *kmap;
1080 	struct map *map;
1081 
1082 	map = map__new2(xm->start, kernel);
1083 	if (!map)
1084 		return -1;
1085 
1086 	map->end   = xm->end;
1087 	map->pgoff = xm->pgoff;
1088 
1089 	kmap = map__kmap(map);
1090 
1091 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1092 
1093 	maps__insert(&machine->kmaps, map);
1094 
1095 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1096 		  kmap->name, map->start, map->end);
1097 
1098 	map__put(map);
1099 
1100 	return 0;
1101 }
1102 
1103 static u64 find_entry_trampoline(struct dso *dso)
1104 {
1105 	/* Duplicates are removed so lookup all aliases */
1106 	const char *syms[] = {
1107 		"_entry_trampoline",
1108 		"__entry_trampoline_start",
1109 		"entry_SYSCALL_64_trampoline",
1110 	};
1111 	struct symbol *sym = dso__first_symbol(dso);
1112 	unsigned int i;
1113 
1114 	for (; sym; sym = dso__next_symbol(sym)) {
1115 		if (sym->binding != STB_GLOBAL)
1116 			continue;
1117 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1118 			if (!strcmp(sym->name, syms[i]))
1119 				return sym->start;
1120 		}
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 /*
1127  * These values can be used for kernels that do not have symbols for the entry
1128  * trampolines in kallsyms.
1129  */
1130 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1131 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1132 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1133 
1134 /* Map x86_64 PTI entry trampolines */
1135 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1136 					  struct dso *kernel)
1137 {
1138 	struct maps *kmaps = &machine->kmaps;
1139 	int nr_cpus_avail, cpu;
1140 	bool found = false;
1141 	struct map *map;
1142 	u64 pgoff;
1143 
1144 	/*
1145 	 * In the vmlinux case, pgoff is a virtual address which must now be
1146 	 * mapped to a vmlinux offset.
1147 	 */
1148 	maps__for_each_entry(kmaps, map) {
1149 		struct kmap *kmap = __map__kmap(map);
1150 		struct map *dest_map;
1151 
1152 		if (!kmap || !is_entry_trampoline(kmap->name))
1153 			continue;
1154 
1155 		dest_map = maps__find(kmaps, map->pgoff);
1156 		if (dest_map != map)
1157 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1158 		found = true;
1159 	}
1160 	if (found || machine->trampolines_mapped)
1161 		return 0;
1162 
1163 	pgoff = find_entry_trampoline(kernel);
1164 	if (!pgoff)
1165 		return 0;
1166 
1167 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1168 
1169 	/* Add a 1 page map for each CPU's entry trampoline */
1170 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1171 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1172 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1173 			 X86_64_ENTRY_TRAMPOLINE;
1174 		struct extra_kernel_map xm = {
1175 			.start = va,
1176 			.end   = va + page_size,
1177 			.pgoff = pgoff,
1178 		};
1179 
1180 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1181 
1182 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1183 			return -1;
1184 	}
1185 
1186 	machine->trampolines_mapped = nr_cpus_avail;
1187 
1188 	return 0;
1189 }
1190 
1191 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1192 					     struct dso *kernel __maybe_unused)
1193 {
1194 	return 0;
1195 }
1196 
1197 static int
1198 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1199 {
1200 	/* In case of renewal the kernel map, destroy previous one */
1201 	machine__destroy_kernel_maps(machine);
1202 
1203 	machine->vmlinux_map = map__new2(0, kernel);
1204 	if (machine->vmlinux_map == NULL)
1205 		return -1;
1206 
1207 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1208 	maps__insert(&machine->kmaps, machine->vmlinux_map);
1209 	return 0;
1210 }
1211 
1212 void machine__destroy_kernel_maps(struct machine *machine)
1213 {
1214 	struct kmap *kmap;
1215 	struct map *map = machine__kernel_map(machine);
1216 
1217 	if (map == NULL)
1218 		return;
1219 
1220 	kmap = map__kmap(map);
1221 	maps__remove(&machine->kmaps, map);
1222 	if (kmap && kmap->ref_reloc_sym) {
1223 		zfree((char **)&kmap->ref_reloc_sym->name);
1224 		zfree(&kmap->ref_reloc_sym);
1225 	}
1226 
1227 	map__zput(machine->vmlinux_map);
1228 }
1229 
1230 int machines__create_guest_kernel_maps(struct machines *machines)
1231 {
1232 	int ret = 0;
1233 	struct dirent **namelist = NULL;
1234 	int i, items = 0;
1235 	char path[PATH_MAX];
1236 	pid_t pid;
1237 	char *endp;
1238 
1239 	if (symbol_conf.default_guest_vmlinux_name ||
1240 	    symbol_conf.default_guest_modules ||
1241 	    symbol_conf.default_guest_kallsyms) {
1242 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1243 	}
1244 
1245 	if (symbol_conf.guestmount) {
1246 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1247 		if (items <= 0)
1248 			return -ENOENT;
1249 		for (i = 0; i < items; i++) {
1250 			if (!isdigit(namelist[i]->d_name[0])) {
1251 				/* Filter out . and .. */
1252 				continue;
1253 			}
1254 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1255 			if ((*endp != '\0') ||
1256 			    (endp == namelist[i]->d_name) ||
1257 			    (errno == ERANGE)) {
1258 				pr_debug("invalid directory (%s). Skipping.\n",
1259 					 namelist[i]->d_name);
1260 				continue;
1261 			}
1262 			sprintf(path, "%s/%s/proc/kallsyms",
1263 				symbol_conf.guestmount,
1264 				namelist[i]->d_name);
1265 			ret = access(path, R_OK);
1266 			if (ret) {
1267 				pr_debug("Can't access file %s\n", path);
1268 				goto failure;
1269 			}
1270 			machines__create_kernel_maps(machines, pid);
1271 		}
1272 failure:
1273 		free(namelist);
1274 	}
1275 
1276 	return ret;
1277 }
1278 
1279 void machines__destroy_kernel_maps(struct machines *machines)
1280 {
1281 	struct rb_node *next = rb_first_cached(&machines->guests);
1282 
1283 	machine__destroy_kernel_maps(&machines->host);
1284 
1285 	while (next) {
1286 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1287 
1288 		next = rb_next(&pos->rb_node);
1289 		rb_erase_cached(&pos->rb_node, &machines->guests);
1290 		machine__delete(pos);
1291 	}
1292 }
1293 
1294 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1295 {
1296 	struct machine *machine = machines__findnew(machines, pid);
1297 
1298 	if (machine == NULL)
1299 		return -1;
1300 
1301 	return machine__create_kernel_maps(machine);
1302 }
1303 
1304 int machine__load_kallsyms(struct machine *machine, const char *filename)
1305 {
1306 	struct map *map = machine__kernel_map(machine);
1307 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1308 
1309 	if (ret > 0) {
1310 		dso__set_loaded(map->dso);
1311 		/*
1312 		 * Since /proc/kallsyms will have multiple sessions for the
1313 		 * kernel, with modules between them, fixup the end of all
1314 		 * sections.
1315 		 */
1316 		maps__fixup_end(&machine->kmaps);
1317 	}
1318 
1319 	return ret;
1320 }
1321 
1322 int machine__load_vmlinux_path(struct machine *machine)
1323 {
1324 	struct map *map = machine__kernel_map(machine);
1325 	int ret = dso__load_vmlinux_path(map->dso, map);
1326 
1327 	if (ret > 0)
1328 		dso__set_loaded(map->dso);
1329 
1330 	return ret;
1331 }
1332 
1333 static char *get_kernel_version(const char *root_dir)
1334 {
1335 	char version[PATH_MAX];
1336 	FILE *file;
1337 	char *name, *tmp;
1338 	const char *prefix = "Linux version ";
1339 
1340 	sprintf(version, "%s/proc/version", root_dir);
1341 	file = fopen(version, "r");
1342 	if (!file)
1343 		return NULL;
1344 
1345 	tmp = fgets(version, sizeof(version), file);
1346 	fclose(file);
1347 	if (!tmp)
1348 		return NULL;
1349 
1350 	name = strstr(version, prefix);
1351 	if (!name)
1352 		return NULL;
1353 	name += strlen(prefix);
1354 	tmp = strchr(name, ' ');
1355 	if (tmp)
1356 		*tmp = '\0';
1357 
1358 	return strdup(name);
1359 }
1360 
1361 static bool is_kmod_dso(struct dso *dso)
1362 {
1363 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1364 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1365 }
1366 
1367 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1368 {
1369 	char *long_name;
1370 	struct map *map = maps__find_by_name(maps, m->name);
1371 
1372 	if (map == NULL)
1373 		return 0;
1374 
1375 	long_name = strdup(path);
1376 	if (long_name == NULL)
1377 		return -ENOMEM;
1378 
1379 	dso__set_long_name(map->dso, long_name, true);
1380 	dso__kernel_module_get_build_id(map->dso, "");
1381 
1382 	/*
1383 	 * Full name could reveal us kmod compression, so
1384 	 * we need to update the symtab_type if needed.
1385 	 */
1386 	if (m->comp && is_kmod_dso(map->dso)) {
1387 		map->dso->symtab_type++;
1388 		map->dso->comp = m->comp;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1395 {
1396 	struct dirent *dent;
1397 	DIR *dir = opendir(dir_name);
1398 	int ret = 0;
1399 
1400 	if (!dir) {
1401 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1402 		return -1;
1403 	}
1404 
1405 	while ((dent = readdir(dir)) != NULL) {
1406 		char path[PATH_MAX];
1407 		struct stat st;
1408 
1409 		/*sshfs might return bad dent->d_type, so we have to stat*/
1410 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1411 		if (stat(path, &st))
1412 			continue;
1413 
1414 		if (S_ISDIR(st.st_mode)) {
1415 			if (!strcmp(dent->d_name, ".") ||
1416 			    !strcmp(dent->d_name, ".."))
1417 				continue;
1418 
1419 			/* Do not follow top-level source and build symlinks */
1420 			if (depth == 0) {
1421 				if (!strcmp(dent->d_name, "source") ||
1422 				    !strcmp(dent->d_name, "build"))
1423 					continue;
1424 			}
1425 
1426 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1427 			if (ret < 0)
1428 				goto out;
1429 		} else {
1430 			struct kmod_path m;
1431 
1432 			ret = kmod_path__parse_name(&m, dent->d_name);
1433 			if (ret)
1434 				goto out;
1435 
1436 			if (m.kmod)
1437 				ret = maps__set_module_path(maps, path, &m);
1438 
1439 			zfree(&m.name);
1440 
1441 			if (ret)
1442 				goto out;
1443 		}
1444 	}
1445 
1446 out:
1447 	closedir(dir);
1448 	return ret;
1449 }
1450 
1451 static int machine__set_modules_path(struct machine *machine)
1452 {
1453 	char *version;
1454 	char modules_path[PATH_MAX];
1455 
1456 	version = get_kernel_version(machine->root_dir);
1457 	if (!version)
1458 		return -1;
1459 
1460 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1461 		 machine->root_dir, version);
1462 	free(version);
1463 
1464 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1465 }
1466 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1467 				u64 *size __maybe_unused,
1468 				const char *name __maybe_unused)
1469 {
1470 	return 0;
1471 }
1472 
1473 static int machine__create_module(void *arg, const char *name, u64 start,
1474 				  u64 size)
1475 {
1476 	struct machine *machine = arg;
1477 	struct map *map;
1478 
1479 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1480 		return -1;
1481 
1482 	map = machine__addnew_module_map(machine, start, name);
1483 	if (map == NULL)
1484 		return -1;
1485 	map->end = start + size;
1486 
1487 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1488 
1489 	return 0;
1490 }
1491 
1492 static int machine__create_modules(struct machine *machine)
1493 {
1494 	const char *modules;
1495 	char path[PATH_MAX];
1496 
1497 	if (machine__is_default_guest(machine)) {
1498 		modules = symbol_conf.default_guest_modules;
1499 	} else {
1500 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1501 		modules = path;
1502 	}
1503 
1504 	if (symbol__restricted_filename(modules, "/proc/modules"))
1505 		return -1;
1506 
1507 	if (modules__parse(modules, machine, machine__create_module))
1508 		return -1;
1509 
1510 	if (!machine__set_modules_path(machine))
1511 		return 0;
1512 
1513 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1514 
1515 	return 0;
1516 }
1517 
1518 static void machine__set_kernel_mmap(struct machine *machine,
1519 				     u64 start, u64 end)
1520 {
1521 	machine->vmlinux_map->start = start;
1522 	machine->vmlinux_map->end   = end;
1523 	/*
1524 	 * Be a bit paranoid here, some perf.data file came with
1525 	 * a zero sized synthesized MMAP event for the kernel.
1526 	 */
1527 	if (start == 0 && end == 0)
1528 		machine->vmlinux_map->end = ~0ULL;
1529 }
1530 
1531 static void machine__update_kernel_mmap(struct machine *machine,
1532 				     u64 start, u64 end)
1533 {
1534 	struct map *map = machine__kernel_map(machine);
1535 
1536 	map__get(map);
1537 	maps__remove(&machine->kmaps, map);
1538 
1539 	machine__set_kernel_mmap(machine, start, end);
1540 
1541 	maps__insert(&machine->kmaps, map);
1542 	map__put(map);
1543 }
1544 
1545 int machine__create_kernel_maps(struct machine *machine)
1546 {
1547 	struct dso *kernel = machine__get_kernel(machine);
1548 	const char *name = NULL;
1549 	struct map *map;
1550 	u64 start = 0, end = ~0ULL;
1551 	int ret;
1552 
1553 	if (kernel == NULL)
1554 		return -1;
1555 
1556 	ret = __machine__create_kernel_maps(machine, kernel);
1557 	if (ret < 0)
1558 		goto out_put;
1559 
1560 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1561 		if (machine__is_host(machine))
1562 			pr_debug("Problems creating module maps, "
1563 				 "continuing anyway...\n");
1564 		else
1565 			pr_debug("Problems creating module maps for guest %d, "
1566 				 "continuing anyway...\n", machine->pid);
1567 	}
1568 
1569 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1570 		if (name &&
1571 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1572 			machine__destroy_kernel_maps(machine);
1573 			ret = -1;
1574 			goto out_put;
1575 		}
1576 
1577 		/*
1578 		 * we have a real start address now, so re-order the kmaps
1579 		 * assume it's the last in the kmaps
1580 		 */
1581 		machine__update_kernel_mmap(machine, start, end);
1582 	}
1583 
1584 	if (machine__create_extra_kernel_maps(machine, kernel))
1585 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1586 
1587 	if (end == ~0ULL) {
1588 		/* update end address of the kernel map using adjacent module address */
1589 		map = map__next(machine__kernel_map(machine));
1590 		if (map)
1591 			machine__set_kernel_mmap(machine, start, map->start);
1592 	}
1593 
1594 out_put:
1595 	dso__put(kernel);
1596 	return ret;
1597 }
1598 
1599 static bool machine__uses_kcore(struct machine *machine)
1600 {
1601 	struct dso *dso;
1602 
1603 	list_for_each_entry(dso, &machine->dsos.head, node) {
1604 		if (dso__is_kcore(dso))
1605 			return true;
1606 	}
1607 
1608 	return false;
1609 }
1610 
1611 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1612 					     struct extra_kernel_map *xm)
1613 {
1614 	return machine__is(machine, "x86_64") &&
1615 	       is_entry_trampoline(xm->name);
1616 }
1617 
1618 static int machine__process_extra_kernel_map(struct machine *machine,
1619 					     struct extra_kernel_map *xm)
1620 {
1621 	struct dso *kernel = machine__kernel_dso(machine);
1622 
1623 	if (kernel == NULL)
1624 		return -1;
1625 
1626 	return machine__create_extra_kernel_map(machine, kernel, xm);
1627 }
1628 
1629 static int machine__process_kernel_mmap_event(struct machine *machine,
1630 					      struct extra_kernel_map *xm,
1631 					      struct build_id *bid)
1632 {
1633 	struct map *map;
1634 	enum dso_space_type dso_space;
1635 	bool is_kernel_mmap;
1636 
1637 	/* If we have maps from kcore then we do not need or want any others */
1638 	if (machine__uses_kcore(machine))
1639 		return 0;
1640 
1641 	if (machine__is_host(machine))
1642 		dso_space = DSO_SPACE__KERNEL;
1643 	else
1644 		dso_space = DSO_SPACE__KERNEL_GUEST;
1645 
1646 	is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1647 				strlen(machine->mmap_name) - 1) == 0;
1648 	if (xm->name[0] == '/' ||
1649 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1650 		map = machine__addnew_module_map(machine, xm->start,
1651 						 xm->name);
1652 		if (map == NULL)
1653 			goto out_problem;
1654 
1655 		map->end = map->start + xm->end - xm->start;
1656 
1657 		if (build_id__is_defined(bid))
1658 			dso__set_build_id(map->dso, bid);
1659 
1660 	} else if (is_kernel_mmap) {
1661 		const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1662 		/*
1663 		 * Should be there already, from the build-id table in
1664 		 * the header.
1665 		 */
1666 		struct dso *kernel = NULL;
1667 		struct dso *dso;
1668 
1669 		down_read(&machine->dsos.lock);
1670 
1671 		list_for_each_entry(dso, &machine->dsos.head, node) {
1672 
1673 			/*
1674 			 * The cpumode passed to is_kernel_module is not the
1675 			 * cpumode of *this* event. If we insist on passing
1676 			 * correct cpumode to is_kernel_module, we should
1677 			 * record the cpumode when we adding this dso to the
1678 			 * linked list.
1679 			 *
1680 			 * However we don't really need passing correct
1681 			 * cpumode.  We know the correct cpumode must be kernel
1682 			 * mode (if not, we should not link it onto kernel_dsos
1683 			 * list).
1684 			 *
1685 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1686 			 * is_kernel_module() treats it as a kernel cpumode.
1687 			 */
1688 
1689 			if (!dso->kernel ||
1690 			    is_kernel_module(dso->long_name,
1691 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1692 				continue;
1693 
1694 
1695 			kernel = dso;
1696 			break;
1697 		}
1698 
1699 		up_read(&machine->dsos.lock);
1700 
1701 		if (kernel == NULL)
1702 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1703 		if (kernel == NULL)
1704 			goto out_problem;
1705 
1706 		kernel->kernel = dso_space;
1707 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1708 			dso__put(kernel);
1709 			goto out_problem;
1710 		}
1711 
1712 		if (strstr(kernel->long_name, "vmlinux"))
1713 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1714 
1715 		machine__update_kernel_mmap(machine, xm->start, xm->end);
1716 
1717 		if (build_id__is_defined(bid))
1718 			dso__set_build_id(kernel, bid);
1719 
1720 		/*
1721 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1722 		 * symbol. Effectively having zero here means that at record
1723 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1724 		 */
1725 		if (xm->pgoff != 0) {
1726 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1727 							symbol_name,
1728 							xm->pgoff);
1729 		}
1730 
1731 		if (machine__is_default_guest(machine)) {
1732 			/*
1733 			 * preload dso of guest kernel and modules
1734 			 */
1735 			dso__load(kernel, machine__kernel_map(machine));
1736 		}
1737 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1738 		return machine__process_extra_kernel_map(machine, xm);
1739 	}
1740 	return 0;
1741 out_problem:
1742 	return -1;
1743 }
1744 
1745 int machine__process_mmap2_event(struct machine *machine,
1746 				 union perf_event *event,
1747 				 struct perf_sample *sample)
1748 {
1749 	struct thread *thread;
1750 	struct map *map;
1751 	struct dso_id dso_id = {
1752 		.maj = event->mmap2.maj,
1753 		.min = event->mmap2.min,
1754 		.ino = event->mmap2.ino,
1755 		.ino_generation = event->mmap2.ino_generation,
1756 	};
1757 	struct build_id __bid, *bid = NULL;
1758 	int ret = 0;
1759 
1760 	if (dump_trace)
1761 		perf_event__fprintf_mmap2(event, stdout);
1762 
1763 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1764 		bid = &__bid;
1765 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1766 	}
1767 
1768 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1769 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1770 		struct extra_kernel_map xm = {
1771 			.start = event->mmap2.start,
1772 			.end   = event->mmap2.start + event->mmap2.len,
1773 			.pgoff = event->mmap2.pgoff,
1774 		};
1775 
1776 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1777 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1778 		if (ret < 0)
1779 			goto out_problem;
1780 		return 0;
1781 	}
1782 
1783 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1784 					event->mmap2.tid);
1785 	if (thread == NULL)
1786 		goto out_problem;
1787 
1788 	map = map__new(machine, event->mmap2.start,
1789 			event->mmap2.len, event->mmap2.pgoff,
1790 			&dso_id, event->mmap2.prot,
1791 			event->mmap2.flags, bid,
1792 			event->mmap2.filename, thread);
1793 
1794 	if (map == NULL)
1795 		goto out_problem_map;
1796 
1797 	ret = thread__insert_map(thread, map);
1798 	if (ret)
1799 		goto out_problem_insert;
1800 
1801 	thread__put(thread);
1802 	map__put(map);
1803 	return 0;
1804 
1805 out_problem_insert:
1806 	map__put(map);
1807 out_problem_map:
1808 	thread__put(thread);
1809 out_problem:
1810 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1811 	return 0;
1812 }
1813 
1814 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1815 				struct perf_sample *sample)
1816 {
1817 	struct thread *thread;
1818 	struct map *map;
1819 	u32 prot = 0;
1820 	int ret = 0;
1821 
1822 	if (dump_trace)
1823 		perf_event__fprintf_mmap(event, stdout);
1824 
1825 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1826 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1827 		struct extra_kernel_map xm = {
1828 			.start = event->mmap.start,
1829 			.end   = event->mmap.start + event->mmap.len,
1830 			.pgoff = event->mmap.pgoff,
1831 		};
1832 
1833 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1834 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1835 		if (ret < 0)
1836 			goto out_problem;
1837 		return 0;
1838 	}
1839 
1840 	thread = machine__findnew_thread(machine, event->mmap.pid,
1841 					 event->mmap.tid);
1842 	if (thread == NULL)
1843 		goto out_problem;
1844 
1845 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1846 		prot = PROT_EXEC;
1847 
1848 	map = map__new(machine, event->mmap.start,
1849 			event->mmap.len, event->mmap.pgoff,
1850 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1851 
1852 	if (map == NULL)
1853 		goto out_problem_map;
1854 
1855 	ret = thread__insert_map(thread, map);
1856 	if (ret)
1857 		goto out_problem_insert;
1858 
1859 	thread__put(thread);
1860 	map__put(map);
1861 	return 0;
1862 
1863 out_problem_insert:
1864 	map__put(map);
1865 out_problem_map:
1866 	thread__put(thread);
1867 out_problem:
1868 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1869 	return 0;
1870 }
1871 
1872 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1873 {
1874 	struct threads *threads = machine__threads(machine, th->tid);
1875 
1876 	if (threads->last_match == th)
1877 		threads__set_last_match(threads, NULL);
1878 
1879 	if (lock)
1880 		down_write(&threads->lock);
1881 
1882 	BUG_ON(refcount_read(&th->refcnt) == 0);
1883 
1884 	rb_erase_cached(&th->rb_node, &threads->entries);
1885 	RB_CLEAR_NODE(&th->rb_node);
1886 	--threads->nr;
1887 	/*
1888 	 * Move it first to the dead_threads list, then drop the reference,
1889 	 * if this is the last reference, then the thread__delete destructor
1890 	 * will be called and we will remove it from the dead_threads list.
1891 	 */
1892 	list_add_tail(&th->node, &threads->dead);
1893 
1894 	/*
1895 	 * We need to do the put here because if this is the last refcount,
1896 	 * then we will be touching the threads->dead head when removing the
1897 	 * thread.
1898 	 */
1899 	thread__put(th);
1900 
1901 	if (lock)
1902 		up_write(&threads->lock);
1903 }
1904 
1905 void machine__remove_thread(struct machine *machine, struct thread *th)
1906 {
1907 	return __machine__remove_thread(machine, th, true);
1908 }
1909 
1910 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1911 				struct perf_sample *sample)
1912 {
1913 	struct thread *thread = machine__find_thread(machine,
1914 						     event->fork.pid,
1915 						     event->fork.tid);
1916 	struct thread *parent = machine__findnew_thread(machine,
1917 							event->fork.ppid,
1918 							event->fork.ptid);
1919 	bool do_maps_clone = true;
1920 	int err = 0;
1921 
1922 	if (dump_trace)
1923 		perf_event__fprintf_task(event, stdout);
1924 
1925 	/*
1926 	 * There may be an existing thread that is not actually the parent,
1927 	 * either because we are processing events out of order, or because the
1928 	 * (fork) event that would have removed the thread was lost. Assume the
1929 	 * latter case and continue on as best we can.
1930 	 */
1931 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1932 		dump_printf("removing erroneous parent thread %d/%d\n",
1933 			    parent->pid_, parent->tid);
1934 		machine__remove_thread(machine, parent);
1935 		thread__put(parent);
1936 		parent = machine__findnew_thread(machine, event->fork.ppid,
1937 						 event->fork.ptid);
1938 	}
1939 
1940 	/* if a thread currently exists for the thread id remove it */
1941 	if (thread != NULL) {
1942 		machine__remove_thread(machine, thread);
1943 		thread__put(thread);
1944 	}
1945 
1946 	thread = machine__findnew_thread(machine, event->fork.pid,
1947 					 event->fork.tid);
1948 	/*
1949 	 * When synthesizing FORK events, we are trying to create thread
1950 	 * objects for the already running tasks on the machine.
1951 	 *
1952 	 * Normally, for a kernel FORK event, we want to clone the parent's
1953 	 * maps because that is what the kernel just did.
1954 	 *
1955 	 * But when synthesizing, this should not be done.  If we do, we end up
1956 	 * with overlapping maps as we process the synthesized MMAP2 events that
1957 	 * get delivered shortly thereafter.
1958 	 *
1959 	 * Use the FORK event misc flags in an internal way to signal this
1960 	 * situation, so we can elide the map clone when appropriate.
1961 	 */
1962 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1963 		do_maps_clone = false;
1964 
1965 	if (thread == NULL || parent == NULL ||
1966 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1967 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1968 		err = -1;
1969 	}
1970 	thread__put(thread);
1971 	thread__put(parent);
1972 
1973 	return err;
1974 }
1975 
1976 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1977 				struct perf_sample *sample __maybe_unused)
1978 {
1979 	struct thread *thread = machine__find_thread(machine,
1980 						     event->fork.pid,
1981 						     event->fork.tid);
1982 
1983 	if (dump_trace)
1984 		perf_event__fprintf_task(event, stdout);
1985 
1986 	if (thread != NULL) {
1987 		thread__exited(thread);
1988 		thread__put(thread);
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 int machine__process_event(struct machine *machine, union perf_event *event,
1995 			   struct perf_sample *sample)
1996 {
1997 	int ret;
1998 
1999 	switch (event->header.type) {
2000 	case PERF_RECORD_COMM:
2001 		ret = machine__process_comm_event(machine, event, sample); break;
2002 	case PERF_RECORD_MMAP:
2003 		ret = machine__process_mmap_event(machine, event, sample); break;
2004 	case PERF_RECORD_NAMESPACES:
2005 		ret = machine__process_namespaces_event(machine, event, sample); break;
2006 	case PERF_RECORD_CGROUP:
2007 		ret = machine__process_cgroup_event(machine, event, sample); break;
2008 	case PERF_RECORD_MMAP2:
2009 		ret = machine__process_mmap2_event(machine, event, sample); break;
2010 	case PERF_RECORD_FORK:
2011 		ret = machine__process_fork_event(machine, event, sample); break;
2012 	case PERF_RECORD_EXIT:
2013 		ret = machine__process_exit_event(machine, event, sample); break;
2014 	case PERF_RECORD_LOST:
2015 		ret = machine__process_lost_event(machine, event, sample); break;
2016 	case PERF_RECORD_AUX:
2017 		ret = machine__process_aux_event(machine, event); break;
2018 	case PERF_RECORD_ITRACE_START:
2019 		ret = machine__process_itrace_start_event(machine, event); break;
2020 	case PERF_RECORD_LOST_SAMPLES:
2021 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2022 	case PERF_RECORD_SWITCH:
2023 	case PERF_RECORD_SWITCH_CPU_WIDE:
2024 		ret = machine__process_switch_event(machine, event); break;
2025 	case PERF_RECORD_KSYMBOL:
2026 		ret = machine__process_ksymbol(machine, event, sample); break;
2027 	case PERF_RECORD_BPF_EVENT:
2028 		ret = machine__process_bpf(machine, event, sample); break;
2029 	case PERF_RECORD_TEXT_POKE:
2030 		ret = machine__process_text_poke(machine, event, sample); break;
2031 	default:
2032 		ret = -1;
2033 		break;
2034 	}
2035 
2036 	return ret;
2037 }
2038 
2039 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2040 {
2041 	if (!regexec(regex, sym->name, 0, NULL, 0))
2042 		return true;
2043 	return false;
2044 }
2045 
2046 static void ip__resolve_ams(struct thread *thread,
2047 			    struct addr_map_symbol *ams,
2048 			    u64 ip)
2049 {
2050 	struct addr_location al;
2051 
2052 	memset(&al, 0, sizeof(al));
2053 	/*
2054 	 * We cannot use the header.misc hint to determine whether a
2055 	 * branch stack address is user, kernel, guest, hypervisor.
2056 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2057 	 * Thus, we have to try consecutively until we find a match
2058 	 * or else, the symbol is unknown
2059 	 */
2060 	thread__find_cpumode_addr_location(thread, ip, &al);
2061 
2062 	ams->addr = ip;
2063 	ams->al_addr = al.addr;
2064 	ams->ms.maps = al.maps;
2065 	ams->ms.sym = al.sym;
2066 	ams->ms.map = al.map;
2067 	ams->phys_addr = 0;
2068 	ams->data_page_size = 0;
2069 }
2070 
2071 static void ip__resolve_data(struct thread *thread,
2072 			     u8 m, struct addr_map_symbol *ams,
2073 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2074 {
2075 	struct addr_location al;
2076 
2077 	memset(&al, 0, sizeof(al));
2078 
2079 	thread__find_symbol(thread, m, addr, &al);
2080 
2081 	ams->addr = addr;
2082 	ams->al_addr = al.addr;
2083 	ams->ms.maps = al.maps;
2084 	ams->ms.sym = al.sym;
2085 	ams->ms.map = al.map;
2086 	ams->phys_addr = phys_addr;
2087 	ams->data_page_size = daddr_page_size;
2088 }
2089 
2090 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2091 				     struct addr_location *al)
2092 {
2093 	struct mem_info *mi = mem_info__new();
2094 
2095 	if (!mi)
2096 		return NULL;
2097 
2098 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2099 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2100 			 sample->addr, sample->phys_addr,
2101 			 sample->data_page_size);
2102 	mi->data_src.val = sample->data_src;
2103 
2104 	return mi;
2105 }
2106 
2107 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2108 {
2109 	struct map *map = ms->map;
2110 	char *srcline = NULL;
2111 
2112 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2113 		return srcline;
2114 
2115 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2116 	if (!srcline) {
2117 		bool show_sym = false;
2118 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2119 
2120 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2121 				      ms->sym, show_sym, show_addr, ip);
2122 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2123 	}
2124 
2125 	return srcline;
2126 }
2127 
2128 struct iterations {
2129 	int nr_loop_iter;
2130 	u64 cycles;
2131 };
2132 
2133 static int add_callchain_ip(struct thread *thread,
2134 			    struct callchain_cursor *cursor,
2135 			    struct symbol **parent,
2136 			    struct addr_location *root_al,
2137 			    u8 *cpumode,
2138 			    u64 ip,
2139 			    bool branch,
2140 			    struct branch_flags *flags,
2141 			    struct iterations *iter,
2142 			    u64 branch_from)
2143 {
2144 	struct map_symbol ms;
2145 	struct addr_location al;
2146 	int nr_loop_iter = 0;
2147 	u64 iter_cycles = 0;
2148 	const char *srcline = NULL;
2149 
2150 	al.filtered = 0;
2151 	al.sym = NULL;
2152 	al.srcline = NULL;
2153 	if (!cpumode) {
2154 		thread__find_cpumode_addr_location(thread, ip, &al);
2155 	} else {
2156 		if (ip >= PERF_CONTEXT_MAX) {
2157 			switch (ip) {
2158 			case PERF_CONTEXT_HV:
2159 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2160 				break;
2161 			case PERF_CONTEXT_KERNEL:
2162 				*cpumode = PERF_RECORD_MISC_KERNEL;
2163 				break;
2164 			case PERF_CONTEXT_USER:
2165 				*cpumode = PERF_RECORD_MISC_USER;
2166 				break;
2167 			default:
2168 				pr_debug("invalid callchain context: "
2169 					 "%"PRId64"\n", (s64) ip);
2170 				/*
2171 				 * It seems the callchain is corrupted.
2172 				 * Discard all.
2173 				 */
2174 				callchain_cursor_reset(cursor);
2175 				return 1;
2176 			}
2177 			return 0;
2178 		}
2179 		thread__find_symbol(thread, *cpumode, ip, &al);
2180 	}
2181 
2182 	if (al.sym != NULL) {
2183 		if (perf_hpp_list.parent && !*parent &&
2184 		    symbol__match_regex(al.sym, &parent_regex))
2185 			*parent = al.sym;
2186 		else if (have_ignore_callees && root_al &&
2187 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2188 			/* Treat this symbol as the root,
2189 			   forgetting its callees. */
2190 			*root_al = al;
2191 			callchain_cursor_reset(cursor);
2192 		}
2193 	}
2194 
2195 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2196 		return 0;
2197 
2198 	if (iter) {
2199 		nr_loop_iter = iter->nr_loop_iter;
2200 		iter_cycles = iter->cycles;
2201 	}
2202 
2203 	ms.maps = al.maps;
2204 	ms.map = al.map;
2205 	ms.sym = al.sym;
2206 	srcline = callchain_srcline(&ms, al.addr);
2207 	return callchain_cursor_append(cursor, ip, &ms,
2208 				       branch, flags, nr_loop_iter,
2209 				       iter_cycles, branch_from, srcline);
2210 }
2211 
2212 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2213 					   struct addr_location *al)
2214 {
2215 	unsigned int i;
2216 	const struct branch_stack *bs = sample->branch_stack;
2217 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2218 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2219 
2220 	if (!bi)
2221 		return NULL;
2222 
2223 	for (i = 0; i < bs->nr; i++) {
2224 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2225 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2226 		bi[i].flags = entries[i].flags;
2227 	}
2228 	return bi;
2229 }
2230 
2231 static void save_iterations(struct iterations *iter,
2232 			    struct branch_entry *be, int nr)
2233 {
2234 	int i;
2235 
2236 	iter->nr_loop_iter++;
2237 	iter->cycles = 0;
2238 
2239 	for (i = 0; i < nr; i++)
2240 		iter->cycles += be[i].flags.cycles;
2241 }
2242 
2243 #define CHASHSZ 127
2244 #define CHASHBITS 7
2245 #define NO_ENTRY 0xff
2246 
2247 #define PERF_MAX_BRANCH_DEPTH 127
2248 
2249 /* Remove loops. */
2250 static int remove_loops(struct branch_entry *l, int nr,
2251 			struct iterations *iter)
2252 {
2253 	int i, j, off;
2254 	unsigned char chash[CHASHSZ];
2255 
2256 	memset(chash, NO_ENTRY, sizeof(chash));
2257 
2258 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2259 
2260 	for (i = 0; i < nr; i++) {
2261 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2262 
2263 		/* no collision handling for now */
2264 		if (chash[h] == NO_ENTRY) {
2265 			chash[h] = i;
2266 		} else if (l[chash[h]].from == l[i].from) {
2267 			bool is_loop = true;
2268 			/* check if it is a real loop */
2269 			off = 0;
2270 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2271 				if (l[j].from != l[i + off].from) {
2272 					is_loop = false;
2273 					break;
2274 				}
2275 			if (is_loop) {
2276 				j = nr - (i + off);
2277 				if (j > 0) {
2278 					save_iterations(iter + i + off,
2279 						l + i, off);
2280 
2281 					memmove(iter + i, iter + i + off,
2282 						j * sizeof(*iter));
2283 
2284 					memmove(l + i, l + i + off,
2285 						j * sizeof(*l));
2286 				}
2287 
2288 				nr -= off;
2289 			}
2290 		}
2291 	}
2292 	return nr;
2293 }
2294 
2295 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2296 				       struct callchain_cursor *cursor,
2297 				       struct perf_sample *sample,
2298 				       struct symbol **parent,
2299 				       struct addr_location *root_al,
2300 				       u64 branch_from,
2301 				       bool callee, int end)
2302 {
2303 	struct ip_callchain *chain = sample->callchain;
2304 	u8 cpumode = PERF_RECORD_MISC_USER;
2305 	int err, i;
2306 
2307 	if (callee) {
2308 		for (i = 0; i < end + 1; i++) {
2309 			err = add_callchain_ip(thread, cursor, parent,
2310 					       root_al, &cpumode, chain->ips[i],
2311 					       false, NULL, NULL, branch_from);
2312 			if (err)
2313 				return err;
2314 		}
2315 		return 0;
2316 	}
2317 
2318 	for (i = end; i >= 0; i--) {
2319 		err = add_callchain_ip(thread, cursor, parent,
2320 				       root_al, &cpumode, chain->ips[i],
2321 				       false, NULL, NULL, branch_from);
2322 		if (err)
2323 			return err;
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 static void save_lbr_cursor_node(struct thread *thread,
2330 				 struct callchain_cursor *cursor,
2331 				 int idx)
2332 {
2333 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2334 
2335 	if (!lbr_stitch)
2336 		return;
2337 
2338 	if (cursor->pos == cursor->nr) {
2339 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2340 		return;
2341 	}
2342 
2343 	if (!cursor->curr)
2344 		cursor->curr = cursor->first;
2345 	else
2346 		cursor->curr = cursor->curr->next;
2347 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2348 	       sizeof(struct callchain_cursor_node));
2349 
2350 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2351 	cursor->pos++;
2352 }
2353 
2354 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2355 				    struct callchain_cursor *cursor,
2356 				    struct perf_sample *sample,
2357 				    struct symbol **parent,
2358 				    struct addr_location *root_al,
2359 				    u64 *branch_from,
2360 				    bool callee)
2361 {
2362 	struct branch_stack *lbr_stack = sample->branch_stack;
2363 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2364 	u8 cpumode = PERF_RECORD_MISC_USER;
2365 	int lbr_nr = lbr_stack->nr;
2366 	struct branch_flags *flags;
2367 	int err, i;
2368 	u64 ip;
2369 
2370 	/*
2371 	 * The curr and pos are not used in writing session. They are cleared
2372 	 * in callchain_cursor_commit() when the writing session is closed.
2373 	 * Using curr and pos to track the current cursor node.
2374 	 */
2375 	if (thread->lbr_stitch) {
2376 		cursor->curr = NULL;
2377 		cursor->pos = cursor->nr;
2378 		if (cursor->nr) {
2379 			cursor->curr = cursor->first;
2380 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2381 				cursor->curr = cursor->curr->next;
2382 		}
2383 	}
2384 
2385 	if (callee) {
2386 		/* Add LBR ip from first entries.to */
2387 		ip = entries[0].to;
2388 		flags = &entries[0].flags;
2389 		*branch_from = entries[0].from;
2390 		err = add_callchain_ip(thread, cursor, parent,
2391 				       root_al, &cpumode, ip,
2392 				       true, flags, NULL,
2393 				       *branch_from);
2394 		if (err)
2395 			return err;
2396 
2397 		/*
2398 		 * The number of cursor node increases.
2399 		 * Move the current cursor node.
2400 		 * But does not need to save current cursor node for entry 0.
2401 		 * It's impossible to stitch the whole LBRs of previous sample.
2402 		 */
2403 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2404 			if (!cursor->curr)
2405 				cursor->curr = cursor->first;
2406 			else
2407 				cursor->curr = cursor->curr->next;
2408 			cursor->pos++;
2409 		}
2410 
2411 		/* Add LBR ip from entries.from one by one. */
2412 		for (i = 0; i < lbr_nr; i++) {
2413 			ip = entries[i].from;
2414 			flags = &entries[i].flags;
2415 			err = add_callchain_ip(thread, cursor, parent,
2416 					       root_al, &cpumode, ip,
2417 					       true, flags, NULL,
2418 					       *branch_from);
2419 			if (err)
2420 				return err;
2421 			save_lbr_cursor_node(thread, cursor, i);
2422 		}
2423 		return 0;
2424 	}
2425 
2426 	/* Add LBR ip from entries.from one by one. */
2427 	for (i = lbr_nr - 1; i >= 0; i--) {
2428 		ip = entries[i].from;
2429 		flags = &entries[i].flags;
2430 		err = add_callchain_ip(thread, cursor, parent,
2431 				       root_al, &cpumode, ip,
2432 				       true, flags, NULL,
2433 				       *branch_from);
2434 		if (err)
2435 			return err;
2436 		save_lbr_cursor_node(thread, cursor, i);
2437 	}
2438 
2439 	/* Add LBR ip from first entries.to */
2440 	ip = entries[0].to;
2441 	flags = &entries[0].flags;
2442 	*branch_from = entries[0].from;
2443 	err = add_callchain_ip(thread, cursor, parent,
2444 			       root_al, &cpumode, ip,
2445 			       true, flags, NULL,
2446 			       *branch_from);
2447 	if (err)
2448 		return err;
2449 
2450 	return 0;
2451 }
2452 
2453 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2454 					     struct callchain_cursor *cursor)
2455 {
2456 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2457 	struct callchain_cursor_node *cnode;
2458 	struct stitch_list *stitch_node;
2459 	int err;
2460 
2461 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2462 		cnode = &stitch_node->cursor;
2463 
2464 		err = callchain_cursor_append(cursor, cnode->ip,
2465 					      &cnode->ms,
2466 					      cnode->branch,
2467 					      &cnode->branch_flags,
2468 					      cnode->nr_loop_iter,
2469 					      cnode->iter_cycles,
2470 					      cnode->branch_from,
2471 					      cnode->srcline);
2472 		if (err)
2473 			return err;
2474 	}
2475 	return 0;
2476 }
2477 
2478 static struct stitch_list *get_stitch_node(struct thread *thread)
2479 {
2480 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2481 	struct stitch_list *stitch_node;
2482 
2483 	if (!list_empty(&lbr_stitch->free_lists)) {
2484 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2485 					       struct stitch_list, node);
2486 		list_del(&stitch_node->node);
2487 
2488 		return stitch_node;
2489 	}
2490 
2491 	return malloc(sizeof(struct stitch_list));
2492 }
2493 
2494 static bool has_stitched_lbr(struct thread *thread,
2495 			     struct perf_sample *cur,
2496 			     struct perf_sample *prev,
2497 			     unsigned int max_lbr,
2498 			     bool callee)
2499 {
2500 	struct branch_stack *cur_stack = cur->branch_stack;
2501 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2502 	struct branch_stack *prev_stack = prev->branch_stack;
2503 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2504 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2505 	int i, j, nr_identical_branches = 0;
2506 	struct stitch_list *stitch_node;
2507 	u64 cur_base, distance;
2508 
2509 	if (!cur_stack || !prev_stack)
2510 		return false;
2511 
2512 	/* Find the physical index of the base-of-stack for current sample. */
2513 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2514 
2515 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2516 						     (max_lbr + prev_stack->hw_idx - cur_base);
2517 	/* Previous sample has shorter stack. Nothing can be stitched. */
2518 	if (distance + 1 > prev_stack->nr)
2519 		return false;
2520 
2521 	/*
2522 	 * Check if there are identical LBRs between two samples.
2523 	 * Identical LBRs must have same from, to and flags values. Also,
2524 	 * they have to be saved in the same LBR registers (same physical
2525 	 * index).
2526 	 *
2527 	 * Starts from the base-of-stack of current sample.
2528 	 */
2529 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2530 		if ((prev_entries[i].from != cur_entries[j].from) ||
2531 		    (prev_entries[i].to != cur_entries[j].to) ||
2532 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2533 			break;
2534 		nr_identical_branches++;
2535 	}
2536 
2537 	if (!nr_identical_branches)
2538 		return false;
2539 
2540 	/*
2541 	 * Save the LBRs between the base-of-stack of previous sample
2542 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2543 	 * These LBRs will be stitched later.
2544 	 */
2545 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2546 
2547 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2548 			continue;
2549 
2550 		stitch_node = get_stitch_node(thread);
2551 		if (!stitch_node)
2552 			return false;
2553 
2554 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2555 		       sizeof(struct callchain_cursor_node));
2556 
2557 		if (callee)
2558 			list_add(&stitch_node->node, &lbr_stitch->lists);
2559 		else
2560 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2561 	}
2562 
2563 	return true;
2564 }
2565 
2566 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2567 {
2568 	if (thread->lbr_stitch)
2569 		return true;
2570 
2571 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2572 	if (!thread->lbr_stitch)
2573 		goto err;
2574 
2575 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2576 	if (!thread->lbr_stitch->prev_lbr_cursor)
2577 		goto free_lbr_stitch;
2578 
2579 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2580 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2581 
2582 	return true;
2583 
2584 free_lbr_stitch:
2585 	zfree(&thread->lbr_stitch);
2586 err:
2587 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2588 	thread->lbr_stitch_enable = false;
2589 	return false;
2590 }
2591 
2592 /*
2593  * Resolve LBR callstack chain sample
2594  * Return:
2595  * 1 on success get LBR callchain information
2596  * 0 no available LBR callchain information, should try fp
2597  * negative error code on other errors.
2598  */
2599 static int resolve_lbr_callchain_sample(struct thread *thread,
2600 					struct callchain_cursor *cursor,
2601 					struct perf_sample *sample,
2602 					struct symbol **parent,
2603 					struct addr_location *root_al,
2604 					int max_stack,
2605 					unsigned int max_lbr)
2606 {
2607 	bool callee = (callchain_param.order == ORDER_CALLEE);
2608 	struct ip_callchain *chain = sample->callchain;
2609 	int chain_nr = min(max_stack, (int)chain->nr), i;
2610 	struct lbr_stitch *lbr_stitch;
2611 	bool stitched_lbr = false;
2612 	u64 branch_from = 0;
2613 	int err;
2614 
2615 	for (i = 0; i < chain_nr; i++) {
2616 		if (chain->ips[i] == PERF_CONTEXT_USER)
2617 			break;
2618 	}
2619 
2620 	/* LBR only affects the user callchain */
2621 	if (i == chain_nr)
2622 		return 0;
2623 
2624 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2625 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2626 		lbr_stitch = thread->lbr_stitch;
2627 
2628 		stitched_lbr = has_stitched_lbr(thread, sample,
2629 						&lbr_stitch->prev_sample,
2630 						max_lbr, callee);
2631 
2632 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2633 			list_replace_init(&lbr_stitch->lists,
2634 					  &lbr_stitch->free_lists);
2635 		}
2636 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2637 	}
2638 
2639 	if (callee) {
2640 		/* Add kernel ip */
2641 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2642 						  parent, root_al, branch_from,
2643 						  true, i);
2644 		if (err)
2645 			goto error;
2646 
2647 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2648 					       root_al, &branch_from, true);
2649 		if (err)
2650 			goto error;
2651 
2652 		if (stitched_lbr) {
2653 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2654 			if (err)
2655 				goto error;
2656 		}
2657 
2658 	} else {
2659 		if (stitched_lbr) {
2660 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2661 			if (err)
2662 				goto error;
2663 		}
2664 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2665 					       root_al, &branch_from, false);
2666 		if (err)
2667 			goto error;
2668 
2669 		/* Add kernel ip */
2670 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2671 						  parent, root_al, branch_from,
2672 						  false, i);
2673 		if (err)
2674 			goto error;
2675 	}
2676 	return 1;
2677 
2678 error:
2679 	return (err < 0) ? err : 0;
2680 }
2681 
2682 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2683 			     struct callchain_cursor *cursor,
2684 			     struct symbol **parent,
2685 			     struct addr_location *root_al,
2686 			     u8 *cpumode, int ent)
2687 {
2688 	int err = 0;
2689 
2690 	while (--ent >= 0) {
2691 		u64 ip = chain->ips[ent];
2692 
2693 		if (ip >= PERF_CONTEXT_MAX) {
2694 			err = add_callchain_ip(thread, cursor, parent,
2695 					       root_al, cpumode, ip,
2696 					       false, NULL, NULL, 0);
2697 			break;
2698 		}
2699 	}
2700 	return err;
2701 }
2702 
2703 static int thread__resolve_callchain_sample(struct thread *thread,
2704 					    struct callchain_cursor *cursor,
2705 					    struct evsel *evsel,
2706 					    struct perf_sample *sample,
2707 					    struct symbol **parent,
2708 					    struct addr_location *root_al,
2709 					    int max_stack)
2710 {
2711 	struct branch_stack *branch = sample->branch_stack;
2712 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2713 	struct ip_callchain *chain = sample->callchain;
2714 	int chain_nr = 0;
2715 	u8 cpumode = PERF_RECORD_MISC_USER;
2716 	int i, j, err, nr_entries;
2717 	int skip_idx = -1;
2718 	int first_call = 0;
2719 
2720 	if (chain)
2721 		chain_nr = chain->nr;
2722 
2723 	if (evsel__has_branch_callstack(evsel)) {
2724 		struct perf_env *env = evsel__env(evsel);
2725 
2726 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2727 						   root_al, max_stack,
2728 						   !env ? 0 : env->max_branches);
2729 		if (err)
2730 			return (err < 0) ? err : 0;
2731 	}
2732 
2733 	/*
2734 	 * Based on DWARF debug information, some architectures skip
2735 	 * a callchain entry saved by the kernel.
2736 	 */
2737 	skip_idx = arch_skip_callchain_idx(thread, chain);
2738 
2739 	/*
2740 	 * Add branches to call stack for easier browsing. This gives
2741 	 * more context for a sample than just the callers.
2742 	 *
2743 	 * This uses individual histograms of paths compared to the
2744 	 * aggregated histograms the normal LBR mode uses.
2745 	 *
2746 	 * Limitations for now:
2747 	 * - No extra filters
2748 	 * - No annotations (should annotate somehow)
2749 	 */
2750 
2751 	if (branch && callchain_param.branch_callstack) {
2752 		int nr = min(max_stack, (int)branch->nr);
2753 		struct branch_entry be[nr];
2754 		struct iterations iter[nr];
2755 
2756 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2757 			pr_warning("corrupted branch chain. skipping...\n");
2758 			goto check_calls;
2759 		}
2760 
2761 		for (i = 0; i < nr; i++) {
2762 			if (callchain_param.order == ORDER_CALLEE) {
2763 				be[i] = entries[i];
2764 
2765 				if (chain == NULL)
2766 					continue;
2767 
2768 				/*
2769 				 * Check for overlap into the callchain.
2770 				 * The return address is one off compared to
2771 				 * the branch entry. To adjust for this
2772 				 * assume the calling instruction is not longer
2773 				 * than 8 bytes.
2774 				 */
2775 				if (i == skip_idx ||
2776 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2777 					first_call++;
2778 				else if (be[i].from < chain->ips[first_call] &&
2779 				    be[i].from >= chain->ips[first_call] - 8)
2780 					first_call++;
2781 			} else
2782 				be[i] = entries[branch->nr - i - 1];
2783 		}
2784 
2785 		memset(iter, 0, sizeof(struct iterations) * nr);
2786 		nr = remove_loops(be, nr, iter);
2787 
2788 		for (i = 0; i < nr; i++) {
2789 			err = add_callchain_ip(thread, cursor, parent,
2790 					       root_al,
2791 					       NULL, be[i].to,
2792 					       true, &be[i].flags,
2793 					       NULL, be[i].from);
2794 
2795 			if (!err)
2796 				err = add_callchain_ip(thread, cursor, parent, root_al,
2797 						       NULL, be[i].from,
2798 						       true, &be[i].flags,
2799 						       &iter[i], 0);
2800 			if (err == -EINVAL)
2801 				break;
2802 			if (err)
2803 				return err;
2804 		}
2805 
2806 		if (chain_nr == 0)
2807 			return 0;
2808 
2809 		chain_nr -= nr;
2810 	}
2811 
2812 check_calls:
2813 	if (chain && callchain_param.order != ORDER_CALLEE) {
2814 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2815 					&cpumode, chain->nr - first_call);
2816 		if (err)
2817 			return (err < 0) ? err : 0;
2818 	}
2819 	for (i = first_call, nr_entries = 0;
2820 	     i < chain_nr && nr_entries < max_stack; i++) {
2821 		u64 ip;
2822 
2823 		if (callchain_param.order == ORDER_CALLEE)
2824 			j = i;
2825 		else
2826 			j = chain->nr - i - 1;
2827 
2828 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2829 		if (j == skip_idx)
2830 			continue;
2831 #endif
2832 		ip = chain->ips[j];
2833 		if (ip < PERF_CONTEXT_MAX)
2834                        ++nr_entries;
2835 		else if (callchain_param.order != ORDER_CALLEE) {
2836 			err = find_prev_cpumode(chain, thread, cursor, parent,
2837 						root_al, &cpumode, j);
2838 			if (err)
2839 				return (err < 0) ? err : 0;
2840 			continue;
2841 		}
2842 
2843 		err = add_callchain_ip(thread, cursor, parent,
2844 				       root_al, &cpumode, ip,
2845 				       false, NULL, NULL, 0);
2846 
2847 		if (err)
2848 			return (err < 0) ? err : 0;
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2855 {
2856 	struct symbol *sym = ms->sym;
2857 	struct map *map = ms->map;
2858 	struct inline_node *inline_node;
2859 	struct inline_list *ilist;
2860 	u64 addr;
2861 	int ret = 1;
2862 
2863 	if (!symbol_conf.inline_name || !map || !sym)
2864 		return ret;
2865 
2866 	addr = map__map_ip(map, ip);
2867 	addr = map__rip_2objdump(map, addr);
2868 
2869 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2870 	if (!inline_node) {
2871 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2872 		if (!inline_node)
2873 			return ret;
2874 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2875 	}
2876 
2877 	list_for_each_entry(ilist, &inline_node->val, list) {
2878 		struct map_symbol ilist_ms = {
2879 			.maps = ms->maps,
2880 			.map = map,
2881 			.sym = ilist->symbol,
2882 		};
2883 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2884 					      NULL, 0, 0, 0, ilist->srcline);
2885 
2886 		if (ret != 0)
2887 			return ret;
2888 	}
2889 
2890 	return ret;
2891 }
2892 
2893 static int unwind_entry(struct unwind_entry *entry, void *arg)
2894 {
2895 	struct callchain_cursor *cursor = arg;
2896 	const char *srcline = NULL;
2897 	u64 addr = entry->ip;
2898 
2899 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2900 		return 0;
2901 
2902 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2903 		return 0;
2904 
2905 	/*
2906 	 * Convert entry->ip from a virtual address to an offset in
2907 	 * its corresponding binary.
2908 	 */
2909 	if (entry->ms.map)
2910 		addr = map__map_ip(entry->ms.map, entry->ip);
2911 
2912 	srcline = callchain_srcline(&entry->ms, addr);
2913 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2914 				       false, NULL, 0, 0, 0, srcline);
2915 }
2916 
2917 static int thread__resolve_callchain_unwind(struct thread *thread,
2918 					    struct callchain_cursor *cursor,
2919 					    struct evsel *evsel,
2920 					    struct perf_sample *sample,
2921 					    int max_stack)
2922 {
2923 	/* Can we do dwarf post unwind? */
2924 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2925 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2926 		return 0;
2927 
2928 	/* Bail out if nothing was captured. */
2929 	if ((!sample->user_regs.regs) ||
2930 	    (!sample->user_stack.size))
2931 		return 0;
2932 
2933 	return unwind__get_entries(unwind_entry, cursor,
2934 				   thread, sample, max_stack);
2935 }
2936 
2937 int thread__resolve_callchain(struct thread *thread,
2938 			      struct callchain_cursor *cursor,
2939 			      struct evsel *evsel,
2940 			      struct perf_sample *sample,
2941 			      struct symbol **parent,
2942 			      struct addr_location *root_al,
2943 			      int max_stack)
2944 {
2945 	int ret = 0;
2946 
2947 	callchain_cursor_reset(cursor);
2948 
2949 	if (callchain_param.order == ORDER_CALLEE) {
2950 		ret = thread__resolve_callchain_sample(thread, cursor,
2951 						       evsel, sample,
2952 						       parent, root_al,
2953 						       max_stack);
2954 		if (ret)
2955 			return ret;
2956 		ret = thread__resolve_callchain_unwind(thread, cursor,
2957 						       evsel, sample,
2958 						       max_stack);
2959 	} else {
2960 		ret = thread__resolve_callchain_unwind(thread, cursor,
2961 						       evsel, sample,
2962 						       max_stack);
2963 		if (ret)
2964 			return ret;
2965 		ret = thread__resolve_callchain_sample(thread, cursor,
2966 						       evsel, sample,
2967 						       parent, root_al,
2968 						       max_stack);
2969 	}
2970 
2971 	return ret;
2972 }
2973 
2974 int machine__for_each_thread(struct machine *machine,
2975 			     int (*fn)(struct thread *thread, void *p),
2976 			     void *priv)
2977 {
2978 	struct threads *threads;
2979 	struct rb_node *nd;
2980 	struct thread *thread;
2981 	int rc = 0;
2982 	int i;
2983 
2984 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2985 		threads = &machine->threads[i];
2986 		for (nd = rb_first_cached(&threads->entries); nd;
2987 		     nd = rb_next(nd)) {
2988 			thread = rb_entry(nd, struct thread, rb_node);
2989 			rc = fn(thread, priv);
2990 			if (rc != 0)
2991 				return rc;
2992 		}
2993 
2994 		list_for_each_entry(thread, &threads->dead, node) {
2995 			rc = fn(thread, priv);
2996 			if (rc != 0)
2997 				return rc;
2998 		}
2999 	}
3000 	return rc;
3001 }
3002 
3003 int machines__for_each_thread(struct machines *machines,
3004 			      int (*fn)(struct thread *thread, void *p),
3005 			      void *priv)
3006 {
3007 	struct rb_node *nd;
3008 	int rc = 0;
3009 
3010 	rc = machine__for_each_thread(&machines->host, fn, priv);
3011 	if (rc != 0)
3012 		return rc;
3013 
3014 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3015 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3016 
3017 		rc = machine__for_each_thread(machine, fn, priv);
3018 		if (rc != 0)
3019 			return rc;
3020 	}
3021 	return rc;
3022 }
3023 
3024 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3025 {
3026 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3027 
3028 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3029 		return -1;
3030 
3031 	return machine->current_tid[cpu];
3032 }
3033 
3034 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3035 			     pid_t tid)
3036 {
3037 	struct thread *thread;
3038 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3039 
3040 	if (cpu < 0)
3041 		return -EINVAL;
3042 
3043 	if (!machine->current_tid) {
3044 		int i;
3045 
3046 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3047 		if (!machine->current_tid)
3048 			return -ENOMEM;
3049 		for (i = 0; i < nr_cpus; i++)
3050 			machine->current_tid[i] = -1;
3051 	}
3052 
3053 	if (cpu >= nr_cpus) {
3054 		pr_err("Requested CPU %d too large. ", cpu);
3055 		pr_err("Consider raising MAX_NR_CPUS\n");
3056 		return -EINVAL;
3057 	}
3058 
3059 	machine->current_tid[cpu] = tid;
3060 
3061 	thread = machine__findnew_thread(machine, pid, tid);
3062 	if (!thread)
3063 		return -ENOMEM;
3064 
3065 	thread->cpu = cpu;
3066 	thread__put(thread);
3067 
3068 	return 0;
3069 }
3070 
3071 /*
3072  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3073  * normalized arch is needed.
3074  */
3075 bool machine__is(struct machine *machine, const char *arch)
3076 {
3077 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3078 }
3079 
3080 int machine__nr_cpus_avail(struct machine *machine)
3081 {
3082 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3083 }
3084 
3085 int machine__get_kernel_start(struct machine *machine)
3086 {
3087 	struct map *map = machine__kernel_map(machine);
3088 	int err = 0;
3089 
3090 	/*
3091 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3092 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3093 	 * all addresses including kernel addresses are less than 2^32.  In
3094 	 * that case (32-bit system), if the kernel mapping is unknown, all
3095 	 * addresses will be assumed to be in user space - see
3096 	 * machine__kernel_ip().
3097 	 */
3098 	machine->kernel_start = 1ULL << 63;
3099 	if (map) {
3100 		err = map__load(map);
3101 		/*
3102 		 * On x86_64, PTI entry trampolines are less than the
3103 		 * start of kernel text, but still above 2^63. So leave
3104 		 * kernel_start = 1ULL << 63 for x86_64.
3105 		 */
3106 		if (!err && !machine__is(machine, "x86_64"))
3107 			machine->kernel_start = map->start;
3108 	}
3109 	return err;
3110 }
3111 
3112 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3113 {
3114 	u8 addr_cpumode = cpumode;
3115 	bool kernel_ip;
3116 
3117 	if (!machine->single_address_space)
3118 		goto out;
3119 
3120 	kernel_ip = machine__kernel_ip(machine, addr);
3121 	switch (cpumode) {
3122 	case PERF_RECORD_MISC_KERNEL:
3123 	case PERF_RECORD_MISC_USER:
3124 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3125 					   PERF_RECORD_MISC_USER;
3126 		break;
3127 	case PERF_RECORD_MISC_GUEST_KERNEL:
3128 	case PERF_RECORD_MISC_GUEST_USER:
3129 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3130 					   PERF_RECORD_MISC_GUEST_USER;
3131 		break;
3132 	default:
3133 		break;
3134 	}
3135 out:
3136 	return addr_cpumode;
3137 }
3138 
3139 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3140 {
3141 	return dsos__findnew_id(&machine->dsos, filename, id);
3142 }
3143 
3144 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3145 {
3146 	return machine__findnew_dso_id(machine, filename, NULL);
3147 }
3148 
3149 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3150 {
3151 	struct machine *machine = vmachine;
3152 	struct map *map;
3153 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3154 
3155 	if (sym == NULL)
3156 		return NULL;
3157 
3158 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3159 	*addrp = map->unmap_ip(map, sym->start);
3160 	return sym->name;
3161 }
3162 
3163 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3164 {
3165 	struct dso *pos;
3166 	int err = 0;
3167 
3168 	list_for_each_entry(pos, &machine->dsos.head, node) {
3169 		if (fn(pos, machine, priv))
3170 			err = -1;
3171 	}
3172 	return err;
3173 }
3174