1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd, 47 struct thread *th, bool lock); 48 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip); 49 50 static struct dso *machine__kernel_dso(struct machine *machine) 51 { 52 return map__dso(machine->vmlinux_map); 53 } 54 55 static void dsos__init(struct dsos *dsos) 56 { 57 INIT_LIST_HEAD(&dsos->head); 58 dsos->root = RB_ROOT; 59 init_rwsem(&dsos->lock); 60 } 61 62 static void machine__threads_init(struct machine *machine) 63 { 64 int i; 65 66 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 67 struct threads *threads = &machine->threads[i]; 68 threads->entries = RB_ROOT_CACHED; 69 init_rwsem(&threads->lock); 70 threads->nr = 0; 71 INIT_LIST_HEAD(&threads->dead); 72 threads->last_match = NULL; 73 } 74 } 75 76 static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd) 77 { 78 int to_find = (int) *((pid_t *)key); 79 80 return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread); 81 } 82 83 static struct thread_rb_node *thread_rb_node__find(const struct thread *th, 84 struct rb_root *tree) 85 { 86 pid_t to_find = thread__tid(th); 87 struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid); 88 89 return rb_entry(nd, struct thread_rb_node, rb_node); 90 } 91 92 static int machine__set_mmap_name(struct machine *machine) 93 { 94 if (machine__is_host(machine)) 95 machine->mmap_name = strdup("[kernel.kallsyms]"); 96 else if (machine__is_default_guest(machine)) 97 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 98 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 99 machine->pid) < 0) 100 machine->mmap_name = NULL; 101 102 return machine->mmap_name ? 0 : -ENOMEM; 103 } 104 105 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 106 { 107 char comm[64]; 108 109 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 110 thread__set_comm(thread, comm, 0); 111 } 112 113 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 114 { 115 int err = -ENOMEM; 116 117 memset(machine, 0, sizeof(*machine)); 118 machine->kmaps = maps__new(machine); 119 if (machine->kmaps == NULL) 120 return -ENOMEM; 121 122 RB_CLEAR_NODE(&machine->rb_node); 123 dsos__init(&machine->dsos); 124 125 machine__threads_init(machine); 126 127 machine->vdso_info = NULL; 128 machine->env = NULL; 129 130 machine->pid = pid; 131 132 machine->id_hdr_size = 0; 133 machine->kptr_restrict_warned = false; 134 machine->comm_exec = false; 135 machine->kernel_start = 0; 136 machine->vmlinux_map = NULL; 137 138 machine->root_dir = strdup(root_dir); 139 if (machine->root_dir == NULL) 140 goto out; 141 142 if (machine__set_mmap_name(machine)) 143 goto out; 144 145 if (pid != HOST_KERNEL_ID) { 146 struct thread *thread = machine__findnew_thread(machine, -1, 147 pid); 148 149 if (thread == NULL) 150 goto out; 151 152 thread__set_guest_comm(thread, pid); 153 thread__put(thread); 154 } 155 156 machine->current_tid = NULL; 157 err = 0; 158 159 out: 160 if (err) { 161 zfree(&machine->kmaps); 162 zfree(&machine->root_dir); 163 zfree(&machine->mmap_name); 164 } 165 return 0; 166 } 167 168 struct machine *machine__new_host(void) 169 { 170 struct machine *machine = malloc(sizeof(*machine)); 171 172 if (machine != NULL) { 173 machine__init(machine, "", HOST_KERNEL_ID); 174 175 if (machine__create_kernel_maps(machine) < 0) 176 goto out_delete; 177 } 178 179 return machine; 180 out_delete: 181 free(machine); 182 return NULL; 183 } 184 185 struct machine *machine__new_kallsyms(void) 186 { 187 struct machine *machine = machine__new_host(); 188 /* 189 * FIXME: 190 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 191 * ask for not using the kcore parsing code, once this one is fixed 192 * to create a map per module. 193 */ 194 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 195 machine__delete(machine); 196 machine = NULL; 197 } 198 199 return machine; 200 } 201 202 static void dsos__purge(struct dsos *dsos) 203 { 204 struct dso *pos, *n; 205 206 down_write(&dsos->lock); 207 208 list_for_each_entry_safe(pos, n, &dsos->head, node) { 209 RB_CLEAR_NODE(&pos->rb_node); 210 pos->root = NULL; 211 list_del_init(&pos->node); 212 dso__put(pos); 213 } 214 215 up_write(&dsos->lock); 216 } 217 218 static void dsos__exit(struct dsos *dsos) 219 { 220 dsos__purge(dsos); 221 exit_rwsem(&dsos->lock); 222 } 223 224 void machine__delete_threads(struct machine *machine) 225 { 226 struct rb_node *nd; 227 int i; 228 229 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 230 struct threads *threads = &machine->threads[i]; 231 down_write(&threads->lock); 232 nd = rb_first_cached(&threads->entries); 233 while (nd) { 234 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node); 235 236 nd = rb_next(nd); 237 __machine__remove_thread(machine, trb, trb->thread, false); 238 } 239 up_write(&threads->lock); 240 } 241 } 242 243 void machine__exit(struct machine *machine) 244 { 245 int i; 246 247 if (machine == NULL) 248 return; 249 250 machine__destroy_kernel_maps(machine); 251 maps__zput(machine->kmaps); 252 dsos__exit(&machine->dsos); 253 machine__exit_vdso(machine); 254 zfree(&machine->root_dir); 255 zfree(&machine->mmap_name); 256 zfree(&machine->current_tid); 257 zfree(&machine->kallsyms_filename); 258 259 machine__delete_threads(machine); 260 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 261 struct threads *threads = &machine->threads[i]; 262 263 exit_rwsem(&threads->lock); 264 } 265 } 266 267 void machine__delete(struct machine *machine) 268 { 269 if (machine) { 270 machine__exit(machine); 271 free(machine); 272 } 273 } 274 275 void machines__init(struct machines *machines) 276 { 277 machine__init(&machines->host, "", HOST_KERNEL_ID); 278 machines->guests = RB_ROOT_CACHED; 279 } 280 281 void machines__exit(struct machines *machines) 282 { 283 machine__exit(&machines->host); 284 /* XXX exit guest */ 285 } 286 287 struct machine *machines__add(struct machines *machines, pid_t pid, 288 const char *root_dir) 289 { 290 struct rb_node **p = &machines->guests.rb_root.rb_node; 291 struct rb_node *parent = NULL; 292 struct machine *pos, *machine = malloc(sizeof(*machine)); 293 bool leftmost = true; 294 295 if (machine == NULL) 296 return NULL; 297 298 if (machine__init(machine, root_dir, pid) != 0) { 299 free(machine); 300 return NULL; 301 } 302 303 while (*p != NULL) { 304 parent = *p; 305 pos = rb_entry(parent, struct machine, rb_node); 306 if (pid < pos->pid) 307 p = &(*p)->rb_left; 308 else { 309 p = &(*p)->rb_right; 310 leftmost = false; 311 } 312 } 313 314 rb_link_node(&machine->rb_node, parent, p); 315 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 316 317 machine->machines = machines; 318 319 return machine; 320 } 321 322 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 323 { 324 struct rb_node *nd; 325 326 machines->host.comm_exec = comm_exec; 327 328 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 329 struct machine *machine = rb_entry(nd, struct machine, rb_node); 330 331 machine->comm_exec = comm_exec; 332 } 333 } 334 335 struct machine *machines__find(struct machines *machines, pid_t pid) 336 { 337 struct rb_node **p = &machines->guests.rb_root.rb_node; 338 struct rb_node *parent = NULL; 339 struct machine *machine; 340 struct machine *default_machine = NULL; 341 342 if (pid == HOST_KERNEL_ID) 343 return &machines->host; 344 345 while (*p != NULL) { 346 parent = *p; 347 machine = rb_entry(parent, struct machine, rb_node); 348 if (pid < machine->pid) 349 p = &(*p)->rb_left; 350 else if (pid > machine->pid) 351 p = &(*p)->rb_right; 352 else 353 return machine; 354 if (!machine->pid) 355 default_machine = machine; 356 } 357 358 return default_machine; 359 } 360 361 struct machine *machines__findnew(struct machines *machines, pid_t pid) 362 { 363 char path[PATH_MAX]; 364 const char *root_dir = ""; 365 struct machine *machine = machines__find(machines, pid); 366 367 if (machine && (machine->pid == pid)) 368 goto out; 369 370 if ((pid != HOST_KERNEL_ID) && 371 (pid != DEFAULT_GUEST_KERNEL_ID) && 372 (symbol_conf.guestmount)) { 373 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 374 if (access(path, R_OK)) { 375 static struct strlist *seen; 376 377 if (!seen) 378 seen = strlist__new(NULL, NULL); 379 380 if (!strlist__has_entry(seen, path)) { 381 pr_err("Can't access file %s\n", path); 382 strlist__add(seen, path); 383 } 384 machine = NULL; 385 goto out; 386 } 387 root_dir = path; 388 } 389 390 machine = machines__add(machines, pid, root_dir); 391 out: 392 return machine; 393 } 394 395 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 396 { 397 struct machine *machine = machines__find(machines, pid); 398 399 if (!machine) 400 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 401 return machine; 402 } 403 404 /* 405 * A common case for KVM test programs is that the test program acts as the 406 * hypervisor, creating, running and destroying the virtual machine, and 407 * providing the guest object code from its own object code. In this case, 408 * the VM is not running an OS, but only the functions loaded into it by the 409 * hypervisor test program, and conveniently, loaded at the same virtual 410 * addresses. 411 * 412 * Normally to resolve addresses, MMAP events are needed to map addresses 413 * back to the object code and debug symbols for that object code. 414 * 415 * Currently, there is no way to get such mapping information from guests 416 * but, in the scenario described above, the guest has the same mappings 417 * as the hypervisor, so support for that scenario can be achieved. 418 * 419 * To support that, copy the host thread's maps to the guest thread's maps. 420 * Note, we do not discover the guest until we encounter a guest event, 421 * which works well because it is not until then that we know that the host 422 * thread's maps have been set up. 423 * 424 * This function returns the guest thread. Apart from keeping the data 425 * structures sane, using a thread belonging to the guest machine, instead 426 * of the host thread, allows it to have its own comm (refer 427 * thread__set_guest_comm()). 428 */ 429 static struct thread *findnew_guest_code(struct machine *machine, 430 struct machine *host_machine, 431 pid_t pid) 432 { 433 struct thread *host_thread; 434 struct thread *thread; 435 int err; 436 437 if (!machine) 438 return NULL; 439 440 thread = machine__findnew_thread(machine, -1, pid); 441 if (!thread) 442 return NULL; 443 444 /* Assume maps are set up if there are any */ 445 if (maps__nr_maps(thread__maps(thread))) 446 return thread; 447 448 host_thread = machine__find_thread(host_machine, -1, pid); 449 if (!host_thread) 450 goto out_err; 451 452 thread__set_guest_comm(thread, pid); 453 454 /* 455 * Guest code can be found in hypervisor process at the same address 456 * so copy host maps. 457 */ 458 err = maps__clone(thread, thread__maps(host_thread)); 459 thread__put(host_thread); 460 if (err) 461 goto out_err; 462 463 return thread; 464 465 out_err: 466 thread__zput(thread); 467 return NULL; 468 } 469 470 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 471 { 472 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 473 struct machine *machine = machines__findnew(machines, pid); 474 475 return findnew_guest_code(machine, host_machine, pid); 476 } 477 478 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 479 { 480 struct machines *machines = machine->machines; 481 struct machine *host_machine; 482 483 if (!machines) 484 return NULL; 485 486 host_machine = machines__find(machines, HOST_KERNEL_ID); 487 488 return findnew_guest_code(machine, host_machine, pid); 489 } 490 491 void machines__process_guests(struct machines *machines, 492 machine__process_t process, void *data) 493 { 494 struct rb_node *nd; 495 496 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 497 struct machine *pos = rb_entry(nd, struct machine, rb_node); 498 process(pos, data); 499 } 500 } 501 502 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 503 { 504 struct rb_node *node; 505 struct machine *machine; 506 507 machines->host.id_hdr_size = id_hdr_size; 508 509 for (node = rb_first_cached(&machines->guests); node; 510 node = rb_next(node)) { 511 machine = rb_entry(node, struct machine, rb_node); 512 machine->id_hdr_size = id_hdr_size; 513 } 514 515 return; 516 } 517 518 static void machine__update_thread_pid(struct machine *machine, 519 struct thread *th, pid_t pid) 520 { 521 struct thread *leader; 522 523 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1) 524 return; 525 526 thread__set_pid(th, pid); 527 528 if (thread__pid(th) == thread__tid(th)) 529 return; 530 531 leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th)); 532 if (!leader) 533 goto out_err; 534 535 if (!thread__maps(leader)) 536 thread__set_maps(leader, maps__new(machine)); 537 538 if (!thread__maps(leader)) 539 goto out_err; 540 541 if (thread__maps(th) == thread__maps(leader)) 542 goto out_put; 543 544 if (thread__maps(th)) { 545 /* 546 * Maps are created from MMAP events which provide the pid and 547 * tid. Consequently there never should be any maps on a thread 548 * with an unknown pid. Just print an error if there are. 549 */ 550 if (!maps__empty(thread__maps(th))) 551 pr_err("Discarding thread maps for %d:%d\n", 552 thread__pid(th), thread__tid(th)); 553 maps__put(thread__maps(th)); 554 } 555 556 thread__set_maps(th, maps__get(thread__maps(leader))); 557 out_put: 558 thread__put(leader); 559 return; 560 out_err: 561 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th)); 562 goto out_put; 563 } 564 565 /* 566 * Front-end cache - TID lookups come in blocks, 567 * so most of the time we dont have to look up 568 * the full rbtree: 569 */ 570 static struct thread* 571 __threads__get_last_match(struct threads *threads, struct machine *machine, 572 int pid, int tid) 573 { 574 struct thread *th; 575 576 th = threads->last_match; 577 if (th != NULL) { 578 if (thread__tid(th) == tid) { 579 machine__update_thread_pid(machine, th, pid); 580 return thread__get(th); 581 } 582 thread__put(threads->last_match); 583 threads->last_match = NULL; 584 } 585 586 return NULL; 587 } 588 589 static struct thread* 590 threads__get_last_match(struct threads *threads, struct machine *machine, 591 int pid, int tid) 592 { 593 struct thread *th = NULL; 594 595 if (perf_singlethreaded) 596 th = __threads__get_last_match(threads, machine, pid, tid); 597 598 return th; 599 } 600 601 static void 602 __threads__set_last_match(struct threads *threads, struct thread *th) 603 { 604 thread__put(threads->last_match); 605 threads->last_match = thread__get(th); 606 } 607 608 static void 609 threads__set_last_match(struct threads *threads, struct thread *th) 610 { 611 if (perf_singlethreaded) 612 __threads__set_last_match(threads, th); 613 } 614 615 /* 616 * Caller must eventually drop thread->refcnt returned with a successful 617 * lookup/new thread inserted. 618 */ 619 static struct thread *____machine__findnew_thread(struct machine *machine, 620 struct threads *threads, 621 pid_t pid, pid_t tid, 622 bool create) 623 { 624 struct rb_node **p = &threads->entries.rb_root.rb_node; 625 struct rb_node *parent = NULL; 626 struct thread *th; 627 struct thread_rb_node *nd; 628 bool leftmost = true; 629 630 th = threads__get_last_match(threads, machine, pid, tid); 631 if (th) 632 return th; 633 634 while (*p != NULL) { 635 parent = *p; 636 th = rb_entry(parent, struct thread_rb_node, rb_node)->thread; 637 638 if (thread__tid(th) == tid) { 639 threads__set_last_match(threads, th); 640 machine__update_thread_pid(machine, th, pid); 641 return thread__get(th); 642 } 643 644 if (tid < thread__tid(th)) 645 p = &(*p)->rb_left; 646 else { 647 p = &(*p)->rb_right; 648 leftmost = false; 649 } 650 } 651 652 if (!create) 653 return NULL; 654 655 th = thread__new(pid, tid); 656 if (th == NULL) 657 return NULL; 658 659 nd = malloc(sizeof(*nd)); 660 if (nd == NULL) { 661 thread__put(th); 662 return NULL; 663 } 664 nd->thread = th; 665 666 rb_link_node(&nd->rb_node, parent, p); 667 rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost); 668 /* 669 * We have to initialize maps separately after rb tree is updated. 670 * 671 * The reason is that we call machine__findnew_thread within 672 * thread__init_maps to find the thread leader and that would screwed 673 * the rb tree. 674 */ 675 if (thread__init_maps(th, machine)) { 676 pr_err("Thread init failed thread %d\n", pid); 677 rb_erase_cached(&nd->rb_node, &threads->entries); 678 RB_CLEAR_NODE(&nd->rb_node); 679 free(nd); 680 thread__put(th); 681 return NULL; 682 } 683 /* 684 * It is now in the rbtree, get a ref 685 */ 686 threads__set_last_match(threads, th); 687 ++threads->nr; 688 689 return thread__get(th); 690 } 691 692 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 693 { 694 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 695 } 696 697 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 698 pid_t tid) 699 { 700 struct threads *threads = machine__threads(machine, tid); 701 struct thread *th; 702 703 down_write(&threads->lock); 704 th = __machine__findnew_thread(machine, pid, tid); 705 up_write(&threads->lock); 706 return th; 707 } 708 709 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 710 pid_t tid) 711 { 712 struct threads *threads = machine__threads(machine, tid); 713 struct thread *th; 714 715 down_read(&threads->lock); 716 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 717 up_read(&threads->lock); 718 return th; 719 } 720 721 /* 722 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 723 * So here a single thread is created for that, but actually there is a separate 724 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 725 * is only 1. That causes problems for some tools, requiring workarounds. For 726 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 727 */ 728 struct thread *machine__idle_thread(struct machine *machine) 729 { 730 struct thread *thread = machine__findnew_thread(machine, 0, 0); 731 732 if (!thread || thread__set_comm(thread, "swapper", 0) || 733 thread__set_namespaces(thread, 0, NULL)) 734 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 735 736 return thread; 737 } 738 739 struct comm *machine__thread_exec_comm(struct machine *machine, 740 struct thread *thread) 741 { 742 if (machine->comm_exec) 743 return thread__exec_comm(thread); 744 else 745 return thread__comm(thread); 746 } 747 748 int machine__process_comm_event(struct machine *machine, union perf_event *event, 749 struct perf_sample *sample) 750 { 751 struct thread *thread = machine__findnew_thread(machine, 752 event->comm.pid, 753 event->comm.tid); 754 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 755 int err = 0; 756 757 if (exec) 758 machine->comm_exec = true; 759 760 if (dump_trace) 761 perf_event__fprintf_comm(event, stdout); 762 763 if (thread == NULL || 764 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 765 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 766 err = -1; 767 } 768 769 thread__put(thread); 770 771 return err; 772 } 773 774 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 775 union perf_event *event, 776 struct perf_sample *sample __maybe_unused) 777 { 778 struct thread *thread = machine__findnew_thread(machine, 779 event->namespaces.pid, 780 event->namespaces.tid); 781 int err = 0; 782 783 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 784 "\nWARNING: kernel seems to support more namespaces than perf" 785 " tool.\nTry updating the perf tool..\n\n"); 786 787 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 788 "\nWARNING: perf tool seems to support more namespaces than" 789 " the kernel.\nTry updating the kernel..\n\n"); 790 791 if (dump_trace) 792 perf_event__fprintf_namespaces(event, stdout); 793 794 if (thread == NULL || 795 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 796 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 797 err = -1; 798 } 799 800 thread__put(thread); 801 802 return err; 803 } 804 805 int machine__process_cgroup_event(struct machine *machine, 806 union perf_event *event, 807 struct perf_sample *sample __maybe_unused) 808 { 809 struct cgroup *cgrp; 810 811 if (dump_trace) 812 perf_event__fprintf_cgroup(event, stdout); 813 814 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 815 if (cgrp == NULL) 816 return -ENOMEM; 817 818 return 0; 819 } 820 821 int machine__process_lost_event(struct machine *machine __maybe_unused, 822 union perf_event *event, struct perf_sample *sample __maybe_unused) 823 { 824 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 825 event->lost.id, event->lost.lost); 826 return 0; 827 } 828 829 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 830 union perf_event *event, struct perf_sample *sample) 831 { 832 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 833 sample->id, event->lost_samples.lost); 834 return 0; 835 } 836 837 static struct dso *machine__findnew_module_dso(struct machine *machine, 838 struct kmod_path *m, 839 const char *filename) 840 { 841 struct dso *dso; 842 843 down_write(&machine->dsos.lock); 844 845 dso = __dsos__find(&machine->dsos, m->name, true); 846 if (!dso) { 847 dso = __dsos__addnew(&machine->dsos, m->name); 848 if (dso == NULL) 849 goto out_unlock; 850 851 dso__set_module_info(dso, m, machine); 852 dso__set_long_name(dso, strdup(filename), true); 853 dso->kernel = DSO_SPACE__KERNEL; 854 } 855 856 dso__get(dso); 857 out_unlock: 858 up_write(&machine->dsos.lock); 859 return dso; 860 } 861 862 int machine__process_aux_event(struct machine *machine __maybe_unused, 863 union perf_event *event) 864 { 865 if (dump_trace) 866 perf_event__fprintf_aux(event, stdout); 867 return 0; 868 } 869 870 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 871 union perf_event *event) 872 { 873 if (dump_trace) 874 perf_event__fprintf_itrace_start(event, stdout); 875 return 0; 876 } 877 878 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 879 union perf_event *event) 880 { 881 if (dump_trace) 882 perf_event__fprintf_aux_output_hw_id(event, stdout); 883 return 0; 884 } 885 886 int machine__process_switch_event(struct machine *machine __maybe_unused, 887 union perf_event *event) 888 { 889 if (dump_trace) 890 perf_event__fprintf_switch(event, stdout); 891 return 0; 892 } 893 894 static int machine__process_ksymbol_register(struct machine *machine, 895 union perf_event *event, 896 struct perf_sample *sample __maybe_unused) 897 { 898 struct symbol *sym; 899 struct dso *dso; 900 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 901 bool put_map = false; 902 int err = 0; 903 904 if (!map) { 905 dso = dso__new(event->ksymbol.name); 906 907 if (!dso) { 908 err = -ENOMEM; 909 goto out; 910 } 911 dso->kernel = DSO_SPACE__KERNEL; 912 map = map__new2(0, dso); 913 dso__put(dso); 914 if (!map) { 915 err = -ENOMEM; 916 goto out; 917 } 918 /* 919 * The inserted map has a get on it, we need to put to release 920 * the reference count here, but do it after all accesses are 921 * done. 922 */ 923 put_map = true; 924 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 925 dso->binary_type = DSO_BINARY_TYPE__OOL; 926 dso->data.file_size = event->ksymbol.len; 927 dso__set_loaded(dso); 928 } 929 930 map__set_start(map, event->ksymbol.addr); 931 map__set_end(map, map__start(map) + event->ksymbol.len); 932 err = maps__insert(machine__kernel_maps(machine), map); 933 if (err) { 934 err = -ENOMEM; 935 goto out; 936 } 937 938 dso__set_loaded(dso); 939 940 if (is_bpf_image(event->ksymbol.name)) { 941 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 942 dso__set_long_name(dso, "", false); 943 } 944 } else { 945 dso = map__dso(map); 946 } 947 948 sym = symbol__new(map__map_ip(map, map__start(map)), 949 event->ksymbol.len, 950 0, 0, event->ksymbol.name); 951 if (!sym) { 952 err = -ENOMEM; 953 goto out; 954 } 955 dso__insert_symbol(dso, sym); 956 out: 957 if (put_map) 958 map__put(map); 959 return err; 960 } 961 962 static int machine__process_ksymbol_unregister(struct machine *machine, 963 union perf_event *event, 964 struct perf_sample *sample __maybe_unused) 965 { 966 struct symbol *sym; 967 struct map *map; 968 969 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 970 if (!map) 971 return 0; 972 973 if (RC_CHK_ACCESS(map) != RC_CHK_ACCESS(machine->vmlinux_map)) 974 maps__remove(machine__kernel_maps(machine), map); 975 else { 976 struct dso *dso = map__dso(map); 977 978 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map))); 979 if (sym) 980 dso__delete_symbol(dso, sym); 981 } 982 983 return 0; 984 } 985 986 int machine__process_ksymbol(struct machine *machine __maybe_unused, 987 union perf_event *event, 988 struct perf_sample *sample) 989 { 990 if (dump_trace) 991 perf_event__fprintf_ksymbol(event, stdout); 992 993 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 994 return machine__process_ksymbol_unregister(machine, event, 995 sample); 996 return machine__process_ksymbol_register(machine, event, sample); 997 } 998 999 int machine__process_text_poke(struct machine *machine, union perf_event *event, 1000 struct perf_sample *sample __maybe_unused) 1001 { 1002 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 1003 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1004 struct dso *dso = map ? map__dso(map) : NULL; 1005 1006 if (dump_trace) 1007 perf_event__fprintf_text_poke(event, machine, stdout); 1008 1009 if (!event->text_poke.new_len) 1010 return 0; 1011 1012 if (cpumode != PERF_RECORD_MISC_KERNEL) { 1013 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 1014 return 0; 1015 } 1016 1017 if (dso) { 1018 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 1019 int ret; 1020 1021 /* 1022 * Kernel maps might be changed when loading symbols so loading 1023 * must be done prior to using kernel maps. 1024 */ 1025 map__load(map); 1026 ret = dso__data_write_cache_addr(dso, map, machine, 1027 event->text_poke.addr, 1028 new_bytes, 1029 event->text_poke.new_len); 1030 if (ret != event->text_poke.new_len) 1031 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 1032 event->text_poke.addr); 1033 } else { 1034 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 1035 event->text_poke.addr); 1036 } 1037 1038 return 0; 1039 } 1040 1041 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 1042 const char *filename) 1043 { 1044 struct map *map = NULL; 1045 struct kmod_path m; 1046 struct dso *dso; 1047 int err; 1048 1049 if (kmod_path__parse_name(&m, filename)) 1050 return NULL; 1051 1052 dso = machine__findnew_module_dso(machine, &m, filename); 1053 if (dso == NULL) 1054 goto out; 1055 1056 map = map__new2(start, dso); 1057 if (map == NULL) 1058 goto out; 1059 1060 err = maps__insert(machine__kernel_maps(machine), map); 1061 /* If maps__insert failed, return NULL. */ 1062 if (err) { 1063 map__put(map); 1064 map = NULL; 1065 } 1066 out: 1067 /* put the dso here, corresponding to machine__findnew_module_dso */ 1068 dso__put(dso); 1069 zfree(&m.name); 1070 return map; 1071 } 1072 1073 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 1074 { 1075 struct rb_node *nd; 1076 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 1077 1078 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1079 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1080 ret += __dsos__fprintf(&pos->dsos.head, fp); 1081 } 1082 1083 return ret; 1084 } 1085 1086 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 1087 bool (skip)(struct dso *dso, int parm), int parm) 1088 { 1089 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 1090 } 1091 1092 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 1093 bool (skip)(struct dso *dso, int parm), int parm) 1094 { 1095 struct rb_node *nd; 1096 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 1097 1098 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1099 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1100 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 1101 } 1102 return ret; 1103 } 1104 1105 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 1106 { 1107 int i; 1108 size_t printed = 0; 1109 struct dso *kdso = machine__kernel_dso(machine); 1110 1111 if (kdso->has_build_id) { 1112 char filename[PATH_MAX]; 1113 if (dso__build_id_filename(kdso, filename, sizeof(filename), 1114 false)) 1115 printed += fprintf(fp, "[0] %s\n", filename); 1116 } 1117 1118 for (i = 0; i < vmlinux_path__nr_entries; ++i) 1119 printed += fprintf(fp, "[%d] %s\n", 1120 i + kdso->has_build_id, vmlinux_path[i]); 1121 1122 return printed; 1123 } 1124 1125 size_t machine__fprintf(struct machine *machine, FILE *fp) 1126 { 1127 struct rb_node *nd; 1128 size_t ret; 1129 int i; 1130 1131 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 1132 struct threads *threads = &machine->threads[i]; 1133 1134 down_read(&threads->lock); 1135 1136 ret = fprintf(fp, "Threads: %u\n", threads->nr); 1137 1138 for (nd = rb_first_cached(&threads->entries); nd; 1139 nd = rb_next(nd)) { 1140 struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread; 1141 1142 ret += thread__fprintf(pos, fp); 1143 } 1144 1145 up_read(&threads->lock); 1146 } 1147 return ret; 1148 } 1149 1150 static struct dso *machine__get_kernel(struct machine *machine) 1151 { 1152 const char *vmlinux_name = machine->mmap_name; 1153 struct dso *kernel; 1154 1155 if (machine__is_host(machine)) { 1156 if (symbol_conf.vmlinux_name) 1157 vmlinux_name = symbol_conf.vmlinux_name; 1158 1159 kernel = machine__findnew_kernel(machine, vmlinux_name, 1160 "[kernel]", DSO_SPACE__KERNEL); 1161 } else { 1162 if (symbol_conf.default_guest_vmlinux_name) 1163 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1164 1165 kernel = machine__findnew_kernel(machine, vmlinux_name, 1166 "[guest.kernel]", 1167 DSO_SPACE__KERNEL_GUEST); 1168 } 1169 1170 if (kernel != NULL && (!kernel->has_build_id)) 1171 dso__read_running_kernel_build_id(kernel, machine); 1172 1173 return kernel; 1174 } 1175 1176 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1177 size_t bufsz) 1178 { 1179 if (machine__is_default_guest(machine)) 1180 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1181 else 1182 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1183 } 1184 1185 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1186 1187 /* Figure out the start address of kernel map from /proc/kallsyms. 1188 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1189 * symbol_name if it's not that important. 1190 */ 1191 static int machine__get_running_kernel_start(struct machine *machine, 1192 const char **symbol_name, 1193 u64 *start, u64 *end) 1194 { 1195 char filename[PATH_MAX]; 1196 int i, err = -1; 1197 const char *name; 1198 u64 addr = 0; 1199 1200 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1201 1202 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1203 return 0; 1204 1205 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1206 err = kallsyms__get_function_start(filename, name, &addr); 1207 if (!err) 1208 break; 1209 } 1210 1211 if (err) 1212 return -1; 1213 1214 if (symbol_name) 1215 *symbol_name = name; 1216 1217 *start = addr; 1218 1219 err = kallsyms__get_symbol_start(filename, "_edata", &addr); 1220 if (err) 1221 err = kallsyms__get_function_start(filename, "_etext", &addr); 1222 if (!err) 1223 *end = addr; 1224 1225 return 0; 1226 } 1227 1228 int machine__create_extra_kernel_map(struct machine *machine, 1229 struct dso *kernel, 1230 struct extra_kernel_map *xm) 1231 { 1232 struct kmap *kmap; 1233 struct map *map; 1234 int err; 1235 1236 map = map__new2(xm->start, kernel); 1237 if (!map) 1238 return -ENOMEM; 1239 1240 map__set_end(map, xm->end); 1241 map__set_pgoff(map, xm->pgoff); 1242 1243 kmap = map__kmap(map); 1244 1245 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1246 1247 err = maps__insert(machine__kernel_maps(machine), map); 1248 1249 if (!err) { 1250 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1251 kmap->name, map__start(map), map__end(map)); 1252 } 1253 1254 map__put(map); 1255 1256 return err; 1257 } 1258 1259 static u64 find_entry_trampoline(struct dso *dso) 1260 { 1261 /* Duplicates are removed so lookup all aliases */ 1262 const char *syms[] = { 1263 "_entry_trampoline", 1264 "__entry_trampoline_start", 1265 "entry_SYSCALL_64_trampoline", 1266 }; 1267 struct symbol *sym = dso__first_symbol(dso); 1268 unsigned int i; 1269 1270 for (; sym; sym = dso__next_symbol(sym)) { 1271 if (sym->binding != STB_GLOBAL) 1272 continue; 1273 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1274 if (!strcmp(sym->name, syms[i])) 1275 return sym->start; 1276 } 1277 } 1278 1279 return 0; 1280 } 1281 1282 /* 1283 * These values can be used for kernels that do not have symbols for the entry 1284 * trampolines in kallsyms. 1285 */ 1286 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1287 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1288 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1289 1290 /* Map x86_64 PTI entry trampolines */ 1291 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1292 struct dso *kernel) 1293 { 1294 struct maps *kmaps = machine__kernel_maps(machine); 1295 int nr_cpus_avail, cpu; 1296 bool found = false; 1297 struct map_rb_node *rb_node; 1298 u64 pgoff; 1299 1300 /* 1301 * In the vmlinux case, pgoff is a virtual address which must now be 1302 * mapped to a vmlinux offset. 1303 */ 1304 maps__for_each_entry(kmaps, rb_node) { 1305 struct map *dest_map, *map = rb_node->map; 1306 struct kmap *kmap = __map__kmap(map); 1307 1308 if (!kmap || !is_entry_trampoline(kmap->name)) 1309 continue; 1310 1311 dest_map = maps__find(kmaps, map__pgoff(map)); 1312 if (dest_map != map) 1313 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map))); 1314 found = true; 1315 } 1316 if (found || machine->trampolines_mapped) 1317 return 0; 1318 1319 pgoff = find_entry_trampoline(kernel); 1320 if (!pgoff) 1321 return 0; 1322 1323 nr_cpus_avail = machine__nr_cpus_avail(machine); 1324 1325 /* Add a 1 page map for each CPU's entry trampoline */ 1326 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1327 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1328 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1329 X86_64_ENTRY_TRAMPOLINE; 1330 struct extra_kernel_map xm = { 1331 .start = va, 1332 .end = va + page_size, 1333 .pgoff = pgoff, 1334 }; 1335 1336 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1337 1338 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1339 return -1; 1340 } 1341 1342 machine->trampolines_mapped = nr_cpus_avail; 1343 1344 return 0; 1345 } 1346 1347 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1348 struct dso *kernel __maybe_unused) 1349 { 1350 return 0; 1351 } 1352 1353 static int 1354 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1355 { 1356 /* In case of renewal the kernel map, destroy previous one */ 1357 machine__destroy_kernel_maps(machine); 1358 1359 map__put(machine->vmlinux_map); 1360 machine->vmlinux_map = map__new2(0, kernel); 1361 if (machine->vmlinux_map == NULL) 1362 return -ENOMEM; 1363 1364 map__set_map_ip(machine->vmlinux_map, identity__map_ip); 1365 map__set_unmap_ip(machine->vmlinux_map, identity__map_ip); 1366 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1367 } 1368 1369 void machine__destroy_kernel_maps(struct machine *machine) 1370 { 1371 struct kmap *kmap; 1372 struct map *map = machine__kernel_map(machine); 1373 1374 if (map == NULL) 1375 return; 1376 1377 kmap = map__kmap(map); 1378 maps__remove(machine__kernel_maps(machine), map); 1379 if (kmap && kmap->ref_reloc_sym) { 1380 zfree((char **)&kmap->ref_reloc_sym->name); 1381 zfree(&kmap->ref_reloc_sym); 1382 } 1383 1384 map__zput(machine->vmlinux_map); 1385 } 1386 1387 int machines__create_guest_kernel_maps(struct machines *machines) 1388 { 1389 int ret = 0; 1390 struct dirent **namelist = NULL; 1391 int i, items = 0; 1392 char path[PATH_MAX]; 1393 pid_t pid; 1394 char *endp; 1395 1396 if (symbol_conf.default_guest_vmlinux_name || 1397 symbol_conf.default_guest_modules || 1398 symbol_conf.default_guest_kallsyms) { 1399 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1400 } 1401 1402 if (symbol_conf.guestmount) { 1403 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1404 if (items <= 0) 1405 return -ENOENT; 1406 for (i = 0; i < items; i++) { 1407 if (!isdigit(namelist[i]->d_name[0])) { 1408 /* Filter out . and .. */ 1409 continue; 1410 } 1411 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1412 if ((*endp != '\0') || 1413 (endp == namelist[i]->d_name) || 1414 (errno == ERANGE)) { 1415 pr_debug("invalid directory (%s). Skipping.\n", 1416 namelist[i]->d_name); 1417 continue; 1418 } 1419 sprintf(path, "%s/%s/proc/kallsyms", 1420 symbol_conf.guestmount, 1421 namelist[i]->d_name); 1422 ret = access(path, R_OK); 1423 if (ret) { 1424 pr_debug("Can't access file %s\n", path); 1425 goto failure; 1426 } 1427 machines__create_kernel_maps(machines, pid); 1428 } 1429 failure: 1430 free(namelist); 1431 } 1432 1433 return ret; 1434 } 1435 1436 void machines__destroy_kernel_maps(struct machines *machines) 1437 { 1438 struct rb_node *next = rb_first_cached(&machines->guests); 1439 1440 machine__destroy_kernel_maps(&machines->host); 1441 1442 while (next) { 1443 struct machine *pos = rb_entry(next, struct machine, rb_node); 1444 1445 next = rb_next(&pos->rb_node); 1446 rb_erase_cached(&pos->rb_node, &machines->guests); 1447 machine__delete(pos); 1448 } 1449 } 1450 1451 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1452 { 1453 struct machine *machine = machines__findnew(machines, pid); 1454 1455 if (machine == NULL) 1456 return -1; 1457 1458 return machine__create_kernel_maps(machine); 1459 } 1460 1461 int machine__load_kallsyms(struct machine *machine, const char *filename) 1462 { 1463 struct map *map = machine__kernel_map(machine); 1464 struct dso *dso = map__dso(map); 1465 int ret = __dso__load_kallsyms(dso, filename, map, true); 1466 1467 if (ret > 0) { 1468 dso__set_loaded(dso); 1469 /* 1470 * Since /proc/kallsyms will have multiple sessions for the 1471 * kernel, with modules between them, fixup the end of all 1472 * sections. 1473 */ 1474 maps__fixup_end(machine__kernel_maps(machine)); 1475 } 1476 1477 return ret; 1478 } 1479 1480 int machine__load_vmlinux_path(struct machine *machine) 1481 { 1482 struct map *map = machine__kernel_map(machine); 1483 struct dso *dso = map__dso(map); 1484 int ret = dso__load_vmlinux_path(dso, map); 1485 1486 if (ret > 0) 1487 dso__set_loaded(dso); 1488 1489 return ret; 1490 } 1491 1492 static char *get_kernel_version(const char *root_dir) 1493 { 1494 char version[PATH_MAX]; 1495 FILE *file; 1496 char *name, *tmp; 1497 const char *prefix = "Linux version "; 1498 1499 sprintf(version, "%s/proc/version", root_dir); 1500 file = fopen(version, "r"); 1501 if (!file) 1502 return NULL; 1503 1504 tmp = fgets(version, sizeof(version), file); 1505 fclose(file); 1506 if (!tmp) 1507 return NULL; 1508 1509 name = strstr(version, prefix); 1510 if (!name) 1511 return NULL; 1512 name += strlen(prefix); 1513 tmp = strchr(name, ' '); 1514 if (tmp) 1515 *tmp = '\0'; 1516 1517 return strdup(name); 1518 } 1519 1520 static bool is_kmod_dso(struct dso *dso) 1521 { 1522 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1523 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1524 } 1525 1526 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1527 { 1528 char *long_name; 1529 struct dso *dso; 1530 struct map *map = maps__find_by_name(maps, m->name); 1531 1532 if (map == NULL) 1533 return 0; 1534 1535 long_name = strdup(path); 1536 if (long_name == NULL) 1537 return -ENOMEM; 1538 1539 dso = map__dso(map); 1540 dso__set_long_name(dso, long_name, true); 1541 dso__kernel_module_get_build_id(dso, ""); 1542 1543 /* 1544 * Full name could reveal us kmod compression, so 1545 * we need to update the symtab_type if needed. 1546 */ 1547 if (m->comp && is_kmod_dso(dso)) { 1548 dso->symtab_type++; 1549 dso->comp = m->comp; 1550 } 1551 1552 return 0; 1553 } 1554 1555 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1556 { 1557 struct dirent *dent; 1558 DIR *dir = opendir(dir_name); 1559 int ret = 0; 1560 1561 if (!dir) { 1562 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1563 return -1; 1564 } 1565 1566 while ((dent = readdir(dir)) != NULL) { 1567 char path[PATH_MAX]; 1568 struct stat st; 1569 1570 /*sshfs might return bad dent->d_type, so we have to stat*/ 1571 path__join(path, sizeof(path), dir_name, dent->d_name); 1572 if (stat(path, &st)) 1573 continue; 1574 1575 if (S_ISDIR(st.st_mode)) { 1576 if (!strcmp(dent->d_name, ".") || 1577 !strcmp(dent->d_name, "..")) 1578 continue; 1579 1580 /* Do not follow top-level source and build symlinks */ 1581 if (depth == 0) { 1582 if (!strcmp(dent->d_name, "source") || 1583 !strcmp(dent->d_name, "build")) 1584 continue; 1585 } 1586 1587 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1588 if (ret < 0) 1589 goto out; 1590 } else { 1591 struct kmod_path m; 1592 1593 ret = kmod_path__parse_name(&m, dent->d_name); 1594 if (ret) 1595 goto out; 1596 1597 if (m.kmod) 1598 ret = maps__set_module_path(maps, path, &m); 1599 1600 zfree(&m.name); 1601 1602 if (ret) 1603 goto out; 1604 } 1605 } 1606 1607 out: 1608 closedir(dir); 1609 return ret; 1610 } 1611 1612 static int machine__set_modules_path(struct machine *machine) 1613 { 1614 char *version; 1615 char modules_path[PATH_MAX]; 1616 1617 version = get_kernel_version(machine->root_dir); 1618 if (!version) 1619 return -1; 1620 1621 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1622 machine->root_dir, version); 1623 free(version); 1624 1625 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1626 } 1627 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1628 u64 *size __maybe_unused, 1629 const char *name __maybe_unused) 1630 { 1631 return 0; 1632 } 1633 1634 static int machine__create_module(void *arg, const char *name, u64 start, 1635 u64 size) 1636 { 1637 struct machine *machine = arg; 1638 struct map *map; 1639 1640 if (arch__fix_module_text_start(&start, &size, name) < 0) 1641 return -1; 1642 1643 map = machine__addnew_module_map(machine, start, name); 1644 if (map == NULL) 1645 return -1; 1646 map__set_end(map, start + size); 1647 1648 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); 1649 map__put(map); 1650 return 0; 1651 } 1652 1653 static int machine__create_modules(struct machine *machine) 1654 { 1655 const char *modules; 1656 char path[PATH_MAX]; 1657 1658 if (machine__is_default_guest(machine)) { 1659 modules = symbol_conf.default_guest_modules; 1660 } else { 1661 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1662 modules = path; 1663 } 1664 1665 if (symbol__restricted_filename(modules, "/proc/modules")) 1666 return -1; 1667 1668 if (modules__parse(modules, machine, machine__create_module)) 1669 return -1; 1670 1671 if (!machine__set_modules_path(machine)) 1672 return 0; 1673 1674 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1675 1676 return 0; 1677 } 1678 1679 static void machine__set_kernel_mmap(struct machine *machine, 1680 u64 start, u64 end) 1681 { 1682 map__set_start(machine->vmlinux_map, start); 1683 map__set_end(machine->vmlinux_map, end); 1684 /* 1685 * Be a bit paranoid here, some perf.data file came with 1686 * a zero sized synthesized MMAP event for the kernel. 1687 */ 1688 if (start == 0 && end == 0) 1689 map__set_end(machine->vmlinux_map, ~0ULL); 1690 } 1691 1692 static int machine__update_kernel_mmap(struct machine *machine, 1693 u64 start, u64 end) 1694 { 1695 struct map *orig, *updated; 1696 int err; 1697 1698 orig = machine->vmlinux_map; 1699 updated = map__get(orig); 1700 1701 machine->vmlinux_map = updated; 1702 machine__set_kernel_mmap(machine, start, end); 1703 maps__remove(machine__kernel_maps(machine), orig); 1704 err = maps__insert(machine__kernel_maps(machine), updated); 1705 map__put(orig); 1706 1707 return err; 1708 } 1709 1710 int machine__create_kernel_maps(struct machine *machine) 1711 { 1712 struct dso *kernel = machine__get_kernel(machine); 1713 const char *name = NULL; 1714 u64 start = 0, end = ~0ULL; 1715 int ret; 1716 1717 if (kernel == NULL) 1718 return -1; 1719 1720 ret = __machine__create_kernel_maps(machine, kernel); 1721 if (ret < 0) 1722 goto out_put; 1723 1724 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1725 if (machine__is_host(machine)) 1726 pr_debug("Problems creating module maps, " 1727 "continuing anyway...\n"); 1728 else 1729 pr_debug("Problems creating module maps for guest %d, " 1730 "continuing anyway...\n", machine->pid); 1731 } 1732 1733 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1734 if (name && 1735 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1736 machine__destroy_kernel_maps(machine); 1737 ret = -1; 1738 goto out_put; 1739 } 1740 1741 /* 1742 * we have a real start address now, so re-order the kmaps 1743 * assume it's the last in the kmaps 1744 */ 1745 ret = machine__update_kernel_mmap(machine, start, end); 1746 if (ret < 0) 1747 goto out_put; 1748 } 1749 1750 if (machine__create_extra_kernel_maps(machine, kernel)) 1751 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1752 1753 if (end == ~0ULL) { 1754 /* update end address of the kernel map using adjacent module address */ 1755 struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine), 1756 machine__kernel_map(machine)); 1757 struct map_rb_node *next = map_rb_node__next(rb_node); 1758 1759 if (next) 1760 machine__set_kernel_mmap(machine, start, map__start(next->map)); 1761 } 1762 1763 out_put: 1764 dso__put(kernel); 1765 return ret; 1766 } 1767 1768 static bool machine__uses_kcore(struct machine *machine) 1769 { 1770 struct dso *dso; 1771 1772 list_for_each_entry(dso, &machine->dsos.head, node) { 1773 if (dso__is_kcore(dso)) 1774 return true; 1775 } 1776 1777 return false; 1778 } 1779 1780 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1781 struct extra_kernel_map *xm) 1782 { 1783 return machine__is(machine, "x86_64") && 1784 is_entry_trampoline(xm->name); 1785 } 1786 1787 static int machine__process_extra_kernel_map(struct machine *machine, 1788 struct extra_kernel_map *xm) 1789 { 1790 struct dso *kernel = machine__kernel_dso(machine); 1791 1792 if (kernel == NULL) 1793 return -1; 1794 1795 return machine__create_extra_kernel_map(machine, kernel, xm); 1796 } 1797 1798 static int machine__process_kernel_mmap_event(struct machine *machine, 1799 struct extra_kernel_map *xm, 1800 struct build_id *bid) 1801 { 1802 enum dso_space_type dso_space; 1803 bool is_kernel_mmap; 1804 const char *mmap_name = machine->mmap_name; 1805 1806 /* If we have maps from kcore then we do not need or want any others */ 1807 if (machine__uses_kcore(machine)) 1808 return 0; 1809 1810 if (machine__is_host(machine)) 1811 dso_space = DSO_SPACE__KERNEL; 1812 else 1813 dso_space = DSO_SPACE__KERNEL_GUEST; 1814 1815 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1816 if (!is_kernel_mmap && !machine__is_host(machine)) { 1817 /* 1818 * If the event was recorded inside the guest and injected into 1819 * the host perf.data file, then it will match a host mmap_name, 1820 * so try that - see machine__set_mmap_name(). 1821 */ 1822 mmap_name = "[kernel.kallsyms]"; 1823 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1824 } 1825 if (xm->name[0] == '/' || 1826 (!is_kernel_mmap && xm->name[0] == '[')) { 1827 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name); 1828 1829 if (map == NULL) 1830 goto out_problem; 1831 1832 map__set_end(map, map__start(map) + xm->end - xm->start); 1833 1834 if (build_id__is_defined(bid)) 1835 dso__set_build_id(map__dso(map), bid); 1836 1837 map__put(map); 1838 } else if (is_kernel_mmap) { 1839 const char *symbol_name = xm->name + strlen(mmap_name); 1840 /* 1841 * Should be there already, from the build-id table in 1842 * the header. 1843 */ 1844 struct dso *kernel = NULL; 1845 struct dso *dso; 1846 1847 down_read(&machine->dsos.lock); 1848 1849 list_for_each_entry(dso, &machine->dsos.head, node) { 1850 1851 /* 1852 * The cpumode passed to is_kernel_module is not the 1853 * cpumode of *this* event. If we insist on passing 1854 * correct cpumode to is_kernel_module, we should 1855 * record the cpumode when we adding this dso to the 1856 * linked list. 1857 * 1858 * However we don't really need passing correct 1859 * cpumode. We know the correct cpumode must be kernel 1860 * mode (if not, we should not link it onto kernel_dsos 1861 * list). 1862 * 1863 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1864 * is_kernel_module() treats it as a kernel cpumode. 1865 */ 1866 1867 if (!dso->kernel || 1868 is_kernel_module(dso->long_name, 1869 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1870 continue; 1871 1872 1873 kernel = dso__get(dso); 1874 break; 1875 } 1876 1877 up_read(&machine->dsos.lock); 1878 1879 if (kernel == NULL) 1880 kernel = machine__findnew_dso(machine, machine->mmap_name); 1881 if (kernel == NULL) 1882 goto out_problem; 1883 1884 kernel->kernel = dso_space; 1885 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1886 dso__put(kernel); 1887 goto out_problem; 1888 } 1889 1890 if (strstr(kernel->long_name, "vmlinux")) 1891 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1892 1893 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { 1894 dso__put(kernel); 1895 goto out_problem; 1896 } 1897 1898 if (build_id__is_defined(bid)) 1899 dso__set_build_id(kernel, bid); 1900 1901 /* 1902 * Avoid using a zero address (kptr_restrict) for the ref reloc 1903 * symbol. Effectively having zero here means that at record 1904 * time /proc/sys/kernel/kptr_restrict was non zero. 1905 */ 1906 if (xm->pgoff != 0) { 1907 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1908 symbol_name, 1909 xm->pgoff); 1910 } 1911 1912 if (machine__is_default_guest(machine)) { 1913 /* 1914 * preload dso of guest kernel and modules 1915 */ 1916 dso__load(kernel, machine__kernel_map(machine)); 1917 } 1918 dso__put(kernel); 1919 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1920 return machine__process_extra_kernel_map(machine, xm); 1921 } 1922 return 0; 1923 out_problem: 1924 return -1; 1925 } 1926 1927 int machine__process_mmap2_event(struct machine *machine, 1928 union perf_event *event, 1929 struct perf_sample *sample) 1930 { 1931 struct thread *thread; 1932 struct map *map; 1933 struct dso_id dso_id = { 1934 .maj = event->mmap2.maj, 1935 .min = event->mmap2.min, 1936 .ino = event->mmap2.ino, 1937 .ino_generation = event->mmap2.ino_generation, 1938 }; 1939 struct build_id __bid, *bid = NULL; 1940 int ret = 0; 1941 1942 if (dump_trace) 1943 perf_event__fprintf_mmap2(event, stdout); 1944 1945 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1946 bid = &__bid; 1947 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1948 } 1949 1950 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1951 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1952 struct extra_kernel_map xm = { 1953 .start = event->mmap2.start, 1954 .end = event->mmap2.start + event->mmap2.len, 1955 .pgoff = event->mmap2.pgoff, 1956 }; 1957 1958 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1959 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1960 if (ret < 0) 1961 goto out_problem; 1962 return 0; 1963 } 1964 1965 thread = machine__findnew_thread(machine, event->mmap2.pid, 1966 event->mmap2.tid); 1967 if (thread == NULL) 1968 goto out_problem; 1969 1970 map = map__new(machine, event->mmap2.start, 1971 event->mmap2.len, event->mmap2.pgoff, 1972 &dso_id, event->mmap2.prot, 1973 event->mmap2.flags, bid, 1974 event->mmap2.filename, thread); 1975 1976 if (map == NULL) 1977 goto out_problem_map; 1978 1979 ret = thread__insert_map(thread, map); 1980 if (ret) 1981 goto out_problem_insert; 1982 1983 thread__put(thread); 1984 map__put(map); 1985 return 0; 1986 1987 out_problem_insert: 1988 map__put(map); 1989 out_problem_map: 1990 thread__put(thread); 1991 out_problem: 1992 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1993 return 0; 1994 } 1995 1996 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1997 struct perf_sample *sample) 1998 { 1999 struct thread *thread; 2000 struct map *map; 2001 u32 prot = 0; 2002 int ret = 0; 2003 2004 if (dump_trace) 2005 perf_event__fprintf_mmap(event, stdout); 2006 2007 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 2008 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 2009 struct extra_kernel_map xm = { 2010 .start = event->mmap.start, 2011 .end = event->mmap.start + event->mmap.len, 2012 .pgoff = event->mmap.pgoff, 2013 }; 2014 2015 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 2016 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 2017 if (ret < 0) 2018 goto out_problem; 2019 return 0; 2020 } 2021 2022 thread = machine__findnew_thread(machine, event->mmap.pid, 2023 event->mmap.tid); 2024 if (thread == NULL) 2025 goto out_problem; 2026 2027 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 2028 prot = PROT_EXEC; 2029 2030 map = map__new(machine, event->mmap.start, 2031 event->mmap.len, event->mmap.pgoff, 2032 NULL, prot, 0, NULL, event->mmap.filename, thread); 2033 2034 if (map == NULL) 2035 goto out_problem_map; 2036 2037 ret = thread__insert_map(thread, map); 2038 if (ret) 2039 goto out_problem_insert; 2040 2041 thread__put(thread); 2042 map__put(map); 2043 return 0; 2044 2045 out_problem_insert: 2046 map__put(map); 2047 out_problem_map: 2048 thread__put(thread); 2049 out_problem: 2050 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 2051 return 0; 2052 } 2053 2054 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd, 2055 struct thread *th, bool lock) 2056 { 2057 struct threads *threads = machine__threads(machine, thread__tid(th)); 2058 2059 if (!nd) 2060 nd = thread_rb_node__find(th, &threads->entries.rb_root); 2061 2062 if (threads->last_match && RC_CHK_ACCESS(threads->last_match) == RC_CHK_ACCESS(th)) 2063 threads__set_last_match(threads, NULL); 2064 2065 if (lock) 2066 down_write(&threads->lock); 2067 2068 BUG_ON(refcount_read(thread__refcnt(th)) == 0); 2069 2070 thread__put(nd->thread); 2071 rb_erase_cached(&nd->rb_node, &threads->entries); 2072 RB_CLEAR_NODE(&nd->rb_node); 2073 --threads->nr; 2074 2075 free(nd); 2076 2077 if (lock) 2078 up_write(&threads->lock); 2079 } 2080 2081 void machine__remove_thread(struct machine *machine, struct thread *th) 2082 { 2083 return __machine__remove_thread(machine, NULL, th, true); 2084 } 2085 2086 int machine__process_fork_event(struct machine *machine, union perf_event *event, 2087 struct perf_sample *sample) 2088 { 2089 struct thread *thread = machine__find_thread(machine, 2090 event->fork.pid, 2091 event->fork.tid); 2092 struct thread *parent = machine__findnew_thread(machine, 2093 event->fork.ppid, 2094 event->fork.ptid); 2095 bool do_maps_clone = true; 2096 int err = 0; 2097 2098 if (dump_trace) 2099 perf_event__fprintf_task(event, stdout); 2100 2101 /* 2102 * There may be an existing thread that is not actually the parent, 2103 * either because we are processing events out of order, or because the 2104 * (fork) event that would have removed the thread was lost. Assume the 2105 * latter case and continue on as best we can. 2106 */ 2107 if (thread__pid(parent) != (pid_t)event->fork.ppid) { 2108 dump_printf("removing erroneous parent thread %d/%d\n", 2109 thread__pid(parent), thread__tid(parent)); 2110 machine__remove_thread(machine, parent); 2111 thread__put(parent); 2112 parent = machine__findnew_thread(machine, event->fork.ppid, 2113 event->fork.ptid); 2114 } 2115 2116 /* if a thread currently exists for the thread id remove it */ 2117 if (thread != NULL) { 2118 machine__remove_thread(machine, thread); 2119 thread__put(thread); 2120 } 2121 2122 thread = machine__findnew_thread(machine, event->fork.pid, 2123 event->fork.tid); 2124 /* 2125 * When synthesizing FORK events, we are trying to create thread 2126 * objects for the already running tasks on the machine. 2127 * 2128 * Normally, for a kernel FORK event, we want to clone the parent's 2129 * maps because that is what the kernel just did. 2130 * 2131 * But when synthesizing, this should not be done. If we do, we end up 2132 * with overlapping maps as we process the synthesized MMAP2 events that 2133 * get delivered shortly thereafter. 2134 * 2135 * Use the FORK event misc flags in an internal way to signal this 2136 * situation, so we can elide the map clone when appropriate. 2137 */ 2138 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 2139 do_maps_clone = false; 2140 2141 if (thread == NULL || parent == NULL || 2142 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 2143 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 2144 err = -1; 2145 } 2146 thread__put(thread); 2147 thread__put(parent); 2148 2149 return err; 2150 } 2151 2152 int machine__process_exit_event(struct machine *machine, union perf_event *event, 2153 struct perf_sample *sample __maybe_unused) 2154 { 2155 struct thread *thread = machine__find_thread(machine, 2156 event->fork.pid, 2157 event->fork.tid); 2158 2159 if (dump_trace) 2160 perf_event__fprintf_task(event, stdout); 2161 2162 if (thread != NULL) 2163 thread__put(thread); 2164 2165 return 0; 2166 } 2167 2168 int machine__process_event(struct machine *machine, union perf_event *event, 2169 struct perf_sample *sample) 2170 { 2171 int ret; 2172 2173 switch (event->header.type) { 2174 case PERF_RECORD_COMM: 2175 ret = machine__process_comm_event(machine, event, sample); break; 2176 case PERF_RECORD_MMAP: 2177 ret = machine__process_mmap_event(machine, event, sample); break; 2178 case PERF_RECORD_NAMESPACES: 2179 ret = machine__process_namespaces_event(machine, event, sample); break; 2180 case PERF_RECORD_CGROUP: 2181 ret = machine__process_cgroup_event(machine, event, sample); break; 2182 case PERF_RECORD_MMAP2: 2183 ret = machine__process_mmap2_event(machine, event, sample); break; 2184 case PERF_RECORD_FORK: 2185 ret = machine__process_fork_event(machine, event, sample); break; 2186 case PERF_RECORD_EXIT: 2187 ret = machine__process_exit_event(machine, event, sample); break; 2188 case PERF_RECORD_LOST: 2189 ret = machine__process_lost_event(machine, event, sample); break; 2190 case PERF_RECORD_AUX: 2191 ret = machine__process_aux_event(machine, event); break; 2192 case PERF_RECORD_ITRACE_START: 2193 ret = machine__process_itrace_start_event(machine, event); break; 2194 case PERF_RECORD_LOST_SAMPLES: 2195 ret = machine__process_lost_samples_event(machine, event, sample); break; 2196 case PERF_RECORD_SWITCH: 2197 case PERF_RECORD_SWITCH_CPU_WIDE: 2198 ret = machine__process_switch_event(machine, event); break; 2199 case PERF_RECORD_KSYMBOL: 2200 ret = machine__process_ksymbol(machine, event, sample); break; 2201 case PERF_RECORD_BPF_EVENT: 2202 ret = machine__process_bpf(machine, event, sample); break; 2203 case PERF_RECORD_TEXT_POKE: 2204 ret = machine__process_text_poke(machine, event, sample); break; 2205 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2206 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2207 default: 2208 ret = -1; 2209 break; 2210 } 2211 2212 return ret; 2213 } 2214 2215 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2216 { 2217 if (!regexec(regex, sym->name, 0, NULL, 0)) 2218 return true; 2219 return false; 2220 } 2221 2222 static void ip__resolve_ams(struct thread *thread, 2223 struct addr_map_symbol *ams, 2224 u64 ip) 2225 { 2226 struct addr_location al; 2227 2228 addr_location__init(&al); 2229 /* 2230 * We cannot use the header.misc hint to determine whether a 2231 * branch stack address is user, kernel, guest, hypervisor. 2232 * Branches may straddle the kernel/user/hypervisor boundaries. 2233 * Thus, we have to try consecutively until we find a match 2234 * or else, the symbol is unknown 2235 */ 2236 thread__find_cpumode_addr_location(thread, ip, &al); 2237 2238 ams->addr = ip; 2239 ams->al_addr = al.addr; 2240 ams->al_level = al.level; 2241 ams->ms.maps = maps__get(al.maps); 2242 ams->ms.sym = al.sym; 2243 ams->ms.map = map__get(al.map); 2244 ams->phys_addr = 0; 2245 ams->data_page_size = 0; 2246 addr_location__exit(&al); 2247 } 2248 2249 static void ip__resolve_data(struct thread *thread, 2250 u8 m, struct addr_map_symbol *ams, 2251 u64 addr, u64 phys_addr, u64 daddr_page_size) 2252 { 2253 struct addr_location al; 2254 2255 addr_location__init(&al); 2256 2257 thread__find_symbol(thread, m, addr, &al); 2258 2259 ams->addr = addr; 2260 ams->al_addr = al.addr; 2261 ams->al_level = al.level; 2262 ams->ms.maps = maps__get(al.maps); 2263 ams->ms.sym = al.sym; 2264 ams->ms.map = map__get(al.map); 2265 ams->phys_addr = phys_addr; 2266 ams->data_page_size = daddr_page_size; 2267 addr_location__exit(&al); 2268 } 2269 2270 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2271 struct addr_location *al) 2272 { 2273 struct mem_info *mi = mem_info__new(); 2274 2275 if (!mi) 2276 return NULL; 2277 2278 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2279 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2280 sample->addr, sample->phys_addr, 2281 sample->data_page_size); 2282 mi->data_src.val = sample->data_src; 2283 2284 return mi; 2285 } 2286 2287 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2288 { 2289 struct map *map = ms->map; 2290 char *srcline = NULL; 2291 struct dso *dso; 2292 2293 if (!map || callchain_param.key == CCKEY_FUNCTION) 2294 return srcline; 2295 2296 dso = map__dso(map); 2297 srcline = srcline__tree_find(&dso->srclines, ip); 2298 if (!srcline) { 2299 bool show_sym = false; 2300 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2301 2302 srcline = get_srcline(dso, map__rip_2objdump(map, ip), 2303 ms->sym, show_sym, show_addr, ip); 2304 srcline__tree_insert(&dso->srclines, ip, srcline); 2305 } 2306 2307 return srcline; 2308 } 2309 2310 struct iterations { 2311 int nr_loop_iter; 2312 u64 cycles; 2313 }; 2314 2315 static int add_callchain_ip(struct thread *thread, 2316 struct callchain_cursor *cursor, 2317 struct symbol **parent, 2318 struct addr_location *root_al, 2319 u8 *cpumode, 2320 u64 ip, 2321 bool branch, 2322 struct branch_flags *flags, 2323 struct iterations *iter, 2324 u64 branch_from) 2325 { 2326 struct map_symbol ms = {}; 2327 struct addr_location al; 2328 int nr_loop_iter = 0, err = 0; 2329 u64 iter_cycles = 0; 2330 const char *srcline = NULL; 2331 2332 addr_location__init(&al); 2333 al.filtered = 0; 2334 al.sym = NULL; 2335 al.srcline = NULL; 2336 if (!cpumode) { 2337 thread__find_cpumode_addr_location(thread, ip, &al); 2338 } else { 2339 if (ip >= PERF_CONTEXT_MAX) { 2340 switch (ip) { 2341 case PERF_CONTEXT_HV: 2342 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2343 break; 2344 case PERF_CONTEXT_KERNEL: 2345 *cpumode = PERF_RECORD_MISC_KERNEL; 2346 break; 2347 case PERF_CONTEXT_USER: 2348 *cpumode = PERF_RECORD_MISC_USER; 2349 break; 2350 default: 2351 pr_debug("invalid callchain context: " 2352 "%"PRId64"\n", (s64) ip); 2353 /* 2354 * It seems the callchain is corrupted. 2355 * Discard all. 2356 */ 2357 callchain_cursor_reset(cursor); 2358 err = 1; 2359 goto out; 2360 } 2361 goto out; 2362 } 2363 thread__find_symbol(thread, *cpumode, ip, &al); 2364 } 2365 2366 if (al.sym != NULL) { 2367 if (perf_hpp_list.parent && !*parent && 2368 symbol__match_regex(al.sym, &parent_regex)) 2369 *parent = al.sym; 2370 else if (have_ignore_callees && root_al && 2371 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2372 /* Treat this symbol as the root, 2373 forgetting its callees. */ 2374 addr_location__copy(root_al, &al); 2375 callchain_cursor_reset(cursor); 2376 } 2377 } 2378 2379 if (symbol_conf.hide_unresolved && al.sym == NULL) 2380 goto out; 2381 2382 if (iter) { 2383 nr_loop_iter = iter->nr_loop_iter; 2384 iter_cycles = iter->cycles; 2385 } 2386 2387 ms.maps = maps__get(al.maps); 2388 ms.map = map__get(al.map); 2389 ms.sym = al.sym; 2390 2391 if (!branch && append_inlines(cursor, &ms, ip) == 0) 2392 goto out; 2393 2394 srcline = callchain_srcline(&ms, al.addr); 2395 err = callchain_cursor_append(cursor, ip, &ms, 2396 branch, flags, nr_loop_iter, 2397 iter_cycles, branch_from, srcline); 2398 out: 2399 addr_location__exit(&al); 2400 maps__put(ms.maps); 2401 map__put(ms.map); 2402 return err; 2403 } 2404 2405 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2406 struct addr_location *al) 2407 { 2408 unsigned int i; 2409 const struct branch_stack *bs = sample->branch_stack; 2410 struct branch_entry *entries = perf_sample__branch_entries(sample); 2411 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2412 2413 if (!bi) 2414 return NULL; 2415 2416 for (i = 0; i < bs->nr; i++) { 2417 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2418 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2419 bi[i].flags = entries[i].flags; 2420 } 2421 return bi; 2422 } 2423 2424 static void save_iterations(struct iterations *iter, 2425 struct branch_entry *be, int nr) 2426 { 2427 int i; 2428 2429 iter->nr_loop_iter++; 2430 iter->cycles = 0; 2431 2432 for (i = 0; i < nr; i++) 2433 iter->cycles += be[i].flags.cycles; 2434 } 2435 2436 #define CHASHSZ 127 2437 #define CHASHBITS 7 2438 #define NO_ENTRY 0xff 2439 2440 #define PERF_MAX_BRANCH_DEPTH 127 2441 2442 /* Remove loops. */ 2443 static int remove_loops(struct branch_entry *l, int nr, 2444 struct iterations *iter) 2445 { 2446 int i, j, off; 2447 unsigned char chash[CHASHSZ]; 2448 2449 memset(chash, NO_ENTRY, sizeof(chash)); 2450 2451 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2452 2453 for (i = 0; i < nr; i++) { 2454 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2455 2456 /* no collision handling for now */ 2457 if (chash[h] == NO_ENTRY) { 2458 chash[h] = i; 2459 } else if (l[chash[h]].from == l[i].from) { 2460 bool is_loop = true; 2461 /* check if it is a real loop */ 2462 off = 0; 2463 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2464 if (l[j].from != l[i + off].from) { 2465 is_loop = false; 2466 break; 2467 } 2468 if (is_loop) { 2469 j = nr - (i + off); 2470 if (j > 0) { 2471 save_iterations(iter + i + off, 2472 l + i, off); 2473 2474 memmove(iter + i, iter + i + off, 2475 j * sizeof(*iter)); 2476 2477 memmove(l + i, l + i + off, 2478 j * sizeof(*l)); 2479 } 2480 2481 nr -= off; 2482 } 2483 } 2484 } 2485 return nr; 2486 } 2487 2488 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2489 struct callchain_cursor *cursor, 2490 struct perf_sample *sample, 2491 struct symbol **parent, 2492 struct addr_location *root_al, 2493 u64 branch_from, 2494 bool callee, int end) 2495 { 2496 struct ip_callchain *chain = sample->callchain; 2497 u8 cpumode = PERF_RECORD_MISC_USER; 2498 int err, i; 2499 2500 if (callee) { 2501 for (i = 0; i < end + 1; i++) { 2502 err = add_callchain_ip(thread, cursor, parent, 2503 root_al, &cpumode, chain->ips[i], 2504 false, NULL, NULL, branch_from); 2505 if (err) 2506 return err; 2507 } 2508 return 0; 2509 } 2510 2511 for (i = end; i >= 0; i--) { 2512 err = add_callchain_ip(thread, cursor, parent, 2513 root_al, &cpumode, chain->ips[i], 2514 false, NULL, NULL, branch_from); 2515 if (err) 2516 return err; 2517 } 2518 2519 return 0; 2520 } 2521 2522 static void save_lbr_cursor_node(struct thread *thread, 2523 struct callchain_cursor *cursor, 2524 int idx) 2525 { 2526 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2527 2528 if (!lbr_stitch) 2529 return; 2530 2531 if (cursor->pos == cursor->nr) { 2532 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2533 return; 2534 } 2535 2536 if (!cursor->curr) 2537 cursor->curr = cursor->first; 2538 else 2539 cursor->curr = cursor->curr->next; 2540 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2541 sizeof(struct callchain_cursor_node)); 2542 2543 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2544 cursor->pos++; 2545 } 2546 2547 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2548 struct callchain_cursor *cursor, 2549 struct perf_sample *sample, 2550 struct symbol **parent, 2551 struct addr_location *root_al, 2552 u64 *branch_from, 2553 bool callee) 2554 { 2555 struct branch_stack *lbr_stack = sample->branch_stack; 2556 struct branch_entry *entries = perf_sample__branch_entries(sample); 2557 u8 cpumode = PERF_RECORD_MISC_USER; 2558 int lbr_nr = lbr_stack->nr; 2559 struct branch_flags *flags; 2560 int err, i; 2561 u64 ip; 2562 2563 /* 2564 * The curr and pos are not used in writing session. They are cleared 2565 * in callchain_cursor_commit() when the writing session is closed. 2566 * Using curr and pos to track the current cursor node. 2567 */ 2568 if (thread__lbr_stitch(thread)) { 2569 cursor->curr = NULL; 2570 cursor->pos = cursor->nr; 2571 if (cursor->nr) { 2572 cursor->curr = cursor->first; 2573 for (i = 0; i < (int)(cursor->nr - 1); i++) 2574 cursor->curr = cursor->curr->next; 2575 } 2576 } 2577 2578 if (callee) { 2579 /* Add LBR ip from first entries.to */ 2580 ip = entries[0].to; 2581 flags = &entries[0].flags; 2582 *branch_from = entries[0].from; 2583 err = add_callchain_ip(thread, cursor, parent, 2584 root_al, &cpumode, ip, 2585 true, flags, NULL, 2586 *branch_from); 2587 if (err) 2588 return err; 2589 2590 /* 2591 * The number of cursor node increases. 2592 * Move the current cursor node. 2593 * But does not need to save current cursor node for entry 0. 2594 * It's impossible to stitch the whole LBRs of previous sample. 2595 */ 2596 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) { 2597 if (!cursor->curr) 2598 cursor->curr = cursor->first; 2599 else 2600 cursor->curr = cursor->curr->next; 2601 cursor->pos++; 2602 } 2603 2604 /* Add LBR ip from entries.from one by one. */ 2605 for (i = 0; i < lbr_nr; i++) { 2606 ip = entries[i].from; 2607 flags = &entries[i].flags; 2608 err = add_callchain_ip(thread, cursor, parent, 2609 root_al, &cpumode, ip, 2610 true, flags, NULL, 2611 *branch_from); 2612 if (err) 2613 return err; 2614 save_lbr_cursor_node(thread, cursor, i); 2615 } 2616 return 0; 2617 } 2618 2619 /* Add LBR ip from entries.from one by one. */ 2620 for (i = lbr_nr - 1; i >= 0; i--) { 2621 ip = entries[i].from; 2622 flags = &entries[i].flags; 2623 err = add_callchain_ip(thread, cursor, parent, 2624 root_al, &cpumode, ip, 2625 true, flags, NULL, 2626 *branch_from); 2627 if (err) 2628 return err; 2629 save_lbr_cursor_node(thread, cursor, i); 2630 } 2631 2632 /* Add LBR ip from first entries.to */ 2633 ip = entries[0].to; 2634 flags = &entries[0].flags; 2635 *branch_from = entries[0].from; 2636 err = add_callchain_ip(thread, cursor, parent, 2637 root_al, &cpumode, ip, 2638 true, flags, NULL, 2639 *branch_from); 2640 if (err) 2641 return err; 2642 2643 return 0; 2644 } 2645 2646 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2647 struct callchain_cursor *cursor) 2648 { 2649 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2650 struct callchain_cursor_node *cnode; 2651 struct stitch_list *stitch_node; 2652 int err; 2653 2654 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2655 cnode = &stitch_node->cursor; 2656 2657 err = callchain_cursor_append(cursor, cnode->ip, 2658 &cnode->ms, 2659 cnode->branch, 2660 &cnode->branch_flags, 2661 cnode->nr_loop_iter, 2662 cnode->iter_cycles, 2663 cnode->branch_from, 2664 cnode->srcline); 2665 if (err) 2666 return err; 2667 } 2668 return 0; 2669 } 2670 2671 static struct stitch_list *get_stitch_node(struct thread *thread) 2672 { 2673 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2674 struct stitch_list *stitch_node; 2675 2676 if (!list_empty(&lbr_stitch->free_lists)) { 2677 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2678 struct stitch_list, node); 2679 list_del(&stitch_node->node); 2680 2681 return stitch_node; 2682 } 2683 2684 return malloc(sizeof(struct stitch_list)); 2685 } 2686 2687 static bool has_stitched_lbr(struct thread *thread, 2688 struct perf_sample *cur, 2689 struct perf_sample *prev, 2690 unsigned int max_lbr, 2691 bool callee) 2692 { 2693 struct branch_stack *cur_stack = cur->branch_stack; 2694 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2695 struct branch_stack *prev_stack = prev->branch_stack; 2696 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2697 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2698 int i, j, nr_identical_branches = 0; 2699 struct stitch_list *stitch_node; 2700 u64 cur_base, distance; 2701 2702 if (!cur_stack || !prev_stack) 2703 return false; 2704 2705 /* Find the physical index of the base-of-stack for current sample. */ 2706 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2707 2708 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2709 (max_lbr + prev_stack->hw_idx - cur_base); 2710 /* Previous sample has shorter stack. Nothing can be stitched. */ 2711 if (distance + 1 > prev_stack->nr) 2712 return false; 2713 2714 /* 2715 * Check if there are identical LBRs between two samples. 2716 * Identical LBRs must have same from, to and flags values. Also, 2717 * they have to be saved in the same LBR registers (same physical 2718 * index). 2719 * 2720 * Starts from the base-of-stack of current sample. 2721 */ 2722 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2723 if ((prev_entries[i].from != cur_entries[j].from) || 2724 (prev_entries[i].to != cur_entries[j].to) || 2725 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2726 break; 2727 nr_identical_branches++; 2728 } 2729 2730 if (!nr_identical_branches) 2731 return false; 2732 2733 /* 2734 * Save the LBRs between the base-of-stack of previous sample 2735 * and the base-of-stack of current sample into lbr_stitch->lists. 2736 * These LBRs will be stitched later. 2737 */ 2738 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2739 2740 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2741 continue; 2742 2743 stitch_node = get_stitch_node(thread); 2744 if (!stitch_node) 2745 return false; 2746 2747 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2748 sizeof(struct callchain_cursor_node)); 2749 2750 if (callee) 2751 list_add(&stitch_node->node, &lbr_stitch->lists); 2752 else 2753 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2754 } 2755 2756 return true; 2757 } 2758 2759 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2760 { 2761 if (thread__lbr_stitch(thread)) 2762 return true; 2763 2764 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch))); 2765 if (!thread__lbr_stitch(thread)) 2766 goto err; 2767 2768 thread__lbr_stitch(thread)->prev_lbr_cursor = 2769 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2770 if (!thread__lbr_stitch(thread)->prev_lbr_cursor) 2771 goto free_lbr_stitch; 2772 2773 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists); 2774 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists); 2775 2776 return true; 2777 2778 free_lbr_stitch: 2779 free(thread__lbr_stitch(thread)); 2780 thread__set_lbr_stitch(thread, NULL); 2781 err: 2782 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2783 thread__set_lbr_stitch_enable(thread, false); 2784 return false; 2785 } 2786 2787 /* 2788 * Resolve LBR callstack chain sample 2789 * Return: 2790 * 1 on success get LBR callchain information 2791 * 0 no available LBR callchain information, should try fp 2792 * negative error code on other errors. 2793 */ 2794 static int resolve_lbr_callchain_sample(struct thread *thread, 2795 struct callchain_cursor *cursor, 2796 struct perf_sample *sample, 2797 struct symbol **parent, 2798 struct addr_location *root_al, 2799 int max_stack, 2800 unsigned int max_lbr) 2801 { 2802 bool callee = (callchain_param.order == ORDER_CALLEE); 2803 struct ip_callchain *chain = sample->callchain; 2804 int chain_nr = min(max_stack, (int)chain->nr), i; 2805 struct lbr_stitch *lbr_stitch; 2806 bool stitched_lbr = false; 2807 u64 branch_from = 0; 2808 int err; 2809 2810 for (i = 0; i < chain_nr; i++) { 2811 if (chain->ips[i] == PERF_CONTEXT_USER) 2812 break; 2813 } 2814 2815 /* LBR only affects the user callchain */ 2816 if (i == chain_nr) 2817 return 0; 2818 2819 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx && 2820 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2821 lbr_stitch = thread__lbr_stitch(thread); 2822 2823 stitched_lbr = has_stitched_lbr(thread, sample, 2824 &lbr_stitch->prev_sample, 2825 max_lbr, callee); 2826 2827 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2828 list_replace_init(&lbr_stitch->lists, 2829 &lbr_stitch->free_lists); 2830 } 2831 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2832 } 2833 2834 if (callee) { 2835 /* Add kernel ip */ 2836 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2837 parent, root_al, branch_from, 2838 true, i); 2839 if (err) 2840 goto error; 2841 2842 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2843 root_al, &branch_from, true); 2844 if (err) 2845 goto error; 2846 2847 if (stitched_lbr) { 2848 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2849 if (err) 2850 goto error; 2851 } 2852 2853 } else { 2854 if (stitched_lbr) { 2855 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2856 if (err) 2857 goto error; 2858 } 2859 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2860 root_al, &branch_from, false); 2861 if (err) 2862 goto error; 2863 2864 /* Add kernel ip */ 2865 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2866 parent, root_al, branch_from, 2867 false, i); 2868 if (err) 2869 goto error; 2870 } 2871 return 1; 2872 2873 error: 2874 return (err < 0) ? err : 0; 2875 } 2876 2877 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2878 struct callchain_cursor *cursor, 2879 struct symbol **parent, 2880 struct addr_location *root_al, 2881 u8 *cpumode, int ent) 2882 { 2883 int err = 0; 2884 2885 while (--ent >= 0) { 2886 u64 ip = chain->ips[ent]; 2887 2888 if (ip >= PERF_CONTEXT_MAX) { 2889 err = add_callchain_ip(thread, cursor, parent, 2890 root_al, cpumode, ip, 2891 false, NULL, NULL, 0); 2892 break; 2893 } 2894 } 2895 return err; 2896 } 2897 2898 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2899 struct thread *thread, int usr_idx) 2900 { 2901 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64")) 2902 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2903 else 2904 return 0; 2905 } 2906 2907 static int thread__resolve_callchain_sample(struct thread *thread, 2908 struct callchain_cursor *cursor, 2909 struct evsel *evsel, 2910 struct perf_sample *sample, 2911 struct symbol **parent, 2912 struct addr_location *root_al, 2913 int max_stack) 2914 { 2915 struct branch_stack *branch = sample->branch_stack; 2916 struct branch_entry *entries = perf_sample__branch_entries(sample); 2917 struct ip_callchain *chain = sample->callchain; 2918 int chain_nr = 0; 2919 u8 cpumode = PERF_RECORD_MISC_USER; 2920 int i, j, err, nr_entries, usr_idx; 2921 int skip_idx = -1; 2922 int first_call = 0; 2923 u64 leaf_frame_caller; 2924 2925 if (chain) 2926 chain_nr = chain->nr; 2927 2928 if (evsel__has_branch_callstack(evsel)) { 2929 struct perf_env *env = evsel__env(evsel); 2930 2931 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2932 root_al, max_stack, 2933 !env ? 0 : env->max_branches); 2934 if (err) 2935 return (err < 0) ? err : 0; 2936 } 2937 2938 /* 2939 * Based on DWARF debug information, some architectures skip 2940 * a callchain entry saved by the kernel. 2941 */ 2942 skip_idx = arch_skip_callchain_idx(thread, chain); 2943 2944 /* 2945 * Add branches to call stack for easier browsing. This gives 2946 * more context for a sample than just the callers. 2947 * 2948 * This uses individual histograms of paths compared to the 2949 * aggregated histograms the normal LBR mode uses. 2950 * 2951 * Limitations for now: 2952 * - No extra filters 2953 * - No annotations (should annotate somehow) 2954 */ 2955 2956 if (branch && callchain_param.branch_callstack) { 2957 int nr = min(max_stack, (int)branch->nr); 2958 struct branch_entry be[nr]; 2959 struct iterations iter[nr]; 2960 2961 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2962 pr_warning("corrupted branch chain. skipping...\n"); 2963 goto check_calls; 2964 } 2965 2966 for (i = 0; i < nr; i++) { 2967 if (callchain_param.order == ORDER_CALLEE) { 2968 be[i] = entries[i]; 2969 2970 if (chain == NULL) 2971 continue; 2972 2973 /* 2974 * Check for overlap into the callchain. 2975 * The return address is one off compared to 2976 * the branch entry. To adjust for this 2977 * assume the calling instruction is not longer 2978 * than 8 bytes. 2979 */ 2980 if (i == skip_idx || 2981 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2982 first_call++; 2983 else if (be[i].from < chain->ips[first_call] && 2984 be[i].from >= chain->ips[first_call] - 8) 2985 first_call++; 2986 } else 2987 be[i] = entries[branch->nr - i - 1]; 2988 } 2989 2990 memset(iter, 0, sizeof(struct iterations) * nr); 2991 nr = remove_loops(be, nr, iter); 2992 2993 for (i = 0; i < nr; i++) { 2994 err = add_callchain_ip(thread, cursor, parent, 2995 root_al, 2996 NULL, be[i].to, 2997 true, &be[i].flags, 2998 NULL, be[i].from); 2999 3000 if (!err) 3001 err = add_callchain_ip(thread, cursor, parent, root_al, 3002 NULL, be[i].from, 3003 true, &be[i].flags, 3004 &iter[i], 0); 3005 if (err == -EINVAL) 3006 break; 3007 if (err) 3008 return err; 3009 } 3010 3011 if (chain_nr == 0) 3012 return 0; 3013 3014 chain_nr -= nr; 3015 } 3016 3017 check_calls: 3018 if (chain && callchain_param.order != ORDER_CALLEE) { 3019 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 3020 &cpumode, chain->nr - first_call); 3021 if (err) 3022 return (err < 0) ? err : 0; 3023 } 3024 for (i = first_call, nr_entries = 0; 3025 i < chain_nr && nr_entries < max_stack; i++) { 3026 u64 ip; 3027 3028 if (callchain_param.order == ORDER_CALLEE) 3029 j = i; 3030 else 3031 j = chain->nr - i - 1; 3032 3033 #ifdef HAVE_SKIP_CALLCHAIN_IDX 3034 if (j == skip_idx) 3035 continue; 3036 #endif 3037 ip = chain->ips[j]; 3038 if (ip < PERF_CONTEXT_MAX) 3039 ++nr_entries; 3040 else if (callchain_param.order != ORDER_CALLEE) { 3041 err = find_prev_cpumode(chain, thread, cursor, parent, 3042 root_al, &cpumode, j); 3043 if (err) 3044 return (err < 0) ? err : 0; 3045 continue; 3046 } 3047 3048 /* 3049 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 3050 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 3051 * the index will be different in order to add the missing frame 3052 * at the right place. 3053 */ 3054 3055 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 3056 3057 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 3058 3059 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 3060 3061 /* 3062 * check if leaf_frame_Caller != ip to not add the same 3063 * value twice. 3064 */ 3065 3066 if (leaf_frame_caller && leaf_frame_caller != ip) { 3067 3068 err = add_callchain_ip(thread, cursor, parent, 3069 root_al, &cpumode, leaf_frame_caller, 3070 false, NULL, NULL, 0); 3071 if (err) 3072 return (err < 0) ? err : 0; 3073 } 3074 } 3075 3076 err = add_callchain_ip(thread, cursor, parent, 3077 root_al, &cpumode, ip, 3078 false, NULL, NULL, 0); 3079 3080 if (err) 3081 return (err < 0) ? err : 0; 3082 } 3083 3084 return 0; 3085 } 3086 3087 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 3088 { 3089 struct symbol *sym = ms->sym; 3090 struct map *map = ms->map; 3091 struct inline_node *inline_node; 3092 struct inline_list *ilist; 3093 struct dso *dso; 3094 u64 addr; 3095 int ret = 1; 3096 struct map_symbol ilist_ms; 3097 3098 if (!symbol_conf.inline_name || !map || !sym) 3099 return ret; 3100 3101 addr = map__dso_map_ip(map, ip); 3102 addr = map__rip_2objdump(map, addr); 3103 dso = map__dso(map); 3104 3105 inline_node = inlines__tree_find(&dso->inlined_nodes, addr); 3106 if (!inline_node) { 3107 inline_node = dso__parse_addr_inlines(dso, addr, sym); 3108 if (!inline_node) 3109 return ret; 3110 inlines__tree_insert(&dso->inlined_nodes, inline_node); 3111 } 3112 3113 ilist_ms = (struct map_symbol) { 3114 .maps = maps__get(ms->maps), 3115 .map = map__get(map), 3116 }; 3117 list_for_each_entry(ilist, &inline_node->val, list) { 3118 ilist_ms.sym = ilist->symbol; 3119 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 3120 NULL, 0, 0, 0, ilist->srcline); 3121 3122 if (ret != 0) 3123 return ret; 3124 } 3125 map__put(ilist_ms.map); 3126 maps__put(ilist_ms.maps); 3127 3128 return ret; 3129 } 3130 3131 static int unwind_entry(struct unwind_entry *entry, void *arg) 3132 { 3133 struct callchain_cursor *cursor = arg; 3134 const char *srcline = NULL; 3135 u64 addr = entry->ip; 3136 3137 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 3138 return 0; 3139 3140 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 3141 return 0; 3142 3143 /* 3144 * Convert entry->ip from a virtual address to an offset in 3145 * its corresponding binary. 3146 */ 3147 if (entry->ms.map) 3148 addr = map__dso_map_ip(entry->ms.map, entry->ip); 3149 3150 srcline = callchain_srcline(&entry->ms, addr); 3151 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 3152 false, NULL, 0, 0, 0, srcline); 3153 } 3154 3155 static int thread__resolve_callchain_unwind(struct thread *thread, 3156 struct callchain_cursor *cursor, 3157 struct evsel *evsel, 3158 struct perf_sample *sample, 3159 int max_stack) 3160 { 3161 /* Can we do dwarf post unwind? */ 3162 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 3163 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 3164 return 0; 3165 3166 /* Bail out if nothing was captured. */ 3167 if ((!sample->user_regs.regs) || 3168 (!sample->user_stack.size)) 3169 return 0; 3170 3171 return unwind__get_entries(unwind_entry, cursor, 3172 thread, sample, max_stack, false); 3173 } 3174 3175 int thread__resolve_callchain(struct thread *thread, 3176 struct callchain_cursor *cursor, 3177 struct evsel *evsel, 3178 struct perf_sample *sample, 3179 struct symbol **parent, 3180 struct addr_location *root_al, 3181 int max_stack) 3182 { 3183 int ret = 0; 3184 3185 if (cursor == NULL) 3186 return -ENOMEM; 3187 3188 callchain_cursor_reset(cursor); 3189 3190 if (callchain_param.order == ORDER_CALLEE) { 3191 ret = thread__resolve_callchain_sample(thread, cursor, 3192 evsel, sample, 3193 parent, root_al, 3194 max_stack); 3195 if (ret) 3196 return ret; 3197 ret = thread__resolve_callchain_unwind(thread, cursor, 3198 evsel, sample, 3199 max_stack); 3200 } else { 3201 ret = thread__resolve_callchain_unwind(thread, cursor, 3202 evsel, sample, 3203 max_stack); 3204 if (ret) 3205 return ret; 3206 ret = thread__resolve_callchain_sample(thread, cursor, 3207 evsel, sample, 3208 parent, root_al, 3209 max_stack); 3210 } 3211 3212 return ret; 3213 } 3214 3215 int machine__for_each_thread(struct machine *machine, 3216 int (*fn)(struct thread *thread, void *p), 3217 void *priv) 3218 { 3219 struct threads *threads; 3220 struct rb_node *nd; 3221 int rc = 0; 3222 int i; 3223 3224 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 3225 threads = &machine->threads[i]; 3226 for (nd = rb_first_cached(&threads->entries); nd; 3227 nd = rb_next(nd)) { 3228 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node); 3229 3230 rc = fn(trb->thread, priv); 3231 if (rc != 0) 3232 return rc; 3233 } 3234 } 3235 return rc; 3236 } 3237 3238 int machines__for_each_thread(struct machines *machines, 3239 int (*fn)(struct thread *thread, void *p), 3240 void *priv) 3241 { 3242 struct rb_node *nd; 3243 int rc = 0; 3244 3245 rc = machine__for_each_thread(&machines->host, fn, priv); 3246 if (rc != 0) 3247 return rc; 3248 3249 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3250 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3251 3252 rc = machine__for_each_thread(machine, fn, priv); 3253 if (rc != 0) 3254 return rc; 3255 } 3256 return rc; 3257 } 3258 3259 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3260 { 3261 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3262 return -1; 3263 3264 return machine->current_tid[cpu]; 3265 } 3266 3267 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3268 pid_t tid) 3269 { 3270 struct thread *thread; 3271 const pid_t init_val = -1; 3272 3273 if (cpu < 0) 3274 return -EINVAL; 3275 3276 if (realloc_array_as_needed(machine->current_tid, 3277 machine->current_tid_sz, 3278 (unsigned int)cpu, 3279 &init_val)) 3280 return -ENOMEM; 3281 3282 machine->current_tid[cpu] = tid; 3283 3284 thread = machine__findnew_thread(machine, pid, tid); 3285 if (!thread) 3286 return -ENOMEM; 3287 3288 thread__set_cpu(thread, cpu); 3289 thread__put(thread); 3290 3291 return 0; 3292 } 3293 3294 /* 3295 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3296 * machine__normalized_is() if a normalized arch is needed. 3297 */ 3298 bool machine__is(struct machine *machine, const char *arch) 3299 { 3300 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3301 } 3302 3303 bool machine__normalized_is(struct machine *machine, const char *arch) 3304 { 3305 return machine && !strcmp(perf_env__arch(machine->env), arch); 3306 } 3307 3308 int machine__nr_cpus_avail(struct machine *machine) 3309 { 3310 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3311 } 3312 3313 int machine__get_kernel_start(struct machine *machine) 3314 { 3315 struct map *map = machine__kernel_map(machine); 3316 int err = 0; 3317 3318 /* 3319 * The only addresses above 2^63 are kernel addresses of a 64-bit 3320 * kernel. Note that addresses are unsigned so that on a 32-bit system 3321 * all addresses including kernel addresses are less than 2^32. In 3322 * that case (32-bit system), if the kernel mapping is unknown, all 3323 * addresses will be assumed to be in user space - see 3324 * machine__kernel_ip(). 3325 */ 3326 machine->kernel_start = 1ULL << 63; 3327 if (map) { 3328 err = map__load(map); 3329 /* 3330 * On x86_64, PTI entry trampolines are less than the 3331 * start of kernel text, but still above 2^63. So leave 3332 * kernel_start = 1ULL << 63 for x86_64. 3333 */ 3334 if (!err && !machine__is(machine, "x86_64")) 3335 machine->kernel_start = map__start(map); 3336 } 3337 return err; 3338 } 3339 3340 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3341 { 3342 u8 addr_cpumode = cpumode; 3343 bool kernel_ip; 3344 3345 if (!machine->single_address_space) 3346 goto out; 3347 3348 kernel_ip = machine__kernel_ip(machine, addr); 3349 switch (cpumode) { 3350 case PERF_RECORD_MISC_KERNEL: 3351 case PERF_RECORD_MISC_USER: 3352 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3353 PERF_RECORD_MISC_USER; 3354 break; 3355 case PERF_RECORD_MISC_GUEST_KERNEL: 3356 case PERF_RECORD_MISC_GUEST_USER: 3357 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3358 PERF_RECORD_MISC_GUEST_USER; 3359 break; 3360 default: 3361 break; 3362 } 3363 out: 3364 return addr_cpumode; 3365 } 3366 3367 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3368 { 3369 return dsos__findnew_id(&machine->dsos, filename, id); 3370 } 3371 3372 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3373 { 3374 return machine__findnew_dso_id(machine, filename, NULL); 3375 } 3376 3377 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3378 { 3379 struct machine *machine = vmachine; 3380 struct map *map; 3381 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3382 3383 if (sym == NULL) 3384 return NULL; 3385 3386 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL; 3387 *addrp = map__unmap_ip(map, sym->start); 3388 return sym->name; 3389 } 3390 3391 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3392 { 3393 struct dso *pos; 3394 int err = 0; 3395 3396 list_for_each_entry(pos, &machine->dsos.head, node) { 3397 if (fn(pos, machine, priv)) 3398 err = -1; 3399 } 3400 return err; 3401 } 3402 3403 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3404 { 3405 struct maps *maps = machine__kernel_maps(machine); 3406 struct map_rb_node *pos; 3407 int err = 0; 3408 3409 maps__for_each_entry(maps, pos) { 3410 err = fn(pos->map, priv); 3411 if (err != 0) { 3412 break; 3413 } 3414 } 3415 return err; 3416 } 3417 3418 bool machine__is_lock_function(struct machine *machine, u64 addr) 3419 { 3420 if (!machine->sched.text_start) { 3421 struct map *kmap; 3422 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3423 3424 if (!sym) { 3425 /* to avoid retry */ 3426 machine->sched.text_start = 1; 3427 return false; 3428 } 3429 3430 machine->sched.text_start = map__unmap_ip(kmap, sym->start); 3431 3432 /* should not fail from here */ 3433 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3434 machine->sched.text_end = map__unmap_ip(kmap, sym->start); 3435 3436 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3437 machine->lock.text_start = map__unmap_ip(kmap, sym->start); 3438 3439 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3440 machine->lock.text_end = map__unmap_ip(kmap, sym->start); 3441 } 3442 3443 /* failed to get kernel symbols */ 3444 if (machine->sched.text_start == 1) 3445 return false; 3446 3447 /* mutex and rwsem functions are in sched text section */ 3448 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3449 return true; 3450 3451 /* spinlock functions are in lock text section */ 3452 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3453 return true; 3454 3455 return false; 3456 } 3457