xref: /openbmc/linux/tools/perf/util/machine.c (revision 404e077a16bb7796908b604b2df02cd650c965aa)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39 
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45 
46 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
47 				     struct thread *th, bool lock);
48 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip);
49 
50 static struct dso *machine__kernel_dso(struct machine *machine)
51 {
52 	return map__dso(machine->vmlinux_map);
53 }
54 
55 static void dsos__init(struct dsos *dsos)
56 {
57 	INIT_LIST_HEAD(&dsos->head);
58 	dsos->root = RB_ROOT;
59 	init_rwsem(&dsos->lock);
60 }
61 
62 static void machine__threads_init(struct machine *machine)
63 {
64 	int i;
65 
66 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
67 		struct threads *threads = &machine->threads[i];
68 		threads->entries = RB_ROOT_CACHED;
69 		init_rwsem(&threads->lock);
70 		threads->nr = 0;
71 		INIT_LIST_HEAD(&threads->dead);
72 		threads->last_match = NULL;
73 	}
74 }
75 
76 static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd)
77 {
78 	int to_find = (int) *((pid_t *)key);
79 
80 	return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread);
81 }
82 
83 static struct thread_rb_node *thread_rb_node__find(const struct thread *th,
84 						   struct rb_root *tree)
85 {
86 	pid_t to_find = thread__tid(th);
87 	struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid);
88 
89 	return rb_entry(nd, struct thread_rb_node, rb_node);
90 }
91 
92 static int machine__set_mmap_name(struct machine *machine)
93 {
94 	if (machine__is_host(machine))
95 		machine->mmap_name = strdup("[kernel.kallsyms]");
96 	else if (machine__is_default_guest(machine))
97 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
98 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
99 			  machine->pid) < 0)
100 		machine->mmap_name = NULL;
101 
102 	return machine->mmap_name ? 0 : -ENOMEM;
103 }
104 
105 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
106 {
107 	char comm[64];
108 
109 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
110 	thread__set_comm(thread, comm, 0);
111 }
112 
113 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
114 {
115 	int err = -ENOMEM;
116 
117 	memset(machine, 0, sizeof(*machine));
118 	machine->kmaps = maps__new(machine);
119 	if (machine->kmaps == NULL)
120 		return -ENOMEM;
121 
122 	RB_CLEAR_NODE(&machine->rb_node);
123 	dsos__init(&machine->dsos);
124 
125 	machine__threads_init(machine);
126 
127 	machine->vdso_info = NULL;
128 	machine->env = NULL;
129 
130 	machine->pid = pid;
131 
132 	machine->id_hdr_size = 0;
133 	machine->kptr_restrict_warned = false;
134 	machine->comm_exec = false;
135 	machine->kernel_start = 0;
136 	machine->vmlinux_map = NULL;
137 
138 	machine->root_dir = strdup(root_dir);
139 	if (machine->root_dir == NULL)
140 		goto out;
141 
142 	if (machine__set_mmap_name(machine))
143 		goto out;
144 
145 	if (pid != HOST_KERNEL_ID) {
146 		struct thread *thread = machine__findnew_thread(machine, -1,
147 								pid);
148 
149 		if (thread == NULL)
150 			goto out;
151 
152 		thread__set_guest_comm(thread, pid);
153 		thread__put(thread);
154 	}
155 
156 	machine->current_tid = NULL;
157 	err = 0;
158 
159 out:
160 	if (err) {
161 		zfree(&machine->kmaps);
162 		zfree(&machine->root_dir);
163 		zfree(&machine->mmap_name);
164 	}
165 	return 0;
166 }
167 
168 struct machine *machine__new_host(void)
169 {
170 	struct machine *machine = malloc(sizeof(*machine));
171 
172 	if (machine != NULL) {
173 		machine__init(machine, "", HOST_KERNEL_ID);
174 
175 		if (machine__create_kernel_maps(machine) < 0)
176 			goto out_delete;
177 	}
178 
179 	return machine;
180 out_delete:
181 	free(machine);
182 	return NULL;
183 }
184 
185 struct machine *machine__new_kallsyms(void)
186 {
187 	struct machine *machine = machine__new_host();
188 	/*
189 	 * FIXME:
190 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
191 	 *    ask for not using the kcore parsing code, once this one is fixed
192 	 *    to create a map per module.
193 	 */
194 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
195 		machine__delete(machine);
196 		machine = NULL;
197 	}
198 
199 	return machine;
200 }
201 
202 static void dsos__purge(struct dsos *dsos)
203 {
204 	struct dso *pos, *n;
205 
206 	down_write(&dsos->lock);
207 
208 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
209 		RB_CLEAR_NODE(&pos->rb_node);
210 		pos->root = NULL;
211 		list_del_init(&pos->node);
212 		dso__put(pos);
213 	}
214 
215 	up_write(&dsos->lock);
216 }
217 
218 static void dsos__exit(struct dsos *dsos)
219 {
220 	dsos__purge(dsos);
221 	exit_rwsem(&dsos->lock);
222 }
223 
224 void machine__delete_threads(struct machine *machine)
225 {
226 	struct rb_node *nd;
227 	int i;
228 
229 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
230 		struct threads *threads = &machine->threads[i];
231 		down_write(&threads->lock);
232 		nd = rb_first_cached(&threads->entries);
233 		while (nd) {
234 			struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
235 
236 			nd = rb_next(nd);
237 			__machine__remove_thread(machine, trb, trb->thread, false);
238 		}
239 		up_write(&threads->lock);
240 	}
241 }
242 
243 void machine__exit(struct machine *machine)
244 {
245 	int i;
246 
247 	if (machine == NULL)
248 		return;
249 
250 	machine__destroy_kernel_maps(machine);
251 	maps__zput(machine->kmaps);
252 	dsos__exit(&machine->dsos);
253 	machine__exit_vdso(machine);
254 	zfree(&machine->root_dir);
255 	zfree(&machine->mmap_name);
256 	zfree(&machine->current_tid);
257 	zfree(&machine->kallsyms_filename);
258 
259 	machine__delete_threads(machine);
260 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
261 		struct threads *threads = &machine->threads[i];
262 
263 		exit_rwsem(&threads->lock);
264 	}
265 }
266 
267 void machine__delete(struct machine *machine)
268 {
269 	if (machine) {
270 		machine__exit(machine);
271 		free(machine);
272 	}
273 }
274 
275 void machines__init(struct machines *machines)
276 {
277 	machine__init(&machines->host, "", HOST_KERNEL_ID);
278 	machines->guests = RB_ROOT_CACHED;
279 }
280 
281 void machines__exit(struct machines *machines)
282 {
283 	machine__exit(&machines->host);
284 	/* XXX exit guest */
285 }
286 
287 struct machine *machines__add(struct machines *machines, pid_t pid,
288 			      const char *root_dir)
289 {
290 	struct rb_node **p = &machines->guests.rb_root.rb_node;
291 	struct rb_node *parent = NULL;
292 	struct machine *pos, *machine = malloc(sizeof(*machine));
293 	bool leftmost = true;
294 
295 	if (machine == NULL)
296 		return NULL;
297 
298 	if (machine__init(machine, root_dir, pid) != 0) {
299 		free(machine);
300 		return NULL;
301 	}
302 
303 	while (*p != NULL) {
304 		parent = *p;
305 		pos = rb_entry(parent, struct machine, rb_node);
306 		if (pid < pos->pid)
307 			p = &(*p)->rb_left;
308 		else {
309 			p = &(*p)->rb_right;
310 			leftmost = false;
311 		}
312 	}
313 
314 	rb_link_node(&machine->rb_node, parent, p);
315 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
316 
317 	machine->machines = machines;
318 
319 	return machine;
320 }
321 
322 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
323 {
324 	struct rb_node *nd;
325 
326 	machines->host.comm_exec = comm_exec;
327 
328 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
329 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
330 
331 		machine->comm_exec = comm_exec;
332 	}
333 }
334 
335 struct machine *machines__find(struct machines *machines, pid_t pid)
336 {
337 	struct rb_node **p = &machines->guests.rb_root.rb_node;
338 	struct rb_node *parent = NULL;
339 	struct machine *machine;
340 	struct machine *default_machine = NULL;
341 
342 	if (pid == HOST_KERNEL_ID)
343 		return &machines->host;
344 
345 	while (*p != NULL) {
346 		parent = *p;
347 		machine = rb_entry(parent, struct machine, rb_node);
348 		if (pid < machine->pid)
349 			p = &(*p)->rb_left;
350 		else if (pid > machine->pid)
351 			p = &(*p)->rb_right;
352 		else
353 			return machine;
354 		if (!machine->pid)
355 			default_machine = machine;
356 	}
357 
358 	return default_machine;
359 }
360 
361 struct machine *machines__findnew(struct machines *machines, pid_t pid)
362 {
363 	char path[PATH_MAX];
364 	const char *root_dir = "";
365 	struct machine *machine = machines__find(machines, pid);
366 
367 	if (machine && (machine->pid == pid))
368 		goto out;
369 
370 	if ((pid != HOST_KERNEL_ID) &&
371 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
372 	    (symbol_conf.guestmount)) {
373 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
374 		if (access(path, R_OK)) {
375 			static struct strlist *seen;
376 
377 			if (!seen)
378 				seen = strlist__new(NULL, NULL);
379 
380 			if (!strlist__has_entry(seen, path)) {
381 				pr_err("Can't access file %s\n", path);
382 				strlist__add(seen, path);
383 			}
384 			machine = NULL;
385 			goto out;
386 		}
387 		root_dir = path;
388 	}
389 
390 	machine = machines__add(machines, pid, root_dir);
391 out:
392 	return machine;
393 }
394 
395 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
396 {
397 	struct machine *machine = machines__find(machines, pid);
398 
399 	if (!machine)
400 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
401 	return machine;
402 }
403 
404 /*
405  * A common case for KVM test programs is that the test program acts as the
406  * hypervisor, creating, running and destroying the virtual machine, and
407  * providing the guest object code from its own object code. In this case,
408  * the VM is not running an OS, but only the functions loaded into it by the
409  * hypervisor test program, and conveniently, loaded at the same virtual
410  * addresses.
411  *
412  * Normally to resolve addresses, MMAP events are needed to map addresses
413  * back to the object code and debug symbols for that object code.
414  *
415  * Currently, there is no way to get such mapping information from guests
416  * but, in the scenario described above, the guest has the same mappings
417  * as the hypervisor, so support for that scenario can be achieved.
418  *
419  * To support that, copy the host thread's maps to the guest thread's maps.
420  * Note, we do not discover the guest until we encounter a guest event,
421  * which works well because it is not until then that we know that the host
422  * thread's maps have been set up.
423  *
424  * This function returns the guest thread. Apart from keeping the data
425  * structures sane, using a thread belonging to the guest machine, instead
426  * of the host thread, allows it to have its own comm (refer
427  * thread__set_guest_comm()).
428  */
429 static struct thread *findnew_guest_code(struct machine *machine,
430 					 struct machine *host_machine,
431 					 pid_t pid)
432 {
433 	struct thread *host_thread;
434 	struct thread *thread;
435 	int err;
436 
437 	if (!machine)
438 		return NULL;
439 
440 	thread = machine__findnew_thread(machine, -1, pid);
441 	if (!thread)
442 		return NULL;
443 
444 	/* Assume maps are set up if there are any */
445 	if (maps__nr_maps(thread__maps(thread)))
446 		return thread;
447 
448 	host_thread = machine__find_thread(host_machine, -1, pid);
449 	if (!host_thread)
450 		goto out_err;
451 
452 	thread__set_guest_comm(thread, pid);
453 
454 	/*
455 	 * Guest code can be found in hypervisor process at the same address
456 	 * so copy host maps.
457 	 */
458 	err = maps__clone(thread, thread__maps(host_thread));
459 	thread__put(host_thread);
460 	if (err)
461 		goto out_err;
462 
463 	return thread;
464 
465 out_err:
466 	thread__zput(thread);
467 	return NULL;
468 }
469 
470 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
471 {
472 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
473 	struct machine *machine = machines__findnew(machines, pid);
474 
475 	return findnew_guest_code(machine, host_machine, pid);
476 }
477 
478 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
479 {
480 	struct machines *machines = machine->machines;
481 	struct machine *host_machine;
482 
483 	if (!machines)
484 		return NULL;
485 
486 	host_machine = machines__find(machines, HOST_KERNEL_ID);
487 
488 	return findnew_guest_code(machine, host_machine, pid);
489 }
490 
491 void machines__process_guests(struct machines *machines,
492 			      machine__process_t process, void *data)
493 {
494 	struct rb_node *nd;
495 
496 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
497 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
498 		process(pos, data);
499 	}
500 }
501 
502 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
503 {
504 	struct rb_node *node;
505 	struct machine *machine;
506 
507 	machines->host.id_hdr_size = id_hdr_size;
508 
509 	for (node = rb_first_cached(&machines->guests); node;
510 	     node = rb_next(node)) {
511 		machine = rb_entry(node, struct machine, rb_node);
512 		machine->id_hdr_size = id_hdr_size;
513 	}
514 
515 	return;
516 }
517 
518 static void machine__update_thread_pid(struct machine *machine,
519 				       struct thread *th, pid_t pid)
520 {
521 	struct thread *leader;
522 
523 	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
524 		return;
525 
526 	thread__set_pid(th, pid);
527 
528 	if (thread__pid(th) == thread__tid(th))
529 		return;
530 
531 	leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
532 	if (!leader)
533 		goto out_err;
534 
535 	if (!thread__maps(leader))
536 		thread__set_maps(leader, maps__new(machine));
537 
538 	if (!thread__maps(leader))
539 		goto out_err;
540 
541 	if (thread__maps(th) == thread__maps(leader))
542 		goto out_put;
543 
544 	if (thread__maps(th)) {
545 		/*
546 		 * Maps are created from MMAP events which provide the pid and
547 		 * tid.  Consequently there never should be any maps on a thread
548 		 * with an unknown pid.  Just print an error if there are.
549 		 */
550 		if (!maps__empty(thread__maps(th)))
551 			pr_err("Discarding thread maps for %d:%d\n",
552 				thread__pid(th), thread__tid(th));
553 		maps__put(thread__maps(th));
554 	}
555 
556 	thread__set_maps(th, maps__get(thread__maps(leader)));
557 out_put:
558 	thread__put(leader);
559 	return;
560 out_err:
561 	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
562 	goto out_put;
563 }
564 
565 /*
566  * Front-end cache - TID lookups come in blocks,
567  * so most of the time we dont have to look up
568  * the full rbtree:
569  */
570 static struct thread*
571 __threads__get_last_match(struct threads *threads, struct machine *machine,
572 			  int pid, int tid)
573 {
574 	struct thread *th;
575 
576 	th = threads->last_match;
577 	if (th != NULL) {
578 		if (thread__tid(th) == tid) {
579 			machine__update_thread_pid(machine, th, pid);
580 			return thread__get(th);
581 		}
582 		thread__put(threads->last_match);
583 		threads->last_match = NULL;
584 	}
585 
586 	return NULL;
587 }
588 
589 static struct thread*
590 threads__get_last_match(struct threads *threads, struct machine *machine,
591 			int pid, int tid)
592 {
593 	struct thread *th = NULL;
594 
595 	if (perf_singlethreaded)
596 		th = __threads__get_last_match(threads, machine, pid, tid);
597 
598 	return th;
599 }
600 
601 static void
602 __threads__set_last_match(struct threads *threads, struct thread *th)
603 {
604 	thread__put(threads->last_match);
605 	threads->last_match = thread__get(th);
606 }
607 
608 static void
609 threads__set_last_match(struct threads *threads, struct thread *th)
610 {
611 	if (perf_singlethreaded)
612 		__threads__set_last_match(threads, th);
613 }
614 
615 /*
616  * Caller must eventually drop thread->refcnt returned with a successful
617  * lookup/new thread inserted.
618  */
619 static struct thread *____machine__findnew_thread(struct machine *machine,
620 						  struct threads *threads,
621 						  pid_t pid, pid_t tid,
622 						  bool create)
623 {
624 	struct rb_node **p = &threads->entries.rb_root.rb_node;
625 	struct rb_node *parent = NULL;
626 	struct thread *th;
627 	struct thread_rb_node *nd;
628 	bool leftmost = true;
629 
630 	th = threads__get_last_match(threads, machine, pid, tid);
631 	if (th)
632 		return th;
633 
634 	while (*p != NULL) {
635 		parent = *p;
636 		th = rb_entry(parent, struct thread_rb_node, rb_node)->thread;
637 
638 		if (thread__tid(th) == tid) {
639 			threads__set_last_match(threads, th);
640 			machine__update_thread_pid(machine, th, pid);
641 			return thread__get(th);
642 		}
643 
644 		if (tid < thread__tid(th))
645 			p = &(*p)->rb_left;
646 		else {
647 			p = &(*p)->rb_right;
648 			leftmost = false;
649 		}
650 	}
651 
652 	if (!create)
653 		return NULL;
654 
655 	th = thread__new(pid, tid);
656 	if (th == NULL)
657 		return NULL;
658 
659 	nd = malloc(sizeof(*nd));
660 	if (nd == NULL) {
661 		thread__put(th);
662 		return NULL;
663 	}
664 	nd->thread = th;
665 
666 	rb_link_node(&nd->rb_node, parent, p);
667 	rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost);
668 	/*
669 	 * We have to initialize maps separately after rb tree is updated.
670 	 *
671 	 * The reason is that we call machine__findnew_thread within
672 	 * thread__init_maps to find the thread leader and that would screwed
673 	 * the rb tree.
674 	 */
675 	if (thread__init_maps(th, machine)) {
676 		pr_err("Thread init failed thread %d\n", pid);
677 		rb_erase_cached(&nd->rb_node, &threads->entries);
678 		RB_CLEAR_NODE(&nd->rb_node);
679 		free(nd);
680 		thread__put(th);
681 		return NULL;
682 	}
683 	/*
684 	 * It is now in the rbtree, get a ref
685 	 */
686 	threads__set_last_match(threads, th);
687 	++threads->nr;
688 
689 	return thread__get(th);
690 }
691 
692 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
693 {
694 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
695 }
696 
697 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
698 				       pid_t tid)
699 {
700 	struct threads *threads = machine__threads(machine, tid);
701 	struct thread *th;
702 
703 	down_write(&threads->lock);
704 	th = __machine__findnew_thread(machine, pid, tid);
705 	up_write(&threads->lock);
706 	return th;
707 }
708 
709 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
710 				    pid_t tid)
711 {
712 	struct threads *threads = machine__threads(machine, tid);
713 	struct thread *th;
714 
715 	down_read(&threads->lock);
716 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
717 	up_read(&threads->lock);
718 	return th;
719 }
720 
721 /*
722  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
723  * So here a single thread is created for that, but actually there is a separate
724  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
725  * is only 1. That causes problems for some tools, requiring workarounds. For
726  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
727  */
728 struct thread *machine__idle_thread(struct machine *machine)
729 {
730 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
731 
732 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
733 	    thread__set_namespaces(thread, 0, NULL))
734 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
735 
736 	return thread;
737 }
738 
739 struct comm *machine__thread_exec_comm(struct machine *machine,
740 				       struct thread *thread)
741 {
742 	if (machine->comm_exec)
743 		return thread__exec_comm(thread);
744 	else
745 		return thread__comm(thread);
746 }
747 
748 int machine__process_comm_event(struct machine *machine, union perf_event *event,
749 				struct perf_sample *sample)
750 {
751 	struct thread *thread = machine__findnew_thread(machine,
752 							event->comm.pid,
753 							event->comm.tid);
754 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
755 	int err = 0;
756 
757 	if (exec)
758 		machine->comm_exec = true;
759 
760 	if (dump_trace)
761 		perf_event__fprintf_comm(event, stdout);
762 
763 	if (thread == NULL ||
764 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
765 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
766 		err = -1;
767 	}
768 
769 	thread__put(thread);
770 
771 	return err;
772 }
773 
774 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
775 				      union perf_event *event,
776 				      struct perf_sample *sample __maybe_unused)
777 {
778 	struct thread *thread = machine__findnew_thread(machine,
779 							event->namespaces.pid,
780 							event->namespaces.tid);
781 	int err = 0;
782 
783 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
784 		  "\nWARNING: kernel seems to support more namespaces than perf"
785 		  " tool.\nTry updating the perf tool..\n\n");
786 
787 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
788 		  "\nWARNING: perf tool seems to support more namespaces than"
789 		  " the kernel.\nTry updating the kernel..\n\n");
790 
791 	if (dump_trace)
792 		perf_event__fprintf_namespaces(event, stdout);
793 
794 	if (thread == NULL ||
795 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
796 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
797 		err = -1;
798 	}
799 
800 	thread__put(thread);
801 
802 	return err;
803 }
804 
805 int machine__process_cgroup_event(struct machine *machine,
806 				  union perf_event *event,
807 				  struct perf_sample *sample __maybe_unused)
808 {
809 	struct cgroup *cgrp;
810 
811 	if (dump_trace)
812 		perf_event__fprintf_cgroup(event, stdout);
813 
814 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
815 	if (cgrp == NULL)
816 		return -ENOMEM;
817 
818 	return 0;
819 }
820 
821 int machine__process_lost_event(struct machine *machine __maybe_unused,
822 				union perf_event *event, struct perf_sample *sample __maybe_unused)
823 {
824 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
825 		    event->lost.id, event->lost.lost);
826 	return 0;
827 }
828 
829 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
830 					union perf_event *event, struct perf_sample *sample)
831 {
832 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
833 		    sample->id, event->lost_samples.lost);
834 	return 0;
835 }
836 
837 static struct dso *machine__findnew_module_dso(struct machine *machine,
838 					       struct kmod_path *m,
839 					       const char *filename)
840 {
841 	struct dso *dso;
842 
843 	down_write(&machine->dsos.lock);
844 
845 	dso = __dsos__find(&machine->dsos, m->name, true);
846 	if (!dso) {
847 		dso = __dsos__addnew(&machine->dsos, m->name);
848 		if (dso == NULL)
849 			goto out_unlock;
850 
851 		dso__set_module_info(dso, m, machine);
852 		dso__set_long_name(dso, strdup(filename), true);
853 		dso->kernel = DSO_SPACE__KERNEL;
854 	}
855 
856 	dso__get(dso);
857 out_unlock:
858 	up_write(&machine->dsos.lock);
859 	return dso;
860 }
861 
862 int machine__process_aux_event(struct machine *machine __maybe_unused,
863 			       union perf_event *event)
864 {
865 	if (dump_trace)
866 		perf_event__fprintf_aux(event, stdout);
867 	return 0;
868 }
869 
870 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
871 					union perf_event *event)
872 {
873 	if (dump_trace)
874 		perf_event__fprintf_itrace_start(event, stdout);
875 	return 0;
876 }
877 
878 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
879 					    union perf_event *event)
880 {
881 	if (dump_trace)
882 		perf_event__fprintf_aux_output_hw_id(event, stdout);
883 	return 0;
884 }
885 
886 int machine__process_switch_event(struct machine *machine __maybe_unused,
887 				  union perf_event *event)
888 {
889 	if (dump_trace)
890 		perf_event__fprintf_switch(event, stdout);
891 	return 0;
892 }
893 
894 static int machine__process_ksymbol_register(struct machine *machine,
895 					     union perf_event *event,
896 					     struct perf_sample *sample __maybe_unused)
897 {
898 	struct symbol *sym;
899 	struct dso *dso;
900 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
901 	bool put_map = false;
902 	int err = 0;
903 
904 	if (!map) {
905 		dso = dso__new(event->ksymbol.name);
906 
907 		if (!dso) {
908 			err = -ENOMEM;
909 			goto out;
910 		}
911 		dso->kernel = DSO_SPACE__KERNEL;
912 		map = map__new2(0, dso);
913 		dso__put(dso);
914 		if (!map) {
915 			err = -ENOMEM;
916 			goto out;
917 		}
918 		/*
919 		 * The inserted map has a get on it, we need to put to release
920 		 * the reference count here, but do it after all accesses are
921 		 * done.
922 		 */
923 		put_map = true;
924 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
925 			dso->binary_type = DSO_BINARY_TYPE__OOL;
926 			dso->data.file_size = event->ksymbol.len;
927 			dso__set_loaded(dso);
928 		}
929 
930 		map__set_start(map, event->ksymbol.addr);
931 		map__set_end(map, map__start(map) + event->ksymbol.len);
932 		err = maps__insert(machine__kernel_maps(machine), map);
933 		if (err) {
934 			err = -ENOMEM;
935 			goto out;
936 		}
937 
938 		dso__set_loaded(dso);
939 
940 		if (is_bpf_image(event->ksymbol.name)) {
941 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
942 			dso__set_long_name(dso, "", false);
943 		}
944 	} else {
945 		dso = map__dso(map);
946 	}
947 
948 	sym = symbol__new(map__map_ip(map, map__start(map)),
949 			  event->ksymbol.len,
950 			  0, 0, event->ksymbol.name);
951 	if (!sym) {
952 		err = -ENOMEM;
953 		goto out;
954 	}
955 	dso__insert_symbol(dso, sym);
956 out:
957 	if (put_map)
958 		map__put(map);
959 	return err;
960 }
961 
962 static int machine__process_ksymbol_unregister(struct machine *machine,
963 					       union perf_event *event,
964 					       struct perf_sample *sample __maybe_unused)
965 {
966 	struct symbol *sym;
967 	struct map *map;
968 
969 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
970 	if (!map)
971 		return 0;
972 
973 	if (RC_CHK_ACCESS(map) != RC_CHK_ACCESS(machine->vmlinux_map))
974 		maps__remove(machine__kernel_maps(machine), map);
975 	else {
976 		struct dso *dso = map__dso(map);
977 
978 		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
979 		if (sym)
980 			dso__delete_symbol(dso, sym);
981 	}
982 
983 	return 0;
984 }
985 
986 int machine__process_ksymbol(struct machine *machine __maybe_unused,
987 			     union perf_event *event,
988 			     struct perf_sample *sample)
989 {
990 	if (dump_trace)
991 		perf_event__fprintf_ksymbol(event, stdout);
992 
993 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
994 		return machine__process_ksymbol_unregister(machine, event,
995 							   sample);
996 	return machine__process_ksymbol_register(machine, event, sample);
997 }
998 
999 int machine__process_text_poke(struct machine *machine, union perf_event *event,
1000 			       struct perf_sample *sample __maybe_unused)
1001 {
1002 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
1003 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1004 	struct dso *dso = map ? map__dso(map) : NULL;
1005 
1006 	if (dump_trace)
1007 		perf_event__fprintf_text_poke(event, machine, stdout);
1008 
1009 	if (!event->text_poke.new_len)
1010 		return 0;
1011 
1012 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
1013 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
1014 		return 0;
1015 	}
1016 
1017 	if (dso) {
1018 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1019 		int ret;
1020 
1021 		/*
1022 		 * Kernel maps might be changed when loading symbols so loading
1023 		 * must be done prior to using kernel maps.
1024 		 */
1025 		map__load(map);
1026 		ret = dso__data_write_cache_addr(dso, map, machine,
1027 						 event->text_poke.addr,
1028 						 new_bytes,
1029 						 event->text_poke.new_len);
1030 		if (ret != event->text_poke.new_len)
1031 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1032 				 event->text_poke.addr);
1033 	} else {
1034 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1035 			 event->text_poke.addr);
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1042 					      const char *filename)
1043 {
1044 	struct map *map = NULL;
1045 	struct kmod_path m;
1046 	struct dso *dso;
1047 	int err;
1048 
1049 	if (kmod_path__parse_name(&m, filename))
1050 		return NULL;
1051 
1052 	dso = machine__findnew_module_dso(machine, &m, filename);
1053 	if (dso == NULL)
1054 		goto out;
1055 
1056 	map = map__new2(start, dso);
1057 	if (map == NULL)
1058 		goto out;
1059 
1060 	err = maps__insert(machine__kernel_maps(machine), map);
1061 	/* If maps__insert failed, return NULL. */
1062 	if (err) {
1063 		map__put(map);
1064 		map = NULL;
1065 	}
1066 out:
1067 	/* put the dso here, corresponding to  machine__findnew_module_dso */
1068 	dso__put(dso);
1069 	zfree(&m.name);
1070 	return map;
1071 }
1072 
1073 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1074 {
1075 	struct rb_node *nd;
1076 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1077 
1078 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1079 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1080 		ret += __dsos__fprintf(&pos->dsos.head, fp);
1081 	}
1082 
1083 	return ret;
1084 }
1085 
1086 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1087 				     bool (skip)(struct dso *dso, int parm), int parm)
1088 {
1089 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1090 }
1091 
1092 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1093 				     bool (skip)(struct dso *dso, int parm), int parm)
1094 {
1095 	struct rb_node *nd;
1096 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1097 
1098 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1099 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1100 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1101 	}
1102 	return ret;
1103 }
1104 
1105 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1106 {
1107 	int i;
1108 	size_t printed = 0;
1109 	struct dso *kdso = machine__kernel_dso(machine);
1110 
1111 	if (kdso->has_build_id) {
1112 		char filename[PATH_MAX];
1113 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1114 					   false))
1115 			printed += fprintf(fp, "[0] %s\n", filename);
1116 	}
1117 
1118 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1119 		printed += fprintf(fp, "[%d] %s\n",
1120 				   i + kdso->has_build_id, vmlinux_path[i]);
1121 
1122 	return printed;
1123 }
1124 
1125 size_t machine__fprintf(struct machine *machine, FILE *fp)
1126 {
1127 	struct rb_node *nd;
1128 	size_t ret;
1129 	int i;
1130 
1131 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1132 		struct threads *threads = &machine->threads[i];
1133 
1134 		down_read(&threads->lock);
1135 
1136 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
1137 
1138 		for (nd = rb_first_cached(&threads->entries); nd;
1139 		     nd = rb_next(nd)) {
1140 			struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread;
1141 
1142 			ret += thread__fprintf(pos, fp);
1143 		}
1144 
1145 		up_read(&threads->lock);
1146 	}
1147 	return ret;
1148 }
1149 
1150 static struct dso *machine__get_kernel(struct machine *machine)
1151 {
1152 	const char *vmlinux_name = machine->mmap_name;
1153 	struct dso *kernel;
1154 
1155 	if (machine__is_host(machine)) {
1156 		if (symbol_conf.vmlinux_name)
1157 			vmlinux_name = symbol_conf.vmlinux_name;
1158 
1159 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1160 						 "[kernel]", DSO_SPACE__KERNEL);
1161 	} else {
1162 		if (symbol_conf.default_guest_vmlinux_name)
1163 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1164 
1165 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1166 						 "[guest.kernel]",
1167 						 DSO_SPACE__KERNEL_GUEST);
1168 	}
1169 
1170 	if (kernel != NULL && (!kernel->has_build_id))
1171 		dso__read_running_kernel_build_id(kernel, machine);
1172 
1173 	return kernel;
1174 }
1175 
1176 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1177 				    size_t bufsz)
1178 {
1179 	if (machine__is_default_guest(machine))
1180 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1181 	else
1182 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1183 }
1184 
1185 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1186 
1187 /* Figure out the start address of kernel map from /proc/kallsyms.
1188  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1189  * symbol_name if it's not that important.
1190  */
1191 static int machine__get_running_kernel_start(struct machine *machine,
1192 					     const char **symbol_name,
1193 					     u64 *start, u64 *end)
1194 {
1195 	char filename[PATH_MAX];
1196 	int i, err = -1;
1197 	const char *name;
1198 	u64 addr = 0;
1199 
1200 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1201 
1202 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1203 		return 0;
1204 
1205 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1206 		err = kallsyms__get_function_start(filename, name, &addr);
1207 		if (!err)
1208 			break;
1209 	}
1210 
1211 	if (err)
1212 		return -1;
1213 
1214 	if (symbol_name)
1215 		*symbol_name = name;
1216 
1217 	*start = addr;
1218 
1219 	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1220 	if (err)
1221 		err = kallsyms__get_function_start(filename, "_etext", &addr);
1222 	if (!err)
1223 		*end = addr;
1224 
1225 	return 0;
1226 }
1227 
1228 int machine__create_extra_kernel_map(struct machine *machine,
1229 				     struct dso *kernel,
1230 				     struct extra_kernel_map *xm)
1231 {
1232 	struct kmap *kmap;
1233 	struct map *map;
1234 	int err;
1235 
1236 	map = map__new2(xm->start, kernel);
1237 	if (!map)
1238 		return -ENOMEM;
1239 
1240 	map__set_end(map, xm->end);
1241 	map__set_pgoff(map, xm->pgoff);
1242 
1243 	kmap = map__kmap(map);
1244 
1245 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1246 
1247 	err = maps__insert(machine__kernel_maps(machine), map);
1248 
1249 	if (!err) {
1250 		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1251 			kmap->name, map__start(map), map__end(map));
1252 	}
1253 
1254 	map__put(map);
1255 
1256 	return err;
1257 }
1258 
1259 static u64 find_entry_trampoline(struct dso *dso)
1260 {
1261 	/* Duplicates are removed so lookup all aliases */
1262 	const char *syms[] = {
1263 		"_entry_trampoline",
1264 		"__entry_trampoline_start",
1265 		"entry_SYSCALL_64_trampoline",
1266 	};
1267 	struct symbol *sym = dso__first_symbol(dso);
1268 	unsigned int i;
1269 
1270 	for (; sym; sym = dso__next_symbol(sym)) {
1271 		if (sym->binding != STB_GLOBAL)
1272 			continue;
1273 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1274 			if (!strcmp(sym->name, syms[i]))
1275 				return sym->start;
1276 		}
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 /*
1283  * These values can be used for kernels that do not have symbols for the entry
1284  * trampolines in kallsyms.
1285  */
1286 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1287 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1288 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1289 
1290 /* Map x86_64 PTI entry trampolines */
1291 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1292 					  struct dso *kernel)
1293 {
1294 	struct maps *kmaps = machine__kernel_maps(machine);
1295 	int nr_cpus_avail, cpu;
1296 	bool found = false;
1297 	struct map_rb_node *rb_node;
1298 	u64 pgoff;
1299 
1300 	/*
1301 	 * In the vmlinux case, pgoff is a virtual address which must now be
1302 	 * mapped to a vmlinux offset.
1303 	 */
1304 	maps__for_each_entry(kmaps, rb_node) {
1305 		struct map *dest_map, *map = rb_node->map;
1306 		struct kmap *kmap = __map__kmap(map);
1307 
1308 		if (!kmap || !is_entry_trampoline(kmap->name))
1309 			continue;
1310 
1311 		dest_map = maps__find(kmaps, map__pgoff(map));
1312 		if (dest_map != map)
1313 			map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1314 		found = true;
1315 	}
1316 	if (found || machine->trampolines_mapped)
1317 		return 0;
1318 
1319 	pgoff = find_entry_trampoline(kernel);
1320 	if (!pgoff)
1321 		return 0;
1322 
1323 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1324 
1325 	/* Add a 1 page map for each CPU's entry trampoline */
1326 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1327 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1328 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1329 			 X86_64_ENTRY_TRAMPOLINE;
1330 		struct extra_kernel_map xm = {
1331 			.start = va,
1332 			.end   = va + page_size,
1333 			.pgoff = pgoff,
1334 		};
1335 
1336 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1337 
1338 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1339 			return -1;
1340 	}
1341 
1342 	machine->trampolines_mapped = nr_cpus_avail;
1343 
1344 	return 0;
1345 }
1346 
1347 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1348 					     struct dso *kernel __maybe_unused)
1349 {
1350 	return 0;
1351 }
1352 
1353 static int
1354 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1355 {
1356 	/* In case of renewal the kernel map, destroy previous one */
1357 	machine__destroy_kernel_maps(machine);
1358 
1359 	map__put(machine->vmlinux_map);
1360 	machine->vmlinux_map = map__new2(0, kernel);
1361 	if (machine->vmlinux_map == NULL)
1362 		return -ENOMEM;
1363 
1364 	map__set_map_ip(machine->vmlinux_map, identity__map_ip);
1365 	map__set_unmap_ip(machine->vmlinux_map, identity__map_ip);
1366 	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1367 }
1368 
1369 void machine__destroy_kernel_maps(struct machine *machine)
1370 {
1371 	struct kmap *kmap;
1372 	struct map *map = machine__kernel_map(machine);
1373 
1374 	if (map == NULL)
1375 		return;
1376 
1377 	kmap = map__kmap(map);
1378 	maps__remove(machine__kernel_maps(machine), map);
1379 	if (kmap && kmap->ref_reloc_sym) {
1380 		zfree((char **)&kmap->ref_reloc_sym->name);
1381 		zfree(&kmap->ref_reloc_sym);
1382 	}
1383 
1384 	map__zput(machine->vmlinux_map);
1385 }
1386 
1387 int machines__create_guest_kernel_maps(struct machines *machines)
1388 {
1389 	int ret = 0;
1390 	struct dirent **namelist = NULL;
1391 	int i, items = 0;
1392 	char path[PATH_MAX];
1393 	pid_t pid;
1394 	char *endp;
1395 
1396 	if (symbol_conf.default_guest_vmlinux_name ||
1397 	    symbol_conf.default_guest_modules ||
1398 	    symbol_conf.default_guest_kallsyms) {
1399 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1400 	}
1401 
1402 	if (symbol_conf.guestmount) {
1403 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1404 		if (items <= 0)
1405 			return -ENOENT;
1406 		for (i = 0; i < items; i++) {
1407 			if (!isdigit(namelist[i]->d_name[0])) {
1408 				/* Filter out . and .. */
1409 				continue;
1410 			}
1411 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1412 			if ((*endp != '\0') ||
1413 			    (endp == namelist[i]->d_name) ||
1414 			    (errno == ERANGE)) {
1415 				pr_debug("invalid directory (%s). Skipping.\n",
1416 					 namelist[i]->d_name);
1417 				continue;
1418 			}
1419 			sprintf(path, "%s/%s/proc/kallsyms",
1420 				symbol_conf.guestmount,
1421 				namelist[i]->d_name);
1422 			ret = access(path, R_OK);
1423 			if (ret) {
1424 				pr_debug("Can't access file %s\n", path);
1425 				goto failure;
1426 			}
1427 			machines__create_kernel_maps(machines, pid);
1428 		}
1429 failure:
1430 		free(namelist);
1431 	}
1432 
1433 	return ret;
1434 }
1435 
1436 void machines__destroy_kernel_maps(struct machines *machines)
1437 {
1438 	struct rb_node *next = rb_first_cached(&machines->guests);
1439 
1440 	machine__destroy_kernel_maps(&machines->host);
1441 
1442 	while (next) {
1443 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1444 
1445 		next = rb_next(&pos->rb_node);
1446 		rb_erase_cached(&pos->rb_node, &machines->guests);
1447 		machine__delete(pos);
1448 	}
1449 }
1450 
1451 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1452 {
1453 	struct machine *machine = machines__findnew(machines, pid);
1454 
1455 	if (machine == NULL)
1456 		return -1;
1457 
1458 	return machine__create_kernel_maps(machine);
1459 }
1460 
1461 int machine__load_kallsyms(struct machine *machine, const char *filename)
1462 {
1463 	struct map *map = machine__kernel_map(machine);
1464 	struct dso *dso = map__dso(map);
1465 	int ret = __dso__load_kallsyms(dso, filename, map, true);
1466 
1467 	if (ret > 0) {
1468 		dso__set_loaded(dso);
1469 		/*
1470 		 * Since /proc/kallsyms will have multiple sessions for the
1471 		 * kernel, with modules between them, fixup the end of all
1472 		 * sections.
1473 		 */
1474 		maps__fixup_end(machine__kernel_maps(machine));
1475 	}
1476 
1477 	return ret;
1478 }
1479 
1480 int machine__load_vmlinux_path(struct machine *machine)
1481 {
1482 	struct map *map = machine__kernel_map(machine);
1483 	struct dso *dso = map__dso(map);
1484 	int ret = dso__load_vmlinux_path(dso, map);
1485 
1486 	if (ret > 0)
1487 		dso__set_loaded(dso);
1488 
1489 	return ret;
1490 }
1491 
1492 static char *get_kernel_version(const char *root_dir)
1493 {
1494 	char version[PATH_MAX];
1495 	FILE *file;
1496 	char *name, *tmp;
1497 	const char *prefix = "Linux version ";
1498 
1499 	sprintf(version, "%s/proc/version", root_dir);
1500 	file = fopen(version, "r");
1501 	if (!file)
1502 		return NULL;
1503 
1504 	tmp = fgets(version, sizeof(version), file);
1505 	fclose(file);
1506 	if (!tmp)
1507 		return NULL;
1508 
1509 	name = strstr(version, prefix);
1510 	if (!name)
1511 		return NULL;
1512 	name += strlen(prefix);
1513 	tmp = strchr(name, ' ');
1514 	if (tmp)
1515 		*tmp = '\0';
1516 
1517 	return strdup(name);
1518 }
1519 
1520 static bool is_kmod_dso(struct dso *dso)
1521 {
1522 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1523 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1524 }
1525 
1526 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1527 {
1528 	char *long_name;
1529 	struct dso *dso;
1530 	struct map *map = maps__find_by_name(maps, m->name);
1531 
1532 	if (map == NULL)
1533 		return 0;
1534 
1535 	long_name = strdup(path);
1536 	if (long_name == NULL)
1537 		return -ENOMEM;
1538 
1539 	dso = map__dso(map);
1540 	dso__set_long_name(dso, long_name, true);
1541 	dso__kernel_module_get_build_id(dso, "");
1542 
1543 	/*
1544 	 * Full name could reveal us kmod compression, so
1545 	 * we need to update the symtab_type if needed.
1546 	 */
1547 	if (m->comp && is_kmod_dso(dso)) {
1548 		dso->symtab_type++;
1549 		dso->comp = m->comp;
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1556 {
1557 	struct dirent *dent;
1558 	DIR *dir = opendir(dir_name);
1559 	int ret = 0;
1560 
1561 	if (!dir) {
1562 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1563 		return -1;
1564 	}
1565 
1566 	while ((dent = readdir(dir)) != NULL) {
1567 		char path[PATH_MAX];
1568 		struct stat st;
1569 
1570 		/*sshfs might return bad dent->d_type, so we have to stat*/
1571 		path__join(path, sizeof(path), dir_name, dent->d_name);
1572 		if (stat(path, &st))
1573 			continue;
1574 
1575 		if (S_ISDIR(st.st_mode)) {
1576 			if (!strcmp(dent->d_name, ".") ||
1577 			    !strcmp(dent->d_name, ".."))
1578 				continue;
1579 
1580 			/* Do not follow top-level source and build symlinks */
1581 			if (depth == 0) {
1582 				if (!strcmp(dent->d_name, "source") ||
1583 				    !strcmp(dent->d_name, "build"))
1584 					continue;
1585 			}
1586 
1587 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1588 			if (ret < 0)
1589 				goto out;
1590 		} else {
1591 			struct kmod_path m;
1592 
1593 			ret = kmod_path__parse_name(&m, dent->d_name);
1594 			if (ret)
1595 				goto out;
1596 
1597 			if (m.kmod)
1598 				ret = maps__set_module_path(maps, path, &m);
1599 
1600 			zfree(&m.name);
1601 
1602 			if (ret)
1603 				goto out;
1604 		}
1605 	}
1606 
1607 out:
1608 	closedir(dir);
1609 	return ret;
1610 }
1611 
1612 static int machine__set_modules_path(struct machine *machine)
1613 {
1614 	char *version;
1615 	char modules_path[PATH_MAX];
1616 
1617 	version = get_kernel_version(machine->root_dir);
1618 	if (!version)
1619 		return -1;
1620 
1621 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1622 		 machine->root_dir, version);
1623 	free(version);
1624 
1625 	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1626 }
1627 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1628 				u64 *size __maybe_unused,
1629 				const char *name __maybe_unused)
1630 {
1631 	return 0;
1632 }
1633 
1634 static int machine__create_module(void *arg, const char *name, u64 start,
1635 				  u64 size)
1636 {
1637 	struct machine *machine = arg;
1638 	struct map *map;
1639 
1640 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1641 		return -1;
1642 
1643 	map = machine__addnew_module_map(machine, start, name);
1644 	if (map == NULL)
1645 		return -1;
1646 	map__set_end(map, start + size);
1647 
1648 	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1649 	map__put(map);
1650 	return 0;
1651 }
1652 
1653 static int machine__create_modules(struct machine *machine)
1654 {
1655 	const char *modules;
1656 	char path[PATH_MAX];
1657 
1658 	if (machine__is_default_guest(machine)) {
1659 		modules = symbol_conf.default_guest_modules;
1660 	} else {
1661 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1662 		modules = path;
1663 	}
1664 
1665 	if (symbol__restricted_filename(modules, "/proc/modules"))
1666 		return -1;
1667 
1668 	if (modules__parse(modules, machine, machine__create_module))
1669 		return -1;
1670 
1671 	if (!machine__set_modules_path(machine))
1672 		return 0;
1673 
1674 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1675 
1676 	return 0;
1677 }
1678 
1679 static void machine__set_kernel_mmap(struct machine *machine,
1680 				     u64 start, u64 end)
1681 {
1682 	map__set_start(machine->vmlinux_map, start);
1683 	map__set_end(machine->vmlinux_map, end);
1684 	/*
1685 	 * Be a bit paranoid here, some perf.data file came with
1686 	 * a zero sized synthesized MMAP event for the kernel.
1687 	 */
1688 	if (start == 0 && end == 0)
1689 		map__set_end(machine->vmlinux_map, ~0ULL);
1690 }
1691 
1692 static int machine__update_kernel_mmap(struct machine *machine,
1693 				     u64 start, u64 end)
1694 {
1695 	struct map *orig, *updated;
1696 	int err;
1697 
1698 	orig = machine->vmlinux_map;
1699 	updated = map__get(orig);
1700 
1701 	machine->vmlinux_map = updated;
1702 	machine__set_kernel_mmap(machine, start, end);
1703 	maps__remove(machine__kernel_maps(machine), orig);
1704 	err = maps__insert(machine__kernel_maps(machine), updated);
1705 	map__put(orig);
1706 
1707 	return err;
1708 }
1709 
1710 int machine__create_kernel_maps(struct machine *machine)
1711 {
1712 	struct dso *kernel = machine__get_kernel(machine);
1713 	const char *name = NULL;
1714 	u64 start = 0, end = ~0ULL;
1715 	int ret;
1716 
1717 	if (kernel == NULL)
1718 		return -1;
1719 
1720 	ret = __machine__create_kernel_maps(machine, kernel);
1721 	if (ret < 0)
1722 		goto out_put;
1723 
1724 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1725 		if (machine__is_host(machine))
1726 			pr_debug("Problems creating module maps, "
1727 				 "continuing anyway...\n");
1728 		else
1729 			pr_debug("Problems creating module maps for guest %d, "
1730 				 "continuing anyway...\n", machine->pid);
1731 	}
1732 
1733 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1734 		if (name &&
1735 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1736 			machine__destroy_kernel_maps(machine);
1737 			ret = -1;
1738 			goto out_put;
1739 		}
1740 
1741 		/*
1742 		 * we have a real start address now, so re-order the kmaps
1743 		 * assume it's the last in the kmaps
1744 		 */
1745 		ret = machine__update_kernel_mmap(machine, start, end);
1746 		if (ret < 0)
1747 			goto out_put;
1748 	}
1749 
1750 	if (machine__create_extra_kernel_maps(machine, kernel))
1751 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1752 
1753 	if (end == ~0ULL) {
1754 		/* update end address of the kernel map using adjacent module address */
1755 		struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine),
1756 							machine__kernel_map(machine));
1757 		struct map_rb_node *next = map_rb_node__next(rb_node);
1758 
1759 		if (next)
1760 			machine__set_kernel_mmap(machine, start, map__start(next->map));
1761 	}
1762 
1763 out_put:
1764 	dso__put(kernel);
1765 	return ret;
1766 }
1767 
1768 static bool machine__uses_kcore(struct machine *machine)
1769 {
1770 	struct dso *dso;
1771 
1772 	list_for_each_entry(dso, &machine->dsos.head, node) {
1773 		if (dso__is_kcore(dso))
1774 			return true;
1775 	}
1776 
1777 	return false;
1778 }
1779 
1780 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1781 					     struct extra_kernel_map *xm)
1782 {
1783 	return machine__is(machine, "x86_64") &&
1784 	       is_entry_trampoline(xm->name);
1785 }
1786 
1787 static int machine__process_extra_kernel_map(struct machine *machine,
1788 					     struct extra_kernel_map *xm)
1789 {
1790 	struct dso *kernel = machine__kernel_dso(machine);
1791 
1792 	if (kernel == NULL)
1793 		return -1;
1794 
1795 	return machine__create_extra_kernel_map(machine, kernel, xm);
1796 }
1797 
1798 static int machine__process_kernel_mmap_event(struct machine *machine,
1799 					      struct extra_kernel_map *xm,
1800 					      struct build_id *bid)
1801 {
1802 	enum dso_space_type dso_space;
1803 	bool is_kernel_mmap;
1804 	const char *mmap_name = machine->mmap_name;
1805 
1806 	/* If we have maps from kcore then we do not need or want any others */
1807 	if (machine__uses_kcore(machine))
1808 		return 0;
1809 
1810 	if (machine__is_host(machine))
1811 		dso_space = DSO_SPACE__KERNEL;
1812 	else
1813 		dso_space = DSO_SPACE__KERNEL_GUEST;
1814 
1815 	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1816 	if (!is_kernel_mmap && !machine__is_host(machine)) {
1817 		/*
1818 		 * If the event was recorded inside the guest and injected into
1819 		 * the host perf.data file, then it will match a host mmap_name,
1820 		 * so try that - see machine__set_mmap_name().
1821 		 */
1822 		mmap_name = "[kernel.kallsyms]";
1823 		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1824 	}
1825 	if (xm->name[0] == '/' ||
1826 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1827 		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1828 
1829 		if (map == NULL)
1830 			goto out_problem;
1831 
1832 		map__set_end(map, map__start(map) + xm->end - xm->start);
1833 
1834 		if (build_id__is_defined(bid))
1835 			dso__set_build_id(map__dso(map), bid);
1836 
1837 		map__put(map);
1838 	} else if (is_kernel_mmap) {
1839 		const char *symbol_name = xm->name + strlen(mmap_name);
1840 		/*
1841 		 * Should be there already, from the build-id table in
1842 		 * the header.
1843 		 */
1844 		struct dso *kernel = NULL;
1845 		struct dso *dso;
1846 
1847 		down_read(&machine->dsos.lock);
1848 
1849 		list_for_each_entry(dso, &machine->dsos.head, node) {
1850 
1851 			/*
1852 			 * The cpumode passed to is_kernel_module is not the
1853 			 * cpumode of *this* event. If we insist on passing
1854 			 * correct cpumode to is_kernel_module, we should
1855 			 * record the cpumode when we adding this dso to the
1856 			 * linked list.
1857 			 *
1858 			 * However we don't really need passing correct
1859 			 * cpumode.  We know the correct cpumode must be kernel
1860 			 * mode (if not, we should not link it onto kernel_dsos
1861 			 * list).
1862 			 *
1863 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1864 			 * is_kernel_module() treats it as a kernel cpumode.
1865 			 */
1866 
1867 			if (!dso->kernel ||
1868 			    is_kernel_module(dso->long_name,
1869 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1870 				continue;
1871 
1872 
1873 			kernel = dso__get(dso);
1874 			break;
1875 		}
1876 
1877 		up_read(&machine->dsos.lock);
1878 
1879 		if (kernel == NULL)
1880 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1881 		if (kernel == NULL)
1882 			goto out_problem;
1883 
1884 		kernel->kernel = dso_space;
1885 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1886 			dso__put(kernel);
1887 			goto out_problem;
1888 		}
1889 
1890 		if (strstr(kernel->long_name, "vmlinux"))
1891 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1892 
1893 		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1894 			dso__put(kernel);
1895 			goto out_problem;
1896 		}
1897 
1898 		if (build_id__is_defined(bid))
1899 			dso__set_build_id(kernel, bid);
1900 
1901 		/*
1902 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1903 		 * symbol. Effectively having zero here means that at record
1904 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1905 		 */
1906 		if (xm->pgoff != 0) {
1907 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1908 							symbol_name,
1909 							xm->pgoff);
1910 		}
1911 
1912 		if (machine__is_default_guest(machine)) {
1913 			/*
1914 			 * preload dso of guest kernel and modules
1915 			 */
1916 			dso__load(kernel, machine__kernel_map(machine));
1917 		}
1918 		dso__put(kernel);
1919 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1920 		return machine__process_extra_kernel_map(machine, xm);
1921 	}
1922 	return 0;
1923 out_problem:
1924 	return -1;
1925 }
1926 
1927 int machine__process_mmap2_event(struct machine *machine,
1928 				 union perf_event *event,
1929 				 struct perf_sample *sample)
1930 {
1931 	struct thread *thread;
1932 	struct map *map;
1933 	struct dso_id dso_id = {
1934 		.maj = event->mmap2.maj,
1935 		.min = event->mmap2.min,
1936 		.ino = event->mmap2.ino,
1937 		.ino_generation = event->mmap2.ino_generation,
1938 	};
1939 	struct build_id __bid, *bid = NULL;
1940 	int ret = 0;
1941 
1942 	if (dump_trace)
1943 		perf_event__fprintf_mmap2(event, stdout);
1944 
1945 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1946 		bid = &__bid;
1947 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1948 	}
1949 
1950 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1951 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1952 		struct extra_kernel_map xm = {
1953 			.start = event->mmap2.start,
1954 			.end   = event->mmap2.start + event->mmap2.len,
1955 			.pgoff = event->mmap2.pgoff,
1956 		};
1957 
1958 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1959 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1960 		if (ret < 0)
1961 			goto out_problem;
1962 		return 0;
1963 	}
1964 
1965 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1966 					event->mmap2.tid);
1967 	if (thread == NULL)
1968 		goto out_problem;
1969 
1970 	map = map__new(machine, event->mmap2.start,
1971 			event->mmap2.len, event->mmap2.pgoff,
1972 			&dso_id, event->mmap2.prot,
1973 			event->mmap2.flags, bid,
1974 			event->mmap2.filename, thread);
1975 
1976 	if (map == NULL)
1977 		goto out_problem_map;
1978 
1979 	ret = thread__insert_map(thread, map);
1980 	if (ret)
1981 		goto out_problem_insert;
1982 
1983 	thread__put(thread);
1984 	map__put(map);
1985 	return 0;
1986 
1987 out_problem_insert:
1988 	map__put(map);
1989 out_problem_map:
1990 	thread__put(thread);
1991 out_problem:
1992 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1993 	return 0;
1994 }
1995 
1996 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1997 				struct perf_sample *sample)
1998 {
1999 	struct thread *thread;
2000 	struct map *map;
2001 	u32 prot = 0;
2002 	int ret = 0;
2003 
2004 	if (dump_trace)
2005 		perf_event__fprintf_mmap(event, stdout);
2006 
2007 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
2008 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
2009 		struct extra_kernel_map xm = {
2010 			.start = event->mmap.start,
2011 			.end   = event->mmap.start + event->mmap.len,
2012 			.pgoff = event->mmap.pgoff,
2013 		};
2014 
2015 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
2016 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
2017 		if (ret < 0)
2018 			goto out_problem;
2019 		return 0;
2020 	}
2021 
2022 	thread = machine__findnew_thread(machine, event->mmap.pid,
2023 					 event->mmap.tid);
2024 	if (thread == NULL)
2025 		goto out_problem;
2026 
2027 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2028 		prot = PROT_EXEC;
2029 
2030 	map = map__new(machine, event->mmap.start,
2031 			event->mmap.len, event->mmap.pgoff,
2032 			NULL, prot, 0, NULL, event->mmap.filename, thread);
2033 
2034 	if (map == NULL)
2035 		goto out_problem_map;
2036 
2037 	ret = thread__insert_map(thread, map);
2038 	if (ret)
2039 		goto out_problem_insert;
2040 
2041 	thread__put(thread);
2042 	map__put(map);
2043 	return 0;
2044 
2045 out_problem_insert:
2046 	map__put(map);
2047 out_problem_map:
2048 	thread__put(thread);
2049 out_problem:
2050 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2051 	return 0;
2052 }
2053 
2054 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
2055 				     struct thread *th, bool lock)
2056 {
2057 	struct threads *threads = machine__threads(machine, thread__tid(th));
2058 
2059 	if (!nd)
2060 		nd = thread_rb_node__find(th, &threads->entries.rb_root);
2061 
2062 	if (threads->last_match && RC_CHK_ACCESS(threads->last_match) == RC_CHK_ACCESS(th))
2063 		threads__set_last_match(threads, NULL);
2064 
2065 	if (lock)
2066 		down_write(&threads->lock);
2067 
2068 	BUG_ON(refcount_read(thread__refcnt(th)) == 0);
2069 
2070 	thread__put(nd->thread);
2071 	rb_erase_cached(&nd->rb_node, &threads->entries);
2072 	RB_CLEAR_NODE(&nd->rb_node);
2073 	--threads->nr;
2074 
2075 	free(nd);
2076 
2077 	if (lock)
2078 		up_write(&threads->lock);
2079 }
2080 
2081 void machine__remove_thread(struct machine *machine, struct thread *th)
2082 {
2083 	return __machine__remove_thread(machine, NULL, th, true);
2084 }
2085 
2086 int machine__process_fork_event(struct machine *machine, union perf_event *event,
2087 				struct perf_sample *sample)
2088 {
2089 	struct thread *thread = machine__find_thread(machine,
2090 						     event->fork.pid,
2091 						     event->fork.tid);
2092 	struct thread *parent = machine__findnew_thread(machine,
2093 							event->fork.ppid,
2094 							event->fork.ptid);
2095 	bool do_maps_clone = true;
2096 	int err = 0;
2097 
2098 	if (dump_trace)
2099 		perf_event__fprintf_task(event, stdout);
2100 
2101 	/*
2102 	 * There may be an existing thread that is not actually the parent,
2103 	 * either because we are processing events out of order, or because the
2104 	 * (fork) event that would have removed the thread was lost. Assume the
2105 	 * latter case and continue on as best we can.
2106 	 */
2107 	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
2108 		dump_printf("removing erroneous parent thread %d/%d\n",
2109 			    thread__pid(parent), thread__tid(parent));
2110 		machine__remove_thread(machine, parent);
2111 		thread__put(parent);
2112 		parent = machine__findnew_thread(machine, event->fork.ppid,
2113 						 event->fork.ptid);
2114 	}
2115 
2116 	/* if a thread currently exists for the thread id remove it */
2117 	if (thread != NULL) {
2118 		machine__remove_thread(machine, thread);
2119 		thread__put(thread);
2120 	}
2121 
2122 	thread = machine__findnew_thread(machine, event->fork.pid,
2123 					 event->fork.tid);
2124 	/*
2125 	 * When synthesizing FORK events, we are trying to create thread
2126 	 * objects for the already running tasks on the machine.
2127 	 *
2128 	 * Normally, for a kernel FORK event, we want to clone the parent's
2129 	 * maps because that is what the kernel just did.
2130 	 *
2131 	 * But when synthesizing, this should not be done.  If we do, we end up
2132 	 * with overlapping maps as we process the synthesized MMAP2 events that
2133 	 * get delivered shortly thereafter.
2134 	 *
2135 	 * Use the FORK event misc flags in an internal way to signal this
2136 	 * situation, so we can elide the map clone when appropriate.
2137 	 */
2138 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2139 		do_maps_clone = false;
2140 
2141 	if (thread == NULL || parent == NULL ||
2142 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2143 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2144 		err = -1;
2145 	}
2146 	thread__put(thread);
2147 	thread__put(parent);
2148 
2149 	return err;
2150 }
2151 
2152 int machine__process_exit_event(struct machine *machine, union perf_event *event,
2153 				struct perf_sample *sample __maybe_unused)
2154 {
2155 	struct thread *thread = machine__find_thread(machine,
2156 						     event->fork.pid,
2157 						     event->fork.tid);
2158 
2159 	if (dump_trace)
2160 		perf_event__fprintf_task(event, stdout);
2161 
2162 	if (thread != NULL)
2163 		thread__put(thread);
2164 
2165 	return 0;
2166 }
2167 
2168 int machine__process_event(struct machine *machine, union perf_event *event,
2169 			   struct perf_sample *sample)
2170 {
2171 	int ret;
2172 
2173 	switch (event->header.type) {
2174 	case PERF_RECORD_COMM:
2175 		ret = machine__process_comm_event(machine, event, sample); break;
2176 	case PERF_RECORD_MMAP:
2177 		ret = machine__process_mmap_event(machine, event, sample); break;
2178 	case PERF_RECORD_NAMESPACES:
2179 		ret = machine__process_namespaces_event(machine, event, sample); break;
2180 	case PERF_RECORD_CGROUP:
2181 		ret = machine__process_cgroup_event(machine, event, sample); break;
2182 	case PERF_RECORD_MMAP2:
2183 		ret = machine__process_mmap2_event(machine, event, sample); break;
2184 	case PERF_RECORD_FORK:
2185 		ret = machine__process_fork_event(machine, event, sample); break;
2186 	case PERF_RECORD_EXIT:
2187 		ret = machine__process_exit_event(machine, event, sample); break;
2188 	case PERF_RECORD_LOST:
2189 		ret = machine__process_lost_event(machine, event, sample); break;
2190 	case PERF_RECORD_AUX:
2191 		ret = machine__process_aux_event(machine, event); break;
2192 	case PERF_RECORD_ITRACE_START:
2193 		ret = machine__process_itrace_start_event(machine, event); break;
2194 	case PERF_RECORD_LOST_SAMPLES:
2195 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2196 	case PERF_RECORD_SWITCH:
2197 	case PERF_RECORD_SWITCH_CPU_WIDE:
2198 		ret = machine__process_switch_event(machine, event); break;
2199 	case PERF_RECORD_KSYMBOL:
2200 		ret = machine__process_ksymbol(machine, event, sample); break;
2201 	case PERF_RECORD_BPF_EVENT:
2202 		ret = machine__process_bpf(machine, event, sample); break;
2203 	case PERF_RECORD_TEXT_POKE:
2204 		ret = machine__process_text_poke(machine, event, sample); break;
2205 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2206 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2207 	default:
2208 		ret = -1;
2209 		break;
2210 	}
2211 
2212 	return ret;
2213 }
2214 
2215 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2216 {
2217 	if (!regexec(regex, sym->name, 0, NULL, 0))
2218 		return true;
2219 	return false;
2220 }
2221 
2222 static void ip__resolve_ams(struct thread *thread,
2223 			    struct addr_map_symbol *ams,
2224 			    u64 ip)
2225 {
2226 	struct addr_location al;
2227 
2228 	addr_location__init(&al);
2229 	/*
2230 	 * We cannot use the header.misc hint to determine whether a
2231 	 * branch stack address is user, kernel, guest, hypervisor.
2232 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2233 	 * Thus, we have to try consecutively until we find a match
2234 	 * or else, the symbol is unknown
2235 	 */
2236 	thread__find_cpumode_addr_location(thread, ip, &al);
2237 
2238 	ams->addr = ip;
2239 	ams->al_addr = al.addr;
2240 	ams->al_level = al.level;
2241 	ams->ms.maps = maps__get(al.maps);
2242 	ams->ms.sym = al.sym;
2243 	ams->ms.map = map__get(al.map);
2244 	ams->phys_addr = 0;
2245 	ams->data_page_size = 0;
2246 	addr_location__exit(&al);
2247 }
2248 
2249 static void ip__resolve_data(struct thread *thread,
2250 			     u8 m, struct addr_map_symbol *ams,
2251 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2252 {
2253 	struct addr_location al;
2254 
2255 	addr_location__init(&al);
2256 
2257 	thread__find_symbol(thread, m, addr, &al);
2258 
2259 	ams->addr = addr;
2260 	ams->al_addr = al.addr;
2261 	ams->al_level = al.level;
2262 	ams->ms.maps = maps__get(al.maps);
2263 	ams->ms.sym = al.sym;
2264 	ams->ms.map = map__get(al.map);
2265 	ams->phys_addr = phys_addr;
2266 	ams->data_page_size = daddr_page_size;
2267 	addr_location__exit(&al);
2268 }
2269 
2270 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2271 				     struct addr_location *al)
2272 {
2273 	struct mem_info *mi = mem_info__new();
2274 
2275 	if (!mi)
2276 		return NULL;
2277 
2278 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2279 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2280 			 sample->addr, sample->phys_addr,
2281 			 sample->data_page_size);
2282 	mi->data_src.val = sample->data_src;
2283 
2284 	return mi;
2285 }
2286 
2287 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2288 {
2289 	struct map *map = ms->map;
2290 	char *srcline = NULL;
2291 	struct dso *dso;
2292 
2293 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2294 		return srcline;
2295 
2296 	dso = map__dso(map);
2297 	srcline = srcline__tree_find(&dso->srclines, ip);
2298 	if (!srcline) {
2299 		bool show_sym = false;
2300 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2301 
2302 		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2303 				      ms->sym, show_sym, show_addr, ip);
2304 		srcline__tree_insert(&dso->srclines, ip, srcline);
2305 	}
2306 
2307 	return srcline;
2308 }
2309 
2310 struct iterations {
2311 	int nr_loop_iter;
2312 	u64 cycles;
2313 };
2314 
2315 static int add_callchain_ip(struct thread *thread,
2316 			    struct callchain_cursor *cursor,
2317 			    struct symbol **parent,
2318 			    struct addr_location *root_al,
2319 			    u8 *cpumode,
2320 			    u64 ip,
2321 			    bool branch,
2322 			    struct branch_flags *flags,
2323 			    struct iterations *iter,
2324 			    u64 branch_from)
2325 {
2326 	struct map_symbol ms = {};
2327 	struct addr_location al;
2328 	int nr_loop_iter = 0, err = 0;
2329 	u64 iter_cycles = 0;
2330 	const char *srcline = NULL;
2331 
2332 	addr_location__init(&al);
2333 	al.filtered = 0;
2334 	al.sym = NULL;
2335 	al.srcline = NULL;
2336 	if (!cpumode) {
2337 		thread__find_cpumode_addr_location(thread, ip, &al);
2338 	} else {
2339 		if (ip >= PERF_CONTEXT_MAX) {
2340 			switch (ip) {
2341 			case PERF_CONTEXT_HV:
2342 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2343 				break;
2344 			case PERF_CONTEXT_KERNEL:
2345 				*cpumode = PERF_RECORD_MISC_KERNEL;
2346 				break;
2347 			case PERF_CONTEXT_USER:
2348 				*cpumode = PERF_RECORD_MISC_USER;
2349 				break;
2350 			default:
2351 				pr_debug("invalid callchain context: "
2352 					 "%"PRId64"\n", (s64) ip);
2353 				/*
2354 				 * It seems the callchain is corrupted.
2355 				 * Discard all.
2356 				 */
2357 				callchain_cursor_reset(cursor);
2358 				err = 1;
2359 				goto out;
2360 			}
2361 			goto out;
2362 		}
2363 		thread__find_symbol(thread, *cpumode, ip, &al);
2364 	}
2365 
2366 	if (al.sym != NULL) {
2367 		if (perf_hpp_list.parent && !*parent &&
2368 		    symbol__match_regex(al.sym, &parent_regex))
2369 			*parent = al.sym;
2370 		else if (have_ignore_callees && root_al &&
2371 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2372 			/* Treat this symbol as the root,
2373 			   forgetting its callees. */
2374 			addr_location__copy(root_al, &al);
2375 			callchain_cursor_reset(cursor);
2376 		}
2377 	}
2378 
2379 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2380 		goto out;
2381 
2382 	if (iter) {
2383 		nr_loop_iter = iter->nr_loop_iter;
2384 		iter_cycles = iter->cycles;
2385 	}
2386 
2387 	ms.maps = maps__get(al.maps);
2388 	ms.map = map__get(al.map);
2389 	ms.sym = al.sym;
2390 
2391 	if (!branch && append_inlines(cursor, &ms, ip) == 0)
2392 		goto out;
2393 
2394 	srcline = callchain_srcline(&ms, al.addr);
2395 	err = callchain_cursor_append(cursor, ip, &ms,
2396 				      branch, flags, nr_loop_iter,
2397 				      iter_cycles, branch_from, srcline);
2398 out:
2399 	addr_location__exit(&al);
2400 	maps__put(ms.maps);
2401 	map__put(ms.map);
2402 	return err;
2403 }
2404 
2405 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2406 					   struct addr_location *al)
2407 {
2408 	unsigned int i;
2409 	const struct branch_stack *bs = sample->branch_stack;
2410 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2411 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2412 
2413 	if (!bi)
2414 		return NULL;
2415 
2416 	for (i = 0; i < bs->nr; i++) {
2417 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2418 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2419 		bi[i].flags = entries[i].flags;
2420 	}
2421 	return bi;
2422 }
2423 
2424 static void save_iterations(struct iterations *iter,
2425 			    struct branch_entry *be, int nr)
2426 {
2427 	int i;
2428 
2429 	iter->nr_loop_iter++;
2430 	iter->cycles = 0;
2431 
2432 	for (i = 0; i < nr; i++)
2433 		iter->cycles += be[i].flags.cycles;
2434 }
2435 
2436 #define CHASHSZ 127
2437 #define CHASHBITS 7
2438 #define NO_ENTRY 0xff
2439 
2440 #define PERF_MAX_BRANCH_DEPTH 127
2441 
2442 /* Remove loops. */
2443 static int remove_loops(struct branch_entry *l, int nr,
2444 			struct iterations *iter)
2445 {
2446 	int i, j, off;
2447 	unsigned char chash[CHASHSZ];
2448 
2449 	memset(chash, NO_ENTRY, sizeof(chash));
2450 
2451 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2452 
2453 	for (i = 0; i < nr; i++) {
2454 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2455 
2456 		/* no collision handling for now */
2457 		if (chash[h] == NO_ENTRY) {
2458 			chash[h] = i;
2459 		} else if (l[chash[h]].from == l[i].from) {
2460 			bool is_loop = true;
2461 			/* check if it is a real loop */
2462 			off = 0;
2463 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2464 				if (l[j].from != l[i + off].from) {
2465 					is_loop = false;
2466 					break;
2467 				}
2468 			if (is_loop) {
2469 				j = nr - (i + off);
2470 				if (j > 0) {
2471 					save_iterations(iter + i + off,
2472 						l + i, off);
2473 
2474 					memmove(iter + i, iter + i + off,
2475 						j * sizeof(*iter));
2476 
2477 					memmove(l + i, l + i + off,
2478 						j * sizeof(*l));
2479 				}
2480 
2481 				nr -= off;
2482 			}
2483 		}
2484 	}
2485 	return nr;
2486 }
2487 
2488 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2489 				       struct callchain_cursor *cursor,
2490 				       struct perf_sample *sample,
2491 				       struct symbol **parent,
2492 				       struct addr_location *root_al,
2493 				       u64 branch_from,
2494 				       bool callee, int end)
2495 {
2496 	struct ip_callchain *chain = sample->callchain;
2497 	u8 cpumode = PERF_RECORD_MISC_USER;
2498 	int err, i;
2499 
2500 	if (callee) {
2501 		for (i = 0; i < end + 1; i++) {
2502 			err = add_callchain_ip(thread, cursor, parent,
2503 					       root_al, &cpumode, chain->ips[i],
2504 					       false, NULL, NULL, branch_from);
2505 			if (err)
2506 				return err;
2507 		}
2508 		return 0;
2509 	}
2510 
2511 	for (i = end; i >= 0; i--) {
2512 		err = add_callchain_ip(thread, cursor, parent,
2513 				       root_al, &cpumode, chain->ips[i],
2514 				       false, NULL, NULL, branch_from);
2515 		if (err)
2516 			return err;
2517 	}
2518 
2519 	return 0;
2520 }
2521 
2522 static void save_lbr_cursor_node(struct thread *thread,
2523 				 struct callchain_cursor *cursor,
2524 				 int idx)
2525 {
2526 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2527 
2528 	if (!lbr_stitch)
2529 		return;
2530 
2531 	if (cursor->pos == cursor->nr) {
2532 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2533 		return;
2534 	}
2535 
2536 	if (!cursor->curr)
2537 		cursor->curr = cursor->first;
2538 	else
2539 		cursor->curr = cursor->curr->next;
2540 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2541 	       sizeof(struct callchain_cursor_node));
2542 
2543 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2544 	cursor->pos++;
2545 }
2546 
2547 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2548 				    struct callchain_cursor *cursor,
2549 				    struct perf_sample *sample,
2550 				    struct symbol **parent,
2551 				    struct addr_location *root_al,
2552 				    u64 *branch_from,
2553 				    bool callee)
2554 {
2555 	struct branch_stack *lbr_stack = sample->branch_stack;
2556 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2557 	u8 cpumode = PERF_RECORD_MISC_USER;
2558 	int lbr_nr = lbr_stack->nr;
2559 	struct branch_flags *flags;
2560 	int err, i;
2561 	u64 ip;
2562 
2563 	/*
2564 	 * The curr and pos are not used in writing session. They are cleared
2565 	 * in callchain_cursor_commit() when the writing session is closed.
2566 	 * Using curr and pos to track the current cursor node.
2567 	 */
2568 	if (thread__lbr_stitch(thread)) {
2569 		cursor->curr = NULL;
2570 		cursor->pos = cursor->nr;
2571 		if (cursor->nr) {
2572 			cursor->curr = cursor->first;
2573 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2574 				cursor->curr = cursor->curr->next;
2575 		}
2576 	}
2577 
2578 	if (callee) {
2579 		/* Add LBR ip from first entries.to */
2580 		ip = entries[0].to;
2581 		flags = &entries[0].flags;
2582 		*branch_from = entries[0].from;
2583 		err = add_callchain_ip(thread, cursor, parent,
2584 				       root_al, &cpumode, ip,
2585 				       true, flags, NULL,
2586 				       *branch_from);
2587 		if (err)
2588 			return err;
2589 
2590 		/*
2591 		 * The number of cursor node increases.
2592 		 * Move the current cursor node.
2593 		 * But does not need to save current cursor node for entry 0.
2594 		 * It's impossible to stitch the whole LBRs of previous sample.
2595 		 */
2596 		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2597 			if (!cursor->curr)
2598 				cursor->curr = cursor->first;
2599 			else
2600 				cursor->curr = cursor->curr->next;
2601 			cursor->pos++;
2602 		}
2603 
2604 		/* Add LBR ip from entries.from one by one. */
2605 		for (i = 0; i < lbr_nr; i++) {
2606 			ip = entries[i].from;
2607 			flags = &entries[i].flags;
2608 			err = add_callchain_ip(thread, cursor, parent,
2609 					       root_al, &cpumode, ip,
2610 					       true, flags, NULL,
2611 					       *branch_from);
2612 			if (err)
2613 				return err;
2614 			save_lbr_cursor_node(thread, cursor, i);
2615 		}
2616 		return 0;
2617 	}
2618 
2619 	/* Add LBR ip from entries.from one by one. */
2620 	for (i = lbr_nr - 1; i >= 0; i--) {
2621 		ip = entries[i].from;
2622 		flags = &entries[i].flags;
2623 		err = add_callchain_ip(thread, cursor, parent,
2624 				       root_al, &cpumode, ip,
2625 				       true, flags, NULL,
2626 				       *branch_from);
2627 		if (err)
2628 			return err;
2629 		save_lbr_cursor_node(thread, cursor, i);
2630 	}
2631 
2632 	/* Add LBR ip from first entries.to */
2633 	ip = entries[0].to;
2634 	flags = &entries[0].flags;
2635 	*branch_from = entries[0].from;
2636 	err = add_callchain_ip(thread, cursor, parent,
2637 			       root_al, &cpumode, ip,
2638 			       true, flags, NULL,
2639 			       *branch_from);
2640 	if (err)
2641 		return err;
2642 
2643 	return 0;
2644 }
2645 
2646 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2647 					     struct callchain_cursor *cursor)
2648 {
2649 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2650 	struct callchain_cursor_node *cnode;
2651 	struct stitch_list *stitch_node;
2652 	int err;
2653 
2654 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2655 		cnode = &stitch_node->cursor;
2656 
2657 		err = callchain_cursor_append(cursor, cnode->ip,
2658 					      &cnode->ms,
2659 					      cnode->branch,
2660 					      &cnode->branch_flags,
2661 					      cnode->nr_loop_iter,
2662 					      cnode->iter_cycles,
2663 					      cnode->branch_from,
2664 					      cnode->srcline);
2665 		if (err)
2666 			return err;
2667 	}
2668 	return 0;
2669 }
2670 
2671 static struct stitch_list *get_stitch_node(struct thread *thread)
2672 {
2673 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2674 	struct stitch_list *stitch_node;
2675 
2676 	if (!list_empty(&lbr_stitch->free_lists)) {
2677 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2678 					       struct stitch_list, node);
2679 		list_del(&stitch_node->node);
2680 
2681 		return stitch_node;
2682 	}
2683 
2684 	return malloc(sizeof(struct stitch_list));
2685 }
2686 
2687 static bool has_stitched_lbr(struct thread *thread,
2688 			     struct perf_sample *cur,
2689 			     struct perf_sample *prev,
2690 			     unsigned int max_lbr,
2691 			     bool callee)
2692 {
2693 	struct branch_stack *cur_stack = cur->branch_stack;
2694 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2695 	struct branch_stack *prev_stack = prev->branch_stack;
2696 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2697 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2698 	int i, j, nr_identical_branches = 0;
2699 	struct stitch_list *stitch_node;
2700 	u64 cur_base, distance;
2701 
2702 	if (!cur_stack || !prev_stack)
2703 		return false;
2704 
2705 	/* Find the physical index of the base-of-stack for current sample. */
2706 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2707 
2708 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2709 						     (max_lbr + prev_stack->hw_idx - cur_base);
2710 	/* Previous sample has shorter stack. Nothing can be stitched. */
2711 	if (distance + 1 > prev_stack->nr)
2712 		return false;
2713 
2714 	/*
2715 	 * Check if there are identical LBRs between two samples.
2716 	 * Identical LBRs must have same from, to and flags values. Also,
2717 	 * they have to be saved in the same LBR registers (same physical
2718 	 * index).
2719 	 *
2720 	 * Starts from the base-of-stack of current sample.
2721 	 */
2722 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2723 		if ((prev_entries[i].from != cur_entries[j].from) ||
2724 		    (prev_entries[i].to != cur_entries[j].to) ||
2725 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2726 			break;
2727 		nr_identical_branches++;
2728 	}
2729 
2730 	if (!nr_identical_branches)
2731 		return false;
2732 
2733 	/*
2734 	 * Save the LBRs between the base-of-stack of previous sample
2735 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2736 	 * These LBRs will be stitched later.
2737 	 */
2738 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2739 
2740 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2741 			continue;
2742 
2743 		stitch_node = get_stitch_node(thread);
2744 		if (!stitch_node)
2745 			return false;
2746 
2747 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2748 		       sizeof(struct callchain_cursor_node));
2749 
2750 		if (callee)
2751 			list_add(&stitch_node->node, &lbr_stitch->lists);
2752 		else
2753 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2754 	}
2755 
2756 	return true;
2757 }
2758 
2759 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2760 {
2761 	if (thread__lbr_stitch(thread))
2762 		return true;
2763 
2764 	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2765 	if (!thread__lbr_stitch(thread))
2766 		goto err;
2767 
2768 	thread__lbr_stitch(thread)->prev_lbr_cursor =
2769 		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2770 	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2771 		goto free_lbr_stitch;
2772 
2773 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2774 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2775 
2776 	return true;
2777 
2778 free_lbr_stitch:
2779 	free(thread__lbr_stitch(thread));
2780 	thread__set_lbr_stitch(thread, NULL);
2781 err:
2782 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2783 	thread__set_lbr_stitch_enable(thread, false);
2784 	return false;
2785 }
2786 
2787 /*
2788  * Resolve LBR callstack chain sample
2789  * Return:
2790  * 1 on success get LBR callchain information
2791  * 0 no available LBR callchain information, should try fp
2792  * negative error code on other errors.
2793  */
2794 static int resolve_lbr_callchain_sample(struct thread *thread,
2795 					struct callchain_cursor *cursor,
2796 					struct perf_sample *sample,
2797 					struct symbol **parent,
2798 					struct addr_location *root_al,
2799 					int max_stack,
2800 					unsigned int max_lbr)
2801 {
2802 	bool callee = (callchain_param.order == ORDER_CALLEE);
2803 	struct ip_callchain *chain = sample->callchain;
2804 	int chain_nr = min(max_stack, (int)chain->nr), i;
2805 	struct lbr_stitch *lbr_stitch;
2806 	bool stitched_lbr = false;
2807 	u64 branch_from = 0;
2808 	int err;
2809 
2810 	for (i = 0; i < chain_nr; i++) {
2811 		if (chain->ips[i] == PERF_CONTEXT_USER)
2812 			break;
2813 	}
2814 
2815 	/* LBR only affects the user callchain */
2816 	if (i == chain_nr)
2817 		return 0;
2818 
2819 	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2820 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2821 		lbr_stitch = thread__lbr_stitch(thread);
2822 
2823 		stitched_lbr = has_stitched_lbr(thread, sample,
2824 						&lbr_stitch->prev_sample,
2825 						max_lbr, callee);
2826 
2827 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2828 			list_replace_init(&lbr_stitch->lists,
2829 					  &lbr_stitch->free_lists);
2830 		}
2831 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2832 	}
2833 
2834 	if (callee) {
2835 		/* Add kernel ip */
2836 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2837 						  parent, root_al, branch_from,
2838 						  true, i);
2839 		if (err)
2840 			goto error;
2841 
2842 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2843 					       root_al, &branch_from, true);
2844 		if (err)
2845 			goto error;
2846 
2847 		if (stitched_lbr) {
2848 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2849 			if (err)
2850 				goto error;
2851 		}
2852 
2853 	} else {
2854 		if (stitched_lbr) {
2855 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2856 			if (err)
2857 				goto error;
2858 		}
2859 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2860 					       root_al, &branch_from, false);
2861 		if (err)
2862 			goto error;
2863 
2864 		/* Add kernel ip */
2865 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2866 						  parent, root_al, branch_from,
2867 						  false, i);
2868 		if (err)
2869 			goto error;
2870 	}
2871 	return 1;
2872 
2873 error:
2874 	return (err < 0) ? err : 0;
2875 }
2876 
2877 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2878 			     struct callchain_cursor *cursor,
2879 			     struct symbol **parent,
2880 			     struct addr_location *root_al,
2881 			     u8 *cpumode, int ent)
2882 {
2883 	int err = 0;
2884 
2885 	while (--ent >= 0) {
2886 		u64 ip = chain->ips[ent];
2887 
2888 		if (ip >= PERF_CONTEXT_MAX) {
2889 			err = add_callchain_ip(thread, cursor, parent,
2890 					       root_al, cpumode, ip,
2891 					       false, NULL, NULL, 0);
2892 			break;
2893 		}
2894 	}
2895 	return err;
2896 }
2897 
2898 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2899 		struct thread *thread, int usr_idx)
2900 {
2901 	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2902 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2903 	else
2904 		return 0;
2905 }
2906 
2907 static int thread__resolve_callchain_sample(struct thread *thread,
2908 					    struct callchain_cursor *cursor,
2909 					    struct evsel *evsel,
2910 					    struct perf_sample *sample,
2911 					    struct symbol **parent,
2912 					    struct addr_location *root_al,
2913 					    int max_stack)
2914 {
2915 	struct branch_stack *branch = sample->branch_stack;
2916 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2917 	struct ip_callchain *chain = sample->callchain;
2918 	int chain_nr = 0;
2919 	u8 cpumode = PERF_RECORD_MISC_USER;
2920 	int i, j, err, nr_entries, usr_idx;
2921 	int skip_idx = -1;
2922 	int first_call = 0;
2923 	u64 leaf_frame_caller;
2924 
2925 	if (chain)
2926 		chain_nr = chain->nr;
2927 
2928 	if (evsel__has_branch_callstack(evsel)) {
2929 		struct perf_env *env = evsel__env(evsel);
2930 
2931 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2932 						   root_al, max_stack,
2933 						   !env ? 0 : env->max_branches);
2934 		if (err)
2935 			return (err < 0) ? err : 0;
2936 	}
2937 
2938 	/*
2939 	 * Based on DWARF debug information, some architectures skip
2940 	 * a callchain entry saved by the kernel.
2941 	 */
2942 	skip_idx = arch_skip_callchain_idx(thread, chain);
2943 
2944 	/*
2945 	 * Add branches to call stack for easier browsing. This gives
2946 	 * more context for a sample than just the callers.
2947 	 *
2948 	 * This uses individual histograms of paths compared to the
2949 	 * aggregated histograms the normal LBR mode uses.
2950 	 *
2951 	 * Limitations for now:
2952 	 * - No extra filters
2953 	 * - No annotations (should annotate somehow)
2954 	 */
2955 
2956 	if (branch && callchain_param.branch_callstack) {
2957 		int nr = min(max_stack, (int)branch->nr);
2958 		struct branch_entry be[nr];
2959 		struct iterations iter[nr];
2960 
2961 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2962 			pr_warning("corrupted branch chain. skipping...\n");
2963 			goto check_calls;
2964 		}
2965 
2966 		for (i = 0; i < nr; i++) {
2967 			if (callchain_param.order == ORDER_CALLEE) {
2968 				be[i] = entries[i];
2969 
2970 				if (chain == NULL)
2971 					continue;
2972 
2973 				/*
2974 				 * Check for overlap into the callchain.
2975 				 * The return address is one off compared to
2976 				 * the branch entry. To adjust for this
2977 				 * assume the calling instruction is not longer
2978 				 * than 8 bytes.
2979 				 */
2980 				if (i == skip_idx ||
2981 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2982 					first_call++;
2983 				else if (be[i].from < chain->ips[first_call] &&
2984 				    be[i].from >= chain->ips[first_call] - 8)
2985 					first_call++;
2986 			} else
2987 				be[i] = entries[branch->nr - i - 1];
2988 		}
2989 
2990 		memset(iter, 0, sizeof(struct iterations) * nr);
2991 		nr = remove_loops(be, nr, iter);
2992 
2993 		for (i = 0; i < nr; i++) {
2994 			err = add_callchain_ip(thread, cursor, parent,
2995 					       root_al,
2996 					       NULL, be[i].to,
2997 					       true, &be[i].flags,
2998 					       NULL, be[i].from);
2999 
3000 			if (!err)
3001 				err = add_callchain_ip(thread, cursor, parent, root_al,
3002 						       NULL, be[i].from,
3003 						       true, &be[i].flags,
3004 						       &iter[i], 0);
3005 			if (err == -EINVAL)
3006 				break;
3007 			if (err)
3008 				return err;
3009 		}
3010 
3011 		if (chain_nr == 0)
3012 			return 0;
3013 
3014 		chain_nr -= nr;
3015 	}
3016 
3017 check_calls:
3018 	if (chain && callchain_param.order != ORDER_CALLEE) {
3019 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
3020 					&cpumode, chain->nr - first_call);
3021 		if (err)
3022 			return (err < 0) ? err : 0;
3023 	}
3024 	for (i = first_call, nr_entries = 0;
3025 	     i < chain_nr && nr_entries < max_stack; i++) {
3026 		u64 ip;
3027 
3028 		if (callchain_param.order == ORDER_CALLEE)
3029 			j = i;
3030 		else
3031 			j = chain->nr - i - 1;
3032 
3033 #ifdef HAVE_SKIP_CALLCHAIN_IDX
3034 		if (j == skip_idx)
3035 			continue;
3036 #endif
3037 		ip = chain->ips[j];
3038 		if (ip < PERF_CONTEXT_MAX)
3039                        ++nr_entries;
3040 		else if (callchain_param.order != ORDER_CALLEE) {
3041 			err = find_prev_cpumode(chain, thread, cursor, parent,
3042 						root_al, &cpumode, j);
3043 			if (err)
3044 				return (err < 0) ? err : 0;
3045 			continue;
3046 		}
3047 
3048 		/*
3049 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3050 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3051 		 * the index will be different in order to add the missing frame
3052 		 * at the right place.
3053 		 */
3054 
3055 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3056 
3057 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3058 
3059 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3060 
3061 			/*
3062 			 * check if leaf_frame_Caller != ip to not add the same
3063 			 * value twice.
3064 			 */
3065 
3066 			if (leaf_frame_caller && leaf_frame_caller != ip) {
3067 
3068 				err = add_callchain_ip(thread, cursor, parent,
3069 					       root_al, &cpumode, leaf_frame_caller,
3070 					       false, NULL, NULL, 0);
3071 				if (err)
3072 					return (err < 0) ? err : 0;
3073 			}
3074 		}
3075 
3076 		err = add_callchain_ip(thread, cursor, parent,
3077 				       root_al, &cpumode, ip,
3078 				       false, NULL, NULL, 0);
3079 
3080 		if (err)
3081 			return (err < 0) ? err : 0;
3082 	}
3083 
3084 	return 0;
3085 }
3086 
3087 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3088 {
3089 	struct symbol *sym = ms->sym;
3090 	struct map *map = ms->map;
3091 	struct inline_node *inline_node;
3092 	struct inline_list *ilist;
3093 	struct dso *dso;
3094 	u64 addr;
3095 	int ret = 1;
3096 	struct map_symbol ilist_ms;
3097 
3098 	if (!symbol_conf.inline_name || !map || !sym)
3099 		return ret;
3100 
3101 	addr = map__dso_map_ip(map, ip);
3102 	addr = map__rip_2objdump(map, addr);
3103 	dso = map__dso(map);
3104 
3105 	inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3106 	if (!inline_node) {
3107 		inline_node = dso__parse_addr_inlines(dso, addr, sym);
3108 		if (!inline_node)
3109 			return ret;
3110 		inlines__tree_insert(&dso->inlined_nodes, inline_node);
3111 	}
3112 
3113 	ilist_ms = (struct map_symbol) {
3114 		.maps = maps__get(ms->maps),
3115 		.map = map__get(map),
3116 	};
3117 	list_for_each_entry(ilist, &inline_node->val, list) {
3118 		ilist_ms.sym = ilist->symbol;
3119 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3120 					      NULL, 0, 0, 0, ilist->srcline);
3121 
3122 		if (ret != 0)
3123 			return ret;
3124 	}
3125 	map__put(ilist_ms.map);
3126 	maps__put(ilist_ms.maps);
3127 
3128 	return ret;
3129 }
3130 
3131 static int unwind_entry(struct unwind_entry *entry, void *arg)
3132 {
3133 	struct callchain_cursor *cursor = arg;
3134 	const char *srcline = NULL;
3135 	u64 addr = entry->ip;
3136 
3137 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3138 		return 0;
3139 
3140 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3141 		return 0;
3142 
3143 	/*
3144 	 * Convert entry->ip from a virtual address to an offset in
3145 	 * its corresponding binary.
3146 	 */
3147 	if (entry->ms.map)
3148 		addr = map__dso_map_ip(entry->ms.map, entry->ip);
3149 
3150 	srcline = callchain_srcline(&entry->ms, addr);
3151 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3152 				       false, NULL, 0, 0, 0, srcline);
3153 }
3154 
3155 static int thread__resolve_callchain_unwind(struct thread *thread,
3156 					    struct callchain_cursor *cursor,
3157 					    struct evsel *evsel,
3158 					    struct perf_sample *sample,
3159 					    int max_stack)
3160 {
3161 	/* Can we do dwarf post unwind? */
3162 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3163 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3164 		return 0;
3165 
3166 	/* Bail out if nothing was captured. */
3167 	if ((!sample->user_regs.regs) ||
3168 	    (!sample->user_stack.size))
3169 		return 0;
3170 
3171 	return unwind__get_entries(unwind_entry, cursor,
3172 				   thread, sample, max_stack, false);
3173 }
3174 
3175 int thread__resolve_callchain(struct thread *thread,
3176 			      struct callchain_cursor *cursor,
3177 			      struct evsel *evsel,
3178 			      struct perf_sample *sample,
3179 			      struct symbol **parent,
3180 			      struct addr_location *root_al,
3181 			      int max_stack)
3182 {
3183 	int ret = 0;
3184 
3185 	if (cursor == NULL)
3186 		return -ENOMEM;
3187 
3188 	callchain_cursor_reset(cursor);
3189 
3190 	if (callchain_param.order == ORDER_CALLEE) {
3191 		ret = thread__resolve_callchain_sample(thread, cursor,
3192 						       evsel, sample,
3193 						       parent, root_al,
3194 						       max_stack);
3195 		if (ret)
3196 			return ret;
3197 		ret = thread__resolve_callchain_unwind(thread, cursor,
3198 						       evsel, sample,
3199 						       max_stack);
3200 	} else {
3201 		ret = thread__resolve_callchain_unwind(thread, cursor,
3202 						       evsel, sample,
3203 						       max_stack);
3204 		if (ret)
3205 			return ret;
3206 		ret = thread__resolve_callchain_sample(thread, cursor,
3207 						       evsel, sample,
3208 						       parent, root_al,
3209 						       max_stack);
3210 	}
3211 
3212 	return ret;
3213 }
3214 
3215 int machine__for_each_thread(struct machine *machine,
3216 			     int (*fn)(struct thread *thread, void *p),
3217 			     void *priv)
3218 {
3219 	struct threads *threads;
3220 	struct rb_node *nd;
3221 	int rc = 0;
3222 	int i;
3223 
3224 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3225 		threads = &machine->threads[i];
3226 		for (nd = rb_first_cached(&threads->entries); nd;
3227 		     nd = rb_next(nd)) {
3228 			struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
3229 
3230 			rc = fn(trb->thread, priv);
3231 			if (rc != 0)
3232 				return rc;
3233 		}
3234 	}
3235 	return rc;
3236 }
3237 
3238 int machines__for_each_thread(struct machines *machines,
3239 			      int (*fn)(struct thread *thread, void *p),
3240 			      void *priv)
3241 {
3242 	struct rb_node *nd;
3243 	int rc = 0;
3244 
3245 	rc = machine__for_each_thread(&machines->host, fn, priv);
3246 	if (rc != 0)
3247 		return rc;
3248 
3249 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3250 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3251 
3252 		rc = machine__for_each_thread(machine, fn, priv);
3253 		if (rc != 0)
3254 			return rc;
3255 	}
3256 	return rc;
3257 }
3258 
3259 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3260 {
3261 	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3262 		return -1;
3263 
3264 	return machine->current_tid[cpu];
3265 }
3266 
3267 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3268 			     pid_t tid)
3269 {
3270 	struct thread *thread;
3271 	const pid_t init_val = -1;
3272 
3273 	if (cpu < 0)
3274 		return -EINVAL;
3275 
3276 	if (realloc_array_as_needed(machine->current_tid,
3277 				    machine->current_tid_sz,
3278 				    (unsigned int)cpu,
3279 				    &init_val))
3280 		return -ENOMEM;
3281 
3282 	machine->current_tid[cpu] = tid;
3283 
3284 	thread = machine__findnew_thread(machine, pid, tid);
3285 	if (!thread)
3286 		return -ENOMEM;
3287 
3288 	thread__set_cpu(thread, cpu);
3289 	thread__put(thread);
3290 
3291 	return 0;
3292 }
3293 
3294 /*
3295  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3296  * machine__normalized_is() if a normalized arch is needed.
3297  */
3298 bool machine__is(struct machine *machine, const char *arch)
3299 {
3300 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3301 }
3302 
3303 bool machine__normalized_is(struct machine *machine, const char *arch)
3304 {
3305 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3306 }
3307 
3308 int machine__nr_cpus_avail(struct machine *machine)
3309 {
3310 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3311 }
3312 
3313 int machine__get_kernel_start(struct machine *machine)
3314 {
3315 	struct map *map = machine__kernel_map(machine);
3316 	int err = 0;
3317 
3318 	/*
3319 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3320 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3321 	 * all addresses including kernel addresses are less than 2^32.  In
3322 	 * that case (32-bit system), if the kernel mapping is unknown, all
3323 	 * addresses will be assumed to be in user space - see
3324 	 * machine__kernel_ip().
3325 	 */
3326 	machine->kernel_start = 1ULL << 63;
3327 	if (map) {
3328 		err = map__load(map);
3329 		/*
3330 		 * On x86_64, PTI entry trampolines are less than the
3331 		 * start of kernel text, but still above 2^63. So leave
3332 		 * kernel_start = 1ULL << 63 for x86_64.
3333 		 */
3334 		if (!err && !machine__is(machine, "x86_64"))
3335 			machine->kernel_start = map__start(map);
3336 	}
3337 	return err;
3338 }
3339 
3340 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3341 {
3342 	u8 addr_cpumode = cpumode;
3343 	bool kernel_ip;
3344 
3345 	if (!machine->single_address_space)
3346 		goto out;
3347 
3348 	kernel_ip = machine__kernel_ip(machine, addr);
3349 	switch (cpumode) {
3350 	case PERF_RECORD_MISC_KERNEL:
3351 	case PERF_RECORD_MISC_USER:
3352 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3353 					   PERF_RECORD_MISC_USER;
3354 		break;
3355 	case PERF_RECORD_MISC_GUEST_KERNEL:
3356 	case PERF_RECORD_MISC_GUEST_USER:
3357 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3358 					   PERF_RECORD_MISC_GUEST_USER;
3359 		break;
3360 	default:
3361 		break;
3362 	}
3363 out:
3364 	return addr_cpumode;
3365 }
3366 
3367 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3368 {
3369 	return dsos__findnew_id(&machine->dsos, filename, id);
3370 }
3371 
3372 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3373 {
3374 	return machine__findnew_dso_id(machine, filename, NULL);
3375 }
3376 
3377 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3378 {
3379 	struct machine *machine = vmachine;
3380 	struct map *map;
3381 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3382 
3383 	if (sym == NULL)
3384 		return NULL;
3385 
3386 	*modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3387 	*addrp = map__unmap_ip(map, sym->start);
3388 	return sym->name;
3389 }
3390 
3391 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3392 {
3393 	struct dso *pos;
3394 	int err = 0;
3395 
3396 	list_for_each_entry(pos, &machine->dsos.head, node) {
3397 		if (fn(pos, machine, priv))
3398 			err = -1;
3399 	}
3400 	return err;
3401 }
3402 
3403 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3404 {
3405 	struct maps *maps = machine__kernel_maps(machine);
3406 	struct map_rb_node *pos;
3407 	int err = 0;
3408 
3409 	maps__for_each_entry(maps, pos) {
3410 		err = fn(pos->map, priv);
3411 		if (err != 0) {
3412 			break;
3413 		}
3414 	}
3415 	return err;
3416 }
3417 
3418 bool machine__is_lock_function(struct machine *machine, u64 addr)
3419 {
3420 	if (!machine->sched.text_start) {
3421 		struct map *kmap;
3422 		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3423 
3424 		if (!sym) {
3425 			/* to avoid retry */
3426 			machine->sched.text_start = 1;
3427 			return false;
3428 		}
3429 
3430 		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3431 
3432 		/* should not fail from here */
3433 		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3434 		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3435 
3436 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3437 		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3438 
3439 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3440 		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3441 	}
3442 
3443 	/* failed to get kernel symbols */
3444 	if (machine->sched.text_start == 1)
3445 		return false;
3446 
3447 	/* mutex and rwsem functions are in sched text section */
3448 	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3449 		return true;
3450 
3451 	/* spinlock functions are in lock text section */
3452 	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3453 		return true;
3454 
3455 	return false;
3456 }
3457