1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 4 * 5 * Parts came from builtin-{top,stat,record}.c, see those files for further 6 * copyright notes. 7 */ 8 9 #include <byteswap.h> 10 #include <errno.h> 11 #include <inttypes.h> 12 #include <linux/bitops.h> 13 #include <api/fs/fs.h> 14 #include <api/fs/tracing_path.h> 15 #include <traceevent/event-parse.h> 16 #include <linux/hw_breakpoint.h> 17 #include <linux/perf_event.h> 18 #include <linux/compiler.h> 19 #include <linux/err.h> 20 #include <linux/zalloc.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include <perf/evsel.h> 26 #include "asm/bug.h" 27 #include "callchain.h" 28 #include "cgroup.h" 29 #include "event.h" 30 #include "evsel.h" 31 #include "evlist.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "string2.h" 40 #include "memswap.h" 41 #include "util/parse-branch-options.h" 42 43 #include <linux/ctype.h> 44 45 struct perf_missing_features perf_missing_features; 46 47 static clockid_t clockid; 48 49 static int perf_evsel__no_extra_init(struct evsel *evsel __maybe_unused) 50 { 51 return 0; 52 } 53 54 void __weak test_attr__ready(void) { } 55 56 static void perf_evsel__no_extra_fini(struct evsel *evsel __maybe_unused) 57 { 58 } 59 60 static struct { 61 size_t size; 62 int (*init)(struct evsel *evsel); 63 void (*fini)(struct evsel *evsel); 64 } perf_evsel__object = { 65 .size = sizeof(struct evsel), 66 .init = perf_evsel__no_extra_init, 67 .fini = perf_evsel__no_extra_fini, 68 }; 69 70 int perf_evsel__object_config(size_t object_size, 71 int (*init)(struct evsel *evsel), 72 void (*fini)(struct evsel *evsel)) 73 { 74 75 if (object_size == 0) 76 goto set_methods; 77 78 if (perf_evsel__object.size > object_size) 79 return -EINVAL; 80 81 perf_evsel__object.size = object_size; 82 83 set_methods: 84 if (init != NULL) 85 perf_evsel__object.init = init; 86 87 if (fini != NULL) 88 perf_evsel__object.fini = fini; 89 90 return 0; 91 } 92 93 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 94 95 int __perf_evsel__sample_size(u64 sample_type) 96 { 97 u64 mask = sample_type & PERF_SAMPLE_MASK; 98 int size = 0; 99 int i; 100 101 for (i = 0; i < 64; i++) { 102 if (mask & (1ULL << i)) 103 size++; 104 } 105 106 size *= sizeof(u64); 107 108 return size; 109 } 110 111 /** 112 * __perf_evsel__calc_id_pos - calculate id_pos. 113 * @sample_type: sample type 114 * 115 * This function returns the position of the event id (PERF_SAMPLE_ID or 116 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 117 * sample_event. 118 */ 119 static int __perf_evsel__calc_id_pos(u64 sample_type) 120 { 121 int idx = 0; 122 123 if (sample_type & PERF_SAMPLE_IDENTIFIER) 124 return 0; 125 126 if (!(sample_type & PERF_SAMPLE_ID)) 127 return -1; 128 129 if (sample_type & PERF_SAMPLE_IP) 130 idx += 1; 131 132 if (sample_type & PERF_SAMPLE_TID) 133 idx += 1; 134 135 if (sample_type & PERF_SAMPLE_TIME) 136 idx += 1; 137 138 if (sample_type & PERF_SAMPLE_ADDR) 139 idx += 1; 140 141 return idx; 142 } 143 144 /** 145 * __perf_evsel__calc_is_pos - calculate is_pos. 146 * @sample_type: sample type 147 * 148 * This function returns the position (counting backwards) of the event id 149 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 150 * sample_id_all is used there is an id sample appended to non-sample events. 151 */ 152 static int __perf_evsel__calc_is_pos(u64 sample_type) 153 { 154 int idx = 1; 155 156 if (sample_type & PERF_SAMPLE_IDENTIFIER) 157 return 1; 158 159 if (!(sample_type & PERF_SAMPLE_ID)) 160 return -1; 161 162 if (sample_type & PERF_SAMPLE_CPU) 163 idx += 1; 164 165 if (sample_type & PERF_SAMPLE_STREAM_ID) 166 idx += 1; 167 168 return idx; 169 } 170 171 void perf_evsel__calc_id_pos(struct evsel *evsel) 172 { 173 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type); 174 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type); 175 } 176 177 void __perf_evsel__set_sample_bit(struct evsel *evsel, 178 enum perf_event_sample_format bit) 179 { 180 if (!(evsel->core.attr.sample_type & bit)) { 181 evsel->core.attr.sample_type |= bit; 182 evsel->sample_size += sizeof(u64); 183 perf_evsel__calc_id_pos(evsel); 184 } 185 } 186 187 void __perf_evsel__reset_sample_bit(struct evsel *evsel, 188 enum perf_event_sample_format bit) 189 { 190 if (evsel->core.attr.sample_type & bit) { 191 evsel->core.attr.sample_type &= ~bit; 192 evsel->sample_size -= sizeof(u64); 193 perf_evsel__calc_id_pos(evsel); 194 } 195 } 196 197 void perf_evsel__set_sample_id(struct evsel *evsel, 198 bool can_sample_identifier) 199 { 200 if (can_sample_identifier) { 201 perf_evsel__reset_sample_bit(evsel, ID); 202 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 203 } else { 204 perf_evsel__set_sample_bit(evsel, ID); 205 } 206 evsel->core.attr.read_format |= PERF_FORMAT_ID; 207 } 208 209 /** 210 * perf_evsel__is_function_event - Return whether given evsel is a function 211 * trace event 212 * 213 * @evsel - evsel selector to be tested 214 * 215 * Return %true if event is function trace event 216 */ 217 bool perf_evsel__is_function_event(struct evsel *evsel) 218 { 219 #define FUNCTION_EVENT "ftrace:function" 220 221 return evsel->name && 222 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 223 224 #undef FUNCTION_EVENT 225 } 226 227 void evsel__init(struct evsel *evsel, 228 struct perf_event_attr *attr, int idx) 229 { 230 perf_evsel__init(&evsel->core, attr); 231 evsel->idx = idx; 232 evsel->tracking = !idx; 233 evsel->leader = evsel; 234 evsel->unit = ""; 235 evsel->scale = 1.0; 236 evsel->max_events = ULONG_MAX; 237 evsel->evlist = NULL; 238 evsel->bpf_obj = NULL; 239 evsel->bpf_fd = -1; 240 INIT_LIST_HEAD(&evsel->config_terms); 241 perf_evsel__object.init(evsel); 242 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 243 perf_evsel__calc_id_pos(evsel); 244 evsel->cmdline_group_boundary = false; 245 evsel->metric_expr = NULL; 246 evsel->metric_name = NULL; 247 evsel->metric_events = NULL; 248 evsel->collect_stat = false; 249 evsel->pmu_name = NULL; 250 } 251 252 struct evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 253 { 254 struct evsel *evsel = zalloc(perf_evsel__object.size); 255 256 if (!evsel) 257 return NULL; 258 evsel__init(evsel, attr, idx); 259 260 if (perf_evsel__is_bpf_output(evsel)) { 261 evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 262 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 263 evsel->core.attr.sample_period = 1; 264 } 265 266 if (perf_evsel__is_clock(evsel)) { 267 /* 268 * The evsel->unit points to static alias->unit 269 * so it's ok to use static string in here. 270 */ 271 static const char *unit = "msec"; 272 273 evsel->unit = unit; 274 evsel->scale = 1e-6; 275 } 276 277 return evsel; 278 } 279 280 static bool perf_event_can_profile_kernel(void) 281 { 282 return geteuid() == 0 || perf_event_paranoid() == -1; 283 } 284 285 struct evsel *perf_evsel__new_cycles(bool precise) 286 { 287 struct perf_event_attr attr = { 288 .type = PERF_TYPE_HARDWARE, 289 .config = PERF_COUNT_HW_CPU_CYCLES, 290 .exclude_kernel = !perf_event_can_profile_kernel(), 291 }; 292 struct evsel *evsel; 293 294 event_attr_init(&attr); 295 296 if (!precise) 297 goto new_event; 298 299 /* 300 * Now let the usual logic to set up the perf_event_attr defaults 301 * to kick in when we return and before perf_evsel__open() is called. 302 */ 303 new_event: 304 evsel = evsel__new(&attr); 305 if (evsel == NULL) 306 goto out; 307 308 evsel->precise_max = true; 309 310 /* use asprintf() because free(evsel) assumes name is allocated */ 311 if (asprintf(&evsel->name, "cycles%s%s%.*s", 312 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 313 attr.exclude_kernel ? "u" : "", 314 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 315 goto error_free; 316 out: 317 return evsel; 318 error_free: 319 evsel__delete(evsel); 320 evsel = NULL; 321 goto out; 322 } 323 324 /* 325 * Returns pointer with encoded error via <linux/err.h> interface. 326 */ 327 struct evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 328 { 329 struct evsel *evsel = zalloc(perf_evsel__object.size); 330 int err = -ENOMEM; 331 332 if (evsel == NULL) { 333 goto out_err; 334 } else { 335 struct perf_event_attr attr = { 336 .type = PERF_TYPE_TRACEPOINT, 337 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 338 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 339 }; 340 341 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 342 goto out_free; 343 344 evsel->tp_format = trace_event__tp_format(sys, name); 345 if (IS_ERR(evsel->tp_format)) { 346 err = PTR_ERR(evsel->tp_format); 347 goto out_free; 348 } 349 350 event_attr_init(&attr); 351 attr.config = evsel->tp_format->id; 352 attr.sample_period = 1; 353 evsel__init(evsel, &attr, idx); 354 } 355 356 return evsel; 357 358 out_free: 359 zfree(&evsel->name); 360 free(evsel); 361 out_err: 362 return ERR_PTR(err); 363 } 364 365 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 366 "cycles", 367 "instructions", 368 "cache-references", 369 "cache-misses", 370 "branches", 371 "branch-misses", 372 "bus-cycles", 373 "stalled-cycles-frontend", 374 "stalled-cycles-backend", 375 "ref-cycles", 376 }; 377 378 static const char *__perf_evsel__hw_name(u64 config) 379 { 380 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 381 return perf_evsel__hw_names[config]; 382 383 return "unknown-hardware"; 384 } 385 386 static int perf_evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size) 387 { 388 int colon = 0, r = 0; 389 struct perf_event_attr *attr = &evsel->core.attr; 390 bool exclude_guest_default = false; 391 392 #define MOD_PRINT(context, mod) do { \ 393 if (!attr->exclude_##context) { \ 394 if (!colon) colon = ++r; \ 395 r += scnprintf(bf + r, size - r, "%c", mod); \ 396 } } while(0) 397 398 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 399 MOD_PRINT(kernel, 'k'); 400 MOD_PRINT(user, 'u'); 401 MOD_PRINT(hv, 'h'); 402 exclude_guest_default = true; 403 } 404 405 if (attr->precise_ip) { 406 if (!colon) 407 colon = ++r; 408 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 409 exclude_guest_default = true; 410 } 411 412 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 413 MOD_PRINT(host, 'H'); 414 MOD_PRINT(guest, 'G'); 415 } 416 #undef MOD_PRINT 417 if (colon) 418 bf[colon - 1] = ':'; 419 return r; 420 } 421 422 static int perf_evsel__hw_name(struct evsel *evsel, char *bf, size_t size) 423 { 424 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->core.attr.config)); 425 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 426 } 427 428 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 429 "cpu-clock", 430 "task-clock", 431 "page-faults", 432 "context-switches", 433 "cpu-migrations", 434 "minor-faults", 435 "major-faults", 436 "alignment-faults", 437 "emulation-faults", 438 "dummy", 439 }; 440 441 static const char *__perf_evsel__sw_name(u64 config) 442 { 443 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 444 return perf_evsel__sw_names[config]; 445 return "unknown-software"; 446 } 447 448 static int perf_evsel__sw_name(struct evsel *evsel, char *bf, size_t size) 449 { 450 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->core.attr.config)); 451 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 452 } 453 454 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 455 { 456 int r; 457 458 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 459 460 if (type & HW_BREAKPOINT_R) 461 r += scnprintf(bf + r, size - r, "r"); 462 463 if (type & HW_BREAKPOINT_W) 464 r += scnprintf(bf + r, size - r, "w"); 465 466 if (type & HW_BREAKPOINT_X) 467 r += scnprintf(bf + r, size - r, "x"); 468 469 return r; 470 } 471 472 static int perf_evsel__bp_name(struct evsel *evsel, char *bf, size_t size) 473 { 474 struct perf_event_attr *attr = &evsel->core.attr; 475 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 476 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 477 } 478 479 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 480 [PERF_EVSEL__MAX_ALIASES] = { 481 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 482 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 483 { "LLC", "L2", }, 484 { "dTLB", "d-tlb", "Data-TLB", }, 485 { "iTLB", "i-tlb", "Instruction-TLB", }, 486 { "branch", "branches", "bpu", "btb", "bpc", }, 487 { "node", }, 488 }; 489 490 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 491 [PERF_EVSEL__MAX_ALIASES] = { 492 { "load", "loads", "read", }, 493 { "store", "stores", "write", }, 494 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 495 }; 496 497 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 498 [PERF_EVSEL__MAX_ALIASES] = { 499 { "refs", "Reference", "ops", "access", }, 500 { "misses", "miss", }, 501 }; 502 503 #define C(x) PERF_COUNT_HW_CACHE_##x 504 #define CACHE_READ (1 << C(OP_READ)) 505 #define CACHE_WRITE (1 << C(OP_WRITE)) 506 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 507 #define COP(x) (1 << x) 508 509 /* 510 * cache operartion stat 511 * L1I : Read and prefetch only 512 * ITLB and BPU : Read-only 513 */ 514 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 515 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 516 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 517 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 518 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 519 [C(ITLB)] = (CACHE_READ), 520 [C(BPU)] = (CACHE_READ), 521 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 522 }; 523 524 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 525 { 526 if (perf_evsel__hw_cache_stat[type] & COP(op)) 527 return true; /* valid */ 528 else 529 return false; /* invalid */ 530 } 531 532 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 533 char *bf, size_t size) 534 { 535 if (result) { 536 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 537 perf_evsel__hw_cache_op[op][0], 538 perf_evsel__hw_cache_result[result][0]); 539 } 540 541 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 542 perf_evsel__hw_cache_op[op][1]); 543 } 544 545 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 546 { 547 u8 op, result, type = (config >> 0) & 0xff; 548 const char *err = "unknown-ext-hardware-cache-type"; 549 550 if (type >= PERF_COUNT_HW_CACHE_MAX) 551 goto out_err; 552 553 op = (config >> 8) & 0xff; 554 err = "unknown-ext-hardware-cache-op"; 555 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 556 goto out_err; 557 558 result = (config >> 16) & 0xff; 559 err = "unknown-ext-hardware-cache-result"; 560 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 561 goto out_err; 562 563 err = "invalid-cache"; 564 if (!perf_evsel__is_cache_op_valid(type, op)) 565 goto out_err; 566 567 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 568 out_err: 569 return scnprintf(bf, size, "%s", err); 570 } 571 572 static int perf_evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size) 573 { 574 int ret = __perf_evsel__hw_cache_name(evsel->core.attr.config, bf, size); 575 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 576 } 577 578 static int perf_evsel__raw_name(struct evsel *evsel, char *bf, size_t size) 579 { 580 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config); 581 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 582 } 583 584 static int perf_evsel__tool_name(char *bf, size_t size) 585 { 586 int ret = scnprintf(bf, size, "duration_time"); 587 return ret; 588 } 589 590 const char *perf_evsel__name(struct evsel *evsel) 591 { 592 char bf[128]; 593 594 if (!evsel) 595 goto out_unknown; 596 597 if (evsel->name) 598 return evsel->name; 599 600 switch (evsel->core.attr.type) { 601 case PERF_TYPE_RAW: 602 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 603 break; 604 605 case PERF_TYPE_HARDWARE: 606 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 607 break; 608 609 case PERF_TYPE_HW_CACHE: 610 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 611 break; 612 613 case PERF_TYPE_SOFTWARE: 614 if (evsel->tool_event) 615 perf_evsel__tool_name(bf, sizeof(bf)); 616 else 617 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 618 break; 619 620 case PERF_TYPE_TRACEPOINT: 621 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 622 break; 623 624 case PERF_TYPE_BREAKPOINT: 625 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 626 break; 627 628 default: 629 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 630 evsel->core.attr.type); 631 break; 632 } 633 634 evsel->name = strdup(bf); 635 636 if (evsel->name) 637 return evsel->name; 638 out_unknown: 639 return "unknown"; 640 } 641 642 const char *perf_evsel__group_name(struct evsel *evsel) 643 { 644 return evsel->group_name ?: "anon group"; 645 } 646 647 /* 648 * Returns the group details for the specified leader, 649 * with following rules. 650 * 651 * For record -e '{cycles,instructions}' 652 * 'anon group { cycles:u, instructions:u }' 653 * 654 * For record -e 'cycles,instructions' and report --group 655 * 'cycles:u, instructions:u' 656 */ 657 int perf_evsel__group_desc(struct evsel *evsel, char *buf, size_t size) 658 { 659 int ret = 0; 660 struct evsel *pos; 661 const char *group_name = perf_evsel__group_name(evsel); 662 663 if (!evsel->forced_leader) 664 ret = scnprintf(buf, size, "%s { ", group_name); 665 666 ret += scnprintf(buf + ret, size - ret, "%s", 667 perf_evsel__name(evsel)); 668 669 for_each_group_member(pos, evsel) 670 ret += scnprintf(buf + ret, size - ret, ", %s", 671 perf_evsel__name(pos)); 672 673 if (!evsel->forced_leader) 674 ret += scnprintf(buf + ret, size - ret, " }"); 675 676 return ret; 677 } 678 679 static void __perf_evsel__config_callchain(struct evsel *evsel, 680 struct record_opts *opts, 681 struct callchain_param *param) 682 { 683 bool function = perf_evsel__is_function_event(evsel); 684 struct perf_event_attr *attr = &evsel->core.attr; 685 686 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 687 688 attr->sample_max_stack = param->max_stack; 689 690 if (opts->kernel_callchains) 691 attr->exclude_callchain_user = 1; 692 if (opts->user_callchains) 693 attr->exclude_callchain_kernel = 1; 694 if (param->record_mode == CALLCHAIN_LBR) { 695 if (!opts->branch_stack) { 696 if (attr->exclude_user) { 697 pr_warning("LBR callstack option is only available " 698 "to get user callchain information. " 699 "Falling back to framepointers.\n"); 700 } else { 701 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 702 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 703 PERF_SAMPLE_BRANCH_CALL_STACK | 704 PERF_SAMPLE_BRANCH_NO_CYCLES | 705 PERF_SAMPLE_BRANCH_NO_FLAGS; 706 } 707 } else 708 pr_warning("Cannot use LBR callstack with branch stack. " 709 "Falling back to framepointers.\n"); 710 } 711 712 if (param->record_mode == CALLCHAIN_DWARF) { 713 if (!function) { 714 perf_evsel__set_sample_bit(evsel, REGS_USER); 715 perf_evsel__set_sample_bit(evsel, STACK_USER); 716 if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) { 717 attr->sample_regs_user |= DWARF_MINIMAL_REGS; 718 pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, " 719 "specifying a subset with --user-regs may render DWARF unwinding unreliable, " 720 "so the minimal registers set (IP, SP) is explicitly forced.\n"); 721 } else { 722 attr->sample_regs_user |= PERF_REGS_MASK; 723 } 724 attr->sample_stack_user = param->dump_size; 725 attr->exclude_callchain_user = 1; 726 } else { 727 pr_info("Cannot use DWARF unwind for function trace event," 728 " falling back to framepointers.\n"); 729 } 730 } 731 732 if (function) { 733 pr_info("Disabling user space callchains for function trace event.\n"); 734 attr->exclude_callchain_user = 1; 735 } 736 } 737 738 void perf_evsel__config_callchain(struct evsel *evsel, 739 struct record_opts *opts, 740 struct callchain_param *param) 741 { 742 if (param->enabled) 743 return __perf_evsel__config_callchain(evsel, opts, param); 744 } 745 746 static void 747 perf_evsel__reset_callgraph(struct evsel *evsel, 748 struct callchain_param *param) 749 { 750 struct perf_event_attr *attr = &evsel->core.attr; 751 752 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 753 if (param->record_mode == CALLCHAIN_LBR) { 754 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 755 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 756 PERF_SAMPLE_BRANCH_CALL_STACK); 757 } 758 if (param->record_mode == CALLCHAIN_DWARF) { 759 perf_evsel__reset_sample_bit(evsel, REGS_USER); 760 perf_evsel__reset_sample_bit(evsel, STACK_USER); 761 } 762 } 763 764 static void apply_config_terms(struct evsel *evsel, 765 struct record_opts *opts, bool track) 766 { 767 struct perf_evsel_config_term *term; 768 struct list_head *config_terms = &evsel->config_terms; 769 struct perf_event_attr *attr = &evsel->core.attr; 770 /* callgraph default */ 771 struct callchain_param param = { 772 .record_mode = callchain_param.record_mode, 773 }; 774 u32 dump_size = 0; 775 int max_stack = 0; 776 const char *callgraph_buf = NULL; 777 778 list_for_each_entry(term, config_terms, list) { 779 switch (term->type) { 780 case PERF_EVSEL__CONFIG_TERM_PERIOD: 781 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 782 attr->sample_period = term->val.period; 783 attr->freq = 0; 784 perf_evsel__reset_sample_bit(evsel, PERIOD); 785 } 786 break; 787 case PERF_EVSEL__CONFIG_TERM_FREQ: 788 if (!(term->weak && opts->user_freq != UINT_MAX)) { 789 attr->sample_freq = term->val.freq; 790 attr->freq = 1; 791 perf_evsel__set_sample_bit(evsel, PERIOD); 792 } 793 break; 794 case PERF_EVSEL__CONFIG_TERM_TIME: 795 if (term->val.time) 796 perf_evsel__set_sample_bit(evsel, TIME); 797 else 798 perf_evsel__reset_sample_bit(evsel, TIME); 799 break; 800 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 801 callgraph_buf = term->val.callgraph; 802 break; 803 case PERF_EVSEL__CONFIG_TERM_BRANCH: 804 if (term->val.branch && strcmp(term->val.branch, "no")) { 805 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 806 parse_branch_str(term->val.branch, 807 &attr->branch_sample_type); 808 } else 809 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 810 break; 811 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 812 dump_size = term->val.stack_user; 813 break; 814 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 815 max_stack = term->val.max_stack; 816 break; 817 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 818 evsel->max_events = term->val.max_events; 819 break; 820 case PERF_EVSEL__CONFIG_TERM_INHERIT: 821 /* 822 * attr->inherit should has already been set by 823 * perf_evsel__config. If user explicitly set 824 * inherit using config terms, override global 825 * opt->no_inherit setting. 826 */ 827 attr->inherit = term->val.inherit ? 1 : 0; 828 break; 829 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 830 attr->write_backward = term->val.overwrite ? 1 : 0; 831 break; 832 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 833 break; 834 case PERF_EVSEL__CONFIG_TERM_PERCORE: 835 break; 836 default: 837 break; 838 } 839 } 840 841 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 842 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 843 bool sample_address = false; 844 845 if (max_stack) { 846 param.max_stack = max_stack; 847 if (callgraph_buf == NULL) 848 callgraph_buf = "fp"; 849 } 850 851 /* parse callgraph parameters */ 852 if (callgraph_buf != NULL) { 853 if (!strcmp(callgraph_buf, "no")) { 854 param.enabled = false; 855 param.record_mode = CALLCHAIN_NONE; 856 } else { 857 param.enabled = true; 858 if (parse_callchain_record(callgraph_buf, ¶m)) { 859 pr_err("per-event callgraph setting for %s failed. " 860 "Apply callgraph global setting for it\n", 861 evsel->name); 862 return; 863 } 864 if (param.record_mode == CALLCHAIN_DWARF) 865 sample_address = true; 866 } 867 } 868 if (dump_size > 0) { 869 dump_size = round_up(dump_size, sizeof(u64)); 870 param.dump_size = dump_size; 871 } 872 873 /* If global callgraph set, clear it */ 874 if (callchain_param.enabled) 875 perf_evsel__reset_callgraph(evsel, &callchain_param); 876 877 /* set perf-event callgraph */ 878 if (param.enabled) { 879 if (sample_address) { 880 perf_evsel__set_sample_bit(evsel, ADDR); 881 perf_evsel__set_sample_bit(evsel, DATA_SRC); 882 evsel->core.attr.mmap_data = track; 883 } 884 perf_evsel__config_callchain(evsel, opts, ¶m); 885 } 886 } 887 } 888 889 static bool is_dummy_event(struct evsel *evsel) 890 { 891 return (evsel->core.attr.type == PERF_TYPE_SOFTWARE) && 892 (evsel->core.attr.config == PERF_COUNT_SW_DUMMY); 893 } 894 895 /* 896 * The enable_on_exec/disabled value strategy: 897 * 898 * 1) For any type of traced program: 899 * - all independent events and group leaders are disabled 900 * - all group members are enabled 901 * 902 * Group members are ruled by group leaders. They need to 903 * be enabled, because the group scheduling relies on that. 904 * 905 * 2) For traced programs executed by perf: 906 * - all independent events and group leaders have 907 * enable_on_exec set 908 * - we don't specifically enable or disable any event during 909 * the record command 910 * 911 * Independent events and group leaders are initially disabled 912 * and get enabled by exec. Group members are ruled by group 913 * leaders as stated in 1). 914 * 915 * 3) For traced programs attached by perf (pid/tid): 916 * - we specifically enable or disable all events during 917 * the record command 918 * 919 * When attaching events to already running traced we 920 * enable/disable events specifically, as there's no 921 * initial traced exec call. 922 */ 923 void perf_evsel__config(struct evsel *evsel, struct record_opts *opts, 924 struct callchain_param *callchain) 925 { 926 struct evsel *leader = evsel->leader; 927 struct perf_event_attr *attr = &evsel->core.attr; 928 int track = evsel->tracking; 929 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 930 931 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 932 attr->inherit = !opts->no_inherit; 933 attr->write_backward = opts->overwrite ? 1 : 0; 934 935 perf_evsel__set_sample_bit(evsel, IP); 936 perf_evsel__set_sample_bit(evsel, TID); 937 938 if (evsel->sample_read) { 939 perf_evsel__set_sample_bit(evsel, READ); 940 941 /* 942 * We need ID even in case of single event, because 943 * PERF_SAMPLE_READ process ID specific data. 944 */ 945 perf_evsel__set_sample_id(evsel, false); 946 947 /* 948 * Apply group format only if we belong to group 949 * with more than one members. 950 */ 951 if (leader->nr_members > 1) { 952 attr->read_format |= PERF_FORMAT_GROUP; 953 attr->inherit = 0; 954 } 955 } 956 957 /* 958 * We default some events to have a default interval. But keep 959 * it a weak assumption overridable by the user. 960 */ 961 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 962 opts->user_interval != ULLONG_MAX)) { 963 if (opts->freq) { 964 perf_evsel__set_sample_bit(evsel, PERIOD); 965 attr->freq = 1; 966 attr->sample_freq = opts->freq; 967 } else { 968 attr->sample_period = opts->default_interval; 969 } 970 } 971 972 /* 973 * Disable sampling for all group members other 974 * than leader in case leader 'leads' the sampling. 975 */ 976 if ((leader != evsel) && leader->sample_read) { 977 attr->freq = 0; 978 attr->sample_freq = 0; 979 attr->sample_period = 0; 980 attr->write_backward = 0; 981 982 /* 983 * We don't get sample for slave events, we make them 984 * when delivering group leader sample. Set the slave 985 * event to follow the master sample_type to ease up 986 * report. 987 */ 988 attr->sample_type = leader->core.attr.sample_type; 989 } 990 991 if (opts->no_samples) 992 attr->sample_freq = 0; 993 994 if (opts->inherit_stat) { 995 evsel->core.attr.read_format |= 996 PERF_FORMAT_TOTAL_TIME_ENABLED | 997 PERF_FORMAT_TOTAL_TIME_RUNNING | 998 PERF_FORMAT_ID; 999 attr->inherit_stat = 1; 1000 } 1001 1002 if (opts->sample_address) { 1003 perf_evsel__set_sample_bit(evsel, ADDR); 1004 attr->mmap_data = track; 1005 } 1006 1007 /* 1008 * We don't allow user space callchains for function trace 1009 * event, due to issues with page faults while tracing page 1010 * fault handler and its overall trickiness nature. 1011 */ 1012 if (perf_evsel__is_function_event(evsel)) 1013 evsel->core.attr.exclude_callchain_user = 1; 1014 1015 if (callchain && callchain->enabled && !evsel->no_aux_samples) 1016 perf_evsel__config_callchain(evsel, opts, callchain); 1017 1018 if (opts->sample_intr_regs) { 1019 attr->sample_regs_intr = opts->sample_intr_regs; 1020 perf_evsel__set_sample_bit(evsel, REGS_INTR); 1021 } 1022 1023 if (opts->sample_user_regs) { 1024 attr->sample_regs_user |= opts->sample_user_regs; 1025 perf_evsel__set_sample_bit(evsel, REGS_USER); 1026 } 1027 1028 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1029 perf_evsel__set_sample_bit(evsel, CPU); 1030 1031 /* 1032 * When the user explicitly disabled time don't force it here. 1033 */ 1034 if (opts->sample_time && 1035 (!perf_missing_features.sample_id_all && 1036 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1037 opts->sample_time_set))) 1038 perf_evsel__set_sample_bit(evsel, TIME); 1039 1040 if (opts->raw_samples && !evsel->no_aux_samples) { 1041 perf_evsel__set_sample_bit(evsel, TIME); 1042 perf_evsel__set_sample_bit(evsel, RAW); 1043 perf_evsel__set_sample_bit(evsel, CPU); 1044 } 1045 1046 if (opts->sample_address) 1047 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1048 1049 if (opts->sample_phys_addr) 1050 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1051 1052 if (opts->no_buffering) { 1053 attr->watermark = 0; 1054 attr->wakeup_events = 1; 1055 } 1056 if (opts->branch_stack && !evsel->no_aux_samples) { 1057 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1058 attr->branch_sample_type = opts->branch_stack; 1059 } 1060 1061 if (opts->sample_weight) 1062 perf_evsel__set_sample_bit(evsel, WEIGHT); 1063 1064 attr->task = track; 1065 attr->mmap = track; 1066 attr->mmap2 = track && !perf_missing_features.mmap2; 1067 attr->comm = track; 1068 attr->ksymbol = track && !perf_missing_features.ksymbol; 1069 attr->bpf_event = track && !opts->no_bpf_event && 1070 !perf_missing_features.bpf_event; 1071 1072 if (opts->record_namespaces) 1073 attr->namespaces = track; 1074 1075 if (opts->record_switch_events) 1076 attr->context_switch = track; 1077 1078 if (opts->sample_transaction) 1079 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1080 1081 if (opts->running_time) { 1082 evsel->core.attr.read_format |= 1083 PERF_FORMAT_TOTAL_TIME_ENABLED | 1084 PERF_FORMAT_TOTAL_TIME_RUNNING; 1085 } 1086 1087 /* 1088 * XXX see the function comment above 1089 * 1090 * Disabling only independent events or group leaders, 1091 * keeping group members enabled. 1092 */ 1093 if (perf_evsel__is_group_leader(evsel)) 1094 attr->disabled = 1; 1095 1096 /* 1097 * Setting enable_on_exec for independent events and 1098 * group leaders for traced executed by perf. 1099 */ 1100 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1101 !opts->initial_delay) 1102 attr->enable_on_exec = 1; 1103 1104 if (evsel->immediate) { 1105 attr->disabled = 0; 1106 attr->enable_on_exec = 0; 1107 } 1108 1109 clockid = opts->clockid; 1110 if (opts->use_clockid) { 1111 attr->use_clockid = 1; 1112 attr->clockid = opts->clockid; 1113 } 1114 1115 if (evsel->precise_max) 1116 attr->precise_ip = 3; 1117 1118 if (opts->all_user) { 1119 attr->exclude_kernel = 1; 1120 attr->exclude_user = 0; 1121 } 1122 1123 if (opts->all_kernel) { 1124 attr->exclude_kernel = 0; 1125 attr->exclude_user = 1; 1126 } 1127 1128 if (evsel->core.own_cpus || evsel->unit) 1129 evsel->core.attr.read_format |= PERF_FORMAT_ID; 1130 1131 /* 1132 * Apply event specific term settings, 1133 * it overloads any global configuration. 1134 */ 1135 apply_config_terms(evsel, opts, track); 1136 1137 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1138 1139 /* The --period option takes the precedence. */ 1140 if (opts->period_set) { 1141 if (opts->period) 1142 perf_evsel__set_sample_bit(evsel, PERIOD); 1143 else 1144 perf_evsel__reset_sample_bit(evsel, PERIOD); 1145 } 1146 1147 /* 1148 * For initial_delay, a dummy event is added implicitly. 1149 * The software event will trigger -EOPNOTSUPP error out, 1150 * if BRANCH_STACK bit is set. 1151 */ 1152 if (opts->initial_delay && is_dummy_event(evsel)) 1153 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1154 } 1155 1156 static int perf_evsel__alloc_fd(struct evsel *evsel, int ncpus, int nthreads) 1157 { 1158 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1159 1160 if (evsel->fd) { 1161 int cpu, thread; 1162 for (cpu = 0; cpu < ncpus; cpu++) { 1163 for (thread = 0; thread < nthreads; thread++) { 1164 FD(evsel, cpu, thread) = -1; 1165 } 1166 } 1167 } 1168 1169 return evsel->fd != NULL ? 0 : -ENOMEM; 1170 } 1171 1172 static int perf_evsel__run_ioctl(struct evsel *evsel, 1173 int ioc, void *arg) 1174 { 1175 int cpu, thread; 1176 1177 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1178 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1179 int fd = FD(evsel, cpu, thread), 1180 err = ioctl(fd, ioc, arg); 1181 1182 if (err) 1183 return err; 1184 } 1185 } 1186 1187 return 0; 1188 } 1189 1190 int evsel__apply_filter(struct evsel *evsel, const char *filter) 1191 { 1192 return perf_evsel__run_ioctl(evsel, 1193 PERF_EVENT_IOC_SET_FILTER, 1194 (void *)filter); 1195 } 1196 1197 int perf_evsel__set_filter(struct evsel *evsel, const char *filter) 1198 { 1199 char *new_filter = strdup(filter); 1200 1201 if (new_filter != NULL) { 1202 free(evsel->filter); 1203 evsel->filter = new_filter; 1204 return 0; 1205 } 1206 1207 return -1; 1208 } 1209 1210 static int perf_evsel__append_filter(struct evsel *evsel, 1211 const char *fmt, const char *filter) 1212 { 1213 char *new_filter; 1214 1215 if (evsel->filter == NULL) 1216 return perf_evsel__set_filter(evsel, filter); 1217 1218 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1219 free(evsel->filter); 1220 evsel->filter = new_filter; 1221 return 0; 1222 } 1223 1224 return -1; 1225 } 1226 1227 int perf_evsel__append_tp_filter(struct evsel *evsel, const char *filter) 1228 { 1229 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1230 } 1231 1232 int perf_evsel__append_addr_filter(struct evsel *evsel, const char *filter) 1233 { 1234 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1235 } 1236 1237 int evsel__enable(struct evsel *evsel) 1238 { 1239 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0); 1240 1241 if (!err) 1242 evsel->disabled = false; 1243 1244 return err; 1245 } 1246 1247 int evsel__disable(struct evsel *evsel) 1248 { 1249 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0); 1250 /* 1251 * We mark it disabled here so that tools that disable a event can 1252 * ignore events after they disable it. I.e. the ring buffer may have 1253 * already a few more events queued up before the kernel got the stop 1254 * request. 1255 */ 1256 if (!err) 1257 evsel->disabled = true; 1258 1259 return err; 1260 } 1261 1262 int perf_evsel__alloc_id(struct evsel *evsel, int ncpus, int nthreads) 1263 { 1264 if (ncpus == 0 || nthreads == 0) 1265 return 0; 1266 1267 if (evsel->system_wide) 1268 nthreads = 1; 1269 1270 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1271 if (evsel->sample_id == NULL) 1272 return -ENOMEM; 1273 1274 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1275 if (evsel->id == NULL) { 1276 xyarray__delete(evsel->sample_id); 1277 evsel->sample_id = NULL; 1278 return -ENOMEM; 1279 } 1280 1281 return 0; 1282 } 1283 1284 static void perf_evsel__free_fd(struct evsel *evsel) 1285 { 1286 xyarray__delete(evsel->fd); 1287 evsel->fd = NULL; 1288 } 1289 1290 static void perf_evsel__free_id(struct evsel *evsel) 1291 { 1292 xyarray__delete(evsel->sample_id); 1293 evsel->sample_id = NULL; 1294 zfree(&evsel->id); 1295 evsel->ids = 0; 1296 } 1297 1298 static void perf_evsel__free_config_terms(struct evsel *evsel) 1299 { 1300 struct perf_evsel_config_term *term, *h; 1301 1302 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1303 list_del_init(&term->list); 1304 free(term); 1305 } 1306 } 1307 1308 void perf_evsel__close_fd(struct evsel *evsel) 1309 { 1310 int cpu, thread; 1311 1312 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1313 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1314 close(FD(evsel, cpu, thread)); 1315 FD(evsel, cpu, thread) = -1; 1316 } 1317 } 1318 1319 void perf_evsel__exit(struct evsel *evsel) 1320 { 1321 assert(list_empty(&evsel->core.node)); 1322 assert(evsel->evlist == NULL); 1323 perf_evsel__free_counts(evsel); 1324 perf_evsel__free_fd(evsel); 1325 perf_evsel__free_id(evsel); 1326 perf_evsel__free_config_terms(evsel); 1327 cgroup__put(evsel->cgrp); 1328 perf_cpu_map__put(evsel->core.cpus); 1329 perf_cpu_map__put(evsel->core.own_cpus); 1330 perf_thread_map__put(evsel->threads); 1331 zfree(&evsel->group_name); 1332 zfree(&evsel->name); 1333 perf_evsel__object.fini(evsel); 1334 } 1335 1336 void evsel__delete(struct evsel *evsel) 1337 { 1338 perf_evsel__exit(evsel); 1339 free(evsel); 1340 } 1341 1342 void perf_evsel__compute_deltas(struct evsel *evsel, int cpu, int thread, 1343 struct perf_counts_values *count) 1344 { 1345 struct perf_counts_values tmp; 1346 1347 if (!evsel->prev_raw_counts) 1348 return; 1349 1350 if (cpu == -1) { 1351 tmp = evsel->prev_raw_counts->aggr; 1352 evsel->prev_raw_counts->aggr = *count; 1353 } else { 1354 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1355 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1356 } 1357 1358 count->val = count->val - tmp.val; 1359 count->ena = count->ena - tmp.ena; 1360 count->run = count->run - tmp.run; 1361 } 1362 1363 void perf_counts_values__scale(struct perf_counts_values *count, 1364 bool scale, s8 *pscaled) 1365 { 1366 s8 scaled = 0; 1367 1368 if (scale) { 1369 if (count->run == 0) { 1370 scaled = -1; 1371 count->val = 0; 1372 } else if (count->run < count->ena) { 1373 scaled = 1; 1374 count->val = (u64)((double) count->val * count->ena / count->run); 1375 } 1376 } 1377 1378 if (pscaled) 1379 *pscaled = scaled; 1380 } 1381 1382 static int perf_evsel__read_size(struct evsel *evsel) 1383 { 1384 u64 read_format = evsel->core.attr.read_format; 1385 int entry = sizeof(u64); /* value */ 1386 int size = 0; 1387 int nr = 1; 1388 1389 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1390 size += sizeof(u64); 1391 1392 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1393 size += sizeof(u64); 1394 1395 if (read_format & PERF_FORMAT_ID) 1396 entry += sizeof(u64); 1397 1398 if (read_format & PERF_FORMAT_GROUP) { 1399 nr = evsel->nr_members; 1400 size += sizeof(u64); 1401 } 1402 1403 size += entry * nr; 1404 return size; 1405 } 1406 1407 int perf_evsel__read(struct evsel *evsel, int cpu, int thread, 1408 struct perf_counts_values *count) 1409 { 1410 size_t size = perf_evsel__read_size(evsel); 1411 1412 memset(count, 0, sizeof(*count)); 1413 1414 if (FD(evsel, cpu, thread) < 0) 1415 return -EINVAL; 1416 1417 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1418 return -errno; 1419 1420 return 0; 1421 } 1422 1423 static int 1424 perf_evsel__read_one(struct evsel *evsel, int cpu, int thread) 1425 { 1426 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1427 1428 return perf_evsel__read(evsel, cpu, thread, count); 1429 } 1430 1431 static void 1432 perf_evsel__set_count(struct evsel *counter, int cpu, int thread, 1433 u64 val, u64 ena, u64 run) 1434 { 1435 struct perf_counts_values *count; 1436 1437 count = perf_counts(counter->counts, cpu, thread); 1438 1439 count->val = val; 1440 count->ena = ena; 1441 count->run = run; 1442 1443 perf_counts__set_loaded(counter->counts, cpu, thread, true); 1444 } 1445 1446 static int 1447 perf_evsel__process_group_data(struct evsel *leader, 1448 int cpu, int thread, u64 *data) 1449 { 1450 u64 read_format = leader->core.attr.read_format; 1451 struct sample_read_value *v; 1452 u64 nr, ena = 0, run = 0, i; 1453 1454 nr = *data++; 1455 1456 if (nr != (u64) leader->nr_members) 1457 return -EINVAL; 1458 1459 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1460 ena = *data++; 1461 1462 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1463 run = *data++; 1464 1465 v = (struct sample_read_value *) data; 1466 1467 perf_evsel__set_count(leader, cpu, thread, 1468 v[0].value, ena, run); 1469 1470 for (i = 1; i < nr; i++) { 1471 struct evsel *counter; 1472 1473 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1474 if (!counter) 1475 return -EINVAL; 1476 1477 perf_evsel__set_count(counter, cpu, thread, 1478 v[i].value, ena, run); 1479 } 1480 1481 return 0; 1482 } 1483 1484 static int 1485 perf_evsel__read_group(struct evsel *leader, int cpu, int thread) 1486 { 1487 struct perf_stat_evsel *ps = leader->stats; 1488 u64 read_format = leader->core.attr.read_format; 1489 int size = perf_evsel__read_size(leader); 1490 u64 *data = ps->group_data; 1491 1492 if (!(read_format & PERF_FORMAT_ID)) 1493 return -EINVAL; 1494 1495 if (!perf_evsel__is_group_leader(leader)) 1496 return -EINVAL; 1497 1498 if (!data) { 1499 data = zalloc(size); 1500 if (!data) 1501 return -ENOMEM; 1502 1503 ps->group_data = data; 1504 } 1505 1506 if (FD(leader, cpu, thread) < 0) 1507 return -EINVAL; 1508 1509 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1510 return -errno; 1511 1512 return perf_evsel__process_group_data(leader, cpu, thread, data); 1513 } 1514 1515 int perf_evsel__read_counter(struct evsel *evsel, int cpu, int thread) 1516 { 1517 u64 read_format = evsel->core.attr.read_format; 1518 1519 if (read_format & PERF_FORMAT_GROUP) 1520 return perf_evsel__read_group(evsel, cpu, thread); 1521 else 1522 return perf_evsel__read_one(evsel, cpu, thread); 1523 } 1524 1525 int __perf_evsel__read_on_cpu(struct evsel *evsel, 1526 int cpu, int thread, bool scale) 1527 { 1528 struct perf_counts_values count; 1529 size_t nv = scale ? 3 : 1; 1530 1531 if (FD(evsel, cpu, thread) < 0) 1532 return -EINVAL; 1533 1534 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1535 return -ENOMEM; 1536 1537 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1538 return -errno; 1539 1540 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1541 perf_counts_values__scale(&count, scale, NULL); 1542 *perf_counts(evsel->counts, cpu, thread) = count; 1543 return 0; 1544 } 1545 1546 static int get_group_fd(struct evsel *evsel, int cpu, int thread) 1547 { 1548 struct evsel *leader = evsel->leader; 1549 int fd; 1550 1551 if (perf_evsel__is_group_leader(evsel)) 1552 return -1; 1553 1554 /* 1555 * Leader must be already processed/open, 1556 * if not it's a bug. 1557 */ 1558 BUG_ON(!leader->fd); 1559 1560 fd = FD(leader, cpu, thread); 1561 BUG_ON(fd == -1); 1562 1563 return fd; 1564 } 1565 1566 struct bit_names { 1567 int bit; 1568 const char *name; 1569 }; 1570 1571 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1572 { 1573 bool first_bit = true; 1574 int i = 0; 1575 1576 do { 1577 if (value & bits[i].bit) { 1578 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1579 first_bit = false; 1580 } 1581 } while (bits[++i].name != NULL); 1582 } 1583 1584 static void __p_sample_type(char *buf, size_t size, u64 value) 1585 { 1586 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1587 struct bit_names bits[] = { 1588 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1589 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1590 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1591 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1592 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1593 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1594 { .name = NULL, } 1595 }; 1596 #undef bit_name 1597 __p_bits(buf, size, value, bits); 1598 } 1599 1600 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1601 { 1602 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1603 struct bit_names bits[] = { 1604 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1605 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1606 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1607 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1608 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1609 { .name = NULL, } 1610 }; 1611 #undef bit_name 1612 __p_bits(buf, size, value, bits); 1613 } 1614 1615 static void __p_read_format(char *buf, size_t size, u64 value) 1616 { 1617 #define bit_name(n) { PERF_FORMAT_##n, #n } 1618 struct bit_names bits[] = { 1619 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1620 bit_name(ID), bit_name(GROUP), 1621 { .name = NULL, } 1622 }; 1623 #undef bit_name 1624 __p_bits(buf, size, value, bits); 1625 } 1626 1627 #define BUF_SIZE 1024 1628 1629 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1630 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1631 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1632 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1633 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1634 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1635 1636 #define PRINT_ATTRn(_n, _f, _p) \ 1637 do { \ 1638 if (attr->_f) { \ 1639 _p(attr->_f); \ 1640 ret += attr__fprintf(fp, _n, buf, priv);\ 1641 } \ 1642 } while (0) 1643 1644 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1645 1646 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1647 attr__fprintf_f attr__fprintf, void *priv) 1648 { 1649 char buf[BUF_SIZE]; 1650 int ret = 0; 1651 1652 PRINT_ATTRf(type, p_unsigned); 1653 PRINT_ATTRf(size, p_unsigned); 1654 PRINT_ATTRf(config, p_hex); 1655 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1656 PRINT_ATTRf(sample_type, p_sample_type); 1657 PRINT_ATTRf(read_format, p_read_format); 1658 1659 PRINT_ATTRf(disabled, p_unsigned); 1660 PRINT_ATTRf(inherit, p_unsigned); 1661 PRINT_ATTRf(pinned, p_unsigned); 1662 PRINT_ATTRf(exclusive, p_unsigned); 1663 PRINT_ATTRf(exclude_user, p_unsigned); 1664 PRINT_ATTRf(exclude_kernel, p_unsigned); 1665 PRINT_ATTRf(exclude_hv, p_unsigned); 1666 PRINT_ATTRf(exclude_idle, p_unsigned); 1667 PRINT_ATTRf(mmap, p_unsigned); 1668 PRINT_ATTRf(comm, p_unsigned); 1669 PRINT_ATTRf(freq, p_unsigned); 1670 PRINT_ATTRf(inherit_stat, p_unsigned); 1671 PRINT_ATTRf(enable_on_exec, p_unsigned); 1672 PRINT_ATTRf(task, p_unsigned); 1673 PRINT_ATTRf(watermark, p_unsigned); 1674 PRINT_ATTRf(precise_ip, p_unsigned); 1675 PRINT_ATTRf(mmap_data, p_unsigned); 1676 PRINT_ATTRf(sample_id_all, p_unsigned); 1677 PRINT_ATTRf(exclude_host, p_unsigned); 1678 PRINT_ATTRf(exclude_guest, p_unsigned); 1679 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1680 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1681 PRINT_ATTRf(mmap2, p_unsigned); 1682 PRINT_ATTRf(comm_exec, p_unsigned); 1683 PRINT_ATTRf(use_clockid, p_unsigned); 1684 PRINT_ATTRf(context_switch, p_unsigned); 1685 PRINT_ATTRf(write_backward, p_unsigned); 1686 PRINT_ATTRf(namespaces, p_unsigned); 1687 PRINT_ATTRf(ksymbol, p_unsigned); 1688 PRINT_ATTRf(bpf_event, p_unsigned); 1689 1690 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1691 PRINT_ATTRf(bp_type, p_unsigned); 1692 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1693 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1694 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1695 PRINT_ATTRf(sample_regs_user, p_hex); 1696 PRINT_ATTRf(sample_stack_user, p_unsigned); 1697 PRINT_ATTRf(clockid, p_signed); 1698 PRINT_ATTRf(sample_regs_intr, p_hex); 1699 PRINT_ATTRf(aux_watermark, p_unsigned); 1700 PRINT_ATTRf(sample_max_stack, p_unsigned); 1701 1702 return ret; 1703 } 1704 1705 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1706 void *priv __maybe_unused) 1707 { 1708 return fprintf(fp, " %-32s %s\n", name, val); 1709 } 1710 1711 static void perf_evsel__remove_fd(struct evsel *pos, 1712 int nr_cpus, int nr_threads, 1713 int thread_idx) 1714 { 1715 for (int cpu = 0; cpu < nr_cpus; cpu++) 1716 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1717 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1718 } 1719 1720 static int update_fds(struct evsel *evsel, 1721 int nr_cpus, int cpu_idx, 1722 int nr_threads, int thread_idx) 1723 { 1724 struct evsel *pos; 1725 1726 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1727 return -EINVAL; 1728 1729 evlist__for_each_entry(evsel->evlist, pos) { 1730 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1731 1732 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1733 1734 /* 1735 * Since fds for next evsel has not been created, 1736 * there is no need to iterate whole event list. 1737 */ 1738 if (pos == evsel) 1739 break; 1740 } 1741 return 0; 1742 } 1743 1744 static bool ignore_missing_thread(struct evsel *evsel, 1745 int nr_cpus, int cpu, 1746 struct perf_thread_map *threads, 1747 int thread, int err) 1748 { 1749 pid_t ignore_pid = thread_map__pid(threads, thread); 1750 1751 if (!evsel->ignore_missing_thread) 1752 return false; 1753 1754 /* The system wide setup does not work with threads. */ 1755 if (evsel->system_wide) 1756 return false; 1757 1758 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1759 if (err != -ESRCH) 1760 return false; 1761 1762 /* If there's only one thread, let it fail. */ 1763 if (threads->nr == 1) 1764 return false; 1765 1766 /* 1767 * We should remove fd for missing_thread first 1768 * because thread_map__remove() will decrease threads->nr. 1769 */ 1770 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1771 return false; 1772 1773 if (thread_map__remove(threads, thread)) 1774 return false; 1775 1776 pr_warning("WARNING: Ignored open failure for pid %d\n", 1777 ignore_pid); 1778 return true; 1779 } 1780 1781 static void display_attr(struct perf_event_attr *attr) 1782 { 1783 if (verbose >= 2) { 1784 fprintf(stderr, "%.60s\n", graph_dotted_line); 1785 fprintf(stderr, "perf_event_attr:\n"); 1786 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); 1787 fprintf(stderr, "%.60s\n", graph_dotted_line); 1788 } 1789 } 1790 1791 static int perf_event_open(struct evsel *evsel, 1792 pid_t pid, int cpu, int group_fd, 1793 unsigned long flags) 1794 { 1795 int precise_ip = evsel->core.attr.precise_ip; 1796 int fd; 1797 1798 while (1) { 1799 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1800 pid, cpu, group_fd, flags); 1801 1802 fd = sys_perf_event_open(&evsel->core.attr, pid, cpu, group_fd, flags); 1803 if (fd >= 0) 1804 break; 1805 1806 /* Do not try less precise if not requested. */ 1807 if (!evsel->precise_max) 1808 break; 1809 1810 /* 1811 * We tried all the precise_ip values, and it's 1812 * still failing, so leave it to standard fallback. 1813 */ 1814 if (!evsel->core.attr.precise_ip) { 1815 evsel->core.attr.precise_ip = precise_ip; 1816 break; 1817 } 1818 1819 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP); 1820 evsel->core.attr.precise_ip--; 1821 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip); 1822 display_attr(&evsel->core.attr); 1823 } 1824 1825 return fd; 1826 } 1827 1828 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus, 1829 struct perf_thread_map *threads) 1830 { 1831 int cpu, thread, nthreads; 1832 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1833 int pid = -1, err; 1834 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1835 1836 if (perf_missing_features.write_backward && evsel->core.attr.write_backward) 1837 return -EINVAL; 1838 1839 if (cpus == NULL) { 1840 static struct perf_cpu_map *empty_cpu_map; 1841 1842 if (empty_cpu_map == NULL) { 1843 empty_cpu_map = perf_cpu_map__dummy_new(); 1844 if (empty_cpu_map == NULL) 1845 return -ENOMEM; 1846 } 1847 1848 cpus = empty_cpu_map; 1849 } 1850 1851 if (threads == NULL) { 1852 static struct perf_thread_map *empty_thread_map; 1853 1854 if (empty_thread_map == NULL) { 1855 empty_thread_map = thread_map__new_by_tid(-1); 1856 if (empty_thread_map == NULL) 1857 return -ENOMEM; 1858 } 1859 1860 threads = empty_thread_map; 1861 } 1862 1863 if (evsel->system_wide) 1864 nthreads = 1; 1865 else 1866 nthreads = threads->nr; 1867 1868 if (evsel->fd == NULL && 1869 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1870 return -ENOMEM; 1871 1872 if (evsel->cgrp) { 1873 flags |= PERF_FLAG_PID_CGROUP; 1874 pid = evsel->cgrp->fd; 1875 } 1876 1877 fallback_missing_features: 1878 if (perf_missing_features.clockid_wrong) 1879 evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1880 if (perf_missing_features.clockid) { 1881 evsel->core.attr.use_clockid = 0; 1882 evsel->core.attr.clockid = 0; 1883 } 1884 if (perf_missing_features.cloexec) 1885 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1886 if (perf_missing_features.mmap2) 1887 evsel->core.attr.mmap2 = 0; 1888 if (perf_missing_features.exclude_guest) 1889 evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0; 1890 if (perf_missing_features.lbr_flags) 1891 evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1892 PERF_SAMPLE_BRANCH_NO_CYCLES); 1893 if (perf_missing_features.group_read && evsel->core.attr.inherit) 1894 evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1895 if (perf_missing_features.ksymbol) 1896 evsel->core.attr.ksymbol = 0; 1897 if (perf_missing_features.bpf_event) 1898 evsel->core.attr.bpf_event = 0; 1899 retry_sample_id: 1900 if (perf_missing_features.sample_id_all) 1901 evsel->core.attr.sample_id_all = 0; 1902 1903 display_attr(&evsel->core.attr); 1904 1905 for (cpu = 0; cpu < cpus->nr; cpu++) { 1906 1907 for (thread = 0; thread < nthreads; thread++) { 1908 int fd, group_fd; 1909 1910 if (!evsel->cgrp && !evsel->system_wide) 1911 pid = thread_map__pid(threads, thread); 1912 1913 group_fd = get_group_fd(evsel, cpu, thread); 1914 retry_open: 1915 test_attr__ready(); 1916 1917 fd = perf_event_open(evsel, pid, cpus->map[cpu], 1918 group_fd, flags); 1919 1920 FD(evsel, cpu, thread) = fd; 1921 1922 if (fd < 0) { 1923 err = -errno; 1924 1925 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1926 /* 1927 * We just removed 1 thread, so take a step 1928 * back on thread index and lower the upper 1929 * nthreads limit. 1930 */ 1931 nthreads--; 1932 thread--; 1933 1934 /* ... and pretend like nothing have happened. */ 1935 err = 0; 1936 continue; 1937 } 1938 1939 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1940 err); 1941 goto try_fallback; 1942 } 1943 1944 pr_debug2(" = %d\n", fd); 1945 1946 if (evsel->bpf_fd >= 0) { 1947 int evt_fd = fd; 1948 int bpf_fd = evsel->bpf_fd; 1949 1950 err = ioctl(evt_fd, 1951 PERF_EVENT_IOC_SET_BPF, 1952 bpf_fd); 1953 if (err && errno != EEXIST) { 1954 pr_err("failed to attach bpf fd %d: %s\n", 1955 bpf_fd, strerror(errno)); 1956 err = -EINVAL; 1957 goto out_close; 1958 } 1959 } 1960 1961 set_rlimit = NO_CHANGE; 1962 1963 /* 1964 * If we succeeded but had to kill clockid, fail and 1965 * have perf_evsel__open_strerror() print us a nice 1966 * error. 1967 */ 1968 if (perf_missing_features.clockid || 1969 perf_missing_features.clockid_wrong) { 1970 err = -EINVAL; 1971 goto out_close; 1972 } 1973 } 1974 } 1975 1976 return 0; 1977 1978 try_fallback: 1979 /* 1980 * perf stat needs between 5 and 22 fds per CPU. When we run out 1981 * of them try to increase the limits. 1982 */ 1983 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1984 struct rlimit l; 1985 int old_errno = errno; 1986 1987 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1988 if (set_rlimit == NO_CHANGE) 1989 l.rlim_cur = l.rlim_max; 1990 else { 1991 l.rlim_cur = l.rlim_max + 1000; 1992 l.rlim_max = l.rlim_cur; 1993 } 1994 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1995 set_rlimit++; 1996 errno = old_errno; 1997 goto retry_open; 1998 } 1999 } 2000 errno = old_errno; 2001 } 2002 2003 if (err != -EINVAL || cpu > 0 || thread > 0) 2004 goto out_close; 2005 2006 /* 2007 * Must probe features in the order they were added to the 2008 * perf_event_attr interface. 2009 */ 2010 if (!perf_missing_features.bpf_event && evsel->core.attr.bpf_event) { 2011 perf_missing_features.bpf_event = true; 2012 pr_debug2("switching off bpf_event\n"); 2013 goto fallback_missing_features; 2014 } else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) { 2015 perf_missing_features.ksymbol = true; 2016 pr_debug2("switching off ksymbol\n"); 2017 goto fallback_missing_features; 2018 } else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) { 2019 perf_missing_features.write_backward = true; 2020 pr_debug2("switching off write_backward\n"); 2021 goto out_close; 2022 } else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) { 2023 perf_missing_features.clockid_wrong = true; 2024 pr_debug2("switching off clockid\n"); 2025 goto fallback_missing_features; 2026 } else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) { 2027 perf_missing_features.clockid = true; 2028 pr_debug2("switching off use_clockid\n"); 2029 goto fallback_missing_features; 2030 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 2031 perf_missing_features.cloexec = true; 2032 pr_debug2("switching off cloexec flag\n"); 2033 goto fallback_missing_features; 2034 } else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) { 2035 perf_missing_features.mmap2 = true; 2036 pr_debug2("switching off mmap2\n"); 2037 goto fallback_missing_features; 2038 } else if (!perf_missing_features.exclude_guest && 2039 (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) { 2040 perf_missing_features.exclude_guest = true; 2041 pr_debug2("switching off exclude_guest, exclude_host\n"); 2042 goto fallback_missing_features; 2043 } else if (!perf_missing_features.sample_id_all) { 2044 perf_missing_features.sample_id_all = true; 2045 pr_debug2("switching off sample_id_all\n"); 2046 goto retry_sample_id; 2047 } else if (!perf_missing_features.lbr_flags && 2048 (evsel->core.attr.branch_sample_type & 2049 (PERF_SAMPLE_BRANCH_NO_CYCLES | 2050 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 2051 perf_missing_features.lbr_flags = true; 2052 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 2053 goto fallback_missing_features; 2054 } else if (!perf_missing_features.group_read && 2055 evsel->core.attr.inherit && 2056 (evsel->core.attr.read_format & PERF_FORMAT_GROUP) && 2057 perf_evsel__is_group_leader(evsel)) { 2058 perf_missing_features.group_read = true; 2059 pr_debug2("switching off group read\n"); 2060 goto fallback_missing_features; 2061 } 2062 out_close: 2063 if (err) 2064 threads->err_thread = thread; 2065 2066 do { 2067 while (--thread >= 0) { 2068 close(FD(evsel, cpu, thread)); 2069 FD(evsel, cpu, thread) = -1; 2070 } 2071 thread = nthreads; 2072 } while (--cpu >= 0); 2073 return err; 2074 } 2075 2076 void perf_evsel__close(struct evsel *evsel) 2077 { 2078 if (evsel->fd == NULL) 2079 return; 2080 2081 perf_evsel__close_fd(evsel); 2082 perf_evsel__free_fd(evsel); 2083 perf_evsel__free_id(evsel); 2084 } 2085 2086 int perf_evsel__open_per_cpu(struct evsel *evsel, 2087 struct perf_cpu_map *cpus) 2088 { 2089 return evsel__open(evsel, cpus, NULL); 2090 } 2091 2092 int perf_evsel__open_per_thread(struct evsel *evsel, 2093 struct perf_thread_map *threads) 2094 { 2095 return evsel__open(evsel, NULL, threads); 2096 } 2097 2098 static int perf_evsel__parse_id_sample(const struct evsel *evsel, 2099 const union perf_event *event, 2100 struct perf_sample *sample) 2101 { 2102 u64 type = evsel->core.attr.sample_type; 2103 const u64 *array = event->sample.array; 2104 bool swapped = evsel->needs_swap; 2105 union u64_swap u; 2106 2107 array += ((event->header.size - 2108 sizeof(event->header)) / sizeof(u64)) - 1; 2109 2110 if (type & PERF_SAMPLE_IDENTIFIER) { 2111 sample->id = *array; 2112 array--; 2113 } 2114 2115 if (type & PERF_SAMPLE_CPU) { 2116 u.val64 = *array; 2117 if (swapped) { 2118 /* undo swap of u64, then swap on individual u32s */ 2119 u.val64 = bswap_64(u.val64); 2120 u.val32[0] = bswap_32(u.val32[0]); 2121 } 2122 2123 sample->cpu = u.val32[0]; 2124 array--; 2125 } 2126 2127 if (type & PERF_SAMPLE_STREAM_ID) { 2128 sample->stream_id = *array; 2129 array--; 2130 } 2131 2132 if (type & PERF_SAMPLE_ID) { 2133 sample->id = *array; 2134 array--; 2135 } 2136 2137 if (type & PERF_SAMPLE_TIME) { 2138 sample->time = *array; 2139 array--; 2140 } 2141 2142 if (type & PERF_SAMPLE_TID) { 2143 u.val64 = *array; 2144 if (swapped) { 2145 /* undo swap of u64, then swap on individual u32s */ 2146 u.val64 = bswap_64(u.val64); 2147 u.val32[0] = bswap_32(u.val32[0]); 2148 u.val32[1] = bswap_32(u.val32[1]); 2149 } 2150 2151 sample->pid = u.val32[0]; 2152 sample->tid = u.val32[1]; 2153 array--; 2154 } 2155 2156 return 0; 2157 } 2158 2159 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2160 u64 size) 2161 { 2162 return size > max_size || offset + size > endp; 2163 } 2164 2165 #define OVERFLOW_CHECK(offset, size, max_size) \ 2166 do { \ 2167 if (overflow(endp, (max_size), (offset), (size))) \ 2168 return -EFAULT; \ 2169 } while (0) 2170 2171 #define OVERFLOW_CHECK_u64(offset) \ 2172 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2173 2174 static int 2175 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2176 { 2177 /* 2178 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2179 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2180 * check the format does not go past the end of the event. 2181 */ 2182 if (sample_size + sizeof(event->header) > event->header.size) 2183 return -EFAULT; 2184 2185 return 0; 2186 } 2187 2188 int perf_evsel__parse_sample(struct evsel *evsel, union perf_event *event, 2189 struct perf_sample *data) 2190 { 2191 u64 type = evsel->core.attr.sample_type; 2192 bool swapped = evsel->needs_swap; 2193 const u64 *array; 2194 u16 max_size = event->header.size; 2195 const void *endp = (void *)event + max_size; 2196 u64 sz; 2197 2198 /* 2199 * used for cross-endian analysis. See git commit 65014ab3 2200 * for why this goofiness is needed. 2201 */ 2202 union u64_swap u; 2203 2204 memset(data, 0, sizeof(*data)); 2205 data->cpu = data->pid = data->tid = -1; 2206 data->stream_id = data->id = data->time = -1ULL; 2207 data->period = evsel->core.attr.sample_period; 2208 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2209 data->misc = event->header.misc; 2210 data->id = -1ULL; 2211 data->data_src = PERF_MEM_DATA_SRC_NONE; 2212 2213 if (event->header.type != PERF_RECORD_SAMPLE) { 2214 if (!evsel->core.attr.sample_id_all) 2215 return 0; 2216 return perf_evsel__parse_id_sample(evsel, event, data); 2217 } 2218 2219 array = event->sample.array; 2220 2221 if (perf_event__check_size(event, evsel->sample_size)) 2222 return -EFAULT; 2223 2224 if (type & PERF_SAMPLE_IDENTIFIER) { 2225 data->id = *array; 2226 array++; 2227 } 2228 2229 if (type & PERF_SAMPLE_IP) { 2230 data->ip = *array; 2231 array++; 2232 } 2233 2234 if (type & PERF_SAMPLE_TID) { 2235 u.val64 = *array; 2236 if (swapped) { 2237 /* undo swap of u64, then swap on individual u32s */ 2238 u.val64 = bswap_64(u.val64); 2239 u.val32[0] = bswap_32(u.val32[0]); 2240 u.val32[1] = bswap_32(u.val32[1]); 2241 } 2242 2243 data->pid = u.val32[0]; 2244 data->tid = u.val32[1]; 2245 array++; 2246 } 2247 2248 if (type & PERF_SAMPLE_TIME) { 2249 data->time = *array; 2250 array++; 2251 } 2252 2253 if (type & PERF_SAMPLE_ADDR) { 2254 data->addr = *array; 2255 array++; 2256 } 2257 2258 if (type & PERF_SAMPLE_ID) { 2259 data->id = *array; 2260 array++; 2261 } 2262 2263 if (type & PERF_SAMPLE_STREAM_ID) { 2264 data->stream_id = *array; 2265 array++; 2266 } 2267 2268 if (type & PERF_SAMPLE_CPU) { 2269 2270 u.val64 = *array; 2271 if (swapped) { 2272 /* undo swap of u64, then swap on individual u32s */ 2273 u.val64 = bswap_64(u.val64); 2274 u.val32[0] = bswap_32(u.val32[0]); 2275 } 2276 2277 data->cpu = u.val32[0]; 2278 array++; 2279 } 2280 2281 if (type & PERF_SAMPLE_PERIOD) { 2282 data->period = *array; 2283 array++; 2284 } 2285 2286 if (type & PERF_SAMPLE_READ) { 2287 u64 read_format = evsel->core.attr.read_format; 2288 2289 OVERFLOW_CHECK_u64(array); 2290 if (read_format & PERF_FORMAT_GROUP) 2291 data->read.group.nr = *array; 2292 else 2293 data->read.one.value = *array; 2294 2295 array++; 2296 2297 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2298 OVERFLOW_CHECK_u64(array); 2299 data->read.time_enabled = *array; 2300 array++; 2301 } 2302 2303 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2304 OVERFLOW_CHECK_u64(array); 2305 data->read.time_running = *array; 2306 array++; 2307 } 2308 2309 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2310 if (read_format & PERF_FORMAT_GROUP) { 2311 const u64 max_group_nr = UINT64_MAX / 2312 sizeof(struct sample_read_value); 2313 2314 if (data->read.group.nr > max_group_nr) 2315 return -EFAULT; 2316 sz = data->read.group.nr * 2317 sizeof(struct sample_read_value); 2318 OVERFLOW_CHECK(array, sz, max_size); 2319 data->read.group.values = 2320 (struct sample_read_value *)array; 2321 array = (void *)array + sz; 2322 } else { 2323 OVERFLOW_CHECK_u64(array); 2324 data->read.one.id = *array; 2325 array++; 2326 } 2327 } 2328 2329 if (evsel__has_callchain(evsel)) { 2330 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2331 2332 OVERFLOW_CHECK_u64(array); 2333 data->callchain = (struct ip_callchain *)array++; 2334 if (data->callchain->nr > max_callchain_nr) 2335 return -EFAULT; 2336 sz = data->callchain->nr * sizeof(u64); 2337 OVERFLOW_CHECK(array, sz, max_size); 2338 array = (void *)array + sz; 2339 } 2340 2341 if (type & PERF_SAMPLE_RAW) { 2342 OVERFLOW_CHECK_u64(array); 2343 u.val64 = *array; 2344 2345 /* 2346 * Undo swap of u64, then swap on individual u32s, 2347 * get the size of the raw area and undo all of the 2348 * swap. The pevent interface handles endianity by 2349 * itself. 2350 */ 2351 if (swapped) { 2352 u.val64 = bswap_64(u.val64); 2353 u.val32[0] = bswap_32(u.val32[0]); 2354 u.val32[1] = bswap_32(u.val32[1]); 2355 } 2356 data->raw_size = u.val32[0]; 2357 2358 /* 2359 * The raw data is aligned on 64bits including the 2360 * u32 size, so it's safe to use mem_bswap_64. 2361 */ 2362 if (swapped) 2363 mem_bswap_64((void *) array, data->raw_size); 2364 2365 array = (void *)array + sizeof(u32); 2366 2367 OVERFLOW_CHECK(array, data->raw_size, max_size); 2368 data->raw_data = (void *)array; 2369 array = (void *)array + data->raw_size; 2370 } 2371 2372 if (type & PERF_SAMPLE_BRANCH_STACK) { 2373 const u64 max_branch_nr = UINT64_MAX / 2374 sizeof(struct branch_entry); 2375 2376 OVERFLOW_CHECK_u64(array); 2377 data->branch_stack = (struct branch_stack *)array++; 2378 2379 if (data->branch_stack->nr > max_branch_nr) 2380 return -EFAULT; 2381 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2382 OVERFLOW_CHECK(array, sz, max_size); 2383 array = (void *)array + sz; 2384 } 2385 2386 if (type & PERF_SAMPLE_REGS_USER) { 2387 OVERFLOW_CHECK_u64(array); 2388 data->user_regs.abi = *array; 2389 array++; 2390 2391 if (data->user_regs.abi) { 2392 u64 mask = evsel->core.attr.sample_regs_user; 2393 2394 sz = hweight64(mask) * sizeof(u64); 2395 OVERFLOW_CHECK(array, sz, max_size); 2396 data->user_regs.mask = mask; 2397 data->user_regs.regs = (u64 *)array; 2398 array = (void *)array + sz; 2399 } 2400 } 2401 2402 if (type & PERF_SAMPLE_STACK_USER) { 2403 OVERFLOW_CHECK_u64(array); 2404 sz = *array++; 2405 2406 data->user_stack.offset = ((char *)(array - 1) 2407 - (char *) event); 2408 2409 if (!sz) { 2410 data->user_stack.size = 0; 2411 } else { 2412 OVERFLOW_CHECK(array, sz, max_size); 2413 data->user_stack.data = (char *)array; 2414 array = (void *)array + sz; 2415 OVERFLOW_CHECK_u64(array); 2416 data->user_stack.size = *array++; 2417 if (WARN_ONCE(data->user_stack.size > sz, 2418 "user stack dump failure\n")) 2419 return -EFAULT; 2420 } 2421 } 2422 2423 if (type & PERF_SAMPLE_WEIGHT) { 2424 OVERFLOW_CHECK_u64(array); 2425 data->weight = *array; 2426 array++; 2427 } 2428 2429 if (type & PERF_SAMPLE_DATA_SRC) { 2430 OVERFLOW_CHECK_u64(array); 2431 data->data_src = *array; 2432 array++; 2433 } 2434 2435 if (type & PERF_SAMPLE_TRANSACTION) { 2436 OVERFLOW_CHECK_u64(array); 2437 data->transaction = *array; 2438 array++; 2439 } 2440 2441 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2442 if (type & PERF_SAMPLE_REGS_INTR) { 2443 OVERFLOW_CHECK_u64(array); 2444 data->intr_regs.abi = *array; 2445 array++; 2446 2447 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2448 u64 mask = evsel->core.attr.sample_regs_intr; 2449 2450 sz = hweight64(mask) * sizeof(u64); 2451 OVERFLOW_CHECK(array, sz, max_size); 2452 data->intr_regs.mask = mask; 2453 data->intr_regs.regs = (u64 *)array; 2454 array = (void *)array + sz; 2455 } 2456 } 2457 2458 data->phys_addr = 0; 2459 if (type & PERF_SAMPLE_PHYS_ADDR) { 2460 data->phys_addr = *array; 2461 array++; 2462 } 2463 2464 return 0; 2465 } 2466 2467 int perf_evsel__parse_sample_timestamp(struct evsel *evsel, 2468 union perf_event *event, 2469 u64 *timestamp) 2470 { 2471 u64 type = evsel->core.attr.sample_type; 2472 const u64 *array; 2473 2474 if (!(type & PERF_SAMPLE_TIME)) 2475 return -1; 2476 2477 if (event->header.type != PERF_RECORD_SAMPLE) { 2478 struct perf_sample data = { 2479 .time = -1ULL, 2480 }; 2481 2482 if (!evsel->core.attr.sample_id_all) 2483 return -1; 2484 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2485 return -1; 2486 2487 *timestamp = data.time; 2488 return 0; 2489 } 2490 2491 array = event->sample.array; 2492 2493 if (perf_event__check_size(event, evsel->sample_size)) 2494 return -EFAULT; 2495 2496 if (type & PERF_SAMPLE_IDENTIFIER) 2497 array++; 2498 2499 if (type & PERF_SAMPLE_IP) 2500 array++; 2501 2502 if (type & PERF_SAMPLE_TID) 2503 array++; 2504 2505 if (type & PERF_SAMPLE_TIME) 2506 *timestamp = *array; 2507 2508 return 0; 2509 } 2510 2511 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2512 u64 read_format) 2513 { 2514 size_t sz, result = sizeof(struct sample_event); 2515 2516 if (type & PERF_SAMPLE_IDENTIFIER) 2517 result += sizeof(u64); 2518 2519 if (type & PERF_SAMPLE_IP) 2520 result += sizeof(u64); 2521 2522 if (type & PERF_SAMPLE_TID) 2523 result += sizeof(u64); 2524 2525 if (type & PERF_SAMPLE_TIME) 2526 result += sizeof(u64); 2527 2528 if (type & PERF_SAMPLE_ADDR) 2529 result += sizeof(u64); 2530 2531 if (type & PERF_SAMPLE_ID) 2532 result += sizeof(u64); 2533 2534 if (type & PERF_SAMPLE_STREAM_ID) 2535 result += sizeof(u64); 2536 2537 if (type & PERF_SAMPLE_CPU) 2538 result += sizeof(u64); 2539 2540 if (type & PERF_SAMPLE_PERIOD) 2541 result += sizeof(u64); 2542 2543 if (type & PERF_SAMPLE_READ) { 2544 result += sizeof(u64); 2545 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2546 result += sizeof(u64); 2547 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2548 result += sizeof(u64); 2549 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2550 if (read_format & PERF_FORMAT_GROUP) { 2551 sz = sample->read.group.nr * 2552 sizeof(struct sample_read_value); 2553 result += sz; 2554 } else { 2555 result += sizeof(u64); 2556 } 2557 } 2558 2559 if (type & PERF_SAMPLE_CALLCHAIN) { 2560 sz = (sample->callchain->nr + 1) * sizeof(u64); 2561 result += sz; 2562 } 2563 2564 if (type & PERF_SAMPLE_RAW) { 2565 result += sizeof(u32); 2566 result += sample->raw_size; 2567 } 2568 2569 if (type & PERF_SAMPLE_BRANCH_STACK) { 2570 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2571 sz += sizeof(u64); 2572 result += sz; 2573 } 2574 2575 if (type & PERF_SAMPLE_REGS_USER) { 2576 if (sample->user_regs.abi) { 2577 result += sizeof(u64); 2578 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2579 result += sz; 2580 } else { 2581 result += sizeof(u64); 2582 } 2583 } 2584 2585 if (type & PERF_SAMPLE_STACK_USER) { 2586 sz = sample->user_stack.size; 2587 result += sizeof(u64); 2588 if (sz) { 2589 result += sz; 2590 result += sizeof(u64); 2591 } 2592 } 2593 2594 if (type & PERF_SAMPLE_WEIGHT) 2595 result += sizeof(u64); 2596 2597 if (type & PERF_SAMPLE_DATA_SRC) 2598 result += sizeof(u64); 2599 2600 if (type & PERF_SAMPLE_TRANSACTION) 2601 result += sizeof(u64); 2602 2603 if (type & PERF_SAMPLE_REGS_INTR) { 2604 if (sample->intr_regs.abi) { 2605 result += sizeof(u64); 2606 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2607 result += sz; 2608 } else { 2609 result += sizeof(u64); 2610 } 2611 } 2612 2613 if (type & PERF_SAMPLE_PHYS_ADDR) 2614 result += sizeof(u64); 2615 2616 return result; 2617 } 2618 2619 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2620 u64 read_format, 2621 const struct perf_sample *sample) 2622 { 2623 u64 *array; 2624 size_t sz; 2625 /* 2626 * used for cross-endian analysis. See git commit 65014ab3 2627 * for why this goofiness is needed. 2628 */ 2629 union u64_swap u; 2630 2631 array = event->sample.array; 2632 2633 if (type & PERF_SAMPLE_IDENTIFIER) { 2634 *array = sample->id; 2635 array++; 2636 } 2637 2638 if (type & PERF_SAMPLE_IP) { 2639 *array = sample->ip; 2640 array++; 2641 } 2642 2643 if (type & PERF_SAMPLE_TID) { 2644 u.val32[0] = sample->pid; 2645 u.val32[1] = sample->tid; 2646 *array = u.val64; 2647 array++; 2648 } 2649 2650 if (type & PERF_SAMPLE_TIME) { 2651 *array = sample->time; 2652 array++; 2653 } 2654 2655 if (type & PERF_SAMPLE_ADDR) { 2656 *array = sample->addr; 2657 array++; 2658 } 2659 2660 if (type & PERF_SAMPLE_ID) { 2661 *array = sample->id; 2662 array++; 2663 } 2664 2665 if (type & PERF_SAMPLE_STREAM_ID) { 2666 *array = sample->stream_id; 2667 array++; 2668 } 2669 2670 if (type & PERF_SAMPLE_CPU) { 2671 u.val32[0] = sample->cpu; 2672 u.val32[1] = 0; 2673 *array = u.val64; 2674 array++; 2675 } 2676 2677 if (type & PERF_SAMPLE_PERIOD) { 2678 *array = sample->period; 2679 array++; 2680 } 2681 2682 if (type & PERF_SAMPLE_READ) { 2683 if (read_format & PERF_FORMAT_GROUP) 2684 *array = sample->read.group.nr; 2685 else 2686 *array = sample->read.one.value; 2687 array++; 2688 2689 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2690 *array = sample->read.time_enabled; 2691 array++; 2692 } 2693 2694 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2695 *array = sample->read.time_running; 2696 array++; 2697 } 2698 2699 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2700 if (read_format & PERF_FORMAT_GROUP) { 2701 sz = sample->read.group.nr * 2702 sizeof(struct sample_read_value); 2703 memcpy(array, sample->read.group.values, sz); 2704 array = (void *)array + sz; 2705 } else { 2706 *array = sample->read.one.id; 2707 array++; 2708 } 2709 } 2710 2711 if (type & PERF_SAMPLE_CALLCHAIN) { 2712 sz = (sample->callchain->nr + 1) * sizeof(u64); 2713 memcpy(array, sample->callchain, sz); 2714 array = (void *)array + sz; 2715 } 2716 2717 if (type & PERF_SAMPLE_RAW) { 2718 u.val32[0] = sample->raw_size; 2719 *array = u.val64; 2720 array = (void *)array + sizeof(u32); 2721 2722 memcpy(array, sample->raw_data, sample->raw_size); 2723 array = (void *)array + sample->raw_size; 2724 } 2725 2726 if (type & PERF_SAMPLE_BRANCH_STACK) { 2727 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2728 sz += sizeof(u64); 2729 memcpy(array, sample->branch_stack, sz); 2730 array = (void *)array + sz; 2731 } 2732 2733 if (type & PERF_SAMPLE_REGS_USER) { 2734 if (sample->user_regs.abi) { 2735 *array++ = sample->user_regs.abi; 2736 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2737 memcpy(array, sample->user_regs.regs, sz); 2738 array = (void *)array + sz; 2739 } else { 2740 *array++ = 0; 2741 } 2742 } 2743 2744 if (type & PERF_SAMPLE_STACK_USER) { 2745 sz = sample->user_stack.size; 2746 *array++ = sz; 2747 if (sz) { 2748 memcpy(array, sample->user_stack.data, sz); 2749 array = (void *)array + sz; 2750 *array++ = sz; 2751 } 2752 } 2753 2754 if (type & PERF_SAMPLE_WEIGHT) { 2755 *array = sample->weight; 2756 array++; 2757 } 2758 2759 if (type & PERF_SAMPLE_DATA_SRC) { 2760 *array = sample->data_src; 2761 array++; 2762 } 2763 2764 if (type & PERF_SAMPLE_TRANSACTION) { 2765 *array = sample->transaction; 2766 array++; 2767 } 2768 2769 if (type & PERF_SAMPLE_REGS_INTR) { 2770 if (sample->intr_regs.abi) { 2771 *array++ = sample->intr_regs.abi; 2772 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2773 memcpy(array, sample->intr_regs.regs, sz); 2774 array = (void *)array + sz; 2775 } else { 2776 *array++ = 0; 2777 } 2778 } 2779 2780 if (type & PERF_SAMPLE_PHYS_ADDR) { 2781 *array = sample->phys_addr; 2782 array++; 2783 } 2784 2785 return 0; 2786 } 2787 2788 struct tep_format_field *perf_evsel__field(struct evsel *evsel, const char *name) 2789 { 2790 return tep_find_field(evsel->tp_format, name); 2791 } 2792 2793 void *perf_evsel__rawptr(struct evsel *evsel, struct perf_sample *sample, 2794 const char *name) 2795 { 2796 struct tep_format_field *field = perf_evsel__field(evsel, name); 2797 int offset; 2798 2799 if (!field) 2800 return NULL; 2801 2802 offset = field->offset; 2803 2804 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2805 offset = *(int *)(sample->raw_data + field->offset); 2806 offset &= 0xffff; 2807 } 2808 2809 return sample->raw_data + offset; 2810 } 2811 2812 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2813 bool needs_swap) 2814 { 2815 u64 value; 2816 void *ptr = sample->raw_data + field->offset; 2817 2818 switch (field->size) { 2819 case 1: 2820 return *(u8 *)ptr; 2821 case 2: 2822 value = *(u16 *)ptr; 2823 break; 2824 case 4: 2825 value = *(u32 *)ptr; 2826 break; 2827 case 8: 2828 memcpy(&value, ptr, sizeof(u64)); 2829 break; 2830 default: 2831 return 0; 2832 } 2833 2834 if (!needs_swap) 2835 return value; 2836 2837 switch (field->size) { 2838 case 2: 2839 return bswap_16(value); 2840 case 4: 2841 return bswap_32(value); 2842 case 8: 2843 return bswap_64(value); 2844 default: 2845 return 0; 2846 } 2847 2848 return 0; 2849 } 2850 2851 u64 perf_evsel__intval(struct evsel *evsel, struct perf_sample *sample, 2852 const char *name) 2853 { 2854 struct tep_format_field *field = perf_evsel__field(evsel, name); 2855 2856 if (!field) 2857 return 0; 2858 2859 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2860 } 2861 2862 bool perf_evsel__fallback(struct evsel *evsel, int err, 2863 char *msg, size_t msgsize) 2864 { 2865 int paranoid; 2866 2867 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2868 evsel->core.attr.type == PERF_TYPE_HARDWARE && 2869 evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2870 /* 2871 * If it's cycles then fall back to hrtimer based 2872 * cpu-clock-tick sw counter, which is always available even if 2873 * no PMU support. 2874 * 2875 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2876 * b0a873e). 2877 */ 2878 scnprintf(msg, msgsize, "%s", 2879 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2880 2881 evsel->core.attr.type = PERF_TYPE_SOFTWARE; 2882 evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK; 2883 2884 zfree(&evsel->name); 2885 return true; 2886 } else if (err == EACCES && !evsel->core.attr.exclude_kernel && 2887 (paranoid = perf_event_paranoid()) > 1) { 2888 const char *name = perf_evsel__name(evsel); 2889 char *new_name; 2890 const char *sep = ":"; 2891 2892 /* Is there already the separator in the name. */ 2893 if (strchr(name, '/') || 2894 strchr(name, ':')) 2895 sep = ""; 2896 2897 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2898 return false; 2899 2900 if (evsel->name) 2901 free(evsel->name); 2902 evsel->name = new_name; 2903 scnprintf(msg, msgsize, 2904 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2905 evsel->core.attr.exclude_kernel = 1; 2906 2907 return true; 2908 } 2909 2910 return false; 2911 } 2912 2913 static bool find_process(const char *name) 2914 { 2915 size_t len = strlen(name); 2916 DIR *dir; 2917 struct dirent *d; 2918 int ret = -1; 2919 2920 dir = opendir(procfs__mountpoint()); 2921 if (!dir) 2922 return false; 2923 2924 /* Walk through the directory. */ 2925 while (ret && (d = readdir(dir)) != NULL) { 2926 char path[PATH_MAX]; 2927 char *data; 2928 size_t size; 2929 2930 if ((d->d_type != DT_DIR) || 2931 !strcmp(".", d->d_name) || 2932 !strcmp("..", d->d_name)) 2933 continue; 2934 2935 scnprintf(path, sizeof(path), "%s/%s/comm", 2936 procfs__mountpoint(), d->d_name); 2937 2938 if (filename__read_str(path, &data, &size)) 2939 continue; 2940 2941 ret = strncmp(name, data, len); 2942 free(data); 2943 } 2944 2945 closedir(dir); 2946 return ret ? false : true; 2947 } 2948 2949 int perf_evsel__open_strerror(struct evsel *evsel, struct target *target, 2950 int err, char *msg, size_t size) 2951 { 2952 char sbuf[STRERR_BUFSIZE]; 2953 int printed = 0; 2954 2955 switch (err) { 2956 case EPERM: 2957 case EACCES: 2958 if (err == EPERM) 2959 printed = scnprintf(msg, size, 2960 "No permission to enable %s event.\n\n", 2961 perf_evsel__name(evsel)); 2962 2963 return scnprintf(msg + printed, size - printed, 2964 "You may not have permission to collect %sstats.\n\n" 2965 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2966 "which controls use of the performance events system by\n" 2967 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2968 "The current value is %d:\n\n" 2969 " -1: Allow use of (almost) all events by all users\n" 2970 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2971 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2972 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2973 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2974 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2975 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2976 " kernel.perf_event_paranoid = -1\n" , 2977 target->system_wide ? "system-wide " : "", 2978 perf_event_paranoid()); 2979 case ENOENT: 2980 return scnprintf(msg, size, "The %s event is not supported.", 2981 perf_evsel__name(evsel)); 2982 case EMFILE: 2983 return scnprintf(msg, size, "%s", 2984 "Too many events are opened.\n" 2985 "Probably the maximum number of open file descriptors has been reached.\n" 2986 "Hint: Try again after reducing the number of events.\n" 2987 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2988 case ENOMEM: 2989 if (evsel__has_callchain(evsel) && 2990 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2991 return scnprintf(msg, size, 2992 "Not enough memory to setup event with callchain.\n" 2993 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2994 "Hint: Current value: %d", sysctl__max_stack()); 2995 break; 2996 case ENODEV: 2997 if (target->cpu_list) 2998 return scnprintf(msg, size, "%s", 2999 "No such device - did you specify an out-of-range profile CPU?"); 3000 break; 3001 case EOPNOTSUPP: 3002 if (evsel->core.attr.sample_period != 0) 3003 return scnprintf(msg, size, 3004 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 3005 perf_evsel__name(evsel)); 3006 if (evsel->core.attr.precise_ip) 3007 return scnprintf(msg, size, "%s", 3008 "\'precise\' request may not be supported. Try removing 'p' modifier."); 3009 #if defined(__i386__) || defined(__x86_64__) 3010 if (evsel->core.attr.type == PERF_TYPE_HARDWARE) 3011 return scnprintf(msg, size, "%s", 3012 "No hardware sampling interrupt available.\n"); 3013 #endif 3014 break; 3015 case EBUSY: 3016 if (find_process("oprofiled")) 3017 return scnprintf(msg, size, 3018 "The PMU counters are busy/taken by another profiler.\n" 3019 "We found oprofile daemon running, please stop it and try again."); 3020 break; 3021 case EINVAL: 3022 if (evsel->core.attr.write_backward && perf_missing_features.write_backward) 3023 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 3024 if (perf_missing_features.clockid) 3025 return scnprintf(msg, size, "clockid feature not supported."); 3026 if (perf_missing_features.clockid_wrong) 3027 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 3028 break; 3029 default: 3030 break; 3031 } 3032 3033 return scnprintf(msg, size, 3034 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 3035 "/bin/dmesg | grep -i perf may provide additional information.\n", 3036 err, str_error_r(err, sbuf, sizeof(sbuf)), 3037 perf_evsel__name(evsel)); 3038 } 3039 3040 struct perf_env *perf_evsel__env(struct evsel *evsel) 3041 { 3042 if (evsel && evsel->evlist) 3043 return evsel->evlist->env; 3044 return NULL; 3045 } 3046 3047 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist) 3048 { 3049 int cpu, thread; 3050 3051 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 3052 for (thread = 0; thread < xyarray__max_y(evsel->fd); 3053 thread++) { 3054 int fd = FD(evsel, cpu, thread); 3055 3056 if (perf_evlist__id_add_fd(evlist, evsel, 3057 cpu, thread, fd) < 0) 3058 return -1; 3059 } 3060 } 3061 3062 return 0; 3063 } 3064 3065 int perf_evsel__store_ids(struct evsel *evsel, struct evlist *evlist) 3066 { 3067 struct perf_cpu_map *cpus = evsel->core.cpus; 3068 struct perf_thread_map *threads = evsel->threads; 3069 3070 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 3071 return -ENOMEM; 3072 3073 return store_evsel_ids(evsel, evlist); 3074 } 3075