xref: /openbmc/linux/tools/perf/util/evsel.c (revision fe1f61b37ffada9fc7ec2c9d4ca5376b5a797dbc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4  *
5  * Parts came from builtin-{top,stat,record}.c, see those files for further
6  * copyright notes.
7  */
8 
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <linux/zalloc.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include <perf/evsel.h>
26 #include "asm/bug.h"
27 #include "callchain.h"
28 #include "cgroup.h"
29 #include "event.h"
30 #include "evsel.h"
31 #include "evlist.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "string2.h"
40 #include "memswap.h"
41 #include "util/parse-branch-options.h"
42 
43 #include <linux/ctype.h>
44 
45 struct perf_missing_features perf_missing_features;
46 
47 static clockid_t clockid;
48 
49 static int perf_evsel__no_extra_init(struct evsel *evsel __maybe_unused)
50 {
51 	return 0;
52 }
53 
54 void __weak test_attr__ready(void) { }
55 
56 static void perf_evsel__no_extra_fini(struct evsel *evsel __maybe_unused)
57 {
58 }
59 
60 static struct {
61 	size_t	size;
62 	int	(*init)(struct evsel *evsel);
63 	void	(*fini)(struct evsel *evsel);
64 } perf_evsel__object = {
65 	.size = sizeof(struct evsel),
66 	.init = perf_evsel__no_extra_init,
67 	.fini = perf_evsel__no_extra_fini,
68 };
69 
70 int perf_evsel__object_config(size_t object_size,
71 			      int (*init)(struct evsel *evsel),
72 			      void (*fini)(struct evsel *evsel))
73 {
74 
75 	if (object_size == 0)
76 		goto set_methods;
77 
78 	if (perf_evsel__object.size > object_size)
79 		return -EINVAL;
80 
81 	perf_evsel__object.size = object_size;
82 
83 set_methods:
84 	if (init != NULL)
85 		perf_evsel__object.init = init;
86 
87 	if (fini != NULL)
88 		perf_evsel__object.fini = fini;
89 
90 	return 0;
91 }
92 
93 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
94 
95 int __perf_evsel__sample_size(u64 sample_type)
96 {
97 	u64 mask = sample_type & PERF_SAMPLE_MASK;
98 	int size = 0;
99 	int i;
100 
101 	for (i = 0; i < 64; i++) {
102 		if (mask & (1ULL << i))
103 			size++;
104 	}
105 
106 	size *= sizeof(u64);
107 
108 	return size;
109 }
110 
111 /**
112  * __perf_evsel__calc_id_pos - calculate id_pos.
113  * @sample_type: sample type
114  *
115  * This function returns the position of the event id (PERF_SAMPLE_ID or
116  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
117  * sample_event.
118  */
119 static int __perf_evsel__calc_id_pos(u64 sample_type)
120 {
121 	int idx = 0;
122 
123 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
124 		return 0;
125 
126 	if (!(sample_type & PERF_SAMPLE_ID))
127 		return -1;
128 
129 	if (sample_type & PERF_SAMPLE_IP)
130 		idx += 1;
131 
132 	if (sample_type & PERF_SAMPLE_TID)
133 		idx += 1;
134 
135 	if (sample_type & PERF_SAMPLE_TIME)
136 		idx += 1;
137 
138 	if (sample_type & PERF_SAMPLE_ADDR)
139 		idx += 1;
140 
141 	return idx;
142 }
143 
144 /**
145  * __perf_evsel__calc_is_pos - calculate is_pos.
146  * @sample_type: sample type
147  *
148  * This function returns the position (counting backwards) of the event id
149  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
150  * sample_id_all is used there is an id sample appended to non-sample events.
151  */
152 static int __perf_evsel__calc_is_pos(u64 sample_type)
153 {
154 	int idx = 1;
155 
156 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
157 		return 1;
158 
159 	if (!(sample_type & PERF_SAMPLE_ID))
160 		return -1;
161 
162 	if (sample_type & PERF_SAMPLE_CPU)
163 		idx += 1;
164 
165 	if (sample_type & PERF_SAMPLE_STREAM_ID)
166 		idx += 1;
167 
168 	return idx;
169 }
170 
171 void perf_evsel__calc_id_pos(struct evsel *evsel)
172 {
173 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type);
174 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type);
175 }
176 
177 void __perf_evsel__set_sample_bit(struct evsel *evsel,
178 				  enum perf_event_sample_format bit)
179 {
180 	if (!(evsel->core.attr.sample_type & bit)) {
181 		evsel->core.attr.sample_type |= bit;
182 		evsel->sample_size += sizeof(u64);
183 		perf_evsel__calc_id_pos(evsel);
184 	}
185 }
186 
187 void __perf_evsel__reset_sample_bit(struct evsel *evsel,
188 				    enum perf_event_sample_format bit)
189 {
190 	if (evsel->core.attr.sample_type & bit) {
191 		evsel->core.attr.sample_type &= ~bit;
192 		evsel->sample_size -= sizeof(u64);
193 		perf_evsel__calc_id_pos(evsel);
194 	}
195 }
196 
197 void perf_evsel__set_sample_id(struct evsel *evsel,
198 			       bool can_sample_identifier)
199 {
200 	if (can_sample_identifier) {
201 		perf_evsel__reset_sample_bit(evsel, ID);
202 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
203 	} else {
204 		perf_evsel__set_sample_bit(evsel, ID);
205 	}
206 	evsel->core.attr.read_format |= PERF_FORMAT_ID;
207 }
208 
209 /**
210  * perf_evsel__is_function_event - Return whether given evsel is a function
211  * trace event
212  *
213  * @evsel - evsel selector to be tested
214  *
215  * Return %true if event is function trace event
216  */
217 bool perf_evsel__is_function_event(struct evsel *evsel)
218 {
219 #define FUNCTION_EVENT "ftrace:function"
220 
221 	return evsel->name &&
222 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
223 
224 #undef FUNCTION_EVENT
225 }
226 
227 void evsel__init(struct evsel *evsel,
228 		 struct perf_event_attr *attr, int idx)
229 {
230 	perf_evsel__init(&evsel->core, attr);
231 	evsel->idx	   = idx;
232 	evsel->tracking	   = !idx;
233 	evsel->leader	   = evsel;
234 	evsel->unit	   = "";
235 	evsel->scale	   = 1.0;
236 	evsel->max_events  = ULONG_MAX;
237 	evsel->evlist	   = NULL;
238 	evsel->bpf_obj	   = NULL;
239 	evsel->bpf_fd	   = -1;
240 	INIT_LIST_HEAD(&evsel->config_terms);
241 	perf_evsel__object.init(evsel);
242 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
243 	perf_evsel__calc_id_pos(evsel);
244 	evsel->cmdline_group_boundary = false;
245 	evsel->metric_expr   = NULL;
246 	evsel->metric_name   = NULL;
247 	evsel->metric_events = NULL;
248 	evsel->collect_stat  = false;
249 	evsel->pmu_name      = NULL;
250 }
251 
252 struct evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
253 {
254 	struct evsel *evsel = zalloc(perf_evsel__object.size);
255 
256 	if (!evsel)
257 		return NULL;
258 	evsel__init(evsel, attr, idx);
259 
260 	if (perf_evsel__is_bpf_output(evsel)) {
261 		evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
262 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
263 		evsel->core.attr.sample_period = 1;
264 	}
265 
266 	if (perf_evsel__is_clock(evsel)) {
267 		/*
268 		 * The evsel->unit points to static alias->unit
269 		 * so it's ok to use static string in here.
270 		 */
271 		static const char *unit = "msec";
272 
273 		evsel->unit = unit;
274 		evsel->scale = 1e-6;
275 	}
276 
277 	return evsel;
278 }
279 
280 static bool perf_event_can_profile_kernel(void)
281 {
282 	return geteuid() == 0 || perf_event_paranoid() == -1;
283 }
284 
285 struct evsel *perf_evsel__new_cycles(bool precise)
286 {
287 	struct perf_event_attr attr = {
288 		.type	= PERF_TYPE_HARDWARE,
289 		.config	= PERF_COUNT_HW_CPU_CYCLES,
290 		.exclude_kernel	= !perf_event_can_profile_kernel(),
291 	};
292 	struct evsel *evsel;
293 
294 	event_attr_init(&attr);
295 
296 	if (!precise)
297 		goto new_event;
298 
299 	/*
300 	 * Now let the usual logic to set up the perf_event_attr defaults
301 	 * to kick in when we return and before perf_evsel__open() is called.
302 	 */
303 new_event:
304 	evsel = evsel__new(&attr);
305 	if (evsel == NULL)
306 		goto out;
307 
308 	evsel->precise_max = true;
309 
310 	/* use asprintf() because free(evsel) assumes name is allocated */
311 	if (asprintf(&evsel->name, "cycles%s%s%.*s",
312 		     (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
313 		     attr.exclude_kernel ? "u" : "",
314 		     attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
315 		goto error_free;
316 out:
317 	return evsel;
318 error_free:
319 	evsel__delete(evsel);
320 	evsel = NULL;
321 	goto out;
322 }
323 
324 /*
325  * Returns pointer with encoded error via <linux/err.h> interface.
326  */
327 struct evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
328 {
329 	struct evsel *evsel = zalloc(perf_evsel__object.size);
330 	int err = -ENOMEM;
331 
332 	if (evsel == NULL) {
333 		goto out_err;
334 	} else {
335 		struct perf_event_attr attr = {
336 			.type	       = PERF_TYPE_TRACEPOINT,
337 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
338 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
339 		};
340 
341 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
342 			goto out_free;
343 
344 		evsel->tp_format = trace_event__tp_format(sys, name);
345 		if (IS_ERR(evsel->tp_format)) {
346 			err = PTR_ERR(evsel->tp_format);
347 			goto out_free;
348 		}
349 
350 		event_attr_init(&attr);
351 		attr.config = evsel->tp_format->id;
352 		attr.sample_period = 1;
353 		evsel__init(evsel, &attr, idx);
354 	}
355 
356 	return evsel;
357 
358 out_free:
359 	zfree(&evsel->name);
360 	free(evsel);
361 out_err:
362 	return ERR_PTR(err);
363 }
364 
365 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
366 	"cycles",
367 	"instructions",
368 	"cache-references",
369 	"cache-misses",
370 	"branches",
371 	"branch-misses",
372 	"bus-cycles",
373 	"stalled-cycles-frontend",
374 	"stalled-cycles-backend",
375 	"ref-cycles",
376 };
377 
378 static const char *__perf_evsel__hw_name(u64 config)
379 {
380 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
381 		return perf_evsel__hw_names[config];
382 
383 	return "unknown-hardware";
384 }
385 
386 static int perf_evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size)
387 {
388 	int colon = 0, r = 0;
389 	struct perf_event_attr *attr = &evsel->core.attr;
390 	bool exclude_guest_default = false;
391 
392 #define MOD_PRINT(context, mod)	do {					\
393 		if (!attr->exclude_##context) {				\
394 			if (!colon) colon = ++r;			\
395 			r += scnprintf(bf + r, size - r, "%c", mod);	\
396 		} } while(0)
397 
398 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
399 		MOD_PRINT(kernel, 'k');
400 		MOD_PRINT(user, 'u');
401 		MOD_PRINT(hv, 'h');
402 		exclude_guest_default = true;
403 	}
404 
405 	if (attr->precise_ip) {
406 		if (!colon)
407 			colon = ++r;
408 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
409 		exclude_guest_default = true;
410 	}
411 
412 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
413 		MOD_PRINT(host, 'H');
414 		MOD_PRINT(guest, 'G');
415 	}
416 #undef MOD_PRINT
417 	if (colon)
418 		bf[colon - 1] = ':';
419 	return r;
420 }
421 
422 static int perf_evsel__hw_name(struct evsel *evsel, char *bf, size_t size)
423 {
424 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->core.attr.config));
425 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
426 }
427 
428 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
429 	"cpu-clock",
430 	"task-clock",
431 	"page-faults",
432 	"context-switches",
433 	"cpu-migrations",
434 	"minor-faults",
435 	"major-faults",
436 	"alignment-faults",
437 	"emulation-faults",
438 	"dummy",
439 };
440 
441 static const char *__perf_evsel__sw_name(u64 config)
442 {
443 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
444 		return perf_evsel__sw_names[config];
445 	return "unknown-software";
446 }
447 
448 static int perf_evsel__sw_name(struct evsel *evsel, char *bf, size_t size)
449 {
450 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->core.attr.config));
451 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
452 }
453 
454 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
455 {
456 	int r;
457 
458 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
459 
460 	if (type & HW_BREAKPOINT_R)
461 		r += scnprintf(bf + r, size - r, "r");
462 
463 	if (type & HW_BREAKPOINT_W)
464 		r += scnprintf(bf + r, size - r, "w");
465 
466 	if (type & HW_BREAKPOINT_X)
467 		r += scnprintf(bf + r, size - r, "x");
468 
469 	return r;
470 }
471 
472 static int perf_evsel__bp_name(struct evsel *evsel, char *bf, size_t size)
473 {
474 	struct perf_event_attr *attr = &evsel->core.attr;
475 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
476 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
477 }
478 
479 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
480 				[PERF_EVSEL__MAX_ALIASES] = {
481  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
482  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
483  { "LLC",	"L2",							},
484  { "dTLB",	"d-tlb",	"Data-TLB",				},
485  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
486  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
487  { "node",								},
488 };
489 
490 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
491 				   [PERF_EVSEL__MAX_ALIASES] = {
492  { "load",	"loads",	"read",					},
493  { "store",	"stores",	"write",				},
494  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
495 };
496 
497 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
498 				       [PERF_EVSEL__MAX_ALIASES] = {
499  { "refs",	"Reference",	"ops",		"access",		},
500  { "misses",	"miss",							},
501 };
502 
503 #define C(x)		PERF_COUNT_HW_CACHE_##x
504 #define CACHE_READ	(1 << C(OP_READ))
505 #define CACHE_WRITE	(1 << C(OP_WRITE))
506 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
507 #define COP(x)		(1 << x)
508 
509 /*
510  * cache operartion stat
511  * L1I : Read and prefetch only
512  * ITLB and BPU : Read-only
513  */
514 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
515  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
516  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
517  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
519  [C(ITLB)]	= (CACHE_READ),
520  [C(BPU)]	= (CACHE_READ),
521  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
522 };
523 
524 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
525 {
526 	if (perf_evsel__hw_cache_stat[type] & COP(op))
527 		return true;	/* valid */
528 	else
529 		return false;	/* invalid */
530 }
531 
532 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
533 					    char *bf, size_t size)
534 {
535 	if (result) {
536 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
537 				 perf_evsel__hw_cache_op[op][0],
538 				 perf_evsel__hw_cache_result[result][0]);
539 	}
540 
541 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
542 			 perf_evsel__hw_cache_op[op][1]);
543 }
544 
545 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
546 {
547 	u8 op, result, type = (config >>  0) & 0xff;
548 	const char *err = "unknown-ext-hardware-cache-type";
549 
550 	if (type >= PERF_COUNT_HW_CACHE_MAX)
551 		goto out_err;
552 
553 	op = (config >>  8) & 0xff;
554 	err = "unknown-ext-hardware-cache-op";
555 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
556 		goto out_err;
557 
558 	result = (config >> 16) & 0xff;
559 	err = "unknown-ext-hardware-cache-result";
560 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
561 		goto out_err;
562 
563 	err = "invalid-cache";
564 	if (!perf_evsel__is_cache_op_valid(type, op))
565 		goto out_err;
566 
567 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
568 out_err:
569 	return scnprintf(bf, size, "%s", err);
570 }
571 
572 static int perf_evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size)
573 {
574 	int ret = __perf_evsel__hw_cache_name(evsel->core.attr.config, bf, size);
575 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
576 }
577 
578 static int perf_evsel__raw_name(struct evsel *evsel, char *bf, size_t size)
579 {
580 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config);
581 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
582 }
583 
584 static int perf_evsel__tool_name(char *bf, size_t size)
585 {
586 	int ret = scnprintf(bf, size, "duration_time");
587 	return ret;
588 }
589 
590 const char *perf_evsel__name(struct evsel *evsel)
591 {
592 	char bf[128];
593 
594 	if (!evsel)
595 		goto out_unknown;
596 
597 	if (evsel->name)
598 		return evsel->name;
599 
600 	switch (evsel->core.attr.type) {
601 	case PERF_TYPE_RAW:
602 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
603 		break;
604 
605 	case PERF_TYPE_HARDWARE:
606 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
607 		break;
608 
609 	case PERF_TYPE_HW_CACHE:
610 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
611 		break;
612 
613 	case PERF_TYPE_SOFTWARE:
614 		if (evsel->tool_event)
615 			perf_evsel__tool_name(bf, sizeof(bf));
616 		else
617 			perf_evsel__sw_name(evsel, bf, sizeof(bf));
618 		break;
619 
620 	case PERF_TYPE_TRACEPOINT:
621 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
622 		break;
623 
624 	case PERF_TYPE_BREAKPOINT:
625 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
626 		break;
627 
628 	default:
629 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
630 			  evsel->core.attr.type);
631 		break;
632 	}
633 
634 	evsel->name = strdup(bf);
635 
636 	if (evsel->name)
637 		return evsel->name;
638 out_unknown:
639 	return "unknown";
640 }
641 
642 const char *perf_evsel__group_name(struct evsel *evsel)
643 {
644 	return evsel->group_name ?: "anon group";
645 }
646 
647 /*
648  * Returns the group details for the specified leader,
649  * with following rules.
650  *
651  *  For record -e '{cycles,instructions}'
652  *    'anon group { cycles:u, instructions:u }'
653  *
654  *  For record -e 'cycles,instructions' and report --group
655  *    'cycles:u, instructions:u'
656  */
657 int perf_evsel__group_desc(struct evsel *evsel, char *buf, size_t size)
658 {
659 	int ret = 0;
660 	struct evsel *pos;
661 	const char *group_name = perf_evsel__group_name(evsel);
662 
663 	if (!evsel->forced_leader)
664 		ret = scnprintf(buf, size, "%s { ", group_name);
665 
666 	ret += scnprintf(buf + ret, size - ret, "%s",
667 			 perf_evsel__name(evsel));
668 
669 	for_each_group_member(pos, evsel)
670 		ret += scnprintf(buf + ret, size - ret, ", %s",
671 				 perf_evsel__name(pos));
672 
673 	if (!evsel->forced_leader)
674 		ret += scnprintf(buf + ret, size - ret, " }");
675 
676 	return ret;
677 }
678 
679 static void __perf_evsel__config_callchain(struct evsel *evsel,
680 					   struct record_opts *opts,
681 					   struct callchain_param *param)
682 {
683 	bool function = perf_evsel__is_function_event(evsel);
684 	struct perf_event_attr *attr = &evsel->core.attr;
685 
686 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
687 
688 	attr->sample_max_stack = param->max_stack;
689 
690 	if (opts->kernel_callchains)
691 		attr->exclude_callchain_user = 1;
692 	if (opts->user_callchains)
693 		attr->exclude_callchain_kernel = 1;
694 	if (param->record_mode == CALLCHAIN_LBR) {
695 		if (!opts->branch_stack) {
696 			if (attr->exclude_user) {
697 				pr_warning("LBR callstack option is only available "
698 					   "to get user callchain information. "
699 					   "Falling back to framepointers.\n");
700 			} else {
701 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
702 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
703 							PERF_SAMPLE_BRANCH_CALL_STACK |
704 							PERF_SAMPLE_BRANCH_NO_CYCLES |
705 							PERF_SAMPLE_BRANCH_NO_FLAGS;
706 			}
707 		} else
708 			 pr_warning("Cannot use LBR callstack with branch stack. "
709 				    "Falling back to framepointers.\n");
710 	}
711 
712 	if (param->record_mode == CALLCHAIN_DWARF) {
713 		if (!function) {
714 			perf_evsel__set_sample_bit(evsel, REGS_USER);
715 			perf_evsel__set_sample_bit(evsel, STACK_USER);
716 			if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
717 				attr->sample_regs_user |= DWARF_MINIMAL_REGS;
718 				pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
719 					   "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
720 					   "so the minimal registers set (IP, SP) is explicitly forced.\n");
721 			} else {
722 				attr->sample_regs_user |= PERF_REGS_MASK;
723 			}
724 			attr->sample_stack_user = param->dump_size;
725 			attr->exclude_callchain_user = 1;
726 		} else {
727 			pr_info("Cannot use DWARF unwind for function trace event,"
728 				" falling back to framepointers.\n");
729 		}
730 	}
731 
732 	if (function) {
733 		pr_info("Disabling user space callchains for function trace event.\n");
734 		attr->exclude_callchain_user = 1;
735 	}
736 }
737 
738 void perf_evsel__config_callchain(struct evsel *evsel,
739 				  struct record_opts *opts,
740 				  struct callchain_param *param)
741 {
742 	if (param->enabled)
743 		return __perf_evsel__config_callchain(evsel, opts, param);
744 }
745 
746 static void
747 perf_evsel__reset_callgraph(struct evsel *evsel,
748 			    struct callchain_param *param)
749 {
750 	struct perf_event_attr *attr = &evsel->core.attr;
751 
752 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
753 	if (param->record_mode == CALLCHAIN_LBR) {
754 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
755 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
756 					      PERF_SAMPLE_BRANCH_CALL_STACK);
757 	}
758 	if (param->record_mode == CALLCHAIN_DWARF) {
759 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
760 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
761 	}
762 }
763 
764 static void apply_config_terms(struct evsel *evsel,
765 			       struct record_opts *opts, bool track)
766 {
767 	struct perf_evsel_config_term *term;
768 	struct list_head *config_terms = &evsel->config_terms;
769 	struct perf_event_attr *attr = &evsel->core.attr;
770 	/* callgraph default */
771 	struct callchain_param param = {
772 		.record_mode = callchain_param.record_mode,
773 	};
774 	u32 dump_size = 0;
775 	int max_stack = 0;
776 	const char *callgraph_buf = NULL;
777 
778 	list_for_each_entry(term, config_terms, list) {
779 		switch (term->type) {
780 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
781 			if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
782 				attr->sample_period = term->val.period;
783 				attr->freq = 0;
784 				perf_evsel__reset_sample_bit(evsel, PERIOD);
785 			}
786 			break;
787 		case PERF_EVSEL__CONFIG_TERM_FREQ:
788 			if (!(term->weak && opts->user_freq != UINT_MAX)) {
789 				attr->sample_freq = term->val.freq;
790 				attr->freq = 1;
791 				perf_evsel__set_sample_bit(evsel, PERIOD);
792 			}
793 			break;
794 		case PERF_EVSEL__CONFIG_TERM_TIME:
795 			if (term->val.time)
796 				perf_evsel__set_sample_bit(evsel, TIME);
797 			else
798 				perf_evsel__reset_sample_bit(evsel, TIME);
799 			break;
800 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
801 			callgraph_buf = term->val.callgraph;
802 			break;
803 		case PERF_EVSEL__CONFIG_TERM_BRANCH:
804 			if (term->val.branch && strcmp(term->val.branch, "no")) {
805 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
806 				parse_branch_str(term->val.branch,
807 						 &attr->branch_sample_type);
808 			} else
809 				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
810 			break;
811 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
812 			dump_size = term->val.stack_user;
813 			break;
814 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
815 			max_stack = term->val.max_stack;
816 			break;
817 		case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
818 			evsel->max_events = term->val.max_events;
819 			break;
820 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
821 			/*
822 			 * attr->inherit should has already been set by
823 			 * perf_evsel__config. If user explicitly set
824 			 * inherit using config terms, override global
825 			 * opt->no_inherit setting.
826 			 */
827 			attr->inherit = term->val.inherit ? 1 : 0;
828 			break;
829 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
830 			attr->write_backward = term->val.overwrite ? 1 : 0;
831 			break;
832 		case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
833 			break;
834 		case PERF_EVSEL__CONFIG_TERM_PERCORE:
835 			break;
836 		default:
837 			break;
838 		}
839 	}
840 
841 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
842 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
843 		bool sample_address = false;
844 
845 		if (max_stack) {
846 			param.max_stack = max_stack;
847 			if (callgraph_buf == NULL)
848 				callgraph_buf = "fp";
849 		}
850 
851 		/* parse callgraph parameters */
852 		if (callgraph_buf != NULL) {
853 			if (!strcmp(callgraph_buf, "no")) {
854 				param.enabled = false;
855 				param.record_mode = CALLCHAIN_NONE;
856 			} else {
857 				param.enabled = true;
858 				if (parse_callchain_record(callgraph_buf, &param)) {
859 					pr_err("per-event callgraph setting for %s failed. "
860 					       "Apply callgraph global setting for it\n",
861 					       evsel->name);
862 					return;
863 				}
864 				if (param.record_mode == CALLCHAIN_DWARF)
865 					sample_address = true;
866 			}
867 		}
868 		if (dump_size > 0) {
869 			dump_size = round_up(dump_size, sizeof(u64));
870 			param.dump_size = dump_size;
871 		}
872 
873 		/* If global callgraph set, clear it */
874 		if (callchain_param.enabled)
875 			perf_evsel__reset_callgraph(evsel, &callchain_param);
876 
877 		/* set perf-event callgraph */
878 		if (param.enabled) {
879 			if (sample_address) {
880 				perf_evsel__set_sample_bit(evsel, ADDR);
881 				perf_evsel__set_sample_bit(evsel, DATA_SRC);
882 				evsel->core.attr.mmap_data = track;
883 			}
884 			perf_evsel__config_callchain(evsel, opts, &param);
885 		}
886 	}
887 }
888 
889 static bool is_dummy_event(struct evsel *evsel)
890 {
891 	return (evsel->core.attr.type == PERF_TYPE_SOFTWARE) &&
892 	       (evsel->core.attr.config == PERF_COUNT_SW_DUMMY);
893 }
894 
895 /*
896  * The enable_on_exec/disabled value strategy:
897  *
898  *  1) For any type of traced program:
899  *    - all independent events and group leaders are disabled
900  *    - all group members are enabled
901  *
902  *     Group members are ruled by group leaders. They need to
903  *     be enabled, because the group scheduling relies on that.
904  *
905  *  2) For traced programs executed by perf:
906  *     - all independent events and group leaders have
907  *       enable_on_exec set
908  *     - we don't specifically enable or disable any event during
909  *       the record command
910  *
911  *     Independent events and group leaders are initially disabled
912  *     and get enabled by exec. Group members are ruled by group
913  *     leaders as stated in 1).
914  *
915  *  3) For traced programs attached by perf (pid/tid):
916  *     - we specifically enable or disable all events during
917  *       the record command
918  *
919  *     When attaching events to already running traced we
920  *     enable/disable events specifically, as there's no
921  *     initial traced exec call.
922  */
923 void perf_evsel__config(struct evsel *evsel, struct record_opts *opts,
924 			struct callchain_param *callchain)
925 {
926 	struct evsel *leader = evsel->leader;
927 	struct perf_event_attr *attr = &evsel->core.attr;
928 	int track = evsel->tracking;
929 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
930 
931 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
932 	attr->inherit	    = !opts->no_inherit;
933 	attr->write_backward = opts->overwrite ? 1 : 0;
934 
935 	perf_evsel__set_sample_bit(evsel, IP);
936 	perf_evsel__set_sample_bit(evsel, TID);
937 
938 	if (evsel->sample_read) {
939 		perf_evsel__set_sample_bit(evsel, READ);
940 
941 		/*
942 		 * We need ID even in case of single event, because
943 		 * PERF_SAMPLE_READ process ID specific data.
944 		 */
945 		perf_evsel__set_sample_id(evsel, false);
946 
947 		/*
948 		 * Apply group format only if we belong to group
949 		 * with more than one members.
950 		 */
951 		if (leader->nr_members > 1) {
952 			attr->read_format |= PERF_FORMAT_GROUP;
953 			attr->inherit = 0;
954 		}
955 	}
956 
957 	/*
958 	 * We default some events to have a default interval. But keep
959 	 * it a weak assumption overridable by the user.
960 	 */
961 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
962 				     opts->user_interval != ULLONG_MAX)) {
963 		if (opts->freq) {
964 			perf_evsel__set_sample_bit(evsel, PERIOD);
965 			attr->freq		= 1;
966 			attr->sample_freq	= opts->freq;
967 		} else {
968 			attr->sample_period = opts->default_interval;
969 		}
970 	}
971 
972 	/*
973 	 * Disable sampling for all group members other
974 	 * than leader in case leader 'leads' the sampling.
975 	 */
976 	if ((leader != evsel) && leader->sample_read) {
977 		attr->freq           = 0;
978 		attr->sample_freq    = 0;
979 		attr->sample_period  = 0;
980 		attr->write_backward = 0;
981 
982 		/*
983 		 * We don't get sample for slave events, we make them
984 		 * when delivering group leader sample. Set the slave
985 		 * event to follow the master sample_type to ease up
986 		 * report.
987 		 */
988 		attr->sample_type = leader->core.attr.sample_type;
989 	}
990 
991 	if (opts->no_samples)
992 		attr->sample_freq = 0;
993 
994 	if (opts->inherit_stat) {
995 		evsel->core.attr.read_format |=
996 			PERF_FORMAT_TOTAL_TIME_ENABLED |
997 			PERF_FORMAT_TOTAL_TIME_RUNNING |
998 			PERF_FORMAT_ID;
999 		attr->inherit_stat = 1;
1000 	}
1001 
1002 	if (opts->sample_address) {
1003 		perf_evsel__set_sample_bit(evsel, ADDR);
1004 		attr->mmap_data = track;
1005 	}
1006 
1007 	/*
1008 	 * We don't allow user space callchains for  function trace
1009 	 * event, due to issues with page faults while tracing page
1010 	 * fault handler and its overall trickiness nature.
1011 	 */
1012 	if (perf_evsel__is_function_event(evsel))
1013 		evsel->core.attr.exclude_callchain_user = 1;
1014 
1015 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
1016 		perf_evsel__config_callchain(evsel, opts, callchain);
1017 
1018 	if (opts->sample_intr_regs) {
1019 		attr->sample_regs_intr = opts->sample_intr_regs;
1020 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
1021 	}
1022 
1023 	if (opts->sample_user_regs) {
1024 		attr->sample_regs_user |= opts->sample_user_regs;
1025 		perf_evsel__set_sample_bit(evsel, REGS_USER);
1026 	}
1027 
1028 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
1029 		perf_evsel__set_sample_bit(evsel, CPU);
1030 
1031 	/*
1032 	 * When the user explicitly disabled time don't force it here.
1033 	 */
1034 	if (opts->sample_time &&
1035 	    (!perf_missing_features.sample_id_all &&
1036 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1037 	     opts->sample_time_set)))
1038 		perf_evsel__set_sample_bit(evsel, TIME);
1039 
1040 	if (opts->raw_samples && !evsel->no_aux_samples) {
1041 		perf_evsel__set_sample_bit(evsel, TIME);
1042 		perf_evsel__set_sample_bit(evsel, RAW);
1043 		perf_evsel__set_sample_bit(evsel, CPU);
1044 	}
1045 
1046 	if (opts->sample_address)
1047 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
1048 
1049 	if (opts->sample_phys_addr)
1050 		perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1051 
1052 	if (opts->no_buffering) {
1053 		attr->watermark = 0;
1054 		attr->wakeup_events = 1;
1055 	}
1056 	if (opts->branch_stack && !evsel->no_aux_samples) {
1057 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1058 		attr->branch_sample_type = opts->branch_stack;
1059 	}
1060 
1061 	if (opts->sample_weight)
1062 		perf_evsel__set_sample_bit(evsel, WEIGHT);
1063 
1064 	attr->task  = track;
1065 	attr->mmap  = track;
1066 	attr->mmap2 = track && !perf_missing_features.mmap2;
1067 	attr->comm  = track;
1068 	attr->ksymbol = track && !perf_missing_features.ksymbol;
1069 	attr->bpf_event = track && !opts->no_bpf_event &&
1070 		!perf_missing_features.bpf_event;
1071 
1072 	if (opts->record_namespaces)
1073 		attr->namespaces  = track;
1074 
1075 	if (opts->record_switch_events)
1076 		attr->context_switch = track;
1077 
1078 	if (opts->sample_transaction)
1079 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
1080 
1081 	if (opts->running_time) {
1082 		evsel->core.attr.read_format |=
1083 			PERF_FORMAT_TOTAL_TIME_ENABLED |
1084 			PERF_FORMAT_TOTAL_TIME_RUNNING;
1085 	}
1086 
1087 	/*
1088 	 * XXX see the function comment above
1089 	 *
1090 	 * Disabling only independent events or group leaders,
1091 	 * keeping group members enabled.
1092 	 */
1093 	if (perf_evsel__is_group_leader(evsel))
1094 		attr->disabled = 1;
1095 
1096 	/*
1097 	 * Setting enable_on_exec for independent events and
1098 	 * group leaders for traced executed by perf.
1099 	 */
1100 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1101 		!opts->initial_delay)
1102 		attr->enable_on_exec = 1;
1103 
1104 	if (evsel->immediate) {
1105 		attr->disabled = 0;
1106 		attr->enable_on_exec = 0;
1107 	}
1108 
1109 	clockid = opts->clockid;
1110 	if (opts->use_clockid) {
1111 		attr->use_clockid = 1;
1112 		attr->clockid = opts->clockid;
1113 	}
1114 
1115 	if (evsel->precise_max)
1116 		attr->precise_ip = 3;
1117 
1118 	if (opts->all_user) {
1119 		attr->exclude_kernel = 1;
1120 		attr->exclude_user   = 0;
1121 	}
1122 
1123 	if (opts->all_kernel) {
1124 		attr->exclude_kernel = 0;
1125 		attr->exclude_user   = 1;
1126 	}
1127 
1128 	if (evsel->core.own_cpus || evsel->unit)
1129 		evsel->core.attr.read_format |= PERF_FORMAT_ID;
1130 
1131 	/*
1132 	 * Apply event specific term settings,
1133 	 * it overloads any global configuration.
1134 	 */
1135 	apply_config_terms(evsel, opts, track);
1136 
1137 	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1138 
1139 	/* The --period option takes the precedence. */
1140 	if (opts->period_set) {
1141 		if (opts->period)
1142 			perf_evsel__set_sample_bit(evsel, PERIOD);
1143 		else
1144 			perf_evsel__reset_sample_bit(evsel, PERIOD);
1145 	}
1146 
1147 	/*
1148 	 * For initial_delay, a dummy event is added implicitly.
1149 	 * The software event will trigger -EOPNOTSUPP error out,
1150 	 * if BRANCH_STACK bit is set.
1151 	 */
1152 	if (opts->initial_delay && is_dummy_event(evsel))
1153 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1154 }
1155 
1156 static int perf_evsel__alloc_fd(struct evsel *evsel, int ncpus, int nthreads)
1157 {
1158 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1159 
1160 	if (evsel->fd) {
1161 		int cpu, thread;
1162 		for (cpu = 0; cpu < ncpus; cpu++) {
1163 			for (thread = 0; thread < nthreads; thread++) {
1164 				FD(evsel, cpu, thread) = -1;
1165 			}
1166 		}
1167 	}
1168 
1169 	return evsel->fd != NULL ? 0 : -ENOMEM;
1170 }
1171 
1172 static int perf_evsel__run_ioctl(struct evsel *evsel,
1173 			  int ioc,  void *arg)
1174 {
1175 	int cpu, thread;
1176 
1177 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1178 		for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1179 			int fd = FD(evsel, cpu, thread),
1180 			    err = ioctl(fd, ioc, arg);
1181 
1182 			if (err)
1183 				return err;
1184 		}
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 int evsel__apply_filter(struct evsel *evsel, const char *filter)
1191 {
1192 	return perf_evsel__run_ioctl(evsel,
1193 				     PERF_EVENT_IOC_SET_FILTER,
1194 				     (void *)filter);
1195 }
1196 
1197 int perf_evsel__set_filter(struct evsel *evsel, const char *filter)
1198 {
1199 	char *new_filter = strdup(filter);
1200 
1201 	if (new_filter != NULL) {
1202 		free(evsel->filter);
1203 		evsel->filter = new_filter;
1204 		return 0;
1205 	}
1206 
1207 	return -1;
1208 }
1209 
1210 static int perf_evsel__append_filter(struct evsel *evsel,
1211 				     const char *fmt, const char *filter)
1212 {
1213 	char *new_filter;
1214 
1215 	if (evsel->filter == NULL)
1216 		return perf_evsel__set_filter(evsel, filter);
1217 
1218 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1219 		free(evsel->filter);
1220 		evsel->filter = new_filter;
1221 		return 0;
1222 	}
1223 
1224 	return -1;
1225 }
1226 
1227 int perf_evsel__append_tp_filter(struct evsel *evsel, const char *filter)
1228 {
1229 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1230 }
1231 
1232 int perf_evsel__append_addr_filter(struct evsel *evsel, const char *filter)
1233 {
1234 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1235 }
1236 
1237 int evsel__enable(struct evsel *evsel)
1238 {
1239 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1240 
1241 	if (!err)
1242 		evsel->disabled = false;
1243 
1244 	return err;
1245 }
1246 
1247 int evsel__disable(struct evsel *evsel)
1248 {
1249 	int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1250 	/*
1251 	 * We mark it disabled here so that tools that disable a event can
1252 	 * ignore events after they disable it. I.e. the ring buffer may have
1253 	 * already a few more events queued up before the kernel got the stop
1254 	 * request.
1255 	 */
1256 	if (!err)
1257 		evsel->disabled = true;
1258 
1259 	return err;
1260 }
1261 
1262 int perf_evsel__alloc_id(struct evsel *evsel, int ncpus, int nthreads)
1263 {
1264 	if (ncpus == 0 || nthreads == 0)
1265 		return 0;
1266 
1267 	if (evsel->system_wide)
1268 		nthreads = 1;
1269 
1270 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1271 	if (evsel->sample_id == NULL)
1272 		return -ENOMEM;
1273 
1274 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1275 	if (evsel->id == NULL) {
1276 		xyarray__delete(evsel->sample_id);
1277 		evsel->sample_id = NULL;
1278 		return -ENOMEM;
1279 	}
1280 
1281 	return 0;
1282 }
1283 
1284 static void perf_evsel__free_fd(struct evsel *evsel)
1285 {
1286 	xyarray__delete(evsel->fd);
1287 	evsel->fd = NULL;
1288 }
1289 
1290 static void perf_evsel__free_id(struct evsel *evsel)
1291 {
1292 	xyarray__delete(evsel->sample_id);
1293 	evsel->sample_id = NULL;
1294 	zfree(&evsel->id);
1295 	evsel->ids = 0;
1296 }
1297 
1298 static void perf_evsel__free_config_terms(struct evsel *evsel)
1299 {
1300 	struct perf_evsel_config_term *term, *h;
1301 
1302 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1303 		list_del_init(&term->list);
1304 		free(term);
1305 	}
1306 }
1307 
1308 void perf_evsel__close_fd(struct evsel *evsel)
1309 {
1310 	int cpu, thread;
1311 
1312 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1313 		for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1314 			close(FD(evsel, cpu, thread));
1315 			FD(evsel, cpu, thread) = -1;
1316 		}
1317 }
1318 
1319 void perf_evsel__exit(struct evsel *evsel)
1320 {
1321 	assert(list_empty(&evsel->core.node));
1322 	assert(evsel->evlist == NULL);
1323 	perf_evsel__free_counts(evsel);
1324 	perf_evsel__free_fd(evsel);
1325 	perf_evsel__free_id(evsel);
1326 	perf_evsel__free_config_terms(evsel);
1327 	cgroup__put(evsel->cgrp);
1328 	perf_cpu_map__put(evsel->core.cpus);
1329 	perf_cpu_map__put(evsel->core.own_cpus);
1330 	perf_thread_map__put(evsel->threads);
1331 	zfree(&evsel->group_name);
1332 	zfree(&evsel->name);
1333 	perf_evsel__object.fini(evsel);
1334 }
1335 
1336 void evsel__delete(struct evsel *evsel)
1337 {
1338 	perf_evsel__exit(evsel);
1339 	free(evsel);
1340 }
1341 
1342 void perf_evsel__compute_deltas(struct evsel *evsel, int cpu, int thread,
1343 				struct perf_counts_values *count)
1344 {
1345 	struct perf_counts_values tmp;
1346 
1347 	if (!evsel->prev_raw_counts)
1348 		return;
1349 
1350 	if (cpu == -1) {
1351 		tmp = evsel->prev_raw_counts->aggr;
1352 		evsel->prev_raw_counts->aggr = *count;
1353 	} else {
1354 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1355 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1356 	}
1357 
1358 	count->val = count->val - tmp.val;
1359 	count->ena = count->ena - tmp.ena;
1360 	count->run = count->run - tmp.run;
1361 }
1362 
1363 void perf_counts_values__scale(struct perf_counts_values *count,
1364 			       bool scale, s8 *pscaled)
1365 {
1366 	s8 scaled = 0;
1367 
1368 	if (scale) {
1369 		if (count->run == 0) {
1370 			scaled = -1;
1371 			count->val = 0;
1372 		} else if (count->run < count->ena) {
1373 			scaled = 1;
1374 			count->val = (u64)((double) count->val * count->ena / count->run);
1375 		}
1376 	}
1377 
1378 	if (pscaled)
1379 		*pscaled = scaled;
1380 }
1381 
1382 static int perf_evsel__read_size(struct evsel *evsel)
1383 {
1384 	u64 read_format = evsel->core.attr.read_format;
1385 	int entry = sizeof(u64); /* value */
1386 	int size = 0;
1387 	int nr = 1;
1388 
1389 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1390 		size += sizeof(u64);
1391 
1392 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1393 		size += sizeof(u64);
1394 
1395 	if (read_format & PERF_FORMAT_ID)
1396 		entry += sizeof(u64);
1397 
1398 	if (read_format & PERF_FORMAT_GROUP) {
1399 		nr = evsel->nr_members;
1400 		size += sizeof(u64);
1401 	}
1402 
1403 	size += entry * nr;
1404 	return size;
1405 }
1406 
1407 int perf_evsel__read(struct evsel *evsel, int cpu, int thread,
1408 		     struct perf_counts_values *count)
1409 {
1410 	size_t size = perf_evsel__read_size(evsel);
1411 
1412 	memset(count, 0, sizeof(*count));
1413 
1414 	if (FD(evsel, cpu, thread) < 0)
1415 		return -EINVAL;
1416 
1417 	if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1418 		return -errno;
1419 
1420 	return 0;
1421 }
1422 
1423 static int
1424 perf_evsel__read_one(struct evsel *evsel, int cpu, int thread)
1425 {
1426 	struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1427 
1428 	return perf_evsel__read(evsel, cpu, thread, count);
1429 }
1430 
1431 static void
1432 perf_evsel__set_count(struct evsel *counter, int cpu, int thread,
1433 		      u64 val, u64 ena, u64 run)
1434 {
1435 	struct perf_counts_values *count;
1436 
1437 	count = perf_counts(counter->counts, cpu, thread);
1438 
1439 	count->val    = val;
1440 	count->ena    = ena;
1441 	count->run    = run;
1442 
1443 	perf_counts__set_loaded(counter->counts, cpu, thread, true);
1444 }
1445 
1446 static int
1447 perf_evsel__process_group_data(struct evsel *leader,
1448 			       int cpu, int thread, u64 *data)
1449 {
1450 	u64 read_format = leader->core.attr.read_format;
1451 	struct sample_read_value *v;
1452 	u64 nr, ena = 0, run = 0, i;
1453 
1454 	nr = *data++;
1455 
1456 	if (nr != (u64) leader->nr_members)
1457 		return -EINVAL;
1458 
1459 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1460 		ena = *data++;
1461 
1462 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1463 		run = *data++;
1464 
1465 	v = (struct sample_read_value *) data;
1466 
1467 	perf_evsel__set_count(leader, cpu, thread,
1468 			      v[0].value, ena, run);
1469 
1470 	for (i = 1; i < nr; i++) {
1471 		struct evsel *counter;
1472 
1473 		counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1474 		if (!counter)
1475 			return -EINVAL;
1476 
1477 		perf_evsel__set_count(counter, cpu, thread,
1478 				      v[i].value, ena, run);
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 static int
1485 perf_evsel__read_group(struct evsel *leader, int cpu, int thread)
1486 {
1487 	struct perf_stat_evsel *ps = leader->stats;
1488 	u64 read_format = leader->core.attr.read_format;
1489 	int size = perf_evsel__read_size(leader);
1490 	u64 *data = ps->group_data;
1491 
1492 	if (!(read_format & PERF_FORMAT_ID))
1493 		return -EINVAL;
1494 
1495 	if (!perf_evsel__is_group_leader(leader))
1496 		return -EINVAL;
1497 
1498 	if (!data) {
1499 		data = zalloc(size);
1500 		if (!data)
1501 			return -ENOMEM;
1502 
1503 		ps->group_data = data;
1504 	}
1505 
1506 	if (FD(leader, cpu, thread) < 0)
1507 		return -EINVAL;
1508 
1509 	if (readn(FD(leader, cpu, thread), data, size) <= 0)
1510 		return -errno;
1511 
1512 	return perf_evsel__process_group_data(leader, cpu, thread, data);
1513 }
1514 
1515 int perf_evsel__read_counter(struct evsel *evsel, int cpu, int thread)
1516 {
1517 	u64 read_format = evsel->core.attr.read_format;
1518 
1519 	if (read_format & PERF_FORMAT_GROUP)
1520 		return perf_evsel__read_group(evsel, cpu, thread);
1521 	else
1522 		return perf_evsel__read_one(evsel, cpu, thread);
1523 }
1524 
1525 int __perf_evsel__read_on_cpu(struct evsel *evsel,
1526 			      int cpu, int thread, bool scale)
1527 {
1528 	struct perf_counts_values count;
1529 	size_t nv = scale ? 3 : 1;
1530 
1531 	if (FD(evsel, cpu, thread) < 0)
1532 		return -EINVAL;
1533 
1534 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1535 		return -ENOMEM;
1536 
1537 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1538 		return -errno;
1539 
1540 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1541 	perf_counts_values__scale(&count, scale, NULL);
1542 	*perf_counts(evsel->counts, cpu, thread) = count;
1543 	return 0;
1544 }
1545 
1546 static int get_group_fd(struct evsel *evsel, int cpu, int thread)
1547 {
1548 	struct evsel *leader = evsel->leader;
1549 	int fd;
1550 
1551 	if (perf_evsel__is_group_leader(evsel))
1552 		return -1;
1553 
1554 	/*
1555 	 * Leader must be already processed/open,
1556 	 * if not it's a bug.
1557 	 */
1558 	BUG_ON(!leader->fd);
1559 
1560 	fd = FD(leader, cpu, thread);
1561 	BUG_ON(fd == -1);
1562 
1563 	return fd;
1564 }
1565 
1566 struct bit_names {
1567 	int bit;
1568 	const char *name;
1569 };
1570 
1571 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1572 {
1573 	bool first_bit = true;
1574 	int i = 0;
1575 
1576 	do {
1577 		if (value & bits[i].bit) {
1578 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1579 			first_bit = false;
1580 		}
1581 	} while (bits[++i].name != NULL);
1582 }
1583 
1584 static void __p_sample_type(char *buf, size_t size, u64 value)
1585 {
1586 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1587 	struct bit_names bits[] = {
1588 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1589 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1590 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1591 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1592 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1593 		bit_name(WEIGHT), bit_name(PHYS_ADDR),
1594 		{ .name = NULL, }
1595 	};
1596 #undef bit_name
1597 	__p_bits(buf, size, value, bits);
1598 }
1599 
1600 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1601 {
1602 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1603 	struct bit_names bits[] = {
1604 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1605 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1606 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1607 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1608 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1609 		{ .name = NULL, }
1610 	};
1611 #undef bit_name
1612 	__p_bits(buf, size, value, bits);
1613 }
1614 
1615 static void __p_read_format(char *buf, size_t size, u64 value)
1616 {
1617 #define bit_name(n) { PERF_FORMAT_##n, #n }
1618 	struct bit_names bits[] = {
1619 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1620 		bit_name(ID), bit_name(GROUP),
1621 		{ .name = NULL, }
1622 	};
1623 #undef bit_name
1624 	__p_bits(buf, size, value, bits);
1625 }
1626 
1627 #define BUF_SIZE		1024
1628 
1629 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1630 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1631 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1632 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1633 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1634 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1635 
1636 #define PRINT_ATTRn(_n, _f, _p)				\
1637 do {							\
1638 	if (attr->_f) {					\
1639 		_p(attr->_f);				\
1640 		ret += attr__fprintf(fp, _n, buf, priv);\
1641 	}						\
1642 } while (0)
1643 
1644 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1645 
1646 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1647 			     attr__fprintf_f attr__fprintf, void *priv)
1648 {
1649 	char buf[BUF_SIZE];
1650 	int ret = 0;
1651 
1652 	PRINT_ATTRf(type, p_unsigned);
1653 	PRINT_ATTRf(size, p_unsigned);
1654 	PRINT_ATTRf(config, p_hex);
1655 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1656 	PRINT_ATTRf(sample_type, p_sample_type);
1657 	PRINT_ATTRf(read_format, p_read_format);
1658 
1659 	PRINT_ATTRf(disabled, p_unsigned);
1660 	PRINT_ATTRf(inherit, p_unsigned);
1661 	PRINT_ATTRf(pinned, p_unsigned);
1662 	PRINT_ATTRf(exclusive, p_unsigned);
1663 	PRINT_ATTRf(exclude_user, p_unsigned);
1664 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1665 	PRINT_ATTRf(exclude_hv, p_unsigned);
1666 	PRINT_ATTRf(exclude_idle, p_unsigned);
1667 	PRINT_ATTRf(mmap, p_unsigned);
1668 	PRINT_ATTRf(comm, p_unsigned);
1669 	PRINT_ATTRf(freq, p_unsigned);
1670 	PRINT_ATTRf(inherit_stat, p_unsigned);
1671 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1672 	PRINT_ATTRf(task, p_unsigned);
1673 	PRINT_ATTRf(watermark, p_unsigned);
1674 	PRINT_ATTRf(precise_ip, p_unsigned);
1675 	PRINT_ATTRf(mmap_data, p_unsigned);
1676 	PRINT_ATTRf(sample_id_all, p_unsigned);
1677 	PRINT_ATTRf(exclude_host, p_unsigned);
1678 	PRINT_ATTRf(exclude_guest, p_unsigned);
1679 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1680 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1681 	PRINT_ATTRf(mmap2, p_unsigned);
1682 	PRINT_ATTRf(comm_exec, p_unsigned);
1683 	PRINT_ATTRf(use_clockid, p_unsigned);
1684 	PRINT_ATTRf(context_switch, p_unsigned);
1685 	PRINT_ATTRf(write_backward, p_unsigned);
1686 	PRINT_ATTRf(namespaces, p_unsigned);
1687 	PRINT_ATTRf(ksymbol, p_unsigned);
1688 	PRINT_ATTRf(bpf_event, p_unsigned);
1689 
1690 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1691 	PRINT_ATTRf(bp_type, p_unsigned);
1692 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1693 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1694 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1695 	PRINT_ATTRf(sample_regs_user, p_hex);
1696 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1697 	PRINT_ATTRf(clockid, p_signed);
1698 	PRINT_ATTRf(sample_regs_intr, p_hex);
1699 	PRINT_ATTRf(aux_watermark, p_unsigned);
1700 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1701 
1702 	return ret;
1703 }
1704 
1705 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1706 				void *priv __maybe_unused)
1707 {
1708 	return fprintf(fp, "  %-32s %s\n", name, val);
1709 }
1710 
1711 static void perf_evsel__remove_fd(struct evsel *pos,
1712 				  int nr_cpus, int nr_threads,
1713 				  int thread_idx)
1714 {
1715 	for (int cpu = 0; cpu < nr_cpus; cpu++)
1716 		for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1717 			FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1718 }
1719 
1720 static int update_fds(struct evsel *evsel,
1721 		      int nr_cpus, int cpu_idx,
1722 		      int nr_threads, int thread_idx)
1723 {
1724 	struct evsel *pos;
1725 
1726 	if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1727 		return -EINVAL;
1728 
1729 	evlist__for_each_entry(evsel->evlist, pos) {
1730 		nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1731 
1732 		perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1733 
1734 		/*
1735 		 * Since fds for next evsel has not been created,
1736 		 * there is no need to iterate whole event list.
1737 		 */
1738 		if (pos == evsel)
1739 			break;
1740 	}
1741 	return 0;
1742 }
1743 
1744 static bool ignore_missing_thread(struct evsel *evsel,
1745 				  int nr_cpus, int cpu,
1746 				  struct perf_thread_map *threads,
1747 				  int thread, int err)
1748 {
1749 	pid_t ignore_pid = thread_map__pid(threads, thread);
1750 
1751 	if (!evsel->ignore_missing_thread)
1752 		return false;
1753 
1754 	/* The system wide setup does not work with threads. */
1755 	if (evsel->system_wide)
1756 		return false;
1757 
1758 	/* The -ESRCH is perf event syscall errno for pid's not found. */
1759 	if (err != -ESRCH)
1760 		return false;
1761 
1762 	/* If there's only one thread, let it fail. */
1763 	if (threads->nr == 1)
1764 		return false;
1765 
1766 	/*
1767 	 * We should remove fd for missing_thread first
1768 	 * because thread_map__remove() will decrease threads->nr.
1769 	 */
1770 	if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1771 		return false;
1772 
1773 	if (thread_map__remove(threads, thread))
1774 		return false;
1775 
1776 	pr_warning("WARNING: Ignored open failure for pid %d\n",
1777 		   ignore_pid);
1778 	return true;
1779 }
1780 
1781 static void display_attr(struct perf_event_attr *attr)
1782 {
1783 	if (verbose >= 2) {
1784 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1785 		fprintf(stderr, "perf_event_attr:\n");
1786 		perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1787 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1788 	}
1789 }
1790 
1791 static int perf_event_open(struct evsel *evsel,
1792 			   pid_t pid, int cpu, int group_fd,
1793 			   unsigned long flags)
1794 {
1795 	int precise_ip = evsel->core.attr.precise_ip;
1796 	int fd;
1797 
1798 	while (1) {
1799 		pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1800 			  pid, cpu, group_fd, flags);
1801 
1802 		fd = sys_perf_event_open(&evsel->core.attr, pid, cpu, group_fd, flags);
1803 		if (fd >= 0)
1804 			break;
1805 
1806 		/* Do not try less precise if not requested. */
1807 		if (!evsel->precise_max)
1808 			break;
1809 
1810 		/*
1811 		 * We tried all the precise_ip values, and it's
1812 		 * still failing, so leave it to standard fallback.
1813 		 */
1814 		if (!evsel->core.attr.precise_ip) {
1815 			evsel->core.attr.precise_ip = precise_ip;
1816 			break;
1817 		}
1818 
1819 		pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1820 		evsel->core.attr.precise_ip--;
1821 		pr_debug2("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip);
1822 		display_attr(&evsel->core.attr);
1823 	}
1824 
1825 	return fd;
1826 }
1827 
1828 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus,
1829 		struct perf_thread_map *threads)
1830 {
1831 	int cpu, thread, nthreads;
1832 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1833 	int pid = -1, err;
1834 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1835 
1836 	if (perf_missing_features.write_backward && evsel->core.attr.write_backward)
1837 		return -EINVAL;
1838 
1839 	if (cpus == NULL) {
1840 		static struct perf_cpu_map *empty_cpu_map;
1841 
1842 		if (empty_cpu_map == NULL) {
1843 			empty_cpu_map = perf_cpu_map__dummy_new();
1844 			if (empty_cpu_map == NULL)
1845 				return -ENOMEM;
1846 		}
1847 
1848 		cpus = empty_cpu_map;
1849 	}
1850 
1851 	if (threads == NULL) {
1852 		static struct perf_thread_map *empty_thread_map;
1853 
1854 		if (empty_thread_map == NULL) {
1855 			empty_thread_map = thread_map__new_by_tid(-1);
1856 			if (empty_thread_map == NULL)
1857 				return -ENOMEM;
1858 		}
1859 
1860 		threads = empty_thread_map;
1861 	}
1862 
1863 	if (evsel->system_wide)
1864 		nthreads = 1;
1865 	else
1866 		nthreads = threads->nr;
1867 
1868 	if (evsel->fd == NULL &&
1869 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1870 		return -ENOMEM;
1871 
1872 	if (evsel->cgrp) {
1873 		flags |= PERF_FLAG_PID_CGROUP;
1874 		pid = evsel->cgrp->fd;
1875 	}
1876 
1877 fallback_missing_features:
1878 	if (perf_missing_features.clockid_wrong)
1879 		evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */
1880 	if (perf_missing_features.clockid) {
1881 		evsel->core.attr.use_clockid = 0;
1882 		evsel->core.attr.clockid = 0;
1883 	}
1884 	if (perf_missing_features.cloexec)
1885 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1886 	if (perf_missing_features.mmap2)
1887 		evsel->core.attr.mmap2 = 0;
1888 	if (perf_missing_features.exclude_guest)
1889 		evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0;
1890 	if (perf_missing_features.lbr_flags)
1891 		evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1892 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1893 	if (perf_missing_features.group_read && evsel->core.attr.inherit)
1894 		evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1895 	if (perf_missing_features.ksymbol)
1896 		evsel->core.attr.ksymbol = 0;
1897 	if (perf_missing_features.bpf_event)
1898 		evsel->core.attr.bpf_event = 0;
1899 retry_sample_id:
1900 	if (perf_missing_features.sample_id_all)
1901 		evsel->core.attr.sample_id_all = 0;
1902 
1903 	display_attr(&evsel->core.attr);
1904 
1905 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1906 
1907 		for (thread = 0; thread < nthreads; thread++) {
1908 			int fd, group_fd;
1909 
1910 			if (!evsel->cgrp && !evsel->system_wide)
1911 				pid = thread_map__pid(threads, thread);
1912 
1913 			group_fd = get_group_fd(evsel, cpu, thread);
1914 retry_open:
1915 			test_attr__ready();
1916 
1917 			fd = perf_event_open(evsel, pid, cpus->map[cpu],
1918 					     group_fd, flags);
1919 
1920 			FD(evsel, cpu, thread) = fd;
1921 
1922 			if (fd < 0) {
1923 				err = -errno;
1924 
1925 				if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1926 					/*
1927 					 * We just removed 1 thread, so take a step
1928 					 * back on thread index and lower the upper
1929 					 * nthreads limit.
1930 					 */
1931 					nthreads--;
1932 					thread--;
1933 
1934 					/* ... and pretend like nothing have happened. */
1935 					err = 0;
1936 					continue;
1937 				}
1938 
1939 				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1940 					  err);
1941 				goto try_fallback;
1942 			}
1943 
1944 			pr_debug2(" = %d\n", fd);
1945 
1946 			if (evsel->bpf_fd >= 0) {
1947 				int evt_fd = fd;
1948 				int bpf_fd = evsel->bpf_fd;
1949 
1950 				err = ioctl(evt_fd,
1951 					    PERF_EVENT_IOC_SET_BPF,
1952 					    bpf_fd);
1953 				if (err && errno != EEXIST) {
1954 					pr_err("failed to attach bpf fd %d: %s\n",
1955 					       bpf_fd, strerror(errno));
1956 					err = -EINVAL;
1957 					goto out_close;
1958 				}
1959 			}
1960 
1961 			set_rlimit = NO_CHANGE;
1962 
1963 			/*
1964 			 * If we succeeded but had to kill clockid, fail and
1965 			 * have perf_evsel__open_strerror() print us a nice
1966 			 * error.
1967 			 */
1968 			if (perf_missing_features.clockid ||
1969 			    perf_missing_features.clockid_wrong) {
1970 				err = -EINVAL;
1971 				goto out_close;
1972 			}
1973 		}
1974 	}
1975 
1976 	return 0;
1977 
1978 try_fallback:
1979 	/*
1980 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1981 	 * of them try to increase the limits.
1982 	 */
1983 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1984 		struct rlimit l;
1985 		int old_errno = errno;
1986 
1987 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1988 			if (set_rlimit == NO_CHANGE)
1989 				l.rlim_cur = l.rlim_max;
1990 			else {
1991 				l.rlim_cur = l.rlim_max + 1000;
1992 				l.rlim_max = l.rlim_cur;
1993 			}
1994 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1995 				set_rlimit++;
1996 				errno = old_errno;
1997 				goto retry_open;
1998 			}
1999 		}
2000 		errno = old_errno;
2001 	}
2002 
2003 	if (err != -EINVAL || cpu > 0 || thread > 0)
2004 		goto out_close;
2005 
2006 	/*
2007 	 * Must probe features in the order they were added to the
2008 	 * perf_event_attr interface.
2009 	 */
2010 	if (!perf_missing_features.bpf_event && evsel->core.attr.bpf_event) {
2011 		perf_missing_features.bpf_event = true;
2012 		pr_debug2("switching off bpf_event\n");
2013 		goto fallback_missing_features;
2014 	} else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) {
2015 		perf_missing_features.ksymbol = true;
2016 		pr_debug2("switching off ksymbol\n");
2017 		goto fallback_missing_features;
2018 	} else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) {
2019 		perf_missing_features.write_backward = true;
2020 		pr_debug2("switching off write_backward\n");
2021 		goto out_close;
2022 	} else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) {
2023 		perf_missing_features.clockid_wrong = true;
2024 		pr_debug2("switching off clockid\n");
2025 		goto fallback_missing_features;
2026 	} else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) {
2027 		perf_missing_features.clockid = true;
2028 		pr_debug2("switching off use_clockid\n");
2029 		goto fallback_missing_features;
2030 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
2031 		perf_missing_features.cloexec = true;
2032 		pr_debug2("switching off cloexec flag\n");
2033 		goto fallback_missing_features;
2034 	} else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) {
2035 		perf_missing_features.mmap2 = true;
2036 		pr_debug2("switching off mmap2\n");
2037 		goto fallback_missing_features;
2038 	} else if (!perf_missing_features.exclude_guest &&
2039 		   (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) {
2040 		perf_missing_features.exclude_guest = true;
2041 		pr_debug2("switching off exclude_guest, exclude_host\n");
2042 		goto fallback_missing_features;
2043 	} else if (!perf_missing_features.sample_id_all) {
2044 		perf_missing_features.sample_id_all = true;
2045 		pr_debug2("switching off sample_id_all\n");
2046 		goto retry_sample_id;
2047 	} else if (!perf_missing_features.lbr_flags &&
2048 			(evsel->core.attr.branch_sample_type &
2049 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
2050 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
2051 		perf_missing_features.lbr_flags = true;
2052 		pr_debug2("switching off branch sample type no (cycles/flags)\n");
2053 		goto fallback_missing_features;
2054 	} else if (!perf_missing_features.group_read &&
2055 		    evsel->core.attr.inherit &&
2056 		   (evsel->core.attr.read_format & PERF_FORMAT_GROUP) &&
2057 		   perf_evsel__is_group_leader(evsel)) {
2058 		perf_missing_features.group_read = true;
2059 		pr_debug2("switching off group read\n");
2060 		goto fallback_missing_features;
2061 	}
2062 out_close:
2063 	if (err)
2064 		threads->err_thread = thread;
2065 
2066 	do {
2067 		while (--thread >= 0) {
2068 			close(FD(evsel, cpu, thread));
2069 			FD(evsel, cpu, thread) = -1;
2070 		}
2071 		thread = nthreads;
2072 	} while (--cpu >= 0);
2073 	return err;
2074 }
2075 
2076 void perf_evsel__close(struct evsel *evsel)
2077 {
2078 	if (evsel->fd == NULL)
2079 		return;
2080 
2081 	perf_evsel__close_fd(evsel);
2082 	perf_evsel__free_fd(evsel);
2083 	perf_evsel__free_id(evsel);
2084 }
2085 
2086 int perf_evsel__open_per_cpu(struct evsel *evsel,
2087 			     struct perf_cpu_map *cpus)
2088 {
2089 	return evsel__open(evsel, cpus, NULL);
2090 }
2091 
2092 int perf_evsel__open_per_thread(struct evsel *evsel,
2093 				struct perf_thread_map *threads)
2094 {
2095 	return evsel__open(evsel, NULL, threads);
2096 }
2097 
2098 static int perf_evsel__parse_id_sample(const struct evsel *evsel,
2099 				       const union perf_event *event,
2100 				       struct perf_sample *sample)
2101 {
2102 	u64 type = evsel->core.attr.sample_type;
2103 	const u64 *array = event->sample.array;
2104 	bool swapped = evsel->needs_swap;
2105 	union u64_swap u;
2106 
2107 	array += ((event->header.size -
2108 		   sizeof(event->header)) / sizeof(u64)) - 1;
2109 
2110 	if (type & PERF_SAMPLE_IDENTIFIER) {
2111 		sample->id = *array;
2112 		array--;
2113 	}
2114 
2115 	if (type & PERF_SAMPLE_CPU) {
2116 		u.val64 = *array;
2117 		if (swapped) {
2118 			/* undo swap of u64, then swap on individual u32s */
2119 			u.val64 = bswap_64(u.val64);
2120 			u.val32[0] = bswap_32(u.val32[0]);
2121 		}
2122 
2123 		sample->cpu = u.val32[0];
2124 		array--;
2125 	}
2126 
2127 	if (type & PERF_SAMPLE_STREAM_ID) {
2128 		sample->stream_id = *array;
2129 		array--;
2130 	}
2131 
2132 	if (type & PERF_SAMPLE_ID) {
2133 		sample->id = *array;
2134 		array--;
2135 	}
2136 
2137 	if (type & PERF_SAMPLE_TIME) {
2138 		sample->time = *array;
2139 		array--;
2140 	}
2141 
2142 	if (type & PERF_SAMPLE_TID) {
2143 		u.val64 = *array;
2144 		if (swapped) {
2145 			/* undo swap of u64, then swap on individual u32s */
2146 			u.val64 = bswap_64(u.val64);
2147 			u.val32[0] = bswap_32(u.val32[0]);
2148 			u.val32[1] = bswap_32(u.val32[1]);
2149 		}
2150 
2151 		sample->pid = u.val32[0];
2152 		sample->tid = u.val32[1];
2153 		array--;
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2160 			    u64 size)
2161 {
2162 	return size > max_size || offset + size > endp;
2163 }
2164 
2165 #define OVERFLOW_CHECK(offset, size, max_size)				\
2166 	do {								\
2167 		if (overflow(endp, (max_size), (offset), (size)))	\
2168 			return -EFAULT;					\
2169 	} while (0)
2170 
2171 #define OVERFLOW_CHECK_u64(offset) \
2172 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2173 
2174 static int
2175 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2176 {
2177 	/*
2178 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2179 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
2180 	 * check the format does not go past the end of the event.
2181 	 */
2182 	if (sample_size + sizeof(event->header) > event->header.size)
2183 		return -EFAULT;
2184 
2185 	return 0;
2186 }
2187 
2188 int perf_evsel__parse_sample(struct evsel *evsel, union perf_event *event,
2189 			     struct perf_sample *data)
2190 {
2191 	u64 type = evsel->core.attr.sample_type;
2192 	bool swapped = evsel->needs_swap;
2193 	const u64 *array;
2194 	u16 max_size = event->header.size;
2195 	const void *endp = (void *)event + max_size;
2196 	u64 sz;
2197 
2198 	/*
2199 	 * used for cross-endian analysis. See git commit 65014ab3
2200 	 * for why this goofiness is needed.
2201 	 */
2202 	union u64_swap u;
2203 
2204 	memset(data, 0, sizeof(*data));
2205 	data->cpu = data->pid = data->tid = -1;
2206 	data->stream_id = data->id = data->time = -1ULL;
2207 	data->period = evsel->core.attr.sample_period;
2208 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2209 	data->misc    = event->header.misc;
2210 	data->id = -1ULL;
2211 	data->data_src = PERF_MEM_DATA_SRC_NONE;
2212 
2213 	if (event->header.type != PERF_RECORD_SAMPLE) {
2214 		if (!evsel->core.attr.sample_id_all)
2215 			return 0;
2216 		return perf_evsel__parse_id_sample(evsel, event, data);
2217 	}
2218 
2219 	array = event->sample.array;
2220 
2221 	if (perf_event__check_size(event, evsel->sample_size))
2222 		return -EFAULT;
2223 
2224 	if (type & PERF_SAMPLE_IDENTIFIER) {
2225 		data->id = *array;
2226 		array++;
2227 	}
2228 
2229 	if (type & PERF_SAMPLE_IP) {
2230 		data->ip = *array;
2231 		array++;
2232 	}
2233 
2234 	if (type & PERF_SAMPLE_TID) {
2235 		u.val64 = *array;
2236 		if (swapped) {
2237 			/* undo swap of u64, then swap on individual u32s */
2238 			u.val64 = bswap_64(u.val64);
2239 			u.val32[0] = bswap_32(u.val32[0]);
2240 			u.val32[1] = bswap_32(u.val32[1]);
2241 		}
2242 
2243 		data->pid = u.val32[0];
2244 		data->tid = u.val32[1];
2245 		array++;
2246 	}
2247 
2248 	if (type & PERF_SAMPLE_TIME) {
2249 		data->time = *array;
2250 		array++;
2251 	}
2252 
2253 	if (type & PERF_SAMPLE_ADDR) {
2254 		data->addr = *array;
2255 		array++;
2256 	}
2257 
2258 	if (type & PERF_SAMPLE_ID) {
2259 		data->id = *array;
2260 		array++;
2261 	}
2262 
2263 	if (type & PERF_SAMPLE_STREAM_ID) {
2264 		data->stream_id = *array;
2265 		array++;
2266 	}
2267 
2268 	if (type & PERF_SAMPLE_CPU) {
2269 
2270 		u.val64 = *array;
2271 		if (swapped) {
2272 			/* undo swap of u64, then swap on individual u32s */
2273 			u.val64 = bswap_64(u.val64);
2274 			u.val32[0] = bswap_32(u.val32[0]);
2275 		}
2276 
2277 		data->cpu = u.val32[0];
2278 		array++;
2279 	}
2280 
2281 	if (type & PERF_SAMPLE_PERIOD) {
2282 		data->period = *array;
2283 		array++;
2284 	}
2285 
2286 	if (type & PERF_SAMPLE_READ) {
2287 		u64 read_format = evsel->core.attr.read_format;
2288 
2289 		OVERFLOW_CHECK_u64(array);
2290 		if (read_format & PERF_FORMAT_GROUP)
2291 			data->read.group.nr = *array;
2292 		else
2293 			data->read.one.value = *array;
2294 
2295 		array++;
2296 
2297 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2298 			OVERFLOW_CHECK_u64(array);
2299 			data->read.time_enabled = *array;
2300 			array++;
2301 		}
2302 
2303 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2304 			OVERFLOW_CHECK_u64(array);
2305 			data->read.time_running = *array;
2306 			array++;
2307 		}
2308 
2309 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2310 		if (read_format & PERF_FORMAT_GROUP) {
2311 			const u64 max_group_nr = UINT64_MAX /
2312 					sizeof(struct sample_read_value);
2313 
2314 			if (data->read.group.nr > max_group_nr)
2315 				return -EFAULT;
2316 			sz = data->read.group.nr *
2317 			     sizeof(struct sample_read_value);
2318 			OVERFLOW_CHECK(array, sz, max_size);
2319 			data->read.group.values =
2320 					(struct sample_read_value *)array;
2321 			array = (void *)array + sz;
2322 		} else {
2323 			OVERFLOW_CHECK_u64(array);
2324 			data->read.one.id = *array;
2325 			array++;
2326 		}
2327 	}
2328 
2329 	if (evsel__has_callchain(evsel)) {
2330 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2331 
2332 		OVERFLOW_CHECK_u64(array);
2333 		data->callchain = (struct ip_callchain *)array++;
2334 		if (data->callchain->nr > max_callchain_nr)
2335 			return -EFAULT;
2336 		sz = data->callchain->nr * sizeof(u64);
2337 		OVERFLOW_CHECK(array, sz, max_size);
2338 		array = (void *)array + sz;
2339 	}
2340 
2341 	if (type & PERF_SAMPLE_RAW) {
2342 		OVERFLOW_CHECK_u64(array);
2343 		u.val64 = *array;
2344 
2345 		/*
2346 		 * Undo swap of u64, then swap on individual u32s,
2347 		 * get the size of the raw area and undo all of the
2348 		 * swap. The pevent interface handles endianity by
2349 		 * itself.
2350 		 */
2351 		if (swapped) {
2352 			u.val64 = bswap_64(u.val64);
2353 			u.val32[0] = bswap_32(u.val32[0]);
2354 			u.val32[1] = bswap_32(u.val32[1]);
2355 		}
2356 		data->raw_size = u.val32[0];
2357 
2358 		/*
2359 		 * The raw data is aligned on 64bits including the
2360 		 * u32 size, so it's safe to use mem_bswap_64.
2361 		 */
2362 		if (swapped)
2363 			mem_bswap_64((void *) array, data->raw_size);
2364 
2365 		array = (void *)array + sizeof(u32);
2366 
2367 		OVERFLOW_CHECK(array, data->raw_size, max_size);
2368 		data->raw_data = (void *)array;
2369 		array = (void *)array + data->raw_size;
2370 	}
2371 
2372 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2373 		const u64 max_branch_nr = UINT64_MAX /
2374 					  sizeof(struct branch_entry);
2375 
2376 		OVERFLOW_CHECK_u64(array);
2377 		data->branch_stack = (struct branch_stack *)array++;
2378 
2379 		if (data->branch_stack->nr > max_branch_nr)
2380 			return -EFAULT;
2381 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
2382 		OVERFLOW_CHECK(array, sz, max_size);
2383 		array = (void *)array + sz;
2384 	}
2385 
2386 	if (type & PERF_SAMPLE_REGS_USER) {
2387 		OVERFLOW_CHECK_u64(array);
2388 		data->user_regs.abi = *array;
2389 		array++;
2390 
2391 		if (data->user_regs.abi) {
2392 			u64 mask = evsel->core.attr.sample_regs_user;
2393 
2394 			sz = hweight64(mask) * sizeof(u64);
2395 			OVERFLOW_CHECK(array, sz, max_size);
2396 			data->user_regs.mask = mask;
2397 			data->user_regs.regs = (u64 *)array;
2398 			array = (void *)array + sz;
2399 		}
2400 	}
2401 
2402 	if (type & PERF_SAMPLE_STACK_USER) {
2403 		OVERFLOW_CHECK_u64(array);
2404 		sz = *array++;
2405 
2406 		data->user_stack.offset = ((char *)(array - 1)
2407 					  - (char *) event);
2408 
2409 		if (!sz) {
2410 			data->user_stack.size = 0;
2411 		} else {
2412 			OVERFLOW_CHECK(array, sz, max_size);
2413 			data->user_stack.data = (char *)array;
2414 			array = (void *)array + sz;
2415 			OVERFLOW_CHECK_u64(array);
2416 			data->user_stack.size = *array++;
2417 			if (WARN_ONCE(data->user_stack.size > sz,
2418 				      "user stack dump failure\n"))
2419 				return -EFAULT;
2420 		}
2421 	}
2422 
2423 	if (type & PERF_SAMPLE_WEIGHT) {
2424 		OVERFLOW_CHECK_u64(array);
2425 		data->weight = *array;
2426 		array++;
2427 	}
2428 
2429 	if (type & PERF_SAMPLE_DATA_SRC) {
2430 		OVERFLOW_CHECK_u64(array);
2431 		data->data_src = *array;
2432 		array++;
2433 	}
2434 
2435 	if (type & PERF_SAMPLE_TRANSACTION) {
2436 		OVERFLOW_CHECK_u64(array);
2437 		data->transaction = *array;
2438 		array++;
2439 	}
2440 
2441 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2442 	if (type & PERF_SAMPLE_REGS_INTR) {
2443 		OVERFLOW_CHECK_u64(array);
2444 		data->intr_regs.abi = *array;
2445 		array++;
2446 
2447 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2448 			u64 mask = evsel->core.attr.sample_regs_intr;
2449 
2450 			sz = hweight64(mask) * sizeof(u64);
2451 			OVERFLOW_CHECK(array, sz, max_size);
2452 			data->intr_regs.mask = mask;
2453 			data->intr_regs.regs = (u64 *)array;
2454 			array = (void *)array + sz;
2455 		}
2456 	}
2457 
2458 	data->phys_addr = 0;
2459 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2460 		data->phys_addr = *array;
2461 		array++;
2462 	}
2463 
2464 	return 0;
2465 }
2466 
2467 int perf_evsel__parse_sample_timestamp(struct evsel *evsel,
2468 				       union perf_event *event,
2469 				       u64 *timestamp)
2470 {
2471 	u64 type = evsel->core.attr.sample_type;
2472 	const u64 *array;
2473 
2474 	if (!(type & PERF_SAMPLE_TIME))
2475 		return -1;
2476 
2477 	if (event->header.type != PERF_RECORD_SAMPLE) {
2478 		struct perf_sample data = {
2479 			.time = -1ULL,
2480 		};
2481 
2482 		if (!evsel->core.attr.sample_id_all)
2483 			return -1;
2484 		if (perf_evsel__parse_id_sample(evsel, event, &data))
2485 			return -1;
2486 
2487 		*timestamp = data.time;
2488 		return 0;
2489 	}
2490 
2491 	array = event->sample.array;
2492 
2493 	if (perf_event__check_size(event, evsel->sample_size))
2494 		return -EFAULT;
2495 
2496 	if (type & PERF_SAMPLE_IDENTIFIER)
2497 		array++;
2498 
2499 	if (type & PERF_SAMPLE_IP)
2500 		array++;
2501 
2502 	if (type & PERF_SAMPLE_TID)
2503 		array++;
2504 
2505 	if (type & PERF_SAMPLE_TIME)
2506 		*timestamp = *array;
2507 
2508 	return 0;
2509 }
2510 
2511 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2512 				     u64 read_format)
2513 {
2514 	size_t sz, result = sizeof(struct sample_event);
2515 
2516 	if (type & PERF_SAMPLE_IDENTIFIER)
2517 		result += sizeof(u64);
2518 
2519 	if (type & PERF_SAMPLE_IP)
2520 		result += sizeof(u64);
2521 
2522 	if (type & PERF_SAMPLE_TID)
2523 		result += sizeof(u64);
2524 
2525 	if (type & PERF_SAMPLE_TIME)
2526 		result += sizeof(u64);
2527 
2528 	if (type & PERF_SAMPLE_ADDR)
2529 		result += sizeof(u64);
2530 
2531 	if (type & PERF_SAMPLE_ID)
2532 		result += sizeof(u64);
2533 
2534 	if (type & PERF_SAMPLE_STREAM_ID)
2535 		result += sizeof(u64);
2536 
2537 	if (type & PERF_SAMPLE_CPU)
2538 		result += sizeof(u64);
2539 
2540 	if (type & PERF_SAMPLE_PERIOD)
2541 		result += sizeof(u64);
2542 
2543 	if (type & PERF_SAMPLE_READ) {
2544 		result += sizeof(u64);
2545 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2546 			result += sizeof(u64);
2547 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2548 			result += sizeof(u64);
2549 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2550 		if (read_format & PERF_FORMAT_GROUP) {
2551 			sz = sample->read.group.nr *
2552 			     sizeof(struct sample_read_value);
2553 			result += sz;
2554 		} else {
2555 			result += sizeof(u64);
2556 		}
2557 	}
2558 
2559 	if (type & PERF_SAMPLE_CALLCHAIN) {
2560 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2561 		result += sz;
2562 	}
2563 
2564 	if (type & PERF_SAMPLE_RAW) {
2565 		result += sizeof(u32);
2566 		result += sample->raw_size;
2567 	}
2568 
2569 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2570 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2571 		sz += sizeof(u64);
2572 		result += sz;
2573 	}
2574 
2575 	if (type & PERF_SAMPLE_REGS_USER) {
2576 		if (sample->user_regs.abi) {
2577 			result += sizeof(u64);
2578 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2579 			result += sz;
2580 		} else {
2581 			result += sizeof(u64);
2582 		}
2583 	}
2584 
2585 	if (type & PERF_SAMPLE_STACK_USER) {
2586 		sz = sample->user_stack.size;
2587 		result += sizeof(u64);
2588 		if (sz) {
2589 			result += sz;
2590 			result += sizeof(u64);
2591 		}
2592 	}
2593 
2594 	if (type & PERF_SAMPLE_WEIGHT)
2595 		result += sizeof(u64);
2596 
2597 	if (type & PERF_SAMPLE_DATA_SRC)
2598 		result += sizeof(u64);
2599 
2600 	if (type & PERF_SAMPLE_TRANSACTION)
2601 		result += sizeof(u64);
2602 
2603 	if (type & PERF_SAMPLE_REGS_INTR) {
2604 		if (sample->intr_regs.abi) {
2605 			result += sizeof(u64);
2606 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2607 			result += sz;
2608 		} else {
2609 			result += sizeof(u64);
2610 		}
2611 	}
2612 
2613 	if (type & PERF_SAMPLE_PHYS_ADDR)
2614 		result += sizeof(u64);
2615 
2616 	return result;
2617 }
2618 
2619 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2620 				  u64 read_format,
2621 				  const struct perf_sample *sample)
2622 {
2623 	u64 *array;
2624 	size_t sz;
2625 	/*
2626 	 * used for cross-endian analysis. See git commit 65014ab3
2627 	 * for why this goofiness is needed.
2628 	 */
2629 	union u64_swap u;
2630 
2631 	array = event->sample.array;
2632 
2633 	if (type & PERF_SAMPLE_IDENTIFIER) {
2634 		*array = sample->id;
2635 		array++;
2636 	}
2637 
2638 	if (type & PERF_SAMPLE_IP) {
2639 		*array = sample->ip;
2640 		array++;
2641 	}
2642 
2643 	if (type & PERF_SAMPLE_TID) {
2644 		u.val32[0] = sample->pid;
2645 		u.val32[1] = sample->tid;
2646 		*array = u.val64;
2647 		array++;
2648 	}
2649 
2650 	if (type & PERF_SAMPLE_TIME) {
2651 		*array = sample->time;
2652 		array++;
2653 	}
2654 
2655 	if (type & PERF_SAMPLE_ADDR) {
2656 		*array = sample->addr;
2657 		array++;
2658 	}
2659 
2660 	if (type & PERF_SAMPLE_ID) {
2661 		*array = sample->id;
2662 		array++;
2663 	}
2664 
2665 	if (type & PERF_SAMPLE_STREAM_ID) {
2666 		*array = sample->stream_id;
2667 		array++;
2668 	}
2669 
2670 	if (type & PERF_SAMPLE_CPU) {
2671 		u.val32[0] = sample->cpu;
2672 		u.val32[1] = 0;
2673 		*array = u.val64;
2674 		array++;
2675 	}
2676 
2677 	if (type & PERF_SAMPLE_PERIOD) {
2678 		*array = sample->period;
2679 		array++;
2680 	}
2681 
2682 	if (type & PERF_SAMPLE_READ) {
2683 		if (read_format & PERF_FORMAT_GROUP)
2684 			*array = sample->read.group.nr;
2685 		else
2686 			*array = sample->read.one.value;
2687 		array++;
2688 
2689 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2690 			*array = sample->read.time_enabled;
2691 			array++;
2692 		}
2693 
2694 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2695 			*array = sample->read.time_running;
2696 			array++;
2697 		}
2698 
2699 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2700 		if (read_format & PERF_FORMAT_GROUP) {
2701 			sz = sample->read.group.nr *
2702 			     sizeof(struct sample_read_value);
2703 			memcpy(array, sample->read.group.values, sz);
2704 			array = (void *)array + sz;
2705 		} else {
2706 			*array = sample->read.one.id;
2707 			array++;
2708 		}
2709 	}
2710 
2711 	if (type & PERF_SAMPLE_CALLCHAIN) {
2712 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2713 		memcpy(array, sample->callchain, sz);
2714 		array = (void *)array + sz;
2715 	}
2716 
2717 	if (type & PERF_SAMPLE_RAW) {
2718 		u.val32[0] = sample->raw_size;
2719 		*array = u.val64;
2720 		array = (void *)array + sizeof(u32);
2721 
2722 		memcpy(array, sample->raw_data, sample->raw_size);
2723 		array = (void *)array + sample->raw_size;
2724 	}
2725 
2726 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2727 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2728 		sz += sizeof(u64);
2729 		memcpy(array, sample->branch_stack, sz);
2730 		array = (void *)array + sz;
2731 	}
2732 
2733 	if (type & PERF_SAMPLE_REGS_USER) {
2734 		if (sample->user_regs.abi) {
2735 			*array++ = sample->user_regs.abi;
2736 			sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2737 			memcpy(array, sample->user_regs.regs, sz);
2738 			array = (void *)array + sz;
2739 		} else {
2740 			*array++ = 0;
2741 		}
2742 	}
2743 
2744 	if (type & PERF_SAMPLE_STACK_USER) {
2745 		sz = sample->user_stack.size;
2746 		*array++ = sz;
2747 		if (sz) {
2748 			memcpy(array, sample->user_stack.data, sz);
2749 			array = (void *)array + sz;
2750 			*array++ = sz;
2751 		}
2752 	}
2753 
2754 	if (type & PERF_SAMPLE_WEIGHT) {
2755 		*array = sample->weight;
2756 		array++;
2757 	}
2758 
2759 	if (type & PERF_SAMPLE_DATA_SRC) {
2760 		*array = sample->data_src;
2761 		array++;
2762 	}
2763 
2764 	if (type & PERF_SAMPLE_TRANSACTION) {
2765 		*array = sample->transaction;
2766 		array++;
2767 	}
2768 
2769 	if (type & PERF_SAMPLE_REGS_INTR) {
2770 		if (sample->intr_regs.abi) {
2771 			*array++ = sample->intr_regs.abi;
2772 			sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2773 			memcpy(array, sample->intr_regs.regs, sz);
2774 			array = (void *)array + sz;
2775 		} else {
2776 			*array++ = 0;
2777 		}
2778 	}
2779 
2780 	if (type & PERF_SAMPLE_PHYS_ADDR) {
2781 		*array = sample->phys_addr;
2782 		array++;
2783 	}
2784 
2785 	return 0;
2786 }
2787 
2788 struct tep_format_field *perf_evsel__field(struct evsel *evsel, const char *name)
2789 {
2790 	return tep_find_field(evsel->tp_format, name);
2791 }
2792 
2793 void *perf_evsel__rawptr(struct evsel *evsel, struct perf_sample *sample,
2794 			 const char *name)
2795 {
2796 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2797 	int offset;
2798 
2799 	if (!field)
2800 		return NULL;
2801 
2802 	offset = field->offset;
2803 
2804 	if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2805 		offset = *(int *)(sample->raw_data + field->offset);
2806 		offset &= 0xffff;
2807 	}
2808 
2809 	return sample->raw_data + offset;
2810 }
2811 
2812 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2813 			 bool needs_swap)
2814 {
2815 	u64 value;
2816 	void *ptr = sample->raw_data + field->offset;
2817 
2818 	switch (field->size) {
2819 	case 1:
2820 		return *(u8 *)ptr;
2821 	case 2:
2822 		value = *(u16 *)ptr;
2823 		break;
2824 	case 4:
2825 		value = *(u32 *)ptr;
2826 		break;
2827 	case 8:
2828 		memcpy(&value, ptr, sizeof(u64));
2829 		break;
2830 	default:
2831 		return 0;
2832 	}
2833 
2834 	if (!needs_swap)
2835 		return value;
2836 
2837 	switch (field->size) {
2838 	case 2:
2839 		return bswap_16(value);
2840 	case 4:
2841 		return bswap_32(value);
2842 	case 8:
2843 		return bswap_64(value);
2844 	default:
2845 		return 0;
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 u64 perf_evsel__intval(struct evsel *evsel, struct perf_sample *sample,
2852 		       const char *name)
2853 {
2854 	struct tep_format_field *field = perf_evsel__field(evsel, name);
2855 
2856 	if (!field)
2857 		return 0;
2858 
2859 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2860 }
2861 
2862 bool perf_evsel__fallback(struct evsel *evsel, int err,
2863 			  char *msg, size_t msgsize)
2864 {
2865 	int paranoid;
2866 
2867 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2868 	    evsel->core.attr.type   == PERF_TYPE_HARDWARE &&
2869 	    evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2870 		/*
2871 		 * If it's cycles then fall back to hrtimer based
2872 		 * cpu-clock-tick sw counter, which is always available even if
2873 		 * no PMU support.
2874 		 *
2875 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2876 		 * b0a873e).
2877 		 */
2878 		scnprintf(msg, msgsize, "%s",
2879 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2880 
2881 		evsel->core.attr.type   = PERF_TYPE_SOFTWARE;
2882 		evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK;
2883 
2884 		zfree(&evsel->name);
2885 		return true;
2886 	} else if (err == EACCES && !evsel->core.attr.exclude_kernel &&
2887 		   (paranoid = perf_event_paranoid()) > 1) {
2888 		const char *name = perf_evsel__name(evsel);
2889 		char *new_name;
2890 		const char *sep = ":";
2891 
2892 		/* Is there already the separator in the name. */
2893 		if (strchr(name, '/') ||
2894 		    strchr(name, ':'))
2895 			sep = "";
2896 
2897 		if (asprintf(&new_name, "%s%su", name, sep) < 0)
2898 			return false;
2899 
2900 		if (evsel->name)
2901 			free(evsel->name);
2902 		evsel->name = new_name;
2903 		scnprintf(msg, msgsize,
2904 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2905 		evsel->core.attr.exclude_kernel = 1;
2906 
2907 		return true;
2908 	}
2909 
2910 	return false;
2911 }
2912 
2913 static bool find_process(const char *name)
2914 {
2915 	size_t len = strlen(name);
2916 	DIR *dir;
2917 	struct dirent *d;
2918 	int ret = -1;
2919 
2920 	dir = opendir(procfs__mountpoint());
2921 	if (!dir)
2922 		return false;
2923 
2924 	/* Walk through the directory. */
2925 	while (ret && (d = readdir(dir)) != NULL) {
2926 		char path[PATH_MAX];
2927 		char *data;
2928 		size_t size;
2929 
2930 		if ((d->d_type != DT_DIR) ||
2931 		     !strcmp(".", d->d_name) ||
2932 		     !strcmp("..", d->d_name))
2933 			continue;
2934 
2935 		scnprintf(path, sizeof(path), "%s/%s/comm",
2936 			  procfs__mountpoint(), d->d_name);
2937 
2938 		if (filename__read_str(path, &data, &size))
2939 			continue;
2940 
2941 		ret = strncmp(name, data, len);
2942 		free(data);
2943 	}
2944 
2945 	closedir(dir);
2946 	return ret ? false : true;
2947 }
2948 
2949 int perf_evsel__open_strerror(struct evsel *evsel, struct target *target,
2950 			      int err, char *msg, size_t size)
2951 {
2952 	char sbuf[STRERR_BUFSIZE];
2953 	int printed = 0;
2954 
2955 	switch (err) {
2956 	case EPERM:
2957 	case EACCES:
2958 		if (err == EPERM)
2959 			printed = scnprintf(msg, size,
2960 				"No permission to enable %s event.\n\n",
2961 				perf_evsel__name(evsel));
2962 
2963 		return scnprintf(msg + printed, size - printed,
2964 		 "You may not have permission to collect %sstats.\n\n"
2965 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2966 		 "which controls use of the performance events system by\n"
2967 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2968 		 "The current value is %d:\n\n"
2969 		 "  -1: Allow use of (almost) all events by all users\n"
2970 		 "      Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2971 		 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2972 		 "      Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2973 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2974 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2975 		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2976 		 "	kernel.perf_event_paranoid = -1\n" ,
2977 				 target->system_wide ? "system-wide " : "",
2978 				 perf_event_paranoid());
2979 	case ENOENT:
2980 		return scnprintf(msg, size, "The %s event is not supported.",
2981 				 perf_evsel__name(evsel));
2982 	case EMFILE:
2983 		return scnprintf(msg, size, "%s",
2984 			 "Too many events are opened.\n"
2985 			 "Probably the maximum number of open file descriptors has been reached.\n"
2986 			 "Hint: Try again after reducing the number of events.\n"
2987 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2988 	case ENOMEM:
2989 		if (evsel__has_callchain(evsel) &&
2990 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2991 			return scnprintf(msg, size,
2992 					 "Not enough memory to setup event with callchain.\n"
2993 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2994 					 "Hint: Current value: %d", sysctl__max_stack());
2995 		break;
2996 	case ENODEV:
2997 		if (target->cpu_list)
2998 			return scnprintf(msg, size, "%s",
2999 	 "No such device - did you specify an out-of-range profile CPU?");
3000 		break;
3001 	case EOPNOTSUPP:
3002 		if (evsel->core.attr.sample_period != 0)
3003 			return scnprintf(msg, size,
3004 	"%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
3005 					 perf_evsel__name(evsel));
3006 		if (evsel->core.attr.precise_ip)
3007 			return scnprintf(msg, size, "%s",
3008 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
3009 #if defined(__i386__) || defined(__x86_64__)
3010 		if (evsel->core.attr.type == PERF_TYPE_HARDWARE)
3011 			return scnprintf(msg, size, "%s",
3012 	"No hardware sampling interrupt available.\n");
3013 #endif
3014 		break;
3015 	case EBUSY:
3016 		if (find_process("oprofiled"))
3017 			return scnprintf(msg, size,
3018 	"The PMU counters are busy/taken by another profiler.\n"
3019 	"We found oprofile daemon running, please stop it and try again.");
3020 		break;
3021 	case EINVAL:
3022 		if (evsel->core.attr.write_backward && perf_missing_features.write_backward)
3023 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
3024 		if (perf_missing_features.clockid)
3025 			return scnprintf(msg, size, "clockid feature not supported.");
3026 		if (perf_missing_features.clockid_wrong)
3027 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
3028 		break;
3029 	default:
3030 		break;
3031 	}
3032 
3033 	return scnprintf(msg, size,
3034 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
3035 	"/bin/dmesg | grep -i perf may provide additional information.\n",
3036 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
3037 			 perf_evsel__name(evsel));
3038 }
3039 
3040 struct perf_env *perf_evsel__env(struct evsel *evsel)
3041 {
3042 	if (evsel && evsel->evlist)
3043 		return evsel->evlist->env;
3044 	return NULL;
3045 }
3046 
3047 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist)
3048 {
3049 	int cpu, thread;
3050 
3051 	for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
3052 		for (thread = 0; thread < xyarray__max_y(evsel->fd);
3053 		     thread++) {
3054 			int fd = FD(evsel, cpu, thread);
3055 
3056 			if (perf_evlist__id_add_fd(evlist, evsel,
3057 						   cpu, thread, fd) < 0)
3058 				return -1;
3059 		}
3060 	}
3061 
3062 	return 0;
3063 }
3064 
3065 int perf_evsel__store_ids(struct evsel *evsel, struct evlist *evlist)
3066 {
3067 	struct perf_cpu_map *cpus = evsel->core.cpus;
3068 	struct perf_thread_map *threads = evsel->threads;
3069 
3070 	if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
3071 		return -ENOMEM;
3072 
3073 	return store_evsel_ids(evsel, evlist);
3074 }
3075