1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 4 * 5 * Parts came from builtin-{top,stat,record}.c, see those files for further 6 * copyright notes. 7 */ 8 9 #include <byteswap.h> 10 #include <errno.h> 11 #include <inttypes.h> 12 #include <linux/bitops.h> 13 #include <api/fs/fs.h> 14 #include <api/fs/tracing_path.h> 15 #include <traceevent/event-parse.h> 16 #include <linux/hw_breakpoint.h> 17 #include <linux/perf_event.h> 18 #include <linux/compiler.h> 19 #include <linux/err.h> 20 #include <linux/zalloc.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include <stdlib.h> 26 #include <perf/evsel.h> 27 #include "asm/bug.h" 28 #include "bpf_counter.h" 29 #include "callchain.h" 30 #include "cgroup.h" 31 #include "counts.h" 32 #include "event.h" 33 #include "evsel.h" 34 #include "util/env.h" 35 #include "util/evsel_config.h" 36 #include "util/evsel_fprintf.h" 37 #include "evlist.h" 38 #include <perf/cpumap.h> 39 #include "thread_map.h" 40 #include "target.h" 41 #include "perf_regs.h" 42 #include "record.h" 43 #include "debug.h" 44 #include "trace-event.h" 45 #include "stat.h" 46 #include "string2.h" 47 #include "memswap.h" 48 #include "util.h" 49 #include "hashmap.h" 50 #include "pmu-hybrid.h" 51 #include "../perf-sys.h" 52 #include "util/parse-branch-options.h" 53 #include <internal/xyarray.h> 54 #include <internal/lib.h> 55 56 #include <linux/ctype.h> 57 58 struct perf_missing_features perf_missing_features; 59 60 static clockid_t clockid; 61 62 static int evsel__no_extra_init(struct evsel *evsel __maybe_unused) 63 { 64 return 0; 65 } 66 67 void __weak test_attr__ready(void) { } 68 69 static void evsel__no_extra_fini(struct evsel *evsel __maybe_unused) 70 { 71 } 72 73 static struct { 74 size_t size; 75 int (*init)(struct evsel *evsel); 76 void (*fini)(struct evsel *evsel); 77 } perf_evsel__object = { 78 .size = sizeof(struct evsel), 79 .init = evsel__no_extra_init, 80 .fini = evsel__no_extra_fini, 81 }; 82 83 int evsel__object_config(size_t object_size, int (*init)(struct evsel *evsel), 84 void (*fini)(struct evsel *evsel)) 85 { 86 87 if (object_size == 0) 88 goto set_methods; 89 90 if (perf_evsel__object.size > object_size) 91 return -EINVAL; 92 93 perf_evsel__object.size = object_size; 94 95 set_methods: 96 if (init != NULL) 97 perf_evsel__object.init = init; 98 99 if (fini != NULL) 100 perf_evsel__object.fini = fini; 101 102 return 0; 103 } 104 105 #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y)) 106 107 int __evsel__sample_size(u64 sample_type) 108 { 109 u64 mask = sample_type & PERF_SAMPLE_MASK; 110 int size = 0; 111 int i; 112 113 for (i = 0; i < 64; i++) { 114 if (mask & (1ULL << i)) 115 size++; 116 } 117 118 size *= sizeof(u64); 119 120 return size; 121 } 122 123 /** 124 * __perf_evsel__calc_id_pos - calculate id_pos. 125 * @sample_type: sample type 126 * 127 * This function returns the position of the event id (PERF_SAMPLE_ID or 128 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 129 * perf_record_sample. 130 */ 131 static int __perf_evsel__calc_id_pos(u64 sample_type) 132 { 133 int idx = 0; 134 135 if (sample_type & PERF_SAMPLE_IDENTIFIER) 136 return 0; 137 138 if (!(sample_type & PERF_SAMPLE_ID)) 139 return -1; 140 141 if (sample_type & PERF_SAMPLE_IP) 142 idx += 1; 143 144 if (sample_type & PERF_SAMPLE_TID) 145 idx += 1; 146 147 if (sample_type & PERF_SAMPLE_TIME) 148 idx += 1; 149 150 if (sample_type & PERF_SAMPLE_ADDR) 151 idx += 1; 152 153 return idx; 154 } 155 156 /** 157 * __perf_evsel__calc_is_pos - calculate is_pos. 158 * @sample_type: sample type 159 * 160 * This function returns the position (counting backwards) of the event id 161 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 162 * sample_id_all is used there is an id sample appended to non-sample events. 163 */ 164 static int __perf_evsel__calc_is_pos(u64 sample_type) 165 { 166 int idx = 1; 167 168 if (sample_type & PERF_SAMPLE_IDENTIFIER) 169 return 1; 170 171 if (!(sample_type & PERF_SAMPLE_ID)) 172 return -1; 173 174 if (sample_type & PERF_SAMPLE_CPU) 175 idx += 1; 176 177 if (sample_type & PERF_SAMPLE_STREAM_ID) 178 idx += 1; 179 180 return idx; 181 } 182 183 void evsel__calc_id_pos(struct evsel *evsel) 184 { 185 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type); 186 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type); 187 } 188 189 void __evsel__set_sample_bit(struct evsel *evsel, 190 enum perf_event_sample_format bit) 191 { 192 if (!(evsel->core.attr.sample_type & bit)) { 193 evsel->core.attr.sample_type |= bit; 194 evsel->sample_size += sizeof(u64); 195 evsel__calc_id_pos(evsel); 196 } 197 } 198 199 void __evsel__reset_sample_bit(struct evsel *evsel, 200 enum perf_event_sample_format bit) 201 { 202 if (evsel->core.attr.sample_type & bit) { 203 evsel->core.attr.sample_type &= ~bit; 204 evsel->sample_size -= sizeof(u64); 205 evsel__calc_id_pos(evsel); 206 } 207 } 208 209 void evsel__set_sample_id(struct evsel *evsel, 210 bool can_sample_identifier) 211 { 212 if (can_sample_identifier) { 213 evsel__reset_sample_bit(evsel, ID); 214 evsel__set_sample_bit(evsel, IDENTIFIER); 215 } else { 216 evsel__set_sample_bit(evsel, ID); 217 } 218 evsel->core.attr.read_format |= PERF_FORMAT_ID; 219 } 220 221 /** 222 * evsel__is_function_event - Return whether given evsel is a function 223 * trace event 224 * 225 * @evsel - evsel selector to be tested 226 * 227 * Return %true if event is function trace event 228 */ 229 bool evsel__is_function_event(struct evsel *evsel) 230 { 231 #define FUNCTION_EVENT "ftrace:function" 232 233 return evsel->name && 234 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 235 236 #undef FUNCTION_EVENT 237 } 238 239 void evsel__init(struct evsel *evsel, 240 struct perf_event_attr *attr, int idx) 241 { 242 perf_evsel__init(&evsel->core, attr, idx); 243 evsel->tracking = !idx; 244 evsel->unit = ""; 245 evsel->scale = 1.0; 246 evsel->max_events = ULONG_MAX; 247 evsel->evlist = NULL; 248 evsel->bpf_obj = NULL; 249 evsel->bpf_fd = -1; 250 INIT_LIST_HEAD(&evsel->config_terms); 251 INIT_LIST_HEAD(&evsel->bpf_counter_list); 252 perf_evsel__object.init(evsel); 253 evsel->sample_size = __evsel__sample_size(attr->sample_type); 254 evsel__calc_id_pos(evsel); 255 evsel->cmdline_group_boundary = false; 256 evsel->metric_expr = NULL; 257 evsel->metric_name = NULL; 258 evsel->metric_events = NULL; 259 evsel->per_pkg_mask = NULL; 260 evsel->collect_stat = false; 261 evsel->pmu_name = NULL; 262 } 263 264 struct evsel *evsel__new_idx(struct perf_event_attr *attr, int idx) 265 { 266 struct evsel *evsel = zalloc(perf_evsel__object.size); 267 268 if (!evsel) 269 return NULL; 270 evsel__init(evsel, attr, idx); 271 272 if (evsel__is_bpf_output(evsel)) { 273 evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 274 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 275 evsel->core.attr.sample_period = 1; 276 } 277 278 if (evsel__is_clock(evsel)) { 279 /* 280 * The evsel->unit points to static alias->unit 281 * so it's ok to use static string in here. 282 */ 283 static const char *unit = "msec"; 284 285 evsel->unit = unit; 286 evsel->scale = 1e-6; 287 } 288 289 return evsel; 290 } 291 292 static bool perf_event_can_profile_kernel(void) 293 { 294 return perf_event_paranoid_check(1); 295 } 296 297 struct evsel *evsel__new_cycles(bool precise, __u32 type, __u64 config) 298 { 299 struct perf_event_attr attr = { 300 .type = type, 301 .config = config, 302 .exclude_kernel = !perf_event_can_profile_kernel(), 303 }; 304 struct evsel *evsel; 305 306 event_attr_init(&attr); 307 308 if (!precise) 309 goto new_event; 310 311 /* 312 * Now let the usual logic to set up the perf_event_attr defaults 313 * to kick in when we return and before perf_evsel__open() is called. 314 */ 315 new_event: 316 evsel = evsel__new(&attr); 317 if (evsel == NULL) 318 goto out; 319 320 evsel->precise_max = true; 321 322 /* use asprintf() because free(evsel) assumes name is allocated */ 323 if (asprintf(&evsel->name, "cycles%s%s%.*s", 324 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 325 attr.exclude_kernel ? "u" : "", 326 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 327 goto error_free; 328 out: 329 return evsel; 330 error_free: 331 evsel__delete(evsel); 332 evsel = NULL; 333 goto out; 334 } 335 336 int copy_config_terms(struct list_head *dst, struct list_head *src) 337 { 338 struct evsel_config_term *pos, *tmp; 339 340 list_for_each_entry(pos, src, list) { 341 tmp = malloc(sizeof(*tmp)); 342 if (tmp == NULL) 343 return -ENOMEM; 344 345 *tmp = *pos; 346 if (tmp->free_str) { 347 tmp->val.str = strdup(pos->val.str); 348 if (tmp->val.str == NULL) { 349 free(tmp); 350 return -ENOMEM; 351 } 352 } 353 list_add_tail(&tmp->list, dst); 354 } 355 return 0; 356 } 357 358 static int evsel__copy_config_terms(struct evsel *dst, struct evsel *src) 359 { 360 return copy_config_terms(&dst->config_terms, &src->config_terms); 361 } 362 363 /** 364 * evsel__clone - create a new evsel copied from @orig 365 * @orig: original evsel 366 * 367 * The assumption is that @orig is not configured nor opened yet. 368 * So we only care about the attributes that can be set while it's parsed. 369 */ 370 struct evsel *evsel__clone(struct evsel *orig) 371 { 372 struct evsel *evsel; 373 374 BUG_ON(orig->core.fd); 375 BUG_ON(orig->counts); 376 BUG_ON(orig->priv); 377 BUG_ON(orig->per_pkg_mask); 378 379 /* cannot handle BPF objects for now */ 380 if (orig->bpf_obj) 381 return NULL; 382 383 evsel = evsel__new(&orig->core.attr); 384 if (evsel == NULL) 385 return NULL; 386 387 evsel->core.cpus = perf_cpu_map__get(orig->core.cpus); 388 evsel->core.own_cpus = perf_cpu_map__get(orig->core.own_cpus); 389 evsel->core.threads = perf_thread_map__get(orig->core.threads); 390 evsel->core.nr_members = orig->core.nr_members; 391 evsel->core.system_wide = orig->core.system_wide; 392 393 if (orig->name) { 394 evsel->name = strdup(orig->name); 395 if (evsel->name == NULL) 396 goto out_err; 397 } 398 if (orig->group_name) { 399 evsel->group_name = strdup(orig->group_name); 400 if (evsel->group_name == NULL) 401 goto out_err; 402 } 403 if (orig->pmu_name) { 404 evsel->pmu_name = strdup(orig->pmu_name); 405 if (evsel->pmu_name == NULL) 406 goto out_err; 407 } 408 if (orig->filter) { 409 evsel->filter = strdup(orig->filter); 410 if (evsel->filter == NULL) 411 goto out_err; 412 } 413 if (orig->metric_id) { 414 evsel->metric_id = strdup(orig->metric_id); 415 if (evsel->metric_id == NULL) 416 goto out_err; 417 } 418 evsel->cgrp = cgroup__get(orig->cgrp); 419 evsel->tp_format = orig->tp_format; 420 evsel->handler = orig->handler; 421 evsel->core.leader = orig->core.leader; 422 423 evsel->max_events = orig->max_events; 424 evsel->tool_event = orig->tool_event; 425 evsel->unit = orig->unit; 426 evsel->scale = orig->scale; 427 evsel->snapshot = orig->snapshot; 428 evsel->per_pkg = orig->per_pkg; 429 evsel->percore = orig->percore; 430 evsel->precise_max = orig->precise_max; 431 evsel->use_uncore_alias = orig->use_uncore_alias; 432 evsel->is_libpfm_event = orig->is_libpfm_event; 433 434 evsel->exclude_GH = orig->exclude_GH; 435 evsel->sample_read = orig->sample_read; 436 evsel->auto_merge_stats = orig->auto_merge_stats; 437 evsel->collect_stat = orig->collect_stat; 438 evsel->weak_group = orig->weak_group; 439 evsel->use_config_name = orig->use_config_name; 440 441 if (evsel__copy_config_terms(evsel, orig) < 0) 442 goto out_err; 443 444 return evsel; 445 446 out_err: 447 evsel__delete(evsel); 448 return NULL; 449 } 450 451 /* 452 * Returns pointer with encoded error via <linux/err.h> interface. 453 */ 454 struct evsel *evsel__newtp_idx(const char *sys, const char *name, int idx) 455 { 456 struct evsel *evsel = zalloc(perf_evsel__object.size); 457 int err = -ENOMEM; 458 459 if (evsel == NULL) { 460 goto out_err; 461 } else { 462 struct perf_event_attr attr = { 463 .type = PERF_TYPE_TRACEPOINT, 464 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 465 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 466 }; 467 468 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 469 goto out_free; 470 471 evsel->tp_format = trace_event__tp_format(sys, name); 472 if (IS_ERR(evsel->tp_format)) { 473 err = PTR_ERR(evsel->tp_format); 474 goto out_free; 475 } 476 477 event_attr_init(&attr); 478 attr.config = evsel->tp_format->id; 479 attr.sample_period = 1; 480 evsel__init(evsel, &attr, idx); 481 } 482 483 return evsel; 484 485 out_free: 486 zfree(&evsel->name); 487 free(evsel); 488 out_err: 489 return ERR_PTR(err); 490 } 491 492 const char *evsel__hw_names[PERF_COUNT_HW_MAX] = { 493 "cycles", 494 "instructions", 495 "cache-references", 496 "cache-misses", 497 "branches", 498 "branch-misses", 499 "bus-cycles", 500 "stalled-cycles-frontend", 501 "stalled-cycles-backend", 502 "ref-cycles", 503 }; 504 505 char *evsel__bpf_counter_events; 506 507 bool evsel__match_bpf_counter_events(const char *name) 508 { 509 int name_len; 510 bool match; 511 char *ptr; 512 513 if (!evsel__bpf_counter_events) 514 return false; 515 516 ptr = strstr(evsel__bpf_counter_events, name); 517 name_len = strlen(name); 518 519 /* check name matches a full token in evsel__bpf_counter_events */ 520 match = (ptr != NULL) && 521 ((ptr == evsel__bpf_counter_events) || (*(ptr - 1) == ',')) && 522 ((*(ptr + name_len) == ',') || (*(ptr + name_len) == '\0')); 523 524 return match; 525 } 526 527 static const char *__evsel__hw_name(u64 config) 528 { 529 if (config < PERF_COUNT_HW_MAX && evsel__hw_names[config]) 530 return evsel__hw_names[config]; 531 532 return "unknown-hardware"; 533 } 534 535 static int evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size) 536 { 537 int colon = 0, r = 0; 538 struct perf_event_attr *attr = &evsel->core.attr; 539 bool exclude_guest_default = false; 540 541 #define MOD_PRINT(context, mod) do { \ 542 if (!attr->exclude_##context) { \ 543 if (!colon) colon = ++r; \ 544 r += scnprintf(bf + r, size - r, "%c", mod); \ 545 } } while(0) 546 547 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 548 MOD_PRINT(kernel, 'k'); 549 MOD_PRINT(user, 'u'); 550 MOD_PRINT(hv, 'h'); 551 exclude_guest_default = true; 552 } 553 554 if (attr->precise_ip) { 555 if (!colon) 556 colon = ++r; 557 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 558 exclude_guest_default = true; 559 } 560 561 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 562 MOD_PRINT(host, 'H'); 563 MOD_PRINT(guest, 'G'); 564 } 565 #undef MOD_PRINT 566 if (colon) 567 bf[colon - 1] = ':'; 568 return r; 569 } 570 571 static int evsel__hw_name(struct evsel *evsel, char *bf, size_t size) 572 { 573 int r = scnprintf(bf, size, "%s", __evsel__hw_name(evsel->core.attr.config)); 574 return r + evsel__add_modifiers(evsel, bf + r, size - r); 575 } 576 577 const char *evsel__sw_names[PERF_COUNT_SW_MAX] = { 578 "cpu-clock", 579 "task-clock", 580 "page-faults", 581 "context-switches", 582 "cpu-migrations", 583 "minor-faults", 584 "major-faults", 585 "alignment-faults", 586 "emulation-faults", 587 "dummy", 588 }; 589 590 static const char *__evsel__sw_name(u64 config) 591 { 592 if (config < PERF_COUNT_SW_MAX && evsel__sw_names[config]) 593 return evsel__sw_names[config]; 594 return "unknown-software"; 595 } 596 597 static int evsel__sw_name(struct evsel *evsel, char *bf, size_t size) 598 { 599 int r = scnprintf(bf, size, "%s", __evsel__sw_name(evsel->core.attr.config)); 600 return r + evsel__add_modifiers(evsel, bf + r, size - r); 601 } 602 603 static int __evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 604 { 605 int r; 606 607 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 608 609 if (type & HW_BREAKPOINT_R) 610 r += scnprintf(bf + r, size - r, "r"); 611 612 if (type & HW_BREAKPOINT_W) 613 r += scnprintf(bf + r, size - r, "w"); 614 615 if (type & HW_BREAKPOINT_X) 616 r += scnprintf(bf + r, size - r, "x"); 617 618 return r; 619 } 620 621 static int evsel__bp_name(struct evsel *evsel, char *bf, size_t size) 622 { 623 struct perf_event_attr *attr = &evsel->core.attr; 624 int r = __evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 625 return r + evsel__add_modifiers(evsel, bf + r, size - r); 626 } 627 628 const char *evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX][EVSEL__MAX_ALIASES] = { 629 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 630 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 631 { "LLC", "L2", }, 632 { "dTLB", "d-tlb", "Data-TLB", }, 633 { "iTLB", "i-tlb", "Instruction-TLB", }, 634 { "branch", "branches", "bpu", "btb", "bpc", }, 635 { "node", }, 636 }; 637 638 const char *evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX][EVSEL__MAX_ALIASES] = { 639 { "load", "loads", "read", }, 640 { "store", "stores", "write", }, 641 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 642 }; 643 644 const char *evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX][EVSEL__MAX_ALIASES] = { 645 { "refs", "Reference", "ops", "access", }, 646 { "misses", "miss", }, 647 }; 648 649 #define C(x) PERF_COUNT_HW_CACHE_##x 650 #define CACHE_READ (1 << C(OP_READ)) 651 #define CACHE_WRITE (1 << C(OP_WRITE)) 652 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 653 #define COP(x) (1 << x) 654 655 /* 656 * cache operation stat 657 * L1I : Read and prefetch only 658 * ITLB and BPU : Read-only 659 */ 660 static unsigned long evsel__hw_cache_stat[C(MAX)] = { 661 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 662 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 663 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 664 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 665 [C(ITLB)] = (CACHE_READ), 666 [C(BPU)] = (CACHE_READ), 667 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 668 }; 669 670 bool evsel__is_cache_op_valid(u8 type, u8 op) 671 { 672 if (evsel__hw_cache_stat[type] & COP(op)) 673 return true; /* valid */ 674 else 675 return false; /* invalid */ 676 } 677 678 int __evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, char *bf, size_t size) 679 { 680 if (result) { 681 return scnprintf(bf, size, "%s-%s-%s", evsel__hw_cache[type][0], 682 evsel__hw_cache_op[op][0], 683 evsel__hw_cache_result[result][0]); 684 } 685 686 return scnprintf(bf, size, "%s-%s", evsel__hw_cache[type][0], 687 evsel__hw_cache_op[op][1]); 688 } 689 690 static int __evsel__hw_cache_name(u64 config, char *bf, size_t size) 691 { 692 u8 op, result, type = (config >> 0) & 0xff; 693 const char *err = "unknown-ext-hardware-cache-type"; 694 695 if (type >= PERF_COUNT_HW_CACHE_MAX) 696 goto out_err; 697 698 op = (config >> 8) & 0xff; 699 err = "unknown-ext-hardware-cache-op"; 700 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 701 goto out_err; 702 703 result = (config >> 16) & 0xff; 704 err = "unknown-ext-hardware-cache-result"; 705 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 706 goto out_err; 707 708 err = "invalid-cache"; 709 if (!evsel__is_cache_op_valid(type, op)) 710 goto out_err; 711 712 return __evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 713 out_err: 714 return scnprintf(bf, size, "%s", err); 715 } 716 717 static int evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size) 718 { 719 int ret = __evsel__hw_cache_name(evsel->core.attr.config, bf, size); 720 return ret + evsel__add_modifiers(evsel, bf + ret, size - ret); 721 } 722 723 static int evsel__raw_name(struct evsel *evsel, char *bf, size_t size) 724 { 725 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config); 726 return ret + evsel__add_modifiers(evsel, bf + ret, size - ret); 727 } 728 729 static int evsel__tool_name(char *bf, size_t size) 730 { 731 int ret = scnprintf(bf, size, "duration_time"); 732 return ret; 733 } 734 735 const char *evsel__name(struct evsel *evsel) 736 { 737 char bf[128]; 738 739 if (!evsel) 740 goto out_unknown; 741 742 if (evsel->name) 743 return evsel->name; 744 745 switch (evsel->core.attr.type) { 746 case PERF_TYPE_RAW: 747 evsel__raw_name(evsel, bf, sizeof(bf)); 748 break; 749 750 case PERF_TYPE_HARDWARE: 751 evsel__hw_name(evsel, bf, sizeof(bf)); 752 break; 753 754 case PERF_TYPE_HW_CACHE: 755 evsel__hw_cache_name(evsel, bf, sizeof(bf)); 756 break; 757 758 case PERF_TYPE_SOFTWARE: 759 if (evsel->tool_event) 760 evsel__tool_name(bf, sizeof(bf)); 761 else 762 evsel__sw_name(evsel, bf, sizeof(bf)); 763 break; 764 765 case PERF_TYPE_TRACEPOINT: 766 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 767 break; 768 769 case PERF_TYPE_BREAKPOINT: 770 evsel__bp_name(evsel, bf, sizeof(bf)); 771 break; 772 773 default: 774 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 775 evsel->core.attr.type); 776 break; 777 } 778 779 evsel->name = strdup(bf); 780 781 if (evsel->name) 782 return evsel->name; 783 out_unknown: 784 return "unknown"; 785 } 786 787 const char *evsel__metric_id(const struct evsel *evsel) 788 { 789 if (evsel->metric_id) 790 return evsel->metric_id; 791 792 if (evsel->core.attr.type == PERF_TYPE_SOFTWARE && evsel->tool_event) 793 return "duration_time"; 794 795 return "unknown"; 796 } 797 798 const char *evsel__group_name(struct evsel *evsel) 799 { 800 return evsel->group_name ?: "anon group"; 801 } 802 803 /* 804 * Returns the group details for the specified leader, 805 * with following rules. 806 * 807 * For record -e '{cycles,instructions}' 808 * 'anon group { cycles:u, instructions:u }' 809 * 810 * For record -e 'cycles,instructions' and report --group 811 * 'cycles:u, instructions:u' 812 */ 813 int evsel__group_desc(struct evsel *evsel, char *buf, size_t size) 814 { 815 int ret = 0; 816 struct evsel *pos; 817 const char *group_name = evsel__group_name(evsel); 818 819 if (!evsel->forced_leader) 820 ret = scnprintf(buf, size, "%s { ", group_name); 821 822 ret += scnprintf(buf + ret, size - ret, "%s", evsel__name(evsel)); 823 824 for_each_group_member(pos, evsel) 825 ret += scnprintf(buf + ret, size - ret, ", %s", evsel__name(pos)); 826 827 if (!evsel->forced_leader) 828 ret += scnprintf(buf + ret, size - ret, " }"); 829 830 return ret; 831 } 832 833 static void __evsel__config_callchain(struct evsel *evsel, struct record_opts *opts, 834 struct callchain_param *param) 835 { 836 bool function = evsel__is_function_event(evsel); 837 struct perf_event_attr *attr = &evsel->core.attr; 838 839 evsel__set_sample_bit(evsel, CALLCHAIN); 840 841 attr->sample_max_stack = param->max_stack; 842 843 if (opts->kernel_callchains) 844 attr->exclude_callchain_user = 1; 845 if (opts->user_callchains) 846 attr->exclude_callchain_kernel = 1; 847 if (param->record_mode == CALLCHAIN_LBR) { 848 if (!opts->branch_stack) { 849 if (attr->exclude_user) { 850 pr_warning("LBR callstack option is only available " 851 "to get user callchain information. " 852 "Falling back to framepointers.\n"); 853 } else { 854 evsel__set_sample_bit(evsel, BRANCH_STACK); 855 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 856 PERF_SAMPLE_BRANCH_CALL_STACK | 857 PERF_SAMPLE_BRANCH_NO_CYCLES | 858 PERF_SAMPLE_BRANCH_NO_FLAGS | 859 PERF_SAMPLE_BRANCH_HW_INDEX; 860 } 861 } else 862 pr_warning("Cannot use LBR callstack with branch stack. " 863 "Falling back to framepointers.\n"); 864 } 865 866 if (param->record_mode == CALLCHAIN_DWARF) { 867 if (!function) { 868 evsel__set_sample_bit(evsel, REGS_USER); 869 evsel__set_sample_bit(evsel, STACK_USER); 870 if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) { 871 attr->sample_regs_user |= DWARF_MINIMAL_REGS; 872 pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, " 873 "specifying a subset with --user-regs may render DWARF unwinding unreliable, " 874 "so the minimal registers set (IP, SP) is explicitly forced.\n"); 875 } else { 876 attr->sample_regs_user |= PERF_REGS_MASK; 877 } 878 attr->sample_stack_user = param->dump_size; 879 attr->exclude_callchain_user = 1; 880 } else { 881 pr_info("Cannot use DWARF unwind for function trace event," 882 " falling back to framepointers.\n"); 883 } 884 } 885 886 if (function) { 887 pr_info("Disabling user space callchains for function trace event.\n"); 888 attr->exclude_callchain_user = 1; 889 } 890 } 891 892 void evsel__config_callchain(struct evsel *evsel, struct record_opts *opts, 893 struct callchain_param *param) 894 { 895 if (param->enabled) 896 return __evsel__config_callchain(evsel, opts, param); 897 } 898 899 static void evsel__reset_callgraph(struct evsel *evsel, struct callchain_param *param) 900 { 901 struct perf_event_attr *attr = &evsel->core.attr; 902 903 evsel__reset_sample_bit(evsel, CALLCHAIN); 904 if (param->record_mode == CALLCHAIN_LBR) { 905 evsel__reset_sample_bit(evsel, BRANCH_STACK); 906 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 907 PERF_SAMPLE_BRANCH_CALL_STACK | 908 PERF_SAMPLE_BRANCH_HW_INDEX); 909 } 910 if (param->record_mode == CALLCHAIN_DWARF) { 911 evsel__reset_sample_bit(evsel, REGS_USER); 912 evsel__reset_sample_bit(evsel, STACK_USER); 913 } 914 } 915 916 static void evsel__apply_config_terms(struct evsel *evsel, 917 struct record_opts *opts, bool track) 918 { 919 struct evsel_config_term *term; 920 struct list_head *config_terms = &evsel->config_terms; 921 struct perf_event_attr *attr = &evsel->core.attr; 922 /* callgraph default */ 923 struct callchain_param param = { 924 .record_mode = callchain_param.record_mode, 925 }; 926 u32 dump_size = 0; 927 int max_stack = 0; 928 const char *callgraph_buf = NULL; 929 930 list_for_each_entry(term, config_terms, list) { 931 switch (term->type) { 932 case EVSEL__CONFIG_TERM_PERIOD: 933 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 934 attr->sample_period = term->val.period; 935 attr->freq = 0; 936 evsel__reset_sample_bit(evsel, PERIOD); 937 } 938 break; 939 case EVSEL__CONFIG_TERM_FREQ: 940 if (!(term->weak && opts->user_freq != UINT_MAX)) { 941 attr->sample_freq = term->val.freq; 942 attr->freq = 1; 943 evsel__set_sample_bit(evsel, PERIOD); 944 } 945 break; 946 case EVSEL__CONFIG_TERM_TIME: 947 if (term->val.time) 948 evsel__set_sample_bit(evsel, TIME); 949 else 950 evsel__reset_sample_bit(evsel, TIME); 951 break; 952 case EVSEL__CONFIG_TERM_CALLGRAPH: 953 callgraph_buf = term->val.str; 954 break; 955 case EVSEL__CONFIG_TERM_BRANCH: 956 if (term->val.str && strcmp(term->val.str, "no")) { 957 evsel__set_sample_bit(evsel, BRANCH_STACK); 958 parse_branch_str(term->val.str, 959 &attr->branch_sample_type); 960 } else 961 evsel__reset_sample_bit(evsel, BRANCH_STACK); 962 break; 963 case EVSEL__CONFIG_TERM_STACK_USER: 964 dump_size = term->val.stack_user; 965 break; 966 case EVSEL__CONFIG_TERM_MAX_STACK: 967 max_stack = term->val.max_stack; 968 break; 969 case EVSEL__CONFIG_TERM_MAX_EVENTS: 970 evsel->max_events = term->val.max_events; 971 break; 972 case EVSEL__CONFIG_TERM_INHERIT: 973 /* 974 * attr->inherit should has already been set by 975 * evsel__config. If user explicitly set 976 * inherit using config terms, override global 977 * opt->no_inherit setting. 978 */ 979 attr->inherit = term->val.inherit ? 1 : 0; 980 break; 981 case EVSEL__CONFIG_TERM_OVERWRITE: 982 attr->write_backward = term->val.overwrite ? 1 : 0; 983 break; 984 case EVSEL__CONFIG_TERM_DRV_CFG: 985 break; 986 case EVSEL__CONFIG_TERM_PERCORE: 987 break; 988 case EVSEL__CONFIG_TERM_AUX_OUTPUT: 989 attr->aux_output = term->val.aux_output ? 1 : 0; 990 break; 991 case EVSEL__CONFIG_TERM_AUX_SAMPLE_SIZE: 992 /* Already applied by auxtrace */ 993 break; 994 case EVSEL__CONFIG_TERM_CFG_CHG: 995 break; 996 default: 997 break; 998 } 999 } 1000 1001 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 1002 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 1003 bool sample_address = false; 1004 1005 if (max_stack) { 1006 param.max_stack = max_stack; 1007 if (callgraph_buf == NULL) 1008 callgraph_buf = "fp"; 1009 } 1010 1011 /* parse callgraph parameters */ 1012 if (callgraph_buf != NULL) { 1013 if (!strcmp(callgraph_buf, "no")) { 1014 param.enabled = false; 1015 param.record_mode = CALLCHAIN_NONE; 1016 } else { 1017 param.enabled = true; 1018 if (parse_callchain_record(callgraph_buf, ¶m)) { 1019 pr_err("per-event callgraph setting for %s failed. " 1020 "Apply callgraph global setting for it\n", 1021 evsel->name); 1022 return; 1023 } 1024 if (param.record_mode == CALLCHAIN_DWARF) 1025 sample_address = true; 1026 } 1027 } 1028 if (dump_size > 0) { 1029 dump_size = round_up(dump_size, sizeof(u64)); 1030 param.dump_size = dump_size; 1031 } 1032 1033 /* If global callgraph set, clear it */ 1034 if (callchain_param.enabled) 1035 evsel__reset_callgraph(evsel, &callchain_param); 1036 1037 /* set perf-event callgraph */ 1038 if (param.enabled) { 1039 if (sample_address) { 1040 evsel__set_sample_bit(evsel, ADDR); 1041 evsel__set_sample_bit(evsel, DATA_SRC); 1042 evsel->core.attr.mmap_data = track; 1043 } 1044 evsel__config_callchain(evsel, opts, ¶m); 1045 } 1046 } 1047 } 1048 1049 struct evsel_config_term *__evsel__get_config_term(struct evsel *evsel, enum evsel_term_type type) 1050 { 1051 struct evsel_config_term *term, *found_term = NULL; 1052 1053 list_for_each_entry(term, &evsel->config_terms, list) { 1054 if (term->type == type) 1055 found_term = term; 1056 } 1057 1058 return found_term; 1059 } 1060 1061 void __weak arch_evsel__set_sample_weight(struct evsel *evsel) 1062 { 1063 evsel__set_sample_bit(evsel, WEIGHT); 1064 } 1065 1066 /* 1067 * The enable_on_exec/disabled value strategy: 1068 * 1069 * 1) For any type of traced program: 1070 * - all independent events and group leaders are disabled 1071 * - all group members are enabled 1072 * 1073 * Group members are ruled by group leaders. They need to 1074 * be enabled, because the group scheduling relies on that. 1075 * 1076 * 2) For traced programs executed by perf: 1077 * - all independent events and group leaders have 1078 * enable_on_exec set 1079 * - we don't specifically enable or disable any event during 1080 * the record command 1081 * 1082 * Independent events and group leaders are initially disabled 1083 * and get enabled by exec. Group members are ruled by group 1084 * leaders as stated in 1). 1085 * 1086 * 3) For traced programs attached by perf (pid/tid): 1087 * - we specifically enable or disable all events during 1088 * the record command 1089 * 1090 * When attaching events to already running traced we 1091 * enable/disable events specifically, as there's no 1092 * initial traced exec call. 1093 */ 1094 void evsel__config(struct evsel *evsel, struct record_opts *opts, 1095 struct callchain_param *callchain) 1096 { 1097 struct evsel *leader = evsel__leader(evsel); 1098 struct perf_event_attr *attr = &evsel->core.attr; 1099 int track = evsel->tracking; 1100 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 1101 1102 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 1103 attr->inherit = !opts->no_inherit; 1104 attr->write_backward = opts->overwrite ? 1 : 0; 1105 1106 evsel__set_sample_bit(evsel, IP); 1107 evsel__set_sample_bit(evsel, TID); 1108 1109 if (evsel->sample_read) { 1110 evsel__set_sample_bit(evsel, READ); 1111 1112 /* 1113 * We need ID even in case of single event, because 1114 * PERF_SAMPLE_READ process ID specific data. 1115 */ 1116 evsel__set_sample_id(evsel, false); 1117 1118 /* 1119 * Apply group format only if we belong to group 1120 * with more than one members. 1121 */ 1122 if (leader->core.nr_members > 1) { 1123 attr->read_format |= PERF_FORMAT_GROUP; 1124 attr->inherit = 0; 1125 } 1126 } 1127 1128 /* 1129 * We default some events to have a default interval. But keep 1130 * it a weak assumption overridable by the user. 1131 */ 1132 if (!attr->sample_period) { 1133 if (opts->freq) { 1134 attr->freq = 1; 1135 attr->sample_freq = opts->freq; 1136 } else { 1137 attr->sample_period = opts->default_interval; 1138 } 1139 } 1140 /* 1141 * If attr->freq was set (here or earlier), ask for period 1142 * to be sampled. 1143 */ 1144 if (attr->freq) 1145 evsel__set_sample_bit(evsel, PERIOD); 1146 1147 if (opts->no_samples) 1148 attr->sample_freq = 0; 1149 1150 if (opts->inherit_stat) { 1151 evsel->core.attr.read_format |= 1152 PERF_FORMAT_TOTAL_TIME_ENABLED | 1153 PERF_FORMAT_TOTAL_TIME_RUNNING | 1154 PERF_FORMAT_ID; 1155 attr->inherit_stat = 1; 1156 } 1157 1158 if (opts->sample_address) { 1159 evsel__set_sample_bit(evsel, ADDR); 1160 attr->mmap_data = track; 1161 } 1162 1163 /* 1164 * We don't allow user space callchains for function trace 1165 * event, due to issues with page faults while tracing page 1166 * fault handler and its overall trickiness nature. 1167 */ 1168 if (evsel__is_function_event(evsel)) 1169 evsel->core.attr.exclude_callchain_user = 1; 1170 1171 if (callchain && callchain->enabled && !evsel->no_aux_samples) 1172 evsel__config_callchain(evsel, opts, callchain); 1173 1174 if (opts->sample_intr_regs && !evsel->no_aux_samples && 1175 !evsel__is_dummy_event(evsel)) { 1176 attr->sample_regs_intr = opts->sample_intr_regs; 1177 evsel__set_sample_bit(evsel, REGS_INTR); 1178 } 1179 1180 if (opts->sample_user_regs && !evsel->no_aux_samples && 1181 !evsel__is_dummy_event(evsel)) { 1182 attr->sample_regs_user |= opts->sample_user_regs; 1183 evsel__set_sample_bit(evsel, REGS_USER); 1184 } 1185 1186 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1187 evsel__set_sample_bit(evsel, CPU); 1188 1189 /* 1190 * When the user explicitly disabled time don't force it here. 1191 */ 1192 if (opts->sample_time && 1193 (!perf_missing_features.sample_id_all && 1194 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1195 opts->sample_time_set))) 1196 evsel__set_sample_bit(evsel, TIME); 1197 1198 if (opts->raw_samples && !evsel->no_aux_samples) { 1199 evsel__set_sample_bit(evsel, TIME); 1200 evsel__set_sample_bit(evsel, RAW); 1201 evsel__set_sample_bit(evsel, CPU); 1202 } 1203 1204 if (opts->sample_address) 1205 evsel__set_sample_bit(evsel, DATA_SRC); 1206 1207 if (opts->sample_phys_addr) 1208 evsel__set_sample_bit(evsel, PHYS_ADDR); 1209 1210 if (opts->no_buffering) { 1211 attr->watermark = 0; 1212 attr->wakeup_events = 1; 1213 } 1214 if (opts->branch_stack && !evsel->no_aux_samples) { 1215 evsel__set_sample_bit(evsel, BRANCH_STACK); 1216 attr->branch_sample_type = opts->branch_stack; 1217 } 1218 1219 if (opts->sample_weight) 1220 arch_evsel__set_sample_weight(evsel); 1221 1222 attr->task = track; 1223 attr->mmap = track; 1224 attr->mmap2 = track && !perf_missing_features.mmap2; 1225 attr->comm = track; 1226 attr->build_id = track && opts->build_id; 1227 1228 /* 1229 * ksymbol is tracked separately with text poke because it needs to be 1230 * system wide and enabled immediately. 1231 */ 1232 if (!opts->text_poke) 1233 attr->ksymbol = track && !perf_missing_features.ksymbol; 1234 attr->bpf_event = track && !opts->no_bpf_event && !perf_missing_features.bpf; 1235 1236 if (opts->record_namespaces) 1237 attr->namespaces = track; 1238 1239 if (opts->record_cgroup) { 1240 attr->cgroup = track && !perf_missing_features.cgroup; 1241 evsel__set_sample_bit(evsel, CGROUP); 1242 } 1243 1244 if (opts->sample_data_page_size) 1245 evsel__set_sample_bit(evsel, DATA_PAGE_SIZE); 1246 1247 if (opts->sample_code_page_size) 1248 evsel__set_sample_bit(evsel, CODE_PAGE_SIZE); 1249 1250 if (opts->record_switch_events) 1251 attr->context_switch = track; 1252 1253 if (opts->sample_transaction) 1254 evsel__set_sample_bit(evsel, TRANSACTION); 1255 1256 if (opts->running_time) { 1257 evsel->core.attr.read_format |= 1258 PERF_FORMAT_TOTAL_TIME_ENABLED | 1259 PERF_FORMAT_TOTAL_TIME_RUNNING; 1260 } 1261 1262 /* 1263 * XXX see the function comment above 1264 * 1265 * Disabling only independent events or group leaders, 1266 * keeping group members enabled. 1267 */ 1268 if (evsel__is_group_leader(evsel)) 1269 attr->disabled = 1; 1270 1271 /* 1272 * Setting enable_on_exec for independent events and 1273 * group leaders for traced executed by perf. 1274 */ 1275 if (target__none(&opts->target) && evsel__is_group_leader(evsel) && 1276 !opts->initial_delay) 1277 attr->enable_on_exec = 1; 1278 1279 if (evsel->immediate) { 1280 attr->disabled = 0; 1281 attr->enable_on_exec = 0; 1282 } 1283 1284 clockid = opts->clockid; 1285 if (opts->use_clockid) { 1286 attr->use_clockid = 1; 1287 attr->clockid = opts->clockid; 1288 } 1289 1290 if (evsel->precise_max) 1291 attr->precise_ip = 3; 1292 1293 if (opts->all_user) { 1294 attr->exclude_kernel = 1; 1295 attr->exclude_user = 0; 1296 } 1297 1298 if (opts->all_kernel) { 1299 attr->exclude_kernel = 0; 1300 attr->exclude_user = 1; 1301 } 1302 1303 if (evsel->core.own_cpus || evsel->unit) 1304 evsel->core.attr.read_format |= PERF_FORMAT_ID; 1305 1306 /* 1307 * Apply event specific term settings, 1308 * it overloads any global configuration. 1309 */ 1310 evsel__apply_config_terms(evsel, opts, track); 1311 1312 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1313 1314 /* The --period option takes the precedence. */ 1315 if (opts->period_set) { 1316 if (opts->period) 1317 evsel__set_sample_bit(evsel, PERIOD); 1318 else 1319 evsel__reset_sample_bit(evsel, PERIOD); 1320 } 1321 1322 /* 1323 * A dummy event never triggers any actual counter and therefore 1324 * cannot be used with branch_stack. 1325 * 1326 * For initial_delay, a dummy event is added implicitly. 1327 * The software event will trigger -EOPNOTSUPP error out, 1328 * if BRANCH_STACK bit is set. 1329 */ 1330 if (evsel__is_dummy_event(evsel)) 1331 evsel__reset_sample_bit(evsel, BRANCH_STACK); 1332 } 1333 1334 int evsel__set_filter(struct evsel *evsel, const char *filter) 1335 { 1336 char *new_filter = strdup(filter); 1337 1338 if (new_filter != NULL) { 1339 free(evsel->filter); 1340 evsel->filter = new_filter; 1341 return 0; 1342 } 1343 1344 return -1; 1345 } 1346 1347 static int evsel__append_filter(struct evsel *evsel, const char *fmt, const char *filter) 1348 { 1349 char *new_filter; 1350 1351 if (evsel->filter == NULL) 1352 return evsel__set_filter(evsel, filter); 1353 1354 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1355 free(evsel->filter); 1356 evsel->filter = new_filter; 1357 return 0; 1358 } 1359 1360 return -1; 1361 } 1362 1363 int evsel__append_tp_filter(struct evsel *evsel, const char *filter) 1364 { 1365 return evsel__append_filter(evsel, "(%s) && (%s)", filter); 1366 } 1367 1368 int evsel__append_addr_filter(struct evsel *evsel, const char *filter) 1369 { 1370 return evsel__append_filter(evsel, "%s,%s", filter); 1371 } 1372 1373 /* Caller has to clear disabled after going through all CPUs. */ 1374 int evsel__enable_cpu(struct evsel *evsel, int cpu) 1375 { 1376 return perf_evsel__enable_cpu(&evsel->core, cpu); 1377 } 1378 1379 int evsel__enable(struct evsel *evsel) 1380 { 1381 int err = perf_evsel__enable(&evsel->core); 1382 1383 if (!err) 1384 evsel->disabled = false; 1385 return err; 1386 } 1387 1388 /* Caller has to set disabled after going through all CPUs. */ 1389 int evsel__disable_cpu(struct evsel *evsel, int cpu) 1390 { 1391 return perf_evsel__disable_cpu(&evsel->core, cpu); 1392 } 1393 1394 int evsel__disable(struct evsel *evsel) 1395 { 1396 int err = perf_evsel__disable(&evsel->core); 1397 /* 1398 * We mark it disabled here so that tools that disable a event can 1399 * ignore events after they disable it. I.e. the ring buffer may have 1400 * already a few more events queued up before the kernel got the stop 1401 * request. 1402 */ 1403 if (!err) 1404 evsel->disabled = true; 1405 1406 return err; 1407 } 1408 1409 void free_config_terms(struct list_head *config_terms) 1410 { 1411 struct evsel_config_term *term, *h; 1412 1413 list_for_each_entry_safe(term, h, config_terms, list) { 1414 list_del_init(&term->list); 1415 if (term->free_str) 1416 zfree(&term->val.str); 1417 free(term); 1418 } 1419 } 1420 1421 static void evsel__free_config_terms(struct evsel *evsel) 1422 { 1423 free_config_terms(&evsel->config_terms); 1424 } 1425 1426 void evsel__exit(struct evsel *evsel) 1427 { 1428 assert(list_empty(&evsel->core.node)); 1429 assert(evsel->evlist == NULL); 1430 bpf_counter__destroy(evsel); 1431 evsel__free_counts(evsel); 1432 perf_evsel__free_fd(&evsel->core); 1433 perf_evsel__free_id(&evsel->core); 1434 evsel__free_config_terms(evsel); 1435 cgroup__put(evsel->cgrp); 1436 perf_cpu_map__put(evsel->core.cpus); 1437 perf_cpu_map__put(evsel->core.own_cpus); 1438 perf_thread_map__put(evsel->core.threads); 1439 zfree(&evsel->group_name); 1440 zfree(&evsel->name); 1441 zfree(&evsel->pmu_name); 1442 zfree(&evsel->metric_id); 1443 evsel__zero_per_pkg(evsel); 1444 hashmap__free(evsel->per_pkg_mask); 1445 evsel->per_pkg_mask = NULL; 1446 zfree(&evsel->metric_events); 1447 perf_evsel__object.fini(evsel); 1448 } 1449 1450 void evsel__delete(struct evsel *evsel) 1451 { 1452 evsel__exit(evsel); 1453 free(evsel); 1454 } 1455 1456 void evsel__compute_deltas(struct evsel *evsel, int cpu, int thread, 1457 struct perf_counts_values *count) 1458 { 1459 struct perf_counts_values tmp; 1460 1461 if (!evsel->prev_raw_counts) 1462 return; 1463 1464 if (cpu == -1) { 1465 tmp = evsel->prev_raw_counts->aggr; 1466 evsel->prev_raw_counts->aggr = *count; 1467 } else { 1468 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1469 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1470 } 1471 1472 count->val = count->val - tmp.val; 1473 count->ena = count->ena - tmp.ena; 1474 count->run = count->run - tmp.run; 1475 } 1476 1477 void perf_counts_values__scale(struct perf_counts_values *count, 1478 bool scale, s8 *pscaled) 1479 { 1480 s8 scaled = 0; 1481 1482 if (scale) { 1483 if (count->run == 0) { 1484 scaled = -1; 1485 count->val = 0; 1486 } else if (count->run < count->ena) { 1487 scaled = 1; 1488 count->val = (u64)((double) count->val * count->ena / count->run); 1489 } 1490 } 1491 1492 if (pscaled) 1493 *pscaled = scaled; 1494 } 1495 1496 static int evsel__read_one(struct evsel *evsel, int cpu, int thread) 1497 { 1498 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1499 1500 return perf_evsel__read(&evsel->core, cpu, thread, count); 1501 } 1502 1503 static void evsel__set_count(struct evsel *counter, int cpu, int thread, u64 val, u64 ena, u64 run) 1504 { 1505 struct perf_counts_values *count; 1506 1507 count = perf_counts(counter->counts, cpu, thread); 1508 1509 count->val = val; 1510 count->ena = ena; 1511 count->run = run; 1512 1513 perf_counts__set_loaded(counter->counts, cpu, thread, true); 1514 } 1515 1516 static int evsel__process_group_data(struct evsel *leader, int cpu, int thread, u64 *data) 1517 { 1518 u64 read_format = leader->core.attr.read_format; 1519 struct sample_read_value *v; 1520 u64 nr, ena = 0, run = 0, i; 1521 1522 nr = *data++; 1523 1524 if (nr != (u64) leader->core.nr_members) 1525 return -EINVAL; 1526 1527 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1528 ena = *data++; 1529 1530 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1531 run = *data++; 1532 1533 v = (struct sample_read_value *) data; 1534 1535 evsel__set_count(leader, cpu, thread, v[0].value, ena, run); 1536 1537 for (i = 1; i < nr; i++) { 1538 struct evsel *counter; 1539 1540 counter = evlist__id2evsel(leader->evlist, v[i].id); 1541 if (!counter) 1542 return -EINVAL; 1543 1544 evsel__set_count(counter, cpu, thread, v[i].value, ena, run); 1545 } 1546 1547 return 0; 1548 } 1549 1550 static int evsel__read_group(struct evsel *leader, int cpu, int thread) 1551 { 1552 struct perf_stat_evsel *ps = leader->stats; 1553 u64 read_format = leader->core.attr.read_format; 1554 int size = perf_evsel__read_size(&leader->core); 1555 u64 *data = ps->group_data; 1556 1557 if (!(read_format & PERF_FORMAT_ID)) 1558 return -EINVAL; 1559 1560 if (!evsel__is_group_leader(leader)) 1561 return -EINVAL; 1562 1563 if (!data) { 1564 data = zalloc(size); 1565 if (!data) 1566 return -ENOMEM; 1567 1568 ps->group_data = data; 1569 } 1570 1571 if (FD(leader, cpu, thread) < 0) 1572 return -EINVAL; 1573 1574 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1575 return -errno; 1576 1577 return evsel__process_group_data(leader, cpu, thread, data); 1578 } 1579 1580 int evsel__read_counter(struct evsel *evsel, int cpu, int thread) 1581 { 1582 u64 read_format = evsel->core.attr.read_format; 1583 1584 if (read_format & PERF_FORMAT_GROUP) 1585 return evsel__read_group(evsel, cpu, thread); 1586 1587 return evsel__read_one(evsel, cpu, thread); 1588 } 1589 1590 int __evsel__read_on_cpu(struct evsel *evsel, int cpu, int thread, bool scale) 1591 { 1592 struct perf_counts_values count; 1593 size_t nv = scale ? 3 : 1; 1594 1595 if (FD(evsel, cpu, thread) < 0) 1596 return -EINVAL; 1597 1598 if (evsel->counts == NULL && evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1599 return -ENOMEM; 1600 1601 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1602 return -errno; 1603 1604 evsel__compute_deltas(evsel, cpu, thread, &count); 1605 perf_counts_values__scale(&count, scale, NULL); 1606 *perf_counts(evsel->counts, cpu, thread) = count; 1607 return 0; 1608 } 1609 1610 static int evsel__match_other_cpu(struct evsel *evsel, struct evsel *other, 1611 int cpu) 1612 { 1613 int cpuid; 1614 1615 cpuid = perf_cpu_map__cpu(evsel->core.cpus, cpu); 1616 return perf_cpu_map__idx(other->core.cpus, cpuid); 1617 } 1618 1619 static int evsel__hybrid_group_cpu(struct evsel *evsel, int cpu) 1620 { 1621 struct evsel *leader = evsel__leader(evsel); 1622 1623 if ((evsel__is_hybrid(evsel) && !evsel__is_hybrid(leader)) || 1624 (!evsel__is_hybrid(evsel) && evsel__is_hybrid(leader))) { 1625 return evsel__match_other_cpu(evsel, leader, cpu); 1626 } 1627 1628 return cpu; 1629 } 1630 1631 static int get_group_fd(struct evsel *evsel, int cpu, int thread) 1632 { 1633 struct evsel *leader = evsel__leader(evsel); 1634 int fd; 1635 1636 if (evsel__is_group_leader(evsel)) 1637 return -1; 1638 1639 /* 1640 * Leader must be already processed/open, 1641 * if not it's a bug. 1642 */ 1643 BUG_ON(!leader->core.fd); 1644 1645 cpu = evsel__hybrid_group_cpu(evsel, cpu); 1646 if (cpu == -1) 1647 return -1; 1648 1649 fd = FD(leader, cpu, thread); 1650 BUG_ON(fd == -1); 1651 1652 return fd; 1653 } 1654 1655 static void evsel__remove_fd(struct evsel *pos, int nr_cpus, int nr_threads, int thread_idx) 1656 { 1657 for (int cpu = 0; cpu < nr_cpus; cpu++) 1658 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1659 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1660 } 1661 1662 static int update_fds(struct evsel *evsel, 1663 int nr_cpus, int cpu_idx, 1664 int nr_threads, int thread_idx) 1665 { 1666 struct evsel *pos; 1667 1668 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1669 return -EINVAL; 1670 1671 evlist__for_each_entry(evsel->evlist, pos) { 1672 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1673 1674 evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1675 1676 /* 1677 * Since fds for next evsel has not been created, 1678 * there is no need to iterate whole event list. 1679 */ 1680 if (pos == evsel) 1681 break; 1682 } 1683 return 0; 1684 } 1685 1686 bool evsel__ignore_missing_thread(struct evsel *evsel, 1687 int nr_cpus, int cpu, 1688 struct perf_thread_map *threads, 1689 int thread, int err) 1690 { 1691 pid_t ignore_pid = perf_thread_map__pid(threads, thread); 1692 1693 if (!evsel->ignore_missing_thread) 1694 return false; 1695 1696 /* The system wide setup does not work with threads. */ 1697 if (evsel->core.system_wide) 1698 return false; 1699 1700 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1701 if (err != -ESRCH) 1702 return false; 1703 1704 /* If there's only one thread, let it fail. */ 1705 if (threads->nr == 1) 1706 return false; 1707 1708 /* 1709 * We should remove fd for missing_thread first 1710 * because thread_map__remove() will decrease threads->nr. 1711 */ 1712 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1713 return false; 1714 1715 if (thread_map__remove(threads, thread)) 1716 return false; 1717 1718 pr_warning("WARNING: Ignored open failure for pid %d\n", 1719 ignore_pid); 1720 return true; 1721 } 1722 1723 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1724 void *priv __maybe_unused) 1725 { 1726 return fprintf(fp, " %-32s %s\n", name, val); 1727 } 1728 1729 static void display_attr(struct perf_event_attr *attr) 1730 { 1731 if (verbose >= 2 || debug_peo_args) { 1732 fprintf(stderr, "%.60s\n", graph_dotted_line); 1733 fprintf(stderr, "perf_event_attr:\n"); 1734 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); 1735 fprintf(stderr, "%.60s\n", graph_dotted_line); 1736 } 1737 } 1738 1739 bool evsel__precise_ip_fallback(struct evsel *evsel) 1740 { 1741 /* Do not try less precise if not requested. */ 1742 if (!evsel->precise_max) 1743 return false; 1744 1745 /* 1746 * We tried all the precise_ip values, and it's 1747 * still failing, so leave it to standard fallback. 1748 */ 1749 if (!evsel->core.attr.precise_ip) { 1750 evsel->core.attr.precise_ip = evsel->precise_ip_original; 1751 return false; 1752 } 1753 1754 if (!evsel->precise_ip_original) 1755 evsel->precise_ip_original = evsel->core.attr.precise_ip; 1756 1757 evsel->core.attr.precise_ip--; 1758 pr_debug2_peo("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip); 1759 display_attr(&evsel->core.attr); 1760 return true; 1761 } 1762 1763 static struct perf_cpu_map *empty_cpu_map; 1764 static struct perf_thread_map *empty_thread_map; 1765 1766 static int __evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus, 1767 struct perf_thread_map *threads) 1768 { 1769 int nthreads; 1770 1771 if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) || 1772 (perf_missing_features.aux_output && evsel->core.attr.aux_output)) 1773 return -EINVAL; 1774 1775 if (cpus == NULL) { 1776 if (empty_cpu_map == NULL) { 1777 empty_cpu_map = perf_cpu_map__dummy_new(); 1778 if (empty_cpu_map == NULL) 1779 return -ENOMEM; 1780 } 1781 1782 cpus = empty_cpu_map; 1783 } 1784 1785 if (threads == NULL) { 1786 if (empty_thread_map == NULL) { 1787 empty_thread_map = thread_map__new_by_tid(-1); 1788 if (empty_thread_map == NULL) 1789 return -ENOMEM; 1790 } 1791 1792 threads = empty_thread_map; 1793 } 1794 1795 if (evsel->core.system_wide) 1796 nthreads = 1; 1797 else 1798 nthreads = threads->nr; 1799 1800 if (evsel->core.fd == NULL && 1801 perf_evsel__alloc_fd(&evsel->core, cpus->nr, nthreads) < 0) 1802 return -ENOMEM; 1803 1804 evsel->open_flags = PERF_FLAG_FD_CLOEXEC; 1805 if (evsel->cgrp) 1806 evsel->open_flags |= PERF_FLAG_PID_CGROUP; 1807 1808 return 0; 1809 } 1810 1811 static void evsel__disable_missing_features(struct evsel *evsel) 1812 { 1813 if (perf_missing_features.weight_struct) { 1814 evsel__set_sample_bit(evsel, WEIGHT); 1815 evsel__reset_sample_bit(evsel, WEIGHT_STRUCT); 1816 } 1817 if (perf_missing_features.clockid_wrong) 1818 evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1819 if (perf_missing_features.clockid) { 1820 evsel->core.attr.use_clockid = 0; 1821 evsel->core.attr.clockid = 0; 1822 } 1823 if (perf_missing_features.cloexec) 1824 evsel->open_flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1825 if (perf_missing_features.mmap2) 1826 evsel->core.attr.mmap2 = 0; 1827 if (perf_missing_features.exclude_guest) 1828 evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0; 1829 if (perf_missing_features.lbr_flags) 1830 evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1831 PERF_SAMPLE_BRANCH_NO_CYCLES); 1832 if (perf_missing_features.group_read && evsel->core.attr.inherit) 1833 evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1834 if (perf_missing_features.ksymbol) 1835 evsel->core.attr.ksymbol = 0; 1836 if (perf_missing_features.bpf) 1837 evsel->core.attr.bpf_event = 0; 1838 if (perf_missing_features.branch_hw_idx) 1839 evsel->core.attr.branch_sample_type &= ~PERF_SAMPLE_BRANCH_HW_INDEX; 1840 if (perf_missing_features.sample_id_all) 1841 evsel->core.attr.sample_id_all = 0; 1842 } 1843 1844 int evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus, 1845 struct perf_thread_map *threads) 1846 { 1847 int err; 1848 1849 err = __evsel__prepare_open(evsel, cpus, threads); 1850 if (err) 1851 return err; 1852 1853 evsel__disable_missing_features(evsel); 1854 1855 return err; 1856 } 1857 1858 bool evsel__detect_missing_features(struct evsel *evsel) 1859 { 1860 /* 1861 * Must probe features in the order they were added to the 1862 * perf_event_attr interface. 1863 */ 1864 if (!perf_missing_features.weight_struct && 1865 (evsel->core.attr.sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) { 1866 perf_missing_features.weight_struct = true; 1867 pr_debug2("switching off weight struct support\n"); 1868 return true; 1869 } else if (!perf_missing_features.code_page_size && 1870 (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)) { 1871 perf_missing_features.code_page_size = true; 1872 pr_debug2_peo("Kernel has no PERF_SAMPLE_CODE_PAGE_SIZE support, bailing out\n"); 1873 return false; 1874 } else if (!perf_missing_features.data_page_size && 1875 (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)) { 1876 perf_missing_features.data_page_size = true; 1877 pr_debug2_peo("Kernel has no PERF_SAMPLE_DATA_PAGE_SIZE support, bailing out\n"); 1878 return false; 1879 } else if (!perf_missing_features.cgroup && evsel->core.attr.cgroup) { 1880 perf_missing_features.cgroup = true; 1881 pr_debug2_peo("Kernel has no cgroup sampling support, bailing out\n"); 1882 return false; 1883 } else if (!perf_missing_features.branch_hw_idx && 1884 (evsel->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX)) { 1885 perf_missing_features.branch_hw_idx = true; 1886 pr_debug2("switching off branch HW index support\n"); 1887 return true; 1888 } else if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) { 1889 perf_missing_features.aux_output = true; 1890 pr_debug2_peo("Kernel has no attr.aux_output support, bailing out\n"); 1891 return false; 1892 } else if (!perf_missing_features.bpf && evsel->core.attr.bpf_event) { 1893 perf_missing_features.bpf = true; 1894 pr_debug2_peo("switching off bpf_event\n"); 1895 return true; 1896 } else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) { 1897 perf_missing_features.ksymbol = true; 1898 pr_debug2_peo("switching off ksymbol\n"); 1899 return true; 1900 } else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) { 1901 perf_missing_features.write_backward = true; 1902 pr_debug2_peo("switching off write_backward\n"); 1903 return false; 1904 } else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) { 1905 perf_missing_features.clockid_wrong = true; 1906 pr_debug2_peo("switching off clockid\n"); 1907 return true; 1908 } else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) { 1909 perf_missing_features.clockid = true; 1910 pr_debug2_peo("switching off use_clockid\n"); 1911 return true; 1912 } else if (!perf_missing_features.cloexec && (evsel->open_flags & PERF_FLAG_FD_CLOEXEC)) { 1913 perf_missing_features.cloexec = true; 1914 pr_debug2_peo("switching off cloexec flag\n"); 1915 return true; 1916 } else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) { 1917 perf_missing_features.mmap2 = true; 1918 pr_debug2_peo("switching off mmap2\n"); 1919 return true; 1920 } else if (!perf_missing_features.exclude_guest && 1921 (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) { 1922 perf_missing_features.exclude_guest = true; 1923 pr_debug2_peo("switching off exclude_guest, exclude_host\n"); 1924 return true; 1925 } else if (!perf_missing_features.sample_id_all) { 1926 perf_missing_features.sample_id_all = true; 1927 pr_debug2_peo("switching off sample_id_all\n"); 1928 return true; 1929 } else if (!perf_missing_features.lbr_flags && 1930 (evsel->core.attr.branch_sample_type & 1931 (PERF_SAMPLE_BRANCH_NO_CYCLES | 1932 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 1933 perf_missing_features.lbr_flags = true; 1934 pr_debug2_peo("switching off branch sample type no (cycles/flags)\n"); 1935 return true; 1936 } else if (!perf_missing_features.group_read && 1937 evsel->core.attr.inherit && 1938 (evsel->core.attr.read_format & PERF_FORMAT_GROUP) && 1939 evsel__is_group_leader(evsel)) { 1940 perf_missing_features.group_read = true; 1941 pr_debug2_peo("switching off group read\n"); 1942 return true; 1943 } else { 1944 return false; 1945 } 1946 } 1947 1948 bool evsel__increase_rlimit(enum rlimit_action *set_rlimit) 1949 { 1950 int old_errno; 1951 struct rlimit l; 1952 1953 if (*set_rlimit < INCREASED_MAX) { 1954 old_errno = errno; 1955 1956 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1957 if (*set_rlimit == NO_CHANGE) { 1958 l.rlim_cur = l.rlim_max; 1959 } else { 1960 l.rlim_cur = l.rlim_max + 1000; 1961 l.rlim_max = l.rlim_cur; 1962 } 1963 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1964 (*set_rlimit) += 1; 1965 errno = old_errno; 1966 return true; 1967 } 1968 } 1969 errno = old_errno; 1970 } 1971 1972 return false; 1973 } 1974 1975 static int evsel__open_cpu(struct evsel *evsel, struct perf_cpu_map *cpus, 1976 struct perf_thread_map *threads, 1977 int start_cpu, int end_cpu) 1978 { 1979 int cpu, thread, nthreads; 1980 int pid = -1, err, old_errno; 1981 enum rlimit_action set_rlimit = NO_CHANGE; 1982 1983 err = __evsel__prepare_open(evsel, cpus, threads); 1984 if (err) 1985 return err; 1986 1987 if (cpus == NULL) 1988 cpus = empty_cpu_map; 1989 1990 if (threads == NULL) 1991 threads = empty_thread_map; 1992 1993 if (evsel->core.system_wide) 1994 nthreads = 1; 1995 else 1996 nthreads = threads->nr; 1997 1998 if (evsel->cgrp) 1999 pid = evsel->cgrp->fd; 2000 2001 fallback_missing_features: 2002 evsel__disable_missing_features(evsel); 2003 2004 display_attr(&evsel->core.attr); 2005 2006 for (cpu = start_cpu; cpu < end_cpu; cpu++) { 2007 2008 for (thread = 0; thread < nthreads; thread++) { 2009 int fd, group_fd; 2010 retry_open: 2011 if (thread >= nthreads) 2012 break; 2013 2014 if (!evsel->cgrp && !evsel->core.system_wide) 2015 pid = perf_thread_map__pid(threads, thread); 2016 2017 group_fd = get_group_fd(evsel, cpu, thread); 2018 2019 test_attr__ready(); 2020 2021 pr_debug2_peo("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 2022 pid, cpus->map[cpu], group_fd, evsel->open_flags); 2023 2024 fd = sys_perf_event_open(&evsel->core.attr, pid, cpus->map[cpu], 2025 group_fd, evsel->open_flags); 2026 2027 FD(evsel, cpu, thread) = fd; 2028 2029 if (fd < 0) { 2030 err = -errno; 2031 2032 pr_debug2_peo("\nsys_perf_event_open failed, error %d\n", 2033 err); 2034 goto try_fallback; 2035 } 2036 2037 bpf_counter__install_pe(evsel, cpu, fd); 2038 2039 if (unlikely(test_attr__enabled)) { 2040 test_attr__open(&evsel->core.attr, pid, cpus->map[cpu], 2041 fd, group_fd, evsel->open_flags); 2042 } 2043 2044 pr_debug2_peo(" = %d\n", fd); 2045 2046 if (evsel->bpf_fd >= 0) { 2047 int evt_fd = fd; 2048 int bpf_fd = evsel->bpf_fd; 2049 2050 err = ioctl(evt_fd, 2051 PERF_EVENT_IOC_SET_BPF, 2052 bpf_fd); 2053 if (err && errno != EEXIST) { 2054 pr_err("failed to attach bpf fd %d: %s\n", 2055 bpf_fd, strerror(errno)); 2056 err = -EINVAL; 2057 goto out_close; 2058 } 2059 } 2060 2061 set_rlimit = NO_CHANGE; 2062 2063 /* 2064 * If we succeeded but had to kill clockid, fail and 2065 * have evsel__open_strerror() print us a nice error. 2066 */ 2067 if (perf_missing_features.clockid || 2068 perf_missing_features.clockid_wrong) { 2069 err = -EINVAL; 2070 goto out_close; 2071 } 2072 } 2073 } 2074 2075 return 0; 2076 2077 try_fallback: 2078 if (evsel__precise_ip_fallback(evsel)) 2079 goto retry_open; 2080 2081 if (evsel__ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 2082 /* We just removed 1 thread, so lower the upper nthreads limit. */ 2083 nthreads--; 2084 2085 /* ... and pretend like nothing have happened. */ 2086 err = 0; 2087 goto retry_open; 2088 } 2089 /* 2090 * perf stat needs between 5 and 22 fds per CPU. When we run out 2091 * of them try to increase the limits. 2092 */ 2093 if (err == -EMFILE && evsel__increase_rlimit(&set_rlimit)) 2094 goto retry_open; 2095 2096 if (err != -EINVAL || cpu > 0 || thread > 0) 2097 goto out_close; 2098 2099 if (evsel__detect_missing_features(evsel)) 2100 goto fallback_missing_features; 2101 out_close: 2102 if (err) 2103 threads->err_thread = thread; 2104 2105 old_errno = errno; 2106 do { 2107 while (--thread >= 0) { 2108 if (FD(evsel, cpu, thread) >= 0) 2109 close(FD(evsel, cpu, thread)); 2110 FD(evsel, cpu, thread) = -1; 2111 } 2112 thread = nthreads; 2113 } while (--cpu >= 0); 2114 errno = old_errno; 2115 return err; 2116 } 2117 2118 int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus, 2119 struct perf_thread_map *threads) 2120 { 2121 return evsel__open_cpu(evsel, cpus, threads, 0, cpus ? cpus->nr : 1); 2122 } 2123 2124 void evsel__close(struct evsel *evsel) 2125 { 2126 perf_evsel__close(&evsel->core); 2127 perf_evsel__free_id(&evsel->core); 2128 } 2129 2130 int evsel__open_per_cpu(struct evsel *evsel, struct perf_cpu_map *cpus, int cpu) 2131 { 2132 if (cpu == -1) 2133 return evsel__open_cpu(evsel, cpus, NULL, 0, 2134 cpus ? cpus->nr : 1); 2135 2136 return evsel__open_cpu(evsel, cpus, NULL, cpu, cpu + 1); 2137 } 2138 2139 int evsel__open_per_thread(struct evsel *evsel, struct perf_thread_map *threads) 2140 { 2141 return evsel__open(evsel, NULL, threads); 2142 } 2143 2144 static int perf_evsel__parse_id_sample(const struct evsel *evsel, 2145 const union perf_event *event, 2146 struct perf_sample *sample) 2147 { 2148 u64 type = evsel->core.attr.sample_type; 2149 const __u64 *array = event->sample.array; 2150 bool swapped = evsel->needs_swap; 2151 union u64_swap u; 2152 2153 array += ((event->header.size - 2154 sizeof(event->header)) / sizeof(u64)) - 1; 2155 2156 if (type & PERF_SAMPLE_IDENTIFIER) { 2157 sample->id = *array; 2158 array--; 2159 } 2160 2161 if (type & PERF_SAMPLE_CPU) { 2162 u.val64 = *array; 2163 if (swapped) { 2164 /* undo swap of u64, then swap on individual u32s */ 2165 u.val64 = bswap_64(u.val64); 2166 u.val32[0] = bswap_32(u.val32[0]); 2167 } 2168 2169 sample->cpu = u.val32[0]; 2170 array--; 2171 } 2172 2173 if (type & PERF_SAMPLE_STREAM_ID) { 2174 sample->stream_id = *array; 2175 array--; 2176 } 2177 2178 if (type & PERF_SAMPLE_ID) { 2179 sample->id = *array; 2180 array--; 2181 } 2182 2183 if (type & PERF_SAMPLE_TIME) { 2184 sample->time = *array; 2185 array--; 2186 } 2187 2188 if (type & PERF_SAMPLE_TID) { 2189 u.val64 = *array; 2190 if (swapped) { 2191 /* undo swap of u64, then swap on individual u32s */ 2192 u.val64 = bswap_64(u.val64); 2193 u.val32[0] = bswap_32(u.val32[0]); 2194 u.val32[1] = bswap_32(u.val32[1]); 2195 } 2196 2197 sample->pid = u.val32[0]; 2198 sample->tid = u.val32[1]; 2199 array--; 2200 } 2201 2202 return 0; 2203 } 2204 2205 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2206 u64 size) 2207 { 2208 return size > max_size || offset + size > endp; 2209 } 2210 2211 #define OVERFLOW_CHECK(offset, size, max_size) \ 2212 do { \ 2213 if (overflow(endp, (max_size), (offset), (size))) \ 2214 return -EFAULT; \ 2215 } while (0) 2216 2217 #define OVERFLOW_CHECK_u64(offset) \ 2218 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2219 2220 static int 2221 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2222 { 2223 /* 2224 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2225 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2226 * check the format does not go past the end of the event. 2227 */ 2228 if (sample_size + sizeof(event->header) > event->header.size) 2229 return -EFAULT; 2230 2231 return 0; 2232 } 2233 2234 void __weak arch_perf_parse_sample_weight(struct perf_sample *data, 2235 const __u64 *array, 2236 u64 type __maybe_unused) 2237 { 2238 data->weight = *array; 2239 } 2240 2241 u64 evsel__bitfield_swap_branch_flags(u64 value) 2242 { 2243 u64 new_val = 0; 2244 2245 /* 2246 * branch_flags 2247 * union { 2248 * u64 values; 2249 * struct { 2250 * mispred:1 //target mispredicted 2251 * predicted:1 //target predicted 2252 * in_tx:1 //in transaction 2253 * abort:1 //transaction abort 2254 * cycles:16 //cycle count to last branch 2255 * type:4 //branch type 2256 * reserved:40 2257 * } 2258 * } 2259 * 2260 * Avoid bswap64() the entire branch_flag.value, 2261 * as it has variable bit-field sizes. Instead the 2262 * macro takes the bit-field position/size, 2263 * swaps it based on the host endianness. 2264 * 2265 * tep_is_bigendian() is used here instead of 2266 * bigendian() to avoid python test fails. 2267 */ 2268 if (tep_is_bigendian()) { 2269 new_val = bitfield_swap(value, 0, 1); 2270 new_val |= bitfield_swap(value, 1, 1); 2271 new_val |= bitfield_swap(value, 2, 1); 2272 new_val |= bitfield_swap(value, 3, 1); 2273 new_val |= bitfield_swap(value, 4, 16); 2274 new_val |= bitfield_swap(value, 20, 4); 2275 new_val |= bitfield_swap(value, 24, 40); 2276 } else { 2277 new_val = bitfield_swap(value, 63, 1); 2278 new_val |= bitfield_swap(value, 62, 1); 2279 new_val |= bitfield_swap(value, 61, 1); 2280 new_val |= bitfield_swap(value, 60, 1); 2281 new_val |= bitfield_swap(value, 44, 16); 2282 new_val |= bitfield_swap(value, 40, 4); 2283 new_val |= bitfield_swap(value, 0, 40); 2284 } 2285 2286 return new_val; 2287 } 2288 2289 int evsel__parse_sample(struct evsel *evsel, union perf_event *event, 2290 struct perf_sample *data) 2291 { 2292 u64 type = evsel->core.attr.sample_type; 2293 bool swapped = evsel->needs_swap; 2294 const __u64 *array; 2295 u16 max_size = event->header.size; 2296 const void *endp = (void *)event + max_size; 2297 u64 sz; 2298 2299 /* 2300 * used for cross-endian analysis. See git commit 65014ab3 2301 * for why this goofiness is needed. 2302 */ 2303 union u64_swap u; 2304 2305 memset(data, 0, sizeof(*data)); 2306 data->cpu = data->pid = data->tid = -1; 2307 data->stream_id = data->id = data->time = -1ULL; 2308 data->period = evsel->core.attr.sample_period; 2309 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2310 data->misc = event->header.misc; 2311 data->id = -1ULL; 2312 data->data_src = PERF_MEM_DATA_SRC_NONE; 2313 2314 if (event->header.type != PERF_RECORD_SAMPLE) { 2315 if (!evsel->core.attr.sample_id_all) 2316 return 0; 2317 return perf_evsel__parse_id_sample(evsel, event, data); 2318 } 2319 2320 array = event->sample.array; 2321 2322 if (perf_event__check_size(event, evsel->sample_size)) 2323 return -EFAULT; 2324 2325 if (type & PERF_SAMPLE_IDENTIFIER) { 2326 data->id = *array; 2327 array++; 2328 } 2329 2330 if (type & PERF_SAMPLE_IP) { 2331 data->ip = *array; 2332 array++; 2333 } 2334 2335 if (type & PERF_SAMPLE_TID) { 2336 u.val64 = *array; 2337 if (swapped) { 2338 /* undo swap of u64, then swap on individual u32s */ 2339 u.val64 = bswap_64(u.val64); 2340 u.val32[0] = bswap_32(u.val32[0]); 2341 u.val32[1] = bswap_32(u.val32[1]); 2342 } 2343 2344 data->pid = u.val32[0]; 2345 data->tid = u.val32[1]; 2346 array++; 2347 } 2348 2349 if (type & PERF_SAMPLE_TIME) { 2350 data->time = *array; 2351 array++; 2352 } 2353 2354 if (type & PERF_SAMPLE_ADDR) { 2355 data->addr = *array; 2356 array++; 2357 } 2358 2359 if (type & PERF_SAMPLE_ID) { 2360 data->id = *array; 2361 array++; 2362 } 2363 2364 if (type & PERF_SAMPLE_STREAM_ID) { 2365 data->stream_id = *array; 2366 array++; 2367 } 2368 2369 if (type & PERF_SAMPLE_CPU) { 2370 2371 u.val64 = *array; 2372 if (swapped) { 2373 /* undo swap of u64, then swap on individual u32s */ 2374 u.val64 = bswap_64(u.val64); 2375 u.val32[0] = bswap_32(u.val32[0]); 2376 } 2377 2378 data->cpu = u.val32[0]; 2379 array++; 2380 } 2381 2382 if (type & PERF_SAMPLE_PERIOD) { 2383 data->period = *array; 2384 array++; 2385 } 2386 2387 if (type & PERF_SAMPLE_READ) { 2388 u64 read_format = evsel->core.attr.read_format; 2389 2390 OVERFLOW_CHECK_u64(array); 2391 if (read_format & PERF_FORMAT_GROUP) 2392 data->read.group.nr = *array; 2393 else 2394 data->read.one.value = *array; 2395 2396 array++; 2397 2398 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2399 OVERFLOW_CHECK_u64(array); 2400 data->read.time_enabled = *array; 2401 array++; 2402 } 2403 2404 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2405 OVERFLOW_CHECK_u64(array); 2406 data->read.time_running = *array; 2407 array++; 2408 } 2409 2410 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2411 if (read_format & PERF_FORMAT_GROUP) { 2412 const u64 max_group_nr = UINT64_MAX / 2413 sizeof(struct sample_read_value); 2414 2415 if (data->read.group.nr > max_group_nr) 2416 return -EFAULT; 2417 sz = data->read.group.nr * 2418 sizeof(struct sample_read_value); 2419 OVERFLOW_CHECK(array, sz, max_size); 2420 data->read.group.values = 2421 (struct sample_read_value *)array; 2422 array = (void *)array + sz; 2423 } else { 2424 OVERFLOW_CHECK_u64(array); 2425 data->read.one.id = *array; 2426 array++; 2427 } 2428 } 2429 2430 if (type & PERF_SAMPLE_CALLCHAIN) { 2431 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2432 2433 OVERFLOW_CHECK_u64(array); 2434 data->callchain = (struct ip_callchain *)array++; 2435 if (data->callchain->nr > max_callchain_nr) 2436 return -EFAULT; 2437 sz = data->callchain->nr * sizeof(u64); 2438 OVERFLOW_CHECK(array, sz, max_size); 2439 array = (void *)array + sz; 2440 } 2441 2442 if (type & PERF_SAMPLE_RAW) { 2443 OVERFLOW_CHECK_u64(array); 2444 u.val64 = *array; 2445 2446 /* 2447 * Undo swap of u64, then swap on individual u32s, 2448 * get the size of the raw area and undo all of the 2449 * swap. The pevent interface handles endianness by 2450 * itself. 2451 */ 2452 if (swapped) { 2453 u.val64 = bswap_64(u.val64); 2454 u.val32[0] = bswap_32(u.val32[0]); 2455 u.val32[1] = bswap_32(u.val32[1]); 2456 } 2457 data->raw_size = u.val32[0]; 2458 2459 /* 2460 * The raw data is aligned on 64bits including the 2461 * u32 size, so it's safe to use mem_bswap_64. 2462 */ 2463 if (swapped) 2464 mem_bswap_64((void *) array, data->raw_size); 2465 2466 array = (void *)array + sizeof(u32); 2467 2468 OVERFLOW_CHECK(array, data->raw_size, max_size); 2469 data->raw_data = (void *)array; 2470 array = (void *)array + data->raw_size; 2471 } 2472 2473 if (type & PERF_SAMPLE_BRANCH_STACK) { 2474 const u64 max_branch_nr = UINT64_MAX / 2475 sizeof(struct branch_entry); 2476 struct branch_entry *e; 2477 unsigned int i; 2478 2479 OVERFLOW_CHECK_u64(array); 2480 data->branch_stack = (struct branch_stack *)array++; 2481 2482 if (data->branch_stack->nr > max_branch_nr) 2483 return -EFAULT; 2484 2485 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2486 if (evsel__has_branch_hw_idx(evsel)) { 2487 sz += sizeof(u64); 2488 e = &data->branch_stack->entries[0]; 2489 } else { 2490 data->no_hw_idx = true; 2491 /* 2492 * if the PERF_SAMPLE_BRANCH_HW_INDEX is not applied, 2493 * only nr and entries[] will be output by kernel. 2494 */ 2495 e = (struct branch_entry *)&data->branch_stack->hw_idx; 2496 } 2497 2498 if (swapped) { 2499 /* 2500 * struct branch_flag does not have endian 2501 * specific bit field definition. And bswap 2502 * will not resolve the issue, since these 2503 * are bit fields. 2504 * 2505 * evsel__bitfield_swap_branch_flags() uses a 2506 * bitfield_swap macro to swap the bit position 2507 * based on the host endians. 2508 */ 2509 for (i = 0; i < data->branch_stack->nr; i++, e++) 2510 e->flags.value = evsel__bitfield_swap_branch_flags(e->flags.value); 2511 } 2512 2513 OVERFLOW_CHECK(array, sz, max_size); 2514 array = (void *)array + sz; 2515 } 2516 2517 if (type & PERF_SAMPLE_REGS_USER) { 2518 OVERFLOW_CHECK_u64(array); 2519 data->user_regs.abi = *array; 2520 array++; 2521 2522 if (data->user_regs.abi) { 2523 u64 mask = evsel->core.attr.sample_regs_user; 2524 2525 sz = hweight64(mask) * sizeof(u64); 2526 OVERFLOW_CHECK(array, sz, max_size); 2527 data->user_regs.mask = mask; 2528 data->user_regs.regs = (u64 *)array; 2529 array = (void *)array + sz; 2530 } 2531 } 2532 2533 if (type & PERF_SAMPLE_STACK_USER) { 2534 OVERFLOW_CHECK_u64(array); 2535 sz = *array++; 2536 2537 data->user_stack.offset = ((char *)(array - 1) 2538 - (char *) event); 2539 2540 if (!sz) { 2541 data->user_stack.size = 0; 2542 } else { 2543 OVERFLOW_CHECK(array, sz, max_size); 2544 data->user_stack.data = (char *)array; 2545 array = (void *)array + sz; 2546 OVERFLOW_CHECK_u64(array); 2547 data->user_stack.size = *array++; 2548 if (WARN_ONCE(data->user_stack.size > sz, 2549 "user stack dump failure\n")) 2550 return -EFAULT; 2551 } 2552 } 2553 2554 if (type & PERF_SAMPLE_WEIGHT_TYPE) { 2555 OVERFLOW_CHECK_u64(array); 2556 arch_perf_parse_sample_weight(data, array, type); 2557 array++; 2558 } 2559 2560 if (type & PERF_SAMPLE_DATA_SRC) { 2561 OVERFLOW_CHECK_u64(array); 2562 data->data_src = *array; 2563 array++; 2564 } 2565 2566 if (type & PERF_SAMPLE_TRANSACTION) { 2567 OVERFLOW_CHECK_u64(array); 2568 data->transaction = *array; 2569 array++; 2570 } 2571 2572 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2573 if (type & PERF_SAMPLE_REGS_INTR) { 2574 OVERFLOW_CHECK_u64(array); 2575 data->intr_regs.abi = *array; 2576 array++; 2577 2578 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2579 u64 mask = evsel->core.attr.sample_regs_intr; 2580 2581 sz = hweight64(mask) * sizeof(u64); 2582 OVERFLOW_CHECK(array, sz, max_size); 2583 data->intr_regs.mask = mask; 2584 data->intr_regs.regs = (u64 *)array; 2585 array = (void *)array + sz; 2586 } 2587 } 2588 2589 data->phys_addr = 0; 2590 if (type & PERF_SAMPLE_PHYS_ADDR) { 2591 data->phys_addr = *array; 2592 array++; 2593 } 2594 2595 data->cgroup = 0; 2596 if (type & PERF_SAMPLE_CGROUP) { 2597 data->cgroup = *array; 2598 array++; 2599 } 2600 2601 data->data_page_size = 0; 2602 if (type & PERF_SAMPLE_DATA_PAGE_SIZE) { 2603 data->data_page_size = *array; 2604 array++; 2605 } 2606 2607 data->code_page_size = 0; 2608 if (type & PERF_SAMPLE_CODE_PAGE_SIZE) { 2609 data->code_page_size = *array; 2610 array++; 2611 } 2612 2613 if (type & PERF_SAMPLE_AUX) { 2614 OVERFLOW_CHECK_u64(array); 2615 sz = *array++; 2616 2617 OVERFLOW_CHECK(array, sz, max_size); 2618 /* Undo swap of data */ 2619 if (swapped) 2620 mem_bswap_64((char *)array, sz); 2621 data->aux_sample.size = sz; 2622 data->aux_sample.data = (char *)array; 2623 array = (void *)array + sz; 2624 } 2625 2626 return 0; 2627 } 2628 2629 int evsel__parse_sample_timestamp(struct evsel *evsel, union perf_event *event, 2630 u64 *timestamp) 2631 { 2632 u64 type = evsel->core.attr.sample_type; 2633 const __u64 *array; 2634 2635 if (!(type & PERF_SAMPLE_TIME)) 2636 return -1; 2637 2638 if (event->header.type != PERF_RECORD_SAMPLE) { 2639 struct perf_sample data = { 2640 .time = -1ULL, 2641 }; 2642 2643 if (!evsel->core.attr.sample_id_all) 2644 return -1; 2645 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2646 return -1; 2647 2648 *timestamp = data.time; 2649 return 0; 2650 } 2651 2652 array = event->sample.array; 2653 2654 if (perf_event__check_size(event, evsel->sample_size)) 2655 return -EFAULT; 2656 2657 if (type & PERF_SAMPLE_IDENTIFIER) 2658 array++; 2659 2660 if (type & PERF_SAMPLE_IP) 2661 array++; 2662 2663 if (type & PERF_SAMPLE_TID) 2664 array++; 2665 2666 if (type & PERF_SAMPLE_TIME) 2667 *timestamp = *array; 2668 2669 return 0; 2670 } 2671 2672 struct tep_format_field *evsel__field(struct evsel *evsel, const char *name) 2673 { 2674 return tep_find_field(evsel->tp_format, name); 2675 } 2676 2677 void *evsel__rawptr(struct evsel *evsel, struct perf_sample *sample, const char *name) 2678 { 2679 struct tep_format_field *field = evsel__field(evsel, name); 2680 int offset; 2681 2682 if (!field) 2683 return NULL; 2684 2685 offset = field->offset; 2686 2687 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2688 offset = *(int *)(sample->raw_data + field->offset); 2689 offset &= 0xffff; 2690 } 2691 2692 return sample->raw_data + offset; 2693 } 2694 2695 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2696 bool needs_swap) 2697 { 2698 u64 value; 2699 void *ptr = sample->raw_data + field->offset; 2700 2701 switch (field->size) { 2702 case 1: 2703 return *(u8 *)ptr; 2704 case 2: 2705 value = *(u16 *)ptr; 2706 break; 2707 case 4: 2708 value = *(u32 *)ptr; 2709 break; 2710 case 8: 2711 memcpy(&value, ptr, sizeof(u64)); 2712 break; 2713 default: 2714 return 0; 2715 } 2716 2717 if (!needs_swap) 2718 return value; 2719 2720 switch (field->size) { 2721 case 2: 2722 return bswap_16(value); 2723 case 4: 2724 return bswap_32(value); 2725 case 8: 2726 return bswap_64(value); 2727 default: 2728 return 0; 2729 } 2730 2731 return 0; 2732 } 2733 2734 u64 evsel__intval(struct evsel *evsel, struct perf_sample *sample, const char *name) 2735 { 2736 struct tep_format_field *field = evsel__field(evsel, name); 2737 2738 if (!field) 2739 return 0; 2740 2741 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2742 } 2743 2744 bool evsel__fallback(struct evsel *evsel, int err, char *msg, size_t msgsize) 2745 { 2746 int paranoid; 2747 2748 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2749 evsel->core.attr.type == PERF_TYPE_HARDWARE && 2750 evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2751 /* 2752 * If it's cycles then fall back to hrtimer based 2753 * cpu-clock-tick sw counter, which is always available even if 2754 * no PMU support. 2755 * 2756 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2757 * b0a873e). 2758 */ 2759 scnprintf(msg, msgsize, "%s", 2760 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2761 2762 evsel->core.attr.type = PERF_TYPE_SOFTWARE; 2763 evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK; 2764 2765 zfree(&evsel->name); 2766 return true; 2767 } else if (err == EACCES && !evsel->core.attr.exclude_kernel && 2768 (paranoid = perf_event_paranoid()) > 1) { 2769 const char *name = evsel__name(evsel); 2770 char *new_name; 2771 const char *sep = ":"; 2772 2773 /* If event has exclude user then don't exclude kernel. */ 2774 if (evsel->core.attr.exclude_user) 2775 return false; 2776 2777 /* Is there already the separator in the name. */ 2778 if (strchr(name, '/') || 2779 (strchr(name, ':') && !evsel->is_libpfm_event)) 2780 sep = ""; 2781 2782 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2783 return false; 2784 2785 if (evsel->name) 2786 free(evsel->name); 2787 evsel->name = new_name; 2788 scnprintf(msg, msgsize, "kernel.perf_event_paranoid=%d, trying " 2789 "to fall back to excluding kernel and hypervisor " 2790 " samples", paranoid); 2791 evsel->core.attr.exclude_kernel = 1; 2792 evsel->core.attr.exclude_hv = 1; 2793 2794 return true; 2795 } 2796 2797 return false; 2798 } 2799 2800 static bool find_process(const char *name) 2801 { 2802 size_t len = strlen(name); 2803 DIR *dir; 2804 struct dirent *d; 2805 int ret = -1; 2806 2807 dir = opendir(procfs__mountpoint()); 2808 if (!dir) 2809 return false; 2810 2811 /* Walk through the directory. */ 2812 while (ret && (d = readdir(dir)) != NULL) { 2813 char path[PATH_MAX]; 2814 char *data; 2815 size_t size; 2816 2817 if ((d->d_type != DT_DIR) || 2818 !strcmp(".", d->d_name) || 2819 !strcmp("..", d->d_name)) 2820 continue; 2821 2822 scnprintf(path, sizeof(path), "%s/%s/comm", 2823 procfs__mountpoint(), d->d_name); 2824 2825 if (filename__read_str(path, &data, &size)) 2826 continue; 2827 2828 ret = strncmp(name, data, len); 2829 free(data); 2830 } 2831 2832 closedir(dir); 2833 return ret ? false : true; 2834 } 2835 2836 int evsel__open_strerror(struct evsel *evsel, struct target *target, 2837 int err, char *msg, size_t size) 2838 { 2839 char sbuf[STRERR_BUFSIZE]; 2840 int printed = 0, enforced = 0; 2841 2842 switch (err) { 2843 case EPERM: 2844 case EACCES: 2845 printed += scnprintf(msg + printed, size - printed, 2846 "Access to performance monitoring and observability operations is limited.\n"); 2847 2848 if (!sysfs__read_int("fs/selinux/enforce", &enforced)) { 2849 if (enforced) { 2850 printed += scnprintf(msg + printed, size - printed, 2851 "Enforced MAC policy settings (SELinux) can limit access to performance\n" 2852 "monitoring and observability operations. Inspect system audit records for\n" 2853 "more perf_event access control information and adjusting the policy.\n"); 2854 } 2855 } 2856 2857 if (err == EPERM) 2858 printed += scnprintf(msg, size, 2859 "No permission to enable %s event.\n\n", evsel__name(evsel)); 2860 2861 return scnprintf(msg + printed, size - printed, 2862 "Consider adjusting /proc/sys/kernel/perf_event_paranoid setting to open\n" 2863 "access to performance monitoring and observability operations for processes\n" 2864 "without CAP_PERFMON, CAP_SYS_PTRACE or CAP_SYS_ADMIN Linux capability.\n" 2865 "More information can be found at 'Perf events and tool security' document:\n" 2866 "https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html\n" 2867 "perf_event_paranoid setting is %d:\n" 2868 " -1: Allow use of (almost) all events by all users\n" 2869 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2870 ">= 0: Disallow raw and ftrace function tracepoint access\n" 2871 ">= 1: Disallow CPU event access\n" 2872 ">= 2: Disallow kernel profiling\n" 2873 "To make the adjusted perf_event_paranoid setting permanent preserve it\n" 2874 "in /etc/sysctl.conf (e.g. kernel.perf_event_paranoid = <setting>)", 2875 perf_event_paranoid()); 2876 case ENOENT: 2877 return scnprintf(msg, size, "The %s event is not supported.", evsel__name(evsel)); 2878 case EMFILE: 2879 return scnprintf(msg, size, "%s", 2880 "Too many events are opened.\n" 2881 "Probably the maximum number of open file descriptors has been reached.\n" 2882 "Hint: Try again after reducing the number of events.\n" 2883 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2884 case ENOMEM: 2885 if (evsel__has_callchain(evsel) && 2886 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2887 return scnprintf(msg, size, 2888 "Not enough memory to setup event with callchain.\n" 2889 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2890 "Hint: Current value: %d", sysctl__max_stack()); 2891 break; 2892 case ENODEV: 2893 if (target->cpu_list) 2894 return scnprintf(msg, size, "%s", 2895 "No such device - did you specify an out-of-range profile CPU?"); 2896 break; 2897 case EOPNOTSUPP: 2898 if (evsel->core.attr.aux_output) 2899 return scnprintf(msg, size, 2900 "%s: PMU Hardware doesn't support 'aux_output' feature", 2901 evsel__name(evsel)); 2902 if (evsel->core.attr.sample_period != 0) 2903 return scnprintf(msg, size, 2904 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 2905 evsel__name(evsel)); 2906 if (evsel->core.attr.precise_ip) 2907 return scnprintf(msg, size, "%s", 2908 "\'precise\' request may not be supported. Try removing 'p' modifier."); 2909 #if defined(__i386__) || defined(__x86_64__) 2910 if (evsel->core.attr.type == PERF_TYPE_HARDWARE) 2911 return scnprintf(msg, size, "%s", 2912 "No hardware sampling interrupt available.\n"); 2913 #endif 2914 break; 2915 case EBUSY: 2916 if (find_process("oprofiled")) 2917 return scnprintf(msg, size, 2918 "The PMU counters are busy/taken by another profiler.\n" 2919 "We found oprofile daemon running, please stop it and try again."); 2920 break; 2921 case EINVAL: 2922 if (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE && perf_missing_features.code_page_size) 2923 return scnprintf(msg, size, "Asking for the code page size isn't supported by this kernel."); 2924 if (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE && perf_missing_features.data_page_size) 2925 return scnprintf(msg, size, "Asking for the data page size isn't supported by this kernel."); 2926 if (evsel->core.attr.write_backward && perf_missing_features.write_backward) 2927 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 2928 if (perf_missing_features.clockid) 2929 return scnprintf(msg, size, "clockid feature not supported."); 2930 if (perf_missing_features.clockid_wrong) 2931 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 2932 if (perf_missing_features.aux_output) 2933 return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel."); 2934 break; 2935 case ENODATA: 2936 return scnprintf(msg, size, "Cannot collect data source with the load latency event alone. " 2937 "Please add an auxiliary event in front of the load latency event."); 2938 default: 2939 break; 2940 } 2941 2942 return scnprintf(msg, size, 2943 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 2944 "/bin/dmesg | grep -i perf may provide additional information.\n", 2945 err, str_error_r(err, sbuf, sizeof(sbuf)), evsel__name(evsel)); 2946 } 2947 2948 struct perf_env *evsel__env(struct evsel *evsel) 2949 { 2950 if (evsel && evsel->evlist) 2951 return evsel->evlist->env; 2952 return &perf_env; 2953 } 2954 2955 static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist) 2956 { 2957 int cpu, thread; 2958 2959 for (cpu = 0; cpu < xyarray__max_x(evsel->core.fd); cpu++) { 2960 for (thread = 0; thread < xyarray__max_y(evsel->core.fd); 2961 thread++) { 2962 int fd = FD(evsel, cpu, thread); 2963 2964 if (perf_evlist__id_add_fd(&evlist->core, &evsel->core, 2965 cpu, thread, fd) < 0) 2966 return -1; 2967 } 2968 } 2969 2970 return 0; 2971 } 2972 2973 int evsel__store_ids(struct evsel *evsel, struct evlist *evlist) 2974 { 2975 struct perf_cpu_map *cpus = evsel->core.cpus; 2976 struct perf_thread_map *threads = evsel->core.threads; 2977 2978 if (perf_evsel__alloc_id(&evsel->core, cpus->nr, threads->nr)) 2979 return -ENOMEM; 2980 2981 return store_evsel_ids(evsel, evlist); 2982 } 2983 2984 void evsel__zero_per_pkg(struct evsel *evsel) 2985 { 2986 struct hashmap_entry *cur; 2987 size_t bkt; 2988 2989 if (evsel->per_pkg_mask) { 2990 hashmap__for_each_entry(evsel->per_pkg_mask, cur, bkt) 2991 free((char *)cur->key); 2992 2993 hashmap__clear(evsel->per_pkg_mask); 2994 } 2995 } 2996 2997 bool evsel__is_hybrid(struct evsel *evsel) 2998 { 2999 return evsel->pmu_name && perf_pmu__is_hybrid(evsel->pmu_name); 3000 } 3001 3002 struct evsel *evsel__leader(struct evsel *evsel) 3003 { 3004 return container_of(evsel->core.leader, struct evsel, core); 3005 } 3006 3007 bool evsel__has_leader(struct evsel *evsel, struct evsel *leader) 3008 { 3009 return evsel->core.leader == &leader->core; 3010 } 3011 3012 bool evsel__is_leader(struct evsel *evsel) 3013 { 3014 return evsel__has_leader(evsel, evsel); 3015 } 3016 3017 void evsel__set_leader(struct evsel *evsel, struct evsel *leader) 3018 { 3019 evsel->core.leader = &leader->core; 3020 } 3021