1 /* 2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com> 3 * 4 * Parts came from builtin-{top,stat,record}.c, see those files for further 5 * copyright notes. 6 * 7 * Released under the GPL v2. (and only v2, not any later version) 8 */ 9 10 #include <byteswap.h> 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <linux/bitops.h> 14 #include <api/fs/fs.h> 15 #include <api/fs/tracing_path.h> 16 #include <traceevent/event-parse.h> 17 #include <linux/hw_breakpoint.h> 18 #include <linux/perf_event.h> 19 #include <linux/compiler.h> 20 #include <linux/err.h> 21 #include <sys/ioctl.h> 22 #include <sys/resource.h> 23 #include <sys/types.h> 24 #include <dirent.h> 25 #include "asm/bug.h" 26 #include "callchain.h" 27 #include "cgroup.h" 28 #include "event.h" 29 #include "evsel.h" 30 #include "evlist.h" 31 #include "util.h" 32 #include "cpumap.h" 33 #include "thread_map.h" 34 #include "target.h" 35 #include "perf_regs.h" 36 #include "debug.h" 37 #include "trace-event.h" 38 #include "stat.h" 39 #include "memswap.h" 40 #include "util/parse-branch-options.h" 41 42 #include "sane_ctype.h" 43 44 struct perf_missing_features perf_missing_features; 45 46 static clockid_t clockid; 47 48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused) 49 { 50 return 0; 51 } 52 53 void __weak test_attr__ready(void) { } 54 55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused) 56 { 57 } 58 59 static struct { 60 size_t size; 61 int (*init)(struct perf_evsel *evsel); 62 void (*fini)(struct perf_evsel *evsel); 63 } perf_evsel__object = { 64 .size = sizeof(struct perf_evsel), 65 .init = perf_evsel__no_extra_init, 66 .fini = perf_evsel__no_extra_fini, 67 }; 68 69 int perf_evsel__object_config(size_t object_size, 70 int (*init)(struct perf_evsel *evsel), 71 void (*fini)(struct perf_evsel *evsel)) 72 { 73 74 if (object_size == 0) 75 goto set_methods; 76 77 if (perf_evsel__object.size > object_size) 78 return -EINVAL; 79 80 perf_evsel__object.size = object_size; 81 82 set_methods: 83 if (init != NULL) 84 perf_evsel__object.init = init; 85 86 if (fini != NULL) 87 perf_evsel__object.fini = fini; 88 89 return 0; 90 } 91 92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) 93 94 int __perf_evsel__sample_size(u64 sample_type) 95 { 96 u64 mask = sample_type & PERF_SAMPLE_MASK; 97 int size = 0; 98 int i; 99 100 for (i = 0; i < 64; i++) { 101 if (mask & (1ULL << i)) 102 size++; 103 } 104 105 size *= sizeof(u64); 106 107 return size; 108 } 109 110 /** 111 * __perf_evsel__calc_id_pos - calculate id_pos. 112 * @sample_type: sample type 113 * 114 * This function returns the position of the event id (PERF_SAMPLE_ID or 115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct 116 * sample_event. 117 */ 118 static int __perf_evsel__calc_id_pos(u64 sample_type) 119 { 120 int idx = 0; 121 122 if (sample_type & PERF_SAMPLE_IDENTIFIER) 123 return 0; 124 125 if (!(sample_type & PERF_SAMPLE_ID)) 126 return -1; 127 128 if (sample_type & PERF_SAMPLE_IP) 129 idx += 1; 130 131 if (sample_type & PERF_SAMPLE_TID) 132 idx += 1; 133 134 if (sample_type & PERF_SAMPLE_TIME) 135 idx += 1; 136 137 if (sample_type & PERF_SAMPLE_ADDR) 138 idx += 1; 139 140 return idx; 141 } 142 143 /** 144 * __perf_evsel__calc_is_pos - calculate is_pos. 145 * @sample_type: sample type 146 * 147 * This function returns the position (counting backwards) of the event id 148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if 149 * sample_id_all is used there is an id sample appended to non-sample events. 150 */ 151 static int __perf_evsel__calc_is_pos(u64 sample_type) 152 { 153 int idx = 1; 154 155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 156 return 1; 157 158 if (!(sample_type & PERF_SAMPLE_ID)) 159 return -1; 160 161 if (sample_type & PERF_SAMPLE_CPU) 162 idx += 1; 163 164 if (sample_type & PERF_SAMPLE_STREAM_ID) 165 idx += 1; 166 167 return idx; 168 } 169 170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel) 171 { 172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type); 173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type); 174 } 175 176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel, 177 enum perf_event_sample_format bit) 178 { 179 if (!(evsel->attr.sample_type & bit)) { 180 evsel->attr.sample_type |= bit; 181 evsel->sample_size += sizeof(u64); 182 perf_evsel__calc_id_pos(evsel); 183 } 184 } 185 186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel, 187 enum perf_event_sample_format bit) 188 { 189 if (evsel->attr.sample_type & bit) { 190 evsel->attr.sample_type &= ~bit; 191 evsel->sample_size -= sizeof(u64); 192 perf_evsel__calc_id_pos(evsel); 193 } 194 } 195 196 void perf_evsel__set_sample_id(struct perf_evsel *evsel, 197 bool can_sample_identifier) 198 { 199 if (can_sample_identifier) { 200 perf_evsel__reset_sample_bit(evsel, ID); 201 perf_evsel__set_sample_bit(evsel, IDENTIFIER); 202 } else { 203 perf_evsel__set_sample_bit(evsel, ID); 204 } 205 evsel->attr.read_format |= PERF_FORMAT_ID; 206 } 207 208 /** 209 * perf_evsel__is_function_event - Return whether given evsel is a function 210 * trace event 211 * 212 * @evsel - evsel selector to be tested 213 * 214 * Return %true if event is function trace event 215 */ 216 bool perf_evsel__is_function_event(struct perf_evsel *evsel) 217 { 218 #define FUNCTION_EVENT "ftrace:function" 219 220 return evsel->name && 221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); 222 223 #undef FUNCTION_EVENT 224 } 225 226 void perf_evsel__init(struct perf_evsel *evsel, 227 struct perf_event_attr *attr, int idx) 228 { 229 evsel->idx = idx; 230 evsel->tracking = !idx; 231 evsel->attr = *attr; 232 evsel->leader = evsel; 233 evsel->unit = ""; 234 evsel->scale = 1.0; 235 evsel->max_events = ULONG_MAX; 236 evsel->evlist = NULL; 237 evsel->bpf_fd = -1; 238 INIT_LIST_HEAD(&evsel->node); 239 INIT_LIST_HEAD(&evsel->config_terms); 240 perf_evsel__object.init(evsel); 241 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type); 242 perf_evsel__calc_id_pos(evsel); 243 evsel->cmdline_group_boundary = false; 244 evsel->metric_expr = NULL; 245 evsel->metric_name = NULL; 246 evsel->metric_events = NULL; 247 evsel->collect_stat = false; 248 evsel->pmu_name = NULL; 249 } 250 251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx) 252 { 253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 254 255 if (!evsel) 256 return NULL; 257 perf_evsel__init(evsel, attr, idx); 258 259 if (perf_evsel__is_bpf_output(evsel)) { 260 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 261 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 262 evsel->attr.sample_period = 1; 263 } 264 265 if (perf_evsel__is_clock(evsel)) { 266 /* 267 * The evsel->unit points to static alias->unit 268 * so it's ok to use static string in here. 269 */ 270 static const char *unit = "msec"; 271 272 evsel->unit = unit; 273 evsel->scale = 1e-6; 274 } 275 276 return evsel; 277 } 278 279 static bool perf_event_can_profile_kernel(void) 280 { 281 return geteuid() == 0 || perf_event_paranoid() == -1; 282 } 283 284 struct perf_evsel *perf_evsel__new_cycles(bool precise) 285 { 286 struct perf_event_attr attr = { 287 .type = PERF_TYPE_HARDWARE, 288 .config = PERF_COUNT_HW_CPU_CYCLES, 289 .exclude_kernel = !perf_event_can_profile_kernel(), 290 }; 291 struct perf_evsel *evsel; 292 293 event_attr_init(&attr); 294 295 if (!precise) 296 goto new_event; 297 298 /* 299 * Now let the usual logic to set up the perf_event_attr defaults 300 * to kick in when we return and before perf_evsel__open() is called. 301 */ 302 new_event: 303 evsel = perf_evsel__new(&attr); 304 if (evsel == NULL) 305 goto out; 306 307 evsel->precise_max = true; 308 309 /* use asprintf() because free(evsel) assumes name is allocated */ 310 if (asprintf(&evsel->name, "cycles%s%s%.*s", 311 (attr.precise_ip || attr.exclude_kernel) ? ":" : "", 312 attr.exclude_kernel ? "u" : "", 313 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) 314 goto error_free; 315 out: 316 return evsel; 317 error_free: 318 perf_evsel__delete(evsel); 319 evsel = NULL; 320 goto out; 321 } 322 323 /* 324 * Returns pointer with encoded error via <linux/err.h> interface. 325 */ 326 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx) 327 { 328 struct perf_evsel *evsel = zalloc(perf_evsel__object.size); 329 int err = -ENOMEM; 330 331 if (evsel == NULL) { 332 goto out_err; 333 } else { 334 struct perf_event_attr attr = { 335 .type = PERF_TYPE_TRACEPOINT, 336 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | 337 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), 338 }; 339 340 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) 341 goto out_free; 342 343 evsel->tp_format = trace_event__tp_format(sys, name); 344 if (IS_ERR(evsel->tp_format)) { 345 err = PTR_ERR(evsel->tp_format); 346 goto out_free; 347 } 348 349 event_attr_init(&attr); 350 attr.config = evsel->tp_format->id; 351 attr.sample_period = 1; 352 perf_evsel__init(evsel, &attr, idx); 353 } 354 355 return evsel; 356 357 out_free: 358 zfree(&evsel->name); 359 free(evsel); 360 out_err: 361 return ERR_PTR(err); 362 } 363 364 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = { 365 "cycles", 366 "instructions", 367 "cache-references", 368 "cache-misses", 369 "branches", 370 "branch-misses", 371 "bus-cycles", 372 "stalled-cycles-frontend", 373 "stalled-cycles-backend", 374 "ref-cycles", 375 }; 376 377 static const char *__perf_evsel__hw_name(u64 config) 378 { 379 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config]) 380 return perf_evsel__hw_names[config]; 381 382 return "unknown-hardware"; 383 } 384 385 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size) 386 { 387 int colon = 0, r = 0; 388 struct perf_event_attr *attr = &evsel->attr; 389 bool exclude_guest_default = false; 390 391 #define MOD_PRINT(context, mod) do { \ 392 if (!attr->exclude_##context) { \ 393 if (!colon) colon = ++r; \ 394 r += scnprintf(bf + r, size - r, "%c", mod); \ 395 } } while(0) 396 397 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { 398 MOD_PRINT(kernel, 'k'); 399 MOD_PRINT(user, 'u'); 400 MOD_PRINT(hv, 'h'); 401 exclude_guest_default = true; 402 } 403 404 if (attr->precise_ip) { 405 if (!colon) 406 colon = ++r; 407 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); 408 exclude_guest_default = true; 409 } 410 411 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { 412 MOD_PRINT(host, 'H'); 413 MOD_PRINT(guest, 'G'); 414 } 415 #undef MOD_PRINT 416 if (colon) 417 bf[colon - 1] = ':'; 418 return r; 419 } 420 421 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size) 422 { 423 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config)); 424 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 425 } 426 427 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = { 428 "cpu-clock", 429 "task-clock", 430 "page-faults", 431 "context-switches", 432 "cpu-migrations", 433 "minor-faults", 434 "major-faults", 435 "alignment-faults", 436 "emulation-faults", 437 "dummy", 438 }; 439 440 static const char *__perf_evsel__sw_name(u64 config) 441 { 442 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config]) 443 return perf_evsel__sw_names[config]; 444 return "unknown-software"; 445 } 446 447 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size) 448 { 449 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config)); 450 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 451 } 452 453 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) 454 { 455 int r; 456 457 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); 458 459 if (type & HW_BREAKPOINT_R) 460 r += scnprintf(bf + r, size - r, "r"); 461 462 if (type & HW_BREAKPOINT_W) 463 r += scnprintf(bf + r, size - r, "w"); 464 465 if (type & HW_BREAKPOINT_X) 466 r += scnprintf(bf + r, size - r, "x"); 467 468 return r; 469 } 470 471 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size) 472 { 473 struct perf_event_attr *attr = &evsel->attr; 474 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); 475 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r); 476 } 477 478 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX] 479 [PERF_EVSEL__MAX_ALIASES] = { 480 { "L1-dcache", "l1-d", "l1d", "L1-data", }, 481 { "L1-icache", "l1-i", "l1i", "L1-instruction", }, 482 { "LLC", "L2", }, 483 { "dTLB", "d-tlb", "Data-TLB", }, 484 { "iTLB", "i-tlb", "Instruction-TLB", }, 485 { "branch", "branches", "bpu", "btb", "bpc", }, 486 { "node", }, 487 }; 488 489 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX] 490 [PERF_EVSEL__MAX_ALIASES] = { 491 { "load", "loads", "read", }, 492 { "store", "stores", "write", }, 493 { "prefetch", "prefetches", "speculative-read", "speculative-load", }, 494 }; 495 496 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX] 497 [PERF_EVSEL__MAX_ALIASES] = { 498 { "refs", "Reference", "ops", "access", }, 499 { "misses", "miss", }, 500 }; 501 502 #define C(x) PERF_COUNT_HW_CACHE_##x 503 #define CACHE_READ (1 << C(OP_READ)) 504 #define CACHE_WRITE (1 << C(OP_WRITE)) 505 #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) 506 #define COP(x) (1 << x) 507 508 /* 509 * cache operartion stat 510 * L1I : Read and prefetch only 511 * ITLB and BPU : Read-only 512 */ 513 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = { 514 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 515 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), 516 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 517 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 518 [C(ITLB)] = (CACHE_READ), 519 [C(BPU)] = (CACHE_READ), 520 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), 521 }; 522 523 bool perf_evsel__is_cache_op_valid(u8 type, u8 op) 524 { 525 if (perf_evsel__hw_cache_stat[type] & COP(op)) 526 return true; /* valid */ 527 else 528 return false; /* invalid */ 529 } 530 531 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, 532 char *bf, size_t size) 533 { 534 if (result) { 535 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0], 536 perf_evsel__hw_cache_op[op][0], 537 perf_evsel__hw_cache_result[result][0]); 538 } 539 540 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0], 541 perf_evsel__hw_cache_op[op][1]); 542 } 543 544 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size) 545 { 546 u8 op, result, type = (config >> 0) & 0xff; 547 const char *err = "unknown-ext-hardware-cache-type"; 548 549 if (type >= PERF_COUNT_HW_CACHE_MAX) 550 goto out_err; 551 552 op = (config >> 8) & 0xff; 553 err = "unknown-ext-hardware-cache-op"; 554 if (op >= PERF_COUNT_HW_CACHE_OP_MAX) 555 goto out_err; 556 557 result = (config >> 16) & 0xff; 558 err = "unknown-ext-hardware-cache-result"; 559 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 560 goto out_err; 561 562 err = "invalid-cache"; 563 if (!perf_evsel__is_cache_op_valid(type, op)) 564 goto out_err; 565 566 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size); 567 out_err: 568 return scnprintf(bf, size, "%s", err); 569 } 570 571 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size) 572 { 573 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size); 574 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 575 } 576 577 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size) 578 { 579 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config); 580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret); 581 } 582 583 static int perf_evsel__tool_name(char *bf, size_t size) 584 { 585 int ret = scnprintf(bf, size, "duration_time"); 586 return ret; 587 } 588 589 const char *perf_evsel__name(struct perf_evsel *evsel) 590 { 591 char bf[128]; 592 593 if (evsel->name) 594 return evsel->name; 595 596 switch (evsel->attr.type) { 597 case PERF_TYPE_RAW: 598 perf_evsel__raw_name(evsel, bf, sizeof(bf)); 599 break; 600 601 case PERF_TYPE_HARDWARE: 602 perf_evsel__hw_name(evsel, bf, sizeof(bf)); 603 break; 604 605 case PERF_TYPE_HW_CACHE: 606 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf)); 607 break; 608 609 case PERF_TYPE_SOFTWARE: 610 if (evsel->tool_event) 611 perf_evsel__tool_name(bf, sizeof(bf)); 612 else 613 perf_evsel__sw_name(evsel, bf, sizeof(bf)); 614 break; 615 616 case PERF_TYPE_TRACEPOINT: 617 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); 618 break; 619 620 case PERF_TYPE_BREAKPOINT: 621 perf_evsel__bp_name(evsel, bf, sizeof(bf)); 622 break; 623 624 default: 625 scnprintf(bf, sizeof(bf), "unknown attr type: %d", 626 evsel->attr.type); 627 break; 628 } 629 630 evsel->name = strdup(bf); 631 632 return evsel->name ?: "unknown"; 633 } 634 635 const char *perf_evsel__group_name(struct perf_evsel *evsel) 636 { 637 return evsel->group_name ?: "anon group"; 638 } 639 640 /* 641 * Returns the group details for the specified leader, 642 * with following rules. 643 * 644 * For record -e '{cycles,instructions}' 645 * 'anon group { cycles:u, instructions:u }' 646 * 647 * For record -e 'cycles,instructions' and report --group 648 * 'cycles:u, instructions:u' 649 */ 650 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size) 651 { 652 int ret = 0; 653 struct perf_evsel *pos; 654 const char *group_name = perf_evsel__group_name(evsel); 655 656 if (!evsel->forced_leader) 657 ret = scnprintf(buf, size, "%s { ", group_name); 658 659 ret += scnprintf(buf + ret, size - ret, "%s", 660 perf_evsel__name(evsel)); 661 662 for_each_group_member(pos, evsel) 663 ret += scnprintf(buf + ret, size - ret, ", %s", 664 perf_evsel__name(pos)); 665 666 if (!evsel->forced_leader) 667 ret += scnprintf(buf + ret, size - ret, " }"); 668 669 return ret; 670 } 671 672 static void __perf_evsel__config_callchain(struct perf_evsel *evsel, 673 struct record_opts *opts, 674 struct callchain_param *param) 675 { 676 bool function = perf_evsel__is_function_event(evsel); 677 struct perf_event_attr *attr = &evsel->attr; 678 679 perf_evsel__set_sample_bit(evsel, CALLCHAIN); 680 681 attr->sample_max_stack = param->max_stack; 682 683 if (opts->kernel_callchains) 684 attr->exclude_callchain_user = 1; 685 if (opts->user_callchains) 686 attr->exclude_callchain_kernel = 1; 687 if (param->record_mode == CALLCHAIN_LBR) { 688 if (!opts->branch_stack) { 689 if (attr->exclude_user) { 690 pr_warning("LBR callstack option is only available " 691 "to get user callchain information. " 692 "Falling back to framepointers.\n"); 693 } else { 694 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 695 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | 696 PERF_SAMPLE_BRANCH_CALL_STACK | 697 PERF_SAMPLE_BRANCH_NO_CYCLES | 698 PERF_SAMPLE_BRANCH_NO_FLAGS; 699 } 700 } else 701 pr_warning("Cannot use LBR callstack with branch stack. " 702 "Falling back to framepointers.\n"); 703 } 704 705 if (param->record_mode == CALLCHAIN_DWARF) { 706 if (!function) { 707 perf_evsel__set_sample_bit(evsel, REGS_USER); 708 perf_evsel__set_sample_bit(evsel, STACK_USER); 709 if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) { 710 attr->sample_regs_user |= DWARF_MINIMAL_REGS; 711 pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, " 712 "specifying a subset with --user-regs may render DWARF unwinding unreliable, " 713 "so the minimal registers set (IP, SP) is explicitly forced.\n"); 714 } else { 715 attr->sample_regs_user |= PERF_REGS_MASK; 716 } 717 attr->sample_stack_user = param->dump_size; 718 attr->exclude_callchain_user = 1; 719 } else { 720 pr_info("Cannot use DWARF unwind for function trace event," 721 " falling back to framepointers.\n"); 722 } 723 } 724 725 if (function) { 726 pr_info("Disabling user space callchains for function trace event.\n"); 727 attr->exclude_callchain_user = 1; 728 } 729 } 730 731 void perf_evsel__config_callchain(struct perf_evsel *evsel, 732 struct record_opts *opts, 733 struct callchain_param *param) 734 { 735 if (param->enabled) 736 return __perf_evsel__config_callchain(evsel, opts, param); 737 } 738 739 static void 740 perf_evsel__reset_callgraph(struct perf_evsel *evsel, 741 struct callchain_param *param) 742 { 743 struct perf_event_attr *attr = &evsel->attr; 744 745 perf_evsel__reset_sample_bit(evsel, CALLCHAIN); 746 if (param->record_mode == CALLCHAIN_LBR) { 747 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 748 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | 749 PERF_SAMPLE_BRANCH_CALL_STACK); 750 } 751 if (param->record_mode == CALLCHAIN_DWARF) { 752 perf_evsel__reset_sample_bit(evsel, REGS_USER); 753 perf_evsel__reset_sample_bit(evsel, STACK_USER); 754 } 755 } 756 757 static void apply_config_terms(struct perf_evsel *evsel, 758 struct record_opts *opts, bool track) 759 { 760 struct perf_evsel_config_term *term; 761 struct list_head *config_terms = &evsel->config_terms; 762 struct perf_event_attr *attr = &evsel->attr; 763 /* callgraph default */ 764 struct callchain_param param = { 765 .record_mode = callchain_param.record_mode, 766 }; 767 u32 dump_size = 0; 768 int max_stack = 0; 769 const char *callgraph_buf = NULL; 770 771 list_for_each_entry(term, config_terms, list) { 772 switch (term->type) { 773 case PERF_EVSEL__CONFIG_TERM_PERIOD: 774 if (!(term->weak && opts->user_interval != ULLONG_MAX)) { 775 attr->sample_period = term->val.period; 776 attr->freq = 0; 777 perf_evsel__reset_sample_bit(evsel, PERIOD); 778 } 779 break; 780 case PERF_EVSEL__CONFIG_TERM_FREQ: 781 if (!(term->weak && opts->user_freq != UINT_MAX)) { 782 attr->sample_freq = term->val.freq; 783 attr->freq = 1; 784 perf_evsel__set_sample_bit(evsel, PERIOD); 785 } 786 break; 787 case PERF_EVSEL__CONFIG_TERM_TIME: 788 if (term->val.time) 789 perf_evsel__set_sample_bit(evsel, TIME); 790 else 791 perf_evsel__reset_sample_bit(evsel, TIME); 792 break; 793 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH: 794 callgraph_buf = term->val.callgraph; 795 break; 796 case PERF_EVSEL__CONFIG_TERM_BRANCH: 797 if (term->val.branch && strcmp(term->val.branch, "no")) { 798 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 799 parse_branch_str(term->val.branch, 800 &attr->branch_sample_type); 801 } else 802 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 803 break; 804 case PERF_EVSEL__CONFIG_TERM_STACK_USER: 805 dump_size = term->val.stack_user; 806 break; 807 case PERF_EVSEL__CONFIG_TERM_MAX_STACK: 808 max_stack = term->val.max_stack; 809 break; 810 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS: 811 evsel->max_events = term->val.max_events; 812 break; 813 case PERF_EVSEL__CONFIG_TERM_INHERIT: 814 /* 815 * attr->inherit should has already been set by 816 * perf_evsel__config. If user explicitly set 817 * inherit using config terms, override global 818 * opt->no_inherit setting. 819 */ 820 attr->inherit = term->val.inherit ? 1 : 0; 821 break; 822 case PERF_EVSEL__CONFIG_TERM_OVERWRITE: 823 attr->write_backward = term->val.overwrite ? 1 : 0; 824 break; 825 case PERF_EVSEL__CONFIG_TERM_DRV_CFG: 826 break; 827 case PERF_EVSEL__CONFIG_TERM_PERCORE: 828 break; 829 default: 830 break; 831 } 832 } 833 834 /* User explicitly set per-event callgraph, clear the old setting and reset. */ 835 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { 836 bool sample_address = false; 837 838 if (max_stack) { 839 param.max_stack = max_stack; 840 if (callgraph_buf == NULL) 841 callgraph_buf = "fp"; 842 } 843 844 /* parse callgraph parameters */ 845 if (callgraph_buf != NULL) { 846 if (!strcmp(callgraph_buf, "no")) { 847 param.enabled = false; 848 param.record_mode = CALLCHAIN_NONE; 849 } else { 850 param.enabled = true; 851 if (parse_callchain_record(callgraph_buf, ¶m)) { 852 pr_err("per-event callgraph setting for %s failed. " 853 "Apply callgraph global setting for it\n", 854 evsel->name); 855 return; 856 } 857 if (param.record_mode == CALLCHAIN_DWARF) 858 sample_address = true; 859 } 860 } 861 if (dump_size > 0) { 862 dump_size = round_up(dump_size, sizeof(u64)); 863 param.dump_size = dump_size; 864 } 865 866 /* If global callgraph set, clear it */ 867 if (callchain_param.enabled) 868 perf_evsel__reset_callgraph(evsel, &callchain_param); 869 870 /* set perf-event callgraph */ 871 if (param.enabled) { 872 if (sample_address) { 873 perf_evsel__set_sample_bit(evsel, ADDR); 874 perf_evsel__set_sample_bit(evsel, DATA_SRC); 875 evsel->attr.mmap_data = track; 876 } 877 perf_evsel__config_callchain(evsel, opts, ¶m); 878 } 879 } 880 } 881 882 static bool is_dummy_event(struct perf_evsel *evsel) 883 { 884 return (evsel->attr.type == PERF_TYPE_SOFTWARE) && 885 (evsel->attr.config == PERF_COUNT_SW_DUMMY); 886 } 887 888 /* 889 * The enable_on_exec/disabled value strategy: 890 * 891 * 1) For any type of traced program: 892 * - all independent events and group leaders are disabled 893 * - all group members are enabled 894 * 895 * Group members are ruled by group leaders. They need to 896 * be enabled, because the group scheduling relies on that. 897 * 898 * 2) For traced programs executed by perf: 899 * - all independent events and group leaders have 900 * enable_on_exec set 901 * - we don't specifically enable or disable any event during 902 * the record command 903 * 904 * Independent events and group leaders are initially disabled 905 * and get enabled by exec. Group members are ruled by group 906 * leaders as stated in 1). 907 * 908 * 3) For traced programs attached by perf (pid/tid): 909 * - we specifically enable or disable all events during 910 * the record command 911 * 912 * When attaching events to already running traced we 913 * enable/disable events specifically, as there's no 914 * initial traced exec call. 915 */ 916 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts, 917 struct callchain_param *callchain) 918 { 919 struct perf_evsel *leader = evsel->leader; 920 struct perf_event_attr *attr = &evsel->attr; 921 int track = evsel->tracking; 922 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; 923 924 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; 925 attr->inherit = !opts->no_inherit; 926 attr->write_backward = opts->overwrite ? 1 : 0; 927 928 perf_evsel__set_sample_bit(evsel, IP); 929 perf_evsel__set_sample_bit(evsel, TID); 930 931 if (evsel->sample_read) { 932 perf_evsel__set_sample_bit(evsel, READ); 933 934 /* 935 * We need ID even in case of single event, because 936 * PERF_SAMPLE_READ process ID specific data. 937 */ 938 perf_evsel__set_sample_id(evsel, false); 939 940 /* 941 * Apply group format only if we belong to group 942 * with more than one members. 943 */ 944 if (leader->nr_members > 1) { 945 attr->read_format |= PERF_FORMAT_GROUP; 946 attr->inherit = 0; 947 } 948 } 949 950 /* 951 * We default some events to have a default interval. But keep 952 * it a weak assumption overridable by the user. 953 */ 954 if (!attr->sample_period || (opts->user_freq != UINT_MAX || 955 opts->user_interval != ULLONG_MAX)) { 956 if (opts->freq) { 957 perf_evsel__set_sample_bit(evsel, PERIOD); 958 attr->freq = 1; 959 attr->sample_freq = opts->freq; 960 } else { 961 attr->sample_period = opts->default_interval; 962 } 963 } 964 965 /* 966 * Disable sampling for all group members other 967 * than leader in case leader 'leads' the sampling. 968 */ 969 if ((leader != evsel) && leader->sample_read) { 970 attr->freq = 0; 971 attr->sample_freq = 0; 972 attr->sample_period = 0; 973 attr->write_backward = 0; 974 975 /* 976 * We don't get sample for slave events, we make them 977 * when delivering group leader sample. Set the slave 978 * event to follow the master sample_type to ease up 979 * report. 980 */ 981 attr->sample_type = leader->attr.sample_type; 982 } 983 984 if (opts->no_samples) 985 attr->sample_freq = 0; 986 987 if (opts->inherit_stat) { 988 evsel->attr.read_format |= 989 PERF_FORMAT_TOTAL_TIME_ENABLED | 990 PERF_FORMAT_TOTAL_TIME_RUNNING | 991 PERF_FORMAT_ID; 992 attr->inherit_stat = 1; 993 } 994 995 if (opts->sample_address) { 996 perf_evsel__set_sample_bit(evsel, ADDR); 997 attr->mmap_data = track; 998 } 999 1000 /* 1001 * We don't allow user space callchains for function trace 1002 * event, due to issues with page faults while tracing page 1003 * fault handler and its overall trickiness nature. 1004 */ 1005 if (perf_evsel__is_function_event(evsel)) 1006 evsel->attr.exclude_callchain_user = 1; 1007 1008 if (callchain && callchain->enabled && !evsel->no_aux_samples) 1009 perf_evsel__config_callchain(evsel, opts, callchain); 1010 1011 if (opts->sample_intr_regs) { 1012 attr->sample_regs_intr = opts->sample_intr_regs; 1013 perf_evsel__set_sample_bit(evsel, REGS_INTR); 1014 } 1015 1016 if (opts->sample_user_regs) { 1017 attr->sample_regs_user |= opts->sample_user_regs; 1018 perf_evsel__set_sample_bit(evsel, REGS_USER); 1019 } 1020 1021 if (target__has_cpu(&opts->target) || opts->sample_cpu) 1022 perf_evsel__set_sample_bit(evsel, CPU); 1023 1024 /* 1025 * When the user explicitly disabled time don't force it here. 1026 */ 1027 if (opts->sample_time && 1028 (!perf_missing_features.sample_id_all && 1029 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || 1030 opts->sample_time_set))) 1031 perf_evsel__set_sample_bit(evsel, TIME); 1032 1033 if (opts->raw_samples && !evsel->no_aux_samples) { 1034 perf_evsel__set_sample_bit(evsel, TIME); 1035 perf_evsel__set_sample_bit(evsel, RAW); 1036 perf_evsel__set_sample_bit(evsel, CPU); 1037 } 1038 1039 if (opts->sample_address) 1040 perf_evsel__set_sample_bit(evsel, DATA_SRC); 1041 1042 if (opts->sample_phys_addr) 1043 perf_evsel__set_sample_bit(evsel, PHYS_ADDR); 1044 1045 if (opts->no_buffering) { 1046 attr->watermark = 0; 1047 attr->wakeup_events = 1; 1048 } 1049 if (opts->branch_stack && !evsel->no_aux_samples) { 1050 perf_evsel__set_sample_bit(evsel, BRANCH_STACK); 1051 attr->branch_sample_type = opts->branch_stack; 1052 } 1053 1054 if (opts->sample_weight) 1055 perf_evsel__set_sample_bit(evsel, WEIGHT); 1056 1057 attr->task = track; 1058 attr->mmap = track; 1059 attr->mmap2 = track && !perf_missing_features.mmap2; 1060 attr->comm = track; 1061 attr->ksymbol = track && !perf_missing_features.ksymbol; 1062 attr->bpf_event = track && !opts->no_bpf_event && 1063 !perf_missing_features.bpf_event; 1064 1065 if (opts->record_namespaces) 1066 attr->namespaces = track; 1067 1068 if (opts->record_switch_events) 1069 attr->context_switch = track; 1070 1071 if (opts->sample_transaction) 1072 perf_evsel__set_sample_bit(evsel, TRANSACTION); 1073 1074 if (opts->running_time) { 1075 evsel->attr.read_format |= 1076 PERF_FORMAT_TOTAL_TIME_ENABLED | 1077 PERF_FORMAT_TOTAL_TIME_RUNNING; 1078 } 1079 1080 /* 1081 * XXX see the function comment above 1082 * 1083 * Disabling only independent events or group leaders, 1084 * keeping group members enabled. 1085 */ 1086 if (perf_evsel__is_group_leader(evsel)) 1087 attr->disabled = 1; 1088 1089 /* 1090 * Setting enable_on_exec for independent events and 1091 * group leaders for traced executed by perf. 1092 */ 1093 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) && 1094 !opts->initial_delay) 1095 attr->enable_on_exec = 1; 1096 1097 if (evsel->immediate) { 1098 attr->disabled = 0; 1099 attr->enable_on_exec = 0; 1100 } 1101 1102 clockid = opts->clockid; 1103 if (opts->use_clockid) { 1104 attr->use_clockid = 1; 1105 attr->clockid = opts->clockid; 1106 } 1107 1108 if (evsel->precise_max) 1109 attr->precise_ip = 3; 1110 1111 if (opts->all_user) { 1112 attr->exclude_kernel = 1; 1113 attr->exclude_user = 0; 1114 } 1115 1116 if (opts->all_kernel) { 1117 attr->exclude_kernel = 0; 1118 attr->exclude_user = 1; 1119 } 1120 1121 if (evsel->own_cpus || evsel->unit) 1122 evsel->attr.read_format |= PERF_FORMAT_ID; 1123 1124 /* 1125 * Apply event specific term settings, 1126 * it overloads any global configuration. 1127 */ 1128 apply_config_terms(evsel, opts, track); 1129 1130 evsel->ignore_missing_thread = opts->ignore_missing_thread; 1131 1132 /* The --period option takes the precedence. */ 1133 if (opts->period_set) { 1134 if (opts->period) 1135 perf_evsel__set_sample_bit(evsel, PERIOD); 1136 else 1137 perf_evsel__reset_sample_bit(evsel, PERIOD); 1138 } 1139 1140 /* 1141 * For initial_delay, a dummy event is added implicitly. 1142 * The software event will trigger -EOPNOTSUPP error out, 1143 * if BRANCH_STACK bit is set. 1144 */ 1145 if (opts->initial_delay && is_dummy_event(evsel)) 1146 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK); 1147 } 1148 1149 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads) 1150 { 1151 if (evsel->system_wide) 1152 nthreads = 1; 1153 1154 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int)); 1155 1156 if (evsel->fd) { 1157 int cpu, thread; 1158 for (cpu = 0; cpu < ncpus; cpu++) { 1159 for (thread = 0; thread < nthreads; thread++) { 1160 FD(evsel, cpu, thread) = -1; 1161 } 1162 } 1163 } 1164 1165 return evsel->fd != NULL ? 0 : -ENOMEM; 1166 } 1167 1168 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, 1169 int ioc, void *arg) 1170 { 1171 int cpu, thread; 1172 1173 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 1174 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) { 1175 int fd = FD(evsel, cpu, thread), 1176 err = ioctl(fd, ioc, arg); 1177 1178 if (err) 1179 return err; 1180 } 1181 } 1182 1183 return 0; 1184 } 1185 1186 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter) 1187 { 1188 return perf_evsel__run_ioctl(evsel, 1189 PERF_EVENT_IOC_SET_FILTER, 1190 (void *)filter); 1191 } 1192 1193 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter) 1194 { 1195 char *new_filter = strdup(filter); 1196 1197 if (new_filter != NULL) { 1198 free(evsel->filter); 1199 evsel->filter = new_filter; 1200 return 0; 1201 } 1202 1203 return -1; 1204 } 1205 1206 static int perf_evsel__append_filter(struct perf_evsel *evsel, 1207 const char *fmt, const char *filter) 1208 { 1209 char *new_filter; 1210 1211 if (evsel->filter == NULL) 1212 return perf_evsel__set_filter(evsel, filter); 1213 1214 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { 1215 free(evsel->filter); 1216 evsel->filter = new_filter; 1217 return 0; 1218 } 1219 1220 return -1; 1221 } 1222 1223 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter) 1224 { 1225 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter); 1226 } 1227 1228 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter) 1229 { 1230 return perf_evsel__append_filter(evsel, "%s,%s", filter); 1231 } 1232 1233 int perf_evsel__enable(struct perf_evsel *evsel) 1234 { 1235 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0); 1236 1237 if (!err) 1238 evsel->disabled = false; 1239 1240 return err; 1241 } 1242 1243 int perf_evsel__disable(struct perf_evsel *evsel) 1244 { 1245 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0); 1246 /* 1247 * We mark it disabled here so that tools that disable a event can 1248 * ignore events after they disable it. I.e. the ring buffer may have 1249 * already a few more events queued up before the kernel got the stop 1250 * request. 1251 */ 1252 if (!err) 1253 evsel->disabled = true; 1254 1255 return err; 1256 } 1257 1258 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads) 1259 { 1260 if (ncpus == 0 || nthreads == 0) 1261 return 0; 1262 1263 if (evsel->system_wide) 1264 nthreads = 1; 1265 1266 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id)); 1267 if (evsel->sample_id == NULL) 1268 return -ENOMEM; 1269 1270 evsel->id = zalloc(ncpus * nthreads * sizeof(u64)); 1271 if (evsel->id == NULL) { 1272 xyarray__delete(evsel->sample_id); 1273 evsel->sample_id = NULL; 1274 return -ENOMEM; 1275 } 1276 1277 return 0; 1278 } 1279 1280 static void perf_evsel__free_fd(struct perf_evsel *evsel) 1281 { 1282 xyarray__delete(evsel->fd); 1283 evsel->fd = NULL; 1284 } 1285 1286 static void perf_evsel__free_id(struct perf_evsel *evsel) 1287 { 1288 xyarray__delete(evsel->sample_id); 1289 evsel->sample_id = NULL; 1290 zfree(&evsel->id); 1291 } 1292 1293 static void perf_evsel__free_config_terms(struct perf_evsel *evsel) 1294 { 1295 struct perf_evsel_config_term *term, *h; 1296 1297 list_for_each_entry_safe(term, h, &evsel->config_terms, list) { 1298 list_del(&term->list); 1299 free(term); 1300 } 1301 } 1302 1303 void perf_evsel__close_fd(struct perf_evsel *evsel) 1304 { 1305 int cpu, thread; 1306 1307 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) 1308 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) { 1309 close(FD(evsel, cpu, thread)); 1310 FD(evsel, cpu, thread) = -1; 1311 } 1312 } 1313 1314 void perf_evsel__exit(struct perf_evsel *evsel) 1315 { 1316 assert(list_empty(&evsel->node)); 1317 assert(evsel->evlist == NULL); 1318 perf_evsel__free_counts(evsel); 1319 perf_evsel__free_fd(evsel); 1320 perf_evsel__free_id(evsel); 1321 perf_evsel__free_config_terms(evsel); 1322 cgroup__put(evsel->cgrp); 1323 cpu_map__put(evsel->cpus); 1324 cpu_map__put(evsel->own_cpus); 1325 thread_map__put(evsel->threads); 1326 zfree(&evsel->group_name); 1327 zfree(&evsel->name); 1328 perf_evsel__object.fini(evsel); 1329 } 1330 1331 void perf_evsel__delete(struct perf_evsel *evsel) 1332 { 1333 perf_evsel__exit(evsel); 1334 free(evsel); 1335 } 1336 1337 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread, 1338 struct perf_counts_values *count) 1339 { 1340 struct perf_counts_values tmp; 1341 1342 if (!evsel->prev_raw_counts) 1343 return; 1344 1345 if (cpu == -1) { 1346 tmp = evsel->prev_raw_counts->aggr; 1347 evsel->prev_raw_counts->aggr = *count; 1348 } else { 1349 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); 1350 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; 1351 } 1352 1353 count->val = count->val - tmp.val; 1354 count->ena = count->ena - tmp.ena; 1355 count->run = count->run - tmp.run; 1356 } 1357 1358 void perf_counts_values__scale(struct perf_counts_values *count, 1359 bool scale, s8 *pscaled) 1360 { 1361 s8 scaled = 0; 1362 1363 if (scale) { 1364 if (count->run == 0) { 1365 scaled = -1; 1366 count->val = 0; 1367 } else if (count->run < count->ena) { 1368 scaled = 1; 1369 count->val = (u64)((double) count->val * count->ena / count->run); 1370 } 1371 } 1372 1373 if (pscaled) 1374 *pscaled = scaled; 1375 } 1376 1377 static int perf_evsel__read_size(struct perf_evsel *evsel) 1378 { 1379 u64 read_format = evsel->attr.read_format; 1380 int entry = sizeof(u64); /* value */ 1381 int size = 0; 1382 int nr = 1; 1383 1384 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1385 size += sizeof(u64); 1386 1387 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1388 size += sizeof(u64); 1389 1390 if (read_format & PERF_FORMAT_ID) 1391 entry += sizeof(u64); 1392 1393 if (read_format & PERF_FORMAT_GROUP) { 1394 nr = evsel->nr_members; 1395 size += sizeof(u64); 1396 } 1397 1398 size += entry * nr; 1399 return size; 1400 } 1401 1402 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread, 1403 struct perf_counts_values *count) 1404 { 1405 size_t size = perf_evsel__read_size(evsel); 1406 1407 memset(count, 0, sizeof(*count)); 1408 1409 if (FD(evsel, cpu, thread) < 0) 1410 return -EINVAL; 1411 1412 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0) 1413 return -errno; 1414 1415 return 0; 1416 } 1417 1418 static int 1419 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread) 1420 { 1421 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); 1422 1423 return perf_evsel__read(evsel, cpu, thread, count); 1424 } 1425 1426 static void 1427 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread, 1428 u64 val, u64 ena, u64 run) 1429 { 1430 struct perf_counts_values *count; 1431 1432 count = perf_counts(counter->counts, cpu, thread); 1433 1434 count->val = val; 1435 count->ena = ena; 1436 count->run = run; 1437 count->loaded = true; 1438 } 1439 1440 static int 1441 perf_evsel__process_group_data(struct perf_evsel *leader, 1442 int cpu, int thread, u64 *data) 1443 { 1444 u64 read_format = leader->attr.read_format; 1445 struct sample_read_value *v; 1446 u64 nr, ena = 0, run = 0, i; 1447 1448 nr = *data++; 1449 1450 if (nr != (u64) leader->nr_members) 1451 return -EINVAL; 1452 1453 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1454 ena = *data++; 1455 1456 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1457 run = *data++; 1458 1459 v = (struct sample_read_value *) data; 1460 1461 perf_evsel__set_count(leader, cpu, thread, 1462 v[0].value, ena, run); 1463 1464 for (i = 1; i < nr; i++) { 1465 struct perf_evsel *counter; 1466 1467 counter = perf_evlist__id2evsel(leader->evlist, v[i].id); 1468 if (!counter) 1469 return -EINVAL; 1470 1471 perf_evsel__set_count(counter, cpu, thread, 1472 v[i].value, ena, run); 1473 } 1474 1475 return 0; 1476 } 1477 1478 static int 1479 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread) 1480 { 1481 struct perf_stat_evsel *ps = leader->stats; 1482 u64 read_format = leader->attr.read_format; 1483 int size = perf_evsel__read_size(leader); 1484 u64 *data = ps->group_data; 1485 1486 if (!(read_format & PERF_FORMAT_ID)) 1487 return -EINVAL; 1488 1489 if (!perf_evsel__is_group_leader(leader)) 1490 return -EINVAL; 1491 1492 if (!data) { 1493 data = zalloc(size); 1494 if (!data) 1495 return -ENOMEM; 1496 1497 ps->group_data = data; 1498 } 1499 1500 if (FD(leader, cpu, thread) < 0) 1501 return -EINVAL; 1502 1503 if (readn(FD(leader, cpu, thread), data, size) <= 0) 1504 return -errno; 1505 1506 return perf_evsel__process_group_data(leader, cpu, thread, data); 1507 } 1508 1509 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread) 1510 { 1511 u64 read_format = evsel->attr.read_format; 1512 1513 if (read_format & PERF_FORMAT_GROUP) 1514 return perf_evsel__read_group(evsel, cpu, thread); 1515 else 1516 return perf_evsel__read_one(evsel, cpu, thread); 1517 } 1518 1519 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel, 1520 int cpu, int thread, bool scale) 1521 { 1522 struct perf_counts_values count; 1523 size_t nv = scale ? 3 : 1; 1524 1525 if (FD(evsel, cpu, thread) < 0) 1526 return -EINVAL; 1527 1528 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) 1529 return -ENOMEM; 1530 1531 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) 1532 return -errno; 1533 1534 perf_evsel__compute_deltas(evsel, cpu, thread, &count); 1535 perf_counts_values__scale(&count, scale, NULL); 1536 *perf_counts(evsel->counts, cpu, thread) = count; 1537 return 0; 1538 } 1539 1540 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread) 1541 { 1542 struct perf_evsel *leader = evsel->leader; 1543 int fd; 1544 1545 if (perf_evsel__is_group_leader(evsel)) 1546 return -1; 1547 1548 /* 1549 * Leader must be already processed/open, 1550 * if not it's a bug. 1551 */ 1552 BUG_ON(!leader->fd); 1553 1554 fd = FD(leader, cpu, thread); 1555 BUG_ON(fd == -1); 1556 1557 return fd; 1558 } 1559 1560 struct bit_names { 1561 int bit; 1562 const char *name; 1563 }; 1564 1565 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits) 1566 { 1567 bool first_bit = true; 1568 int i = 0; 1569 1570 do { 1571 if (value & bits[i].bit) { 1572 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name); 1573 first_bit = false; 1574 } 1575 } while (bits[++i].name != NULL); 1576 } 1577 1578 static void __p_sample_type(char *buf, size_t size, u64 value) 1579 { 1580 #define bit_name(n) { PERF_SAMPLE_##n, #n } 1581 struct bit_names bits[] = { 1582 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR), 1583 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU), 1584 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW), 1585 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER), 1586 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC), 1587 bit_name(WEIGHT), bit_name(PHYS_ADDR), 1588 { .name = NULL, } 1589 }; 1590 #undef bit_name 1591 __p_bits(buf, size, value, bits); 1592 } 1593 1594 static void __p_branch_sample_type(char *buf, size_t size, u64 value) 1595 { 1596 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n } 1597 struct bit_names bits[] = { 1598 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY), 1599 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL), 1600 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX), 1601 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP), 1602 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES), 1603 { .name = NULL, } 1604 }; 1605 #undef bit_name 1606 __p_bits(buf, size, value, bits); 1607 } 1608 1609 static void __p_read_format(char *buf, size_t size, u64 value) 1610 { 1611 #define bit_name(n) { PERF_FORMAT_##n, #n } 1612 struct bit_names bits[] = { 1613 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING), 1614 bit_name(ID), bit_name(GROUP), 1615 { .name = NULL, } 1616 }; 1617 #undef bit_name 1618 __p_bits(buf, size, value, bits); 1619 } 1620 1621 #define BUF_SIZE 1024 1622 1623 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val)) 1624 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val)) 1625 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val)) 1626 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val) 1627 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val) 1628 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val) 1629 1630 #define PRINT_ATTRn(_n, _f, _p) \ 1631 do { \ 1632 if (attr->_f) { \ 1633 _p(attr->_f); \ 1634 ret += attr__fprintf(fp, _n, buf, priv);\ 1635 } \ 1636 } while (0) 1637 1638 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p) 1639 1640 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr, 1641 attr__fprintf_f attr__fprintf, void *priv) 1642 { 1643 char buf[BUF_SIZE]; 1644 int ret = 0; 1645 1646 PRINT_ATTRf(type, p_unsigned); 1647 PRINT_ATTRf(size, p_unsigned); 1648 PRINT_ATTRf(config, p_hex); 1649 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned); 1650 PRINT_ATTRf(sample_type, p_sample_type); 1651 PRINT_ATTRf(read_format, p_read_format); 1652 1653 PRINT_ATTRf(disabled, p_unsigned); 1654 PRINT_ATTRf(inherit, p_unsigned); 1655 PRINT_ATTRf(pinned, p_unsigned); 1656 PRINT_ATTRf(exclusive, p_unsigned); 1657 PRINT_ATTRf(exclude_user, p_unsigned); 1658 PRINT_ATTRf(exclude_kernel, p_unsigned); 1659 PRINT_ATTRf(exclude_hv, p_unsigned); 1660 PRINT_ATTRf(exclude_idle, p_unsigned); 1661 PRINT_ATTRf(mmap, p_unsigned); 1662 PRINT_ATTRf(comm, p_unsigned); 1663 PRINT_ATTRf(freq, p_unsigned); 1664 PRINT_ATTRf(inherit_stat, p_unsigned); 1665 PRINT_ATTRf(enable_on_exec, p_unsigned); 1666 PRINT_ATTRf(task, p_unsigned); 1667 PRINT_ATTRf(watermark, p_unsigned); 1668 PRINT_ATTRf(precise_ip, p_unsigned); 1669 PRINT_ATTRf(mmap_data, p_unsigned); 1670 PRINT_ATTRf(sample_id_all, p_unsigned); 1671 PRINT_ATTRf(exclude_host, p_unsigned); 1672 PRINT_ATTRf(exclude_guest, p_unsigned); 1673 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned); 1674 PRINT_ATTRf(exclude_callchain_user, p_unsigned); 1675 PRINT_ATTRf(mmap2, p_unsigned); 1676 PRINT_ATTRf(comm_exec, p_unsigned); 1677 PRINT_ATTRf(use_clockid, p_unsigned); 1678 PRINT_ATTRf(context_switch, p_unsigned); 1679 PRINT_ATTRf(write_backward, p_unsigned); 1680 PRINT_ATTRf(namespaces, p_unsigned); 1681 PRINT_ATTRf(ksymbol, p_unsigned); 1682 PRINT_ATTRf(bpf_event, p_unsigned); 1683 1684 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned); 1685 PRINT_ATTRf(bp_type, p_unsigned); 1686 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex); 1687 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex); 1688 PRINT_ATTRf(branch_sample_type, p_branch_sample_type); 1689 PRINT_ATTRf(sample_regs_user, p_hex); 1690 PRINT_ATTRf(sample_stack_user, p_unsigned); 1691 PRINT_ATTRf(clockid, p_signed); 1692 PRINT_ATTRf(sample_regs_intr, p_hex); 1693 PRINT_ATTRf(aux_watermark, p_unsigned); 1694 PRINT_ATTRf(sample_max_stack, p_unsigned); 1695 1696 return ret; 1697 } 1698 1699 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, 1700 void *priv __maybe_unused) 1701 { 1702 return fprintf(fp, " %-32s %s\n", name, val); 1703 } 1704 1705 static void perf_evsel__remove_fd(struct perf_evsel *pos, 1706 int nr_cpus, int nr_threads, 1707 int thread_idx) 1708 { 1709 for (int cpu = 0; cpu < nr_cpus; cpu++) 1710 for (int thread = thread_idx; thread < nr_threads - 1; thread++) 1711 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); 1712 } 1713 1714 static int update_fds(struct perf_evsel *evsel, 1715 int nr_cpus, int cpu_idx, 1716 int nr_threads, int thread_idx) 1717 { 1718 struct perf_evsel *pos; 1719 1720 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) 1721 return -EINVAL; 1722 1723 evlist__for_each_entry(evsel->evlist, pos) { 1724 nr_cpus = pos != evsel ? nr_cpus : cpu_idx; 1725 1726 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); 1727 1728 /* 1729 * Since fds for next evsel has not been created, 1730 * there is no need to iterate whole event list. 1731 */ 1732 if (pos == evsel) 1733 break; 1734 } 1735 return 0; 1736 } 1737 1738 static bool ignore_missing_thread(struct perf_evsel *evsel, 1739 int nr_cpus, int cpu, 1740 struct thread_map *threads, 1741 int thread, int err) 1742 { 1743 pid_t ignore_pid = thread_map__pid(threads, thread); 1744 1745 if (!evsel->ignore_missing_thread) 1746 return false; 1747 1748 /* The system wide setup does not work with threads. */ 1749 if (evsel->system_wide) 1750 return false; 1751 1752 /* The -ESRCH is perf event syscall errno for pid's not found. */ 1753 if (err != -ESRCH) 1754 return false; 1755 1756 /* If there's only one thread, let it fail. */ 1757 if (threads->nr == 1) 1758 return false; 1759 1760 /* 1761 * We should remove fd for missing_thread first 1762 * because thread_map__remove() will decrease threads->nr. 1763 */ 1764 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) 1765 return false; 1766 1767 if (thread_map__remove(threads, thread)) 1768 return false; 1769 1770 pr_warning("WARNING: Ignored open failure for pid %d\n", 1771 ignore_pid); 1772 return true; 1773 } 1774 1775 static void display_attr(struct perf_event_attr *attr) 1776 { 1777 if (verbose >= 2) { 1778 fprintf(stderr, "%.60s\n", graph_dotted_line); 1779 fprintf(stderr, "perf_event_attr:\n"); 1780 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); 1781 fprintf(stderr, "%.60s\n", graph_dotted_line); 1782 } 1783 } 1784 1785 static int perf_event_open(struct perf_evsel *evsel, 1786 pid_t pid, int cpu, int group_fd, 1787 unsigned long flags) 1788 { 1789 int precise_ip = evsel->attr.precise_ip; 1790 int fd; 1791 1792 while (1) { 1793 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", 1794 pid, cpu, group_fd, flags); 1795 1796 fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags); 1797 if (fd >= 0) 1798 break; 1799 1800 /* 1801 * Do quick precise_ip fallback if: 1802 * - there is precise_ip set in perf_event_attr 1803 * - maximum precise is requested 1804 * - sys_perf_event_open failed with ENOTSUP error, 1805 * which is associated with wrong precise_ip 1806 */ 1807 if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP)) 1808 break; 1809 1810 /* 1811 * We tried all the precise_ip values, and it's 1812 * still failing, so leave it to standard fallback. 1813 */ 1814 if (!evsel->attr.precise_ip) { 1815 evsel->attr.precise_ip = precise_ip; 1816 break; 1817 } 1818 1819 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP); 1820 evsel->attr.precise_ip--; 1821 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip); 1822 display_attr(&evsel->attr); 1823 } 1824 1825 return fd; 1826 } 1827 1828 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus, 1829 struct thread_map *threads) 1830 { 1831 int cpu, thread, nthreads; 1832 unsigned long flags = PERF_FLAG_FD_CLOEXEC; 1833 int pid = -1, err; 1834 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE; 1835 1836 if (perf_missing_features.write_backward && evsel->attr.write_backward) 1837 return -EINVAL; 1838 1839 if (cpus == NULL) { 1840 static struct cpu_map *empty_cpu_map; 1841 1842 if (empty_cpu_map == NULL) { 1843 empty_cpu_map = cpu_map__dummy_new(); 1844 if (empty_cpu_map == NULL) 1845 return -ENOMEM; 1846 } 1847 1848 cpus = empty_cpu_map; 1849 } 1850 1851 if (threads == NULL) { 1852 static struct thread_map *empty_thread_map; 1853 1854 if (empty_thread_map == NULL) { 1855 empty_thread_map = thread_map__new_by_tid(-1); 1856 if (empty_thread_map == NULL) 1857 return -ENOMEM; 1858 } 1859 1860 threads = empty_thread_map; 1861 } 1862 1863 if (evsel->system_wide) 1864 nthreads = 1; 1865 else 1866 nthreads = threads->nr; 1867 1868 if (evsel->fd == NULL && 1869 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0) 1870 return -ENOMEM; 1871 1872 if (evsel->cgrp) { 1873 flags |= PERF_FLAG_PID_CGROUP; 1874 pid = evsel->cgrp->fd; 1875 } 1876 1877 fallback_missing_features: 1878 if (perf_missing_features.clockid_wrong) 1879 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */ 1880 if (perf_missing_features.clockid) { 1881 evsel->attr.use_clockid = 0; 1882 evsel->attr.clockid = 0; 1883 } 1884 if (perf_missing_features.cloexec) 1885 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; 1886 if (perf_missing_features.mmap2) 1887 evsel->attr.mmap2 = 0; 1888 if (perf_missing_features.exclude_guest) 1889 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0; 1890 if (perf_missing_features.lbr_flags) 1891 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | 1892 PERF_SAMPLE_BRANCH_NO_CYCLES); 1893 if (perf_missing_features.group_read && evsel->attr.inherit) 1894 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); 1895 if (perf_missing_features.ksymbol) 1896 evsel->attr.ksymbol = 0; 1897 if (perf_missing_features.bpf_event) 1898 evsel->attr.bpf_event = 0; 1899 retry_sample_id: 1900 if (perf_missing_features.sample_id_all) 1901 evsel->attr.sample_id_all = 0; 1902 1903 display_attr(&evsel->attr); 1904 1905 for (cpu = 0; cpu < cpus->nr; cpu++) { 1906 1907 for (thread = 0; thread < nthreads; thread++) { 1908 int fd, group_fd; 1909 1910 if (!evsel->cgrp && !evsel->system_wide) 1911 pid = thread_map__pid(threads, thread); 1912 1913 group_fd = get_group_fd(evsel, cpu, thread); 1914 retry_open: 1915 test_attr__ready(); 1916 1917 fd = perf_event_open(evsel, pid, cpus->map[cpu], 1918 group_fd, flags); 1919 1920 FD(evsel, cpu, thread) = fd; 1921 1922 if (fd < 0) { 1923 err = -errno; 1924 1925 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { 1926 /* 1927 * We just removed 1 thread, so take a step 1928 * back on thread index and lower the upper 1929 * nthreads limit. 1930 */ 1931 nthreads--; 1932 thread--; 1933 1934 /* ... and pretend like nothing have happened. */ 1935 err = 0; 1936 continue; 1937 } 1938 1939 pr_debug2("\nsys_perf_event_open failed, error %d\n", 1940 err); 1941 goto try_fallback; 1942 } 1943 1944 pr_debug2(" = %d\n", fd); 1945 1946 if (evsel->bpf_fd >= 0) { 1947 int evt_fd = fd; 1948 int bpf_fd = evsel->bpf_fd; 1949 1950 err = ioctl(evt_fd, 1951 PERF_EVENT_IOC_SET_BPF, 1952 bpf_fd); 1953 if (err && errno != EEXIST) { 1954 pr_err("failed to attach bpf fd %d: %s\n", 1955 bpf_fd, strerror(errno)); 1956 err = -EINVAL; 1957 goto out_close; 1958 } 1959 } 1960 1961 set_rlimit = NO_CHANGE; 1962 1963 /* 1964 * If we succeeded but had to kill clockid, fail and 1965 * have perf_evsel__open_strerror() print us a nice 1966 * error. 1967 */ 1968 if (perf_missing_features.clockid || 1969 perf_missing_features.clockid_wrong) { 1970 err = -EINVAL; 1971 goto out_close; 1972 } 1973 } 1974 } 1975 1976 return 0; 1977 1978 try_fallback: 1979 /* 1980 * perf stat needs between 5 and 22 fds per CPU. When we run out 1981 * of them try to increase the limits. 1982 */ 1983 if (err == -EMFILE && set_rlimit < INCREASED_MAX) { 1984 struct rlimit l; 1985 int old_errno = errno; 1986 1987 if (getrlimit(RLIMIT_NOFILE, &l) == 0) { 1988 if (set_rlimit == NO_CHANGE) 1989 l.rlim_cur = l.rlim_max; 1990 else { 1991 l.rlim_cur = l.rlim_max + 1000; 1992 l.rlim_max = l.rlim_cur; 1993 } 1994 if (setrlimit(RLIMIT_NOFILE, &l) == 0) { 1995 set_rlimit++; 1996 errno = old_errno; 1997 goto retry_open; 1998 } 1999 } 2000 errno = old_errno; 2001 } 2002 2003 if (err != -EINVAL || cpu > 0 || thread > 0) 2004 goto out_close; 2005 2006 /* 2007 * Must probe features in the order they were added to the 2008 * perf_event_attr interface. 2009 */ 2010 if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) { 2011 perf_missing_features.bpf_event = true; 2012 pr_debug2("switching off bpf_event\n"); 2013 goto fallback_missing_features; 2014 } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) { 2015 perf_missing_features.ksymbol = true; 2016 pr_debug2("switching off ksymbol\n"); 2017 goto fallback_missing_features; 2018 } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) { 2019 perf_missing_features.write_backward = true; 2020 pr_debug2("switching off write_backward\n"); 2021 goto out_close; 2022 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) { 2023 perf_missing_features.clockid_wrong = true; 2024 pr_debug2("switching off clockid\n"); 2025 goto fallback_missing_features; 2026 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) { 2027 perf_missing_features.clockid = true; 2028 pr_debug2("switching off use_clockid\n"); 2029 goto fallback_missing_features; 2030 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) { 2031 perf_missing_features.cloexec = true; 2032 pr_debug2("switching off cloexec flag\n"); 2033 goto fallback_missing_features; 2034 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) { 2035 perf_missing_features.mmap2 = true; 2036 pr_debug2("switching off mmap2\n"); 2037 goto fallback_missing_features; 2038 } else if (!perf_missing_features.exclude_guest && 2039 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) { 2040 perf_missing_features.exclude_guest = true; 2041 pr_debug2("switching off exclude_guest, exclude_host\n"); 2042 goto fallback_missing_features; 2043 } else if (!perf_missing_features.sample_id_all) { 2044 perf_missing_features.sample_id_all = true; 2045 pr_debug2("switching off sample_id_all\n"); 2046 goto retry_sample_id; 2047 } else if (!perf_missing_features.lbr_flags && 2048 (evsel->attr.branch_sample_type & 2049 (PERF_SAMPLE_BRANCH_NO_CYCLES | 2050 PERF_SAMPLE_BRANCH_NO_FLAGS))) { 2051 perf_missing_features.lbr_flags = true; 2052 pr_debug2("switching off branch sample type no (cycles/flags)\n"); 2053 goto fallback_missing_features; 2054 } else if (!perf_missing_features.group_read && 2055 evsel->attr.inherit && 2056 (evsel->attr.read_format & PERF_FORMAT_GROUP) && 2057 perf_evsel__is_group_leader(evsel)) { 2058 perf_missing_features.group_read = true; 2059 pr_debug2("switching off group read\n"); 2060 goto fallback_missing_features; 2061 } 2062 out_close: 2063 if (err) 2064 threads->err_thread = thread; 2065 2066 do { 2067 while (--thread >= 0) { 2068 close(FD(evsel, cpu, thread)); 2069 FD(evsel, cpu, thread) = -1; 2070 } 2071 thread = nthreads; 2072 } while (--cpu >= 0); 2073 return err; 2074 } 2075 2076 void perf_evsel__close(struct perf_evsel *evsel) 2077 { 2078 if (evsel->fd == NULL) 2079 return; 2080 2081 perf_evsel__close_fd(evsel); 2082 perf_evsel__free_fd(evsel); 2083 } 2084 2085 int perf_evsel__open_per_cpu(struct perf_evsel *evsel, 2086 struct cpu_map *cpus) 2087 { 2088 return perf_evsel__open(evsel, cpus, NULL); 2089 } 2090 2091 int perf_evsel__open_per_thread(struct perf_evsel *evsel, 2092 struct thread_map *threads) 2093 { 2094 return perf_evsel__open(evsel, NULL, threads); 2095 } 2096 2097 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel, 2098 const union perf_event *event, 2099 struct perf_sample *sample) 2100 { 2101 u64 type = evsel->attr.sample_type; 2102 const u64 *array = event->sample.array; 2103 bool swapped = evsel->needs_swap; 2104 union u64_swap u; 2105 2106 array += ((event->header.size - 2107 sizeof(event->header)) / sizeof(u64)) - 1; 2108 2109 if (type & PERF_SAMPLE_IDENTIFIER) { 2110 sample->id = *array; 2111 array--; 2112 } 2113 2114 if (type & PERF_SAMPLE_CPU) { 2115 u.val64 = *array; 2116 if (swapped) { 2117 /* undo swap of u64, then swap on individual u32s */ 2118 u.val64 = bswap_64(u.val64); 2119 u.val32[0] = bswap_32(u.val32[0]); 2120 } 2121 2122 sample->cpu = u.val32[0]; 2123 array--; 2124 } 2125 2126 if (type & PERF_SAMPLE_STREAM_ID) { 2127 sample->stream_id = *array; 2128 array--; 2129 } 2130 2131 if (type & PERF_SAMPLE_ID) { 2132 sample->id = *array; 2133 array--; 2134 } 2135 2136 if (type & PERF_SAMPLE_TIME) { 2137 sample->time = *array; 2138 array--; 2139 } 2140 2141 if (type & PERF_SAMPLE_TID) { 2142 u.val64 = *array; 2143 if (swapped) { 2144 /* undo swap of u64, then swap on individual u32s */ 2145 u.val64 = bswap_64(u.val64); 2146 u.val32[0] = bswap_32(u.val32[0]); 2147 u.val32[1] = bswap_32(u.val32[1]); 2148 } 2149 2150 sample->pid = u.val32[0]; 2151 sample->tid = u.val32[1]; 2152 array--; 2153 } 2154 2155 return 0; 2156 } 2157 2158 static inline bool overflow(const void *endp, u16 max_size, const void *offset, 2159 u64 size) 2160 { 2161 return size > max_size || offset + size > endp; 2162 } 2163 2164 #define OVERFLOW_CHECK(offset, size, max_size) \ 2165 do { \ 2166 if (overflow(endp, (max_size), (offset), (size))) \ 2167 return -EFAULT; \ 2168 } while (0) 2169 2170 #define OVERFLOW_CHECK_u64(offset) \ 2171 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) 2172 2173 static int 2174 perf_event__check_size(union perf_event *event, unsigned int sample_size) 2175 { 2176 /* 2177 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes 2178 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to 2179 * check the format does not go past the end of the event. 2180 */ 2181 if (sample_size + sizeof(event->header) > event->header.size) 2182 return -EFAULT; 2183 2184 return 0; 2185 } 2186 2187 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event, 2188 struct perf_sample *data) 2189 { 2190 u64 type = evsel->attr.sample_type; 2191 bool swapped = evsel->needs_swap; 2192 const u64 *array; 2193 u16 max_size = event->header.size; 2194 const void *endp = (void *)event + max_size; 2195 u64 sz; 2196 2197 /* 2198 * used for cross-endian analysis. See git commit 65014ab3 2199 * for why this goofiness is needed. 2200 */ 2201 union u64_swap u; 2202 2203 memset(data, 0, sizeof(*data)); 2204 data->cpu = data->pid = data->tid = -1; 2205 data->stream_id = data->id = data->time = -1ULL; 2206 data->period = evsel->attr.sample_period; 2207 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2208 data->misc = event->header.misc; 2209 data->id = -1ULL; 2210 data->data_src = PERF_MEM_DATA_SRC_NONE; 2211 2212 if (event->header.type != PERF_RECORD_SAMPLE) { 2213 if (!evsel->attr.sample_id_all) 2214 return 0; 2215 return perf_evsel__parse_id_sample(evsel, event, data); 2216 } 2217 2218 array = event->sample.array; 2219 2220 if (perf_event__check_size(event, evsel->sample_size)) 2221 return -EFAULT; 2222 2223 if (type & PERF_SAMPLE_IDENTIFIER) { 2224 data->id = *array; 2225 array++; 2226 } 2227 2228 if (type & PERF_SAMPLE_IP) { 2229 data->ip = *array; 2230 array++; 2231 } 2232 2233 if (type & PERF_SAMPLE_TID) { 2234 u.val64 = *array; 2235 if (swapped) { 2236 /* undo swap of u64, then swap on individual u32s */ 2237 u.val64 = bswap_64(u.val64); 2238 u.val32[0] = bswap_32(u.val32[0]); 2239 u.val32[1] = bswap_32(u.val32[1]); 2240 } 2241 2242 data->pid = u.val32[0]; 2243 data->tid = u.val32[1]; 2244 array++; 2245 } 2246 2247 if (type & PERF_SAMPLE_TIME) { 2248 data->time = *array; 2249 array++; 2250 } 2251 2252 if (type & PERF_SAMPLE_ADDR) { 2253 data->addr = *array; 2254 array++; 2255 } 2256 2257 if (type & PERF_SAMPLE_ID) { 2258 data->id = *array; 2259 array++; 2260 } 2261 2262 if (type & PERF_SAMPLE_STREAM_ID) { 2263 data->stream_id = *array; 2264 array++; 2265 } 2266 2267 if (type & PERF_SAMPLE_CPU) { 2268 2269 u.val64 = *array; 2270 if (swapped) { 2271 /* undo swap of u64, then swap on individual u32s */ 2272 u.val64 = bswap_64(u.val64); 2273 u.val32[0] = bswap_32(u.val32[0]); 2274 } 2275 2276 data->cpu = u.val32[0]; 2277 array++; 2278 } 2279 2280 if (type & PERF_SAMPLE_PERIOD) { 2281 data->period = *array; 2282 array++; 2283 } 2284 2285 if (type & PERF_SAMPLE_READ) { 2286 u64 read_format = evsel->attr.read_format; 2287 2288 OVERFLOW_CHECK_u64(array); 2289 if (read_format & PERF_FORMAT_GROUP) 2290 data->read.group.nr = *array; 2291 else 2292 data->read.one.value = *array; 2293 2294 array++; 2295 2296 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2297 OVERFLOW_CHECK_u64(array); 2298 data->read.time_enabled = *array; 2299 array++; 2300 } 2301 2302 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2303 OVERFLOW_CHECK_u64(array); 2304 data->read.time_running = *array; 2305 array++; 2306 } 2307 2308 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2309 if (read_format & PERF_FORMAT_GROUP) { 2310 const u64 max_group_nr = UINT64_MAX / 2311 sizeof(struct sample_read_value); 2312 2313 if (data->read.group.nr > max_group_nr) 2314 return -EFAULT; 2315 sz = data->read.group.nr * 2316 sizeof(struct sample_read_value); 2317 OVERFLOW_CHECK(array, sz, max_size); 2318 data->read.group.values = 2319 (struct sample_read_value *)array; 2320 array = (void *)array + sz; 2321 } else { 2322 OVERFLOW_CHECK_u64(array); 2323 data->read.one.id = *array; 2324 array++; 2325 } 2326 } 2327 2328 if (evsel__has_callchain(evsel)) { 2329 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); 2330 2331 OVERFLOW_CHECK_u64(array); 2332 data->callchain = (struct ip_callchain *)array++; 2333 if (data->callchain->nr > max_callchain_nr) 2334 return -EFAULT; 2335 sz = data->callchain->nr * sizeof(u64); 2336 OVERFLOW_CHECK(array, sz, max_size); 2337 array = (void *)array + sz; 2338 } 2339 2340 if (type & PERF_SAMPLE_RAW) { 2341 OVERFLOW_CHECK_u64(array); 2342 u.val64 = *array; 2343 2344 /* 2345 * Undo swap of u64, then swap on individual u32s, 2346 * get the size of the raw area and undo all of the 2347 * swap. The pevent interface handles endianity by 2348 * itself. 2349 */ 2350 if (swapped) { 2351 u.val64 = bswap_64(u.val64); 2352 u.val32[0] = bswap_32(u.val32[0]); 2353 u.val32[1] = bswap_32(u.val32[1]); 2354 } 2355 data->raw_size = u.val32[0]; 2356 2357 /* 2358 * The raw data is aligned on 64bits including the 2359 * u32 size, so it's safe to use mem_bswap_64. 2360 */ 2361 if (swapped) 2362 mem_bswap_64((void *) array, data->raw_size); 2363 2364 array = (void *)array + sizeof(u32); 2365 2366 OVERFLOW_CHECK(array, data->raw_size, max_size); 2367 data->raw_data = (void *)array; 2368 array = (void *)array + data->raw_size; 2369 } 2370 2371 if (type & PERF_SAMPLE_BRANCH_STACK) { 2372 const u64 max_branch_nr = UINT64_MAX / 2373 sizeof(struct branch_entry); 2374 2375 OVERFLOW_CHECK_u64(array); 2376 data->branch_stack = (struct branch_stack *)array++; 2377 2378 if (data->branch_stack->nr > max_branch_nr) 2379 return -EFAULT; 2380 sz = data->branch_stack->nr * sizeof(struct branch_entry); 2381 OVERFLOW_CHECK(array, sz, max_size); 2382 array = (void *)array + sz; 2383 } 2384 2385 if (type & PERF_SAMPLE_REGS_USER) { 2386 OVERFLOW_CHECK_u64(array); 2387 data->user_regs.abi = *array; 2388 array++; 2389 2390 if (data->user_regs.abi) { 2391 u64 mask = evsel->attr.sample_regs_user; 2392 2393 sz = hweight64(mask) * sizeof(u64); 2394 OVERFLOW_CHECK(array, sz, max_size); 2395 data->user_regs.mask = mask; 2396 data->user_regs.regs = (u64 *)array; 2397 array = (void *)array + sz; 2398 } 2399 } 2400 2401 if (type & PERF_SAMPLE_STACK_USER) { 2402 OVERFLOW_CHECK_u64(array); 2403 sz = *array++; 2404 2405 data->user_stack.offset = ((char *)(array - 1) 2406 - (char *) event); 2407 2408 if (!sz) { 2409 data->user_stack.size = 0; 2410 } else { 2411 OVERFLOW_CHECK(array, sz, max_size); 2412 data->user_stack.data = (char *)array; 2413 array = (void *)array + sz; 2414 OVERFLOW_CHECK_u64(array); 2415 data->user_stack.size = *array++; 2416 if (WARN_ONCE(data->user_stack.size > sz, 2417 "user stack dump failure\n")) 2418 return -EFAULT; 2419 } 2420 } 2421 2422 if (type & PERF_SAMPLE_WEIGHT) { 2423 OVERFLOW_CHECK_u64(array); 2424 data->weight = *array; 2425 array++; 2426 } 2427 2428 if (type & PERF_SAMPLE_DATA_SRC) { 2429 OVERFLOW_CHECK_u64(array); 2430 data->data_src = *array; 2431 array++; 2432 } 2433 2434 if (type & PERF_SAMPLE_TRANSACTION) { 2435 OVERFLOW_CHECK_u64(array); 2436 data->transaction = *array; 2437 array++; 2438 } 2439 2440 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; 2441 if (type & PERF_SAMPLE_REGS_INTR) { 2442 OVERFLOW_CHECK_u64(array); 2443 data->intr_regs.abi = *array; 2444 array++; 2445 2446 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { 2447 u64 mask = evsel->attr.sample_regs_intr; 2448 2449 sz = hweight64(mask) * sizeof(u64); 2450 OVERFLOW_CHECK(array, sz, max_size); 2451 data->intr_regs.mask = mask; 2452 data->intr_regs.regs = (u64 *)array; 2453 array = (void *)array + sz; 2454 } 2455 } 2456 2457 data->phys_addr = 0; 2458 if (type & PERF_SAMPLE_PHYS_ADDR) { 2459 data->phys_addr = *array; 2460 array++; 2461 } 2462 2463 return 0; 2464 } 2465 2466 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel, 2467 union perf_event *event, 2468 u64 *timestamp) 2469 { 2470 u64 type = evsel->attr.sample_type; 2471 const u64 *array; 2472 2473 if (!(type & PERF_SAMPLE_TIME)) 2474 return -1; 2475 2476 if (event->header.type != PERF_RECORD_SAMPLE) { 2477 struct perf_sample data = { 2478 .time = -1ULL, 2479 }; 2480 2481 if (!evsel->attr.sample_id_all) 2482 return -1; 2483 if (perf_evsel__parse_id_sample(evsel, event, &data)) 2484 return -1; 2485 2486 *timestamp = data.time; 2487 return 0; 2488 } 2489 2490 array = event->sample.array; 2491 2492 if (perf_event__check_size(event, evsel->sample_size)) 2493 return -EFAULT; 2494 2495 if (type & PERF_SAMPLE_IDENTIFIER) 2496 array++; 2497 2498 if (type & PERF_SAMPLE_IP) 2499 array++; 2500 2501 if (type & PERF_SAMPLE_TID) 2502 array++; 2503 2504 if (type & PERF_SAMPLE_TIME) 2505 *timestamp = *array; 2506 2507 return 0; 2508 } 2509 2510 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type, 2511 u64 read_format) 2512 { 2513 size_t sz, result = sizeof(struct sample_event); 2514 2515 if (type & PERF_SAMPLE_IDENTIFIER) 2516 result += sizeof(u64); 2517 2518 if (type & PERF_SAMPLE_IP) 2519 result += sizeof(u64); 2520 2521 if (type & PERF_SAMPLE_TID) 2522 result += sizeof(u64); 2523 2524 if (type & PERF_SAMPLE_TIME) 2525 result += sizeof(u64); 2526 2527 if (type & PERF_SAMPLE_ADDR) 2528 result += sizeof(u64); 2529 2530 if (type & PERF_SAMPLE_ID) 2531 result += sizeof(u64); 2532 2533 if (type & PERF_SAMPLE_STREAM_ID) 2534 result += sizeof(u64); 2535 2536 if (type & PERF_SAMPLE_CPU) 2537 result += sizeof(u64); 2538 2539 if (type & PERF_SAMPLE_PERIOD) 2540 result += sizeof(u64); 2541 2542 if (type & PERF_SAMPLE_READ) { 2543 result += sizeof(u64); 2544 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 2545 result += sizeof(u64); 2546 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 2547 result += sizeof(u64); 2548 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2549 if (read_format & PERF_FORMAT_GROUP) { 2550 sz = sample->read.group.nr * 2551 sizeof(struct sample_read_value); 2552 result += sz; 2553 } else { 2554 result += sizeof(u64); 2555 } 2556 } 2557 2558 if (type & PERF_SAMPLE_CALLCHAIN) { 2559 sz = (sample->callchain->nr + 1) * sizeof(u64); 2560 result += sz; 2561 } 2562 2563 if (type & PERF_SAMPLE_RAW) { 2564 result += sizeof(u32); 2565 result += sample->raw_size; 2566 } 2567 2568 if (type & PERF_SAMPLE_BRANCH_STACK) { 2569 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2570 sz += sizeof(u64); 2571 result += sz; 2572 } 2573 2574 if (type & PERF_SAMPLE_REGS_USER) { 2575 if (sample->user_regs.abi) { 2576 result += sizeof(u64); 2577 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2578 result += sz; 2579 } else { 2580 result += sizeof(u64); 2581 } 2582 } 2583 2584 if (type & PERF_SAMPLE_STACK_USER) { 2585 sz = sample->user_stack.size; 2586 result += sizeof(u64); 2587 if (sz) { 2588 result += sz; 2589 result += sizeof(u64); 2590 } 2591 } 2592 2593 if (type & PERF_SAMPLE_WEIGHT) 2594 result += sizeof(u64); 2595 2596 if (type & PERF_SAMPLE_DATA_SRC) 2597 result += sizeof(u64); 2598 2599 if (type & PERF_SAMPLE_TRANSACTION) 2600 result += sizeof(u64); 2601 2602 if (type & PERF_SAMPLE_REGS_INTR) { 2603 if (sample->intr_regs.abi) { 2604 result += sizeof(u64); 2605 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2606 result += sz; 2607 } else { 2608 result += sizeof(u64); 2609 } 2610 } 2611 2612 if (type & PERF_SAMPLE_PHYS_ADDR) 2613 result += sizeof(u64); 2614 2615 return result; 2616 } 2617 2618 int perf_event__synthesize_sample(union perf_event *event, u64 type, 2619 u64 read_format, 2620 const struct perf_sample *sample) 2621 { 2622 u64 *array; 2623 size_t sz; 2624 /* 2625 * used for cross-endian analysis. See git commit 65014ab3 2626 * for why this goofiness is needed. 2627 */ 2628 union u64_swap u; 2629 2630 array = event->sample.array; 2631 2632 if (type & PERF_SAMPLE_IDENTIFIER) { 2633 *array = sample->id; 2634 array++; 2635 } 2636 2637 if (type & PERF_SAMPLE_IP) { 2638 *array = sample->ip; 2639 array++; 2640 } 2641 2642 if (type & PERF_SAMPLE_TID) { 2643 u.val32[0] = sample->pid; 2644 u.val32[1] = sample->tid; 2645 *array = u.val64; 2646 array++; 2647 } 2648 2649 if (type & PERF_SAMPLE_TIME) { 2650 *array = sample->time; 2651 array++; 2652 } 2653 2654 if (type & PERF_SAMPLE_ADDR) { 2655 *array = sample->addr; 2656 array++; 2657 } 2658 2659 if (type & PERF_SAMPLE_ID) { 2660 *array = sample->id; 2661 array++; 2662 } 2663 2664 if (type & PERF_SAMPLE_STREAM_ID) { 2665 *array = sample->stream_id; 2666 array++; 2667 } 2668 2669 if (type & PERF_SAMPLE_CPU) { 2670 u.val32[0] = sample->cpu; 2671 u.val32[1] = 0; 2672 *array = u.val64; 2673 array++; 2674 } 2675 2676 if (type & PERF_SAMPLE_PERIOD) { 2677 *array = sample->period; 2678 array++; 2679 } 2680 2681 if (type & PERF_SAMPLE_READ) { 2682 if (read_format & PERF_FORMAT_GROUP) 2683 *array = sample->read.group.nr; 2684 else 2685 *array = sample->read.one.value; 2686 array++; 2687 2688 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 2689 *array = sample->read.time_enabled; 2690 array++; 2691 } 2692 2693 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 2694 *array = sample->read.time_running; 2695 array++; 2696 } 2697 2698 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ 2699 if (read_format & PERF_FORMAT_GROUP) { 2700 sz = sample->read.group.nr * 2701 sizeof(struct sample_read_value); 2702 memcpy(array, sample->read.group.values, sz); 2703 array = (void *)array + sz; 2704 } else { 2705 *array = sample->read.one.id; 2706 array++; 2707 } 2708 } 2709 2710 if (type & PERF_SAMPLE_CALLCHAIN) { 2711 sz = (sample->callchain->nr + 1) * sizeof(u64); 2712 memcpy(array, sample->callchain, sz); 2713 array = (void *)array + sz; 2714 } 2715 2716 if (type & PERF_SAMPLE_RAW) { 2717 u.val32[0] = sample->raw_size; 2718 *array = u.val64; 2719 array = (void *)array + sizeof(u32); 2720 2721 memcpy(array, sample->raw_data, sample->raw_size); 2722 array = (void *)array + sample->raw_size; 2723 } 2724 2725 if (type & PERF_SAMPLE_BRANCH_STACK) { 2726 sz = sample->branch_stack->nr * sizeof(struct branch_entry); 2727 sz += sizeof(u64); 2728 memcpy(array, sample->branch_stack, sz); 2729 array = (void *)array + sz; 2730 } 2731 2732 if (type & PERF_SAMPLE_REGS_USER) { 2733 if (sample->user_regs.abi) { 2734 *array++ = sample->user_regs.abi; 2735 sz = hweight64(sample->user_regs.mask) * sizeof(u64); 2736 memcpy(array, sample->user_regs.regs, sz); 2737 array = (void *)array + sz; 2738 } else { 2739 *array++ = 0; 2740 } 2741 } 2742 2743 if (type & PERF_SAMPLE_STACK_USER) { 2744 sz = sample->user_stack.size; 2745 *array++ = sz; 2746 if (sz) { 2747 memcpy(array, sample->user_stack.data, sz); 2748 array = (void *)array + sz; 2749 *array++ = sz; 2750 } 2751 } 2752 2753 if (type & PERF_SAMPLE_WEIGHT) { 2754 *array = sample->weight; 2755 array++; 2756 } 2757 2758 if (type & PERF_SAMPLE_DATA_SRC) { 2759 *array = sample->data_src; 2760 array++; 2761 } 2762 2763 if (type & PERF_SAMPLE_TRANSACTION) { 2764 *array = sample->transaction; 2765 array++; 2766 } 2767 2768 if (type & PERF_SAMPLE_REGS_INTR) { 2769 if (sample->intr_regs.abi) { 2770 *array++ = sample->intr_regs.abi; 2771 sz = hweight64(sample->intr_regs.mask) * sizeof(u64); 2772 memcpy(array, sample->intr_regs.regs, sz); 2773 array = (void *)array + sz; 2774 } else { 2775 *array++ = 0; 2776 } 2777 } 2778 2779 if (type & PERF_SAMPLE_PHYS_ADDR) { 2780 *array = sample->phys_addr; 2781 array++; 2782 } 2783 2784 return 0; 2785 } 2786 2787 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name) 2788 { 2789 return tep_find_field(evsel->tp_format, name); 2790 } 2791 2792 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample, 2793 const char *name) 2794 { 2795 struct tep_format_field *field = perf_evsel__field(evsel, name); 2796 int offset; 2797 2798 if (!field) 2799 return NULL; 2800 2801 offset = field->offset; 2802 2803 if (field->flags & TEP_FIELD_IS_DYNAMIC) { 2804 offset = *(int *)(sample->raw_data + field->offset); 2805 offset &= 0xffff; 2806 } 2807 2808 return sample->raw_data + offset; 2809 } 2810 2811 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, 2812 bool needs_swap) 2813 { 2814 u64 value; 2815 void *ptr = sample->raw_data + field->offset; 2816 2817 switch (field->size) { 2818 case 1: 2819 return *(u8 *)ptr; 2820 case 2: 2821 value = *(u16 *)ptr; 2822 break; 2823 case 4: 2824 value = *(u32 *)ptr; 2825 break; 2826 case 8: 2827 memcpy(&value, ptr, sizeof(u64)); 2828 break; 2829 default: 2830 return 0; 2831 } 2832 2833 if (!needs_swap) 2834 return value; 2835 2836 switch (field->size) { 2837 case 2: 2838 return bswap_16(value); 2839 case 4: 2840 return bswap_32(value); 2841 case 8: 2842 return bswap_64(value); 2843 default: 2844 return 0; 2845 } 2846 2847 return 0; 2848 } 2849 2850 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample, 2851 const char *name) 2852 { 2853 struct tep_format_field *field = perf_evsel__field(evsel, name); 2854 2855 if (!field) 2856 return 0; 2857 2858 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; 2859 } 2860 2861 bool perf_evsel__fallback(struct perf_evsel *evsel, int err, 2862 char *msg, size_t msgsize) 2863 { 2864 int paranoid; 2865 2866 if ((err == ENOENT || err == ENXIO || err == ENODEV) && 2867 evsel->attr.type == PERF_TYPE_HARDWARE && 2868 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) { 2869 /* 2870 * If it's cycles then fall back to hrtimer based 2871 * cpu-clock-tick sw counter, which is always available even if 2872 * no PMU support. 2873 * 2874 * PPC returns ENXIO until 2.6.37 (behavior changed with commit 2875 * b0a873e). 2876 */ 2877 scnprintf(msg, msgsize, "%s", 2878 "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); 2879 2880 evsel->attr.type = PERF_TYPE_SOFTWARE; 2881 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK; 2882 2883 zfree(&evsel->name); 2884 return true; 2885 } else if (err == EACCES && !evsel->attr.exclude_kernel && 2886 (paranoid = perf_event_paranoid()) > 1) { 2887 const char *name = perf_evsel__name(evsel); 2888 char *new_name; 2889 const char *sep = ":"; 2890 2891 /* Is there already the separator in the name. */ 2892 if (strchr(name, '/') || 2893 strchr(name, ':')) 2894 sep = ""; 2895 2896 if (asprintf(&new_name, "%s%su", name, sep) < 0) 2897 return false; 2898 2899 if (evsel->name) 2900 free(evsel->name); 2901 evsel->name = new_name; 2902 scnprintf(msg, msgsize, 2903 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid); 2904 evsel->attr.exclude_kernel = 1; 2905 2906 return true; 2907 } 2908 2909 return false; 2910 } 2911 2912 static bool find_process(const char *name) 2913 { 2914 size_t len = strlen(name); 2915 DIR *dir; 2916 struct dirent *d; 2917 int ret = -1; 2918 2919 dir = opendir(procfs__mountpoint()); 2920 if (!dir) 2921 return false; 2922 2923 /* Walk through the directory. */ 2924 while (ret && (d = readdir(dir)) != NULL) { 2925 char path[PATH_MAX]; 2926 char *data; 2927 size_t size; 2928 2929 if ((d->d_type != DT_DIR) || 2930 !strcmp(".", d->d_name) || 2931 !strcmp("..", d->d_name)) 2932 continue; 2933 2934 scnprintf(path, sizeof(path), "%s/%s/comm", 2935 procfs__mountpoint(), d->d_name); 2936 2937 if (filename__read_str(path, &data, &size)) 2938 continue; 2939 2940 ret = strncmp(name, data, len); 2941 free(data); 2942 } 2943 2944 closedir(dir); 2945 return ret ? false : true; 2946 } 2947 2948 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target, 2949 int err, char *msg, size_t size) 2950 { 2951 char sbuf[STRERR_BUFSIZE]; 2952 int printed = 0; 2953 2954 switch (err) { 2955 case EPERM: 2956 case EACCES: 2957 if (err == EPERM) 2958 printed = scnprintf(msg, size, 2959 "No permission to enable %s event.\n\n", 2960 perf_evsel__name(evsel)); 2961 2962 return scnprintf(msg + printed, size - printed, 2963 "You may not have permission to collect %sstats.\n\n" 2964 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n" 2965 "which controls use of the performance events system by\n" 2966 "unprivileged users (without CAP_SYS_ADMIN).\n\n" 2967 "The current value is %d:\n\n" 2968 " -1: Allow use of (almost) all events by all users\n" 2969 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" 2970 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n" 2971 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n" 2972 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n" 2973 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n" 2974 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n" 2975 " kernel.perf_event_paranoid = -1\n" , 2976 target->system_wide ? "system-wide " : "", 2977 perf_event_paranoid()); 2978 case ENOENT: 2979 return scnprintf(msg, size, "The %s event is not supported.", 2980 perf_evsel__name(evsel)); 2981 case EMFILE: 2982 return scnprintf(msg, size, "%s", 2983 "Too many events are opened.\n" 2984 "Probably the maximum number of open file descriptors has been reached.\n" 2985 "Hint: Try again after reducing the number of events.\n" 2986 "Hint: Try increasing the limit with 'ulimit -n <limit>'"); 2987 case ENOMEM: 2988 if (evsel__has_callchain(evsel) && 2989 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) 2990 return scnprintf(msg, size, 2991 "Not enough memory to setup event with callchain.\n" 2992 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" 2993 "Hint: Current value: %d", sysctl__max_stack()); 2994 break; 2995 case ENODEV: 2996 if (target->cpu_list) 2997 return scnprintf(msg, size, "%s", 2998 "No such device - did you specify an out-of-range profile CPU?"); 2999 break; 3000 case EOPNOTSUPP: 3001 if (evsel->attr.sample_period != 0) 3002 return scnprintf(msg, size, 3003 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", 3004 perf_evsel__name(evsel)); 3005 if (evsel->attr.precise_ip) 3006 return scnprintf(msg, size, "%s", 3007 "\'precise\' request may not be supported. Try removing 'p' modifier."); 3008 #if defined(__i386__) || defined(__x86_64__) 3009 if (evsel->attr.type == PERF_TYPE_HARDWARE) 3010 return scnprintf(msg, size, "%s", 3011 "No hardware sampling interrupt available.\n"); 3012 #endif 3013 break; 3014 case EBUSY: 3015 if (find_process("oprofiled")) 3016 return scnprintf(msg, size, 3017 "The PMU counters are busy/taken by another profiler.\n" 3018 "We found oprofile daemon running, please stop it and try again."); 3019 break; 3020 case EINVAL: 3021 if (evsel->attr.write_backward && perf_missing_features.write_backward) 3022 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); 3023 if (perf_missing_features.clockid) 3024 return scnprintf(msg, size, "clockid feature not supported."); 3025 if (perf_missing_features.clockid_wrong) 3026 return scnprintf(msg, size, "wrong clockid (%d).", clockid); 3027 break; 3028 default: 3029 break; 3030 } 3031 3032 return scnprintf(msg, size, 3033 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" 3034 "/bin/dmesg | grep -i perf may provide additional information.\n", 3035 err, str_error_r(err, sbuf, sizeof(sbuf)), 3036 perf_evsel__name(evsel)); 3037 } 3038 3039 struct perf_env *perf_evsel__env(struct perf_evsel *evsel) 3040 { 3041 if (evsel && evsel->evlist) 3042 return evsel->evlist->env; 3043 return NULL; 3044 } 3045 3046 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3047 { 3048 int cpu, thread; 3049 3050 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) { 3051 for (thread = 0; thread < xyarray__max_y(evsel->fd); 3052 thread++) { 3053 int fd = FD(evsel, cpu, thread); 3054 3055 if (perf_evlist__id_add_fd(evlist, evsel, 3056 cpu, thread, fd) < 0) 3057 return -1; 3058 } 3059 } 3060 3061 return 0; 3062 } 3063 3064 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist) 3065 { 3066 struct cpu_map *cpus = evsel->cpus; 3067 struct thread_map *threads = evsel->threads; 3068 3069 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr)) 3070 return -ENOMEM; 3071 3072 return store_evsel_ids(evsel, evlist); 3073 } 3074