xref: /openbmc/linux/tools/perf/util/cs-etm.c (revision ef7d95661d046eddf2cf33847278781404679a2f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include <opencsd/ocsd_if_types.h>
17 #include <stdlib.h>
18 
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "cs-etm.h"
22 #include "cs-etm-decoder/cs-etm-decoder.h"
23 #include "debug.h"
24 #include "dso.h"
25 #include "evlist.h"
26 #include "intlist.h"
27 #include "machine.h"
28 #include "map.h"
29 #include "perf.h"
30 #include "symbol.h"
31 #include "tool.h"
32 #include "thread.h"
33 #include "thread-stack.h"
34 #include <tools/libc_compat.h>
35 #include "util.h"
36 
37 #define MAX_TIMESTAMP (~0ULL)
38 
39 struct cs_etm_auxtrace {
40 	struct auxtrace auxtrace;
41 	struct auxtrace_queues queues;
42 	struct auxtrace_heap heap;
43 	struct itrace_synth_opts synth_opts;
44 	struct perf_session *session;
45 	struct machine *machine;
46 	struct thread *unknown_thread;
47 
48 	u8 timeless_decoding;
49 	u8 snapshot_mode;
50 	u8 data_queued;
51 	u8 sample_branches;
52 	u8 sample_instructions;
53 
54 	int num_cpu;
55 	u32 auxtrace_type;
56 	u64 branches_sample_type;
57 	u64 branches_id;
58 	u64 instructions_sample_type;
59 	u64 instructions_sample_period;
60 	u64 instructions_id;
61 	u64 **metadata;
62 	u64 kernel_start;
63 	unsigned int pmu_type;
64 };
65 
66 struct cs_etm_traceid_queue {
67 	u8 trace_chan_id;
68 	pid_t pid, tid;
69 	u64 period_instructions;
70 	size_t last_branch_pos;
71 	union perf_event *event_buf;
72 	struct thread *thread;
73 	struct branch_stack *last_branch;
74 	struct branch_stack *last_branch_rb;
75 	struct cs_etm_packet *prev_packet;
76 	struct cs_etm_packet *packet;
77 	struct cs_etm_packet_queue packet_queue;
78 };
79 
80 struct cs_etm_queue {
81 	struct cs_etm_auxtrace *etm;
82 	struct cs_etm_decoder *decoder;
83 	struct auxtrace_buffer *buffer;
84 	unsigned int queue_nr;
85 	u8 pending_timestamp;
86 	u64 offset;
87 	const unsigned char *buf;
88 	size_t buf_len, buf_used;
89 	/* Conversion between traceID and index in traceid_queues array */
90 	struct intlist *traceid_queues_list;
91 	struct cs_etm_traceid_queue **traceid_queues;
92 };
93 
94 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
95 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
96 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
97 					   pid_t tid);
98 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
99 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
100 
101 /* PTMs ETMIDR [11:8] set to b0011 */
102 #define ETMIDR_PTM_VERSION 0x00000300
103 
104 /*
105  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
106  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
107  * encode the etm queue number as the upper 16 bit and the channel as
108  * the lower 16 bit.
109  */
110 #define TO_CS_QUEUE_NR(queue_nr, trace_id_chan)	\
111 		      (queue_nr << 16 | trace_chan_id)
112 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
113 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
114 
115 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
116 {
117 	etmidr &= ETMIDR_PTM_VERSION;
118 
119 	if (etmidr == ETMIDR_PTM_VERSION)
120 		return CS_ETM_PROTO_PTM;
121 
122 	return CS_ETM_PROTO_ETMV3;
123 }
124 
125 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
126 {
127 	struct int_node *inode;
128 	u64 *metadata;
129 
130 	inode = intlist__find(traceid_list, trace_chan_id);
131 	if (!inode)
132 		return -EINVAL;
133 
134 	metadata = inode->priv;
135 	*magic = metadata[CS_ETM_MAGIC];
136 	return 0;
137 }
138 
139 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
140 {
141 	struct int_node *inode;
142 	u64 *metadata;
143 
144 	inode = intlist__find(traceid_list, trace_chan_id);
145 	if (!inode)
146 		return -EINVAL;
147 
148 	metadata = inode->priv;
149 	*cpu = (int)metadata[CS_ETM_CPU];
150 	return 0;
151 }
152 
153 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
154 					      u8 trace_chan_id)
155 {
156 	/*
157 	 * Wnen a timestamp packet is encountered the backend code
158 	 * is stopped so that the front end has time to process packets
159 	 * that were accumulated in the traceID queue.  Since there can
160 	 * be more than one channel per cs_etm_queue, we need to specify
161 	 * what traceID queue needs servicing.
162 	 */
163 	etmq->pending_timestamp = trace_chan_id;
164 }
165 
166 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
167 				      u8 *trace_chan_id)
168 {
169 	struct cs_etm_packet_queue *packet_queue;
170 
171 	if (!etmq->pending_timestamp)
172 		return 0;
173 
174 	if (trace_chan_id)
175 		*trace_chan_id = etmq->pending_timestamp;
176 
177 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
178 						     etmq->pending_timestamp);
179 	if (!packet_queue)
180 		return 0;
181 
182 	/* Acknowledge pending status */
183 	etmq->pending_timestamp = 0;
184 
185 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
186 	return packet_queue->timestamp;
187 }
188 
189 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
190 {
191 	int i;
192 
193 	queue->head = 0;
194 	queue->tail = 0;
195 	queue->packet_count = 0;
196 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
197 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
198 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
199 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
200 		queue->packet_buffer[i].instr_count = 0;
201 		queue->packet_buffer[i].last_instr_taken_branch = false;
202 		queue->packet_buffer[i].last_instr_size = 0;
203 		queue->packet_buffer[i].last_instr_type = 0;
204 		queue->packet_buffer[i].last_instr_subtype = 0;
205 		queue->packet_buffer[i].last_instr_cond = 0;
206 		queue->packet_buffer[i].flags = 0;
207 		queue->packet_buffer[i].exception_number = UINT32_MAX;
208 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
209 		queue->packet_buffer[i].cpu = INT_MIN;
210 	}
211 }
212 
213 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
214 {
215 	int idx;
216 	struct int_node *inode;
217 	struct cs_etm_traceid_queue *tidq;
218 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
219 
220 	intlist__for_each_entry(inode, traceid_queues_list) {
221 		idx = (int)(intptr_t)inode->priv;
222 		tidq = etmq->traceid_queues[idx];
223 		cs_etm__clear_packet_queue(&tidq->packet_queue);
224 	}
225 }
226 
227 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
228 				      struct cs_etm_traceid_queue *tidq,
229 				      u8 trace_chan_id)
230 {
231 	int rc = -ENOMEM;
232 	struct auxtrace_queue *queue;
233 	struct cs_etm_auxtrace *etm = etmq->etm;
234 
235 	cs_etm__clear_packet_queue(&tidq->packet_queue);
236 
237 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
238 	tidq->tid = queue->tid;
239 	tidq->pid = -1;
240 	tidq->trace_chan_id = trace_chan_id;
241 
242 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
243 	if (!tidq->packet)
244 		goto out;
245 
246 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
247 	if (!tidq->prev_packet)
248 		goto out_free;
249 
250 	if (etm->synth_opts.last_branch) {
251 		size_t sz = sizeof(struct branch_stack);
252 
253 		sz += etm->synth_opts.last_branch_sz *
254 		      sizeof(struct branch_entry);
255 		tidq->last_branch = zalloc(sz);
256 		if (!tidq->last_branch)
257 			goto out_free;
258 		tidq->last_branch_rb = zalloc(sz);
259 		if (!tidq->last_branch_rb)
260 			goto out_free;
261 	}
262 
263 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
264 	if (!tidq->event_buf)
265 		goto out_free;
266 
267 	return 0;
268 
269 out_free:
270 	zfree(&tidq->last_branch_rb);
271 	zfree(&tidq->last_branch);
272 	zfree(&tidq->prev_packet);
273 	zfree(&tidq->packet);
274 out:
275 	return rc;
276 }
277 
278 static struct cs_etm_traceid_queue
279 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
280 {
281 	int idx;
282 	struct int_node *inode;
283 	struct intlist *traceid_queues_list;
284 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
285 	struct cs_etm_auxtrace *etm = etmq->etm;
286 
287 	if (etm->timeless_decoding)
288 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
289 
290 	traceid_queues_list = etmq->traceid_queues_list;
291 
292 	/*
293 	 * Check if the traceid_queue exist for this traceID by looking
294 	 * in the queue list.
295 	 */
296 	inode = intlist__find(traceid_queues_list, trace_chan_id);
297 	if (inode) {
298 		idx = (int)(intptr_t)inode->priv;
299 		return etmq->traceid_queues[idx];
300 	}
301 
302 	/* We couldn't find a traceid_queue for this traceID, allocate one */
303 	tidq = malloc(sizeof(*tidq));
304 	if (!tidq)
305 		return NULL;
306 
307 	memset(tidq, 0, sizeof(*tidq));
308 
309 	/* Get a valid index for the new traceid_queue */
310 	idx = intlist__nr_entries(traceid_queues_list);
311 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
312 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
313 	if (!inode)
314 		goto out_free;
315 
316 	/* Associate this traceID with this index */
317 	inode->priv = (void *)(intptr_t)idx;
318 
319 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
320 		goto out_free;
321 
322 	/* Grow the traceid_queues array by one unit */
323 	traceid_queues = etmq->traceid_queues;
324 	traceid_queues = reallocarray(traceid_queues,
325 				      idx + 1,
326 				      sizeof(*traceid_queues));
327 
328 	/*
329 	 * On failure reallocarray() returns NULL and the original block of
330 	 * memory is left untouched.
331 	 */
332 	if (!traceid_queues)
333 		goto out_free;
334 
335 	traceid_queues[idx] = tidq;
336 	etmq->traceid_queues = traceid_queues;
337 
338 	return etmq->traceid_queues[idx];
339 
340 out_free:
341 	/*
342 	 * Function intlist__remove() removes the inode from the list
343 	 * and delete the memory associated to it.
344 	 */
345 	intlist__remove(traceid_queues_list, inode);
346 	free(tidq);
347 
348 	return NULL;
349 }
350 
351 struct cs_etm_packet_queue
352 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
353 {
354 	struct cs_etm_traceid_queue *tidq;
355 
356 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
357 	if (tidq)
358 		return &tidq->packet_queue;
359 
360 	return NULL;
361 }
362 
363 static void cs_etm__packet_dump(const char *pkt_string)
364 {
365 	const char *color = PERF_COLOR_BLUE;
366 	int len = strlen(pkt_string);
367 
368 	if (len && (pkt_string[len-1] == '\n'))
369 		color_fprintf(stdout, color, "	%s", pkt_string);
370 	else
371 		color_fprintf(stdout, color, "	%s\n", pkt_string);
372 
373 	fflush(stdout);
374 }
375 
376 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
377 					  struct cs_etm_auxtrace *etm, int idx,
378 					  u32 etmidr)
379 {
380 	u64 **metadata = etm->metadata;
381 
382 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
383 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
384 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
385 }
386 
387 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
388 					  struct cs_etm_auxtrace *etm, int idx)
389 {
390 	u64 **metadata = etm->metadata;
391 
392 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
393 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
394 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
395 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
396 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
397 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
398 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
399 }
400 
401 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
402 				     struct cs_etm_auxtrace *etm)
403 {
404 	int i;
405 	u32 etmidr;
406 	u64 architecture;
407 
408 	for (i = 0; i < etm->num_cpu; i++) {
409 		architecture = etm->metadata[i][CS_ETM_MAGIC];
410 
411 		switch (architecture) {
412 		case __perf_cs_etmv3_magic:
413 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
414 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
415 			break;
416 		case __perf_cs_etmv4_magic:
417 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
418 			break;
419 		default:
420 			return -EINVAL;
421 		}
422 	}
423 
424 	return 0;
425 }
426 
427 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
428 				       struct cs_etm_queue *etmq,
429 				       enum cs_etm_decoder_operation mode)
430 {
431 	int ret = -EINVAL;
432 
433 	if (!(mode < CS_ETM_OPERATION_MAX))
434 		goto out;
435 
436 	d_params->packet_printer = cs_etm__packet_dump;
437 	d_params->operation = mode;
438 	d_params->data = etmq;
439 	d_params->formatted = true;
440 	d_params->fsyncs = false;
441 	d_params->hsyncs = false;
442 	d_params->frame_aligned = true;
443 
444 	ret = 0;
445 out:
446 	return ret;
447 }
448 
449 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
450 			       struct auxtrace_buffer *buffer)
451 {
452 	int ret;
453 	const char *color = PERF_COLOR_BLUE;
454 	struct cs_etm_decoder_params d_params;
455 	struct cs_etm_trace_params *t_params;
456 	struct cs_etm_decoder *decoder;
457 	size_t buffer_used = 0;
458 
459 	fprintf(stdout, "\n");
460 	color_fprintf(stdout, color,
461 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
462 		     buffer->size);
463 
464 	/* Use metadata to fill in trace parameters for trace decoder */
465 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
466 
467 	if (!t_params)
468 		return;
469 
470 	if (cs_etm__init_trace_params(t_params, etm))
471 		goto out_free;
472 
473 	/* Set decoder parameters to simply print the trace packets */
474 	if (cs_etm__init_decoder_params(&d_params, NULL,
475 					CS_ETM_OPERATION_PRINT))
476 		goto out_free;
477 
478 	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
479 
480 	if (!decoder)
481 		goto out_free;
482 	do {
483 		size_t consumed;
484 
485 		ret = cs_etm_decoder__process_data_block(
486 				decoder, buffer->offset,
487 				&((u8 *)buffer->data)[buffer_used],
488 				buffer->size - buffer_used, &consumed);
489 		if (ret)
490 			break;
491 
492 		buffer_used += consumed;
493 	} while (buffer_used < buffer->size);
494 
495 	cs_etm_decoder__free(decoder);
496 
497 out_free:
498 	zfree(&t_params);
499 }
500 
501 static int cs_etm__flush_events(struct perf_session *session,
502 				struct perf_tool *tool)
503 {
504 	int ret;
505 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
506 						   struct cs_etm_auxtrace,
507 						   auxtrace);
508 	if (dump_trace)
509 		return 0;
510 
511 	if (!tool->ordered_events)
512 		return -EINVAL;
513 
514 	ret = cs_etm__update_queues(etm);
515 
516 	if (ret < 0)
517 		return ret;
518 
519 	if (etm->timeless_decoding)
520 		return cs_etm__process_timeless_queues(etm, -1);
521 
522 	return cs_etm__process_queues(etm);
523 }
524 
525 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
526 {
527 	int idx;
528 	uintptr_t priv;
529 	struct int_node *inode, *tmp;
530 	struct cs_etm_traceid_queue *tidq;
531 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
532 
533 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
534 		priv = (uintptr_t)inode->priv;
535 		idx = priv;
536 
537 		/* Free this traceid_queue from the array */
538 		tidq = etmq->traceid_queues[idx];
539 		thread__zput(tidq->thread);
540 		zfree(&tidq->event_buf);
541 		zfree(&tidq->last_branch);
542 		zfree(&tidq->last_branch_rb);
543 		zfree(&tidq->prev_packet);
544 		zfree(&tidq->packet);
545 		zfree(&tidq);
546 
547 		/*
548 		 * Function intlist__remove() removes the inode from the list
549 		 * and delete the memory associated to it.
550 		 */
551 		intlist__remove(traceid_queues_list, inode);
552 	}
553 
554 	/* Then the RB tree itself */
555 	intlist__delete(traceid_queues_list);
556 	etmq->traceid_queues_list = NULL;
557 
558 	/* finally free the traceid_queues array */
559 	zfree(&etmq->traceid_queues);
560 }
561 
562 static void cs_etm__free_queue(void *priv)
563 {
564 	struct cs_etm_queue *etmq = priv;
565 
566 	if (!etmq)
567 		return;
568 
569 	cs_etm_decoder__free(etmq->decoder);
570 	cs_etm__free_traceid_queues(etmq);
571 	free(etmq);
572 }
573 
574 static void cs_etm__free_events(struct perf_session *session)
575 {
576 	unsigned int i;
577 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
578 						   struct cs_etm_auxtrace,
579 						   auxtrace);
580 	struct auxtrace_queues *queues = &aux->queues;
581 
582 	for (i = 0; i < queues->nr_queues; i++) {
583 		cs_etm__free_queue(queues->queue_array[i].priv);
584 		queues->queue_array[i].priv = NULL;
585 	}
586 
587 	auxtrace_queues__free(queues);
588 }
589 
590 static void cs_etm__free(struct perf_session *session)
591 {
592 	int i;
593 	struct int_node *inode, *tmp;
594 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
595 						   struct cs_etm_auxtrace,
596 						   auxtrace);
597 	cs_etm__free_events(session);
598 	session->auxtrace = NULL;
599 
600 	/* First remove all traceID/metadata nodes for the RB tree */
601 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
602 		intlist__remove(traceid_list, inode);
603 	/* Then the RB tree itself */
604 	intlist__delete(traceid_list);
605 
606 	for (i = 0; i < aux->num_cpu; i++)
607 		zfree(&aux->metadata[i]);
608 
609 	thread__zput(aux->unknown_thread);
610 	zfree(&aux->metadata);
611 	zfree(&aux);
612 }
613 
614 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
615 {
616 	struct machine *machine;
617 
618 	machine = etmq->etm->machine;
619 
620 	if (address >= etmq->etm->kernel_start) {
621 		if (machine__is_host(machine))
622 			return PERF_RECORD_MISC_KERNEL;
623 		else
624 			return PERF_RECORD_MISC_GUEST_KERNEL;
625 	} else {
626 		if (machine__is_host(machine))
627 			return PERF_RECORD_MISC_USER;
628 		else if (perf_guest)
629 			return PERF_RECORD_MISC_GUEST_USER;
630 		else
631 			return PERF_RECORD_MISC_HYPERVISOR;
632 	}
633 }
634 
635 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
636 			      u64 address, size_t size, u8 *buffer)
637 {
638 	u8  cpumode;
639 	u64 offset;
640 	int len;
641 	struct thread *thread;
642 	struct machine *machine;
643 	struct addr_location al;
644 	struct cs_etm_traceid_queue *tidq;
645 
646 	if (!etmq)
647 		return 0;
648 
649 	machine = etmq->etm->machine;
650 	cpumode = cs_etm__cpu_mode(etmq, address);
651 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
652 	if (!tidq)
653 		return 0;
654 
655 	thread = tidq->thread;
656 	if (!thread) {
657 		if (cpumode != PERF_RECORD_MISC_KERNEL)
658 			return 0;
659 		thread = etmq->etm->unknown_thread;
660 	}
661 
662 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
663 		return 0;
664 
665 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
666 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
667 		return 0;
668 
669 	offset = al.map->map_ip(al.map, address);
670 
671 	map__load(al.map);
672 
673 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
674 
675 	if (len <= 0)
676 		return 0;
677 
678 	return len;
679 }
680 
681 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
682 {
683 	struct cs_etm_decoder_params d_params;
684 	struct cs_etm_trace_params  *t_params = NULL;
685 	struct cs_etm_queue *etmq;
686 
687 	etmq = zalloc(sizeof(*etmq));
688 	if (!etmq)
689 		return NULL;
690 
691 	etmq->traceid_queues_list = intlist__new(NULL);
692 	if (!etmq->traceid_queues_list)
693 		goto out_free;
694 
695 	/* Use metadata to fill in trace parameters for trace decoder */
696 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
697 
698 	if (!t_params)
699 		goto out_free;
700 
701 	if (cs_etm__init_trace_params(t_params, etm))
702 		goto out_free;
703 
704 	/* Set decoder parameters to decode trace packets */
705 	if (cs_etm__init_decoder_params(&d_params, etmq,
706 					CS_ETM_OPERATION_DECODE))
707 		goto out_free;
708 
709 	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
710 
711 	if (!etmq->decoder)
712 		goto out_free;
713 
714 	/*
715 	 * Register a function to handle all memory accesses required by
716 	 * the trace decoder library.
717 	 */
718 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
719 					      0x0L, ((u64) -1L),
720 					      cs_etm__mem_access))
721 		goto out_free_decoder;
722 
723 	zfree(&t_params);
724 	return etmq;
725 
726 out_free_decoder:
727 	cs_etm_decoder__free(etmq->decoder);
728 out_free:
729 	intlist__delete(etmq->traceid_queues_list);
730 	free(etmq);
731 
732 	return NULL;
733 }
734 
735 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
736 			       struct auxtrace_queue *queue,
737 			       unsigned int queue_nr)
738 {
739 	int ret = 0;
740 	unsigned int cs_queue_nr;
741 	u8 trace_chan_id;
742 	u64 timestamp;
743 	struct cs_etm_queue *etmq = queue->priv;
744 
745 	if (list_empty(&queue->head) || etmq)
746 		goto out;
747 
748 	etmq = cs_etm__alloc_queue(etm);
749 
750 	if (!etmq) {
751 		ret = -ENOMEM;
752 		goto out;
753 	}
754 
755 	queue->priv = etmq;
756 	etmq->etm = etm;
757 	etmq->queue_nr = queue_nr;
758 	etmq->offset = 0;
759 
760 	if (etm->timeless_decoding)
761 		goto out;
762 
763 	/*
764 	 * We are under a CPU-wide trace scenario.  As such we need to know
765 	 * when the code that generated the traces started to execute so that
766 	 * it can be correlated with execution on other CPUs.  So we get a
767 	 * handle on the beginning of traces and decode until we find a
768 	 * timestamp.  The timestamp is then added to the auxtrace min heap
769 	 * in order to know what nibble (of all the etmqs) to decode first.
770 	 */
771 	while (1) {
772 		/*
773 		 * Fetch an aux_buffer from this etmq.  Bail if no more
774 		 * blocks or an error has been encountered.
775 		 */
776 		ret = cs_etm__get_data_block(etmq);
777 		if (ret <= 0)
778 			goto out;
779 
780 		/*
781 		 * Run decoder on the trace block.  The decoder will stop when
782 		 * encountering a timestamp, a full packet queue or the end of
783 		 * trace for that block.
784 		 */
785 		ret = cs_etm__decode_data_block(etmq);
786 		if (ret)
787 			goto out;
788 
789 		/*
790 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
791 		 * the timestamp calculation for us.
792 		 */
793 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
794 
795 		/* We found a timestamp, no need to continue. */
796 		if (timestamp)
797 			break;
798 
799 		/*
800 		 * We didn't find a timestamp so empty all the traceid packet
801 		 * queues before looking for another timestamp packet, either
802 		 * in the current data block or a new one.  Packets that were
803 		 * just decoded are useless since no timestamp has been
804 		 * associated with them.  As such simply discard them.
805 		 */
806 		cs_etm__clear_all_packet_queues(etmq);
807 	}
808 
809 	/*
810 	 * We have a timestamp.  Add it to the min heap to reflect when
811 	 * instructions conveyed by the range packets of this traceID queue
812 	 * started to execute.  Once the same has been done for all the traceID
813 	 * queues of each etmq, redenring and decoding can start in
814 	 * chronological order.
815 	 *
816 	 * Note that packets decoded above are still in the traceID's packet
817 	 * queue and will be processed in cs_etm__process_queues().
818 	 */
819 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_id_chan);
820 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
821 out:
822 	return ret;
823 }
824 
825 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
826 {
827 	unsigned int i;
828 	int ret;
829 
830 	if (!etm->kernel_start)
831 		etm->kernel_start = machine__kernel_start(etm->machine);
832 
833 	for (i = 0; i < etm->queues.nr_queues; i++) {
834 		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
835 		if (ret)
836 			return ret;
837 	}
838 
839 	return 0;
840 }
841 
842 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
843 {
844 	if (etm->queues.new_data) {
845 		etm->queues.new_data = false;
846 		return cs_etm__setup_queues(etm);
847 	}
848 
849 	return 0;
850 }
851 
852 static inline
853 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
854 				 struct cs_etm_traceid_queue *tidq)
855 {
856 	struct branch_stack *bs_src = tidq->last_branch_rb;
857 	struct branch_stack *bs_dst = tidq->last_branch;
858 	size_t nr = 0;
859 
860 	/*
861 	 * Set the number of records before early exit: ->nr is used to
862 	 * determine how many branches to copy from ->entries.
863 	 */
864 	bs_dst->nr = bs_src->nr;
865 
866 	/*
867 	 * Early exit when there is nothing to copy.
868 	 */
869 	if (!bs_src->nr)
870 		return;
871 
872 	/*
873 	 * As bs_src->entries is a circular buffer, we need to copy from it in
874 	 * two steps.  First, copy the branches from the most recently inserted
875 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
876 	 */
877 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
878 	memcpy(&bs_dst->entries[0],
879 	       &bs_src->entries[tidq->last_branch_pos],
880 	       sizeof(struct branch_entry) * nr);
881 
882 	/*
883 	 * If we wrapped around at least once, the branches from the beginning
884 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
885 	 * are older valid branches: copy them over.  The total number of
886 	 * branches copied over will be equal to the number of branches asked by
887 	 * the user in last_branch_sz.
888 	 */
889 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
890 		memcpy(&bs_dst->entries[nr],
891 		       &bs_src->entries[0],
892 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
893 	}
894 }
895 
896 static inline
897 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
898 {
899 	tidq->last_branch_pos = 0;
900 	tidq->last_branch_rb->nr = 0;
901 }
902 
903 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
904 					 u8 trace_chan_id, u64 addr)
905 {
906 	u8 instrBytes[2];
907 
908 	cs_etm__mem_access(etmq, trace_chan_id, addr,
909 			   ARRAY_SIZE(instrBytes), instrBytes);
910 	/*
911 	 * T32 instruction size is indicated by bits[15:11] of the first
912 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
913 	 * denote a 32-bit instruction.
914 	 */
915 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
916 }
917 
918 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
919 {
920 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
921 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
922 		return 0;
923 
924 	return packet->start_addr;
925 }
926 
927 static inline
928 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
929 {
930 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
931 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
932 		return 0;
933 
934 	return packet->end_addr - packet->last_instr_size;
935 }
936 
937 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
938 				     u64 trace_chan_id,
939 				     const struct cs_etm_packet *packet,
940 				     u64 offset)
941 {
942 	if (packet->isa == CS_ETM_ISA_T32) {
943 		u64 addr = packet->start_addr;
944 
945 		while (offset > 0) {
946 			addr += cs_etm__t32_instr_size(etmq,
947 						       trace_chan_id, addr);
948 			offset--;
949 		}
950 		return addr;
951 	}
952 
953 	/* Assume a 4 byte instruction size (A32/A64) */
954 	return packet->start_addr + offset * 4;
955 }
956 
957 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
958 					  struct cs_etm_traceid_queue *tidq)
959 {
960 	struct branch_stack *bs = tidq->last_branch_rb;
961 	struct branch_entry *be;
962 
963 	/*
964 	 * The branches are recorded in a circular buffer in reverse
965 	 * chronological order: we start recording from the last element of the
966 	 * buffer down.  After writing the first element of the stack, move the
967 	 * insert position back to the end of the buffer.
968 	 */
969 	if (!tidq->last_branch_pos)
970 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
971 
972 	tidq->last_branch_pos -= 1;
973 
974 	be       = &bs->entries[tidq->last_branch_pos];
975 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
976 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
977 	/* No support for mispredict */
978 	be->flags.mispred = 0;
979 	be->flags.predicted = 1;
980 
981 	/*
982 	 * Increment bs->nr until reaching the number of last branches asked by
983 	 * the user on the command line.
984 	 */
985 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
986 		bs->nr += 1;
987 }
988 
989 static int cs_etm__inject_event(union perf_event *event,
990 			       struct perf_sample *sample, u64 type)
991 {
992 	event->header.size = perf_event__sample_event_size(sample, type, 0);
993 	return perf_event__synthesize_sample(event, type, 0, sample);
994 }
995 
996 
997 static int
998 cs_etm__get_trace(struct cs_etm_queue *etmq)
999 {
1000 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1001 	struct auxtrace_buffer *old_buffer = aux_buffer;
1002 	struct auxtrace_queue *queue;
1003 
1004 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1005 
1006 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1007 
1008 	/* If no more data, drop the previous auxtrace_buffer and return */
1009 	if (!aux_buffer) {
1010 		if (old_buffer)
1011 			auxtrace_buffer__drop_data(old_buffer);
1012 		etmq->buf_len = 0;
1013 		return 0;
1014 	}
1015 
1016 	etmq->buffer = aux_buffer;
1017 
1018 	/* If the aux_buffer doesn't have data associated, try to load it */
1019 	if (!aux_buffer->data) {
1020 		/* get the file desc associated with the perf data file */
1021 		int fd = perf_data__fd(etmq->etm->session->data);
1022 
1023 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1024 		if (!aux_buffer->data)
1025 			return -ENOMEM;
1026 	}
1027 
1028 	/* If valid, drop the previous buffer */
1029 	if (old_buffer)
1030 		auxtrace_buffer__drop_data(old_buffer);
1031 
1032 	etmq->buf_used = 0;
1033 	etmq->buf_len = aux_buffer->size;
1034 	etmq->buf = aux_buffer->data;
1035 
1036 	return etmq->buf_len;
1037 }
1038 
1039 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1040 				    struct cs_etm_traceid_queue *tidq)
1041 {
1042 	if ((!tidq->thread) && (tidq->tid != -1))
1043 		tidq->thread = machine__find_thread(etm->machine, -1,
1044 						    tidq->tid);
1045 
1046 	if (tidq->thread)
1047 		tidq->pid = tidq->thread->pid_;
1048 }
1049 
1050 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1051 			 pid_t tid, u8 trace_chan_id)
1052 {
1053 	int cpu, err = -EINVAL;
1054 	struct cs_etm_auxtrace *etm = etmq->etm;
1055 	struct cs_etm_traceid_queue *tidq;
1056 
1057 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1058 	if (!tidq)
1059 		return err;
1060 
1061 	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1062 		return err;
1063 
1064 	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1065 	if (err)
1066 		return err;
1067 
1068 	tidq->tid = tid;
1069 	thread__zput(tidq->thread);
1070 
1071 	cs_etm__set_pid_tid_cpu(etm, tidq);
1072 	return 0;
1073 }
1074 
1075 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1076 {
1077 	return !!etmq->etm->timeless_decoding;
1078 }
1079 
1080 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1081 			      u64 trace_chan_id,
1082 			      const struct cs_etm_packet *packet,
1083 			      struct perf_sample *sample)
1084 {
1085 	/*
1086 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1087 	 * packet, so directly bail out with 'insn_len' = 0.
1088 	 */
1089 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1090 		sample->insn_len = 0;
1091 		return;
1092 	}
1093 
1094 	/*
1095 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1096 	 * cs_etm__t32_instr_size().
1097 	 */
1098 	if (packet->isa == CS_ETM_ISA_T32)
1099 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1100 							  sample->ip);
1101 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1102 	else
1103 		sample->insn_len = 4;
1104 
1105 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1106 			   sample->insn_len, (void *)sample->insn);
1107 }
1108 
1109 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1110 					    struct cs_etm_traceid_queue *tidq,
1111 					    u64 addr, u64 period)
1112 {
1113 	int ret = 0;
1114 	struct cs_etm_auxtrace *etm = etmq->etm;
1115 	union perf_event *event = tidq->event_buf;
1116 	struct perf_sample sample = {.ip = 0,};
1117 
1118 	event->sample.header.type = PERF_RECORD_SAMPLE;
1119 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1120 	event->sample.header.size = sizeof(struct perf_event_header);
1121 
1122 	sample.ip = addr;
1123 	sample.pid = tidq->pid;
1124 	sample.tid = tidq->tid;
1125 	sample.id = etmq->etm->instructions_id;
1126 	sample.stream_id = etmq->etm->instructions_id;
1127 	sample.period = period;
1128 	sample.cpu = tidq->packet->cpu;
1129 	sample.flags = tidq->prev_packet->flags;
1130 	sample.cpumode = event->sample.header.misc;
1131 
1132 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1133 
1134 	if (etm->synth_opts.last_branch) {
1135 		cs_etm__copy_last_branch_rb(etmq, tidq);
1136 		sample.branch_stack = tidq->last_branch;
1137 	}
1138 
1139 	if (etm->synth_opts.inject) {
1140 		ret = cs_etm__inject_event(event, &sample,
1141 					   etm->instructions_sample_type);
1142 		if (ret)
1143 			return ret;
1144 	}
1145 
1146 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1147 
1148 	if (ret)
1149 		pr_err(
1150 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1151 			ret);
1152 
1153 	if (etm->synth_opts.last_branch)
1154 		cs_etm__reset_last_branch_rb(tidq);
1155 
1156 	return ret;
1157 }
1158 
1159 /*
1160  * The cs etm packet encodes an instruction range between a branch target
1161  * and the next taken branch. Generate sample accordingly.
1162  */
1163 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1164 				       struct cs_etm_traceid_queue *tidq)
1165 {
1166 	int ret = 0;
1167 	struct cs_etm_auxtrace *etm = etmq->etm;
1168 	struct perf_sample sample = {.ip = 0,};
1169 	union perf_event *event = tidq->event_buf;
1170 	struct dummy_branch_stack {
1171 		u64			nr;
1172 		struct branch_entry	entries;
1173 	} dummy_bs;
1174 	u64 ip;
1175 
1176 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1177 
1178 	event->sample.header.type = PERF_RECORD_SAMPLE;
1179 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1180 	event->sample.header.size = sizeof(struct perf_event_header);
1181 
1182 	sample.ip = ip;
1183 	sample.pid = tidq->pid;
1184 	sample.tid = tidq->tid;
1185 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1186 	sample.id = etmq->etm->branches_id;
1187 	sample.stream_id = etmq->etm->branches_id;
1188 	sample.period = 1;
1189 	sample.cpu = tidq->packet->cpu;
1190 	sample.flags = tidq->prev_packet->flags;
1191 	sample.cpumode = event->sample.header.misc;
1192 
1193 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1194 			  &sample);
1195 
1196 	/*
1197 	 * perf report cannot handle events without a branch stack
1198 	 */
1199 	if (etm->synth_opts.last_branch) {
1200 		dummy_bs = (struct dummy_branch_stack){
1201 			.nr = 1,
1202 			.entries = {
1203 				.from = sample.ip,
1204 				.to = sample.addr,
1205 			},
1206 		};
1207 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1208 	}
1209 
1210 	if (etm->synth_opts.inject) {
1211 		ret = cs_etm__inject_event(event, &sample,
1212 					   etm->branches_sample_type);
1213 		if (ret)
1214 			return ret;
1215 	}
1216 
1217 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1218 
1219 	if (ret)
1220 		pr_err(
1221 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1222 		ret);
1223 
1224 	return ret;
1225 }
1226 
1227 struct cs_etm_synth {
1228 	struct perf_tool dummy_tool;
1229 	struct perf_session *session;
1230 };
1231 
1232 static int cs_etm__event_synth(struct perf_tool *tool,
1233 			       union perf_event *event,
1234 			       struct perf_sample *sample __maybe_unused,
1235 			       struct machine *machine __maybe_unused)
1236 {
1237 	struct cs_etm_synth *cs_etm_synth =
1238 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1239 
1240 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1241 						 event, NULL);
1242 }
1243 
1244 static int cs_etm__synth_event(struct perf_session *session,
1245 			       struct perf_event_attr *attr, u64 id)
1246 {
1247 	struct cs_etm_synth cs_etm_synth;
1248 
1249 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1250 	cs_etm_synth.session = session;
1251 
1252 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1253 					   &id, cs_etm__event_synth);
1254 }
1255 
1256 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1257 				struct perf_session *session)
1258 {
1259 	struct evlist *evlist = session->evlist;
1260 	struct evsel *evsel;
1261 	struct perf_event_attr attr;
1262 	bool found = false;
1263 	u64 id;
1264 	int err;
1265 
1266 	evlist__for_each_entry(evlist, evsel) {
1267 		if (evsel->core.attr.type == etm->pmu_type) {
1268 			found = true;
1269 			break;
1270 		}
1271 	}
1272 
1273 	if (!found) {
1274 		pr_debug("No selected events with CoreSight Trace data\n");
1275 		return 0;
1276 	}
1277 
1278 	memset(&attr, 0, sizeof(struct perf_event_attr));
1279 	attr.size = sizeof(struct perf_event_attr);
1280 	attr.type = PERF_TYPE_HARDWARE;
1281 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1282 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1283 			    PERF_SAMPLE_PERIOD;
1284 	if (etm->timeless_decoding)
1285 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1286 	else
1287 		attr.sample_type |= PERF_SAMPLE_TIME;
1288 
1289 	attr.exclude_user = evsel->core.attr.exclude_user;
1290 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1291 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1292 	attr.exclude_host = evsel->core.attr.exclude_host;
1293 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1294 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1295 	attr.read_format = evsel->core.attr.read_format;
1296 
1297 	/* create new id val to be a fixed offset from evsel id */
1298 	id = evsel->id[0] + 1000000000;
1299 
1300 	if (!id)
1301 		id = 1;
1302 
1303 	if (etm->synth_opts.branches) {
1304 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1305 		attr.sample_period = 1;
1306 		attr.sample_type |= PERF_SAMPLE_ADDR;
1307 		err = cs_etm__synth_event(session, &attr, id);
1308 		if (err)
1309 			return err;
1310 		etm->sample_branches = true;
1311 		etm->branches_sample_type = attr.sample_type;
1312 		etm->branches_id = id;
1313 		id += 1;
1314 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1315 	}
1316 
1317 	if (etm->synth_opts.last_branch)
1318 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1319 
1320 	if (etm->synth_opts.instructions) {
1321 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1322 		attr.sample_period = etm->synth_opts.period;
1323 		etm->instructions_sample_period = attr.sample_period;
1324 		err = cs_etm__synth_event(session, &attr, id);
1325 		if (err)
1326 			return err;
1327 		etm->sample_instructions = true;
1328 		etm->instructions_sample_type = attr.sample_type;
1329 		etm->instructions_id = id;
1330 		id += 1;
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 static int cs_etm__sample(struct cs_etm_queue *etmq,
1337 			  struct cs_etm_traceid_queue *tidq)
1338 {
1339 	struct cs_etm_auxtrace *etm = etmq->etm;
1340 	struct cs_etm_packet *tmp;
1341 	int ret;
1342 	u8 trace_chan_id = tidq->trace_chan_id;
1343 	u64 instrs_executed = tidq->packet->instr_count;
1344 
1345 	tidq->period_instructions += instrs_executed;
1346 
1347 	/*
1348 	 * Record a branch when the last instruction in
1349 	 * PREV_PACKET is a branch.
1350 	 */
1351 	if (etm->synth_opts.last_branch &&
1352 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1353 	    tidq->prev_packet->last_instr_taken_branch)
1354 		cs_etm__update_last_branch_rb(etmq, tidq);
1355 
1356 	if (etm->sample_instructions &&
1357 	    tidq->period_instructions >= etm->instructions_sample_period) {
1358 		/*
1359 		 * Emit instruction sample periodically
1360 		 * TODO: allow period to be defined in cycles and clock time
1361 		 */
1362 
1363 		/* Get number of instructions executed after the sample point */
1364 		u64 instrs_over = tidq->period_instructions -
1365 			etm->instructions_sample_period;
1366 
1367 		/*
1368 		 * Calculate the address of the sampled instruction (-1 as
1369 		 * sample is reported as though instruction has just been
1370 		 * executed, but PC has not advanced to next instruction)
1371 		 */
1372 		u64 offset = (instrs_executed - instrs_over - 1);
1373 		u64 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1374 					      tidq->packet, offset);
1375 
1376 		ret = cs_etm__synth_instruction_sample(
1377 			etmq, tidq, addr, etm->instructions_sample_period);
1378 		if (ret)
1379 			return ret;
1380 
1381 		/* Carry remaining instructions into next sample period */
1382 		tidq->period_instructions = instrs_over;
1383 	}
1384 
1385 	if (etm->sample_branches) {
1386 		bool generate_sample = false;
1387 
1388 		/* Generate sample for tracing on packet */
1389 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1390 			generate_sample = true;
1391 
1392 		/* Generate sample for branch taken packet */
1393 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1394 		    tidq->prev_packet->last_instr_taken_branch)
1395 			generate_sample = true;
1396 
1397 		if (generate_sample) {
1398 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1399 			if (ret)
1400 				return ret;
1401 		}
1402 	}
1403 
1404 	if (etm->sample_branches || etm->synth_opts.last_branch) {
1405 		/*
1406 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1407 		 * the next incoming packet.
1408 		 */
1409 		tmp = tidq->packet;
1410 		tidq->packet = tidq->prev_packet;
1411 		tidq->prev_packet = tmp;
1412 	}
1413 
1414 	return 0;
1415 }
1416 
1417 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1418 {
1419 	/*
1420 	 * When the exception packet is inserted, whether the last instruction
1421 	 * in previous range packet is taken branch or not, we need to force
1422 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1423 	 * to generate branch sample for the instruction range before the
1424 	 * exception is trapped to kernel or before the exception returning.
1425 	 *
1426 	 * The exception packet includes the dummy address values, so don't
1427 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1428 	 * for generating instruction and branch samples.
1429 	 */
1430 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1431 		tidq->prev_packet->last_instr_taken_branch = true;
1432 
1433 	return 0;
1434 }
1435 
1436 static int cs_etm__flush(struct cs_etm_queue *etmq,
1437 			 struct cs_etm_traceid_queue *tidq)
1438 {
1439 	int err = 0;
1440 	struct cs_etm_auxtrace *etm = etmq->etm;
1441 	struct cs_etm_packet *tmp;
1442 
1443 	/* Handle start tracing packet */
1444 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1445 		goto swap_packet;
1446 
1447 	if (etmq->etm->synth_opts.last_branch &&
1448 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1449 		/*
1450 		 * Generate a last branch event for the branches left in the
1451 		 * circular buffer at the end of the trace.
1452 		 *
1453 		 * Use the address of the end of the last reported execution
1454 		 * range
1455 		 */
1456 		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1457 
1458 		err = cs_etm__synth_instruction_sample(
1459 			etmq, tidq, addr,
1460 			tidq->period_instructions);
1461 		if (err)
1462 			return err;
1463 
1464 		tidq->period_instructions = 0;
1465 
1466 	}
1467 
1468 	if (etm->sample_branches &&
1469 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1470 		err = cs_etm__synth_branch_sample(etmq, tidq);
1471 		if (err)
1472 			return err;
1473 	}
1474 
1475 swap_packet:
1476 	if (etm->sample_branches || etm->synth_opts.last_branch) {
1477 		/*
1478 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1479 		 * the next incoming packet.
1480 		 */
1481 		tmp = tidq->packet;
1482 		tidq->packet = tidq->prev_packet;
1483 		tidq->prev_packet = tmp;
1484 	}
1485 
1486 	return err;
1487 }
1488 
1489 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1490 			     struct cs_etm_traceid_queue *tidq)
1491 {
1492 	int err;
1493 
1494 	/*
1495 	 * It has no new packet coming and 'etmq->packet' contains the stale
1496 	 * packet which was set at the previous time with packets swapping;
1497 	 * so skip to generate branch sample to avoid stale packet.
1498 	 *
1499 	 * For this case only flush branch stack and generate a last branch
1500 	 * event for the branches left in the circular buffer at the end of
1501 	 * the trace.
1502 	 */
1503 	if (etmq->etm->synth_opts.last_branch &&
1504 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1505 		/*
1506 		 * Use the address of the end of the last reported execution
1507 		 * range.
1508 		 */
1509 		u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1510 
1511 		err = cs_etm__synth_instruction_sample(
1512 			etmq, tidq, addr,
1513 			tidq->period_instructions);
1514 		if (err)
1515 			return err;
1516 
1517 		tidq->period_instructions = 0;
1518 	}
1519 
1520 	return 0;
1521 }
1522 /*
1523  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1524  *			   if need be.
1525  * Returns:	< 0	if error
1526  *		= 0	if no more auxtrace_buffer to read
1527  *		> 0	if the current buffer isn't empty yet
1528  */
1529 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1530 {
1531 	int ret;
1532 
1533 	if (!etmq->buf_len) {
1534 		ret = cs_etm__get_trace(etmq);
1535 		if (ret <= 0)
1536 			return ret;
1537 		/*
1538 		 * We cannot assume consecutive blocks in the data file
1539 		 * are contiguous, reset the decoder to force re-sync.
1540 		 */
1541 		ret = cs_etm_decoder__reset(etmq->decoder);
1542 		if (ret)
1543 			return ret;
1544 	}
1545 
1546 	return etmq->buf_len;
1547 }
1548 
1549 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1550 				 struct cs_etm_packet *packet,
1551 				 u64 end_addr)
1552 {
1553 	/* Initialise to keep compiler happy */
1554 	u16 instr16 = 0;
1555 	u32 instr32 = 0;
1556 	u64 addr;
1557 
1558 	switch (packet->isa) {
1559 	case CS_ETM_ISA_T32:
1560 		/*
1561 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1562 		 *
1563 		 *  b'15         b'8
1564 		 * +-----------------+--------+
1565 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1566 		 * +-----------------+--------+
1567 		 *
1568 		 * According to the specifiction, it only defines SVC for T32
1569 		 * with 16 bits instruction and has no definition for 32bits;
1570 		 * so below only read 2 bytes as instruction size for T32.
1571 		 */
1572 		addr = end_addr - 2;
1573 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1574 				   sizeof(instr16), (u8 *)&instr16);
1575 		if ((instr16 & 0xFF00) == 0xDF00)
1576 			return true;
1577 
1578 		break;
1579 	case CS_ETM_ISA_A32:
1580 		/*
1581 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1582 		 *
1583 		 *  b'31 b'28 b'27 b'24
1584 		 * +---------+---------+-------------------------+
1585 		 * |  !1111  | 1 1 1 1 |        imm24            |
1586 		 * +---------+---------+-------------------------+
1587 		 */
1588 		addr = end_addr - 4;
1589 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1590 				   sizeof(instr32), (u8 *)&instr32);
1591 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1592 		    (instr32 & 0xF0000000) != 0xF0000000)
1593 			return true;
1594 
1595 		break;
1596 	case CS_ETM_ISA_A64:
1597 		/*
1598 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1599 		 *
1600 		 *  b'31               b'21           b'4     b'0
1601 		 * +-----------------------+---------+-----------+
1602 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1603 		 * +-----------------------+---------+-----------+
1604 		 */
1605 		addr = end_addr - 4;
1606 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1607 				   sizeof(instr32), (u8 *)&instr32);
1608 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1609 			return true;
1610 
1611 		break;
1612 	case CS_ETM_ISA_UNKNOWN:
1613 	default:
1614 		break;
1615 	}
1616 
1617 	return false;
1618 }
1619 
1620 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1621 			       struct cs_etm_traceid_queue *tidq, u64 magic)
1622 {
1623 	u8 trace_chan_id = tidq->trace_chan_id;
1624 	struct cs_etm_packet *packet = tidq->packet;
1625 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1626 
1627 	if (magic == __perf_cs_etmv3_magic)
1628 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1629 			return true;
1630 
1631 	/*
1632 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1633 	 * HVC cases; need to check if it's SVC instruction based on
1634 	 * packet address.
1635 	 */
1636 	if (magic == __perf_cs_etmv4_magic) {
1637 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1638 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1639 					 prev_packet->end_addr))
1640 			return true;
1641 	}
1642 
1643 	return false;
1644 }
1645 
1646 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1647 				       u64 magic)
1648 {
1649 	struct cs_etm_packet *packet = tidq->packet;
1650 
1651 	if (magic == __perf_cs_etmv3_magic)
1652 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1653 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1654 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1655 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1656 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1657 			return true;
1658 
1659 	if (magic == __perf_cs_etmv4_magic)
1660 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1661 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1662 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1663 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1664 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1665 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1666 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1667 			return true;
1668 
1669 	return false;
1670 }
1671 
1672 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1673 				      struct cs_etm_traceid_queue *tidq,
1674 				      u64 magic)
1675 {
1676 	u8 trace_chan_id = tidq->trace_chan_id;
1677 	struct cs_etm_packet *packet = tidq->packet;
1678 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1679 
1680 	if (magic == __perf_cs_etmv3_magic)
1681 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1682 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1683 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1684 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1685 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1686 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1687 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1688 			return true;
1689 
1690 	if (magic == __perf_cs_etmv4_magic) {
1691 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1692 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1693 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1694 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1695 			return true;
1696 
1697 		/*
1698 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1699 		 * (SMC, HVC) are taken as sync exceptions.
1700 		 */
1701 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1702 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1703 					  prev_packet->end_addr))
1704 			return true;
1705 
1706 		/*
1707 		 * ETMv4 has 5 bits for exception number; if the numbers
1708 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1709 		 * they are implementation defined exceptions.
1710 		 *
1711 		 * For this case, simply take it as sync exception.
1712 		 */
1713 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1714 		    packet->exception_number <= CS_ETMV4_EXC_END)
1715 			return true;
1716 	}
1717 
1718 	return false;
1719 }
1720 
1721 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1722 				    struct cs_etm_traceid_queue *tidq)
1723 {
1724 	struct cs_etm_packet *packet = tidq->packet;
1725 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1726 	u8 trace_chan_id = tidq->trace_chan_id;
1727 	u64 magic;
1728 	int ret;
1729 
1730 	switch (packet->sample_type) {
1731 	case CS_ETM_RANGE:
1732 		/*
1733 		 * Immediate branch instruction without neither link nor
1734 		 * return flag, it's normal branch instruction within
1735 		 * the function.
1736 		 */
1737 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1738 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1739 			packet->flags = PERF_IP_FLAG_BRANCH;
1740 
1741 			if (packet->last_instr_cond)
1742 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1743 		}
1744 
1745 		/*
1746 		 * Immediate branch instruction with link (e.g. BL), this is
1747 		 * branch instruction for function call.
1748 		 */
1749 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1750 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1751 			packet->flags = PERF_IP_FLAG_BRANCH |
1752 					PERF_IP_FLAG_CALL;
1753 
1754 		/*
1755 		 * Indirect branch instruction with link (e.g. BLR), this is
1756 		 * branch instruction for function call.
1757 		 */
1758 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1759 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1760 			packet->flags = PERF_IP_FLAG_BRANCH |
1761 					PERF_IP_FLAG_CALL;
1762 
1763 		/*
1764 		 * Indirect branch instruction with subtype of
1765 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1766 		 * function return for A32/T32.
1767 		 */
1768 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1769 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1770 			packet->flags = PERF_IP_FLAG_BRANCH |
1771 					PERF_IP_FLAG_RETURN;
1772 
1773 		/*
1774 		 * Indirect branch instruction without link (e.g. BR), usually
1775 		 * this is used for function return, especially for functions
1776 		 * within dynamic link lib.
1777 		 */
1778 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1779 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1780 			packet->flags = PERF_IP_FLAG_BRANCH |
1781 					PERF_IP_FLAG_RETURN;
1782 
1783 		/* Return instruction for function return. */
1784 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1785 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1786 			packet->flags = PERF_IP_FLAG_BRANCH |
1787 					PERF_IP_FLAG_RETURN;
1788 
1789 		/*
1790 		 * Decoder might insert a discontinuity in the middle of
1791 		 * instruction packets, fixup prev_packet with flag
1792 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1793 		 */
1794 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1795 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1796 					      PERF_IP_FLAG_TRACE_BEGIN;
1797 
1798 		/*
1799 		 * If the previous packet is an exception return packet
1800 		 * and the return address just follows SVC instuction,
1801 		 * it needs to calibrate the previous packet sample flags
1802 		 * as PERF_IP_FLAG_SYSCALLRET.
1803 		 */
1804 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1805 					   PERF_IP_FLAG_RETURN |
1806 					   PERF_IP_FLAG_INTERRUPT) &&
1807 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1808 					 packet, packet->start_addr))
1809 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1810 					     PERF_IP_FLAG_RETURN |
1811 					     PERF_IP_FLAG_SYSCALLRET;
1812 		break;
1813 	case CS_ETM_DISCONTINUITY:
1814 		/*
1815 		 * The trace is discontinuous, if the previous packet is
1816 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1817 		 * for previous packet.
1818 		 */
1819 		if (prev_packet->sample_type == CS_ETM_RANGE)
1820 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1821 					      PERF_IP_FLAG_TRACE_END;
1822 		break;
1823 	case CS_ETM_EXCEPTION:
1824 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1825 		if (ret)
1826 			return ret;
1827 
1828 		/* The exception is for system call. */
1829 		if (cs_etm__is_syscall(etmq, tidq, magic))
1830 			packet->flags = PERF_IP_FLAG_BRANCH |
1831 					PERF_IP_FLAG_CALL |
1832 					PERF_IP_FLAG_SYSCALLRET;
1833 		/*
1834 		 * The exceptions are triggered by external signals from bus,
1835 		 * interrupt controller, debug module, PE reset or halt.
1836 		 */
1837 		else if (cs_etm__is_async_exception(tidq, magic))
1838 			packet->flags = PERF_IP_FLAG_BRANCH |
1839 					PERF_IP_FLAG_CALL |
1840 					PERF_IP_FLAG_ASYNC |
1841 					PERF_IP_FLAG_INTERRUPT;
1842 		/*
1843 		 * Otherwise, exception is caused by trap, instruction &
1844 		 * data fault, or alignment errors.
1845 		 */
1846 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1847 			packet->flags = PERF_IP_FLAG_BRANCH |
1848 					PERF_IP_FLAG_CALL |
1849 					PERF_IP_FLAG_INTERRUPT;
1850 
1851 		/*
1852 		 * When the exception packet is inserted, since exception
1853 		 * packet is not used standalone for generating samples
1854 		 * and it's affiliation to the previous instruction range
1855 		 * packet; so set previous range packet flags to tell perf
1856 		 * it is an exception taken branch.
1857 		 */
1858 		if (prev_packet->sample_type == CS_ETM_RANGE)
1859 			prev_packet->flags = packet->flags;
1860 		break;
1861 	case CS_ETM_EXCEPTION_RET:
1862 		/*
1863 		 * When the exception return packet is inserted, since
1864 		 * exception return packet is not used standalone for
1865 		 * generating samples and it's affiliation to the previous
1866 		 * instruction range packet; so set previous range packet
1867 		 * flags to tell perf it is an exception return branch.
1868 		 *
1869 		 * The exception return can be for either system call or
1870 		 * other exception types; unfortunately the packet doesn't
1871 		 * contain exception type related info so we cannot decide
1872 		 * the exception type purely based on exception return packet.
1873 		 * If we record the exception number from exception packet and
1874 		 * reuse it for excpetion return packet, this is not reliable
1875 		 * due the trace can be discontinuity or the interrupt can
1876 		 * be nested, thus the recorded exception number cannot be
1877 		 * used for exception return packet for these two cases.
1878 		 *
1879 		 * For exception return packet, we only need to distinguish the
1880 		 * packet is for system call or for other types.  Thus the
1881 		 * decision can be deferred when receive the next packet which
1882 		 * contains the return address, based on the return address we
1883 		 * can read out the previous instruction and check if it's a
1884 		 * system call instruction and then calibrate the sample flag
1885 		 * as needed.
1886 		 */
1887 		if (prev_packet->sample_type == CS_ETM_RANGE)
1888 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1889 					     PERF_IP_FLAG_RETURN |
1890 					     PERF_IP_FLAG_INTERRUPT;
1891 		break;
1892 	case CS_ETM_EMPTY:
1893 	default:
1894 		break;
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1901 {
1902 	int ret = 0;
1903 	size_t processed = 0;
1904 
1905 	/*
1906 	 * Packets are decoded and added to the decoder's packet queue
1907 	 * until the decoder packet processing callback has requested that
1908 	 * processing stops or there is nothing left in the buffer.  Normal
1909 	 * operations that stop processing are a timestamp packet or a full
1910 	 * decoder buffer queue.
1911 	 */
1912 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
1913 						 etmq->offset,
1914 						 &etmq->buf[etmq->buf_used],
1915 						 etmq->buf_len,
1916 						 &processed);
1917 	if (ret)
1918 		goto out;
1919 
1920 	etmq->offset += processed;
1921 	etmq->buf_used += processed;
1922 	etmq->buf_len -= processed;
1923 
1924 out:
1925 	return ret;
1926 }
1927 
1928 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
1929 					 struct cs_etm_traceid_queue *tidq)
1930 {
1931 	int ret;
1932 	struct cs_etm_packet_queue *packet_queue;
1933 
1934 	packet_queue = &tidq->packet_queue;
1935 
1936 	/* Process each packet in this chunk */
1937 	while (1) {
1938 		ret = cs_etm_decoder__get_packet(packet_queue,
1939 						 tidq->packet);
1940 		if (ret <= 0)
1941 			/*
1942 			 * Stop processing this chunk on
1943 			 * end of data or error
1944 			 */
1945 			break;
1946 
1947 		/*
1948 		 * Since packet addresses are swapped in packet
1949 		 * handling within below switch() statements,
1950 		 * thus setting sample flags must be called
1951 		 * prior to switch() statement to use address
1952 		 * information before packets swapping.
1953 		 */
1954 		ret = cs_etm__set_sample_flags(etmq, tidq);
1955 		if (ret < 0)
1956 			break;
1957 
1958 		switch (tidq->packet->sample_type) {
1959 		case CS_ETM_RANGE:
1960 			/*
1961 			 * If the packet contains an instruction
1962 			 * range, generate instruction sequence
1963 			 * events.
1964 			 */
1965 			cs_etm__sample(etmq, tidq);
1966 			break;
1967 		case CS_ETM_EXCEPTION:
1968 		case CS_ETM_EXCEPTION_RET:
1969 			/*
1970 			 * If the exception packet is coming,
1971 			 * make sure the previous instruction
1972 			 * range packet to be handled properly.
1973 			 */
1974 			cs_etm__exception(tidq);
1975 			break;
1976 		case CS_ETM_DISCONTINUITY:
1977 			/*
1978 			 * Discontinuity in trace, flush
1979 			 * previous branch stack
1980 			 */
1981 			cs_etm__flush(etmq, tidq);
1982 			break;
1983 		case CS_ETM_EMPTY:
1984 			/*
1985 			 * Should not receive empty packet,
1986 			 * report error.
1987 			 */
1988 			pr_err("CS ETM Trace: empty packet\n");
1989 			return -EINVAL;
1990 		default:
1991 			break;
1992 		}
1993 	}
1994 
1995 	return ret;
1996 }
1997 
1998 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
1999 {
2000 	int idx;
2001 	struct int_node *inode;
2002 	struct cs_etm_traceid_queue *tidq;
2003 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2004 
2005 	intlist__for_each_entry(inode, traceid_queues_list) {
2006 		idx = (int)(intptr_t)inode->priv;
2007 		tidq = etmq->traceid_queues[idx];
2008 
2009 		/* Ignore return value */
2010 		cs_etm__process_traceid_queue(etmq, tidq);
2011 
2012 		/*
2013 		 * Generate an instruction sample with the remaining
2014 		 * branchstack entries.
2015 		 */
2016 		cs_etm__flush(etmq, tidq);
2017 	}
2018 }
2019 
2020 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2021 {
2022 	int err = 0;
2023 	struct cs_etm_traceid_queue *tidq;
2024 
2025 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2026 	if (!tidq)
2027 		return -EINVAL;
2028 
2029 	/* Go through each buffer in the queue and decode them one by one */
2030 	while (1) {
2031 		err = cs_etm__get_data_block(etmq);
2032 		if (err <= 0)
2033 			return err;
2034 
2035 		/* Run trace decoder until buffer consumed or end of trace */
2036 		do {
2037 			err = cs_etm__decode_data_block(etmq);
2038 			if (err)
2039 				return err;
2040 
2041 			/*
2042 			 * Process each packet in this chunk, nothing to do if
2043 			 * an error occurs other than hoping the next one will
2044 			 * be better.
2045 			 */
2046 			err = cs_etm__process_traceid_queue(etmq, tidq);
2047 
2048 		} while (etmq->buf_len);
2049 
2050 		if (err == 0)
2051 			/* Flush any remaining branch stack entries */
2052 			err = cs_etm__end_block(etmq, tidq);
2053 	}
2054 
2055 	return err;
2056 }
2057 
2058 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2059 					   pid_t tid)
2060 {
2061 	unsigned int i;
2062 	struct auxtrace_queues *queues = &etm->queues;
2063 
2064 	for (i = 0; i < queues->nr_queues; i++) {
2065 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2066 		struct cs_etm_queue *etmq = queue->priv;
2067 		struct cs_etm_traceid_queue *tidq;
2068 
2069 		if (!etmq)
2070 			continue;
2071 
2072 		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2073 						CS_ETM_PER_THREAD_TRACEID);
2074 
2075 		if (!tidq)
2076 			continue;
2077 
2078 		if ((tid == -1) || (tidq->tid == tid)) {
2079 			cs_etm__set_pid_tid_cpu(etm, tidq);
2080 			cs_etm__run_decoder(etmq);
2081 		}
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2088 {
2089 	int ret = 0;
2090 	unsigned int cs_queue_nr, queue_nr;
2091 	u8 trace_chan_id;
2092 	u64 timestamp;
2093 	struct auxtrace_queue *queue;
2094 	struct cs_etm_queue *etmq;
2095 	struct cs_etm_traceid_queue *tidq;
2096 
2097 	while (1) {
2098 		if (!etm->heap.heap_cnt)
2099 			goto out;
2100 
2101 		/* Take the entry at the top of the min heap */
2102 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2103 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2104 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2105 		queue = &etm->queues.queue_array[queue_nr];
2106 		etmq = queue->priv;
2107 
2108 		/*
2109 		 * Remove the top entry from the heap since we are about
2110 		 * to process it.
2111 		 */
2112 		auxtrace_heap__pop(&etm->heap);
2113 
2114 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2115 		if (!tidq) {
2116 			/*
2117 			 * No traceID queue has been allocated for this traceID,
2118 			 * which means something somewhere went very wrong.  No
2119 			 * other choice than simply exit.
2120 			 */
2121 			ret = -EINVAL;
2122 			goto out;
2123 		}
2124 
2125 		/*
2126 		 * Packets associated with this timestamp are already in
2127 		 * the etmq's traceID queue, so process them.
2128 		 */
2129 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2130 		if (ret < 0)
2131 			goto out;
2132 
2133 		/*
2134 		 * Packets for this timestamp have been processed, time to
2135 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2136 		 * if need be.
2137 		 */
2138 refetch:
2139 		ret = cs_etm__get_data_block(etmq);
2140 		if (ret < 0)
2141 			goto out;
2142 
2143 		/*
2144 		 * No more auxtrace_buffers to process in this etmq, simply
2145 		 * move on to another entry in the auxtrace_heap.
2146 		 */
2147 		if (!ret)
2148 			continue;
2149 
2150 		ret = cs_etm__decode_data_block(etmq);
2151 		if (ret)
2152 			goto out;
2153 
2154 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2155 
2156 		if (!timestamp) {
2157 			/*
2158 			 * Function cs_etm__decode_data_block() returns when
2159 			 * there is no more traces to decode in the current
2160 			 * auxtrace_buffer OR when a timestamp has been
2161 			 * encountered on any of the traceID queues.  Since we
2162 			 * did not get a timestamp, there is no more traces to
2163 			 * process in this auxtrace_buffer.  As such empty and
2164 			 * flush all traceID queues.
2165 			 */
2166 			cs_etm__clear_all_traceid_queues(etmq);
2167 
2168 			/* Fetch another auxtrace_buffer for this etmq */
2169 			goto refetch;
2170 		}
2171 
2172 		/*
2173 		 * Add to the min heap the timestamp for packets that have
2174 		 * just been decoded.  They will be processed and synthesized
2175 		 * during the next call to cs_etm__process_traceid_queue() for
2176 		 * this queue/traceID.
2177 		 */
2178 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2179 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2180 	}
2181 
2182 out:
2183 	return ret;
2184 }
2185 
2186 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2187 					union perf_event *event)
2188 {
2189 	struct thread *th;
2190 
2191 	if (etm->timeless_decoding)
2192 		return 0;
2193 
2194 	/*
2195 	 * Add the tid/pid to the log so that we can get a match when
2196 	 * we get a contextID from the decoder.
2197 	 */
2198 	th = machine__findnew_thread(etm->machine,
2199 				     event->itrace_start.pid,
2200 				     event->itrace_start.tid);
2201 	if (!th)
2202 		return -ENOMEM;
2203 
2204 	thread__put(th);
2205 
2206 	return 0;
2207 }
2208 
2209 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2210 					   union perf_event *event)
2211 {
2212 	struct thread *th;
2213 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2214 
2215 	/*
2216 	 * Context switch in per-thread mode are irrelevant since perf
2217 	 * will start/stop tracing as the process is scheduled.
2218 	 */
2219 	if (etm->timeless_decoding)
2220 		return 0;
2221 
2222 	/*
2223 	 * SWITCH_IN events carry the next process to be switched out while
2224 	 * SWITCH_OUT events carry the process to be switched in.  As such
2225 	 * we don't care about IN events.
2226 	 */
2227 	if (!out)
2228 		return 0;
2229 
2230 	/*
2231 	 * Add the tid/pid to the log so that we can get a match when
2232 	 * we get a contextID from the decoder.
2233 	 */
2234 	th = machine__findnew_thread(etm->machine,
2235 				     event->context_switch.next_prev_pid,
2236 				     event->context_switch.next_prev_tid);
2237 	if (!th)
2238 		return -ENOMEM;
2239 
2240 	thread__put(th);
2241 
2242 	return 0;
2243 }
2244 
2245 static int cs_etm__process_event(struct perf_session *session,
2246 				 union perf_event *event,
2247 				 struct perf_sample *sample,
2248 				 struct perf_tool *tool)
2249 {
2250 	int err = 0;
2251 	u64 timestamp;
2252 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2253 						   struct cs_etm_auxtrace,
2254 						   auxtrace);
2255 
2256 	if (dump_trace)
2257 		return 0;
2258 
2259 	if (!tool->ordered_events) {
2260 		pr_err("CoreSight ETM Trace requires ordered events\n");
2261 		return -EINVAL;
2262 	}
2263 
2264 	if (sample->time && (sample->time != (u64) -1))
2265 		timestamp = sample->time;
2266 	else
2267 		timestamp = 0;
2268 
2269 	if (timestamp || etm->timeless_decoding) {
2270 		err = cs_etm__update_queues(etm);
2271 		if (err)
2272 			return err;
2273 	}
2274 
2275 	if (etm->timeless_decoding &&
2276 	    event->header.type == PERF_RECORD_EXIT)
2277 		return cs_etm__process_timeless_queues(etm,
2278 						       event->fork.tid);
2279 
2280 	if (event->header.type == PERF_RECORD_ITRACE_START)
2281 		return cs_etm__process_itrace_start(etm, event);
2282 	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2283 		return cs_etm__process_switch_cpu_wide(etm, event);
2284 
2285 	if (!etm->timeless_decoding &&
2286 	    event->header.type == PERF_RECORD_AUX)
2287 		return cs_etm__process_queues(etm);
2288 
2289 	return 0;
2290 }
2291 
2292 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2293 					  union perf_event *event,
2294 					  struct perf_tool *tool __maybe_unused)
2295 {
2296 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2297 						   struct cs_etm_auxtrace,
2298 						   auxtrace);
2299 	if (!etm->data_queued) {
2300 		struct auxtrace_buffer *buffer;
2301 		off_t  data_offset;
2302 		int fd = perf_data__fd(session->data);
2303 		bool is_pipe = perf_data__is_pipe(session->data);
2304 		int err;
2305 
2306 		if (is_pipe)
2307 			data_offset = 0;
2308 		else {
2309 			data_offset = lseek(fd, 0, SEEK_CUR);
2310 			if (data_offset == -1)
2311 				return -errno;
2312 		}
2313 
2314 		err = auxtrace_queues__add_event(&etm->queues, session,
2315 						 event, data_offset, &buffer);
2316 		if (err)
2317 			return err;
2318 
2319 		if (dump_trace)
2320 			if (auxtrace_buffer__get_data(buffer, fd)) {
2321 				cs_etm__dump_event(etm, buffer);
2322 				auxtrace_buffer__put_data(buffer);
2323 			}
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2330 {
2331 	struct evsel *evsel;
2332 	struct evlist *evlist = etm->session->evlist;
2333 	bool timeless_decoding = true;
2334 
2335 	/*
2336 	 * Circle through the list of event and complain if we find one
2337 	 * with the time bit set.
2338 	 */
2339 	evlist__for_each_entry(evlist, evsel) {
2340 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2341 			timeless_decoding = false;
2342 	}
2343 
2344 	return timeless_decoding;
2345 }
2346 
2347 static const char * const cs_etm_global_header_fmts[] = {
2348 	[CS_HEADER_VERSION_0]	= "	Header version		       %llx\n",
2349 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2350 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2351 };
2352 
2353 static const char * const cs_etm_priv_fmts[] = {
2354 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2355 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2356 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2357 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2358 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2359 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2360 };
2361 
2362 static const char * const cs_etmv4_priv_fmts[] = {
2363 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2364 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2365 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2366 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2367 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2368 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2369 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2370 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2371 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2372 };
2373 
2374 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2375 {
2376 	int i, j, cpu = 0;
2377 
2378 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2379 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2380 
2381 	for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2382 		if (val[i] == __perf_cs_etmv3_magic)
2383 			for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2384 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2385 		else if (val[i] == __perf_cs_etmv4_magic)
2386 			for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2387 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2388 		else
2389 			/* failure.. return */
2390 			return;
2391 	}
2392 }
2393 
2394 int cs_etm__process_auxtrace_info(union perf_event *event,
2395 				  struct perf_session *session)
2396 {
2397 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2398 	struct cs_etm_auxtrace *etm = NULL;
2399 	struct int_node *inode;
2400 	unsigned int pmu_type;
2401 	int event_header_size = sizeof(struct perf_event_header);
2402 	int info_header_size;
2403 	int total_size = auxtrace_info->header.size;
2404 	int priv_size = 0;
2405 	int num_cpu;
2406 	int err = 0, idx = -1;
2407 	int i, j, k;
2408 	u64 *ptr, *hdr = NULL;
2409 	u64 **metadata = NULL;
2410 
2411 	/*
2412 	 * sizeof(auxtrace_info_event::type) +
2413 	 * sizeof(auxtrace_info_event::reserved) == 8
2414 	 */
2415 	info_header_size = 8;
2416 
2417 	if (total_size < (event_header_size + info_header_size))
2418 		return -EINVAL;
2419 
2420 	priv_size = total_size - event_header_size - info_header_size;
2421 
2422 	/* First the global part */
2423 	ptr = (u64 *) auxtrace_info->priv;
2424 
2425 	/* Look for version '0' of the header */
2426 	if (ptr[0] != 0)
2427 		return -EINVAL;
2428 
2429 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2430 	if (!hdr)
2431 		return -ENOMEM;
2432 
2433 	/* Extract header information - see cs-etm.h for format */
2434 	for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2435 		hdr[i] = ptr[i];
2436 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2437 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2438 				    0xffffffff);
2439 
2440 	/*
2441 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2442 	 * has to be made for each packet that gets decoded, optimizing access
2443 	 * in anything other than a sequential array is worth doing.
2444 	 */
2445 	traceid_list = intlist__new(NULL);
2446 	if (!traceid_list) {
2447 		err = -ENOMEM;
2448 		goto err_free_hdr;
2449 	}
2450 
2451 	metadata = zalloc(sizeof(*metadata) * num_cpu);
2452 	if (!metadata) {
2453 		err = -ENOMEM;
2454 		goto err_free_traceid_list;
2455 	}
2456 
2457 	/*
2458 	 * The metadata is stored in the auxtrace_info section and encodes
2459 	 * the configuration of the ARM embedded trace macrocell which is
2460 	 * required by the trace decoder to properly decode the trace due
2461 	 * to its highly compressed nature.
2462 	 */
2463 	for (j = 0; j < num_cpu; j++) {
2464 		if (ptr[i] == __perf_cs_etmv3_magic) {
2465 			metadata[j] = zalloc(sizeof(*metadata[j]) *
2466 					     CS_ETM_PRIV_MAX);
2467 			if (!metadata[j]) {
2468 				err = -ENOMEM;
2469 				goto err_free_metadata;
2470 			}
2471 			for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2472 				metadata[j][k] = ptr[i + k];
2473 
2474 			/* The traceID is our handle */
2475 			idx = metadata[j][CS_ETM_ETMTRACEIDR];
2476 			i += CS_ETM_PRIV_MAX;
2477 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2478 			metadata[j] = zalloc(sizeof(*metadata[j]) *
2479 					     CS_ETMV4_PRIV_MAX);
2480 			if (!metadata[j]) {
2481 				err = -ENOMEM;
2482 				goto err_free_metadata;
2483 			}
2484 			for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2485 				metadata[j][k] = ptr[i + k];
2486 
2487 			/* The traceID is our handle */
2488 			idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2489 			i += CS_ETMV4_PRIV_MAX;
2490 		}
2491 
2492 		/* Get an RB node for this CPU */
2493 		inode = intlist__findnew(traceid_list, idx);
2494 
2495 		/* Something went wrong, no need to continue */
2496 		if (!inode) {
2497 			err = -ENOMEM;
2498 			goto err_free_metadata;
2499 		}
2500 
2501 		/*
2502 		 * The node for that CPU should not be taken.
2503 		 * Back out if that's the case.
2504 		 */
2505 		if (inode->priv) {
2506 			err = -EINVAL;
2507 			goto err_free_metadata;
2508 		}
2509 		/* All good, associate the traceID with the metadata pointer */
2510 		inode->priv = metadata[j];
2511 	}
2512 
2513 	/*
2514 	 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2515 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2516 	 * global metadata, and each cpu's metadata respectively.
2517 	 * The following tests if the correct number of double words was
2518 	 * present in the auxtrace info section.
2519 	 */
2520 	if (i * 8 != priv_size) {
2521 		err = -EINVAL;
2522 		goto err_free_metadata;
2523 	}
2524 
2525 	etm = zalloc(sizeof(*etm));
2526 
2527 	if (!etm) {
2528 		err = -ENOMEM;
2529 		goto err_free_metadata;
2530 	}
2531 
2532 	err = auxtrace_queues__init(&etm->queues);
2533 	if (err)
2534 		goto err_free_etm;
2535 
2536 	etm->session = session;
2537 	etm->machine = &session->machines.host;
2538 
2539 	etm->num_cpu = num_cpu;
2540 	etm->pmu_type = pmu_type;
2541 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2542 	etm->metadata = metadata;
2543 	etm->auxtrace_type = auxtrace_info->type;
2544 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2545 
2546 	etm->auxtrace.process_event = cs_etm__process_event;
2547 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2548 	etm->auxtrace.flush_events = cs_etm__flush_events;
2549 	etm->auxtrace.free_events = cs_etm__free_events;
2550 	etm->auxtrace.free = cs_etm__free;
2551 	session->auxtrace = &etm->auxtrace;
2552 
2553 	etm->unknown_thread = thread__new(999999999, 999999999);
2554 	if (!etm->unknown_thread) {
2555 		err = -ENOMEM;
2556 		goto err_free_queues;
2557 	}
2558 
2559 	/*
2560 	 * Initialize list node so that at thread__zput() we can avoid
2561 	 * segmentation fault at list_del_init().
2562 	 */
2563 	INIT_LIST_HEAD(&etm->unknown_thread->node);
2564 
2565 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2566 	if (err)
2567 		goto err_delete_thread;
2568 
2569 	if (thread__init_map_groups(etm->unknown_thread, etm->machine)) {
2570 		err = -ENOMEM;
2571 		goto err_delete_thread;
2572 	}
2573 
2574 	if (dump_trace) {
2575 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2576 		return 0;
2577 	}
2578 
2579 	if (session->itrace_synth_opts->set) {
2580 		etm->synth_opts = *session->itrace_synth_opts;
2581 	} else {
2582 		itrace_synth_opts__set_default(&etm->synth_opts,
2583 				session->itrace_synth_opts->default_no_sample);
2584 		etm->synth_opts.callchain = false;
2585 	}
2586 
2587 	err = cs_etm__synth_events(etm, session);
2588 	if (err)
2589 		goto err_delete_thread;
2590 
2591 	err = auxtrace_queues__process_index(&etm->queues, session);
2592 	if (err)
2593 		goto err_delete_thread;
2594 
2595 	etm->data_queued = etm->queues.populated;
2596 
2597 	return 0;
2598 
2599 err_delete_thread:
2600 	thread__zput(etm->unknown_thread);
2601 err_free_queues:
2602 	auxtrace_queues__free(&etm->queues);
2603 	session->auxtrace = NULL;
2604 err_free_etm:
2605 	zfree(&etm);
2606 err_free_metadata:
2607 	/* No need to check @metadata[j], free(NULL) is supported */
2608 	for (j = 0; j < num_cpu; j++)
2609 		zfree(&metadata[j]);
2610 	zfree(&metadata);
2611 err_free_traceid_list:
2612 	intlist__delete(traceid_list);
2613 err_free_hdr:
2614 	zfree(&hdr);
2615 
2616 	return err;
2617 }
2618