xref: /openbmc/linux/tools/perf/util/cs-etm.c (revision bdaedca74d6293b6ac643a8ebe8231b52bf1171b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19 
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40 
41 #define MAX_TIMESTAMP (~0ULL)
42 
43 struct cs_etm_auxtrace {
44 	struct auxtrace auxtrace;
45 	struct auxtrace_queues queues;
46 	struct auxtrace_heap heap;
47 	struct itrace_synth_opts synth_opts;
48 	struct perf_session *session;
49 	struct machine *machine;
50 	struct thread *unknown_thread;
51 
52 	u8 timeless_decoding;
53 	u8 snapshot_mode;
54 	u8 data_queued;
55 	u8 sample_branches;
56 	u8 sample_instructions;
57 
58 	int num_cpu;
59 	u32 auxtrace_type;
60 	u64 branches_sample_type;
61 	u64 branches_id;
62 	u64 instructions_sample_type;
63 	u64 instructions_sample_period;
64 	u64 instructions_id;
65 	u64 **metadata;
66 	u64 kernel_start;
67 	unsigned int pmu_type;
68 };
69 
70 struct cs_etm_traceid_queue {
71 	u8 trace_chan_id;
72 	pid_t pid, tid;
73 	u64 period_instructions;
74 	size_t last_branch_pos;
75 	union perf_event *event_buf;
76 	struct thread *thread;
77 	struct branch_stack *last_branch;
78 	struct branch_stack *last_branch_rb;
79 	struct cs_etm_packet *prev_packet;
80 	struct cs_etm_packet *packet;
81 	struct cs_etm_packet_queue packet_queue;
82 };
83 
84 struct cs_etm_queue {
85 	struct cs_etm_auxtrace *etm;
86 	struct cs_etm_decoder *decoder;
87 	struct auxtrace_buffer *buffer;
88 	unsigned int queue_nr;
89 	u8 pending_timestamp;
90 	u64 offset;
91 	const unsigned char *buf;
92 	size_t buf_len, buf_used;
93 	/* Conversion between traceID and index in traceid_queues array */
94 	struct intlist *traceid_queues_list;
95 	struct cs_etm_traceid_queue **traceid_queues;
96 };
97 
98 /* RB tree for quick conversion between traceID and metadata pointers */
99 static struct intlist *traceid_list;
100 
101 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
102 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
103 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
104 					   pid_t tid);
105 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
106 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
107 
108 /* PTMs ETMIDR [11:8] set to b0011 */
109 #define ETMIDR_PTM_VERSION 0x00000300
110 
111 /*
112  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
113  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
114  * encode the etm queue number as the upper 16 bit and the channel as
115  * the lower 16 bit.
116  */
117 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id)	\
118 		      (queue_nr << 16 | trace_chan_id)
119 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
120 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
121 
122 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
123 {
124 	etmidr &= ETMIDR_PTM_VERSION;
125 
126 	if (etmidr == ETMIDR_PTM_VERSION)
127 		return CS_ETM_PROTO_PTM;
128 
129 	return CS_ETM_PROTO_ETMV3;
130 }
131 
132 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
133 {
134 	struct int_node *inode;
135 	u64 *metadata;
136 
137 	inode = intlist__find(traceid_list, trace_chan_id);
138 	if (!inode)
139 		return -EINVAL;
140 
141 	metadata = inode->priv;
142 	*magic = metadata[CS_ETM_MAGIC];
143 	return 0;
144 }
145 
146 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
147 {
148 	struct int_node *inode;
149 	u64 *metadata;
150 
151 	inode = intlist__find(traceid_list, trace_chan_id);
152 	if (!inode)
153 		return -EINVAL;
154 
155 	metadata = inode->priv;
156 	*cpu = (int)metadata[CS_ETM_CPU];
157 	return 0;
158 }
159 
160 /*
161  * The returned PID format is presented by two bits:
162  *
163  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
164  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
165  *
166  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
167  * are enabled at the same time when the session runs on an EL2 kernel.
168  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
169  * recorded in the trace data, the tool will selectively use
170  * CONTEXTIDR_EL2 as PID.
171  */
172 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
173 {
174 	struct int_node *inode;
175 	u64 *metadata, val;
176 
177 	inode = intlist__find(traceid_list, trace_chan_id);
178 	if (!inode)
179 		return -EINVAL;
180 
181 	metadata = inode->priv;
182 
183 	if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
184 		val = metadata[CS_ETM_ETMCR];
185 		/* CONTEXTIDR is traced */
186 		if (val & BIT(ETM_OPT_CTXTID))
187 			*pid_fmt = BIT(ETM_OPT_CTXTID);
188 	} else {
189 		val = metadata[CS_ETMV4_TRCCONFIGR];
190 		/* CONTEXTIDR_EL2 is traced */
191 		if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
192 			*pid_fmt = BIT(ETM_OPT_CTXTID2);
193 		/* CONTEXTIDR_EL1 is traced */
194 		else if (val & BIT(ETM4_CFG_BIT_CTXTID))
195 			*pid_fmt = BIT(ETM_OPT_CTXTID);
196 	}
197 
198 	return 0;
199 }
200 
201 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
202 					      u8 trace_chan_id)
203 {
204 	/*
205 	 * When a timestamp packet is encountered the backend code
206 	 * is stopped so that the front end has time to process packets
207 	 * that were accumulated in the traceID queue.  Since there can
208 	 * be more than one channel per cs_etm_queue, we need to specify
209 	 * what traceID queue needs servicing.
210 	 */
211 	etmq->pending_timestamp = trace_chan_id;
212 }
213 
214 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
215 				      u8 *trace_chan_id)
216 {
217 	struct cs_etm_packet_queue *packet_queue;
218 
219 	if (!etmq->pending_timestamp)
220 		return 0;
221 
222 	if (trace_chan_id)
223 		*trace_chan_id = etmq->pending_timestamp;
224 
225 	packet_queue = cs_etm__etmq_get_packet_queue(etmq,
226 						     etmq->pending_timestamp);
227 	if (!packet_queue)
228 		return 0;
229 
230 	/* Acknowledge pending status */
231 	etmq->pending_timestamp = 0;
232 
233 	/* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
234 	return packet_queue->timestamp;
235 }
236 
237 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
238 {
239 	int i;
240 
241 	queue->head = 0;
242 	queue->tail = 0;
243 	queue->packet_count = 0;
244 	for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
245 		queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
246 		queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
247 		queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
248 		queue->packet_buffer[i].instr_count = 0;
249 		queue->packet_buffer[i].last_instr_taken_branch = false;
250 		queue->packet_buffer[i].last_instr_size = 0;
251 		queue->packet_buffer[i].last_instr_type = 0;
252 		queue->packet_buffer[i].last_instr_subtype = 0;
253 		queue->packet_buffer[i].last_instr_cond = 0;
254 		queue->packet_buffer[i].flags = 0;
255 		queue->packet_buffer[i].exception_number = UINT32_MAX;
256 		queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
257 		queue->packet_buffer[i].cpu = INT_MIN;
258 	}
259 }
260 
261 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
262 {
263 	int idx;
264 	struct int_node *inode;
265 	struct cs_etm_traceid_queue *tidq;
266 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
267 
268 	intlist__for_each_entry(inode, traceid_queues_list) {
269 		idx = (int)(intptr_t)inode->priv;
270 		tidq = etmq->traceid_queues[idx];
271 		cs_etm__clear_packet_queue(&tidq->packet_queue);
272 	}
273 }
274 
275 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
276 				      struct cs_etm_traceid_queue *tidq,
277 				      u8 trace_chan_id)
278 {
279 	int rc = -ENOMEM;
280 	struct auxtrace_queue *queue;
281 	struct cs_etm_auxtrace *etm = etmq->etm;
282 
283 	cs_etm__clear_packet_queue(&tidq->packet_queue);
284 
285 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
286 	tidq->tid = queue->tid;
287 	tidq->pid = -1;
288 	tidq->trace_chan_id = trace_chan_id;
289 
290 	tidq->packet = zalloc(sizeof(struct cs_etm_packet));
291 	if (!tidq->packet)
292 		goto out;
293 
294 	tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
295 	if (!tidq->prev_packet)
296 		goto out_free;
297 
298 	if (etm->synth_opts.last_branch) {
299 		size_t sz = sizeof(struct branch_stack);
300 
301 		sz += etm->synth_opts.last_branch_sz *
302 		      sizeof(struct branch_entry);
303 		tidq->last_branch = zalloc(sz);
304 		if (!tidq->last_branch)
305 			goto out_free;
306 		tidq->last_branch_rb = zalloc(sz);
307 		if (!tidq->last_branch_rb)
308 			goto out_free;
309 	}
310 
311 	tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
312 	if (!tidq->event_buf)
313 		goto out_free;
314 
315 	return 0;
316 
317 out_free:
318 	zfree(&tidq->last_branch_rb);
319 	zfree(&tidq->last_branch);
320 	zfree(&tidq->prev_packet);
321 	zfree(&tidq->packet);
322 out:
323 	return rc;
324 }
325 
326 static struct cs_etm_traceid_queue
327 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
328 {
329 	int idx;
330 	struct int_node *inode;
331 	struct intlist *traceid_queues_list;
332 	struct cs_etm_traceid_queue *tidq, **traceid_queues;
333 	struct cs_etm_auxtrace *etm = etmq->etm;
334 
335 	if (etm->timeless_decoding)
336 		trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
337 
338 	traceid_queues_list = etmq->traceid_queues_list;
339 
340 	/*
341 	 * Check if the traceid_queue exist for this traceID by looking
342 	 * in the queue list.
343 	 */
344 	inode = intlist__find(traceid_queues_list, trace_chan_id);
345 	if (inode) {
346 		idx = (int)(intptr_t)inode->priv;
347 		return etmq->traceid_queues[idx];
348 	}
349 
350 	/* We couldn't find a traceid_queue for this traceID, allocate one */
351 	tidq = malloc(sizeof(*tidq));
352 	if (!tidq)
353 		return NULL;
354 
355 	memset(tidq, 0, sizeof(*tidq));
356 
357 	/* Get a valid index for the new traceid_queue */
358 	idx = intlist__nr_entries(traceid_queues_list);
359 	/* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
360 	inode = intlist__findnew(traceid_queues_list, trace_chan_id);
361 	if (!inode)
362 		goto out_free;
363 
364 	/* Associate this traceID with this index */
365 	inode->priv = (void *)(intptr_t)idx;
366 
367 	if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
368 		goto out_free;
369 
370 	/* Grow the traceid_queues array by one unit */
371 	traceid_queues = etmq->traceid_queues;
372 	traceid_queues = reallocarray(traceid_queues,
373 				      idx + 1,
374 				      sizeof(*traceid_queues));
375 
376 	/*
377 	 * On failure reallocarray() returns NULL and the original block of
378 	 * memory is left untouched.
379 	 */
380 	if (!traceid_queues)
381 		goto out_free;
382 
383 	traceid_queues[idx] = tidq;
384 	etmq->traceid_queues = traceid_queues;
385 
386 	return etmq->traceid_queues[idx];
387 
388 out_free:
389 	/*
390 	 * Function intlist__remove() removes the inode from the list
391 	 * and delete the memory associated to it.
392 	 */
393 	intlist__remove(traceid_queues_list, inode);
394 	free(tidq);
395 
396 	return NULL;
397 }
398 
399 struct cs_etm_packet_queue
400 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
401 {
402 	struct cs_etm_traceid_queue *tidq;
403 
404 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
405 	if (tidq)
406 		return &tidq->packet_queue;
407 
408 	return NULL;
409 }
410 
411 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
412 				struct cs_etm_traceid_queue *tidq)
413 {
414 	struct cs_etm_packet *tmp;
415 
416 	if (etm->sample_branches || etm->synth_opts.last_branch ||
417 	    etm->sample_instructions) {
418 		/*
419 		 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
420 		 * the next incoming packet.
421 		 */
422 		tmp = tidq->packet;
423 		tidq->packet = tidq->prev_packet;
424 		tidq->prev_packet = tmp;
425 	}
426 }
427 
428 static void cs_etm__packet_dump(const char *pkt_string)
429 {
430 	const char *color = PERF_COLOR_BLUE;
431 	int len = strlen(pkt_string);
432 
433 	if (len && (pkt_string[len-1] == '\n'))
434 		color_fprintf(stdout, color, "	%s", pkt_string);
435 	else
436 		color_fprintf(stdout, color, "	%s\n", pkt_string);
437 
438 	fflush(stdout);
439 }
440 
441 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
442 					  struct cs_etm_auxtrace *etm, int idx,
443 					  u32 etmidr)
444 {
445 	u64 **metadata = etm->metadata;
446 
447 	t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
448 	t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
449 	t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
450 }
451 
452 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
453 					  struct cs_etm_auxtrace *etm, int idx)
454 {
455 	u64 **metadata = etm->metadata;
456 
457 	t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
458 	t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
459 	t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
460 	t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
461 	t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
462 	t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
463 	t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
464 }
465 
466 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
467 				     struct cs_etm_auxtrace *etm)
468 {
469 	int i;
470 	u32 etmidr;
471 	u64 architecture;
472 
473 	for (i = 0; i < etm->num_cpu; i++) {
474 		architecture = etm->metadata[i][CS_ETM_MAGIC];
475 
476 		switch (architecture) {
477 		case __perf_cs_etmv3_magic:
478 			etmidr = etm->metadata[i][CS_ETM_ETMIDR];
479 			cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
480 			break;
481 		case __perf_cs_etmv4_magic:
482 			cs_etm__set_trace_param_etmv4(t_params, etm, i);
483 			break;
484 		default:
485 			return -EINVAL;
486 		}
487 	}
488 
489 	return 0;
490 }
491 
492 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
493 				       struct cs_etm_queue *etmq,
494 				       enum cs_etm_decoder_operation mode)
495 {
496 	int ret = -EINVAL;
497 
498 	if (!(mode < CS_ETM_OPERATION_MAX))
499 		goto out;
500 
501 	d_params->packet_printer = cs_etm__packet_dump;
502 	d_params->operation = mode;
503 	d_params->data = etmq;
504 	d_params->formatted = true;
505 	d_params->fsyncs = false;
506 	d_params->hsyncs = false;
507 	d_params->frame_aligned = true;
508 
509 	ret = 0;
510 out:
511 	return ret;
512 }
513 
514 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
515 			       struct auxtrace_buffer *buffer)
516 {
517 	int ret;
518 	const char *color = PERF_COLOR_BLUE;
519 	struct cs_etm_decoder_params d_params;
520 	struct cs_etm_trace_params *t_params;
521 	struct cs_etm_decoder *decoder;
522 	size_t buffer_used = 0;
523 
524 	fprintf(stdout, "\n");
525 	color_fprintf(stdout, color,
526 		     ". ... CoreSight ETM Trace data: size %zu bytes\n",
527 		     buffer->size);
528 
529 	/* Use metadata to fill in trace parameters for trace decoder */
530 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
531 
532 	if (!t_params)
533 		return;
534 
535 	if (cs_etm__init_trace_params(t_params, etm))
536 		goto out_free;
537 
538 	/* Set decoder parameters to simply print the trace packets */
539 	if (cs_etm__init_decoder_params(&d_params, NULL,
540 					CS_ETM_OPERATION_PRINT))
541 		goto out_free;
542 
543 	decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
544 
545 	if (!decoder)
546 		goto out_free;
547 	do {
548 		size_t consumed;
549 
550 		ret = cs_etm_decoder__process_data_block(
551 				decoder, buffer->offset,
552 				&((u8 *)buffer->data)[buffer_used],
553 				buffer->size - buffer_used, &consumed);
554 		if (ret)
555 			break;
556 
557 		buffer_used += consumed;
558 	} while (buffer_used < buffer->size);
559 
560 	cs_etm_decoder__free(decoder);
561 
562 out_free:
563 	zfree(&t_params);
564 }
565 
566 static int cs_etm__flush_events(struct perf_session *session,
567 				struct perf_tool *tool)
568 {
569 	int ret;
570 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
571 						   struct cs_etm_auxtrace,
572 						   auxtrace);
573 	if (dump_trace)
574 		return 0;
575 
576 	if (!tool->ordered_events)
577 		return -EINVAL;
578 
579 	ret = cs_etm__update_queues(etm);
580 
581 	if (ret < 0)
582 		return ret;
583 
584 	if (etm->timeless_decoding)
585 		return cs_etm__process_timeless_queues(etm, -1);
586 
587 	return cs_etm__process_queues(etm);
588 }
589 
590 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
591 {
592 	int idx;
593 	uintptr_t priv;
594 	struct int_node *inode, *tmp;
595 	struct cs_etm_traceid_queue *tidq;
596 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
597 
598 	intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
599 		priv = (uintptr_t)inode->priv;
600 		idx = priv;
601 
602 		/* Free this traceid_queue from the array */
603 		tidq = etmq->traceid_queues[idx];
604 		thread__zput(tidq->thread);
605 		zfree(&tidq->event_buf);
606 		zfree(&tidq->last_branch);
607 		zfree(&tidq->last_branch_rb);
608 		zfree(&tidq->prev_packet);
609 		zfree(&tidq->packet);
610 		zfree(&tidq);
611 
612 		/*
613 		 * Function intlist__remove() removes the inode from the list
614 		 * and delete the memory associated to it.
615 		 */
616 		intlist__remove(traceid_queues_list, inode);
617 	}
618 
619 	/* Then the RB tree itself */
620 	intlist__delete(traceid_queues_list);
621 	etmq->traceid_queues_list = NULL;
622 
623 	/* finally free the traceid_queues array */
624 	zfree(&etmq->traceid_queues);
625 }
626 
627 static void cs_etm__free_queue(void *priv)
628 {
629 	struct cs_etm_queue *etmq = priv;
630 
631 	if (!etmq)
632 		return;
633 
634 	cs_etm_decoder__free(etmq->decoder);
635 	cs_etm__free_traceid_queues(etmq);
636 	free(etmq);
637 }
638 
639 static void cs_etm__free_events(struct perf_session *session)
640 {
641 	unsigned int i;
642 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
643 						   struct cs_etm_auxtrace,
644 						   auxtrace);
645 	struct auxtrace_queues *queues = &aux->queues;
646 
647 	for (i = 0; i < queues->nr_queues; i++) {
648 		cs_etm__free_queue(queues->queue_array[i].priv);
649 		queues->queue_array[i].priv = NULL;
650 	}
651 
652 	auxtrace_queues__free(queues);
653 }
654 
655 static void cs_etm__free(struct perf_session *session)
656 {
657 	int i;
658 	struct int_node *inode, *tmp;
659 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
660 						   struct cs_etm_auxtrace,
661 						   auxtrace);
662 	cs_etm__free_events(session);
663 	session->auxtrace = NULL;
664 
665 	/* First remove all traceID/metadata nodes for the RB tree */
666 	intlist__for_each_entry_safe(inode, tmp, traceid_list)
667 		intlist__remove(traceid_list, inode);
668 	/* Then the RB tree itself */
669 	intlist__delete(traceid_list);
670 
671 	for (i = 0; i < aux->num_cpu; i++)
672 		zfree(&aux->metadata[i]);
673 
674 	thread__zput(aux->unknown_thread);
675 	zfree(&aux->metadata);
676 	zfree(&aux);
677 }
678 
679 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
680 				      struct evsel *evsel)
681 {
682 	struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
683 						   struct cs_etm_auxtrace,
684 						   auxtrace);
685 
686 	return evsel->core.attr.type == aux->pmu_type;
687 }
688 
689 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
690 {
691 	struct machine *machine;
692 
693 	machine = etmq->etm->machine;
694 
695 	if (address >= etmq->etm->kernel_start) {
696 		if (machine__is_host(machine))
697 			return PERF_RECORD_MISC_KERNEL;
698 		else
699 			return PERF_RECORD_MISC_GUEST_KERNEL;
700 	} else {
701 		if (machine__is_host(machine))
702 			return PERF_RECORD_MISC_USER;
703 		else if (perf_guest)
704 			return PERF_RECORD_MISC_GUEST_USER;
705 		else
706 			return PERF_RECORD_MISC_HYPERVISOR;
707 	}
708 }
709 
710 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
711 			      u64 address, size_t size, u8 *buffer)
712 {
713 	u8  cpumode;
714 	u64 offset;
715 	int len;
716 	struct thread *thread;
717 	struct machine *machine;
718 	struct addr_location al;
719 	struct cs_etm_traceid_queue *tidq;
720 
721 	if (!etmq)
722 		return 0;
723 
724 	machine = etmq->etm->machine;
725 	cpumode = cs_etm__cpu_mode(etmq, address);
726 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
727 	if (!tidq)
728 		return 0;
729 
730 	thread = tidq->thread;
731 	if (!thread) {
732 		if (cpumode != PERF_RECORD_MISC_KERNEL)
733 			return 0;
734 		thread = etmq->etm->unknown_thread;
735 	}
736 
737 	if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
738 		return 0;
739 
740 	if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
741 	    dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
742 		return 0;
743 
744 	offset = al.map->map_ip(al.map, address);
745 
746 	map__load(al.map);
747 
748 	len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
749 
750 	if (len <= 0)
751 		return 0;
752 
753 	return len;
754 }
755 
756 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
757 {
758 	struct cs_etm_decoder_params d_params;
759 	struct cs_etm_trace_params  *t_params = NULL;
760 	struct cs_etm_queue *etmq;
761 
762 	etmq = zalloc(sizeof(*etmq));
763 	if (!etmq)
764 		return NULL;
765 
766 	etmq->traceid_queues_list = intlist__new(NULL);
767 	if (!etmq->traceid_queues_list)
768 		goto out_free;
769 
770 	/* Use metadata to fill in trace parameters for trace decoder */
771 	t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
772 
773 	if (!t_params)
774 		goto out_free;
775 
776 	if (cs_etm__init_trace_params(t_params, etm))
777 		goto out_free;
778 
779 	/* Set decoder parameters to decode trace packets */
780 	if (cs_etm__init_decoder_params(&d_params, etmq,
781 					CS_ETM_OPERATION_DECODE))
782 		goto out_free;
783 
784 	etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
785 
786 	if (!etmq->decoder)
787 		goto out_free;
788 
789 	/*
790 	 * Register a function to handle all memory accesses required by
791 	 * the trace decoder library.
792 	 */
793 	if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
794 					      0x0L, ((u64) -1L),
795 					      cs_etm__mem_access))
796 		goto out_free_decoder;
797 
798 	zfree(&t_params);
799 	return etmq;
800 
801 out_free_decoder:
802 	cs_etm_decoder__free(etmq->decoder);
803 out_free:
804 	intlist__delete(etmq->traceid_queues_list);
805 	free(etmq);
806 
807 	return NULL;
808 }
809 
810 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
811 			       struct auxtrace_queue *queue,
812 			       unsigned int queue_nr)
813 {
814 	int ret = 0;
815 	unsigned int cs_queue_nr;
816 	u8 trace_chan_id;
817 	u64 timestamp;
818 	struct cs_etm_queue *etmq = queue->priv;
819 
820 	if (list_empty(&queue->head) || etmq)
821 		goto out;
822 
823 	etmq = cs_etm__alloc_queue(etm);
824 
825 	if (!etmq) {
826 		ret = -ENOMEM;
827 		goto out;
828 	}
829 
830 	queue->priv = etmq;
831 	etmq->etm = etm;
832 	etmq->queue_nr = queue_nr;
833 	etmq->offset = 0;
834 
835 	if (etm->timeless_decoding)
836 		goto out;
837 
838 	/*
839 	 * We are under a CPU-wide trace scenario.  As such we need to know
840 	 * when the code that generated the traces started to execute so that
841 	 * it can be correlated with execution on other CPUs.  So we get a
842 	 * handle on the beginning of traces and decode until we find a
843 	 * timestamp.  The timestamp is then added to the auxtrace min heap
844 	 * in order to know what nibble (of all the etmqs) to decode first.
845 	 */
846 	while (1) {
847 		/*
848 		 * Fetch an aux_buffer from this etmq.  Bail if no more
849 		 * blocks or an error has been encountered.
850 		 */
851 		ret = cs_etm__get_data_block(etmq);
852 		if (ret <= 0)
853 			goto out;
854 
855 		/*
856 		 * Run decoder on the trace block.  The decoder will stop when
857 		 * encountering a timestamp, a full packet queue or the end of
858 		 * trace for that block.
859 		 */
860 		ret = cs_etm__decode_data_block(etmq);
861 		if (ret)
862 			goto out;
863 
864 		/*
865 		 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
866 		 * the timestamp calculation for us.
867 		 */
868 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
869 
870 		/* We found a timestamp, no need to continue. */
871 		if (timestamp)
872 			break;
873 
874 		/*
875 		 * We didn't find a timestamp so empty all the traceid packet
876 		 * queues before looking for another timestamp packet, either
877 		 * in the current data block or a new one.  Packets that were
878 		 * just decoded are useless since no timestamp has been
879 		 * associated with them.  As such simply discard them.
880 		 */
881 		cs_etm__clear_all_packet_queues(etmq);
882 	}
883 
884 	/*
885 	 * We have a timestamp.  Add it to the min heap to reflect when
886 	 * instructions conveyed by the range packets of this traceID queue
887 	 * started to execute.  Once the same has been done for all the traceID
888 	 * queues of each etmq, redenring and decoding can start in
889 	 * chronological order.
890 	 *
891 	 * Note that packets decoded above are still in the traceID's packet
892 	 * queue and will be processed in cs_etm__process_queues().
893 	 */
894 	cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
895 	ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
896 out:
897 	return ret;
898 }
899 
900 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
901 {
902 	unsigned int i;
903 	int ret;
904 
905 	if (!etm->kernel_start)
906 		etm->kernel_start = machine__kernel_start(etm->machine);
907 
908 	for (i = 0; i < etm->queues.nr_queues; i++) {
909 		ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
910 		if (ret)
911 			return ret;
912 	}
913 
914 	return 0;
915 }
916 
917 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
918 {
919 	if (etm->queues.new_data) {
920 		etm->queues.new_data = false;
921 		return cs_etm__setup_queues(etm);
922 	}
923 
924 	return 0;
925 }
926 
927 static inline
928 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
929 				 struct cs_etm_traceid_queue *tidq)
930 {
931 	struct branch_stack *bs_src = tidq->last_branch_rb;
932 	struct branch_stack *bs_dst = tidq->last_branch;
933 	size_t nr = 0;
934 
935 	/*
936 	 * Set the number of records before early exit: ->nr is used to
937 	 * determine how many branches to copy from ->entries.
938 	 */
939 	bs_dst->nr = bs_src->nr;
940 
941 	/*
942 	 * Early exit when there is nothing to copy.
943 	 */
944 	if (!bs_src->nr)
945 		return;
946 
947 	/*
948 	 * As bs_src->entries is a circular buffer, we need to copy from it in
949 	 * two steps.  First, copy the branches from the most recently inserted
950 	 * branch ->last_branch_pos until the end of bs_src->entries buffer.
951 	 */
952 	nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
953 	memcpy(&bs_dst->entries[0],
954 	       &bs_src->entries[tidq->last_branch_pos],
955 	       sizeof(struct branch_entry) * nr);
956 
957 	/*
958 	 * If we wrapped around at least once, the branches from the beginning
959 	 * of the bs_src->entries buffer and until the ->last_branch_pos element
960 	 * are older valid branches: copy them over.  The total number of
961 	 * branches copied over will be equal to the number of branches asked by
962 	 * the user in last_branch_sz.
963 	 */
964 	if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
965 		memcpy(&bs_dst->entries[nr],
966 		       &bs_src->entries[0],
967 		       sizeof(struct branch_entry) * tidq->last_branch_pos);
968 	}
969 }
970 
971 static inline
972 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
973 {
974 	tidq->last_branch_pos = 0;
975 	tidq->last_branch_rb->nr = 0;
976 }
977 
978 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
979 					 u8 trace_chan_id, u64 addr)
980 {
981 	u8 instrBytes[2];
982 
983 	cs_etm__mem_access(etmq, trace_chan_id, addr,
984 			   ARRAY_SIZE(instrBytes), instrBytes);
985 	/*
986 	 * T32 instruction size is indicated by bits[15:11] of the first
987 	 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
988 	 * denote a 32-bit instruction.
989 	 */
990 	return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
991 }
992 
993 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
994 {
995 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
996 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
997 		return 0;
998 
999 	return packet->start_addr;
1000 }
1001 
1002 static inline
1003 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
1004 {
1005 	/* Returns 0 for the CS_ETM_DISCONTINUITY packet */
1006 	if (packet->sample_type == CS_ETM_DISCONTINUITY)
1007 		return 0;
1008 
1009 	return packet->end_addr - packet->last_instr_size;
1010 }
1011 
1012 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
1013 				     u64 trace_chan_id,
1014 				     const struct cs_etm_packet *packet,
1015 				     u64 offset)
1016 {
1017 	if (packet->isa == CS_ETM_ISA_T32) {
1018 		u64 addr = packet->start_addr;
1019 
1020 		while (offset) {
1021 			addr += cs_etm__t32_instr_size(etmq,
1022 						       trace_chan_id, addr);
1023 			offset--;
1024 		}
1025 		return addr;
1026 	}
1027 
1028 	/* Assume a 4 byte instruction size (A32/A64) */
1029 	return packet->start_addr + offset * 4;
1030 }
1031 
1032 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1033 					  struct cs_etm_traceid_queue *tidq)
1034 {
1035 	struct branch_stack *bs = tidq->last_branch_rb;
1036 	struct branch_entry *be;
1037 
1038 	/*
1039 	 * The branches are recorded in a circular buffer in reverse
1040 	 * chronological order: we start recording from the last element of the
1041 	 * buffer down.  After writing the first element of the stack, move the
1042 	 * insert position back to the end of the buffer.
1043 	 */
1044 	if (!tidq->last_branch_pos)
1045 		tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1046 
1047 	tidq->last_branch_pos -= 1;
1048 
1049 	be       = &bs->entries[tidq->last_branch_pos];
1050 	be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1051 	be->to	 = cs_etm__first_executed_instr(tidq->packet);
1052 	/* No support for mispredict */
1053 	be->flags.mispred = 0;
1054 	be->flags.predicted = 1;
1055 
1056 	/*
1057 	 * Increment bs->nr until reaching the number of last branches asked by
1058 	 * the user on the command line.
1059 	 */
1060 	if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1061 		bs->nr += 1;
1062 }
1063 
1064 static int cs_etm__inject_event(union perf_event *event,
1065 			       struct perf_sample *sample, u64 type)
1066 {
1067 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1068 	return perf_event__synthesize_sample(event, type, 0, sample);
1069 }
1070 
1071 
1072 static int
1073 cs_etm__get_trace(struct cs_etm_queue *etmq)
1074 {
1075 	struct auxtrace_buffer *aux_buffer = etmq->buffer;
1076 	struct auxtrace_buffer *old_buffer = aux_buffer;
1077 	struct auxtrace_queue *queue;
1078 
1079 	queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1080 
1081 	aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1082 
1083 	/* If no more data, drop the previous auxtrace_buffer and return */
1084 	if (!aux_buffer) {
1085 		if (old_buffer)
1086 			auxtrace_buffer__drop_data(old_buffer);
1087 		etmq->buf_len = 0;
1088 		return 0;
1089 	}
1090 
1091 	etmq->buffer = aux_buffer;
1092 
1093 	/* If the aux_buffer doesn't have data associated, try to load it */
1094 	if (!aux_buffer->data) {
1095 		/* get the file desc associated with the perf data file */
1096 		int fd = perf_data__fd(etmq->etm->session->data);
1097 
1098 		aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1099 		if (!aux_buffer->data)
1100 			return -ENOMEM;
1101 	}
1102 
1103 	/* If valid, drop the previous buffer */
1104 	if (old_buffer)
1105 		auxtrace_buffer__drop_data(old_buffer);
1106 
1107 	etmq->buf_used = 0;
1108 	etmq->buf_len = aux_buffer->size;
1109 	etmq->buf = aux_buffer->data;
1110 
1111 	return etmq->buf_len;
1112 }
1113 
1114 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1115 				    struct cs_etm_traceid_queue *tidq)
1116 {
1117 	if ((!tidq->thread) && (tidq->tid != -1))
1118 		tidq->thread = machine__find_thread(etm->machine, -1,
1119 						    tidq->tid);
1120 
1121 	if (tidq->thread)
1122 		tidq->pid = tidq->thread->pid_;
1123 }
1124 
1125 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1126 			 pid_t tid, u8 trace_chan_id)
1127 {
1128 	int cpu, err = -EINVAL;
1129 	struct cs_etm_auxtrace *etm = etmq->etm;
1130 	struct cs_etm_traceid_queue *tidq;
1131 
1132 	tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1133 	if (!tidq)
1134 		return err;
1135 
1136 	if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1137 		return err;
1138 
1139 	err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1140 	if (err)
1141 		return err;
1142 
1143 	tidq->tid = tid;
1144 	thread__zput(tidq->thread);
1145 
1146 	cs_etm__set_pid_tid_cpu(etm, tidq);
1147 	return 0;
1148 }
1149 
1150 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1151 {
1152 	return !!etmq->etm->timeless_decoding;
1153 }
1154 
1155 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1156 			      u64 trace_chan_id,
1157 			      const struct cs_etm_packet *packet,
1158 			      struct perf_sample *sample)
1159 {
1160 	/*
1161 	 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1162 	 * packet, so directly bail out with 'insn_len' = 0.
1163 	 */
1164 	if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1165 		sample->insn_len = 0;
1166 		return;
1167 	}
1168 
1169 	/*
1170 	 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1171 	 * cs_etm__t32_instr_size().
1172 	 */
1173 	if (packet->isa == CS_ETM_ISA_T32)
1174 		sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1175 							  sample->ip);
1176 	/* Otherwise, A64 and A32 instruction size are always 32-bit. */
1177 	else
1178 		sample->insn_len = 4;
1179 
1180 	cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1181 			   sample->insn_len, (void *)sample->insn);
1182 }
1183 
1184 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1185 					    struct cs_etm_traceid_queue *tidq,
1186 					    u64 addr, u64 period)
1187 {
1188 	int ret = 0;
1189 	struct cs_etm_auxtrace *etm = etmq->etm;
1190 	union perf_event *event = tidq->event_buf;
1191 	struct perf_sample sample = {.ip = 0,};
1192 
1193 	event->sample.header.type = PERF_RECORD_SAMPLE;
1194 	event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1195 	event->sample.header.size = sizeof(struct perf_event_header);
1196 
1197 	sample.ip = addr;
1198 	sample.pid = tidq->pid;
1199 	sample.tid = tidq->tid;
1200 	sample.id = etmq->etm->instructions_id;
1201 	sample.stream_id = etmq->etm->instructions_id;
1202 	sample.period = period;
1203 	sample.cpu = tidq->packet->cpu;
1204 	sample.flags = tidq->prev_packet->flags;
1205 	sample.cpumode = event->sample.header.misc;
1206 
1207 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1208 
1209 	if (etm->synth_opts.last_branch)
1210 		sample.branch_stack = tidq->last_branch;
1211 
1212 	if (etm->synth_opts.inject) {
1213 		ret = cs_etm__inject_event(event, &sample,
1214 					   etm->instructions_sample_type);
1215 		if (ret)
1216 			return ret;
1217 	}
1218 
1219 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1220 
1221 	if (ret)
1222 		pr_err(
1223 			"CS ETM Trace: failed to deliver instruction event, error %d\n",
1224 			ret);
1225 
1226 	return ret;
1227 }
1228 
1229 /*
1230  * The cs etm packet encodes an instruction range between a branch target
1231  * and the next taken branch. Generate sample accordingly.
1232  */
1233 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1234 				       struct cs_etm_traceid_queue *tidq)
1235 {
1236 	int ret = 0;
1237 	struct cs_etm_auxtrace *etm = etmq->etm;
1238 	struct perf_sample sample = {.ip = 0,};
1239 	union perf_event *event = tidq->event_buf;
1240 	struct dummy_branch_stack {
1241 		u64			nr;
1242 		u64			hw_idx;
1243 		struct branch_entry	entries;
1244 	} dummy_bs;
1245 	u64 ip;
1246 
1247 	ip = cs_etm__last_executed_instr(tidq->prev_packet);
1248 
1249 	event->sample.header.type = PERF_RECORD_SAMPLE;
1250 	event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1251 	event->sample.header.size = sizeof(struct perf_event_header);
1252 
1253 	sample.ip = ip;
1254 	sample.pid = tidq->pid;
1255 	sample.tid = tidq->tid;
1256 	sample.addr = cs_etm__first_executed_instr(tidq->packet);
1257 	sample.id = etmq->etm->branches_id;
1258 	sample.stream_id = etmq->etm->branches_id;
1259 	sample.period = 1;
1260 	sample.cpu = tidq->packet->cpu;
1261 	sample.flags = tidq->prev_packet->flags;
1262 	sample.cpumode = event->sample.header.misc;
1263 
1264 	cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1265 			  &sample);
1266 
1267 	/*
1268 	 * perf report cannot handle events without a branch stack
1269 	 */
1270 	if (etm->synth_opts.last_branch) {
1271 		dummy_bs = (struct dummy_branch_stack){
1272 			.nr = 1,
1273 			.hw_idx = -1ULL,
1274 			.entries = {
1275 				.from = sample.ip,
1276 				.to = sample.addr,
1277 			},
1278 		};
1279 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1280 	}
1281 
1282 	if (etm->synth_opts.inject) {
1283 		ret = cs_etm__inject_event(event, &sample,
1284 					   etm->branches_sample_type);
1285 		if (ret)
1286 			return ret;
1287 	}
1288 
1289 	ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1290 
1291 	if (ret)
1292 		pr_err(
1293 		"CS ETM Trace: failed to deliver instruction event, error %d\n",
1294 		ret);
1295 
1296 	return ret;
1297 }
1298 
1299 struct cs_etm_synth {
1300 	struct perf_tool dummy_tool;
1301 	struct perf_session *session;
1302 };
1303 
1304 static int cs_etm__event_synth(struct perf_tool *tool,
1305 			       union perf_event *event,
1306 			       struct perf_sample *sample __maybe_unused,
1307 			       struct machine *machine __maybe_unused)
1308 {
1309 	struct cs_etm_synth *cs_etm_synth =
1310 		      container_of(tool, struct cs_etm_synth, dummy_tool);
1311 
1312 	return perf_session__deliver_synth_event(cs_etm_synth->session,
1313 						 event, NULL);
1314 }
1315 
1316 static int cs_etm__synth_event(struct perf_session *session,
1317 			       struct perf_event_attr *attr, u64 id)
1318 {
1319 	struct cs_etm_synth cs_etm_synth;
1320 
1321 	memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1322 	cs_etm_synth.session = session;
1323 
1324 	return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1325 					   &id, cs_etm__event_synth);
1326 }
1327 
1328 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1329 				struct perf_session *session)
1330 {
1331 	struct evlist *evlist = session->evlist;
1332 	struct evsel *evsel;
1333 	struct perf_event_attr attr;
1334 	bool found = false;
1335 	u64 id;
1336 	int err;
1337 
1338 	evlist__for_each_entry(evlist, evsel) {
1339 		if (evsel->core.attr.type == etm->pmu_type) {
1340 			found = true;
1341 			break;
1342 		}
1343 	}
1344 
1345 	if (!found) {
1346 		pr_debug("No selected events with CoreSight Trace data\n");
1347 		return 0;
1348 	}
1349 
1350 	memset(&attr, 0, sizeof(struct perf_event_attr));
1351 	attr.size = sizeof(struct perf_event_attr);
1352 	attr.type = PERF_TYPE_HARDWARE;
1353 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1354 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1355 			    PERF_SAMPLE_PERIOD;
1356 	if (etm->timeless_decoding)
1357 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1358 	else
1359 		attr.sample_type |= PERF_SAMPLE_TIME;
1360 
1361 	attr.exclude_user = evsel->core.attr.exclude_user;
1362 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1363 	attr.exclude_hv = evsel->core.attr.exclude_hv;
1364 	attr.exclude_host = evsel->core.attr.exclude_host;
1365 	attr.exclude_guest = evsel->core.attr.exclude_guest;
1366 	attr.sample_id_all = evsel->core.attr.sample_id_all;
1367 	attr.read_format = evsel->core.attr.read_format;
1368 
1369 	/* create new id val to be a fixed offset from evsel id */
1370 	id = evsel->core.id[0] + 1000000000;
1371 
1372 	if (!id)
1373 		id = 1;
1374 
1375 	if (etm->synth_opts.branches) {
1376 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1377 		attr.sample_period = 1;
1378 		attr.sample_type |= PERF_SAMPLE_ADDR;
1379 		err = cs_etm__synth_event(session, &attr, id);
1380 		if (err)
1381 			return err;
1382 		etm->sample_branches = true;
1383 		etm->branches_sample_type = attr.sample_type;
1384 		etm->branches_id = id;
1385 		id += 1;
1386 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1387 	}
1388 
1389 	if (etm->synth_opts.last_branch) {
1390 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1391 		/*
1392 		 * We don't use the hardware index, but the sample generation
1393 		 * code uses the new format branch_stack with this field,
1394 		 * so the event attributes must indicate that it's present.
1395 		 */
1396 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1397 	}
1398 
1399 	if (etm->synth_opts.instructions) {
1400 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1401 		attr.sample_period = etm->synth_opts.period;
1402 		etm->instructions_sample_period = attr.sample_period;
1403 		err = cs_etm__synth_event(session, &attr, id);
1404 		if (err)
1405 			return err;
1406 		etm->sample_instructions = true;
1407 		etm->instructions_sample_type = attr.sample_type;
1408 		etm->instructions_id = id;
1409 		id += 1;
1410 	}
1411 
1412 	return 0;
1413 }
1414 
1415 static int cs_etm__sample(struct cs_etm_queue *etmq,
1416 			  struct cs_etm_traceid_queue *tidq)
1417 {
1418 	struct cs_etm_auxtrace *etm = etmq->etm;
1419 	int ret;
1420 	u8 trace_chan_id = tidq->trace_chan_id;
1421 	u64 instrs_prev;
1422 
1423 	/* Get instructions remainder from previous packet */
1424 	instrs_prev = tidq->period_instructions;
1425 
1426 	tidq->period_instructions += tidq->packet->instr_count;
1427 
1428 	/*
1429 	 * Record a branch when the last instruction in
1430 	 * PREV_PACKET is a branch.
1431 	 */
1432 	if (etm->synth_opts.last_branch &&
1433 	    tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1434 	    tidq->prev_packet->last_instr_taken_branch)
1435 		cs_etm__update_last_branch_rb(etmq, tidq);
1436 
1437 	if (etm->sample_instructions &&
1438 	    tidq->period_instructions >= etm->instructions_sample_period) {
1439 		/*
1440 		 * Emit instruction sample periodically
1441 		 * TODO: allow period to be defined in cycles and clock time
1442 		 */
1443 
1444 		/*
1445 		 * Below diagram demonstrates the instruction samples
1446 		 * generation flows:
1447 		 *
1448 		 *    Instrs     Instrs       Instrs       Instrs
1449 		 *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1450 		 *    |            |            |            |
1451 		 *    V            V            V            V
1452 		 *   --------------------------------------------------
1453 		 *            ^                                  ^
1454 		 *            |                                  |
1455 		 *         Period                             Period
1456 		 *    instructions(Pi)                   instructions(Pi')
1457 		 *
1458 		 *            |                                  |
1459 		 *            \---------------- -----------------/
1460 		 *                             V
1461 		 *                 tidq->packet->instr_count
1462 		 *
1463 		 * Instrs Sample(n...) are the synthesised samples occurring
1464 		 * every etm->instructions_sample_period instructions - as
1465 		 * defined on the perf command line.  Sample(n) is being the
1466 		 * last sample before the current etm packet, n+1 to n+3
1467 		 * samples are generated from the current etm packet.
1468 		 *
1469 		 * tidq->packet->instr_count represents the number of
1470 		 * instructions in the current etm packet.
1471 		 *
1472 		 * Period instructions (Pi) contains the the number of
1473 		 * instructions executed after the sample point(n) from the
1474 		 * previous etm packet.  This will always be less than
1475 		 * etm->instructions_sample_period.
1476 		 *
1477 		 * When generate new samples, it combines with two parts
1478 		 * instructions, one is the tail of the old packet and another
1479 		 * is the head of the new coming packet, to generate
1480 		 * sample(n+1); sample(n+2) and sample(n+3) consume the
1481 		 * instructions with sample period.  After sample(n+3), the rest
1482 		 * instructions will be used by later packet and it is assigned
1483 		 * to tidq->period_instructions for next round calculation.
1484 		 */
1485 
1486 		/*
1487 		 * Get the initial offset into the current packet instructions;
1488 		 * entry conditions ensure that instrs_prev is less than
1489 		 * etm->instructions_sample_period.
1490 		 */
1491 		u64 offset = etm->instructions_sample_period - instrs_prev;
1492 		u64 addr;
1493 
1494 		/* Prepare last branches for instruction sample */
1495 		if (etm->synth_opts.last_branch)
1496 			cs_etm__copy_last_branch_rb(etmq, tidq);
1497 
1498 		while (tidq->period_instructions >=
1499 				etm->instructions_sample_period) {
1500 			/*
1501 			 * Calculate the address of the sampled instruction (-1
1502 			 * as sample is reported as though instruction has just
1503 			 * been executed, but PC has not advanced to next
1504 			 * instruction)
1505 			 */
1506 			addr = cs_etm__instr_addr(etmq, trace_chan_id,
1507 						  tidq->packet, offset - 1);
1508 			ret = cs_etm__synth_instruction_sample(
1509 				etmq, tidq, addr,
1510 				etm->instructions_sample_period);
1511 			if (ret)
1512 				return ret;
1513 
1514 			offset += etm->instructions_sample_period;
1515 			tidq->period_instructions -=
1516 				etm->instructions_sample_period;
1517 		}
1518 	}
1519 
1520 	if (etm->sample_branches) {
1521 		bool generate_sample = false;
1522 
1523 		/* Generate sample for tracing on packet */
1524 		if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1525 			generate_sample = true;
1526 
1527 		/* Generate sample for branch taken packet */
1528 		if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1529 		    tidq->prev_packet->last_instr_taken_branch)
1530 			generate_sample = true;
1531 
1532 		if (generate_sample) {
1533 			ret = cs_etm__synth_branch_sample(etmq, tidq);
1534 			if (ret)
1535 				return ret;
1536 		}
1537 	}
1538 
1539 	cs_etm__packet_swap(etm, tidq);
1540 
1541 	return 0;
1542 }
1543 
1544 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1545 {
1546 	/*
1547 	 * When the exception packet is inserted, whether the last instruction
1548 	 * in previous range packet is taken branch or not, we need to force
1549 	 * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1550 	 * to generate branch sample for the instruction range before the
1551 	 * exception is trapped to kernel or before the exception returning.
1552 	 *
1553 	 * The exception packet includes the dummy address values, so don't
1554 	 * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1555 	 * for generating instruction and branch samples.
1556 	 */
1557 	if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1558 		tidq->prev_packet->last_instr_taken_branch = true;
1559 
1560 	return 0;
1561 }
1562 
1563 static int cs_etm__flush(struct cs_etm_queue *etmq,
1564 			 struct cs_etm_traceid_queue *tidq)
1565 {
1566 	int err = 0;
1567 	struct cs_etm_auxtrace *etm = etmq->etm;
1568 
1569 	/* Handle start tracing packet */
1570 	if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1571 		goto swap_packet;
1572 
1573 	if (etmq->etm->synth_opts.last_branch &&
1574 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1575 		u64 addr;
1576 
1577 		/* Prepare last branches for instruction sample */
1578 		cs_etm__copy_last_branch_rb(etmq, tidq);
1579 
1580 		/*
1581 		 * Generate a last branch event for the branches left in the
1582 		 * circular buffer at the end of the trace.
1583 		 *
1584 		 * Use the address of the end of the last reported execution
1585 		 * range
1586 		 */
1587 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1588 
1589 		err = cs_etm__synth_instruction_sample(
1590 			etmq, tidq, addr,
1591 			tidq->period_instructions);
1592 		if (err)
1593 			return err;
1594 
1595 		tidq->period_instructions = 0;
1596 
1597 	}
1598 
1599 	if (etm->sample_branches &&
1600 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1601 		err = cs_etm__synth_branch_sample(etmq, tidq);
1602 		if (err)
1603 			return err;
1604 	}
1605 
1606 swap_packet:
1607 	cs_etm__packet_swap(etm, tidq);
1608 
1609 	/* Reset last branches after flush the trace */
1610 	if (etm->synth_opts.last_branch)
1611 		cs_etm__reset_last_branch_rb(tidq);
1612 
1613 	return err;
1614 }
1615 
1616 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1617 			     struct cs_etm_traceid_queue *tidq)
1618 {
1619 	int err;
1620 
1621 	/*
1622 	 * It has no new packet coming and 'etmq->packet' contains the stale
1623 	 * packet which was set at the previous time with packets swapping;
1624 	 * so skip to generate branch sample to avoid stale packet.
1625 	 *
1626 	 * For this case only flush branch stack and generate a last branch
1627 	 * event for the branches left in the circular buffer at the end of
1628 	 * the trace.
1629 	 */
1630 	if (etmq->etm->synth_opts.last_branch &&
1631 	    tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1632 		u64 addr;
1633 
1634 		/* Prepare last branches for instruction sample */
1635 		cs_etm__copy_last_branch_rb(etmq, tidq);
1636 
1637 		/*
1638 		 * Use the address of the end of the last reported execution
1639 		 * range.
1640 		 */
1641 		addr = cs_etm__last_executed_instr(tidq->prev_packet);
1642 
1643 		err = cs_etm__synth_instruction_sample(
1644 			etmq, tidq, addr,
1645 			tidq->period_instructions);
1646 		if (err)
1647 			return err;
1648 
1649 		tidq->period_instructions = 0;
1650 	}
1651 
1652 	return 0;
1653 }
1654 /*
1655  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1656  *			   if need be.
1657  * Returns:	< 0	if error
1658  *		= 0	if no more auxtrace_buffer to read
1659  *		> 0	if the current buffer isn't empty yet
1660  */
1661 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1662 {
1663 	int ret;
1664 
1665 	if (!etmq->buf_len) {
1666 		ret = cs_etm__get_trace(etmq);
1667 		if (ret <= 0)
1668 			return ret;
1669 		/*
1670 		 * We cannot assume consecutive blocks in the data file
1671 		 * are contiguous, reset the decoder to force re-sync.
1672 		 */
1673 		ret = cs_etm_decoder__reset(etmq->decoder);
1674 		if (ret)
1675 			return ret;
1676 	}
1677 
1678 	return etmq->buf_len;
1679 }
1680 
1681 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1682 				 struct cs_etm_packet *packet,
1683 				 u64 end_addr)
1684 {
1685 	/* Initialise to keep compiler happy */
1686 	u16 instr16 = 0;
1687 	u32 instr32 = 0;
1688 	u64 addr;
1689 
1690 	switch (packet->isa) {
1691 	case CS_ETM_ISA_T32:
1692 		/*
1693 		 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1694 		 *
1695 		 *  b'15         b'8
1696 		 * +-----------------+--------+
1697 		 * | 1 1 0 1 1 1 1 1 |  imm8  |
1698 		 * +-----------------+--------+
1699 		 *
1700 		 * According to the specification, it only defines SVC for T32
1701 		 * with 16 bits instruction and has no definition for 32bits;
1702 		 * so below only read 2 bytes as instruction size for T32.
1703 		 */
1704 		addr = end_addr - 2;
1705 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1706 				   sizeof(instr16), (u8 *)&instr16);
1707 		if ((instr16 & 0xFF00) == 0xDF00)
1708 			return true;
1709 
1710 		break;
1711 	case CS_ETM_ISA_A32:
1712 		/*
1713 		 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1714 		 *
1715 		 *  b'31 b'28 b'27 b'24
1716 		 * +---------+---------+-------------------------+
1717 		 * |  !1111  | 1 1 1 1 |        imm24            |
1718 		 * +---------+---------+-------------------------+
1719 		 */
1720 		addr = end_addr - 4;
1721 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1722 				   sizeof(instr32), (u8 *)&instr32);
1723 		if ((instr32 & 0x0F000000) == 0x0F000000 &&
1724 		    (instr32 & 0xF0000000) != 0xF0000000)
1725 			return true;
1726 
1727 		break;
1728 	case CS_ETM_ISA_A64:
1729 		/*
1730 		 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1731 		 *
1732 		 *  b'31               b'21           b'4     b'0
1733 		 * +-----------------------+---------+-----------+
1734 		 * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1735 		 * +-----------------------+---------+-----------+
1736 		 */
1737 		addr = end_addr - 4;
1738 		cs_etm__mem_access(etmq, trace_chan_id, addr,
1739 				   sizeof(instr32), (u8 *)&instr32);
1740 		if ((instr32 & 0xFFE0001F) == 0xd4000001)
1741 			return true;
1742 
1743 		break;
1744 	case CS_ETM_ISA_UNKNOWN:
1745 	default:
1746 		break;
1747 	}
1748 
1749 	return false;
1750 }
1751 
1752 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1753 			       struct cs_etm_traceid_queue *tidq, u64 magic)
1754 {
1755 	u8 trace_chan_id = tidq->trace_chan_id;
1756 	struct cs_etm_packet *packet = tidq->packet;
1757 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1758 
1759 	if (magic == __perf_cs_etmv3_magic)
1760 		if (packet->exception_number == CS_ETMV3_EXC_SVC)
1761 			return true;
1762 
1763 	/*
1764 	 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1765 	 * HVC cases; need to check if it's SVC instruction based on
1766 	 * packet address.
1767 	 */
1768 	if (magic == __perf_cs_etmv4_magic) {
1769 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1770 		    cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1771 					 prev_packet->end_addr))
1772 			return true;
1773 	}
1774 
1775 	return false;
1776 }
1777 
1778 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1779 				       u64 magic)
1780 {
1781 	struct cs_etm_packet *packet = tidq->packet;
1782 
1783 	if (magic == __perf_cs_etmv3_magic)
1784 		if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1785 		    packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1786 		    packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1787 		    packet->exception_number == CS_ETMV3_EXC_IRQ ||
1788 		    packet->exception_number == CS_ETMV3_EXC_FIQ)
1789 			return true;
1790 
1791 	if (magic == __perf_cs_etmv4_magic)
1792 		if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1793 		    packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1794 		    packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1795 		    packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1796 		    packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1797 		    packet->exception_number == CS_ETMV4_EXC_IRQ ||
1798 		    packet->exception_number == CS_ETMV4_EXC_FIQ)
1799 			return true;
1800 
1801 	return false;
1802 }
1803 
1804 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1805 				      struct cs_etm_traceid_queue *tidq,
1806 				      u64 magic)
1807 {
1808 	u8 trace_chan_id = tidq->trace_chan_id;
1809 	struct cs_etm_packet *packet = tidq->packet;
1810 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1811 
1812 	if (magic == __perf_cs_etmv3_magic)
1813 		if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1814 		    packet->exception_number == CS_ETMV3_EXC_HYP ||
1815 		    packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1816 		    packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1817 		    packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1818 		    packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1819 		    packet->exception_number == CS_ETMV3_EXC_GENERIC)
1820 			return true;
1821 
1822 	if (magic == __perf_cs_etmv4_magic) {
1823 		if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1824 		    packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1825 		    packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1826 		    packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1827 			return true;
1828 
1829 		/*
1830 		 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1831 		 * (SMC, HVC) are taken as sync exceptions.
1832 		 */
1833 		if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1834 		    !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1835 					  prev_packet->end_addr))
1836 			return true;
1837 
1838 		/*
1839 		 * ETMv4 has 5 bits for exception number; if the numbers
1840 		 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1841 		 * they are implementation defined exceptions.
1842 		 *
1843 		 * For this case, simply take it as sync exception.
1844 		 */
1845 		if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1846 		    packet->exception_number <= CS_ETMV4_EXC_END)
1847 			return true;
1848 	}
1849 
1850 	return false;
1851 }
1852 
1853 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1854 				    struct cs_etm_traceid_queue *tidq)
1855 {
1856 	struct cs_etm_packet *packet = tidq->packet;
1857 	struct cs_etm_packet *prev_packet = tidq->prev_packet;
1858 	u8 trace_chan_id = tidq->trace_chan_id;
1859 	u64 magic;
1860 	int ret;
1861 
1862 	switch (packet->sample_type) {
1863 	case CS_ETM_RANGE:
1864 		/*
1865 		 * Immediate branch instruction without neither link nor
1866 		 * return flag, it's normal branch instruction within
1867 		 * the function.
1868 		 */
1869 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1870 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1871 			packet->flags = PERF_IP_FLAG_BRANCH;
1872 
1873 			if (packet->last_instr_cond)
1874 				packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1875 		}
1876 
1877 		/*
1878 		 * Immediate branch instruction with link (e.g. BL), this is
1879 		 * branch instruction for function call.
1880 		 */
1881 		if (packet->last_instr_type == OCSD_INSTR_BR &&
1882 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1883 			packet->flags = PERF_IP_FLAG_BRANCH |
1884 					PERF_IP_FLAG_CALL;
1885 
1886 		/*
1887 		 * Indirect branch instruction with link (e.g. BLR), this is
1888 		 * branch instruction for function call.
1889 		 */
1890 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1891 		    packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1892 			packet->flags = PERF_IP_FLAG_BRANCH |
1893 					PERF_IP_FLAG_CALL;
1894 
1895 		/*
1896 		 * Indirect branch instruction with subtype of
1897 		 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1898 		 * function return for A32/T32.
1899 		 */
1900 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1901 		    packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1902 			packet->flags = PERF_IP_FLAG_BRANCH |
1903 					PERF_IP_FLAG_RETURN;
1904 
1905 		/*
1906 		 * Indirect branch instruction without link (e.g. BR), usually
1907 		 * this is used for function return, especially for functions
1908 		 * within dynamic link lib.
1909 		 */
1910 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1911 		    packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1912 			packet->flags = PERF_IP_FLAG_BRANCH |
1913 					PERF_IP_FLAG_RETURN;
1914 
1915 		/* Return instruction for function return. */
1916 		if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1917 		    packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1918 			packet->flags = PERF_IP_FLAG_BRANCH |
1919 					PERF_IP_FLAG_RETURN;
1920 
1921 		/*
1922 		 * Decoder might insert a discontinuity in the middle of
1923 		 * instruction packets, fixup prev_packet with flag
1924 		 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1925 		 */
1926 		if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1927 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1928 					      PERF_IP_FLAG_TRACE_BEGIN;
1929 
1930 		/*
1931 		 * If the previous packet is an exception return packet
1932 		 * and the return address just follows SVC instruction,
1933 		 * it needs to calibrate the previous packet sample flags
1934 		 * as PERF_IP_FLAG_SYSCALLRET.
1935 		 */
1936 		if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1937 					   PERF_IP_FLAG_RETURN |
1938 					   PERF_IP_FLAG_INTERRUPT) &&
1939 		    cs_etm__is_svc_instr(etmq, trace_chan_id,
1940 					 packet, packet->start_addr))
1941 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
1942 					     PERF_IP_FLAG_RETURN |
1943 					     PERF_IP_FLAG_SYSCALLRET;
1944 		break;
1945 	case CS_ETM_DISCONTINUITY:
1946 		/*
1947 		 * The trace is discontinuous, if the previous packet is
1948 		 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1949 		 * for previous packet.
1950 		 */
1951 		if (prev_packet->sample_type == CS_ETM_RANGE)
1952 			prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1953 					      PERF_IP_FLAG_TRACE_END;
1954 		break;
1955 	case CS_ETM_EXCEPTION:
1956 		ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1957 		if (ret)
1958 			return ret;
1959 
1960 		/* The exception is for system call. */
1961 		if (cs_etm__is_syscall(etmq, tidq, magic))
1962 			packet->flags = PERF_IP_FLAG_BRANCH |
1963 					PERF_IP_FLAG_CALL |
1964 					PERF_IP_FLAG_SYSCALLRET;
1965 		/*
1966 		 * The exceptions are triggered by external signals from bus,
1967 		 * interrupt controller, debug module, PE reset or halt.
1968 		 */
1969 		else if (cs_etm__is_async_exception(tidq, magic))
1970 			packet->flags = PERF_IP_FLAG_BRANCH |
1971 					PERF_IP_FLAG_CALL |
1972 					PERF_IP_FLAG_ASYNC |
1973 					PERF_IP_FLAG_INTERRUPT;
1974 		/*
1975 		 * Otherwise, exception is caused by trap, instruction &
1976 		 * data fault, or alignment errors.
1977 		 */
1978 		else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1979 			packet->flags = PERF_IP_FLAG_BRANCH |
1980 					PERF_IP_FLAG_CALL |
1981 					PERF_IP_FLAG_INTERRUPT;
1982 
1983 		/*
1984 		 * When the exception packet is inserted, since exception
1985 		 * packet is not used standalone for generating samples
1986 		 * and it's affiliation to the previous instruction range
1987 		 * packet; so set previous range packet flags to tell perf
1988 		 * it is an exception taken branch.
1989 		 */
1990 		if (prev_packet->sample_type == CS_ETM_RANGE)
1991 			prev_packet->flags = packet->flags;
1992 		break;
1993 	case CS_ETM_EXCEPTION_RET:
1994 		/*
1995 		 * When the exception return packet is inserted, since
1996 		 * exception return packet is not used standalone for
1997 		 * generating samples and it's affiliation to the previous
1998 		 * instruction range packet; so set previous range packet
1999 		 * flags to tell perf it is an exception return branch.
2000 		 *
2001 		 * The exception return can be for either system call or
2002 		 * other exception types; unfortunately the packet doesn't
2003 		 * contain exception type related info so we cannot decide
2004 		 * the exception type purely based on exception return packet.
2005 		 * If we record the exception number from exception packet and
2006 		 * reuse it for exception return packet, this is not reliable
2007 		 * due the trace can be discontinuity or the interrupt can
2008 		 * be nested, thus the recorded exception number cannot be
2009 		 * used for exception return packet for these two cases.
2010 		 *
2011 		 * For exception return packet, we only need to distinguish the
2012 		 * packet is for system call or for other types.  Thus the
2013 		 * decision can be deferred when receive the next packet which
2014 		 * contains the return address, based on the return address we
2015 		 * can read out the previous instruction and check if it's a
2016 		 * system call instruction and then calibrate the sample flag
2017 		 * as needed.
2018 		 */
2019 		if (prev_packet->sample_type == CS_ETM_RANGE)
2020 			prev_packet->flags = PERF_IP_FLAG_BRANCH |
2021 					     PERF_IP_FLAG_RETURN |
2022 					     PERF_IP_FLAG_INTERRUPT;
2023 		break;
2024 	case CS_ETM_EMPTY:
2025 	default:
2026 		break;
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2033 {
2034 	int ret = 0;
2035 	size_t processed = 0;
2036 
2037 	/*
2038 	 * Packets are decoded and added to the decoder's packet queue
2039 	 * until the decoder packet processing callback has requested that
2040 	 * processing stops or there is nothing left in the buffer.  Normal
2041 	 * operations that stop processing are a timestamp packet or a full
2042 	 * decoder buffer queue.
2043 	 */
2044 	ret = cs_etm_decoder__process_data_block(etmq->decoder,
2045 						 etmq->offset,
2046 						 &etmq->buf[etmq->buf_used],
2047 						 etmq->buf_len,
2048 						 &processed);
2049 	if (ret)
2050 		goto out;
2051 
2052 	etmq->offset += processed;
2053 	etmq->buf_used += processed;
2054 	etmq->buf_len -= processed;
2055 
2056 out:
2057 	return ret;
2058 }
2059 
2060 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2061 					 struct cs_etm_traceid_queue *tidq)
2062 {
2063 	int ret;
2064 	struct cs_etm_packet_queue *packet_queue;
2065 
2066 	packet_queue = &tidq->packet_queue;
2067 
2068 	/* Process each packet in this chunk */
2069 	while (1) {
2070 		ret = cs_etm_decoder__get_packet(packet_queue,
2071 						 tidq->packet);
2072 		if (ret <= 0)
2073 			/*
2074 			 * Stop processing this chunk on
2075 			 * end of data or error
2076 			 */
2077 			break;
2078 
2079 		/*
2080 		 * Since packet addresses are swapped in packet
2081 		 * handling within below switch() statements,
2082 		 * thus setting sample flags must be called
2083 		 * prior to switch() statement to use address
2084 		 * information before packets swapping.
2085 		 */
2086 		ret = cs_etm__set_sample_flags(etmq, tidq);
2087 		if (ret < 0)
2088 			break;
2089 
2090 		switch (tidq->packet->sample_type) {
2091 		case CS_ETM_RANGE:
2092 			/*
2093 			 * If the packet contains an instruction
2094 			 * range, generate instruction sequence
2095 			 * events.
2096 			 */
2097 			cs_etm__sample(etmq, tidq);
2098 			break;
2099 		case CS_ETM_EXCEPTION:
2100 		case CS_ETM_EXCEPTION_RET:
2101 			/*
2102 			 * If the exception packet is coming,
2103 			 * make sure the previous instruction
2104 			 * range packet to be handled properly.
2105 			 */
2106 			cs_etm__exception(tidq);
2107 			break;
2108 		case CS_ETM_DISCONTINUITY:
2109 			/*
2110 			 * Discontinuity in trace, flush
2111 			 * previous branch stack
2112 			 */
2113 			cs_etm__flush(etmq, tidq);
2114 			break;
2115 		case CS_ETM_EMPTY:
2116 			/*
2117 			 * Should not receive empty packet,
2118 			 * report error.
2119 			 */
2120 			pr_err("CS ETM Trace: empty packet\n");
2121 			return -EINVAL;
2122 		default:
2123 			break;
2124 		}
2125 	}
2126 
2127 	return ret;
2128 }
2129 
2130 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2131 {
2132 	int idx;
2133 	struct int_node *inode;
2134 	struct cs_etm_traceid_queue *tidq;
2135 	struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2136 
2137 	intlist__for_each_entry(inode, traceid_queues_list) {
2138 		idx = (int)(intptr_t)inode->priv;
2139 		tidq = etmq->traceid_queues[idx];
2140 
2141 		/* Ignore return value */
2142 		cs_etm__process_traceid_queue(etmq, tidq);
2143 
2144 		/*
2145 		 * Generate an instruction sample with the remaining
2146 		 * branchstack entries.
2147 		 */
2148 		cs_etm__flush(etmq, tidq);
2149 	}
2150 }
2151 
2152 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2153 {
2154 	int err = 0;
2155 	struct cs_etm_traceid_queue *tidq;
2156 
2157 	tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2158 	if (!tidq)
2159 		return -EINVAL;
2160 
2161 	/* Go through each buffer in the queue and decode them one by one */
2162 	while (1) {
2163 		err = cs_etm__get_data_block(etmq);
2164 		if (err <= 0)
2165 			return err;
2166 
2167 		/* Run trace decoder until buffer consumed or end of trace */
2168 		do {
2169 			err = cs_etm__decode_data_block(etmq);
2170 			if (err)
2171 				return err;
2172 
2173 			/*
2174 			 * Process each packet in this chunk, nothing to do if
2175 			 * an error occurs other than hoping the next one will
2176 			 * be better.
2177 			 */
2178 			err = cs_etm__process_traceid_queue(etmq, tidq);
2179 
2180 		} while (etmq->buf_len);
2181 
2182 		if (err == 0)
2183 			/* Flush any remaining branch stack entries */
2184 			err = cs_etm__end_block(etmq, tidq);
2185 	}
2186 
2187 	return err;
2188 }
2189 
2190 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2191 					   pid_t tid)
2192 {
2193 	unsigned int i;
2194 	struct auxtrace_queues *queues = &etm->queues;
2195 
2196 	for (i = 0; i < queues->nr_queues; i++) {
2197 		struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2198 		struct cs_etm_queue *etmq = queue->priv;
2199 		struct cs_etm_traceid_queue *tidq;
2200 
2201 		if (!etmq)
2202 			continue;
2203 
2204 		tidq = cs_etm__etmq_get_traceid_queue(etmq,
2205 						CS_ETM_PER_THREAD_TRACEID);
2206 
2207 		if (!tidq)
2208 			continue;
2209 
2210 		if ((tid == -1) || (tidq->tid == tid)) {
2211 			cs_etm__set_pid_tid_cpu(etm, tidq);
2212 			cs_etm__run_decoder(etmq);
2213 		}
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2220 {
2221 	int ret = 0;
2222 	unsigned int cs_queue_nr, queue_nr;
2223 	u8 trace_chan_id;
2224 	u64 timestamp;
2225 	struct auxtrace_queue *queue;
2226 	struct cs_etm_queue *etmq;
2227 	struct cs_etm_traceid_queue *tidq;
2228 
2229 	while (1) {
2230 		if (!etm->heap.heap_cnt)
2231 			goto out;
2232 
2233 		/* Take the entry at the top of the min heap */
2234 		cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2235 		queue_nr = TO_QUEUE_NR(cs_queue_nr);
2236 		trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2237 		queue = &etm->queues.queue_array[queue_nr];
2238 		etmq = queue->priv;
2239 
2240 		/*
2241 		 * Remove the top entry from the heap since we are about
2242 		 * to process it.
2243 		 */
2244 		auxtrace_heap__pop(&etm->heap);
2245 
2246 		tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2247 		if (!tidq) {
2248 			/*
2249 			 * No traceID queue has been allocated for this traceID,
2250 			 * which means something somewhere went very wrong.  No
2251 			 * other choice than simply exit.
2252 			 */
2253 			ret = -EINVAL;
2254 			goto out;
2255 		}
2256 
2257 		/*
2258 		 * Packets associated with this timestamp are already in
2259 		 * the etmq's traceID queue, so process them.
2260 		 */
2261 		ret = cs_etm__process_traceid_queue(etmq, tidq);
2262 		if (ret < 0)
2263 			goto out;
2264 
2265 		/*
2266 		 * Packets for this timestamp have been processed, time to
2267 		 * move on to the next timestamp, fetching a new auxtrace_buffer
2268 		 * if need be.
2269 		 */
2270 refetch:
2271 		ret = cs_etm__get_data_block(etmq);
2272 		if (ret < 0)
2273 			goto out;
2274 
2275 		/*
2276 		 * No more auxtrace_buffers to process in this etmq, simply
2277 		 * move on to another entry in the auxtrace_heap.
2278 		 */
2279 		if (!ret)
2280 			continue;
2281 
2282 		ret = cs_etm__decode_data_block(etmq);
2283 		if (ret)
2284 			goto out;
2285 
2286 		timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2287 
2288 		if (!timestamp) {
2289 			/*
2290 			 * Function cs_etm__decode_data_block() returns when
2291 			 * there is no more traces to decode in the current
2292 			 * auxtrace_buffer OR when a timestamp has been
2293 			 * encountered on any of the traceID queues.  Since we
2294 			 * did not get a timestamp, there is no more traces to
2295 			 * process in this auxtrace_buffer.  As such empty and
2296 			 * flush all traceID queues.
2297 			 */
2298 			cs_etm__clear_all_traceid_queues(etmq);
2299 
2300 			/* Fetch another auxtrace_buffer for this etmq */
2301 			goto refetch;
2302 		}
2303 
2304 		/*
2305 		 * Add to the min heap the timestamp for packets that have
2306 		 * just been decoded.  They will be processed and synthesized
2307 		 * during the next call to cs_etm__process_traceid_queue() for
2308 		 * this queue/traceID.
2309 		 */
2310 		cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2311 		ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2312 	}
2313 
2314 out:
2315 	return ret;
2316 }
2317 
2318 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2319 					union perf_event *event)
2320 {
2321 	struct thread *th;
2322 
2323 	if (etm->timeless_decoding)
2324 		return 0;
2325 
2326 	/*
2327 	 * Add the tid/pid to the log so that we can get a match when
2328 	 * we get a contextID from the decoder.
2329 	 */
2330 	th = machine__findnew_thread(etm->machine,
2331 				     event->itrace_start.pid,
2332 				     event->itrace_start.tid);
2333 	if (!th)
2334 		return -ENOMEM;
2335 
2336 	thread__put(th);
2337 
2338 	return 0;
2339 }
2340 
2341 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2342 					   union perf_event *event)
2343 {
2344 	struct thread *th;
2345 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2346 
2347 	/*
2348 	 * Context switch in per-thread mode are irrelevant since perf
2349 	 * will start/stop tracing as the process is scheduled.
2350 	 */
2351 	if (etm->timeless_decoding)
2352 		return 0;
2353 
2354 	/*
2355 	 * SWITCH_IN events carry the next process to be switched out while
2356 	 * SWITCH_OUT events carry the process to be switched in.  As such
2357 	 * we don't care about IN events.
2358 	 */
2359 	if (!out)
2360 		return 0;
2361 
2362 	/*
2363 	 * Add the tid/pid to the log so that we can get a match when
2364 	 * we get a contextID from the decoder.
2365 	 */
2366 	th = machine__findnew_thread(etm->machine,
2367 				     event->context_switch.next_prev_pid,
2368 				     event->context_switch.next_prev_tid);
2369 	if (!th)
2370 		return -ENOMEM;
2371 
2372 	thread__put(th);
2373 
2374 	return 0;
2375 }
2376 
2377 static int cs_etm__process_event(struct perf_session *session,
2378 				 union perf_event *event,
2379 				 struct perf_sample *sample,
2380 				 struct perf_tool *tool)
2381 {
2382 	int err = 0;
2383 	u64 timestamp;
2384 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2385 						   struct cs_etm_auxtrace,
2386 						   auxtrace);
2387 
2388 	if (dump_trace)
2389 		return 0;
2390 
2391 	if (!tool->ordered_events) {
2392 		pr_err("CoreSight ETM Trace requires ordered events\n");
2393 		return -EINVAL;
2394 	}
2395 
2396 	if (sample->time && (sample->time != (u64) -1))
2397 		timestamp = sample->time;
2398 	else
2399 		timestamp = 0;
2400 
2401 	if (timestamp || etm->timeless_decoding) {
2402 		err = cs_etm__update_queues(etm);
2403 		if (err)
2404 			return err;
2405 	}
2406 
2407 	if (etm->timeless_decoding &&
2408 	    event->header.type == PERF_RECORD_EXIT)
2409 		return cs_etm__process_timeless_queues(etm,
2410 						       event->fork.tid);
2411 
2412 	if (event->header.type == PERF_RECORD_ITRACE_START)
2413 		return cs_etm__process_itrace_start(etm, event);
2414 	else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2415 		return cs_etm__process_switch_cpu_wide(etm, event);
2416 
2417 	if (!etm->timeless_decoding &&
2418 	    event->header.type == PERF_RECORD_AUX)
2419 		return cs_etm__process_queues(etm);
2420 
2421 	return 0;
2422 }
2423 
2424 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2425 					  union perf_event *event,
2426 					  struct perf_tool *tool __maybe_unused)
2427 {
2428 	struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2429 						   struct cs_etm_auxtrace,
2430 						   auxtrace);
2431 	if (!etm->data_queued) {
2432 		struct auxtrace_buffer *buffer;
2433 		off_t  data_offset;
2434 		int fd = perf_data__fd(session->data);
2435 		bool is_pipe = perf_data__is_pipe(session->data);
2436 		int err;
2437 
2438 		if (is_pipe)
2439 			data_offset = 0;
2440 		else {
2441 			data_offset = lseek(fd, 0, SEEK_CUR);
2442 			if (data_offset == -1)
2443 				return -errno;
2444 		}
2445 
2446 		err = auxtrace_queues__add_event(&etm->queues, session,
2447 						 event, data_offset, &buffer);
2448 		if (err)
2449 			return err;
2450 
2451 		if (dump_trace)
2452 			if (auxtrace_buffer__get_data(buffer, fd)) {
2453 				cs_etm__dump_event(etm, buffer);
2454 				auxtrace_buffer__put_data(buffer);
2455 			}
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2462 {
2463 	struct evsel *evsel;
2464 	struct evlist *evlist = etm->session->evlist;
2465 	bool timeless_decoding = true;
2466 
2467 	/*
2468 	 * Circle through the list of event and complain if we find one
2469 	 * with the time bit set.
2470 	 */
2471 	evlist__for_each_entry(evlist, evsel) {
2472 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2473 			timeless_decoding = false;
2474 	}
2475 
2476 	return timeless_decoding;
2477 }
2478 
2479 static const char * const cs_etm_global_header_fmts[] = {
2480 	[CS_HEADER_VERSION]	= "	Header version		       %llx\n",
2481 	[CS_PMU_TYPE_CPUS]	= "	PMU type/num cpus	       %llx\n",
2482 	[CS_ETM_SNAPSHOT]	= "	Snapshot		       %llx\n",
2483 };
2484 
2485 static const char * const cs_etm_priv_fmts[] = {
2486 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2487 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2488 	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2489 	[CS_ETM_ETMCR]		= "	ETMCR			       %llx\n",
2490 	[CS_ETM_ETMTRACEIDR]	= "	ETMTRACEIDR		       %llx\n",
2491 	[CS_ETM_ETMCCER]	= "	ETMCCER			       %llx\n",
2492 	[CS_ETM_ETMIDR]		= "	ETMIDR			       %llx\n",
2493 };
2494 
2495 static const char * const cs_etmv4_priv_fmts[] = {
2496 	[CS_ETM_MAGIC]		= "	Magic number		       %llx\n",
2497 	[CS_ETM_CPU]		= "	CPU			       %lld\n",
2498 	[CS_ETM_NR_TRC_PARAMS]	= "	NR_TRC_PARAMS		       %llx\n",
2499 	[CS_ETMV4_TRCCONFIGR]	= "	TRCCONFIGR		       %llx\n",
2500 	[CS_ETMV4_TRCTRACEIDR]	= "	TRCTRACEIDR		       %llx\n",
2501 	[CS_ETMV4_TRCIDR0]	= "	TRCIDR0			       %llx\n",
2502 	[CS_ETMV4_TRCIDR1]	= "	TRCIDR1			       %llx\n",
2503 	[CS_ETMV4_TRCIDR2]	= "	TRCIDR2			       %llx\n",
2504 	[CS_ETMV4_TRCIDR8]	= "	TRCIDR8			       %llx\n",
2505 	[CS_ETMV4_TRCAUTHSTATUS] = "	TRCAUTHSTATUS		       %llx\n",
2506 };
2507 
2508 static const char * const param_unk_fmt =
2509 	"	Unknown parameter [%d]	       %llx\n";
2510 static const char * const magic_unk_fmt =
2511 	"	Magic number Unknown	       %llx\n";
2512 
2513 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2514 {
2515 	int i = *offset, j, nr_params = 0, fmt_offset;
2516 	__u64 magic;
2517 
2518 	/* check magic value */
2519 	magic = val[i + CS_ETM_MAGIC];
2520 	if ((magic != __perf_cs_etmv3_magic) &&
2521 	    (magic != __perf_cs_etmv4_magic)) {
2522 		/* failure - note bad magic value */
2523 		fprintf(stdout, magic_unk_fmt, magic);
2524 		return -EINVAL;
2525 	}
2526 
2527 	/* print common header block */
2528 	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2529 	fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2530 
2531 	if (magic == __perf_cs_etmv3_magic) {
2532 		nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2533 		fmt_offset = CS_ETM_ETMCR;
2534 		/* after common block, offset format index past NR_PARAMS */
2535 		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2536 			fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2537 	} else if (magic == __perf_cs_etmv4_magic) {
2538 		nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2539 		fmt_offset = CS_ETMV4_TRCCONFIGR;
2540 		/* after common block, offset format index past NR_PARAMS */
2541 		for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2542 			fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2543 	}
2544 	*offset = i;
2545 	return 0;
2546 }
2547 
2548 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2549 {
2550 	int i = *offset, j, total_params = 0;
2551 	__u64 magic;
2552 
2553 	magic = val[i + CS_ETM_MAGIC];
2554 	/* total params to print is NR_PARAMS + common block size for v1 */
2555 	total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2556 
2557 	if (magic == __perf_cs_etmv3_magic) {
2558 		for (j = 0; j < total_params; j++, i++) {
2559 			/* if newer record - could be excess params */
2560 			if (j >= CS_ETM_PRIV_MAX)
2561 				fprintf(stdout, param_unk_fmt, j, val[i]);
2562 			else
2563 				fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2564 		}
2565 	} else if (magic == __perf_cs_etmv4_magic) {
2566 		for (j = 0; j < total_params; j++, i++) {
2567 			/* if newer record - could be excess params */
2568 			if (j >= CS_ETMV4_PRIV_MAX)
2569 				fprintf(stdout, param_unk_fmt, j, val[i]);
2570 			else
2571 				fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2572 		}
2573 	} else {
2574 		/* failure - note bad magic value and error out */
2575 		fprintf(stdout, magic_unk_fmt, magic);
2576 		return -EINVAL;
2577 	}
2578 	*offset = i;
2579 	return 0;
2580 }
2581 
2582 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2583 {
2584 	int i, cpu = 0, version, err;
2585 
2586 	/* bail out early on bad header version */
2587 	version = val[0];
2588 	if (version > CS_HEADER_CURRENT_VERSION) {
2589 		/* failure.. return */
2590 		fprintf(stdout, "	Unknown Header Version = %x, ", version);
2591 		fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2592 		return;
2593 	}
2594 
2595 	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2596 		fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2597 
2598 	for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2599 		if (version == 0)
2600 			err = cs_etm__print_cpu_metadata_v0(val, &i);
2601 		else if (version == 1)
2602 			err = cs_etm__print_cpu_metadata_v1(val, &i);
2603 		if (err)
2604 			return;
2605 	}
2606 }
2607 
2608 /*
2609  * Read a single cpu parameter block from the auxtrace_info priv block.
2610  *
2611  * For version 1 there is a per cpu nr_params entry. If we are handling
2612  * version 1 file, then there may be less, the same, or more params
2613  * indicated by this value than the compile time number we understand.
2614  *
2615  * For a version 0 info block, there are a fixed number, and we need to
2616  * fill out the nr_param value in the metadata we create.
2617  */
2618 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2619 				    int out_blk_size, int nr_params_v0)
2620 {
2621 	u64 *metadata = NULL;
2622 	int hdr_version;
2623 	int nr_in_params, nr_out_params, nr_cmn_params;
2624 	int i, k;
2625 
2626 	metadata = zalloc(sizeof(*metadata) * out_blk_size);
2627 	if (!metadata)
2628 		return NULL;
2629 
2630 	/* read block current index & version */
2631 	i = *buff_in_offset;
2632 	hdr_version = buff_in[CS_HEADER_VERSION];
2633 
2634 	if (!hdr_version) {
2635 	/* read version 0 info block into a version 1 metadata block  */
2636 		nr_in_params = nr_params_v0;
2637 		metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2638 		metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2639 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2640 		/* remaining block params at offset +1 from source */
2641 		for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2642 			metadata[k + 1] = buff_in[i + k];
2643 		/* version 0 has 2 common params */
2644 		nr_cmn_params = 2;
2645 	} else {
2646 	/* read version 1 info block - input and output nr_params may differ */
2647 		/* version 1 has 3 common params */
2648 		nr_cmn_params = 3;
2649 		nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2650 
2651 		/* if input has more params than output - skip excess */
2652 		nr_out_params = nr_in_params + nr_cmn_params;
2653 		if (nr_out_params > out_blk_size)
2654 			nr_out_params = out_blk_size;
2655 
2656 		for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2657 			metadata[k] = buff_in[i + k];
2658 
2659 		/* record the actual nr params we copied */
2660 		metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2661 	}
2662 
2663 	/* adjust in offset by number of in params used */
2664 	i += nr_in_params + nr_cmn_params;
2665 	*buff_in_offset = i;
2666 	return metadata;
2667 }
2668 
2669 int cs_etm__process_auxtrace_info(union perf_event *event,
2670 				  struct perf_session *session)
2671 {
2672 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2673 	struct cs_etm_auxtrace *etm = NULL;
2674 	struct int_node *inode;
2675 	unsigned int pmu_type;
2676 	int event_header_size = sizeof(struct perf_event_header);
2677 	int info_header_size;
2678 	int total_size = auxtrace_info->header.size;
2679 	int priv_size = 0;
2680 	int num_cpu, trcidr_idx;
2681 	int err = 0;
2682 	int i, j;
2683 	u64 *ptr, *hdr = NULL;
2684 	u64 **metadata = NULL;
2685 	u64 hdr_version;
2686 
2687 	/*
2688 	 * sizeof(auxtrace_info_event::type) +
2689 	 * sizeof(auxtrace_info_event::reserved) == 8
2690 	 */
2691 	info_header_size = 8;
2692 
2693 	if (total_size < (event_header_size + info_header_size))
2694 		return -EINVAL;
2695 
2696 	priv_size = total_size - event_header_size - info_header_size;
2697 
2698 	/* First the global part */
2699 	ptr = (u64 *) auxtrace_info->priv;
2700 
2701 	/* Look for version of the header */
2702 	hdr_version = ptr[0];
2703 	if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2704 		/* print routine will print an error on bad version */
2705 		if (dump_trace)
2706 			cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2707 		return -EINVAL;
2708 	}
2709 
2710 	hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2711 	if (!hdr)
2712 		return -ENOMEM;
2713 
2714 	/* Extract header information - see cs-etm.h for format */
2715 	for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2716 		hdr[i] = ptr[i];
2717 	num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2718 	pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2719 				    0xffffffff);
2720 
2721 	/*
2722 	 * Create an RB tree for traceID-metadata tuple.  Since the conversion
2723 	 * has to be made for each packet that gets decoded, optimizing access
2724 	 * in anything other than a sequential array is worth doing.
2725 	 */
2726 	traceid_list = intlist__new(NULL);
2727 	if (!traceid_list) {
2728 		err = -ENOMEM;
2729 		goto err_free_hdr;
2730 	}
2731 
2732 	metadata = zalloc(sizeof(*metadata) * num_cpu);
2733 	if (!metadata) {
2734 		err = -ENOMEM;
2735 		goto err_free_traceid_list;
2736 	}
2737 
2738 	/*
2739 	 * The metadata is stored in the auxtrace_info section and encodes
2740 	 * the configuration of the ARM embedded trace macrocell which is
2741 	 * required by the trace decoder to properly decode the trace due
2742 	 * to its highly compressed nature.
2743 	 */
2744 	for (j = 0; j < num_cpu; j++) {
2745 		if (ptr[i] == __perf_cs_etmv3_magic) {
2746 			metadata[j] =
2747 				cs_etm__create_meta_blk(ptr, &i,
2748 							CS_ETM_PRIV_MAX,
2749 							CS_ETM_NR_TRC_PARAMS_V0);
2750 
2751 			/* The traceID is our handle */
2752 			trcidr_idx = CS_ETM_ETMTRACEIDR;
2753 
2754 		} else if (ptr[i] == __perf_cs_etmv4_magic) {
2755 			metadata[j] =
2756 				cs_etm__create_meta_blk(ptr, &i,
2757 							CS_ETMV4_PRIV_MAX,
2758 							CS_ETMV4_NR_TRC_PARAMS_V0);
2759 
2760 			/* The traceID is our handle */
2761 			trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2762 		}
2763 
2764 		if (!metadata[j]) {
2765 			err = -ENOMEM;
2766 			goto err_free_metadata;
2767 		}
2768 
2769 		/* Get an RB node for this CPU */
2770 		inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2771 
2772 		/* Something went wrong, no need to continue */
2773 		if (!inode) {
2774 			err = -ENOMEM;
2775 			goto err_free_metadata;
2776 		}
2777 
2778 		/*
2779 		 * The node for that CPU should not be taken.
2780 		 * Back out if that's the case.
2781 		 */
2782 		if (inode->priv) {
2783 			err = -EINVAL;
2784 			goto err_free_metadata;
2785 		}
2786 		/* All good, associate the traceID with the metadata pointer */
2787 		inode->priv = metadata[j];
2788 	}
2789 
2790 	/*
2791 	 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2792 	 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2793 	 * global metadata, and each cpu's metadata respectively.
2794 	 * The following tests if the correct number of double words was
2795 	 * present in the auxtrace info section.
2796 	 */
2797 	if (i * 8 != priv_size) {
2798 		err = -EINVAL;
2799 		goto err_free_metadata;
2800 	}
2801 
2802 	etm = zalloc(sizeof(*etm));
2803 
2804 	if (!etm) {
2805 		err = -ENOMEM;
2806 		goto err_free_metadata;
2807 	}
2808 
2809 	err = auxtrace_queues__init(&etm->queues);
2810 	if (err)
2811 		goto err_free_etm;
2812 
2813 	etm->session = session;
2814 	etm->machine = &session->machines.host;
2815 
2816 	etm->num_cpu = num_cpu;
2817 	etm->pmu_type = pmu_type;
2818 	etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2819 	etm->metadata = metadata;
2820 	etm->auxtrace_type = auxtrace_info->type;
2821 	etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2822 
2823 	etm->auxtrace.process_event = cs_etm__process_event;
2824 	etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2825 	etm->auxtrace.flush_events = cs_etm__flush_events;
2826 	etm->auxtrace.free_events = cs_etm__free_events;
2827 	etm->auxtrace.free = cs_etm__free;
2828 	etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
2829 	session->auxtrace = &etm->auxtrace;
2830 
2831 	etm->unknown_thread = thread__new(999999999, 999999999);
2832 	if (!etm->unknown_thread) {
2833 		err = -ENOMEM;
2834 		goto err_free_queues;
2835 	}
2836 
2837 	/*
2838 	 * Initialize list node so that at thread__zput() we can avoid
2839 	 * segmentation fault at list_del_init().
2840 	 */
2841 	INIT_LIST_HEAD(&etm->unknown_thread->node);
2842 
2843 	err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2844 	if (err)
2845 		goto err_delete_thread;
2846 
2847 	if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2848 		err = -ENOMEM;
2849 		goto err_delete_thread;
2850 	}
2851 
2852 	if (dump_trace) {
2853 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2854 		return 0;
2855 	}
2856 
2857 	if (session->itrace_synth_opts->set) {
2858 		etm->synth_opts = *session->itrace_synth_opts;
2859 	} else {
2860 		itrace_synth_opts__set_default(&etm->synth_opts,
2861 				session->itrace_synth_opts->default_no_sample);
2862 		etm->synth_opts.callchain = false;
2863 	}
2864 
2865 	err = cs_etm__synth_events(etm, session);
2866 	if (err)
2867 		goto err_delete_thread;
2868 
2869 	err = auxtrace_queues__process_index(&etm->queues, session);
2870 	if (err)
2871 		goto err_delete_thread;
2872 
2873 	etm->data_queued = etm->queues.populated;
2874 
2875 	return 0;
2876 
2877 err_delete_thread:
2878 	thread__zput(etm->unknown_thread);
2879 err_free_queues:
2880 	auxtrace_queues__free(&etm->queues);
2881 	session->auxtrace = NULL;
2882 err_free_etm:
2883 	zfree(&etm);
2884 err_free_metadata:
2885 	/* No need to check @metadata[j], free(NULL) is supported */
2886 	for (j = 0; j < num_cpu; j++)
2887 		zfree(&metadata[j]);
2888 	zfree(&metadata);
2889 err_free_traceid_list:
2890 	intlist__delete(traceid_list);
2891 err_free_hdr:
2892 	zfree(&hdr);
2893 	/*
2894 	 * At this point, as a minimum we have valid header. Dump the rest of
2895 	 * the info section - the print routines will error out on structural
2896 	 * issues.
2897 	 */
2898 	if (dump_trace)
2899 		cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2900 	return err;
2901 }
2902