1 /* 2 * builtin-timechart.c - make an svg timechart of system activity 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * 6 * Authors: 7 * Arjan van de Ven <arjan@linux.intel.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; version 2 12 * of the License. 13 */ 14 15 #include <traceevent/event-parse.h> 16 17 #include "builtin.h" 18 19 #include "util/util.h" 20 21 #include "util/color.h" 22 #include <linux/list.h> 23 #include "util/cache.h" 24 #include "util/evlist.h" 25 #include "util/evsel.h" 26 #include <linux/rbtree.h> 27 #include "util/symbol.h" 28 #include "util/callchain.h" 29 #include "util/strlist.h" 30 31 #include "perf.h" 32 #include "util/header.h" 33 #include "util/parse-options.h" 34 #include "util/parse-events.h" 35 #include "util/event.h" 36 #include "util/session.h" 37 #include "util/svghelper.h" 38 #include "util/tool.h" 39 #include "util/data.h" 40 41 #define SUPPORT_OLD_POWER_EVENTS 1 42 #define PWR_EVENT_EXIT -1 43 44 static int proc_num = 15; 45 46 static unsigned int numcpus; 47 static u64 min_freq; /* Lowest CPU frequency seen */ 48 static u64 max_freq; /* Highest CPU frequency seen */ 49 static u64 turbo_frequency; 50 51 static u64 first_time, last_time; 52 53 static bool power_only; 54 static bool tasks_only; 55 56 57 struct per_pid; 58 struct per_pidcomm; 59 60 struct cpu_sample; 61 struct power_event; 62 struct wake_event; 63 64 struct sample_wrapper; 65 66 /* 67 * Datastructure layout: 68 * We keep an list of "pid"s, matching the kernels notion of a task struct. 69 * Each "pid" entry, has a list of "comm"s. 70 * this is because we want to track different programs different, while 71 * exec will reuse the original pid (by design). 72 * Each comm has a list of samples that will be used to draw 73 * final graph. 74 */ 75 76 struct per_pid { 77 struct per_pid *next; 78 79 int pid; 80 int ppid; 81 82 u64 start_time; 83 u64 end_time; 84 u64 total_time; 85 int display; 86 87 struct per_pidcomm *all; 88 struct per_pidcomm *current; 89 }; 90 91 92 struct per_pidcomm { 93 struct per_pidcomm *next; 94 95 u64 start_time; 96 u64 end_time; 97 u64 total_time; 98 99 int Y; 100 int display; 101 102 long state; 103 u64 state_since; 104 105 char *comm; 106 107 struct cpu_sample *samples; 108 }; 109 110 struct sample_wrapper { 111 struct sample_wrapper *next; 112 113 u64 timestamp; 114 unsigned char data[0]; 115 }; 116 117 #define TYPE_NONE 0 118 #define TYPE_RUNNING 1 119 #define TYPE_WAITING 2 120 #define TYPE_BLOCKED 3 121 122 struct cpu_sample { 123 struct cpu_sample *next; 124 125 u64 start_time; 126 u64 end_time; 127 int type; 128 int cpu; 129 }; 130 131 static struct per_pid *all_data; 132 133 #define CSTATE 1 134 #define PSTATE 2 135 136 struct power_event { 137 struct power_event *next; 138 int type; 139 int state; 140 u64 start_time; 141 u64 end_time; 142 int cpu; 143 }; 144 145 struct wake_event { 146 struct wake_event *next; 147 int waker; 148 int wakee; 149 u64 time; 150 }; 151 152 static struct power_event *power_events; 153 static struct wake_event *wake_events; 154 155 struct process_filter; 156 struct process_filter { 157 char *name; 158 int pid; 159 struct process_filter *next; 160 }; 161 162 static struct process_filter *process_filter; 163 164 165 static struct per_pid *find_create_pid(int pid) 166 { 167 struct per_pid *cursor = all_data; 168 169 while (cursor) { 170 if (cursor->pid == pid) 171 return cursor; 172 cursor = cursor->next; 173 } 174 cursor = zalloc(sizeof(*cursor)); 175 assert(cursor != NULL); 176 cursor->pid = pid; 177 cursor->next = all_data; 178 all_data = cursor; 179 return cursor; 180 } 181 182 static void pid_set_comm(int pid, char *comm) 183 { 184 struct per_pid *p; 185 struct per_pidcomm *c; 186 p = find_create_pid(pid); 187 c = p->all; 188 while (c) { 189 if (c->comm && strcmp(c->comm, comm) == 0) { 190 p->current = c; 191 return; 192 } 193 if (!c->comm) { 194 c->comm = strdup(comm); 195 p->current = c; 196 return; 197 } 198 c = c->next; 199 } 200 c = zalloc(sizeof(*c)); 201 assert(c != NULL); 202 c->comm = strdup(comm); 203 p->current = c; 204 c->next = p->all; 205 p->all = c; 206 } 207 208 static void pid_fork(int pid, int ppid, u64 timestamp) 209 { 210 struct per_pid *p, *pp; 211 p = find_create_pid(pid); 212 pp = find_create_pid(ppid); 213 p->ppid = ppid; 214 if (pp->current && pp->current->comm && !p->current) 215 pid_set_comm(pid, pp->current->comm); 216 217 p->start_time = timestamp; 218 if (p->current) { 219 p->current->start_time = timestamp; 220 p->current->state_since = timestamp; 221 } 222 } 223 224 static void pid_exit(int pid, u64 timestamp) 225 { 226 struct per_pid *p; 227 p = find_create_pid(pid); 228 p->end_time = timestamp; 229 if (p->current) 230 p->current->end_time = timestamp; 231 } 232 233 static void 234 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end) 235 { 236 struct per_pid *p; 237 struct per_pidcomm *c; 238 struct cpu_sample *sample; 239 240 p = find_create_pid(pid); 241 c = p->current; 242 if (!c) { 243 c = zalloc(sizeof(*c)); 244 assert(c != NULL); 245 p->current = c; 246 c->next = p->all; 247 p->all = c; 248 } 249 250 sample = zalloc(sizeof(*sample)); 251 assert(sample != NULL); 252 sample->start_time = start; 253 sample->end_time = end; 254 sample->type = type; 255 sample->next = c->samples; 256 sample->cpu = cpu; 257 c->samples = sample; 258 259 if (sample->type == TYPE_RUNNING && end > start && start > 0) { 260 c->total_time += (end-start); 261 p->total_time += (end-start); 262 } 263 264 if (c->start_time == 0 || c->start_time > start) 265 c->start_time = start; 266 if (p->start_time == 0 || p->start_time > start) 267 p->start_time = start; 268 } 269 270 #define MAX_CPUS 4096 271 272 static u64 cpus_cstate_start_times[MAX_CPUS]; 273 static int cpus_cstate_state[MAX_CPUS]; 274 static u64 cpus_pstate_start_times[MAX_CPUS]; 275 static u64 cpus_pstate_state[MAX_CPUS]; 276 277 static int process_comm_event(struct perf_tool *tool __maybe_unused, 278 union perf_event *event, 279 struct perf_sample *sample __maybe_unused, 280 struct machine *machine __maybe_unused) 281 { 282 pid_set_comm(event->comm.tid, event->comm.comm); 283 return 0; 284 } 285 286 static int process_fork_event(struct perf_tool *tool __maybe_unused, 287 union perf_event *event, 288 struct perf_sample *sample __maybe_unused, 289 struct machine *machine __maybe_unused) 290 { 291 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time); 292 return 0; 293 } 294 295 static int process_exit_event(struct perf_tool *tool __maybe_unused, 296 union perf_event *event, 297 struct perf_sample *sample __maybe_unused, 298 struct machine *machine __maybe_unused) 299 { 300 pid_exit(event->fork.pid, event->fork.time); 301 return 0; 302 } 303 304 struct trace_entry { 305 unsigned short type; 306 unsigned char flags; 307 unsigned char preempt_count; 308 int pid; 309 int lock_depth; 310 }; 311 312 #ifdef SUPPORT_OLD_POWER_EVENTS 313 static int use_old_power_events; 314 struct power_entry_old { 315 struct trace_entry te; 316 u64 type; 317 u64 value; 318 u64 cpu_id; 319 }; 320 #endif 321 322 struct power_processor_entry { 323 struct trace_entry te; 324 u32 state; 325 u32 cpu_id; 326 }; 327 328 #define TASK_COMM_LEN 16 329 struct wakeup_entry { 330 struct trace_entry te; 331 char comm[TASK_COMM_LEN]; 332 int pid; 333 int prio; 334 int success; 335 }; 336 337 struct sched_switch { 338 struct trace_entry te; 339 char prev_comm[TASK_COMM_LEN]; 340 int prev_pid; 341 int prev_prio; 342 long prev_state; /* Arjan weeps. */ 343 char next_comm[TASK_COMM_LEN]; 344 int next_pid; 345 int next_prio; 346 }; 347 348 static void c_state_start(int cpu, u64 timestamp, int state) 349 { 350 cpus_cstate_start_times[cpu] = timestamp; 351 cpus_cstate_state[cpu] = state; 352 } 353 354 static void c_state_end(int cpu, u64 timestamp) 355 { 356 struct power_event *pwr = zalloc(sizeof(*pwr)); 357 358 if (!pwr) 359 return; 360 361 pwr->state = cpus_cstate_state[cpu]; 362 pwr->start_time = cpus_cstate_start_times[cpu]; 363 pwr->end_time = timestamp; 364 pwr->cpu = cpu; 365 pwr->type = CSTATE; 366 pwr->next = power_events; 367 368 power_events = pwr; 369 } 370 371 static void p_state_change(int cpu, u64 timestamp, u64 new_freq) 372 { 373 struct power_event *pwr; 374 375 if (new_freq > 8000000) /* detect invalid data */ 376 return; 377 378 pwr = zalloc(sizeof(*pwr)); 379 if (!pwr) 380 return; 381 382 pwr->state = cpus_pstate_state[cpu]; 383 pwr->start_time = cpus_pstate_start_times[cpu]; 384 pwr->end_time = timestamp; 385 pwr->cpu = cpu; 386 pwr->type = PSTATE; 387 pwr->next = power_events; 388 389 if (!pwr->start_time) 390 pwr->start_time = first_time; 391 392 power_events = pwr; 393 394 cpus_pstate_state[cpu] = new_freq; 395 cpus_pstate_start_times[cpu] = timestamp; 396 397 if ((u64)new_freq > max_freq) 398 max_freq = new_freq; 399 400 if (new_freq < min_freq || min_freq == 0) 401 min_freq = new_freq; 402 403 if (new_freq == max_freq - 1000) 404 turbo_frequency = max_freq; 405 } 406 407 static void 408 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te) 409 { 410 struct per_pid *p; 411 struct wakeup_entry *wake = (void *)te; 412 struct wake_event *we = zalloc(sizeof(*we)); 413 414 if (!we) 415 return; 416 417 we->time = timestamp; 418 we->waker = pid; 419 420 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ)) 421 we->waker = -1; 422 423 we->wakee = wake->pid; 424 we->next = wake_events; 425 wake_events = we; 426 p = find_create_pid(we->wakee); 427 428 if (p && p->current && p->current->state == TYPE_NONE) { 429 p->current->state_since = timestamp; 430 p->current->state = TYPE_WAITING; 431 } 432 if (p && p->current && p->current->state == TYPE_BLOCKED) { 433 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp); 434 p->current->state_since = timestamp; 435 p->current->state = TYPE_WAITING; 436 } 437 } 438 439 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te) 440 { 441 struct per_pid *p = NULL, *prev_p; 442 struct sched_switch *sw = (void *)te; 443 444 445 prev_p = find_create_pid(sw->prev_pid); 446 447 p = find_create_pid(sw->next_pid); 448 449 if (prev_p->current && prev_p->current->state != TYPE_NONE) 450 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp); 451 if (p && p->current) { 452 if (p->current->state != TYPE_NONE) 453 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp); 454 455 p->current->state_since = timestamp; 456 p->current->state = TYPE_RUNNING; 457 } 458 459 if (prev_p->current) { 460 prev_p->current->state = TYPE_NONE; 461 prev_p->current->state_since = timestamp; 462 if (sw->prev_state & 2) 463 prev_p->current->state = TYPE_BLOCKED; 464 if (sw->prev_state == 0) 465 prev_p->current->state = TYPE_WAITING; 466 } 467 } 468 469 typedef int (*tracepoint_handler)(struct perf_evsel *evsel, 470 struct perf_sample *sample); 471 472 static int process_sample_event(struct perf_tool *tool __maybe_unused, 473 union perf_event *event __maybe_unused, 474 struct perf_sample *sample, 475 struct perf_evsel *evsel, 476 struct machine *machine __maybe_unused) 477 { 478 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) { 479 if (!first_time || first_time > sample->time) 480 first_time = sample->time; 481 if (last_time < sample->time) 482 last_time = sample->time; 483 } 484 485 if (sample->cpu > numcpus) 486 numcpus = sample->cpu; 487 488 if (evsel->handler != NULL) { 489 tracepoint_handler f = evsel->handler; 490 return f(evsel, sample); 491 } 492 493 return 0; 494 } 495 496 static int 497 process_sample_cpu_idle(struct perf_evsel *evsel __maybe_unused, 498 struct perf_sample *sample) 499 { 500 struct power_processor_entry *ppe = sample->raw_data; 501 502 if (ppe->state == (u32) PWR_EVENT_EXIT) 503 c_state_end(ppe->cpu_id, sample->time); 504 else 505 c_state_start(ppe->cpu_id, sample->time, ppe->state); 506 return 0; 507 } 508 509 static int 510 process_sample_cpu_frequency(struct perf_evsel *evsel __maybe_unused, 511 struct perf_sample *sample) 512 { 513 struct power_processor_entry *ppe = sample->raw_data; 514 515 p_state_change(ppe->cpu_id, sample->time, ppe->state); 516 return 0; 517 } 518 519 static int 520 process_sample_sched_wakeup(struct perf_evsel *evsel __maybe_unused, 521 struct perf_sample *sample) 522 { 523 struct trace_entry *te = sample->raw_data; 524 525 sched_wakeup(sample->cpu, sample->time, sample->pid, te); 526 return 0; 527 } 528 529 static int 530 process_sample_sched_switch(struct perf_evsel *evsel __maybe_unused, 531 struct perf_sample *sample) 532 { 533 struct trace_entry *te = sample->raw_data; 534 535 sched_switch(sample->cpu, sample->time, te); 536 return 0; 537 } 538 539 #ifdef SUPPORT_OLD_POWER_EVENTS 540 static int 541 process_sample_power_start(struct perf_evsel *evsel __maybe_unused, 542 struct perf_sample *sample) 543 { 544 struct power_entry_old *peo = sample->raw_data; 545 546 c_state_start(peo->cpu_id, sample->time, peo->value); 547 return 0; 548 } 549 550 static int 551 process_sample_power_end(struct perf_evsel *evsel __maybe_unused, 552 struct perf_sample *sample) 553 { 554 c_state_end(sample->cpu, sample->time); 555 return 0; 556 } 557 558 static int 559 process_sample_power_frequency(struct perf_evsel *evsel __maybe_unused, 560 struct perf_sample *sample) 561 { 562 struct power_entry_old *peo = sample->raw_data; 563 564 p_state_change(peo->cpu_id, sample->time, peo->value); 565 return 0; 566 } 567 #endif /* SUPPORT_OLD_POWER_EVENTS */ 568 569 /* 570 * After the last sample we need to wrap up the current C/P state 571 * and close out each CPU for these. 572 */ 573 static void end_sample_processing(void) 574 { 575 u64 cpu; 576 struct power_event *pwr; 577 578 for (cpu = 0; cpu <= numcpus; cpu++) { 579 /* C state */ 580 #if 0 581 pwr = zalloc(sizeof(*pwr)); 582 if (!pwr) 583 return; 584 585 pwr->state = cpus_cstate_state[cpu]; 586 pwr->start_time = cpus_cstate_start_times[cpu]; 587 pwr->end_time = last_time; 588 pwr->cpu = cpu; 589 pwr->type = CSTATE; 590 pwr->next = power_events; 591 592 power_events = pwr; 593 #endif 594 /* P state */ 595 596 pwr = zalloc(sizeof(*pwr)); 597 if (!pwr) 598 return; 599 600 pwr->state = cpus_pstate_state[cpu]; 601 pwr->start_time = cpus_pstate_start_times[cpu]; 602 pwr->end_time = last_time; 603 pwr->cpu = cpu; 604 pwr->type = PSTATE; 605 pwr->next = power_events; 606 607 if (!pwr->start_time) 608 pwr->start_time = first_time; 609 if (!pwr->state) 610 pwr->state = min_freq; 611 power_events = pwr; 612 } 613 } 614 615 /* 616 * Sort the pid datastructure 617 */ 618 static void sort_pids(void) 619 { 620 struct per_pid *new_list, *p, *cursor, *prev; 621 /* sort by ppid first, then by pid, lowest to highest */ 622 623 new_list = NULL; 624 625 while (all_data) { 626 p = all_data; 627 all_data = p->next; 628 p->next = NULL; 629 630 if (new_list == NULL) { 631 new_list = p; 632 p->next = NULL; 633 continue; 634 } 635 prev = NULL; 636 cursor = new_list; 637 while (cursor) { 638 if (cursor->ppid > p->ppid || 639 (cursor->ppid == p->ppid && cursor->pid > p->pid)) { 640 /* must insert before */ 641 if (prev) { 642 p->next = prev->next; 643 prev->next = p; 644 cursor = NULL; 645 continue; 646 } else { 647 p->next = new_list; 648 new_list = p; 649 cursor = NULL; 650 continue; 651 } 652 } 653 654 prev = cursor; 655 cursor = cursor->next; 656 if (!cursor) 657 prev->next = p; 658 } 659 } 660 all_data = new_list; 661 } 662 663 664 static void draw_c_p_states(void) 665 { 666 struct power_event *pwr; 667 pwr = power_events; 668 669 /* 670 * two pass drawing so that the P state bars are on top of the C state blocks 671 */ 672 while (pwr) { 673 if (pwr->type == CSTATE) 674 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 675 pwr = pwr->next; 676 } 677 678 pwr = power_events; 679 while (pwr) { 680 if (pwr->type == PSTATE) { 681 if (!pwr->state) 682 pwr->state = min_freq; 683 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); 684 } 685 pwr = pwr->next; 686 } 687 } 688 689 static void draw_wakeups(void) 690 { 691 struct wake_event *we; 692 struct per_pid *p; 693 struct per_pidcomm *c; 694 695 we = wake_events; 696 while (we) { 697 int from = 0, to = 0; 698 char *task_from = NULL, *task_to = NULL; 699 700 /* locate the column of the waker and wakee */ 701 p = all_data; 702 while (p) { 703 if (p->pid == we->waker || p->pid == we->wakee) { 704 c = p->all; 705 while (c) { 706 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { 707 if (p->pid == we->waker && !from) { 708 from = c->Y; 709 task_from = strdup(c->comm); 710 } 711 if (p->pid == we->wakee && !to) { 712 to = c->Y; 713 task_to = strdup(c->comm); 714 } 715 } 716 c = c->next; 717 } 718 c = p->all; 719 while (c) { 720 if (p->pid == we->waker && !from) { 721 from = c->Y; 722 task_from = strdup(c->comm); 723 } 724 if (p->pid == we->wakee && !to) { 725 to = c->Y; 726 task_to = strdup(c->comm); 727 } 728 c = c->next; 729 } 730 } 731 p = p->next; 732 } 733 734 if (!task_from) { 735 task_from = malloc(40); 736 sprintf(task_from, "[%i]", we->waker); 737 } 738 if (!task_to) { 739 task_to = malloc(40); 740 sprintf(task_to, "[%i]", we->wakee); 741 } 742 743 if (we->waker == -1) 744 svg_interrupt(we->time, to); 745 else if (from && to && abs(from - to) == 1) 746 svg_wakeline(we->time, from, to); 747 else 748 svg_partial_wakeline(we->time, from, task_from, to, task_to); 749 we = we->next; 750 751 free(task_from); 752 free(task_to); 753 } 754 } 755 756 static void draw_cpu_usage(void) 757 { 758 struct per_pid *p; 759 struct per_pidcomm *c; 760 struct cpu_sample *sample; 761 p = all_data; 762 while (p) { 763 c = p->all; 764 while (c) { 765 sample = c->samples; 766 while (sample) { 767 if (sample->type == TYPE_RUNNING) 768 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm); 769 770 sample = sample->next; 771 } 772 c = c->next; 773 } 774 p = p->next; 775 } 776 } 777 778 static void draw_process_bars(void) 779 { 780 struct per_pid *p; 781 struct per_pidcomm *c; 782 struct cpu_sample *sample; 783 int Y = 0; 784 785 Y = 2 * numcpus + 2; 786 787 p = all_data; 788 while (p) { 789 c = p->all; 790 while (c) { 791 if (!c->display) { 792 c->Y = 0; 793 c = c->next; 794 continue; 795 } 796 797 svg_box(Y, c->start_time, c->end_time, "process"); 798 sample = c->samples; 799 while (sample) { 800 if (sample->type == TYPE_RUNNING) 801 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time); 802 if (sample->type == TYPE_BLOCKED) 803 svg_box(Y, sample->start_time, sample->end_time, "blocked"); 804 if (sample->type == TYPE_WAITING) 805 svg_waiting(Y, sample->start_time, sample->end_time); 806 sample = sample->next; 807 } 808 809 if (c->comm) { 810 char comm[256]; 811 if (c->total_time > 5000000000) /* 5 seconds */ 812 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0); 813 else 814 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0); 815 816 svg_text(Y, c->start_time, comm); 817 } 818 c->Y = Y; 819 Y++; 820 c = c->next; 821 } 822 p = p->next; 823 } 824 } 825 826 static void add_process_filter(const char *string) 827 { 828 int pid = strtoull(string, NULL, 10); 829 struct process_filter *filt = malloc(sizeof(*filt)); 830 831 if (!filt) 832 return; 833 834 filt->name = strdup(string); 835 filt->pid = pid; 836 filt->next = process_filter; 837 838 process_filter = filt; 839 } 840 841 static int passes_filter(struct per_pid *p, struct per_pidcomm *c) 842 { 843 struct process_filter *filt; 844 if (!process_filter) 845 return 1; 846 847 filt = process_filter; 848 while (filt) { 849 if (filt->pid && p->pid == filt->pid) 850 return 1; 851 if (strcmp(filt->name, c->comm) == 0) 852 return 1; 853 filt = filt->next; 854 } 855 return 0; 856 } 857 858 static int determine_display_tasks_filtered(void) 859 { 860 struct per_pid *p; 861 struct per_pidcomm *c; 862 int count = 0; 863 864 p = all_data; 865 while (p) { 866 p->display = 0; 867 if (p->start_time == 1) 868 p->start_time = first_time; 869 870 /* no exit marker, task kept running to the end */ 871 if (p->end_time == 0) 872 p->end_time = last_time; 873 874 c = p->all; 875 876 while (c) { 877 c->display = 0; 878 879 if (c->start_time == 1) 880 c->start_time = first_time; 881 882 if (passes_filter(p, c)) { 883 c->display = 1; 884 p->display = 1; 885 count++; 886 } 887 888 if (c->end_time == 0) 889 c->end_time = last_time; 890 891 c = c->next; 892 } 893 p = p->next; 894 } 895 return count; 896 } 897 898 static int determine_display_tasks(u64 threshold) 899 { 900 struct per_pid *p; 901 struct per_pidcomm *c; 902 int count = 0; 903 904 if (process_filter) 905 return determine_display_tasks_filtered(); 906 907 p = all_data; 908 while (p) { 909 p->display = 0; 910 if (p->start_time == 1) 911 p->start_time = first_time; 912 913 /* no exit marker, task kept running to the end */ 914 if (p->end_time == 0) 915 p->end_time = last_time; 916 if (p->total_time >= threshold) 917 p->display = 1; 918 919 c = p->all; 920 921 while (c) { 922 c->display = 0; 923 924 if (c->start_time == 1) 925 c->start_time = first_time; 926 927 if (c->total_time >= threshold) { 928 c->display = 1; 929 count++; 930 } 931 932 if (c->end_time == 0) 933 c->end_time = last_time; 934 935 c = c->next; 936 } 937 p = p->next; 938 } 939 return count; 940 } 941 942 943 944 #define TIME_THRESH 10000000 945 946 static void write_svg_file(const char *filename) 947 { 948 u64 i; 949 int count; 950 int thresh = TIME_THRESH; 951 952 numcpus++; 953 954 if (power_only) 955 proc_num = 0; 956 957 /* We'd like to show at least proc_num tasks; 958 * be less picky if we have fewer */ 959 do { 960 count = determine_display_tasks(thresh); 961 thresh /= 10; 962 } while (!process_filter && thresh && count < proc_num); 963 964 open_svg(filename, numcpus, count, first_time, last_time); 965 966 svg_time_grid(); 967 svg_legenda(); 968 969 for (i = 0; i < numcpus; i++) 970 svg_cpu_box(i, max_freq, turbo_frequency); 971 972 draw_cpu_usage(); 973 if (proc_num) 974 draw_process_bars(); 975 if (!tasks_only) 976 draw_c_p_states(); 977 if (proc_num) 978 draw_wakeups(); 979 980 svg_close(); 981 } 982 983 static int __cmd_timechart(const char *output_name) 984 { 985 struct perf_tool perf_timechart = { 986 .comm = process_comm_event, 987 .fork = process_fork_event, 988 .exit = process_exit_event, 989 .sample = process_sample_event, 990 .ordered_samples = true, 991 }; 992 const struct perf_evsel_str_handler power_tracepoints[] = { 993 { "power:cpu_idle", process_sample_cpu_idle }, 994 { "power:cpu_frequency", process_sample_cpu_frequency }, 995 { "sched:sched_wakeup", process_sample_sched_wakeup }, 996 { "sched:sched_switch", process_sample_sched_switch }, 997 #ifdef SUPPORT_OLD_POWER_EVENTS 998 { "power:power_start", process_sample_power_start }, 999 { "power:power_end", process_sample_power_end }, 1000 { "power:power_frequency", process_sample_power_frequency }, 1001 #endif 1002 }; 1003 struct perf_data_file file = { 1004 .path = input_name, 1005 .mode = PERF_DATA_MODE_READ, 1006 }; 1007 1008 struct perf_session *session = perf_session__new(&file, false, 1009 &perf_timechart); 1010 int ret = -EINVAL; 1011 1012 if (session == NULL) 1013 return -ENOMEM; 1014 1015 if (!perf_session__has_traces(session, "timechart record")) 1016 goto out_delete; 1017 1018 if (perf_session__set_tracepoints_handlers(session, 1019 power_tracepoints)) { 1020 pr_err("Initializing session tracepoint handlers failed\n"); 1021 goto out_delete; 1022 } 1023 1024 ret = perf_session__process_events(session, &perf_timechart); 1025 if (ret) 1026 goto out_delete; 1027 1028 end_sample_processing(); 1029 1030 sort_pids(); 1031 1032 write_svg_file(output_name); 1033 1034 pr_info("Written %2.1f seconds of trace to %s.\n", 1035 (last_time - first_time) / 1000000000.0, output_name); 1036 out_delete: 1037 perf_session__delete(session); 1038 return ret; 1039 } 1040 1041 static int __cmd_record(int argc, const char **argv) 1042 { 1043 #ifdef SUPPORT_OLD_POWER_EVENTS 1044 const char * const record_old_args[] = { 1045 "record", "-a", "-R", "-c", "1", 1046 "-e", "power:power_start", 1047 "-e", "power:power_end", 1048 "-e", "power:power_frequency", 1049 "-e", "sched:sched_wakeup", 1050 "-e", "sched:sched_switch", 1051 }; 1052 #endif 1053 const char * const record_new_args[] = { 1054 "record", "-a", "-R", "-c", "1", 1055 "-e", "power:cpu_frequency", 1056 "-e", "power:cpu_idle", 1057 "-e", "sched:sched_wakeup", 1058 "-e", "sched:sched_switch", 1059 }; 1060 unsigned int rec_argc, i, j; 1061 const char **rec_argv; 1062 const char * const *record_args = record_new_args; 1063 unsigned int record_elems = ARRAY_SIZE(record_new_args); 1064 1065 #ifdef SUPPORT_OLD_POWER_EVENTS 1066 if (!is_valid_tracepoint("power:cpu_idle") && 1067 is_valid_tracepoint("power:power_start")) { 1068 use_old_power_events = 1; 1069 record_args = record_old_args; 1070 record_elems = ARRAY_SIZE(record_old_args); 1071 } 1072 #endif 1073 1074 rec_argc = record_elems + argc - 1; 1075 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1076 1077 if (rec_argv == NULL) 1078 return -ENOMEM; 1079 1080 for (i = 0; i < record_elems; i++) 1081 rec_argv[i] = strdup(record_args[i]); 1082 1083 for (j = 1; j < (unsigned int)argc; j++, i++) 1084 rec_argv[i] = argv[j]; 1085 1086 return cmd_record(i, rec_argv, NULL); 1087 } 1088 1089 static int 1090 parse_process(const struct option *opt __maybe_unused, const char *arg, 1091 int __maybe_unused unset) 1092 { 1093 if (arg) 1094 add_process_filter(arg); 1095 return 0; 1096 } 1097 1098 int cmd_timechart(int argc, const char **argv, 1099 const char *prefix __maybe_unused) 1100 { 1101 const char *output_name = "output.svg"; 1102 const struct option options[] = { 1103 OPT_STRING('i', "input", &input_name, "file", "input file name"), 1104 OPT_STRING('o', "output", &output_name, "file", "output file name"), 1105 OPT_INTEGER('w', "width", &svg_page_width, "page width"), 1106 OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"), 1107 OPT_BOOLEAN('T', "tasks-only", &tasks_only, 1108 "output processes data only"), 1109 OPT_CALLBACK('p', "process", NULL, "process", 1110 "process selector. Pass a pid or process name.", 1111 parse_process), 1112 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 1113 "Look for files with symbols relative to this directory"), 1114 OPT_INTEGER('n', "proc-num", &proc_num, 1115 "min. number of tasks to print"), 1116 OPT_END() 1117 }; 1118 const char * const timechart_usage[] = { 1119 "perf timechart [<options>] {record}", 1120 NULL 1121 }; 1122 1123 argc = parse_options(argc, argv, options, timechart_usage, 1124 PARSE_OPT_STOP_AT_NON_OPTION); 1125 1126 if (power_only && tasks_only) { 1127 pr_err("-P and -T options cannot be used at the same time.\n"); 1128 return -1; 1129 } 1130 1131 symbol__init(); 1132 1133 if (argc && !strncmp(argv[0], "rec", 3)) 1134 return __cmd_record(argc, argv); 1135 else if (argc) 1136 usage_with_options(timechart_usage, options); 1137 1138 setup_pager(); 1139 1140 return __cmd_timechart(output_name); 1141 } 1142