xref: /openbmc/linux/tools/perf/builtin-timechart.c (revision c87097d39dae1c42a5068e00dd3b76a4162ee0fc)
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #include <traceevent/event-parse.h>
16 
17 #include "builtin.h"
18 
19 #include "util/util.h"
20 
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30 
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40 
41 #define SUPPORT_OLD_POWER_EVENTS 1
42 #define PWR_EVENT_EXIT -1
43 
44 static int proc_num = 15;
45 
46 static unsigned int	numcpus;
47 static u64		min_freq;	/* Lowest CPU frequency seen */
48 static u64		max_freq;	/* Highest CPU frequency seen */
49 static u64		turbo_frequency;
50 
51 static u64		first_time, last_time;
52 
53 static bool		power_only;
54 static bool		tasks_only;
55 
56 
57 struct per_pid;
58 struct per_pidcomm;
59 
60 struct cpu_sample;
61 struct power_event;
62 struct wake_event;
63 
64 struct sample_wrapper;
65 
66 /*
67  * Datastructure layout:
68  * We keep an list of "pid"s, matching the kernels notion of a task struct.
69  * Each "pid" entry, has a list of "comm"s.
70  *	this is because we want to track different programs different, while
71  *	exec will reuse the original pid (by design).
72  * Each comm has a list of samples that will be used to draw
73  * final graph.
74  */
75 
76 struct per_pid {
77 	struct per_pid *next;
78 
79 	int		pid;
80 	int		ppid;
81 
82 	u64		start_time;
83 	u64		end_time;
84 	u64		total_time;
85 	int		display;
86 
87 	struct per_pidcomm *all;
88 	struct per_pidcomm *current;
89 };
90 
91 
92 struct per_pidcomm {
93 	struct per_pidcomm *next;
94 
95 	u64		start_time;
96 	u64		end_time;
97 	u64		total_time;
98 
99 	int		Y;
100 	int		display;
101 
102 	long		state;
103 	u64		state_since;
104 
105 	char		*comm;
106 
107 	struct cpu_sample *samples;
108 };
109 
110 struct sample_wrapper {
111 	struct sample_wrapper *next;
112 
113 	u64		timestamp;
114 	unsigned char	data[0];
115 };
116 
117 #define TYPE_NONE	0
118 #define TYPE_RUNNING	1
119 #define TYPE_WAITING	2
120 #define TYPE_BLOCKED	3
121 
122 struct cpu_sample {
123 	struct cpu_sample *next;
124 
125 	u64 start_time;
126 	u64 end_time;
127 	int type;
128 	int cpu;
129 };
130 
131 static struct per_pid *all_data;
132 
133 #define CSTATE 1
134 #define PSTATE 2
135 
136 struct power_event {
137 	struct power_event *next;
138 	int type;
139 	int state;
140 	u64 start_time;
141 	u64 end_time;
142 	int cpu;
143 };
144 
145 struct wake_event {
146 	struct wake_event *next;
147 	int waker;
148 	int wakee;
149 	u64 time;
150 };
151 
152 static struct power_event    *power_events;
153 static struct wake_event     *wake_events;
154 
155 struct process_filter;
156 struct process_filter {
157 	char			*name;
158 	int			pid;
159 	struct process_filter	*next;
160 };
161 
162 static struct process_filter *process_filter;
163 
164 
165 static struct per_pid *find_create_pid(int pid)
166 {
167 	struct per_pid *cursor = all_data;
168 
169 	while (cursor) {
170 		if (cursor->pid == pid)
171 			return cursor;
172 		cursor = cursor->next;
173 	}
174 	cursor = zalloc(sizeof(*cursor));
175 	assert(cursor != NULL);
176 	cursor->pid = pid;
177 	cursor->next = all_data;
178 	all_data = cursor;
179 	return cursor;
180 }
181 
182 static void pid_set_comm(int pid, char *comm)
183 {
184 	struct per_pid *p;
185 	struct per_pidcomm *c;
186 	p = find_create_pid(pid);
187 	c = p->all;
188 	while (c) {
189 		if (c->comm && strcmp(c->comm, comm) == 0) {
190 			p->current = c;
191 			return;
192 		}
193 		if (!c->comm) {
194 			c->comm = strdup(comm);
195 			p->current = c;
196 			return;
197 		}
198 		c = c->next;
199 	}
200 	c = zalloc(sizeof(*c));
201 	assert(c != NULL);
202 	c->comm = strdup(comm);
203 	p->current = c;
204 	c->next = p->all;
205 	p->all = c;
206 }
207 
208 static void pid_fork(int pid, int ppid, u64 timestamp)
209 {
210 	struct per_pid *p, *pp;
211 	p = find_create_pid(pid);
212 	pp = find_create_pid(ppid);
213 	p->ppid = ppid;
214 	if (pp->current && pp->current->comm && !p->current)
215 		pid_set_comm(pid, pp->current->comm);
216 
217 	p->start_time = timestamp;
218 	if (p->current) {
219 		p->current->start_time = timestamp;
220 		p->current->state_since = timestamp;
221 	}
222 }
223 
224 static void pid_exit(int pid, u64 timestamp)
225 {
226 	struct per_pid *p;
227 	p = find_create_pid(pid);
228 	p->end_time = timestamp;
229 	if (p->current)
230 		p->current->end_time = timestamp;
231 }
232 
233 static void
234 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
235 {
236 	struct per_pid *p;
237 	struct per_pidcomm *c;
238 	struct cpu_sample *sample;
239 
240 	p = find_create_pid(pid);
241 	c = p->current;
242 	if (!c) {
243 		c = zalloc(sizeof(*c));
244 		assert(c != NULL);
245 		p->current = c;
246 		c->next = p->all;
247 		p->all = c;
248 	}
249 
250 	sample = zalloc(sizeof(*sample));
251 	assert(sample != NULL);
252 	sample->start_time = start;
253 	sample->end_time = end;
254 	sample->type = type;
255 	sample->next = c->samples;
256 	sample->cpu = cpu;
257 	c->samples = sample;
258 
259 	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
260 		c->total_time += (end-start);
261 		p->total_time += (end-start);
262 	}
263 
264 	if (c->start_time == 0 || c->start_time > start)
265 		c->start_time = start;
266 	if (p->start_time == 0 || p->start_time > start)
267 		p->start_time = start;
268 }
269 
270 #define MAX_CPUS 4096
271 
272 static u64 cpus_cstate_start_times[MAX_CPUS];
273 static int cpus_cstate_state[MAX_CPUS];
274 static u64 cpus_pstate_start_times[MAX_CPUS];
275 static u64 cpus_pstate_state[MAX_CPUS];
276 
277 static int process_comm_event(struct perf_tool *tool __maybe_unused,
278 			      union perf_event *event,
279 			      struct perf_sample *sample __maybe_unused,
280 			      struct machine *machine __maybe_unused)
281 {
282 	pid_set_comm(event->comm.tid, event->comm.comm);
283 	return 0;
284 }
285 
286 static int process_fork_event(struct perf_tool *tool __maybe_unused,
287 			      union perf_event *event,
288 			      struct perf_sample *sample __maybe_unused,
289 			      struct machine *machine __maybe_unused)
290 {
291 	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
292 	return 0;
293 }
294 
295 static int process_exit_event(struct perf_tool *tool __maybe_unused,
296 			      union perf_event *event,
297 			      struct perf_sample *sample __maybe_unused,
298 			      struct machine *machine __maybe_unused)
299 {
300 	pid_exit(event->fork.pid, event->fork.time);
301 	return 0;
302 }
303 
304 struct trace_entry {
305 	unsigned short		type;
306 	unsigned char		flags;
307 	unsigned char		preempt_count;
308 	int			pid;
309 	int			lock_depth;
310 };
311 
312 #ifdef SUPPORT_OLD_POWER_EVENTS
313 static int use_old_power_events;
314 struct power_entry_old {
315 	struct trace_entry te;
316 	u64	type;
317 	u64	value;
318 	u64	cpu_id;
319 };
320 #endif
321 
322 struct power_processor_entry {
323 	struct trace_entry te;
324 	u32	state;
325 	u32	cpu_id;
326 };
327 
328 #define TASK_COMM_LEN 16
329 struct wakeup_entry {
330 	struct trace_entry te;
331 	char comm[TASK_COMM_LEN];
332 	int   pid;
333 	int   prio;
334 	int   success;
335 };
336 
337 struct sched_switch {
338 	struct trace_entry te;
339 	char prev_comm[TASK_COMM_LEN];
340 	int  prev_pid;
341 	int  prev_prio;
342 	long prev_state; /* Arjan weeps. */
343 	char next_comm[TASK_COMM_LEN];
344 	int  next_pid;
345 	int  next_prio;
346 };
347 
348 static void c_state_start(int cpu, u64 timestamp, int state)
349 {
350 	cpus_cstate_start_times[cpu] = timestamp;
351 	cpus_cstate_state[cpu] = state;
352 }
353 
354 static void c_state_end(int cpu, u64 timestamp)
355 {
356 	struct power_event *pwr = zalloc(sizeof(*pwr));
357 
358 	if (!pwr)
359 		return;
360 
361 	pwr->state = cpus_cstate_state[cpu];
362 	pwr->start_time = cpus_cstate_start_times[cpu];
363 	pwr->end_time = timestamp;
364 	pwr->cpu = cpu;
365 	pwr->type = CSTATE;
366 	pwr->next = power_events;
367 
368 	power_events = pwr;
369 }
370 
371 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
372 {
373 	struct power_event *pwr;
374 
375 	if (new_freq > 8000000) /* detect invalid data */
376 		return;
377 
378 	pwr = zalloc(sizeof(*pwr));
379 	if (!pwr)
380 		return;
381 
382 	pwr->state = cpus_pstate_state[cpu];
383 	pwr->start_time = cpus_pstate_start_times[cpu];
384 	pwr->end_time = timestamp;
385 	pwr->cpu = cpu;
386 	pwr->type = PSTATE;
387 	pwr->next = power_events;
388 
389 	if (!pwr->start_time)
390 		pwr->start_time = first_time;
391 
392 	power_events = pwr;
393 
394 	cpus_pstate_state[cpu] = new_freq;
395 	cpus_pstate_start_times[cpu] = timestamp;
396 
397 	if ((u64)new_freq > max_freq)
398 		max_freq = new_freq;
399 
400 	if (new_freq < min_freq || min_freq == 0)
401 		min_freq = new_freq;
402 
403 	if (new_freq == max_freq - 1000)
404 			turbo_frequency = max_freq;
405 }
406 
407 static void
408 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
409 {
410 	struct per_pid *p;
411 	struct wakeup_entry *wake = (void *)te;
412 	struct wake_event *we = zalloc(sizeof(*we));
413 
414 	if (!we)
415 		return;
416 
417 	we->time = timestamp;
418 	we->waker = pid;
419 
420 	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
421 		we->waker = -1;
422 
423 	we->wakee = wake->pid;
424 	we->next = wake_events;
425 	wake_events = we;
426 	p = find_create_pid(we->wakee);
427 
428 	if (p && p->current && p->current->state == TYPE_NONE) {
429 		p->current->state_since = timestamp;
430 		p->current->state = TYPE_WAITING;
431 	}
432 	if (p && p->current && p->current->state == TYPE_BLOCKED) {
433 		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
434 		p->current->state_since = timestamp;
435 		p->current->state = TYPE_WAITING;
436 	}
437 }
438 
439 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
440 {
441 	struct per_pid *p = NULL, *prev_p;
442 	struct sched_switch *sw = (void *)te;
443 
444 
445 	prev_p = find_create_pid(sw->prev_pid);
446 
447 	p = find_create_pid(sw->next_pid);
448 
449 	if (prev_p->current && prev_p->current->state != TYPE_NONE)
450 		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
451 	if (p && p->current) {
452 		if (p->current->state != TYPE_NONE)
453 			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
454 
455 		p->current->state_since = timestamp;
456 		p->current->state = TYPE_RUNNING;
457 	}
458 
459 	if (prev_p->current) {
460 		prev_p->current->state = TYPE_NONE;
461 		prev_p->current->state_since = timestamp;
462 		if (sw->prev_state & 2)
463 			prev_p->current->state = TYPE_BLOCKED;
464 		if (sw->prev_state == 0)
465 			prev_p->current->state = TYPE_WAITING;
466 	}
467 }
468 
469 typedef int (*tracepoint_handler)(struct perf_evsel *evsel,
470 				  struct perf_sample *sample);
471 
472 static int process_sample_event(struct perf_tool *tool __maybe_unused,
473 				union perf_event *event __maybe_unused,
474 				struct perf_sample *sample,
475 				struct perf_evsel *evsel,
476 				struct machine *machine __maybe_unused)
477 {
478 	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
479 		if (!first_time || first_time > sample->time)
480 			first_time = sample->time;
481 		if (last_time < sample->time)
482 			last_time = sample->time;
483 	}
484 
485 	if (sample->cpu > numcpus)
486 		numcpus = sample->cpu;
487 
488 	if (evsel->handler != NULL) {
489 		tracepoint_handler f = evsel->handler;
490 		return f(evsel, sample);
491 	}
492 
493 	return 0;
494 }
495 
496 static int
497 process_sample_cpu_idle(struct perf_evsel *evsel __maybe_unused,
498 			struct perf_sample *sample)
499 {
500 	struct power_processor_entry *ppe = sample->raw_data;
501 
502 	if (ppe->state == (u32) PWR_EVENT_EXIT)
503 		c_state_end(ppe->cpu_id, sample->time);
504 	else
505 		c_state_start(ppe->cpu_id, sample->time, ppe->state);
506 	return 0;
507 }
508 
509 static int
510 process_sample_cpu_frequency(struct perf_evsel *evsel __maybe_unused,
511 			     struct perf_sample *sample)
512 {
513 	struct power_processor_entry *ppe = sample->raw_data;
514 
515 	p_state_change(ppe->cpu_id, sample->time, ppe->state);
516 	return 0;
517 }
518 
519 static int
520 process_sample_sched_wakeup(struct perf_evsel *evsel __maybe_unused,
521 			    struct perf_sample *sample)
522 {
523 	struct trace_entry *te = sample->raw_data;
524 
525 	sched_wakeup(sample->cpu, sample->time, sample->pid, te);
526 	return 0;
527 }
528 
529 static int
530 process_sample_sched_switch(struct perf_evsel *evsel __maybe_unused,
531 			    struct perf_sample *sample)
532 {
533 	struct trace_entry *te = sample->raw_data;
534 
535 	sched_switch(sample->cpu, sample->time, te);
536 	return 0;
537 }
538 
539 #ifdef SUPPORT_OLD_POWER_EVENTS
540 static int
541 process_sample_power_start(struct perf_evsel *evsel __maybe_unused,
542 			   struct perf_sample *sample)
543 {
544 	struct power_entry_old *peo = sample->raw_data;
545 
546 	c_state_start(peo->cpu_id, sample->time, peo->value);
547 	return 0;
548 }
549 
550 static int
551 process_sample_power_end(struct perf_evsel *evsel __maybe_unused,
552 			 struct perf_sample *sample)
553 {
554 	c_state_end(sample->cpu, sample->time);
555 	return 0;
556 }
557 
558 static int
559 process_sample_power_frequency(struct perf_evsel *evsel __maybe_unused,
560 			       struct perf_sample *sample)
561 {
562 	struct power_entry_old *peo = sample->raw_data;
563 
564 	p_state_change(peo->cpu_id, sample->time, peo->value);
565 	return 0;
566 }
567 #endif /* SUPPORT_OLD_POWER_EVENTS */
568 
569 /*
570  * After the last sample we need to wrap up the current C/P state
571  * and close out each CPU for these.
572  */
573 static void end_sample_processing(void)
574 {
575 	u64 cpu;
576 	struct power_event *pwr;
577 
578 	for (cpu = 0; cpu <= numcpus; cpu++) {
579 		/* C state */
580 #if 0
581 		pwr = zalloc(sizeof(*pwr));
582 		if (!pwr)
583 			return;
584 
585 		pwr->state = cpus_cstate_state[cpu];
586 		pwr->start_time = cpus_cstate_start_times[cpu];
587 		pwr->end_time = last_time;
588 		pwr->cpu = cpu;
589 		pwr->type = CSTATE;
590 		pwr->next = power_events;
591 
592 		power_events = pwr;
593 #endif
594 		/* P state */
595 
596 		pwr = zalloc(sizeof(*pwr));
597 		if (!pwr)
598 			return;
599 
600 		pwr->state = cpus_pstate_state[cpu];
601 		pwr->start_time = cpus_pstate_start_times[cpu];
602 		pwr->end_time = last_time;
603 		pwr->cpu = cpu;
604 		pwr->type = PSTATE;
605 		pwr->next = power_events;
606 
607 		if (!pwr->start_time)
608 			pwr->start_time = first_time;
609 		if (!pwr->state)
610 			pwr->state = min_freq;
611 		power_events = pwr;
612 	}
613 }
614 
615 /*
616  * Sort the pid datastructure
617  */
618 static void sort_pids(void)
619 {
620 	struct per_pid *new_list, *p, *cursor, *prev;
621 	/* sort by ppid first, then by pid, lowest to highest */
622 
623 	new_list = NULL;
624 
625 	while (all_data) {
626 		p = all_data;
627 		all_data = p->next;
628 		p->next = NULL;
629 
630 		if (new_list == NULL) {
631 			new_list = p;
632 			p->next = NULL;
633 			continue;
634 		}
635 		prev = NULL;
636 		cursor = new_list;
637 		while (cursor) {
638 			if (cursor->ppid > p->ppid ||
639 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
640 				/* must insert before */
641 				if (prev) {
642 					p->next = prev->next;
643 					prev->next = p;
644 					cursor = NULL;
645 					continue;
646 				} else {
647 					p->next = new_list;
648 					new_list = p;
649 					cursor = NULL;
650 					continue;
651 				}
652 			}
653 
654 			prev = cursor;
655 			cursor = cursor->next;
656 			if (!cursor)
657 				prev->next = p;
658 		}
659 	}
660 	all_data = new_list;
661 }
662 
663 
664 static void draw_c_p_states(void)
665 {
666 	struct power_event *pwr;
667 	pwr = power_events;
668 
669 	/*
670 	 * two pass drawing so that the P state bars are on top of the C state blocks
671 	 */
672 	while (pwr) {
673 		if (pwr->type == CSTATE)
674 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
675 		pwr = pwr->next;
676 	}
677 
678 	pwr = power_events;
679 	while (pwr) {
680 		if (pwr->type == PSTATE) {
681 			if (!pwr->state)
682 				pwr->state = min_freq;
683 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
684 		}
685 		pwr = pwr->next;
686 	}
687 }
688 
689 static void draw_wakeups(void)
690 {
691 	struct wake_event *we;
692 	struct per_pid *p;
693 	struct per_pidcomm *c;
694 
695 	we = wake_events;
696 	while (we) {
697 		int from = 0, to = 0;
698 		char *task_from = NULL, *task_to = NULL;
699 
700 		/* locate the column of the waker and wakee */
701 		p = all_data;
702 		while (p) {
703 			if (p->pid == we->waker || p->pid == we->wakee) {
704 				c = p->all;
705 				while (c) {
706 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
707 						if (p->pid == we->waker && !from) {
708 							from = c->Y;
709 							task_from = strdup(c->comm);
710 						}
711 						if (p->pid == we->wakee && !to) {
712 							to = c->Y;
713 							task_to = strdup(c->comm);
714 						}
715 					}
716 					c = c->next;
717 				}
718 				c = p->all;
719 				while (c) {
720 					if (p->pid == we->waker && !from) {
721 						from = c->Y;
722 						task_from = strdup(c->comm);
723 					}
724 					if (p->pid == we->wakee && !to) {
725 						to = c->Y;
726 						task_to = strdup(c->comm);
727 					}
728 					c = c->next;
729 				}
730 			}
731 			p = p->next;
732 		}
733 
734 		if (!task_from) {
735 			task_from = malloc(40);
736 			sprintf(task_from, "[%i]", we->waker);
737 		}
738 		if (!task_to) {
739 			task_to = malloc(40);
740 			sprintf(task_to, "[%i]", we->wakee);
741 		}
742 
743 		if (we->waker == -1)
744 			svg_interrupt(we->time, to);
745 		else if (from && to && abs(from - to) == 1)
746 			svg_wakeline(we->time, from, to);
747 		else
748 			svg_partial_wakeline(we->time, from, task_from, to, task_to);
749 		we = we->next;
750 
751 		free(task_from);
752 		free(task_to);
753 	}
754 }
755 
756 static void draw_cpu_usage(void)
757 {
758 	struct per_pid *p;
759 	struct per_pidcomm *c;
760 	struct cpu_sample *sample;
761 	p = all_data;
762 	while (p) {
763 		c = p->all;
764 		while (c) {
765 			sample = c->samples;
766 			while (sample) {
767 				if (sample->type == TYPE_RUNNING)
768 					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
769 
770 				sample = sample->next;
771 			}
772 			c = c->next;
773 		}
774 		p = p->next;
775 	}
776 }
777 
778 static void draw_process_bars(void)
779 {
780 	struct per_pid *p;
781 	struct per_pidcomm *c;
782 	struct cpu_sample *sample;
783 	int Y = 0;
784 
785 	Y = 2 * numcpus + 2;
786 
787 	p = all_data;
788 	while (p) {
789 		c = p->all;
790 		while (c) {
791 			if (!c->display) {
792 				c->Y = 0;
793 				c = c->next;
794 				continue;
795 			}
796 
797 			svg_box(Y, c->start_time, c->end_time, "process");
798 			sample = c->samples;
799 			while (sample) {
800 				if (sample->type == TYPE_RUNNING)
801 					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
802 				if (sample->type == TYPE_BLOCKED)
803 					svg_box(Y, sample->start_time, sample->end_time, "blocked");
804 				if (sample->type == TYPE_WAITING)
805 					svg_waiting(Y, sample->start_time, sample->end_time);
806 				sample = sample->next;
807 			}
808 
809 			if (c->comm) {
810 				char comm[256];
811 				if (c->total_time > 5000000000) /* 5 seconds */
812 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
813 				else
814 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
815 
816 				svg_text(Y, c->start_time, comm);
817 			}
818 			c->Y = Y;
819 			Y++;
820 			c = c->next;
821 		}
822 		p = p->next;
823 	}
824 }
825 
826 static void add_process_filter(const char *string)
827 {
828 	int pid = strtoull(string, NULL, 10);
829 	struct process_filter *filt = malloc(sizeof(*filt));
830 
831 	if (!filt)
832 		return;
833 
834 	filt->name = strdup(string);
835 	filt->pid  = pid;
836 	filt->next = process_filter;
837 
838 	process_filter = filt;
839 }
840 
841 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
842 {
843 	struct process_filter *filt;
844 	if (!process_filter)
845 		return 1;
846 
847 	filt = process_filter;
848 	while (filt) {
849 		if (filt->pid && p->pid == filt->pid)
850 			return 1;
851 		if (strcmp(filt->name, c->comm) == 0)
852 			return 1;
853 		filt = filt->next;
854 	}
855 	return 0;
856 }
857 
858 static int determine_display_tasks_filtered(void)
859 {
860 	struct per_pid *p;
861 	struct per_pidcomm *c;
862 	int count = 0;
863 
864 	p = all_data;
865 	while (p) {
866 		p->display = 0;
867 		if (p->start_time == 1)
868 			p->start_time = first_time;
869 
870 		/* no exit marker, task kept running to the end */
871 		if (p->end_time == 0)
872 			p->end_time = last_time;
873 
874 		c = p->all;
875 
876 		while (c) {
877 			c->display = 0;
878 
879 			if (c->start_time == 1)
880 				c->start_time = first_time;
881 
882 			if (passes_filter(p, c)) {
883 				c->display = 1;
884 				p->display = 1;
885 				count++;
886 			}
887 
888 			if (c->end_time == 0)
889 				c->end_time = last_time;
890 
891 			c = c->next;
892 		}
893 		p = p->next;
894 	}
895 	return count;
896 }
897 
898 static int determine_display_tasks(u64 threshold)
899 {
900 	struct per_pid *p;
901 	struct per_pidcomm *c;
902 	int count = 0;
903 
904 	if (process_filter)
905 		return determine_display_tasks_filtered();
906 
907 	p = all_data;
908 	while (p) {
909 		p->display = 0;
910 		if (p->start_time == 1)
911 			p->start_time = first_time;
912 
913 		/* no exit marker, task kept running to the end */
914 		if (p->end_time == 0)
915 			p->end_time = last_time;
916 		if (p->total_time >= threshold)
917 			p->display = 1;
918 
919 		c = p->all;
920 
921 		while (c) {
922 			c->display = 0;
923 
924 			if (c->start_time == 1)
925 				c->start_time = first_time;
926 
927 			if (c->total_time >= threshold) {
928 				c->display = 1;
929 				count++;
930 			}
931 
932 			if (c->end_time == 0)
933 				c->end_time = last_time;
934 
935 			c = c->next;
936 		}
937 		p = p->next;
938 	}
939 	return count;
940 }
941 
942 
943 
944 #define TIME_THRESH 10000000
945 
946 static void write_svg_file(const char *filename)
947 {
948 	u64 i;
949 	int count;
950 	int thresh = TIME_THRESH;
951 
952 	numcpus++;
953 
954 	if (power_only)
955 		proc_num = 0;
956 
957 	/* We'd like to show at least proc_num tasks;
958 	 * be less picky if we have fewer */
959 	do {
960 		count = determine_display_tasks(thresh);
961 		thresh /= 10;
962 	} while (!process_filter && thresh && count < proc_num);
963 
964 	open_svg(filename, numcpus, count, first_time, last_time);
965 
966 	svg_time_grid();
967 	svg_legenda();
968 
969 	for (i = 0; i < numcpus; i++)
970 		svg_cpu_box(i, max_freq, turbo_frequency);
971 
972 	draw_cpu_usage();
973 	if (proc_num)
974 		draw_process_bars();
975 	if (!tasks_only)
976 		draw_c_p_states();
977 	if (proc_num)
978 		draw_wakeups();
979 
980 	svg_close();
981 }
982 
983 static int __cmd_timechart(const char *output_name)
984 {
985 	struct perf_tool perf_timechart = {
986 		.comm		 = process_comm_event,
987 		.fork		 = process_fork_event,
988 		.exit		 = process_exit_event,
989 		.sample		 = process_sample_event,
990 		.ordered_samples = true,
991 	};
992 	const struct perf_evsel_str_handler power_tracepoints[] = {
993 		{ "power:cpu_idle",		process_sample_cpu_idle },
994 		{ "power:cpu_frequency",	process_sample_cpu_frequency },
995 		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
996 		{ "sched:sched_switch",		process_sample_sched_switch },
997 #ifdef SUPPORT_OLD_POWER_EVENTS
998 		{ "power:power_start",		process_sample_power_start },
999 		{ "power:power_end",		process_sample_power_end },
1000 		{ "power:power_frequency",	process_sample_power_frequency },
1001 #endif
1002 	};
1003 	struct perf_data_file file = {
1004 		.path = input_name,
1005 		.mode = PERF_DATA_MODE_READ,
1006 	};
1007 
1008 	struct perf_session *session = perf_session__new(&file, false,
1009 							 &perf_timechart);
1010 	int ret = -EINVAL;
1011 
1012 	if (session == NULL)
1013 		return -ENOMEM;
1014 
1015 	if (!perf_session__has_traces(session, "timechart record"))
1016 		goto out_delete;
1017 
1018 	if (perf_session__set_tracepoints_handlers(session,
1019 						   power_tracepoints)) {
1020 		pr_err("Initializing session tracepoint handlers failed\n");
1021 		goto out_delete;
1022 	}
1023 
1024 	ret = perf_session__process_events(session, &perf_timechart);
1025 	if (ret)
1026 		goto out_delete;
1027 
1028 	end_sample_processing();
1029 
1030 	sort_pids();
1031 
1032 	write_svg_file(output_name);
1033 
1034 	pr_info("Written %2.1f seconds of trace to %s.\n",
1035 		(last_time - first_time) / 1000000000.0, output_name);
1036 out_delete:
1037 	perf_session__delete(session);
1038 	return ret;
1039 }
1040 
1041 static int __cmd_record(int argc, const char **argv)
1042 {
1043 #ifdef SUPPORT_OLD_POWER_EVENTS
1044 	const char * const record_old_args[] = {
1045 		"record", "-a", "-R", "-c", "1",
1046 		"-e", "power:power_start",
1047 		"-e", "power:power_end",
1048 		"-e", "power:power_frequency",
1049 		"-e", "sched:sched_wakeup",
1050 		"-e", "sched:sched_switch",
1051 	};
1052 #endif
1053 	const char * const record_new_args[] = {
1054 		"record", "-a", "-R", "-c", "1",
1055 		"-e", "power:cpu_frequency",
1056 		"-e", "power:cpu_idle",
1057 		"-e", "sched:sched_wakeup",
1058 		"-e", "sched:sched_switch",
1059 	};
1060 	unsigned int rec_argc, i, j;
1061 	const char **rec_argv;
1062 	const char * const *record_args = record_new_args;
1063 	unsigned int record_elems = ARRAY_SIZE(record_new_args);
1064 
1065 #ifdef SUPPORT_OLD_POWER_EVENTS
1066 	if (!is_valid_tracepoint("power:cpu_idle") &&
1067 	    is_valid_tracepoint("power:power_start")) {
1068 		use_old_power_events = 1;
1069 		record_args = record_old_args;
1070 		record_elems = ARRAY_SIZE(record_old_args);
1071 	}
1072 #endif
1073 
1074 	rec_argc = record_elems + argc - 1;
1075 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1076 
1077 	if (rec_argv == NULL)
1078 		return -ENOMEM;
1079 
1080 	for (i = 0; i < record_elems; i++)
1081 		rec_argv[i] = strdup(record_args[i]);
1082 
1083 	for (j = 1; j < (unsigned int)argc; j++, i++)
1084 		rec_argv[i] = argv[j];
1085 
1086 	return cmd_record(i, rec_argv, NULL);
1087 }
1088 
1089 static int
1090 parse_process(const struct option *opt __maybe_unused, const char *arg,
1091 	      int __maybe_unused unset)
1092 {
1093 	if (arg)
1094 		add_process_filter(arg);
1095 	return 0;
1096 }
1097 
1098 int cmd_timechart(int argc, const char **argv,
1099 		  const char *prefix __maybe_unused)
1100 {
1101 	const char *output_name = "output.svg";
1102 	const struct option options[] = {
1103 	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1104 	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1105 	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1106 	OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"),
1107 	OPT_BOOLEAN('T', "tasks-only", &tasks_only,
1108 		    "output processes data only"),
1109 	OPT_CALLBACK('p', "process", NULL, "process",
1110 		      "process selector. Pass a pid or process name.",
1111 		       parse_process),
1112 	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1113 		    "Look for files with symbols relative to this directory"),
1114 	OPT_INTEGER('n', "proc-num", &proc_num,
1115 		    "min. number of tasks to print"),
1116 	OPT_END()
1117 	};
1118 	const char * const timechart_usage[] = {
1119 		"perf timechart [<options>] {record}",
1120 		NULL
1121 	};
1122 
1123 	argc = parse_options(argc, argv, options, timechart_usage,
1124 			PARSE_OPT_STOP_AT_NON_OPTION);
1125 
1126 	if (power_only && tasks_only) {
1127 		pr_err("-P and -T options cannot be used at the same time.\n");
1128 		return -1;
1129 	}
1130 
1131 	symbol__init();
1132 
1133 	if (argc && !strncmp(argv[0], "rec", 3))
1134 		return __cmd_record(argc, argv);
1135 	else if (argc)
1136 		usage_with_options(timechart_usage, options);
1137 
1138 	setup_pager();
1139 
1140 	return __cmd_timechart(output_name);
1141 }
1142