xref: /openbmc/linux/tools/perf/bench/numa.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  * numa.c
3  *
4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5  */
6 
7 #include "../perf.h"
8 #include "../builtin.h"
9 #include "../util/util.h"
10 #include "../util/parse-options.h"
11 
12 #include "bench.h"
13 
14 #include <errno.h>
15 #include <sched.h>
16 #include <stdio.h>
17 #include <assert.h>
18 #include <malloc.h>
19 #include <signal.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <unistd.h>
23 #include <pthread.h>
24 #include <sys/mman.h>
25 #include <sys/time.h>
26 #include <sys/wait.h>
27 #include <sys/prctl.h>
28 #include <sys/types.h>
29 
30 #include <numa.h>
31 #include <numaif.h>
32 
33 /*
34  * Regular printout to the terminal, supressed if -q is specified:
35  */
36 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
37 
38 /*
39  * Debug printf:
40  */
41 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
42 
43 struct thread_data {
44 	int			curr_cpu;
45 	cpu_set_t		bind_cpumask;
46 	int			bind_node;
47 	u8			*process_data;
48 	int			process_nr;
49 	int			thread_nr;
50 	int			task_nr;
51 	unsigned int		loops_done;
52 	u64			val;
53 	u64			runtime_ns;
54 	pthread_mutex_t		*process_lock;
55 };
56 
57 /* Parameters set by options: */
58 
59 struct params {
60 	/* Startup synchronization: */
61 	bool			serialize_startup;
62 
63 	/* Task hierarchy: */
64 	int			nr_proc;
65 	int			nr_threads;
66 
67 	/* Working set sizes: */
68 	const char		*mb_global_str;
69 	const char		*mb_proc_str;
70 	const char		*mb_proc_locked_str;
71 	const char		*mb_thread_str;
72 
73 	double			mb_global;
74 	double			mb_proc;
75 	double			mb_proc_locked;
76 	double			mb_thread;
77 
78 	/* Access patterns to the working set: */
79 	bool			data_reads;
80 	bool			data_writes;
81 	bool			data_backwards;
82 	bool			data_zero_memset;
83 	bool			data_rand_walk;
84 	u32			nr_loops;
85 	u32			nr_secs;
86 	u32			sleep_usecs;
87 
88 	/* Working set initialization: */
89 	bool			init_zero;
90 	bool			init_random;
91 	bool			init_cpu0;
92 
93 	/* Misc options: */
94 	int			show_details;
95 	int			run_all;
96 	int			thp;
97 
98 	long			bytes_global;
99 	long			bytes_process;
100 	long			bytes_process_locked;
101 	long			bytes_thread;
102 
103 	int			nr_tasks;
104 	bool			show_quiet;
105 
106 	bool			show_convergence;
107 	bool			measure_convergence;
108 
109 	int			perturb_secs;
110 	int			nr_cpus;
111 	int			nr_nodes;
112 
113 	/* Affinity options -C and -N: */
114 	char			*cpu_list_str;
115 	char			*node_list_str;
116 };
117 
118 
119 /* Global, read-writable area, accessible to all processes and threads: */
120 
121 struct global_info {
122 	u8			*data;
123 
124 	pthread_mutex_t		startup_mutex;
125 	int			nr_tasks_started;
126 
127 	pthread_mutex_t		startup_done_mutex;
128 
129 	pthread_mutex_t		start_work_mutex;
130 	int			nr_tasks_working;
131 
132 	pthread_mutex_t		stop_work_mutex;
133 	u64			bytes_done;
134 
135 	struct thread_data	*threads;
136 
137 	/* Convergence latency measurement: */
138 	bool			all_converged;
139 	bool			stop_work;
140 
141 	int			print_once;
142 
143 	struct params		p;
144 };
145 
146 static struct global_info	*g = NULL;
147 
148 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
149 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
150 
151 struct params p0;
152 
153 static const struct option options[] = {
154 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
155 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
156 
157 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
158 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
159 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
160 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
161 
162 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run"),
163 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run"),
164 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
165 
166 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
167 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
168 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
169 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
170 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
171 
172 
173 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
174 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
175 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
176 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
177 
178 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
179 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
180 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
181 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
182 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
183 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"bzero the initial allocations"),
184 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
185 
186 	/* Special option string parsing callbacks: */
187         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
188 			"bind the first N tasks to these specific cpus (the rest is unbound)",
189 			parse_cpus_opt),
190         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
191 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
192 			parse_nodes_opt),
193 	OPT_END()
194 };
195 
196 static const char * const bench_numa_usage[] = {
197 	"perf bench numa <options>",
198 	NULL
199 };
200 
201 static const char * const numa_usage[] = {
202 	"perf bench numa mem [<options>]",
203 	NULL
204 };
205 
206 static cpu_set_t bind_to_cpu(int target_cpu)
207 {
208 	cpu_set_t orig_mask, mask;
209 	int ret;
210 
211 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
212 	BUG_ON(ret);
213 
214 	CPU_ZERO(&mask);
215 
216 	if (target_cpu == -1) {
217 		int cpu;
218 
219 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
220 			CPU_SET(cpu, &mask);
221 	} else {
222 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
223 		CPU_SET(target_cpu, &mask);
224 	}
225 
226 	ret = sched_setaffinity(0, sizeof(mask), &mask);
227 	BUG_ON(ret);
228 
229 	return orig_mask;
230 }
231 
232 static cpu_set_t bind_to_node(int target_node)
233 {
234 	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
235 	cpu_set_t orig_mask, mask;
236 	int cpu;
237 	int ret;
238 
239 	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
240 	BUG_ON(!cpus_per_node);
241 
242 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
243 	BUG_ON(ret);
244 
245 	CPU_ZERO(&mask);
246 
247 	if (target_node == -1) {
248 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
249 			CPU_SET(cpu, &mask);
250 	} else {
251 		int cpu_start = (target_node + 0) * cpus_per_node;
252 		int cpu_stop  = (target_node + 1) * cpus_per_node;
253 
254 		BUG_ON(cpu_stop > g->p.nr_cpus);
255 
256 		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
257 			CPU_SET(cpu, &mask);
258 	}
259 
260 	ret = sched_setaffinity(0, sizeof(mask), &mask);
261 	BUG_ON(ret);
262 
263 	return orig_mask;
264 }
265 
266 static void bind_to_cpumask(cpu_set_t mask)
267 {
268 	int ret;
269 
270 	ret = sched_setaffinity(0, sizeof(mask), &mask);
271 	BUG_ON(ret);
272 }
273 
274 static void mempol_restore(void)
275 {
276 	int ret;
277 
278 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
279 
280 	BUG_ON(ret);
281 }
282 
283 static void bind_to_memnode(int node)
284 {
285 	unsigned long nodemask;
286 	int ret;
287 
288 	if (node == -1)
289 		return;
290 
291 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
292 	nodemask = 1L << node;
293 
294 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
295 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
296 
297 	BUG_ON(ret);
298 }
299 
300 #define HPSIZE (2*1024*1024)
301 
302 #define set_taskname(fmt...)				\
303 do {							\
304 	char name[20];					\
305 							\
306 	snprintf(name, 20, fmt);			\
307 	prctl(PR_SET_NAME, name);			\
308 } while (0)
309 
310 static u8 *alloc_data(ssize_t bytes0, int map_flags,
311 		      int init_zero, int init_cpu0, int thp, int init_random)
312 {
313 	cpu_set_t orig_mask;
314 	ssize_t bytes;
315 	u8 *buf;
316 	int ret;
317 
318 	if (!bytes0)
319 		return NULL;
320 
321 	/* Allocate and initialize all memory on CPU#0: */
322 	if (init_cpu0) {
323 		orig_mask = bind_to_node(0);
324 		bind_to_memnode(0);
325 	}
326 
327 	bytes = bytes0 + HPSIZE;
328 
329 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
330 	BUG_ON(buf == (void *)-1);
331 
332 	if (map_flags == MAP_PRIVATE) {
333 		if (thp > 0) {
334 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
335 			if (ret && !g->print_once) {
336 				g->print_once = 1;
337 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
338 			}
339 		}
340 		if (thp < 0) {
341 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
342 			if (ret && !g->print_once) {
343 				g->print_once = 1;
344 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
345 			}
346 		}
347 	}
348 
349 	if (init_zero) {
350 		bzero(buf, bytes);
351 	} else {
352 		/* Initialize random contents, different in each word: */
353 		if (init_random) {
354 			u64 *wbuf = (void *)buf;
355 			long off = rand();
356 			long i;
357 
358 			for (i = 0; i < bytes/8; i++)
359 				wbuf[i] = i + off;
360 		}
361 	}
362 
363 	/* Align to 2MB boundary: */
364 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
365 
366 	/* Restore affinity: */
367 	if (init_cpu0) {
368 		bind_to_cpumask(orig_mask);
369 		mempol_restore();
370 	}
371 
372 	return buf;
373 }
374 
375 static void free_data(void *data, ssize_t bytes)
376 {
377 	int ret;
378 
379 	if (!data)
380 		return;
381 
382 	ret = munmap(data, bytes);
383 	BUG_ON(ret);
384 }
385 
386 /*
387  * Create a shared memory buffer that can be shared between processes, zeroed:
388  */
389 static void * zalloc_shared_data(ssize_t bytes)
390 {
391 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
392 }
393 
394 /*
395  * Create a shared memory buffer that can be shared between processes:
396  */
397 static void * setup_shared_data(ssize_t bytes)
398 {
399 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
400 }
401 
402 /*
403  * Allocate process-local memory - this will either be shared between
404  * threads of this process, or only be accessed by this thread:
405  */
406 static void * setup_private_data(ssize_t bytes)
407 {
408 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
409 }
410 
411 /*
412  * Return a process-shared (global) mutex:
413  */
414 static void init_global_mutex(pthread_mutex_t *mutex)
415 {
416 	pthread_mutexattr_t attr;
417 
418 	pthread_mutexattr_init(&attr);
419 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
420 	pthread_mutex_init(mutex, &attr);
421 }
422 
423 static int parse_cpu_list(const char *arg)
424 {
425 	p0.cpu_list_str = strdup(arg);
426 
427 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
428 
429 	return 0;
430 }
431 
432 static int parse_setup_cpu_list(void)
433 {
434 	struct thread_data *td;
435 	char *str0, *str;
436 	int t;
437 
438 	if (!g->p.cpu_list_str)
439 		return 0;
440 
441 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
442 
443 	str0 = str = strdup(g->p.cpu_list_str);
444 	t = 0;
445 
446 	BUG_ON(!str);
447 
448 	tprintf("# binding tasks to CPUs:\n");
449 	tprintf("#  ");
450 
451 	while (true) {
452 		int bind_cpu, bind_cpu_0, bind_cpu_1;
453 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
454 		int bind_len;
455 		int step;
456 		int mul;
457 
458 		tok = strsep(&str, ",");
459 		if (!tok)
460 			break;
461 
462 		tok_end = strstr(tok, "-");
463 
464 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
465 		if (!tok_end) {
466 			/* Single CPU specified: */
467 			bind_cpu_0 = bind_cpu_1 = atol(tok);
468 		} else {
469 			/* CPU range specified (for example: "5-11"): */
470 			bind_cpu_0 = atol(tok);
471 			bind_cpu_1 = atol(tok_end + 1);
472 		}
473 
474 		step = 1;
475 		tok_step = strstr(tok, "#");
476 		if (tok_step) {
477 			step = atol(tok_step + 1);
478 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
479 		}
480 
481 		/*
482 		 * Mask length.
483 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
484 		 * where the _4 means the next 4 CPUs are allowed.
485 		 */
486 		bind_len = 1;
487 		tok_len = strstr(tok, "_");
488 		if (tok_len) {
489 			bind_len = atol(tok_len + 1);
490 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
491 		}
492 
493 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
494 		mul = 1;
495 		tok_mul = strstr(tok, "x");
496 		if (tok_mul) {
497 			mul = atol(tok_mul + 1);
498 			BUG_ON(mul <= 0);
499 		}
500 
501 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
502 
503 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
504 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
505 			return -1;
506 		}
507 
508 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
509 		BUG_ON(bind_cpu_0 > bind_cpu_1);
510 
511 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
512 			int i;
513 
514 			for (i = 0; i < mul; i++) {
515 				int cpu;
516 
517 				if (t >= g->p.nr_tasks) {
518 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
519 					goto out;
520 				}
521 				td = g->threads + t;
522 
523 				if (t)
524 					tprintf(",");
525 				if (bind_len > 1) {
526 					tprintf("%2d/%d", bind_cpu, bind_len);
527 				} else {
528 					tprintf("%2d", bind_cpu);
529 				}
530 
531 				CPU_ZERO(&td->bind_cpumask);
532 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
533 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
534 					CPU_SET(cpu, &td->bind_cpumask);
535 				}
536 				t++;
537 			}
538 		}
539 	}
540 out:
541 
542 	tprintf("\n");
543 
544 	if (t < g->p.nr_tasks)
545 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
546 
547 	free(str0);
548 	return 0;
549 }
550 
551 static int parse_cpus_opt(const struct option *opt __maybe_unused,
552 			  const char *arg, int unset __maybe_unused)
553 {
554 	if (!arg)
555 		return -1;
556 
557 	return parse_cpu_list(arg);
558 }
559 
560 static int parse_node_list(const char *arg)
561 {
562 	p0.node_list_str = strdup(arg);
563 
564 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
565 
566 	return 0;
567 }
568 
569 static int parse_setup_node_list(void)
570 {
571 	struct thread_data *td;
572 	char *str0, *str;
573 	int t;
574 
575 	if (!g->p.node_list_str)
576 		return 0;
577 
578 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
579 
580 	str0 = str = strdup(g->p.node_list_str);
581 	t = 0;
582 
583 	BUG_ON(!str);
584 
585 	tprintf("# binding tasks to NODEs:\n");
586 	tprintf("# ");
587 
588 	while (true) {
589 		int bind_node, bind_node_0, bind_node_1;
590 		char *tok, *tok_end, *tok_step, *tok_mul;
591 		int step;
592 		int mul;
593 
594 		tok = strsep(&str, ",");
595 		if (!tok)
596 			break;
597 
598 		tok_end = strstr(tok, "-");
599 
600 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
601 		if (!tok_end) {
602 			/* Single NODE specified: */
603 			bind_node_0 = bind_node_1 = atol(tok);
604 		} else {
605 			/* NODE range specified (for example: "5-11"): */
606 			bind_node_0 = atol(tok);
607 			bind_node_1 = atol(tok_end + 1);
608 		}
609 
610 		step = 1;
611 		tok_step = strstr(tok, "#");
612 		if (tok_step) {
613 			step = atol(tok_step + 1);
614 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
615 		}
616 
617 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
618 		mul = 1;
619 		tok_mul = strstr(tok, "x");
620 		if (tok_mul) {
621 			mul = atol(tok_mul + 1);
622 			BUG_ON(mul <= 0);
623 		}
624 
625 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
626 
627 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
628 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
629 			return -1;
630 		}
631 
632 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
633 		BUG_ON(bind_node_0 > bind_node_1);
634 
635 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
636 			int i;
637 
638 			for (i = 0; i < mul; i++) {
639 				if (t >= g->p.nr_tasks) {
640 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
641 					goto out;
642 				}
643 				td = g->threads + t;
644 
645 				if (!t)
646 					tprintf(" %2d", bind_node);
647 				else
648 					tprintf(",%2d", bind_node);
649 
650 				td->bind_node = bind_node;
651 				t++;
652 			}
653 		}
654 	}
655 out:
656 
657 	tprintf("\n");
658 
659 	if (t < g->p.nr_tasks)
660 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
661 
662 	free(str0);
663 	return 0;
664 }
665 
666 static int parse_nodes_opt(const struct option *opt __maybe_unused,
667 			  const char *arg, int unset __maybe_unused)
668 {
669 	if (!arg)
670 		return -1;
671 
672 	return parse_node_list(arg);
673 
674 	return 0;
675 }
676 
677 #define BIT(x) (1ul << x)
678 
679 static inline uint32_t lfsr_32(uint32_t lfsr)
680 {
681 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
682 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
683 }
684 
685 /*
686  * Make sure there's real data dependency to RAM (when read
687  * accesses are enabled), so the compiler, the CPU and the
688  * kernel (KSM, zero page, etc.) cannot optimize away RAM
689  * accesses:
690  */
691 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
692 {
693 	if (g->p.data_reads)
694 		val += *data;
695 	if (g->p.data_writes)
696 		*data = val + 1;
697 	return val;
698 }
699 
700 /*
701  * The worker process does two types of work, a forwards going
702  * loop and a backwards going loop.
703  *
704  * We do this so that on multiprocessor systems we do not create
705  * a 'train' of processing, with highly synchronized processes,
706  * skewing the whole benchmark.
707  */
708 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
709 {
710 	long words = bytes/sizeof(u64);
711 	u64 *data = (void *)__data;
712 	long chunk_0, chunk_1;
713 	u64 *d0, *d, *d1;
714 	long off;
715 	long i;
716 
717 	BUG_ON(!data && words);
718 	BUG_ON(data && !words);
719 
720 	if (!data)
721 		return val;
722 
723 	/* Very simple memset() work variant: */
724 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
725 		bzero(data, bytes);
726 		return val;
727 	}
728 
729 	/* Spread out by PID/TID nr and by loop nr: */
730 	chunk_0 = words/nr_max;
731 	chunk_1 = words/g->p.nr_loops;
732 	off = nr*chunk_0 + loop*chunk_1;
733 
734 	while (off >= words)
735 		off -= words;
736 
737 	if (g->p.data_rand_walk) {
738 		u32 lfsr = nr + loop + val;
739 		int j;
740 
741 		for (i = 0; i < words/1024; i++) {
742 			long start, end;
743 
744 			lfsr = lfsr_32(lfsr);
745 
746 			start = lfsr % words;
747 			end = min(start + 1024, words-1);
748 
749 			if (g->p.data_zero_memset) {
750 				bzero(data + start, (end-start) * sizeof(u64));
751 			} else {
752 				for (j = start; j < end; j++)
753 					val = access_data(data + j, val);
754 			}
755 		}
756 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
757 
758 		d0 = data + off;
759 		d  = data + off + 1;
760 		d1 = data + words;
761 
762 		/* Process data forwards: */
763 		for (;;) {
764 			if (unlikely(d >= d1))
765 				d = data;
766 			if (unlikely(d == d0))
767 				break;
768 
769 			val = access_data(d, val);
770 
771 			d++;
772 		}
773 	} else {
774 		/* Process data backwards: */
775 
776 		d0 = data + off;
777 		d  = data + off - 1;
778 		d1 = data + words;
779 
780 		/* Process data forwards: */
781 		for (;;) {
782 			if (unlikely(d < data))
783 				d = data + words-1;
784 			if (unlikely(d == d0))
785 				break;
786 
787 			val = access_data(d, val);
788 
789 			d--;
790 		}
791 	}
792 
793 	return val;
794 }
795 
796 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
797 {
798 	unsigned int cpu;
799 
800 	cpu = sched_getcpu();
801 
802 	g->threads[task_nr].curr_cpu = cpu;
803 	prctl(0, bytes_worked);
804 }
805 
806 #define MAX_NR_NODES	64
807 
808 /*
809  * Count the number of nodes a process's threads
810  * are spread out on.
811  *
812  * A count of 1 means that the process is compressed
813  * to a single node. A count of g->p.nr_nodes means it's
814  * spread out on the whole system.
815  */
816 static int count_process_nodes(int process_nr)
817 {
818 	char node_present[MAX_NR_NODES] = { 0, };
819 	int nodes;
820 	int n, t;
821 
822 	for (t = 0; t < g->p.nr_threads; t++) {
823 		struct thread_data *td;
824 		int task_nr;
825 		int node;
826 
827 		task_nr = process_nr*g->p.nr_threads + t;
828 		td = g->threads + task_nr;
829 
830 		node = numa_node_of_cpu(td->curr_cpu);
831 		node_present[node] = 1;
832 	}
833 
834 	nodes = 0;
835 
836 	for (n = 0; n < MAX_NR_NODES; n++)
837 		nodes += node_present[n];
838 
839 	return nodes;
840 }
841 
842 /*
843  * Count the number of distinct process-threads a node contains.
844  *
845  * A count of 1 means that the node contains only a single
846  * process. If all nodes on the system contain at most one
847  * process then we are well-converged.
848  */
849 static int count_node_processes(int node)
850 {
851 	int processes = 0;
852 	int t, p;
853 
854 	for (p = 0; p < g->p.nr_proc; p++) {
855 		for (t = 0; t < g->p.nr_threads; t++) {
856 			struct thread_data *td;
857 			int task_nr;
858 			int n;
859 
860 			task_nr = p*g->p.nr_threads + t;
861 			td = g->threads + task_nr;
862 
863 			n = numa_node_of_cpu(td->curr_cpu);
864 			if (n == node) {
865 				processes++;
866 				break;
867 			}
868 		}
869 	}
870 
871 	return processes;
872 }
873 
874 static void calc_convergence_compression(int *strong)
875 {
876 	unsigned int nodes_min, nodes_max;
877 	int p;
878 
879 	nodes_min = -1;
880 	nodes_max =  0;
881 
882 	for (p = 0; p < g->p.nr_proc; p++) {
883 		unsigned int nodes = count_process_nodes(p);
884 
885 		nodes_min = min(nodes, nodes_min);
886 		nodes_max = max(nodes, nodes_max);
887 	}
888 
889 	/* Strong convergence: all threads compress on a single node: */
890 	if (nodes_min == 1 && nodes_max == 1) {
891 		*strong = 1;
892 	} else {
893 		*strong = 0;
894 		tprintf(" {%d-%d}", nodes_min, nodes_max);
895 	}
896 }
897 
898 static void calc_convergence(double runtime_ns_max, double *convergence)
899 {
900 	unsigned int loops_done_min, loops_done_max;
901 	int process_groups;
902 	int nodes[MAX_NR_NODES];
903 	int distance;
904 	int nr_min;
905 	int nr_max;
906 	int strong;
907 	int sum;
908 	int nr;
909 	int node;
910 	int cpu;
911 	int t;
912 
913 	if (!g->p.show_convergence && !g->p.measure_convergence)
914 		return;
915 
916 	for (node = 0; node < g->p.nr_nodes; node++)
917 		nodes[node] = 0;
918 
919 	loops_done_min = -1;
920 	loops_done_max = 0;
921 
922 	for (t = 0; t < g->p.nr_tasks; t++) {
923 		struct thread_data *td = g->threads + t;
924 		unsigned int loops_done;
925 
926 		cpu = td->curr_cpu;
927 
928 		/* Not all threads have written it yet: */
929 		if (cpu < 0)
930 			continue;
931 
932 		node = numa_node_of_cpu(cpu);
933 
934 		nodes[node]++;
935 
936 		loops_done = td->loops_done;
937 		loops_done_min = min(loops_done, loops_done_min);
938 		loops_done_max = max(loops_done, loops_done_max);
939 	}
940 
941 	nr_max = 0;
942 	nr_min = g->p.nr_tasks;
943 	sum = 0;
944 
945 	for (node = 0; node < g->p.nr_nodes; node++) {
946 		nr = nodes[node];
947 		nr_min = min(nr, nr_min);
948 		nr_max = max(nr, nr_max);
949 		sum += nr;
950 	}
951 	BUG_ON(nr_min > nr_max);
952 
953 	BUG_ON(sum > g->p.nr_tasks);
954 
955 	if (0 && (sum < g->p.nr_tasks))
956 		return;
957 
958 	/*
959 	 * Count the number of distinct process groups present
960 	 * on nodes - when we are converged this will decrease
961 	 * to g->p.nr_proc:
962 	 */
963 	process_groups = 0;
964 
965 	for (node = 0; node < g->p.nr_nodes; node++) {
966 		int processes = count_node_processes(node);
967 
968 		nr = nodes[node];
969 		tprintf(" %2d/%-2d", nr, processes);
970 
971 		process_groups += processes;
972 	}
973 
974 	distance = nr_max - nr_min;
975 
976 	tprintf(" [%2d/%-2d]", distance, process_groups);
977 
978 	tprintf(" l:%3d-%-3d (%3d)",
979 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
980 
981 	if (loops_done_min && loops_done_max) {
982 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
983 
984 		tprintf(" [%4.1f%%]", skew * 100.0);
985 	}
986 
987 	calc_convergence_compression(&strong);
988 
989 	if (strong && process_groups == g->p.nr_proc) {
990 		if (!*convergence) {
991 			*convergence = runtime_ns_max;
992 			tprintf(" (%6.1fs converged)\n", *convergence/1e9);
993 			if (g->p.measure_convergence) {
994 				g->all_converged = true;
995 				g->stop_work = true;
996 			}
997 		}
998 	} else {
999 		if (*convergence) {
1000 			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1001 			*convergence = 0;
1002 		}
1003 		tprintf("\n");
1004 	}
1005 }
1006 
1007 static void show_summary(double runtime_ns_max, int l, double *convergence)
1008 {
1009 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1010 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1011 
1012 	calc_convergence(runtime_ns_max, convergence);
1013 
1014 	if (g->p.show_details >= 0)
1015 		fflush(stdout);
1016 }
1017 
1018 static void *worker_thread(void *__tdata)
1019 {
1020 	struct thread_data *td = __tdata;
1021 	struct timeval start0, start, stop, diff;
1022 	int process_nr = td->process_nr;
1023 	int thread_nr = td->thread_nr;
1024 	unsigned long last_perturbance;
1025 	int task_nr = td->task_nr;
1026 	int details = g->p.show_details;
1027 	int first_task, last_task;
1028 	double convergence = 0;
1029 	u64 val = td->val;
1030 	double runtime_ns_max;
1031 	u8 *global_data;
1032 	u8 *process_data;
1033 	u8 *thread_data;
1034 	u64 bytes_done;
1035 	long work_done;
1036 	u32 l;
1037 
1038 	bind_to_cpumask(td->bind_cpumask);
1039 	bind_to_memnode(td->bind_node);
1040 
1041 	set_taskname("thread %d/%d", process_nr, thread_nr);
1042 
1043 	global_data = g->data;
1044 	process_data = td->process_data;
1045 	thread_data = setup_private_data(g->p.bytes_thread);
1046 
1047 	bytes_done = 0;
1048 
1049 	last_task = 0;
1050 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1051 		last_task = 1;
1052 
1053 	first_task = 0;
1054 	if (process_nr == 0 && thread_nr == 0)
1055 		first_task = 1;
1056 
1057 	if (details >= 2) {
1058 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1059 			process_nr, thread_nr, global_data, process_data, thread_data);
1060 	}
1061 
1062 	if (g->p.serialize_startup) {
1063 		pthread_mutex_lock(&g->startup_mutex);
1064 		g->nr_tasks_started++;
1065 		pthread_mutex_unlock(&g->startup_mutex);
1066 
1067 		/* Here we will wait for the main process to start us all at once: */
1068 		pthread_mutex_lock(&g->start_work_mutex);
1069 		g->nr_tasks_working++;
1070 
1071 		/* Last one wake the main process: */
1072 		if (g->nr_tasks_working == g->p.nr_tasks)
1073 			pthread_mutex_unlock(&g->startup_done_mutex);
1074 
1075 		pthread_mutex_unlock(&g->start_work_mutex);
1076 	}
1077 
1078 	gettimeofday(&start0, NULL);
1079 
1080 	start = stop = start0;
1081 	last_perturbance = start.tv_sec;
1082 
1083 	for (l = 0; l < g->p.nr_loops; l++) {
1084 		start = stop;
1085 
1086 		if (g->stop_work)
1087 			break;
1088 
1089 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1090 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1091 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1092 
1093 		if (g->p.sleep_usecs) {
1094 			pthread_mutex_lock(td->process_lock);
1095 			usleep(g->p.sleep_usecs);
1096 			pthread_mutex_unlock(td->process_lock);
1097 		}
1098 		/*
1099 		 * Amount of work to be done under a process-global lock:
1100 		 */
1101 		if (g->p.bytes_process_locked) {
1102 			pthread_mutex_lock(td->process_lock);
1103 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1104 			pthread_mutex_unlock(td->process_lock);
1105 		}
1106 
1107 		work_done = g->p.bytes_global + g->p.bytes_process +
1108 			    g->p.bytes_process_locked + g->p.bytes_thread;
1109 
1110 		update_curr_cpu(task_nr, work_done);
1111 		bytes_done += work_done;
1112 
1113 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1114 			continue;
1115 
1116 		td->loops_done = l;
1117 
1118 		gettimeofday(&stop, NULL);
1119 
1120 		/* Check whether our max runtime timed out: */
1121 		if (g->p.nr_secs) {
1122 			timersub(&stop, &start0, &diff);
1123 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1124 				g->stop_work = true;
1125 				break;
1126 			}
1127 		}
1128 
1129 		/* Update the summary at most once per second: */
1130 		if (start.tv_sec == stop.tv_sec)
1131 			continue;
1132 
1133 		/*
1134 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1135 		 * by migrating to CPU#0:
1136 		 */
1137 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1138 			cpu_set_t orig_mask;
1139 			int target_cpu;
1140 			int this_cpu;
1141 
1142 			last_perturbance = stop.tv_sec;
1143 
1144 			/*
1145 			 * Depending on where we are running, move into
1146 			 * the other half of the system, to create some
1147 			 * real disturbance:
1148 			 */
1149 			this_cpu = g->threads[task_nr].curr_cpu;
1150 			if (this_cpu < g->p.nr_cpus/2)
1151 				target_cpu = g->p.nr_cpus-1;
1152 			else
1153 				target_cpu = 0;
1154 
1155 			orig_mask = bind_to_cpu(target_cpu);
1156 
1157 			/* Here we are running on the target CPU already */
1158 			if (details >= 1)
1159 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1160 
1161 			bind_to_cpumask(orig_mask);
1162 		}
1163 
1164 		if (details >= 3) {
1165 			timersub(&stop, &start, &diff);
1166 			runtime_ns_max = diff.tv_sec * 1000000000;
1167 			runtime_ns_max += diff.tv_usec * 1000;
1168 
1169 			if (details >= 0) {
1170 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1171 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1172 			}
1173 			fflush(stdout);
1174 		}
1175 		if (!last_task)
1176 			continue;
1177 
1178 		timersub(&stop, &start0, &diff);
1179 		runtime_ns_max = diff.tv_sec * 1000000000ULL;
1180 		runtime_ns_max += diff.tv_usec * 1000ULL;
1181 
1182 		show_summary(runtime_ns_max, l, &convergence);
1183 	}
1184 
1185 	gettimeofday(&stop, NULL);
1186 	timersub(&stop, &start0, &diff);
1187 	td->runtime_ns = diff.tv_sec * 1000000000ULL;
1188 	td->runtime_ns += diff.tv_usec * 1000ULL;
1189 
1190 	free_data(thread_data, g->p.bytes_thread);
1191 
1192 	pthread_mutex_lock(&g->stop_work_mutex);
1193 	g->bytes_done += bytes_done;
1194 	pthread_mutex_unlock(&g->stop_work_mutex);
1195 
1196 	return NULL;
1197 }
1198 
1199 /*
1200  * A worker process starts a couple of threads:
1201  */
1202 static void worker_process(int process_nr)
1203 {
1204 	pthread_mutex_t process_lock;
1205 	struct thread_data *td;
1206 	pthread_t *pthreads;
1207 	u8 *process_data;
1208 	int task_nr;
1209 	int ret;
1210 	int t;
1211 
1212 	pthread_mutex_init(&process_lock, NULL);
1213 	set_taskname("process %d", process_nr);
1214 
1215 	/*
1216 	 * Pick up the memory policy and the CPU binding of our first thread,
1217 	 * so that we initialize memory accordingly:
1218 	 */
1219 	task_nr = process_nr*g->p.nr_threads;
1220 	td = g->threads + task_nr;
1221 
1222 	bind_to_memnode(td->bind_node);
1223 	bind_to_cpumask(td->bind_cpumask);
1224 
1225 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1226 	process_data = setup_private_data(g->p.bytes_process);
1227 
1228 	if (g->p.show_details >= 3) {
1229 		printf(" # process %2d global mem: %p, process mem: %p\n",
1230 			process_nr, g->data, process_data);
1231 	}
1232 
1233 	for (t = 0; t < g->p.nr_threads; t++) {
1234 		task_nr = process_nr*g->p.nr_threads + t;
1235 		td = g->threads + task_nr;
1236 
1237 		td->process_data = process_data;
1238 		td->process_nr   = process_nr;
1239 		td->thread_nr    = t;
1240 		td->task_nr	 = task_nr;
1241 		td->val          = rand();
1242 		td->curr_cpu	 = -1;
1243 		td->process_lock = &process_lock;
1244 
1245 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1246 		BUG_ON(ret);
1247 	}
1248 
1249 	for (t = 0; t < g->p.nr_threads; t++) {
1250                 ret = pthread_join(pthreads[t], NULL);
1251 		BUG_ON(ret);
1252 	}
1253 
1254 	free_data(process_data, g->p.bytes_process);
1255 	free(pthreads);
1256 }
1257 
1258 static void print_summary(void)
1259 {
1260 	if (g->p.show_details < 0)
1261 		return;
1262 
1263 	printf("\n ###\n");
1264 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1265 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1266 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1267 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1268 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1269 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1270 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1271 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1272 
1273 	printf(" ###\n");
1274 
1275 	printf("\n ###\n"); fflush(stdout);
1276 }
1277 
1278 static void init_thread_data(void)
1279 {
1280 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1281 	int t;
1282 
1283 	g->threads = zalloc_shared_data(size);
1284 
1285 	for (t = 0; t < g->p.nr_tasks; t++) {
1286 		struct thread_data *td = g->threads + t;
1287 		int cpu;
1288 
1289 		/* Allow all nodes by default: */
1290 		td->bind_node = -1;
1291 
1292 		/* Allow all CPUs by default: */
1293 		CPU_ZERO(&td->bind_cpumask);
1294 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1295 			CPU_SET(cpu, &td->bind_cpumask);
1296 	}
1297 }
1298 
1299 static void deinit_thread_data(void)
1300 {
1301 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1302 
1303 	free_data(g->threads, size);
1304 }
1305 
1306 static int init(void)
1307 {
1308 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1309 
1310 	/* Copy over options: */
1311 	g->p = p0;
1312 
1313 	g->p.nr_cpus = numa_num_configured_cpus();
1314 
1315 	g->p.nr_nodes = numa_max_node() + 1;
1316 
1317 	/* char array in count_process_nodes(): */
1318 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1319 
1320 	if (g->p.show_quiet && !g->p.show_details)
1321 		g->p.show_details = -1;
1322 
1323 	/* Some memory should be specified: */
1324 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1325 		return -1;
1326 
1327 	if (g->p.mb_global_str) {
1328 		g->p.mb_global = atof(g->p.mb_global_str);
1329 		BUG_ON(g->p.mb_global < 0);
1330 	}
1331 
1332 	if (g->p.mb_proc_str) {
1333 		g->p.mb_proc = atof(g->p.mb_proc_str);
1334 		BUG_ON(g->p.mb_proc < 0);
1335 	}
1336 
1337 	if (g->p.mb_proc_locked_str) {
1338 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1339 		BUG_ON(g->p.mb_proc_locked < 0);
1340 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1341 	}
1342 
1343 	if (g->p.mb_thread_str) {
1344 		g->p.mb_thread = atof(g->p.mb_thread_str);
1345 		BUG_ON(g->p.mb_thread < 0);
1346 	}
1347 
1348 	BUG_ON(g->p.nr_threads <= 0);
1349 	BUG_ON(g->p.nr_proc <= 0);
1350 
1351 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1352 
1353 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1354 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1355 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1356 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1357 
1358 	g->data = setup_shared_data(g->p.bytes_global);
1359 
1360 	/* Startup serialization: */
1361 	init_global_mutex(&g->start_work_mutex);
1362 	init_global_mutex(&g->startup_mutex);
1363 	init_global_mutex(&g->startup_done_mutex);
1364 	init_global_mutex(&g->stop_work_mutex);
1365 
1366 	init_thread_data();
1367 
1368 	tprintf("#\n");
1369 	if (parse_setup_cpu_list() || parse_setup_node_list())
1370 		return -1;
1371 	tprintf("#\n");
1372 
1373 	print_summary();
1374 
1375 	return 0;
1376 }
1377 
1378 static void deinit(void)
1379 {
1380 	free_data(g->data, g->p.bytes_global);
1381 	g->data = NULL;
1382 
1383 	deinit_thread_data();
1384 
1385 	free_data(g, sizeof(*g));
1386 	g = NULL;
1387 }
1388 
1389 /*
1390  * Print a short or long result, depending on the verbosity setting:
1391  */
1392 static void print_res(const char *name, double val,
1393 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1394 {
1395 	if (!name)
1396 		name = "main,";
1397 
1398 	if (g->p.show_quiet)
1399 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1400 	else
1401 		printf(" %14.3f %s\n", val, txt_long);
1402 }
1403 
1404 static int __bench_numa(const char *name)
1405 {
1406 	struct timeval start, stop, diff;
1407 	u64 runtime_ns_min, runtime_ns_sum;
1408 	pid_t *pids, pid, wpid;
1409 	double delta_runtime;
1410 	double runtime_avg;
1411 	double runtime_sec_max;
1412 	double runtime_sec_min;
1413 	int wait_stat;
1414 	double bytes;
1415 	int i, t;
1416 
1417 	if (init())
1418 		return -1;
1419 
1420 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1421 	pid = -1;
1422 
1423 	/* All threads try to acquire it, this way we can wait for them to start up: */
1424 	pthread_mutex_lock(&g->start_work_mutex);
1425 
1426 	if (g->p.serialize_startup) {
1427 		tprintf(" #\n");
1428 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1429 	}
1430 
1431 	gettimeofday(&start, NULL);
1432 
1433 	for (i = 0; i < g->p.nr_proc; i++) {
1434 		pid = fork();
1435 		dprintf(" # process %2d: PID %d\n", i, pid);
1436 
1437 		BUG_ON(pid < 0);
1438 		if (!pid) {
1439 			/* Child process: */
1440 			worker_process(i);
1441 
1442 			exit(0);
1443 		}
1444 		pids[i] = pid;
1445 
1446 	}
1447 	/* Wait for all the threads to start up: */
1448 	while (g->nr_tasks_started != g->p.nr_tasks)
1449 		usleep(1000);
1450 
1451 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1452 
1453 	if (g->p.serialize_startup) {
1454 		double startup_sec;
1455 
1456 		pthread_mutex_lock(&g->startup_done_mutex);
1457 
1458 		/* This will start all threads: */
1459 		pthread_mutex_unlock(&g->start_work_mutex);
1460 
1461 		/* This mutex is locked - the last started thread will wake us: */
1462 		pthread_mutex_lock(&g->startup_done_mutex);
1463 
1464 		gettimeofday(&stop, NULL);
1465 
1466 		timersub(&stop, &start, &diff);
1467 
1468 		startup_sec = diff.tv_sec * 1000000000.0;
1469 		startup_sec += diff.tv_usec * 1000.0;
1470 		startup_sec /= 1e9;
1471 
1472 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1473 		tprintf(" #\n");
1474 
1475 		start = stop;
1476 		pthread_mutex_unlock(&g->startup_done_mutex);
1477 	} else {
1478 		gettimeofday(&start, NULL);
1479 	}
1480 
1481 	/* Parent process: */
1482 
1483 
1484 	for (i = 0; i < g->p.nr_proc; i++) {
1485 		wpid = waitpid(pids[i], &wait_stat, 0);
1486 		BUG_ON(wpid < 0);
1487 		BUG_ON(!WIFEXITED(wait_stat));
1488 
1489 	}
1490 
1491 	runtime_ns_sum = 0;
1492 	runtime_ns_min = -1LL;
1493 
1494 	for (t = 0; t < g->p.nr_tasks; t++) {
1495 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1496 
1497 		runtime_ns_sum += thread_runtime_ns;
1498 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1499 	}
1500 
1501 	gettimeofday(&stop, NULL);
1502 	timersub(&stop, &start, &diff);
1503 
1504 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1505 
1506 	tprintf("\n ###\n");
1507 	tprintf("\n");
1508 
1509 	runtime_sec_max = diff.tv_sec * 1000000000.0;
1510 	runtime_sec_max += diff.tv_usec * 1000.0;
1511 	runtime_sec_max /= 1e9;
1512 
1513 	runtime_sec_min = runtime_ns_min/1e9;
1514 
1515 	bytes = g->bytes_done;
1516 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1517 
1518 	if (g->p.measure_convergence) {
1519 		print_res(name, runtime_sec_max,
1520 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1521 	}
1522 
1523 	print_res(name, runtime_sec_max,
1524 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1525 
1526 	print_res(name, runtime_sec_min,
1527 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1528 
1529 	print_res(name, runtime_avg,
1530 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1531 
1532 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1533 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1534 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1535 
1536 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1537 		"GB,", "data/thread",		"GB data processed, per thread");
1538 
1539 	print_res(name, bytes / 1e9,
1540 		"GB,", "data-total",		"GB data processed, total");
1541 
1542 	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1543 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1544 
1545 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1546 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1547 
1548 	print_res(name, bytes / runtime_sec_max / 1e9,
1549 		"GB/sec,", "total-speed",	"GB/sec total speed");
1550 
1551 	free(pids);
1552 
1553 	deinit();
1554 
1555 	return 0;
1556 }
1557 
1558 #define MAX_ARGS 50
1559 
1560 static int command_size(const char **argv)
1561 {
1562 	int size = 0;
1563 
1564 	while (*argv) {
1565 		size++;
1566 		argv++;
1567 	}
1568 
1569 	BUG_ON(size >= MAX_ARGS);
1570 
1571 	return size;
1572 }
1573 
1574 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1575 {
1576 	int i;
1577 
1578 	printf("\n # Running %s \"perf bench numa", name);
1579 
1580 	for (i = 0; i < argc; i++)
1581 		printf(" %s", argv[i]);
1582 
1583 	printf("\"\n");
1584 
1585 	memset(p, 0, sizeof(*p));
1586 
1587 	/* Initialize nonzero defaults: */
1588 
1589 	p->serialize_startup		= 1;
1590 	p->data_reads			= true;
1591 	p->data_writes			= true;
1592 	p->data_backwards		= true;
1593 	p->data_rand_walk		= true;
1594 	p->nr_loops			= -1;
1595 	p->init_random			= true;
1596 	p->mb_global_str		= "1";
1597 	p->nr_proc			= 1;
1598 	p->nr_threads			= 1;
1599 	p->nr_secs			= 5;
1600 	p->run_all			= argc == 1;
1601 }
1602 
1603 static int run_bench_numa(const char *name, const char **argv)
1604 {
1605 	int argc = command_size(argv);
1606 
1607 	init_params(&p0, name, argc, argv);
1608 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1609 	if (argc)
1610 		goto err;
1611 
1612 	if (__bench_numa(name))
1613 		goto err;
1614 
1615 	return 0;
1616 
1617 err:
1618 	return -1;
1619 }
1620 
1621 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1622 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1623 
1624 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1625 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1626 
1627 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1628 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1629 
1630 /*
1631  * The built-in test-suite executed by "perf bench numa -a".
1632  *
1633  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1634  */
1635 static const char *tests[][MAX_ARGS] = {
1636    /* Basic single-stream NUMA bandwidth measurements: */
1637    { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1638 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1639    { "RAM-bw-local-NOTHP,",
1640 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1641 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1642    { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1643 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1644 
1645    /* 2-stream NUMA bandwidth measurements: */
1646    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1647 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1648    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1649 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1650 
1651    /* Cross-stream NUMA bandwidth measurement: */
1652    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1653 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1654 
1655    /* Convergence latency measurements: */
1656    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1657    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1658    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1659    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1660    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1661    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1662    { " 4x4-convergence-NOTHP,",
1663 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1664    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1665    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1666    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1667    { " 8x4-convergence-NOTHP,",
1668 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1669    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1670    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1671    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1672    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1673    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1674 
1675    /* Various NUMA process/thread layout bandwidth measurements: */
1676    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1677    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1678    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1679    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1680    { " 8x1-bw-process-NOTHP,",
1681 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1682    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1683 
1684    { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1685    { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1686    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1687    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1688 
1689    { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1690    { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1691    { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1692    { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1693    { " 4x8-bw-thread-NOTHP,",
1694 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1695    { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1696    { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1697 
1698    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1699    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1700 
1701    { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1702    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1703    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1704    { "numa01-bw-thread-NOTHP,",
1705 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1706 };
1707 
1708 static int bench_all(void)
1709 {
1710 	int nr = ARRAY_SIZE(tests);
1711 	int ret;
1712 	int i;
1713 
1714 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1715 	BUG_ON(ret < 0);
1716 
1717 	for (i = 0; i < nr; i++) {
1718 		run_bench_numa(tests[i][0], tests[i] + 1);
1719 	}
1720 
1721 	printf("\n");
1722 
1723 	return 0;
1724 }
1725 
1726 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1727 {
1728 	init_params(&p0, "main,", argc, argv);
1729 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1730 	if (argc)
1731 		goto err;
1732 
1733 	if (p0.run_all)
1734 		return bench_all();
1735 
1736 	if (__bench_numa(NULL))
1737 		goto err;
1738 
1739 	return 0;
1740 
1741 err:
1742 	usage_with_options(numa_usage, options);
1743 	return -1;
1744 }
1745