1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <endian.h> 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <string.h> 8 #include <fcntl.h> 9 #include <unistd.h> 10 #include <errno.h> 11 #include <sys/utsname.h> 12 #include <sys/param.h> 13 #include <sys/stat.h> 14 #include <linux/kernel.h> 15 #include <linux/err.h> 16 #include <linux/btf.h> 17 #include <gelf.h> 18 #include "btf.h" 19 #include "bpf.h" 20 #include "libbpf.h" 21 #include "libbpf_internal.h" 22 #include "hashmap.h" 23 24 #define BTF_MAX_NR_TYPES 0x7fffffffU 25 #define BTF_MAX_STR_OFFSET 0x7fffffffU 26 27 static struct btf_type btf_void; 28 29 struct btf { 30 union { 31 struct btf_header *hdr; 32 void *data; 33 }; 34 __u32 *type_offs; 35 __u32 type_offs_cap; 36 const char *strings; 37 void *nohdr_data; 38 void *types_data; 39 __u32 nr_types; 40 __u32 data_size; 41 int fd; 42 int ptr_sz; 43 }; 44 45 static inline __u64 ptr_to_u64(const void *ptr) 46 { 47 return (__u64) (unsigned long) ptr; 48 } 49 50 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 51 { 52 /* nr_types is 1-based, so N types means we need N+1-sized array */ 53 if (btf->nr_types + 2 > btf->type_offs_cap) { 54 __u32 *new_offs; 55 __u32 expand_by, new_size; 56 57 if (btf->type_offs_cap == BTF_MAX_NR_TYPES) 58 return -E2BIG; 59 60 expand_by = max(btf->type_offs_cap / 4, 16U); 61 new_size = min(BTF_MAX_NR_TYPES, btf->type_offs_cap + expand_by); 62 63 new_offs = libbpf_reallocarray(btf->type_offs, new_size, sizeof(*new_offs)); 64 if (!new_offs) 65 return -ENOMEM; 66 67 new_offs[0] = UINT_MAX; /* VOID is specially handled */ 68 69 btf->type_offs = new_offs; 70 btf->type_offs_cap = new_size; 71 } 72 73 btf->type_offs[btf->nr_types + 1] = type_off; 74 75 return 0; 76 } 77 78 static int btf_parse_hdr(struct btf *btf) 79 { 80 const struct btf_header *hdr = btf->hdr; 81 __u32 meta_left; 82 83 if (btf->data_size < sizeof(struct btf_header)) { 84 pr_debug("BTF header not found\n"); 85 return -EINVAL; 86 } 87 88 if (hdr->magic != BTF_MAGIC) { 89 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 90 return -EINVAL; 91 } 92 93 if (hdr->version != BTF_VERSION) { 94 pr_debug("Unsupported BTF version:%u\n", hdr->version); 95 return -ENOTSUP; 96 } 97 98 if (hdr->flags) { 99 pr_debug("Unsupported BTF flags:%x\n", hdr->flags); 100 return -ENOTSUP; 101 } 102 103 meta_left = btf->data_size - sizeof(*hdr); 104 if (!meta_left) { 105 pr_debug("BTF has no data\n"); 106 return -EINVAL; 107 } 108 109 if (meta_left < hdr->type_off) { 110 pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off); 111 return -EINVAL; 112 } 113 114 if (meta_left < hdr->str_off) { 115 pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off); 116 return -EINVAL; 117 } 118 119 if (hdr->type_off >= hdr->str_off) { 120 pr_debug("BTF type section offset >= string section offset. No type?\n"); 121 return -EINVAL; 122 } 123 124 if (hdr->type_off & 0x02) { 125 pr_debug("BTF type section is not aligned to 4 bytes\n"); 126 return -EINVAL; 127 } 128 129 btf->nohdr_data = btf->hdr + 1; 130 131 return 0; 132 } 133 134 static int btf_parse_str_sec(struct btf *btf) 135 { 136 const struct btf_header *hdr = btf->hdr; 137 const char *start = btf->nohdr_data + hdr->str_off; 138 const char *end = start + btf->hdr->str_len; 139 140 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || 141 start[0] || end[-1]) { 142 pr_debug("Invalid BTF string section\n"); 143 return -EINVAL; 144 } 145 146 btf->strings = start; 147 148 return 0; 149 } 150 151 static int btf_type_size(const struct btf_type *t) 152 { 153 int base_size = sizeof(struct btf_type); 154 __u16 vlen = btf_vlen(t); 155 156 switch (btf_kind(t)) { 157 case BTF_KIND_FWD: 158 case BTF_KIND_CONST: 159 case BTF_KIND_VOLATILE: 160 case BTF_KIND_RESTRICT: 161 case BTF_KIND_PTR: 162 case BTF_KIND_TYPEDEF: 163 case BTF_KIND_FUNC: 164 return base_size; 165 case BTF_KIND_INT: 166 return base_size + sizeof(__u32); 167 case BTF_KIND_ENUM: 168 return base_size + vlen * sizeof(struct btf_enum); 169 case BTF_KIND_ARRAY: 170 return base_size + sizeof(struct btf_array); 171 case BTF_KIND_STRUCT: 172 case BTF_KIND_UNION: 173 return base_size + vlen * sizeof(struct btf_member); 174 case BTF_KIND_FUNC_PROTO: 175 return base_size + vlen * sizeof(struct btf_param); 176 case BTF_KIND_VAR: 177 return base_size + sizeof(struct btf_var); 178 case BTF_KIND_DATASEC: 179 return base_size + vlen * sizeof(struct btf_var_secinfo); 180 default: 181 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 182 return -EINVAL; 183 } 184 } 185 186 static int btf_parse_type_sec(struct btf *btf) 187 { 188 struct btf_header *hdr = btf->hdr; 189 void *next_type = btf->nohdr_data + hdr->type_off; 190 void *end_type = next_type + hdr->type_len; 191 192 btf->types_data = next_type; 193 194 while (next_type < end_type) { 195 int type_size; 196 int err; 197 198 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 199 if (err) 200 return err; 201 202 type_size = btf_type_size(next_type); 203 if (type_size < 0) 204 return type_size; 205 206 next_type += type_size; 207 btf->nr_types++; 208 } 209 210 return 0; 211 } 212 213 __u32 btf__get_nr_types(const struct btf *btf) 214 { 215 return btf->nr_types; 216 } 217 218 /* internal helper returning non-const pointer to a type */ 219 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 220 { 221 if (type_id == 0) 222 return &btf_void; 223 224 return btf->types_data + btf->type_offs[type_id]; 225 } 226 227 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 228 { 229 if (type_id > btf->nr_types) 230 return NULL; 231 return btf_type_by_id((struct btf *)btf, type_id); 232 } 233 234 static int determine_ptr_size(const struct btf *btf) 235 { 236 const struct btf_type *t; 237 const char *name; 238 int i; 239 240 for (i = 1; i <= btf->nr_types; i++) { 241 t = btf__type_by_id(btf, i); 242 if (!btf_is_int(t)) 243 continue; 244 245 name = btf__name_by_offset(btf, t->name_off); 246 if (!name) 247 continue; 248 249 if (strcmp(name, "long int") == 0 || 250 strcmp(name, "long unsigned int") == 0) { 251 if (t->size != 4 && t->size != 8) 252 continue; 253 return t->size; 254 } 255 } 256 257 return -1; 258 } 259 260 static size_t btf_ptr_sz(const struct btf *btf) 261 { 262 if (!btf->ptr_sz) 263 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 264 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 265 } 266 267 /* Return pointer size this BTF instance assumes. The size is heuristically 268 * determined by looking for 'long' or 'unsigned long' integer type and 269 * recording its size in bytes. If BTF type information doesn't have any such 270 * type, this function returns 0. In the latter case, native architecture's 271 * pointer size is assumed, so will be either 4 or 8, depending on 272 * architecture that libbpf was compiled for. It's possible to override 273 * guessed value by using btf__set_pointer_size() API. 274 */ 275 size_t btf__pointer_size(const struct btf *btf) 276 { 277 if (!btf->ptr_sz) 278 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 279 280 if (btf->ptr_sz < 0) 281 /* not enough BTF type info to guess */ 282 return 0; 283 284 return btf->ptr_sz; 285 } 286 287 /* Override or set pointer size in bytes. Only values of 4 and 8 are 288 * supported. 289 */ 290 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 291 { 292 if (ptr_sz != 4 && ptr_sz != 8) 293 return -EINVAL; 294 btf->ptr_sz = ptr_sz; 295 return 0; 296 } 297 298 static bool btf_type_is_void(const struct btf_type *t) 299 { 300 return t == &btf_void || btf_is_fwd(t); 301 } 302 303 static bool btf_type_is_void_or_null(const struct btf_type *t) 304 { 305 return !t || btf_type_is_void(t); 306 } 307 308 #define MAX_RESOLVE_DEPTH 32 309 310 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 311 { 312 const struct btf_array *array; 313 const struct btf_type *t; 314 __u32 nelems = 1; 315 __s64 size = -1; 316 int i; 317 318 t = btf__type_by_id(btf, type_id); 319 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 320 i++) { 321 switch (btf_kind(t)) { 322 case BTF_KIND_INT: 323 case BTF_KIND_STRUCT: 324 case BTF_KIND_UNION: 325 case BTF_KIND_ENUM: 326 case BTF_KIND_DATASEC: 327 size = t->size; 328 goto done; 329 case BTF_KIND_PTR: 330 size = btf_ptr_sz(btf); 331 goto done; 332 case BTF_KIND_TYPEDEF: 333 case BTF_KIND_VOLATILE: 334 case BTF_KIND_CONST: 335 case BTF_KIND_RESTRICT: 336 case BTF_KIND_VAR: 337 type_id = t->type; 338 break; 339 case BTF_KIND_ARRAY: 340 array = btf_array(t); 341 if (nelems && array->nelems > UINT32_MAX / nelems) 342 return -E2BIG; 343 nelems *= array->nelems; 344 type_id = array->type; 345 break; 346 default: 347 return -EINVAL; 348 } 349 350 t = btf__type_by_id(btf, type_id); 351 } 352 353 done: 354 if (size < 0) 355 return -EINVAL; 356 if (nelems && size > UINT32_MAX / nelems) 357 return -E2BIG; 358 359 return nelems * size; 360 } 361 362 int btf__align_of(const struct btf *btf, __u32 id) 363 { 364 const struct btf_type *t = btf__type_by_id(btf, id); 365 __u16 kind = btf_kind(t); 366 367 switch (kind) { 368 case BTF_KIND_INT: 369 case BTF_KIND_ENUM: 370 return min(btf_ptr_sz(btf), (size_t)t->size); 371 case BTF_KIND_PTR: 372 return btf_ptr_sz(btf); 373 case BTF_KIND_TYPEDEF: 374 case BTF_KIND_VOLATILE: 375 case BTF_KIND_CONST: 376 case BTF_KIND_RESTRICT: 377 return btf__align_of(btf, t->type); 378 case BTF_KIND_ARRAY: 379 return btf__align_of(btf, btf_array(t)->type); 380 case BTF_KIND_STRUCT: 381 case BTF_KIND_UNION: { 382 const struct btf_member *m = btf_members(t); 383 __u16 vlen = btf_vlen(t); 384 int i, max_align = 1, align; 385 386 for (i = 0; i < vlen; i++, m++) { 387 align = btf__align_of(btf, m->type); 388 if (align <= 0) 389 return align; 390 max_align = max(max_align, align); 391 } 392 393 return max_align; 394 } 395 default: 396 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 397 return 0; 398 } 399 } 400 401 int btf__resolve_type(const struct btf *btf, __u32 type_id) 402 { 403 const struct btf_type *t; 404 int depth = 0; 405 406 t = btf__type_by_id(btf, type_id); 407 while (depth < MAX_RESOLVE_DEPTH && 408 !btf_type_is_void_or_null(t) && 409 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 410 type_id = t->type; 411 t = btf__type_by_id(btf, type_id); 412 depth++; 413 } 414 415 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 416 return -EINVAL; 417 418 return type_id; 419 } 420 421 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 422 { 423 __u32 i; 424 425 if (!strcmp(type_name, "void")) 426 return 0; 427 428 for (i = 1; i <= btf->nr_types; i++) { 429 const struct btf_type *t = btf__type_by_id(btf, i); 430 const char *name = btf__name_by_offset(btf, t->name_off); 431 432 if (name && !strcmp(type_name, name)) 433 return i; 434 } 435 436 return -ENOENT; 437 } 438 439 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 440 __u32 kind) 441 { 442 __u32 i; 443 444 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 445 return 0; 446 447 for (i = 1; i <= btf->nr_types; i++) { 448 const struct btf_type *t = btf__type_by_id(btf, i); 449 const char *name; 450 451 if (btf_kind(t) != kind) 452 continue; 453 name = btf__name_by_offset(btf, t->name_off); 454 if (name && !strcmp(type_name, name)) 455 return i; 456 } 457 458 return -ENOENT; 459 } 460 461 void btf__free(struct btf *btf) 462 { 463 if (IS_ERR_OR_NULL(btf)) 464 return; 465 466 if (btf->fd >= 0) 467 close(btf->fd); 468 469 free(btf->data); 470 free(btf->type_offs); 471 free(btf); 472 } 473 474 struct btf *btf__new(const void *data, __u32 size) 475 { 476 struct btf *btf; 477 int err; 478 479 btf = calloc(1, sizeof(struct btf)); 480 if (!btf) 481 return ERR_PTR(-ENOMEM); 482 483 btf->fd = -1; 484 485 btf->data = malloc(size); 486 if (!btf->data) { 487 err = -ENOMEM; 488 goto done; 489 } 490 491 memcpy(btf->data, data, size); 492 btf->data_size = size; 493 494 err = btf_parse_hdr(btf); 495 if (err) 496 goto done; 497 498 err = btf_parse_str_sec(btf); 499 if (err) 500 goto done; 501 502 err = btf_parse_type_sec(btf); 503 504 done: 505 if (err) { 506 btf__free(btf); 507 return ERR_PTR(err); 508 } 509 510 return btf; 511 } 512 513 static bool btf_check_endianness(const GElf_Ehdr *ehdr) 514 { 515 #if __BYTE_ORDER == __LITTLE_ENDIAN 516 return ehdr->e_ident[EI_DATA] == ELFDATA2LSB; 517 #elif __BYTE_ORDER == __BIG_ENDIAN 518 return ehdr->e_ident[EI_DATA] == ELFDATA2MSB; 519 #else 520 # error "Unrecognized __BYTE_ORDER__" 521 #endif 522 } 523 524 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 525 { 526 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 527 int err = 0, fd = -1, idx = 0; 528 struct btf *btf = NULL; 529 Elf_Scn *scn = NULL; 530 Elf *elf = NULL; 531 GElf_Ehdr ehdr; 532 533 if (elf_version(EV_CURRENT) == EV_NONE) { 534 pr_warn("failed to init libelf for %s\n", path); 535 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 536 } 537 538 fd = open(path, O_RDONLY); 539 if (fd < 0) { 540 err = -errno; 541 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 542 return ERR_PTR(err); 543 } 544 545 err = -LIBBPF_ERRNO__FORMAT; 546 547 elf = elf_begin(fd, ELF_C_READ, NULL); 548 if (!elf) { 549 pr_warn("failed to open %s as ELF file\n", path); 550 goto done; 551 } 552 if (!gelf_getehdr(elf, &ehdr)) { 553 pr_warn("failed to get EHDR from %s\n", path); 554 goto done; 555 } 556 if (!btf_check_endianness(&ehdr)) { 557 pr_warn("non-native ELF endianness is not supported\n"); 558 goto done; 559 } 560 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { 561 pr_warn("failed to get e_shstrndx from %s\n", path); 562 goto done; 563 } 564 565 while ((scn = elf_nextscn(elf, scn)) != NULL) { 566 GElf_Shdr sh; 567 char *name; 568 569 idx++; 570 if (gelf_getshdr(scn, &sh) != &sh) { 571 pr_warn("failed to get section(%d) header from %s\n", 572 idx, path); 573 goto done; 574 } 575 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); 576 if (!name) { 577 pr_warn("failed to get section(%d) name from %s\n", 578 idx, path); 579 goto done; 580 } 581 if (strcmp(name, BTF_ELF_SEC) == 0) { 582 btf_data = elf_getdata(scn, 0); 583 if (!btf_data) { 584 pr_warn("failed to get section(%d, %s) data from %s\n", 585 idx, name, path); 586 goto done; 587 } 588 continue; 589 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 590 btf_ext_data = elf_getdata(scn, 0); 591 if (!btf_ext_data) { 592 pr_warn("failed to get section(%d, %s) data from %s\n", 593 idx, name, path); 594 goto done; 595 } 596 continue; 597 } 598 } 599 600 err = 0; 601 602 if (!btf_data) { 603 err = -ENOENT; 604 goto done; 605 } 606 btf = btf__new(btf_data->d_buf, btf_data->d_size); 607 if (IS_ERR(btf)) 608 goto done; 609 610 switch (gelf_getclass(elf)) { 611 case ELFCLASS32: 612 btf__set_pointer_size(btf, 4); 613 break; 614 case ELFCLASS64: 615 btf__set_pointer_size(btf, 8); 616 break; 617 default: 618 pr_warn("failed to get ELF class (bitness) for %s\n", path); 619 break; 620 } 621 622 if (btf_ext && btf_ext_data) { 623 *btf_ext = btf_ext__new(btf_ext_data->d_buf, 624 btf_ext_data->d_size); 625 if (IS_ERR(*btf_ext)) 626 goto done; 627 } else if (btf_ext) { 628 *btf_ext = NULL; 629 } 630 done: 631 if (elf) 632 elf_end(elf); 633 close(fd); 634 635 if (err) 636 return ERR_PTR(err); 637 /* 638 * btf is always parsed before btf_ext, so no need to clean up 639 * btf_ext, if btf loading failed 640 */ 641 if (IS_ERR(btf)) 642 return btf; 643 if (btf_ext && IS_ERR(*btf_ext)) { 644 btf__free(btf); 645 err = PTR_ERR(*btf_ext); 646 return ERR_PTR(err); 647 } 648 return btf; 649 } 650 651 struct btf *btf__parse_raw(const char *path) 652 { 653 struct btf *btf = NULL; 654 void *data = NULL; 655 FILE *f = NULL; 656 __u16 magic; 657 int err = 0; 658 long sz; 659 660 f = fopen(path, "rb"); 661 if (!f) { 662 err = -errno; 663 goto err_out; 664 } 665 666 /* check BTF magic */ 667 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 668 err = -EIO; 669 goto err_out; 670 } 671 if (magic != BTF_MAGIC) { 672 /* definitely not a raw BTF */ 673 err = -EPROTO; 674 goto err_out; 675 } 676 677 /* get file size */ 678 if (fseek(f, 0, SEEK_END)) { 679 err = -errno; 680 goto err_out; 681 } 682 sz = ftell(f); 683 if (sz < 0) { 684 err = -errno; 685 goto err_out; 686 } 687 /* rewind to the start */ 688 if (fseek(f, 0, SEEK_SET)) { 689 err = -errno; 690 goto err_out; 691 } 692 693 /* pre-alloc memory and read all of BTF data */ 694 data = malloc(sz); 695 if (!data) { 696 err = -ENOMEM; 697 goto err_out; 698 } 699 if (fread(data, 1, sz, f) < sz) { 700 err = -EIO; 701 goto err_out; 702 } 703 704 /* finally parse BTF data */ 705 btf = btf__new(data, sz); 706 707 err_out: 708 free(data); 709 if (f) 710 fclose(f); 711 return err ? ERR_PTR(err) : btf; 712 } 713 714 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 715 { 716 struct btf *btf; 717 718 if (btf_ext) 719 *btf_ext = NULL; 720 721 btf = btf__parse_raw(path); 722 if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO) 723 return btf; 724 725 return btf__parse_elf(path, btf_ext); 726 } 727 728 static int compare_vsi_off(const void *_a, const void *_b) 729 { 730 const struct btf_var_secinfo *a = _a; 731 const struct btf_var_secinfo *b = _b; 732 733 return a->offset - b->offset; 734 } 735 736 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 737 struct btf_type *t) 738 { 739 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 740 const char *name = btf__name_by_offset(btf, t->name_off); 741 const struct btf_type *t_var; 742 struct btf_var_secinfo *vsi; 743 const struct btf_var *var; 744 int ret; 745 746 if (!name) { 747 pr_debug("No name found in string section for DATASEC kind.\n"); 748 return -ENOENT; 749 } 750 751 /* .extern datasec size and var offsets were set correctly during 752 * extern collection step, so just skip straight to sorting variables 753 */ 754 if (t->size) 755 goto sort_vars; 756 757 ret = bpf_object__section_size(obj, name, &size); 758 if (ret || !size || (t->size && t->size != size)) { 759 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 760 return -ENOENT; 761 } 762 763 t->size = size; 764 765 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 766 t_var = btf__type_by_id(btf, vsi->type); 767 var = btf_var(t_var); 768 769 if (!btf_is_var(t_var)) { 770 pr_debug("Non-VAR type seen in section %s\n", name); 771 return -EINVAL; 772 } 773 774 if (var->linkage == BTF_VAR_STATIC) 775 continue; 776 777 name = btf__name_by_offset(btf, t_var->name_off); 778 if (!name) { 779 pr_debug("No name found in string section for VAR kind\n"); 780 return -ENOENT; 781 } 782 783 ret = bpf_object__variable_offset(obj, name, &off); 784 if (ret) { 785 pr_debug("No offset found in symbol table for VAR %s\n", 786 name); 787 return -ENOENT; 788 } 789 790 vsi->offset = off; 791 } 792 793 sort_vars: 794 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 795 return 0; 796 } 797 798 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 799 { 800 int err = 0; 801 __u32 i; 802 803 for (i = 1; i <= btf->nr_types; i++) { 804 struct btf_type *t = btf_type_by_id(btf, i); 805 806 /* Loader needs to fix up some of the things compiler 807 * couldn't get its hands on while emitting BTF. This 808 * is section size and global variable offset. We use 809 * the info from the ELF itself for this purpose. 810 */ 811 if (btf_is_datasec(t)) { 812 err = btf_fixup_datasec(obj, btf, t); 813 if (err) 814 break; 815 } 816 } 817 818 return err; 819 } 820 821 int btf__load(struct btf *btf) 822 { 823 __u32 log_buf_size = 0; 824 char *log_buf = NULL; 825 int err = 0; 826 827 if (btf->fd >= 0) 828 return -EEXIST; 829 830 retry_load: 831 if (log_buf_size) { 832 log_buf = malloc(log_buf_size); 833 if (!log_buf) 834 return -ENOMEM; 835 836 *log_buf = 0; 837 } 838 839 btf->fd = bpf_load_btf(btf->data, btf->data_size, 840 log_buf, log_buf_size, false); 841 if (btf->fd < 0) { 842 if (!log_buf || errno == ENOSPC) { 843 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 844 log_buf_size << 1); 845 free(log_buf); 846 goto retry_load; 847 } 848 849 err = -errno; 850 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 851 if (*log_buf) 852 pr_warn("%s\n", log_buf); 853 goto done; 854 } 855 856 done: 857 free(log_buf); 858 return err; 859 } 860 861 int btf__fd(const struct btf *btf) 862 { 863 return btf->fd; 864 } 865 866 void btf__set_fd(struct btf *btf, int fd) 867 { 868 btf->fd = fd; 869 } 870 871 const void *btf__get_raw_data(const struct btf *btf, __u32 *size) 872 { 873 *size = btf->data_size; 874 return btf->data; 875 } 876 877 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 878 { 879 if (offset < btf->hdr->str_len) 880 return &btf->strings[offset]; 881 else 882 return NULL; 883 } 884 885 int btf__get_from_id(__u32 id, struct btf **btf) 886 { 887 struct bpf_btf_info btf_info = { 0 }; 888 __u32 len = sizeof(btf_info); 889 __u32 last_size; 890 int btf_fd; 891 void *ptr; 892 int err; 893 894 err = 0; 895 *btf = NULL; 896 btf_fd = bpf_btf_get_fd_by_id(id); 897 if (btf_fd < 0) 898 return 0; 899 900 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 901 * let's start with a sane default - 4KiB here - and resize it only if 902 * bpf_obj_get_info_by_fd() needs a bigger buffer. 903 */ 904 btf_info.btf_size = 4096; 905 last_size = btf_info.btf_size; 906 ptr = malloc(last_size); 907 if (!ptr) { 908 err = -ENOMEM; 909 goto exit_free; 910 } 911 912 memset(ptr, 0, last_size); 913 btf_info.btf = ptr_to_u64(ptr); 914 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 915 916 if (!err && btf_info.btf_size > last_size) { 917 void *temp_ptr; 918 919 last_size = btf_info.btf_size; 920 temp_ptr = realloc(ptr, last_size); 921 if (!temp_ptr) { 922 err = -ENOMEM; 923 goto exit_free; 924 } 925 ptr = temp_ptr; 926 memset(ptr, 0, last_size); 927 btf_info.btf = ptr_to_u64(ptr); 928 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 929 } 930 931 if (err || btf_info.btf_size > last_size) { 932 err = errno; 933 goto exit_free; 934 } 935 936 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); 937 if (IS_ERR(*btf)) { 938 err = PTR_ERR(*btf); 939 *btf = NULL; 940 } 941 942 exit_free: 943 close(btf_fd); 944 free(ptr); 945 946 return err; 947 } 948 949 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 950 __u32 expected_key_size, __u32 expected_value_size, 951 __u32 *key_type_id, __u32 *value_type_id) 952 { 953 const struct btf_type *container_type; 954 const struct btf_member *key, *value; 955 const size_t max_name = 256; 956 char container_name[max_name]; 957 __s64 key_size, value_size; 958 __s32 container_id; 959 960 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 961 max_name) { 962 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 963 map_name, map_name); 964 return -EINVAL; 965 } 966 967 container_id = btf__find_by_name(btf, container_name); 968 if (container_id < 0) { 969 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 970 map_name, container_name); 971 return container_id; 972 } 973 974 container_type = btf__type_by_id(btf, container_id); 975 if (!container_type) { 976 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 977 map_name, container_id); 978 return -EINVAL; 979 } 980 981 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 982 pr_warn("map:%s container_name:%s is an invalid container struct\n", 983 map_name, container_name); 984 return -EINVAL; 985 } 986 987 key = btf_members(container_type); 988 value = key + 1; 989 990 key_size = btf__resolve_size(btf, key->type); 991 if (key_size < 0) { 992 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 993 return key_size; 994 } 995 996 if (expected_key_size != key_size) { 997 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 998 map_name, (__u32)key_size, expected_key_size); 999 return -EINVAL; 1000 } 1001 1002 value_size = btf__resolve_size(btf, value->type); 1003 if (value_size < 0) { 1004 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1005 return value_size; 1006 } 1007 1008 if (expected_value_size != value_size) { 1009 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1010 map_name, (__u32)value_size, expected_value_size); 1011 return -EINVAL; 1012 } 1013 1014 *key_type_id = key->type; 1015 *value_type_id = value->type; 1016 1017 return 0; 1018 } 1019 1020 struct btf_ext_sec_setup_param { 1021 __u32 off; 1022 __u32 len; 1023 __u32 min_rec_size; 1024 struct btf_ext_info *ext_info; 1025 const char *desc; 1026 }; 1027 1028 static int btf_ext_setup_info(struct btf_ext *btf_ext, 1029 struct btf_ext_sec_setup_param *ext_sec) 1030 { 1031 const struct btf_ext_info_sec *sinfo; 1032 struct btf_ext_info *ext_info; 1033 __u32 info_left, record_size; 1034 /* The start of the info sec (including the __u32 record_size). */ 1035 void *info; 1036 1037 if (ext_sec->len == 0) 1038 return 0; 1039 1040 if (ext_sec->off & 0x03) { 1041 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 1042 ext_sec->desc); 1043 return -EINVAL; 1044 } 1045 1046 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 1047 info_left = ext_sec->len; 1048 1049 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 1050 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 1051 ext_sec->desc, ext_sec->off, ext_sec->len); 1052 return -EINVAL; 1053 } 1054 1055 /* At least a record size */ 1056 if (info_left < sizeof(__u32)) { 1057 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 1058 return -EINVAL; 1059 } 1060 1061 /* The record size needs to meet the minimum standard */ 1062 record_size = *(__u32 *)info; 1063 if (record_size < ext_sec->min_rec_size || 1064 record_size & 0x03) { 1065 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 1066 ext_sec->desc, record_size); 1067 return -EINVAL; 1068 } 1069 1070 sinfo = info + sizeof(__u32); 1071 info_left -= sizeof(__u32); 1072 1073 /* If no records, return failure now so .BTF.ext won't be used. */ 1074 if (!info_left) { 1075 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 1076 return -EINVAL; 1077 } 1078 1079 while (info_left) { 1080 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 1081 __u64 total_record_size; 1082 __u32 num_records; 1083 1084 if (info_left < sec_hdrlen) { 1085 pr_debug("%s section header is not found in .BTF.ext\n", 1086 ext_sec->desc); 1087 return -EINVAL; 1088 } 1089 1090 num_records = sinfo->num_info; 1091 if (num_records == 0) { 1092 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 1093 ext_sec->desc); 1094 return -EINVAL; 1095 } 1096 1097 total_record_size = sec_hdrlen + 1098 (__u64)num_records * record_size; 1099 if (info_left < total_record_size) { 1100 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 1101 ext_sec->desc); 1102 return -EINVAL; 1103 } 1104 1105 info_left -= total_record_size; 1106 sinfo = (void *)sinfo + total_record_size; 1107 } 1108 1109 ext_info = ext_sec->ext_info; 1110 ext_info->len = ext_sec->len - sizeof(__u32); 1111 ext_info->rec_size = record_size; 1112 ext_info->info = info + sizeof(__u32); 1113 1114 return 0; 1115 } 1116 1117 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 1118 { 1119 struct btf_ext_sec_setup_param param = { 1120 .off = btf_ext->hdr->func_info_off, 1121 .len = btf_ext->hdr->func_info_len, 1122 .min_rec_size = sizeof(struct bpf_func_info_min), 1123 .ext_info = &btf_ext->func_info, 1124 .desc = "func_info" 1125 }; 1126 1127 return btf_ext_setup_info(btf_ext, ¶m); 1128 } 1129 1130 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 1131 { 1132 struct btf_ext_sec_setup_param param = { 1133 .off = btf_ext->hdr->line_info_off, 1134 .len = btf_ext->hdr->line_info_len, 1135 .min_rec_size = sizeof(struct bpf_line_info_min), 1136 .ext_info = &btf_ext->line_info, 1137 .desc = "line_info", 1138 }; 1139 1140 return btf_ext_setup_info(btf_ext, ¶m); 1141 } 1142 1143 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 1144 { 1145 struct btf_ext_sec_setup_param param = { 1146 .off = btf_ext->hdr->core_relo_off, 1147 .len = btf_ext->hdr->core_relo_len, 1148 .min_rec_size = sizeof(struct bpf_core_relo), 1149 .ext_info = &btf_ext->core_relo_info, 1150 .desc = "core_relo", 1151 }; 1152 1153 return btf_ext_setup_info(btf_ext, ¶m); 1154 } 1155 1156 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 1157 { 1158 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 1159 1160 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 1161 data_size < hdr->hdr_len) { 1162 pr_debug("BTF.ext header not found"); 1163 return -EINVAL; 1164 } 1165 1166 if (hdr->magic != BTF_MAGIC) { 1167 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 1168 return -EINVAL; 1169 } 1170 1171 if (hdr->version != BTF_VERSION) { 1172 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 1173 return -ENOTSUP; 1174 } 1175 1176 if (hdr->flags) { 1177 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 1178 return -ENOTSUP; 1179 } 1180 1181 if (data_size == hdr->hdr_len) { 1182 pr_debug("BTF.ext has no data\n"); 1183 return -EINVAL; 1184 } 1185 1186 return 0; 1187 } 1188 1189 void btf_ext__free(struct btf_ext *btf_ext) 1190 { 1191 if (IS_ERR_OR_NULL(btf_ext)) 1192 return; 1193 free(btf_ext->data); 1194 free(btf_ext); 1195 } 1196 1197 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 1198 { 1199 struct btf_ext *btf_ext; 1200 int err; 1201 1202 err = btf_ext_parse_hdr(data, size); 1203 if (err) 1204 return ERR_PTR(err); 1205 1206 btf_ext = calloc(1, sizeof(struct btf_ext)); 1207 if (!btf_ext) 1208 return ERR_PTR(-ENOMEM); 1209 1210 btf_ext->data_size = size; 1211 btf_ext->data = malloc(size); 1212 if (!btf_ext->data) { 1213 err = -ENOMEM; 1214 goto done; 1215 } 1216 memcpy(btf_ext->data, data, size); 1217 1218 if (btf_ext->hdr->hdr_len < 1219 offsetofend(struct btf_ext_header, line_info_len)) 1220 goto done; 1221 err = btf_ext_setup_func_info(btf_ext); 1222 if (err) 1223 goto done; 1224 1225 err = btf_ext_setup_line_info(btf_ext); 1226 if (err) 1227 goto done; 1228 1229 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 1230 goto done; 1231 err = btf_ext_setup_core_relos(btf_ext); 1232 if (err) 1233 goto done; 1234 1235 done: 1236 if (err) { 1237 btf_ext__free(btf_ext); 1238 return ERR_PTR(err); 1239 } 1240 1241 return btf_ext; 1242 } 1243 1244 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 1245 { 1246 *size = btf_ext->data_size; 1247 return btf_ext->data; 1248 } 1249 1250 static int btf_ext_reloc_info(const struct btf *btf, 1251 const struct btf_ext_info *ext_info, 1252 const char *sec_name, __u32 insns_cnt, 1253 void **info, __u32 *cnt) 1254 { 1255 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 1256 __u32 i, record_size, existing_len, records_len; 1257 struct btf_ext_info_sec *sinfo; 1258 const char *info_sec_name; 1259 __u64 remain_len; 1260 void *data; 1261 1262 record_size = ext_info->rec_size; 1263 sinfo = ext_info->info; 1264 remain_len = ext_info->len; 1265 while (remain_len > 0) { 1266 records_len = sinfo->num_info * record_size; 1267 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 1268 if (strcmp(info_sec_name, sec_name)) { 1269 remain_len -= sec_hdrlen + records_len; 1270 sinfo = (void *)sinfo + sec_hdrlen + records_len; 1271 continue; 1272 } 1273 1274 existing_len = (*cnt) * record_size; 1275 data = realloc(*info, existing_len + records_len); 1276 if (!data) 1277 return -ENOMEM; 1278 1279 memcpy(data + existing_len, sinfo->data, records_len); 1280 /* adjust insn_off only, the rest data will be passed 1281 * to the kernel. 1282 */ 1283 for (i = 0; i < sinfo->num_info; i++) { 1284 __u32 *insn_off; 1285 1286 insn_off = data + existing_len + (i * record_size); 1287 *insn_off = *insn_off / sizeof(struct bpf_insn) + 1288 insns_cnt; 1289 } 1290 *info = data; 1291 *cnt += sinfo->num_info; 1292 return 0; 1293 } 1294 1295 return -ENOENT; 1296 } 1297 1298 int btf_ext__reloc_func_info(const struct btf *btf, 1299 const struct btf_ext *btf_ext, 1300 const char *sec_name, __u32 insns_cnt, 1301 void **func_info, __u32 *cnt) 1302 { 1303 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 1304 insns_cnt, func_info, cnt); 1305 } 1306 1307 int btf_ext__reloc_line_info(const struct btf *btf, 1308 const struct btf_ext *btf_ext, 1309 const char *sec_name, __u32 insns_cnt, 1310 void **line_info, __u32 *cnt) 1311 { 1312 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 1313 insns_cnt, line_info, cnt); 1314 } 1315 1316 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 1317 { 1318 return btf_ext->func_info.rec_size; 1319 } 1320 1321 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 1322 { 1323 return btf_ext->line_info.rec_size; 1324 } 1325 1326 struct btf_dedup; 1327 1328 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1329 const struct btf_dedup_opts *opts); 1330 static void btf_dedup_free(struct btf_dedup *d); 1331 static int btf_dedup_strings(struct btf_dedup *d); 1332 static int btf_dedup_prim_types(struct btf_dedup *d); 1333 static int btf_dedup_struct_types(struct btf_dedup *d); 1334 static int btf_dedup_ref_types(struct btf_dedup *d); 1335 static int btf_dedup_compact_types(struct btf_dedup *d); 1336 static int btf_dedup_remap_types(struct btf_dedup *d); 1337 1338 /* 1339 * Deduplicate BTF types and strings. 1340 * 1341 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 1342 * section with all BTF type descriptors and string data. It overwrites that 1343 * memory in-place with deduplicated types and strings without any loss of 1344 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 1345 * is provided, all the strings referenced from .BTF.ext section are honored 1346 * and updated to point to the right offsets after deduplication. 1347 * 1348 * If function returns with error, type/string data might be garbled and should 1349 * be discarded. 1350 * 1351 * More verbose and detailed description of both problem btf_dedup is solving, 1352 * as well as solution could be found at: 1353 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 1354 * 1355 * Problem description and justification 1356 * ===================================== 1357 * 1358 * BTF type information is typically emitted either as a result of conversion 1359 * from DWARF to BTF or directly by compiler. In both cases, each compilation 1360 * unit contains information about a subset of all the types that are used 1361 * in an application. These subsets are frequently overlapping and contain a lot 1362 * of duplicated information when later concatenated together into a single 1363 * binary. This algorithm ensures that each unique type is represented by single 1364 * BTF type descriptor, greatly reducing resulting size of BTF data. 1365 * 1366 * Compilation unit isolation and subsequent duplication of data is not the only 1367 * problem. The same type hierarchy (e.g., struct and all the type that struct 1368 * references) in different compilation units can be represented in BTF to 1369 * various degrees of completeness (or, rather, incompleteness) due to 1370 * struct/union forward declarations. 1371 * 1372 * Let's take a look at an example, that we'll use to better understand the 1373 * problem (and solution). Suppose we have two compilation units, each using 1374 * same `struct S`, but each of them having incomplete type information about 1375 * struct's fields: 1376 * 1377 * // CU #1: 1378 * struct S; 1379 * struct A { 1380 * int a; 1381 * struct A* self; 1382 * struct S* parent; 1383 * }; 1384 * struct B; 1385 * struct S { 1386 * struct A* a_ptr; 1387 * struct B* b_ptr; 1388 * }; 1389 * 1390 * // CU #2: 1391 * struct S; 1392 * struct A; 1393 * struct B { 1394 * int b; 1395 * struct B* self; 1396 * struct S* parent; 1397 * }; 1398 * struct S { 1399 * struct A* a_ptr; 1400 * struct B* b_ptr; 1401 * }; 1402 * 1403 * In case of CU #1, BTF data will know only that `struct B` exist (but no 1404 * more), but will know the complete type information about `struct A`. While 1405 * for CU #2, it will know full type information about `struct B`, but will 1406 * only know about forward declaration of `struct A` (in BTF terms, it will 1407 * have `BTF_KIND_FWD` type descriptor with name `B`). 1408 * 1409 * This compilation unit isolation means that it's possible that there is no 1410 * single CU with complete type information describing structs `S`, `A`, and 1411 * `B`. Also, we might get tons of duplicated and redundant type information. 1412 * 1413 * Additional complication we need to keep in mind comes from the fact that 1414 * types, in general, can form graphs containing cycles, not just DAGs. 1415 * 1416 * While algorithm does deduplication, it also merges and resolves type 1417 * information (unless disabled throught `struct btf_opts`), whenever possible. 1418 * E.g., in the example above with two compilation units having partial type 1419 * information for structs `A` and `B`, the output of algorithm will emit 1420 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 1421 * (as well as type information for `int` and pointers), as if they were defined 1422 * in a single compilation unit as: 1423 * 1424 * struct A { 1425 * int a; 1426 * struct A* self; 1427 * struct S* parent; 1428 * }; 1429 * struct B { 1430 * int b; 1431 * struct B* self; 1432 * struct S* parent; 1433 * }; 1434 * struct S { 1435 * struct A* a_ptr; 1436 * struct B* b_ptr; 1437 * }; 1438 * 1439 * Algorithm summary 1440 * ================= 1441 * 1442 * Algorithm completes its work in 6 separate passes: 1443 * 1444 * 1. Strings deduplication. 1445 * 2. Primitive types deduplication (int, enum, fwd). 1446 * 3. Struct/union types deduplication. 1447 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 1448 * protos, and const/volatile/restrict modifiers). 1449 * 5. Types compaction. 1450 * 6. Types remapping. 1451 * 1452 * Algorithm determines canonical type descriptor, which is a single 1453 * representative type for each truly unique type. This canonical type is the 1454 * one that will go into final deduplicated BTF type information. For 1455 * struct/unions, it is also the type that algorithm will merge additional type 1456 * information into (while resolving FWDs), as it discovers it from data in 1457 * other CUs. Each input BTF type eventually gets either mapped to itself, if 1458 * that type is canonical, or to some other type, if that type is equivalent 1459 * and was chosen as canonical representative. This mapping is stored in 1460 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 1461 * FWD type got resolved to. 1462 * 1463 * To facilitate fast discovery of canonical types, we also maintain canonical 1464 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 1465 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 1466 * that match that signature. With sufficiently good choice of type signature 1467 * hashing function, we can limit number of canonical types for each unique type 1468 * signature to a very small number, allowing to find canonical type for any 1469 * duplicated type very quickly. 1470 * 1471 * Struct/union deduplication is the most critical part and algorithm for 1472 * deduplicating structs/unions is described in greater details in comments for 1473 * `btf_dedup_is_equiv` function. 1474 */ 1475 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 1476 const struct btf_dedup_opts *opts) 1477 { 1478 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 1479 int err; 1480 1481 if (IS_ERR(d)) { 1482 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 1483 return -EINVAL; 1484 } 1485 1486 err = btf_dedup_strings(d); 1487 if (err < 0) { 1488 pr_debug("btf_dedup_strings failed:%d\n", err); 1489 goto done; 1490 } 1491 err = btf_dedup_prim_types(d); 1492 if (err < 0) { 1493 pr_debug("btf_dedup_prim_types failed:%d\n", err); 1494 goto done; 1495 } 1496 err = btf_dedup_struct_types(d); 1497 if (err < 0) { 1498 pr_debug("btf_dedup_struct_types failed:%d\n", err); 1499 goto done; 1500 } 1501 err = btf_dedup_ref_types(d); 1502 if (err < 0) { 1503 pr_debug("btf_dedup_ref_types failed:%d\n", err); 1504 goto done; 1505 } 1506 err = btf_dedup_compact_types(d); 1507 if (err < 0) { 1508 pr_debug("btf_dedup_compact_types failed:%d\n", err); 1509 goto done; 1510 } 1511 err = btf_dedup_remap_types(d); 1512 if (err < 0) { 1513 pr_debug("btf_dedup_remap_types failed:%d\n", err); 1514 goto done; 1515 } 1516 1517 done: 1518 btf_dedup_free(d); 1519 return err; 1520 } 1521 1522 #define BTF_UNPROCESSED_ID ((__u32)-1) 1523 #define BTF_IN_PROGRESS_ID ((__u32)-2) 1524 1525 struct btf_dedup { 1526 /* .BTF section to be deduped in-place */ 1527 struct btf *btf; 1528 /* 1529 * Optional .BTF.ext section. When provided, any strings referenced 1530 * from it will be taken into account when deduping strings 1531 */ 1532 struct btf_ext *btf_ext; 1533 /* 1534 * This is a map from any type's signature hash to a list of possible 1535 * canonical representative type candidates. Hash collisions are 1536 * ignored, so even types of various kinds can share same list of 1537 * candidates, which is fine because we rely on subsequent 1538 * btf_xxx_equal() checks to authoritatively verify type equality. 1539 */ 1540 struct hashmap *dedup_table; 1541 /* Canonical types map */ 1542 __u32 *map; 1543 /* Hypothetical mapping, used during type graph equivalence checks */ 1544 __u32 *hypot_map; 1545 __u32 *hypot_list; 1546 size_t hypot_cnt; 1547 size_t hypot_cap; 1548 /* Various option modifying behavior of algorithm */ 1549 struct btf_dedup_opts opts; 1550 }; 1551 1552 struct btf_str_ptr { 1553 const char *str; 1554 __u32 new_off; 1555 bool used; 1556 }; 1557 1558 struct btf_str_ptrs { 1559 struct btf_str_ptr *ptrs; 1560 const char *data; 1561 __u32 cnt; 1562 __u32 cap; 1563 }; 1564 1565 static long hash_combine(long h, long value) 1566 { 1567 return h * 31 + value; 1568 } 1569 1570 #define for_each_dedup_cand(d, node, hash) \ 1571 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 1572 1573 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 1574 { 1575 return hashmap__append(d->dedup_table, 1576 (void *)hash, (void *)(long)type_id); 1577 } 1578 1579 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 1580 __u32 from_id, __u32 to_id) 1581 { 1582 if (d->hypot_cnt == d->hypot_cap) { 1583 __u32 *new_list; 1584 1585 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 1586 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 1587 if (!new_list) 1588 return -ENOMEM; 1589 d->hypot_list = new_list; 1590 } 1591 d->hypot_list[d->hypot_cnt++] = from_id; 1592 d->hypot_map[from_id] = to_id; 1593 return 0; 1594 } 1595 1596 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 1597 { 1598 int i; 1599 1600 for (i = 0; i < d->hypot_cnt; i++) 1601 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 1602 d->hypot_cnt = 0; 1603 } 1604 1605 static void btf_dedup_free(struct btf_dedup *d) 1606 { 1607 hashmap__free(d->dedup_table); 1608 d->dedup_table = NULL; 1609 1610 free(d->map); 1611 d->map = NULL; 1612 1613 free(d->hypot_map); 1614 d->hypot_map = NULL; 1615 1616 free(d->hypot_list); 1617 d->hypot_list = NULL; 1618 1619 free(d); 1620 } 1621 1622 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 1623 { 1624 return (size_t)key; 1625 } 1626 1627 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 1628 { 1629 return 0; 1630 } 1631 1632 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 1633 { 1634 return k1 == k2; 1635 } 1636 1637 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1638 const struct btf_dedup_opts *opts) 1639 { 1640 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 1641 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 1642 int i, err = 0; 1643 1644 if (!d) 1645 return ERR_PTR(-ENOMEM); 1646 1647 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 1648 /* dedup_table_size is now used only to force collisions in tests */ 1649 if (opts && opts->dedup_table_size == 1) 1650 hash_fn = btf_dedup_collision_hash_fn; 1651 1652 d->btf = btf; 1653 d->btf_ext = btf_ext; 1654 1655 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 1656 if (IS_ERR(d->dedup_table)) { 1657 err = PTR_ERR(d->dedup_table); 1658 d->dedup_table = NULL; 1659 goto done; 1660 } 1661 1662 d->map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1663 if (!d->map) { 1664 err = -ENOMEM; 1665 goto done; 1666 } 1667 /* special BTF "void" type is made canonical immediately */ 1668 d->map[0] = 0; 1669 for (i = 1; i <= btf->nr_types; i++) { 1670 struct btf_type *t = btf_type_by_id(d->btf, i); 1671 1672 /* VAR and DATASEC are never deduped and are self-canonical */ 1673 if (btf_is_var(t) || btf_is_datasec(t)) 1674 d->map[i] = i; 1675 else 1676 d->map[i] = BTF_UNPROCESSED_ID; 1677 } 1678 1679 d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1680 if (!d->hypot_map) { 1681 err = -ENOMEM; 1682 goto done; 1683 } 1684 for (i = 0; i <= btf->nr_types; i++) 1685 d->hypot_map[i] = BTF_UNPROCESSED_ID; 1686 1687 done: 1688 if (err) { 1689 btf_dedup_free(d); 1690 return ERR_PTR(err); 1691 } 1692 1693 return d; 1694 } 1695 1696 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); 1697 1698 /* 1699 * Iterate over all possible places in .BTF and .BTF.ext that can reference 1700 * string and pass pointer to it to a provided callback `fn`. 1701 */ 1702 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) 1703 { 1704 void *line_data_cur, *line_data_end; 1705 int i, j, r, rec_size; 1706 struct btf_type *t; 1707 1708 for (i = 1; i <= d->btf->nr_types; i++) { 1709 t = btf_type_by_id(d->btf, i); 1710 r = fn(&t->name_off, ctx); 1711 if (r) 1712 return r; 1713 1714 switch (btf_kind(t)) { 1715 case BTF_KIND_STRUCT: 1716 case BTF_KIND_UNION: { 1717 struct btf_member *m = btf_members(t); 1718 __u16 vlen = btf_vlen(t); 1719 1720 for (j = 0; j < vlen; j++) { 1721 r = fn(&m->name_off, ctx); 1722 if (r) 1723 return r; 1724 m++; 1725 } 1726 break; 1727 } 1728 case BTF_KIND_ENUM: { 1729 struct btf_enum *m = btf_enum(t); 1730 __u16 vlen = btf_vlen(t); 1731 1732 for (j = 0; j < vlen; j++) { 1733 r = fn(&m->name_off, ctx); 1734 if (r) 1735 return r; 1736 m++; 1737 } 1738 break; 1739 } 1740 case BTF_KIND_FUNC_PROTO: { 1741 struct btf_param *m = btf_params(t); 1742 __u16 vlen = btf_vlen(t); 1743 1744 for (j = 0; j < vlen; j++) { 1745 r = fn(&m->name_off, ctx); 1746 if (r) 1747 return r; 1748 m++; 1749 } 1750 break; 1751 } 1752 default: 1753 break; 1754 } 1755 } 1756 1757 if (!d->btf_ext) 1758 return 0; 1759 1760 line_data_cur = d->btf_ext->line_info.info; 1761 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; 1762 rec_size = d->btf_ext->line_info.rec_size; 1763 1764 while (line_data_cur < line_data_end) { 1765 struct btf_ext_info_sec *sec = line_data_cur; 1766 struct bpf_line_info_min *line_info; 1767 __u32 num_info = sec->num_info; 1768 1769 r = fn(&sec->sec_name_off, ctx); 1770 if (r) 1771 return r; 1772 1773 line_data_cur += sizeof(struct btf_ext_info_sec); 1774 for (i = 0; i < num_info; i++) { 1775 line_info = line_data_cur; 1776 r = fn(&line_info->file_name_off, ctx); 1777 if (r) 1778 return r; 1779 r = fn(&line_info->line_off, ctx); 1780 if (r) 1781 return r; 1782 line_data_cur += rec_size; 1783 } 1784 } 1785 1786 return 0; 1787 } 1788 1789 static int str_sort_by_content(const void *a1, const void *a2) 1790 { 1791 const struct btf_str_ptr *p1 = a1; 1792 const struct btf_str_ptr *p2 = a2; 1793 1794 return strcmp(p1->str, p2->str); 1795 } 1796 1797 static int str_sort_by_offset(const void *a1, const void *a2) 1798 { 1799 const struct btf_str_ptr *p1 = a1; 1800 const struct btf_str_ptr *p2 = a2; 1801 1802 if (p1->str != p2->str) 1803 return p1->str < p2->str ? -1 : 1; 1804 return 0; 1805 } 1806 1807 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem) 1808 { 1809 const struct btf_str_ptr *p = pelem; 1810 1811 if (str_ptr != p->str) 1812 return (const char *)str_ptr < p->str ? -1 : 1; 1813 return 0; 1814 } 1815 1816 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx) 1817 { 1818 struct btf_str_ptrs *strs; 1819 struct btf_str_ptr *s; 1820 1821 if (*str_off_ptr == 0) 1822 return 0; 1823 1824 strs = ctx; 1825 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1826 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1827 if (!s) 1828 return -EINVAL; 1829 s->used = true; 1830 return 0; 1831 } 1832 1833 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx) 1834 { 1835 struct btf_str_ptrs *strs; 1836 struct btf_str_ptr *s; 1837 1838 if (*str_off_ptr == 0) 1839 return 0; 1840 1841 strs = ctx; 1842 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1843 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1844 if (!s) 1845 return -EINVAL; 1846 *str_off_ptr = s->new_off; 1847 return 0; 1848 } 1849 1850 /* 1851 * Dedup string and filter out those that are not referenced from either .BTF 1852 * or .BTF.ext (if provided) sections. 1853 * 1854 * This is done by building index of all strings in BTF's string section, 1855 * then iterating over all entities that can reference strings (e.g., type 1856 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 1857 * strings as used. After that all used strings are deduped and compacted into 1858 * sequential blob of memory and new offsets are calculated. Then all the string 1859 * references are iterated again and rewritten using new offsets. 1860 */ 1861 static int btf_dedup_strings(struct btf_dedup *d) 1862 { 1863 const struct btf_header *hdr = d->btf->hdr; 1864 char *start = (char *)d->btf->nohdr_data + hdr->str_off; 1865 char *end = start + d->btf->hdr->str_len; 1866 char *p = start, *tmp_strs = NULL; 1867 struct btf_str_ptrs strs = { 1868 .cnt = 0, 1869 .cap = 0, 1870 .ptrs = NULL, 1871 .data = start, 1872 }; 1873 int i, j, err = 0, grp_idx; 1874 bool grp_used; 1875 1876 /* build index of all strings */ 1877 while (p < end) { 1878 if (strs.cnt + 1 > strs.cap) { 1879 struct btf_str_ptr *new_ptrs; 1880 1881 strs.cap += max(strs.cnt / 2, 16U); 1882 new_ptrs = libbpf_reallocarray(strs.ptrs, strs.cap, sizeof(strs.ptrs[0])); 1883 if (!new_ptrs) { 1884 err = -ENOMEM; 1885 goto done; 1886 } 1887 strs.ptrs = new_ptrs; 1888 } 1889 1890 strs.ptrs[strs.cnt].str = p; 1891 strs.ptrs[strs.cnt].used = false; 1892 1893 p += strlen(p) + 1; 1894 strs.cnt++; 1895 } 1896 1897 /* temporary storage for deduplicated strings */ 1898 tmp_strs = malloc(d->btf->hdr->str_len); 1899 if (!tmp_strs) { 1900 err = -ENOMEM; 1901 goto done; 1902 } 1903 1904 /* mark all used strings */ 1905 strs.ptrs[0].used = true; 1906 err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs); 1907 if (err) 1908 goto done; 1909 1910 /* sort strings by context, so that we can identify duplicates */ 1911 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content); 1912 1913 /* 1914 * iterate groups of equal strings and if any instance in a group was 1915 * referenced, emit single instance and remember new offset 1916 */ 1917 p = tmp_strs; 1918 grp_idx = 0; 1919 grp_used = strs.ptrs[0].used; 1920 /* iterate past end to avoid code duplication after loop */ 1921 for (i = 1; i <= strs.cnt; i++) { 1922 /* 1923 * when i == strs.cnt, we want to skip string comparison and go 1924 * straight to handling last group of strings (otherwise we'd 1925 * need to handle last group after the loop w/ duplicated code) 1926 */ 1927 if (i < strs.cnt && 1928 !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) { 1929 grp_used = grp_used || strs.ptrs[i].used; 1930 continue; 1931 } 1932 1933 /* 1934 * this check would have been required after the loop to handle 1935 * last group of strings, but due to <= condition in a loop 1936 * we avoid that duplication 1937 */ 1938 if (grp_used) { 1939 int new_off = p - tmp_strs; 1940 __u32 len = strlen(strs.ptrs[grp_idx].str); 1941 1942 memmove(p, strs.ptrs[grp_idx].str, len + 1); 1943 for (j = grp_idx; j < i; j++) 1944 strs.ptrs[j].new_off = new_off; 1945 p += len + 1; 1946 } 1947 1948 if (i < strs.cnt) { 1949 grp_idx = i; 1950 grp_used = strs.ptrs[i].used; 1951 } 1952 } 1953 1954 /* replace original strings with deduped ones */ 1955 d->btf->hdr->str_len = p - tmp_strs; 1956 memmove(start, tmp_strs, d->btf->hdr->str_len); 1957 end = start + d->btf->hdr->str_len; 1958 1959 /* restore original order for further binary search lookups */ 1960 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset); 1961 1962 /* remap string offsets */ 1963 err = btf_for_each_str_off(d, btf_str_remap_offset, &strs); 1964 if (err) 1965 goto done; 1966 1967 d->btf->hdr->str_len = end - start; 1968 1969 done: 1970 free(tmp_strs); 1971 free(strs.ptrs); 1972 return err; 1973 } 1974 1975 static long btf_hash_common(struct btf_type *t) 1976 { 1977 long h; 1978 1979 h = hash_combine(0, t->name_off); 1980 h = hash_combine(h, t->info); 1981 h = hash_combine(h, t->size); 1982 return h; 1983 } 1984 1985 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 1986 { 1987 return t1->name_off == t2->name_off && 1988 t1->info == t2->info && 1989 t1->size == t2->size; 1990 } 1991 1992 /* Calculate type signature hash of INT. */ 1993 static long btf_hash_int(struct btf_type *t) 1994 { 1995 __u32 info = *(__u32 *)(t + 1); 1996 long h; 1997 1998 h = btf_hash_common(t); 1999 h = hash_combine(h, info); 2000 return h; 2001 } 2002 2003 /* Check structural equality of two INTs. */ 2004 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 2005 { 2006 __u32 info1, info2; 2007 2008 if (!btf_equal_common(t1, t2)) 2009 return false; 2010 info1 = *(__u32 *)(t1 + 1); 2011 info2 = *(__u32 *)(t2 + 1); 2012 return info1 == info2; 2013 } 2014 2015 /* Calculate type signature hash of ENUM. */ 2016 static long btf_hash_enum(struct btf_type *t) 2017 { 2018 long h; 2019 2020 /* don't hash vlen and enum members to support enum fwd resolving */ 2021 h = hash_combine(0, t->name_off); 2022 h = hash_combine(h, t->info & ~0xffff); 2023 h = hash_combine(h, t->size); 2024 return h; 2025 } 2026 2027 /* Check structural equality of two ENUMs. */ 2028 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 2029 { 2030 const struct btf_enum *m1, *m2; 2031 __u16 vlen; 2032 int i; 2033 2034 if (!btf_equal_common(t1, t2)) 2035 return false; 2036 2037 vlen = btf_vlen(t1); 2038 m1 = btf_enum(t1); 2039 m2 = btf_enum(t2); 2040 for (i = 0; i < vlen; i++) { 2041 if (m1->name_off != m2->name_off || m1->val != m2->val) 2042 return false; 2043 m1++; 2044 m2++; 2045 } 2046 return true; 2047 } 2048 2049 static inline bool btf_is_enum_fwd(struct btf_type *t) 2050 { 2051 return btf_is_enum(t) && btf_vlen(t) == 0; 2052 } 2053 2054 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 2055 { 2056 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 2057 return btf_equal_enum(t1, t2); 2058 /* ignore vlen when comparing */ 2059 return t1->name_off == t2->name_off && 2060 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 2061 t1->size == t2->size; 2062 } 2063 2064 /* 2065 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 2066 * as referenced type IDs equivalence is established separately during type 2067 * graph equivalence check algorithm. 2068 */ 2069 static long btf_hash_struct(struct btf_type *t) 2070 { 2071 const struct btf_member *member = btf_members(t); 2072 __u32 vlen = btf_vlen(t); 2073 long h = btf_hash_common(t); 2074 int i; 2075 2076 for (i = 0; i < vlen; i++) { 2077 h = hash_combine(h, member->name_off); 2078 h = hash_combine(h, member->offset); 2079 /* no hashing of referenced type ID, it can be unresolved yet */ 2080 member++; 2081 } 2082 return h; 2083 } 2084 2085 /* 2086 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 2087 * IDs. This check is performed during type graph equivalence check and 2088 * referenced types equivalence is checked separately. 2089 */ 2090 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 2091 { 2092 const struct btf_member *m1, *m2; 2093 __u16 vlen; 2094 int i; 2095 2096 if (!btf_equal_common(t1, t2)) 2097 return false; 2098 2099 vlen = btf_vlen(t1); 2100 m1 = btf_members(t1); 2101 m2 = btf_members(t2); 2102 for (i = 0; i < vlen; i++) { 2103 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 2104 return false; 2105 m1++; 2106 m2++; 2107 } 2108 return true; 2109 } 2110 2111 /* 2112 * Calculate type signature hash of ARRAY, including referenced type IDs, 2113 * under assumption that they were already resolved to canonical type IDs and 2114 * are not going to change. 2115 */ 2116 static long btf_hash_array(struct btf_type *t) 2117 { 2118 const struct btf_array *info = btf_array(t); 2119 long h = btf_hash_common(t); 2120 2121 h = hash_combine(h, info->type); 2122 h = hash_combine(h, info->index_type); 2123 h = hash_combine(h, info->nelems); 2124 return h; 2125 } 2126 2127 /* 2128 * Check exact equality of two ARRAYs, taking into account referenced 2129 * type IDs, under assumption that they were already resolved to canonical 2130 * type IDs and are not going to change. 2131 * This function is called during reference types deduplication to compare 2132 * ARRAY to potential canonical representative. 2133 */ 2134 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 2135 { 2136 const struct btf_array *info1, *info2; 2137 2138 if (!btf_equal_common(t1, t2)) 2139 return false; 2140 2141 info1 = btf_array(t1); 2142 info2 = btf_array(t2); 2143 return info1->type == info2->type && 2144 info1->index_type == info2->index_type && 2145 info1->nelems == info2->nelems; 2146 } 2147 2148 /* 2149 * Check structural compatibility of two ARRAYs, ignoring referenced type 2150 * IDs. This check is performed during type graph equivalence check and 2151 * referenced types equivalence is checked separately. 2152 */ 2153 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 2154 { 2155 if (!btf_equal_common(t1, t2)) 2156 return false; 2157 2158 return btf_array(t1)->nelems == btf_array(t2)->nelems; 2159 } 2160 2161 /* 2162 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 2163 * under assumption that they were already resolved to canonical type IDs and 2164 * are not going to change. 2165 */ 2166 static long btf_hash_fnproto(struct btf_type *t) 2167 { 2168 const struct btf_param *member = btf_params(t); 2169 __u16 vlen = btf_vlen(t); 2170 long h = btf_hash_common(t); 2171 int i; 2172 2173 for (i = 0; i < vlen; i++) { 2174 h = hash_combine(h, member->name_off); 2175 h = hash_combine(h, member->type); 2176 member++; 2177 } 2178 return h; 2179 } 2180 2181 /* 2182 * Check exact equality of two FUNC_PROTOs, taking into account referenced 2183 * type IDs, under assumption that they were already resolved to canonical 2184 * type IDs and are not going to change. 2185 * This function is called during reference types deduplication to compare 2186 * FUNC_PROTO to potential canonical representative. 2187 */ 2188 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 2189 { 2190 const struct btf_param *m1, *m2; 2191 __u16 vlen; 2192 int i; 2193 2194 if (!btf_equal_common(t1, t2)) 2195 return false; 2196 2197 vlen = btf_vlen(t1); 2198 m1 = btf_params(t1); 2199 m2 = btf_params(t2); 2200 for (i = 0; i < vlen; i++) { 2201 if (m1->name_off != m2->name_off || m1->type != m2->type) 2202 return false; 2203 m1++; 2204 m2++; 2205 } 2206 return true; 2207 } 2208 2209 /* 2210 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 2211 * IDs. This check is performed during type graph equivalence check and 2212 * referenced types equivalence is checked separately. 2213 */ 2214 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 2215 { 2216 const struct btf_param *m1, *m2; 2217 __u16 vlen; 2218 int i; 2219 2220 /* skip return type ID */ 2221 if (t1->name_off != t2->name_off || t1->info != t2->info) 2222 return false; 2223 2224 vlen = btf_vlen(t1); 2225 m1 = btf_params(t1); 2226 m2 = btf_params(t2); 2227 for (i = 0; i < vlen; i++) { 2228 if (m1->name_off != m2->name_off) 2229 return false; 2230 m1++; 2231 m2++; 2232 } 2233 return true; 2234 } 2235 2236 /* 2237 * Deduplicate primitive types, that can't reference other types, by calculating 2238 * their type signature hash and comparing them with any possible canonical 2239 * candidate. If no canonical candidate matches, type itself is marked as 2240 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 2241 */ 2242 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 2243 { 2244 struct btf_type *t = btf_type_by_id(d->btf, type_id); 2245 struct hashmap_entry *hash_entry; 2246 struct btf_type *cand; 2247 /* if we don't find equivalent type, then we are canonical */ 2248 __u32 new_id = type_id; 2249 __u32 cand_id; 2250 long h; 2251 2252 switch (btf_kind(t)) { 2253 case BTF_KIND_CONST: 2254 case BTF_KIND_VOLATILE: 2255 case BTF_KIND_RESTRICT: 2256 case BTF_KIND_PTR: 2257 case BTF_KIND_TYPEDEF: 2258 case BTF_KIND_ARRAY: 2259 case BTF_KIND_STRUCT: 2260 case BTF_KIND_UNION: 2261 case BTF_KIND_FUNC: 2262 case BTF_KIND_FUNC_PROTO: 2263 case BTF_KIND_VAR: 2264 case BTF_KIND_DATASEC: 2265 return 0; 2266 2267 case BTF_KIND_INT: 2268 h = btf_hash_int(t); 2269 for_each_dedup_cand(d, hash_entry, h) { 2270 cand_id = (__u32)(long)hash_entry->value; 2271 cand = btf_type_by_id(d->btf, cand_id); 2272 if (btf_equal_int(t, cand)) { 2273 new_id = cand_id; 2274 break; 2275 } 2276 } 2277 break; 2278 2279 case BTF_KIND_ENUM: 2280 h = btf_hash_enum(t); 2281 for_each_dedup_cand(d, hash_entry, h) { 2282 cand_id = (__u32)(long)hash_entry->value; 2283 cand = btf_type_by_id(d->btf, cand_id); 2284 if (btf_equal_enum(t, cand)) { 2285 new_id = cand_id; 2286 break; 2287 } 2288 if (d->opts.dont_resolve_fwds) 2289 continue; 2290 if (btf_compat_enum(t, cand)) { 2291 if (btf_is_enum_fwd(t)) { 2292 /* resolve fwd to full enum */ 2293 new_id = cand_id; 2294 break; 2295 } 2296 /* resolve canonical enum fwd to full enum */ 2297 d->map[cand_id] = type_id; 2298 } 2299 } 2300 break; 2301 2302 case BTF_KIND_FWD: 2303 h = btf_hash_common(t); 2304 for_each_dedup_cand(d, hash_entry, h) { 2305 cand_id = (__u32)(long)hash_entry->value; 2306 cand = btf_type_by_id(d->btf, cand_id); 2307 if (btf_equal_common(t, cand)) { 2308 new_id = cand_id; 2309 break; 2310 } 2311 } 2312 break; 2313 2314 default: 2315 return -EINVAL; 2316 } 2317 2318 d->map[type_id] = new_id; 2319 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2320 return -ENOMEM; 2321 2322 return 0; 2323 } 2324 2325 static int btf_dedup_prim_types(struct btf_dedup *d) 2326 { 2327 int i, err; 2328 2329 for (i = 1; i <= d->btf->nr_types; i++) { 2330 err = btf_dedup_prim_type(d, i); 2331 if (err) 2332 return err; 2333 } 2334 return 0; 2335 } 2336 2337 /* 2338 * Check whether type is already mapped into canonical one (could be to itself). 2339 */ 2340 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 2341 { 2342 return d->map[type_id] <= BTF_MAX_NR_TYPES; 2343 } 2344 2345 /* 2346 * Resolve type ID into its canonical type ID, if any; otherwise return original 2347 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 2348 * STRUCT/UNION link and resolve it into canonical type ID as well. 2349 */ 2350 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 2351 { 2352 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2353 type_id = d->map[type_id]; 2354 return type_id; 2355 } 2356 2357 /* 2358 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 2359 * type ID. 2360 */ 2361 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 2362 { 2363 __u32 orig_type_id = type_id; 2364 2365 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 2366 return type_id; 2367 2368 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2369 type_id = d->map[type_id]; 2370 2371 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 2372 return type_id; 2373 2374 return orig_type_id; 2375 } 2376 2377 2378 static inline __u16 btf_fwd_kind(struct btf_type *t) 2379 { 2380 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 2381 } 2382 2383 /* 2384 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 2385 * call it "candidate graph" in this description for brevity) to a type graph 2386 * formed by (potential) canonical struct/union ("canonical graph" for brevity 2387 * here, though keep in mind that not all types in canonical graph are 2388 * necessarily canonical representatives themselves, some of them might be 2389 * duplicates or its uniqueness might not have been established yet). 2390 * Returns: 2391 * - >0, if type graphs are equivalent; 2392 * - 0, if not equivalent; 2393 * - <0, on error. 2394 * 2395 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 2396 * equivalence of BTF types at each step. If at any point BTF types in candidate 2397 * and canonical graphs are not compatible structurally, whole graphs are 2398 * incompatible. If types are structurally equivalent (i.e., all information 2399 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 2400 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 2401 * If a type references other types, then those referenced types are checked 2402 * for equivalence recursively. 2403 * 2404 * During DFS traversal, if we find that for current `canon_id` type we 2405 * already have some mapping in hypothetical map, we check for two possible 2406 * situations: 2407 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 2408 * happen when type graphs have cycles. In this case we assume those two 2409 * types are equivalent. 2410 * - `canon_id` is mapped to different type. This is contradiction in our 2411 * hypothetical mapping, because same graph in canonical graph corresponds 2412 * to two different types in candidate graph, which for equivalent type 2413 * graphs shouldn't happen. This condition terminates equivalence check 2414 * with negative result. 2415 * 2416 * If type graphs traversal exhausts types to check and find no contradiction, 2417 * then type graphs are equivalent. 2418 * 2419 * When checking types for equivalence, there is one special case: FWD types. 2420 * If FWD type resolution is allowed and one of the types (either from canonical 2421 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 2422 * flag) and their names match, hypothetical mapping is updated to point from 2423 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 2424 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 2425 * 2426 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 2427 * if there are two exactly named (or anonymous) structs/unions that are 2428 * compatible structurally, one of which has FWD field, while other is concrete 2429 * STRUCT/UNION, but according to C sources they are different structs/unions 2430 * that are referencing different types with the same name. This is extremely 2431 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 2432 * this logic is causing problems. 2433 * 2434 * Doing FWD resolution means that both candidate and/or canonical graphs can 2435 * consists of portions of the graph that come from multiple compilation units. 2436 * This is due to the fact that types within single compilation unit are always 2437 * deduplicated and FWDs are already resolved, if referenced struct/union 2438 * definiton is available. So, if we had unresolved FWD and found corresponding 2439 * STRUCT/UNION, they will be from different compilation units. This 2440 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 2441 * type graph will likely have at least two different BTF types that describe 2442 * same type (e.g., most probably there will be two different BTF types for the 2443 * same 'int' primitive type) and could even have "overlapping" parts of type 2444 * graph that describe same subset of types. 2445 * 2446 * This in turn means that our assumption that each type in canonical graph 2447 * must correspond to exactly one type in candidate graph might not hold 2448 * anymore and will make it harder to detect contradictions using hypothetical 2449 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 2450 * resolution only in canonical graph. FWDs in candidate graphs are never 2451 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 2452 * that can occur: 2453 * - Both types in canonical and candidate graphs are FWDs. If they are 2454 * structurally equivalent, then they can either be both resolved to the 2455 * same STRUCT/UNION or not resolved at all. In both cases they are 2456 * equivalent and there is no need to resolve FWD on candidate side. 2457 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 2458 * so nothing to resolve as well, algorithm will check equivalence anyway. 2459 * - Type in canonical graph is FWD, while type in candidate is concrete 2460 * STRUCT/UNION. In this case candidate graph comes from single compilation 2461 * unit, so there is exactly one BTF type for each unique C type. After 2462 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 2463 * in canonical graph mapping to single BTF type in candidate graph, but 2464 * because hypothetical mapping maps from canonical to candidate types, it's 2465 * alright, and we still maintain the property of having single `canon_id` 2466 * mapping to single `cand_id` (there could be two different `canon_id` 2467 * mapped to the same `cand_id`, but it's not contradictory). 2468 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 2469 * graph is FWD. In this case we are just going to check compatibility of 2470 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 2471 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 2472 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 2473 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 2474 * canonical graph. 2475 */ 2476 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 2477 __u32 canon_id) 2478 { 2479 struct btf_type *cand_type; 2480 struct btf_type *canon_type; 2481 __u32 hypot_type_id; 2482 __u16 cand_kind; 2483 __u16 canon_kind; 2484 int i, eq; 2485 2486 /* if both resolve to the same canonical, they must be equivalent */ 2487 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 2488 return 1; 2489 2490 canon_id = resolve_fwd_id(d, canon_id); 2491 2492 hypot_type_id = d->hypot_map[canon_id]; 2493 if (hypot_type_id <= BTF_MAX_NR_TYPES) 2494 return hypot_type_id == cand_id; 2495 2496 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 2497 return -ENOMEM; 2498 2499 cand_type = btf_type_by_id(d->btf, cand_id); 2500 canon_type = btf_type_by_id(d->btf, canon_id); 2501 cand_kind = btf_kind(cand_type); 2502 canon_kind = btf_kind(canon_type); 2503 2504 if (cand_type->name_off != canon_type->name_off) 2505 return 0; 2506 2507 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 2508 if (!d->opts.dont_resolve_fwds 2509 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 2510 && cand_kind != canon_kind) { 2511 __u16 real_kind; 2512 __u16 fwd_kind; 2513 2514 if (cand_kind == BTF_KIND_FWD) { 2515 real_kind = canon_kind; 2516 fwd_kind = btf_fwd_kind(cand_type); 2517 } else { 2518 real_kind = cand_kind; 2519 fwd_kind = btf_fwd_kind(canon_type); 2520 } 2521 return fwd_kind == real_kind; 2522 } 2523 2524 if (cand_kind != canon_kind) 2525 return 0; 2526 2527 switch (cand_kind) { 2528 case BTF_KIND_INT: 2529 return btf_equal_int(cand_type, canon_type); 2530 2531 case BTF_KIND_ENUM: 2532 if (d->opts.dont_resolve_fwds) 2533 return btf_equal_enum(cand_type, canon_type); 2534 else 2535 return btf_compat_enum(cand_type, canon_type); 2536 2537 case BTF_KIND_FWD: 2538 return btf_equal_common(cand_type, canon_type); 2539 2540 case BTF_KIND_CONST: 2541 case BTF_KIND_VOLATILE: 2542 case BTF_KIND_RESTRICT: 2543 case BTF_KIND_PTR: 2544 case BTF_KIND_TYPEDEF: 2545 case BTF_KIND_FUNC: 2546 if (cand_type->info != canon_type->info) 2547 return 0; 2548 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2549 2550 case BTF_KIND_ARRAY: { 2551 const struct btf_array *cand_arr, *canon_arr; 2552 2553 if (!btf_compat_array(cand_type, canon_type)) 2554 return 0; 2555 cand_arr = btf_array(cand_type); 2556 canon_arr = btf_array(canon_type); 2557 eq = btf_dedup_is_equiv(d, 2558 cand_arr->index_type, canon_arr->index_type); 2559 if (eq <= 0) 2560 return eq; 2561 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 2562 } 2563 2564 case BTF_KIND_STRUCT: 2565 case BTF_KIND_UNION: { 2566 const struct btf_member *cand_m, *canon_m; 2567 __u16 vlen; 2568 2569 if (!btf_shallow_equal_struct(cand_type, canon_type)) 2570 return 0; 2571 vlen = btf_vlen(cand_type); 2572 cand_m = btf_members(cand_type); 2573 canon_m = btf_members(canon_type); 2574 for (i = 0; i < vlen; i++) { 2575 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 2576 if (eq <= 0) 2577 return eq; 2578 cand_m++; 2579 canon_m++; 2580 } 2581 2582 return 1; 2583 } 2584 2585 case BTF_KIND_FUNC_PROTO: { 2586 const struct btf_param *cand_p, *canon_p; 2587 __u16 vlen; 2588 2589 if (!btf_compat_fnproto(cand_type, canon_type)) 2590 return 0; 2591 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2592 if (eq <= 0) 2593 return eq; 2594 vlen = btf_vlen(cand_type); 2595 cand_p = btf_params(cand_type); 2596 canon_p = btf_params(canon_type); 2597 for (i = 0; i < vlen; i++) { 2598 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 2599 if (eq <= 0) 2600 return eq; 2601 cand_p++; 2602 canon_p++; 2603 } 2604 return 1; 2605 } 2606 2607 default: 2608 return -EINVAL; 2609 } 2610 return 0; 2611 } 2612 2613 /* 2614 * Use hypothetical mapping, produced by successful type graph equivalence 2615 * check, to augment existing struct/union canonical mapping, where possible. 2616 * 2617 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 2618 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 2619 * it doesn't matter if FWD type was part of canonical graph or candidate one, 2620 * we are recording the mapping anyway. As opposed to carefulness required 2621 * for struct/union correspondence mapping (described below), for FWD resolution 2622 * it's not important, as by the time that FWD type (reference type) will be 2623 * deduplicated all structs/unions will be deduped already anyway. 2624 * 2625 * Recording STRUCT/UNION mapping is purely a performance optimization and is 2626 * not required for correctness. It needs to be done carefully to ensure that 2627 * struct/union from candidate's type graph is not mapped into corresponding 2628 * struct/union from canonical type graph that itself hasn't been resolved into 2629 * canonical representative. The only guarantee we have is that canonical 2630 * struct/union was determined as canonical and that won't change. But any 2631 * types referenced through that struct/union fields could have been not yet 2632 * resolved, so in case like that it's too early to establish any kind of 2633 * correspondence between structs/unions. 2634 * 2635 * No canonical correspondence is derived for primitive types (they are already 2636 * deduplicated completely already anyway) or reference types (they rely on 2637 * stability of struct/union canonical relationship for equivalence checks). 2638 */ 2639 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 2640 { 2641 __u32 cand_type_id, targ_type_id; 2642 __u16 t_kind, c_kind; 2643 __u32 t_id, c_id; 2644 int i; 2645 2646 for (i = 0; i < d->hypot_cnt; i++) { 2647 cand_type_id = d->hypot_list[i]; 2648 targ_type_id = d->hypot_map[cand_type_id]; 2649 t_id = resolve_type_id(d, targ_type_id); 2650 c_id = resolve_type_id(d, cand_type_id); 2651 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 2652 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 2653 /* 2654 * Resolve FWD into STRUCT/UNION. 2655 * It's ok to resolve FWD into STRUCT/UNION that's not yet 2656 * mapped to canonical representative (as opposed to 2657 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 2658 * eventually that struct is going to be mapped and all resolved 2659 * FWDs will automatically resolve to correct canonical 2660 * representative. This will happen before ref type deduping, 2661 * which critically depends on stability of these mapping. This 2662 * stability is not a requirement for STRUCT/UNION equivalence 2663 * checks, though. 2664 */ 2665 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 2666 d->map[c_id] = t_id; 2667 else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 2668 d->map[t_id] = c_id; 2669 2670 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 2671 c_kind != BTF_KIND_FWD && 2672 is_type_mapped(d, c_id) && 2673 !is_type_mapped(d, t_id)) { 2674 /* 2675 * as a perf optimization, we can map struct/union 2676 * that's part of type graph we just verified for 2677 * equivalence. We can do that for struct/union that has 2678 * canonical representative only, though. 2679 */ 2680 d->map[t_id] = c_id; 2681 } 2682 } 2683 } 2684 2685 /* 2686 * Deduplicate struct/union types. 2687 * 2688 * For each struct/union type its type signature hash is calculated, taking 2689 * into account type's name, size, number, order and names of fields, but 2690 * ignoring type ID's referenced from fields, because they might not be deduped 2691 * completely until after reference types deduplication phase. This type hash 2692 * is used to iterate over all potential canonical types, sharing same hash. 2693 * For each canonical candidate we check whether type graphs that they form 2694 * (through referenced types in fields and so on) are equivalent using algorithm 2695 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 2696 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 2697 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 2698 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 2699 * potentially map other structs/unions to their canonical representatives, 2700 * if such relationship hasn't yet been established. This speeds up algorithm 2701 * by eliminating some of the duplicate work. 2702 * 2703 * If no matching canonical representative was found, struct/union is marked 2704 * as canonical for itself and is added into btf_dedup->dedup_table hash map 2705 * for further look ups. 2706 */ 2707 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 2708 { 2709 struct btf_type *cand_type, *t; 2710 struct hashmap_entry *hash_entry; 2711 /* if we don't find equivalent type, then we are canonical */ 2712 __u32 new_id = type_id; 2713 __u16 kind; 2714 long h; 2715 2716 /* already deduped or is in process of deduping (loop detected) */ 2717 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2718 return 0; 2719 2720 t = btf_type_by_id(d->btf, type_id); 2721 kind = btf_kind(t); 2722 2723 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 2724 return 0; 2725 2726 h = btf_hash_struct(t); 2727 for_each_dedup_cand(d, hash_entry, h) { 2728 __u32 cand_id = (__u32)(long)hash_entry->value; 2729 int eq; 2730 2731 /* 2732 * Even though btf_dedup_is_equiv() checks for 2733 * btf_shallow_equal_struct() internally when checking two 2734 * structs (unions) for equivalence, we need to guard here 2735 * from picking matching FWD type as a dedup candidate. 2736 * This can happen due to hash collision. In such case just 2737 * relying on btf_dedup_is_equiv() would lead to potentially 2738 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 2739 * FWD and compatible STRUCT/UNION are considered equivalent. 2740 */ 2741 cand_type = btf_type_by_id(d->btf, cand_id); 2742 if (!btf_shallow_equal_struct(t, cand_type)) 2743 continue; 2744 2745 btf_dedup_clear_hypot_map(d); 2746 eq = btf_dedup_is_equiv(d, type_id, cand_id); 2747 if (eq < 0) 2748 return eq; 2749 if (!eq) 2750 continue; 2751 new_id = cand_id; 2752 btf_dedup_merge_hypot_map(d); 2753 break; 2754 } 2755 2756 d->map[type_id] = new_id; 2757 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2758 return -ENOMEM; 2759 2760 return 0; 2761 } 2762 2763 static int btf_dedup_struct_types(struct btf_dedup *d) 2764 { 2765 int i, err; 2766 2767 for (i = 1; i <= d->btf->nr_types; i++) { 2768 err = btf_dedup_struct_type(d, i); 2769 if (err) 2770 return err; 2771 } 2772 return 0; 2773 } 2774 2775 /* 2776 * Deduplicate reference type. 2777 * 2778 * Once all primitive and struct/union types got deduplicated, we can easily 2779 * deduplicate all other (reference) BTF types. This is done in two steps: 2780 * 2781 * 1. Resolve all referenced type IDs into their canonical type IDs. This 2782 * resolution can be done either immediately for primitive or struct/union types 2783 * (because they were deduped in previous two phases) or recursively for 2784 * reference types. Recursion will always terminate at either primitive or 2785 * struct/union type, at which point we can "unwind" chain of reference types 2786 * one by one. There is no danger of encountering cycles because in C type 2787 * system the only way to form type cycle is through struct/union, so any chain 2788 * of reference types, even those taking part in a type cycle, will inevitably 2789 * reach struct/union at some point. 2790 * 2791 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 2792 * becomes "stable", in the sense that no further deduplication will cause 2793 * any changes to it. With that, it's now possible to calculate type's signature 2794 * hash (this time taking into account referenced type IDs) and loop over all 2795 * potential canonical representatives. If no match was found, current type 2796 * will become canonical representative of itself and will be added into 2797 * btf_dedup->dedup_table as another possible canonical representative. 2798 */ 2799 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 2800 { 2801 struct hashmap_entry *hash_entry; 2802 __u32 new_id = type_id, cand_id; 2803 struct btf_type *t, *cand; 2804 /* if we don't find equivalent type, then we are representative type */ 2805 int ref_type_id; 2806 long h; 2807 2808 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 2809 return -ELOOP; 2810 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2811 return resolve_type_id(d, type_id); 2812 2813 t = btf_type_by_id(d->btf, type_id); 2814 d->map[type_id] = BTF_IN_PROGRESS_ID; 2815 2816 switch (btf_kind(t)) { 2817 case BTF_KIND_CONST: 2818 case BTF_KIND_VOLATILE: 2819 case BTF_KIND_RESTRICT: 2820 case BTF_KIND_PTR: 2821 case BTF_KIND_TYPEDEF: 2822 case BTF_KIND_FUNC: 2823 ref_type_id = btf_dedup_ref_type(d, t->type); 2824 if (ref_type_id < 0) 2825 return ref_type_id; 2826 t->type = ref_type_id; 2827 2828 h = btf_hash_common(t); 2829 for_each_dedup_cand(d, hash_entry, h) { 2830 cand_id = (__u32)(long)hash_entry->value; 2831 cand = btf_type_by_id(d->btf, cand_id); 2832 if (btf_equal_common(t, cand)) { 2833 new_id = cand_id; 2834 break; 2835 } 2836 } 2837 break; 2838 2839 case BTF_KIND_ARRAY: { 2840 struct btf_array *info = btf_array(t); 2841 2842 ref_type_id = btf_dedup_ref_type(d, info->type); 2843 if (ref_type_id < 0) 2844 return ref_type_id; 2845 info->type = ref_type_id; 2846 2847 ref_type_id = btf_dedup_ref_type(d, info->index_type); 2848 if (ref_type_id < 0) 2849 return ref_type_id; 2850 info->index_type = ref_type_id; 2851 2852 h = btf_hash_array(t); 2853 for_each_dedup_cand(d, hash_entry, h) { 2854 cand_id = (__u32)(long)hash_entry->value; 2855 cand = btf_type_by_id(d->btf, cand_id); 2856 if (btf_equal_array(t, cand)) { 2857 new_id = cand_id; 2858 break; 2859 } 2860 } 2861 break; 2862 } 2863 2864 case BTF_KIND_FUNC_PROTO: { 2865 struct btf_param *param; 2866 __u16 vlen; 2867 int i; 2868 2869 ref_type_id = btf_dedup_ref_type(d, t->type); 2870 if (ref_type_id < 0) 2871 return ref_type_id; 2872 t->type = ref_type_id; 2873 2874 vlen = btf_vlen(t); 2875 param = btf_params(t); 2876 for (i = 0; i < vlen; i++) { 2877 ref_type_id = btf_dedup_ref_type(d, param->type); 2878 if (ref_type_id < 0) 2879 return ref_type_id; 2880 param->type = ref_type_id; 2881 param++; 2882 } 2883 2884 h = btf_hash_fnproto(t); 2885 for_each_dedup_cand(d, hash_entry, h) { 2886 cand_id = (__u32)(long)hash_entry->value; 2887 cand = btf_type_by_id(d->btf, cand_id); 2888 if (btf_equal_fnproto(t, cand)) { 2889 new_id = cand_id; 2890 break; 2891 } 2892 } 2893 break; 2894 } 2895 2896 default: 2897 return -EINVAL; 2898 } 2899 2900 d->map[type_id] = new_id; 2901 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2902 return -ENOMEM; 2903 2904 return new_id; 2905 } 2906 2907 static int btf_dedup_ref_types(struct btf_dedup *d) 2908 { 2909 int i, err; 2910 2911 for (i = 1; i <= d->btf->nr_types; i++) { 2912 err = btf_dedup_ref_type(d, i); 2913 if (err < 0) 2914 return err; 2915 } 2916 /* we won't need d->dedup_table anymore */ 2917 hashmap__free(d->dedup_table); 2918 d->dedup_table = NULL; 2919 return 0; 2920 } 2921 2922 /* 2923 * Compact types. 2924 * 2925 * After we established for each type its corresponding canonical representative 2926 * type, we now can eliminate types that are not canonical and leave only 2927 * canonical ones layed out sequentially in memory by copying them over 2928 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 2929 * a map from original type ID to a new compacted type ID, which will be used 2930 * during next phase to "fix up" type IDs, referenced from struct/union and 2931 * reference types. 2932 */ 2933 static int btf_dedup_compact_types(struct btf_dedup *d) 2934 { 2935 __u32 *new_offs; 2936 __u32 next_type_id = 1; 2937 void *p; 2938 int i, len; 2939 2940 /* we are going to reuse hypot_map to store compaction remapping */ 2941 d->hypot_map[0] = 0; 2942 for (i = 1; i <= d->btf->nr_types; i++) 2943 d->hypot_map[i] = BTF_UNPROCESSED_ID; 2944 2945 p = d->btf->types_data; 2946 2947 for (i = 1; i <= d->btf->nr_types; i++) { 2948 if (d->map[i] != i) 2949 continue; 2950 2951 len = btf_type_size(btf__type_by_id(d->btf, i)); 2952 if (len < 0) 2953 return len; 2954 2955 memmove(p, btf__type_by_id(d->btf, i), len); 2956 d->hypot_map[i] = next_type_id; 2957 d->btf->type_offs[next_type_id] = p - d->btf->types_data; 2958 p += len; 2959 next_type_id++; 2960 } 2961 2962 /* shrink struct btf's internal types index and update btf_header */ 2963 d->btf->nr_types = next_type_id - 1; 2964 d->btf->type_offs_cap = d->btf->nr_types + 1; 2965 d->btf->hdr->type_len = p - d->btf->types_data; 2966 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 2967 sizeof(*new_offs)); 2968 if (!new_offs) 2969 return -ENOMEM; 2970 d->btf->type_offs = new_offs; 2971 2972 /* make sure string section follows type information without gaps */ 2973 d->btf->hdr->str_off = p - d->btf->nohdr_data; 2974 memmove(p, d->btf->strings, d->btf->hdr->str_len); 2975 d->btf->strings = p; 2976 p += d->btf->hdr->str_len; 2977 2978 d->btf->data_size = p - d->btf->data; 2979 return 0; 2980 } 2981 2982 /* 2983 * Figure out final (deduplicated and compacted) type ID for provided original 2984 * `type_id` by first resolving it into corresponding canonical type ID and 2985 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 2986 * which is populated during compaction phase. 2987 */ 2988 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) 2989 { 2990 __u32 resolved_type_id, new_type_id; 2991 2992 resolved_type_id = resolve_type_id(d, type_id); 2993 new_type_id = d->hypot_map[resolved_type_id]; 2994 if (new_type_id > BTF_MAX_NR_TYPES) 2995 return -EINVAL; 2996 return new_type_id; 2997 } 2998 2999 /* 3000 * Remap referenced type IDs into deduped type IDs. 3001 * 3002 * After BTF types are deduplicated and compacted, their final type IDs may 3003 * differ from original ones. The map from original to a corresponding 3004 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 3005 * compaction phase. During remapping phase we are rewriting all type IDs 3006 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 3007 * their final deduped type IDs. 3008 */ 3009 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) 3010 { 3011 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3012 int i, r; 3013 3014 switch (btf_kind(t)) { 3015 case BTF_KIND_INT: 3016 case BTF_KIND_ENUM: 3017 break; 3018 3019 case BTF_KIND_FWD: 3020 case BTF_KIND_CONST: 3021 case BTF_KIND_VOLATILE: 3022 case BTF_KIND_RESTRICT: 3023 case BTF_KIND_PTR: 3024 case BTF_KIND_TYPEDEF: 3025 case BTF_KIND_FUNC: 3026 case BTF_KIND_VAR: 3027 r = btf_dedup_remap_type_id(d, t->type); 3028 if (r < 0) 3029 return r; 3030 t->type = r; 3031 break; 3032 3033 case BTF_KIND_ARRAY: { 3034 struct btf_array *arr_info = btf_array(t); 3035 3036 r = btf_dedup_remap_type_id(d, arr_info->type); 3037 if (r < 0) 3038 return r; 3039 arr_info->type = r; 3040 r = btf_dedup_remap_type_id(d, arr_info->index_type); 3041 if (r < 0) 3042 return r; 3043 arr_info->index_type = r; 3044 break; 3045 } 3046 3047 case BTF_KIND_STRUCT: 3048 case BTF_KIND_UNION: { 3049 struct btf_member *member = btf_members(t); 3050 __u16 vlen = btf_vlen(t); 3051 3052 for (i = 0; i < vlen; i++) { 3053 r = btf_dedup_remap_type_id(d, member->type); 3054 if (r < 0) 3055 return r; 3056 member->type = r; 3057 member++; 3058 } 3059 break; 3060 } 3061 3062 case BTF_KIND_FUNC_PROTO: { 3063 struct btf_param *param = btf_params(t); 3064 __u16 vlen = btf_vlen(t); 3065 3066 r = btf_dedup_remap_type_id(d, t->type); 3067 if (r < 0) 3068 return r; 3069 t->type = r; 3070 3071 for (i = 0; i < vlen; i++) { 3072 r = btf_dedup_remap_type_id(d, param->type); 3073 if (r < 0) 3074 return r; 3075 param->type = r; 3076 param++; 3077 } 3078 break; 3079 } 3080 3081 case BTF_KIND_DATASEC: { 3082 struct btf_var_secinfo *var = btf_var_secinfos(t); 3083 __u16 vlen = btf_vlen(t); 3084 3085 for (i = 0; i < vlen; i++) { 3086 r = btf_dedup_remap_type_id(d, var->type); 3087 if (r < 0) 3088 return r; 3089 var->type = r; 3090 var++; 3091 } 3092 break; 3093 } 3094 3095 default: 3096 return -EINVAL; 3097 } 3098 3099 return 0; 3100 } 3101 3102 static int btf_dedup_remap_types(struct btf_dedup *d) 3103 { 3104 int i, r; 3105 3106 for (i = 1; i <= d->btf->nr_types; i++) { 3107 r = btf_dedup_remap_type(d, i); 3108 if (r < 0) 3109 return r; 3110 } 3111 return 0; 3112 } 3113 3114 /* 3115 * Probe few well-known locations for vmlinux kernel image and try to load BTF 3116 * data out of it to use for target BTF. 3117 */ 3118 struct btf *libbpf_find_kernel_btf(void) 3119 { 3120 struct { 3121 const char *path_fmt; 3122 bool raw_btf; 3123 } locations[] = { 3124 /* try canonical vmlinux BTF through sysfs first */ 3125 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 3126 /* fall back to trying to find vmlinux ELF on disk otherwise */ 3127 { "/boot/vmlinux-%1$s" }, 3128 { "/lib/modules/%1$s/vmlinux-%1$s" }, 3129 { "/lib/modules/%1$s/build/vmlinux" }, 3130 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 3131 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 3132 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 3133 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 3134 }; 3135 char path[PATH_MAX + 1]; 3136 struct utsname buf; 3137 struct btf *btf; 3138 int i; 3139 3140 uname(&buf); 3141 3142 for (i = 0; i < ARRAY_SIZE(locations); i++) { 3143 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 3144 3145 if (access(path, R_OK)) 3146 continue; 3147 3148 if (locations[i].raw_btf) 3149 btf = btf__parse_raw(path); 3150 else 3151 btf = btf__parse_elf(path, NULL); 3152 3153 pr_debug("loading kernel BTF '%s': %ld\n", 3154 path, IS_ERR(btf) ? PTR_ERR(btf) : 0); 3155 if (IS_ERR(btf)) 3156 continue; 3157 3158 return btf; 3159 } 3160 3161 pr_warn("failed to find valid kernel BTF\n"); 3162 return ERR_PTR(-ESRCH); 3163 } 3164