1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 */ 4 5 #include <linux/gfp.h> 6 #include <linux/init.h> 7 #include <linux/ratelimit.h> 8 #include <linux/usb.h> 9 #include <linux/usb/audio.h> 10 #include <linux/slab.h> 11 12 #include <sound/core.h> 13 #include <sound/pcm.h> 14 #include <sound/pcm_params.h> 15 16 #include "usbaudio.h" 17 #include "helper.h" 18 #include "card.h" 19 #include "endpoint.h" 20 #include "pcm.h" 21 #include "clock.h" 22 #include "quirks.h" 23 24 enum { 25 EP_STATE_STOPPED, 26 EP_STATE_RUNNING, 27 EP_STATE_STOPPING, 28 }; 29 30 /* interface refcounting */ 31 struct snd_usb_iface_ref { 32 unsigned char iface; 33 bool need_setup; 34 int opened; 35 int altset; 36 struct list_head list; 37 }; 38 39 /* clock refcounting */ 40 struct snd_usb_clock_ref { 41 unsigned char clock; 42 atomic_t locked; 43 int opened; 44 int rate; 45 bool need_setup; 46 struct list_head list; 47 }; 48 49 /* 50 * snd_usb_endpoint is a model that abstracts everything related to an 51 * USB endpoint and its streaming. 52 * 53 * There are functions to activate and deactivate the streaming URBs and 54 * optional callbacks to let the pcm logic handle the actual content of the 55 * packets for playback and record. Thus, the bus streaming and the audio 56 * handlers are fully decoupled. 57 * 58 * There are two different types of endpoints in audio applications. 59 * 60 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both 61 * inbound and outbound traffic. 62 * 63 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and 64 * expect the payload to carry Q10.14 / Q16.16 formatted sync information 65 * (3 or 4 bytes). 66 * 67 * Each endpoint has to be configured prior to being used by calling 68 * snd_usb_endpoint_set_params(). 69 * 70 * The model incorporates a reference counting, so that multiple users 71 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and 72 * only the first user will effectively start the URBs, and only the last 73 * one to stop it will tear the URBs down again. 74 */ 75 76 /* 77 * convert a sampling rate into our full speed format (fs/1000 in Q16.16) 78 * this will overflow at approx 524 kHz 79 */ 80 static inline unsigned get_usb_full_speed_rate(unsigned int rate) 81 { 82 return ((rate << 13) + 62) / 125; 83 } 84 85 /* 86 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) 87 * this will overflow at approx 4 MHz 88 */ 89 static inline unsigned get_usb_high_speed_rate(unsigned int rate) 90 { 91 return ((rate << 10) + 62) / 125; 92 } 93 94 /* 95 * release a urb data 96 */ 97 static void release_urb_ctx(struct snd_urb_ctx *u) 98 { 99 if (u->urb && u->buffer_size) 100 usb_free_coherent(u->ep->chip->dev, u->buffer_size, 101 u->urb->transfer_buffer, 102 u->urb->transfer_dma); 103 usb_free_urb(u->urb); 104 u->urb = NULL; 105 u->buffer_size = 0; 106 } 107 108 static const char *usb_error_string(int err) 109 { 110 switch (err) { 111 case -ENODEV: 112 return "no device"; 113 case -ENOENT: 114 return "endpoint not enabled"; 115 case -EPIPE: 116 return "endpoint stalled"; 117 case -ENOSPC: 118 return "not enough bandwidth"; 119 case -ESHUTDOWN: 120 return "device disabled"; 121 case -EHOSTUNREACH: 122 return "device suspended"; 123 case -EINVAL: 124 case -EAGAIN: 125 case -EFBIG: 126 case -EMSGSIZE: 127 return "internal error"; 128 default: 129 return "unknown error"; 130 } 131 } 132 133 static inline bool ep_state_running(struct snd_usb_endpoint *ep) 134 { 135 return atomic_read(&ep->state) == EP_STATE_RUNNING; 136 } 137 138 static inline bool ep_state_update(struct snd_usb_endpoint *ep, int old, int new) 139 { 140 return atomic_try_cmpxchg(&ep->state, &old, new); 141 } 142 143 /** 144 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type 145 * 146 * @ep: The snd_usb_endpoint 147 * 148 * Determine whether an endpoint is driven by an implicit feedback 149 * data endpoint source. 150 */ 151 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep) 152 { 153 return ep->implicit_fb_sync && usb_pipeout(ep->pipe); 154 } 155 156 /* 157 * Return the number of samples to be sent in the next packet 158 * for streaming based on information derived from sync endpoints 159 * 160 * This won't be used for implicit feedback which takes the packet size 161 * returned from the sync source 162 */ 163 static int slave_next_packet_size(struct snd_usb_endpoint *ep, 164 unsigned int avail) 165 { 166 unsigned long flags; 167 unsigned int phase; 168 int ret; 169 170 if (ep->fill_max) 171 return ep->maxframesize; 172 173 spin_lock_irqsave(&ep->lock, flags); 174 phase = (ep->phase & 0xffff) + (ep->freqm << ep->datainterval); 175 ret = min(phase >> 16, ep->maxframesize); 176 if (avail && ret >= avail) 177 ret = -EAGAIN; 178 else 179 ep->phase = phase; 180 spin_unlock_irqrestore(&ep->lock, flags); 181 182 return ret; 183 } 184 185 /* 186 * Return the number of samples to be sent in the next packet 187 * for adaptive and synchronous endpoints 188 */ 189 static int next_packet_size(struct snd_usb_endpoint *ep, unsigned int avail) 190 { 191 unsigned int sample_accum; 192 int ret; 193 194 if (ep->fill_max) 195 return ep->maxframesize; 196 197 sample_accum = ep->sample_accum + ep->sample_rem; 198 if (sample_accum >= ep->pps) { 199 sample_accum -= ep->pps; 200 ret = ep->packsize[1]; 201 } else { 202 ret = ep->packsize[0]; 203 } 204 if (avail && ret >= avail) 205 ret = -EAGAIN; 206 else 207 ep->sample_accum = sample_accum; 208 209 return ret; 210 } 211 212 /* 213 * snd_usb_endpoint_next_packet_size: Return the number of samples to be sent 214 * in the next packet 215 * 216 * If the size is equal or exceeds @avail, don't proceed but return -EAGAIN 217 * Exception: @avail = 0 for skipping the check. 218 */ 219 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep, 220 struct snd_urb_ctx *ctx, int idx, 221 unsigned int avail) 222 { 223 unsigned int packet; 224 225 packet = ctx->packet_size[idx]; 226 if (packet) { 227 if (avail && packet >= avail) 228 return -EAGAIN; 229 return packet; 230 } 231 232 if (ep->sync_source) 233 return slave_next_packet_size(ep, avail); 234 else 235 return next_packet_size(ep, avail); 236 } 237 238 static void call_retire_callback(struct snd_usb_endpoint *ep, 239 struct urb *urb) 240 { 241 struct snd_usb_substream *data_subs; 242 243 data_subs = READ_ONCE(ep->data_subs); 244 if (data_subs && ep->retire_data_urb) 245 ep->retire_data_urb(data_subs, urb); 246 } 247 248 static void retire_outbound_urb(struct snd_usb_endpoint *ep, 249 struct snd_urb_ctx *urb_ctx) 250 { 251 call_retire_callback(ep, urb_ctx->urb); 252 } 253 254 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 255 struct snd_usb_endpoint *sender, 256 const struct urb *urb); 257 258 static void retire_inbound_urb(struct snd_usb_endpoint *ep, 259 struct snd_urb_ctx *urb_ctx) 260 { 261 struct urb *urb = urb_ctx->urb; 262 struct snd_usb_endpoint *sync_sink; 263 264 if (unlikely(ep->skip_packets > 0)) { 265 ep->skip_packets--; 266 return; 267 } 268 269 sync_sink = READ_ONCE(ep->sync_sink); 270 if (sync_sink) 271 snd_usb_handle_sync_urb(sync_sink, ep, urb); 272 273 call_retire_callback(ep, urb); 274 } 275 276 static inline bool has_tx_length_quirk(struct snd_usb_audio *chip) 277 { 278 return chip->quirk_flags & QUIRK_FLAG_TX_LENGTH; 279 } 280 281 static void prepare_silent_urb(struct snd_usb_endpoint *ep, 282 struct snd_urb_ctx *ctx) 283 { 284 struct urb *urb = ctx->urb; 285 unsigned int offs = 0; 286 unsigned int extra = 0; 287 __le32 packet_length; 288 int i; 289 290 /* For tx_length_quirk, put packet length at start of packet */ 291 if (has_tx_length_quirk(ep->chip)) 292 extra = sizeof(packet_length); 293 294 for (i = 0; i < ctx->packets; ++i) { 295 unsigned int offset; 296 unsigned int length; 297 int counts; 298 299 counts = snd_usb_endpoint_next_packet_size(ep, ctx, i, 0); 300 length = counts * ep->stride; /* number of silent bytes */ 301 offset = offs * ep->stride + extra * i; 302 urb->iso_frame_desc[i].offset = offset; 303 urb->iso_frame_desc[i].length = length + extra; 304 if (extra) { 305 packet_length = cpu_to_le32(length); 306 memcpy(urb->transfer_buffer + offset, 307 &packet_length, sizeof(packet_length)); 308 } 309 memset(urb->transfer_buffer + offset + extra, 310 ep->silence_value, length); 311 offs += counts; 312 } 313 314 urb->number_of_packets = ctx->packets; 315 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra; 316 ctx->queued = 0; 317 } 318 319 /* 320 * Prepare a PLAYBACK urb for submission to the bus. 321 */ 322 static int prepare_outbound_urb(struct snd_usb_endpoint *ep, 323 struct snd_urb_ctx *ctx, 324 bool in_stream_lock) 325 { 326 struct urb *urb = ctx->urb; 327 unsigned char *cp = urb->transfer_buffer; 328 struct snd_usb_substream *data_subs; 329 330 urb->dev = ep->chip->dev; /* we need to set this at each time */ 331 332 switch (ep->type) { 333 case SND_USB_ENDPOINT_TYPE_DATA: 334 data_subs = READ_ONCE(ep->data_subs); 335 if (data_subs && ep->prepare_data_urb) 336 return ep->prepare_data_urb(data_subs, urb, in_stream_lock); 337 /* no data provider, so send silence */ 338 prepare_silent_urb(ep, ctx); 339 break; 340 341 case SND_USB_ENDPOINT_TYPE_SYNC: 342 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) { 343 /* 344 * fill the length and offset of each urb descriptor. 345 * the fixed 12.13 frequency is passed as 16.16 through the pipe. 346 */ 347 urb->iso_frame_desc[0].length = 4; 348 urb->iso_frame_desc[0].offset = 0; 349 cp[0] = ep->freqn; 350 cp[1] = ep->freqn >> 8; 351 cp[2] = ep->freqn >> 16; 352 cp[3] = ep->freqn >> 24; 353 } else { 354 /* 355 * fill the length and offset of each urb descriptor. 356 * the fixed 10.14 frequency is passed through the pipe. 357 */ 358 urb->iso_frame_desc[0].length = 3; 359 urb->iso_frame_desc[0].offset = 0; 360 cp[0] = ep->freqn >> 2; 361 cp[1] = ep->freqn >> 10; 362 cp[2] = ep->freqn >> 18; 363 } 364 365 break; 366 } 367 return 0; 368 } 369 370 /* 371 * Prepare a CAPTURE or SYNC urb for submission to the bus. 372 */ 373 static int prepare_inbound_urb(struct snd_usb_endpoint *ep, 374 struct snd_urb_ctx *urb_ctx) 375 { 376 int i, offs; 377 struct urb *urb = urb_ctx->urb; 378 379 urb->dev = ep->chip->dev; /* we need to set this at each time */ 380 381 switch (ep->type) { 382 case SND_USB_ENDPOINT_TYPE_DATA: 383 offs = 0; 384 for (i = 0; i < urb_ctx->packets; i++) { 385 urb->iso_frame_desc[i].offset = offs; 386 urb->iso_frame_desc[i].length = ep->curpacksize; 387 offs += ep->curpacksize; 388 } 389 390 urb->transfer_buffer_length = offs; 391 urb->number_of_packets = urb_ctx->packets; 392 break; 393 394 case SND_USB_ENDPOINT_TYPE_SYNC: 395 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize); 396 urb->iso_frame_desc[0].offset = 0; 397 break; 398 } 399 return 0; 400 } 401 402 /* notify an error as XRUN to the assigned PCM data substream */ 403 static void notify_xrun(struct snd_usb_endpoint *ep) 404 { 405 struct snd_usb_substream *data_subs; 406 407 data_subs = READ_ONCE(ep->data_subs); 408 if (data_subs && data_subs->pcm_substream) 409 snd_pcm_stop_xrun(data_subs->pcm_substream); 410 } 411 412 static struct snd_usb_packet_info * 413 next_packet_fifo_enqueue(struct snd_usb_endpoint *ep) 414 { 415 struct snd_usb_packet_info *p; 416 417 p = ep->next_packet + (ep->next_packet_head + ep->next_packet_queued) % 418 ARRAY_SIZE(ep->next_packet); 419 ep->next_packet_queued++; 420 return p; 421 } 422 423 static struct snd_usb_packet_info * 424 next_packet_fifo_dequeue(struct snd_usb_endpoint *ep) 425 { 426 struct snd_usb_packet_info *p; 427 428 p = ep->next_packet + ep->next_packet_head; 429 ep->next_packet_head++; 430 ep->next_packet_head %= ARRAY_SIZE(ep->next_packet); 431 ep->next_packet_queued--; 432 return p; 433 } 434 435 static void push_back_to_ready_list(struct snd_usb_endpoint *ep, 436 struct snd_urb_ctx *ctx) 437 { 438 unsigned long flags; 439 440 spin_lock_irqsave(&ep->lock, flags); 441 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs); 442 spin_unlock_irqrestore(&ep->lock, flags); 443 } 444 445 /* 446 * Send output urbs that have been prepared previously. URBs are dequeued 447 * from ep->ready_playback_urbs and in case there aren't any available 448 * or there are no packets that have been prepared, this function does 449 * nothing. 450 * 451 * The reason why the functionality of sending and preparing URBs is separated 452 * is that host controllers don't guarantee the order in which they return 453 * inbound and outbound packets to their submitters. 454 * 455 * This function is used both for implicit feedback endpoints and in low- 456 * latency playback mode. 457 */ 458 int snd_usb_queue_pending_output_urbs(struct snd_usb_endpoint *ep, 459 bool in_stream_lock) 460 { 461 bool implicit_fb = snd_usb_endpoint_implicit_feedback_sink(ep); 462 463 while (ep_state_running(ep)) { 464 465 unsigned long flags; 466 struct snd_usb_packet_info *packet; 467 struct snd_urb_ctx *ctx = NULL; 468 int err, i; 469 470 spin_lock_irqsave(&ep->lock, flags); 471 if ((!implicit_fb || ep->next_packet_queued > 0) && 472 !list_empty(&ep->ready_playback_urbs)) { 473 /* take URB out of FIFO */ 474 ctx = list_first_entry(&ep->ready_playback_urbs, 475 struct snd_urb_ctx, ready_list); 476 list_del_init(&ctx->ready_list); 477 if (implicit_fb) 478 packet = next_packet_fifo_dequeue(ep); 479 } 480 spin_unlock_irqrestore(&ep->lock, flags); 481 482 if (ctx == NULL) 483 break; 484 485 /* copy over the length information */ 486 if (implicit_fb) { 487 for (i = 0; i < packet->packets; i++) 488 ctx->packet_size[i] = packet->packet_size[i]; 489 } 490 491 /* call the data handler to fill in playback data */ 492 err = prepare_outbound_urb(ep, ctx, in_stream_lock); 493 /* can be stopped during prepare callback */ 494 if (unlikely(!ep_state_running(ep))) 495 break; 496 if (err < 0) { 497 /* push back to ready list again for -EAGAIN */ 498 if (err == -EAGAIN) { 499 push_back_to_ready_list(ep, ctx); 500 break; 501 } 502 503 if (!in_stream_lock) 504 notify_xrun(ep); 505 return -EPIPE; 506 } 507 508 err = usb_submit_urb(ctx->urb, GFP_ATOMIC); 509 if (err < 0) { 510 usb_audio_err(ep->chip, 511 "Unable to submit urb #%d: %d at %s\n", 512 ctx->index, err, __func__); 513 if (!in_stream_lock) 514 notify_xrun(ep); 515 return -EPIPE; 516 } 517 518 set_bit(ctx->index, &ep->active_mask); 519 atomic_inc(&ep->submitted_urbs); 520 } 521 522 return 0; 523 } 524 525 /* 526 * complete callback for urbs 527 */ 528 static void snd_complete_urb(struct urb *urb) 529 { 530 struct snd_urb_ctx *ctx = urb->context; 531 struct snd_usb_endpoint *ep = ctx->ep; 532 int err; 533 534 if (unlikely(urb->status == -ENOENT || /* unlinked */ 535 urb->status == -ENODEV || /* device removed */ 536 urb->status == -ECONNRESET || /* unlinked */ 537 urb->status == -ESHUTDOWN)) /* device disabled */ 538 goto exit_clear; 539 /* device disconnected */ 540 if (unlikely(atomic_read(&ep->chip->shutdown))) 541 goto exit_clear; 542 543 if (unlikely(!ep_state_running(ep))) 544 goto exit_clear; 545 546 if (usb_pipeout(ep->pipe)) { 547 retire_outbound_urb(ep, ctx); 548 /* can be stopped during retire callback */ 549 if (unlikely(!ep_state_running(ep))) 550 goto exit_clear; 551 552 /* in low-latency and implicit-feedback modes, push back the 553 * URB to ready list at first, then process as much as possible 554 */ 555 if (ep->lowlatency_playback || 556 snd_usb_endpoint_implicit_feedback_sink(ep)) { 557 push_back_to_ready_list(ep, ctx); 558 clear_bit(ctx->index, &ep->active_mask); 559 snd_usb_queue_pending_output_urbs(ep, false); 560 atomic_dec(&ep->submitted_urbs); /* decrement at last */ 561 return; 562 } 563 564 /* in non-lowlatency mode, no error handling for prepare */ 565 prepare_outbound_urb(ep, ctx, false); 566 /* can be stopped during prepare callback */ 567 if (unlikely(!ep_state_running(ep))) 568 goto exit_clear; 569 } else { 570 retire_inbound_urb(ep, ctx); 571 /* can be stopped during retire callback */ 572 if (unlikely(!ep_state_running(ep))) 573 goto exit_clear; 574 575 prepare_inbound_urb(ep, ctx); 576 } 577 578 err = usb_submit_urb(urb, GFP_ATOMIC); 579 if (err == 0) 580 return; 581 582 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err); 583 notify_xrun(ep); 584 585 exit_clear: 586 clear_bit(ctx->index, &ep->active_mask); 587 atomic_dec(&ep->submitted_urbs); 588 } 589 590 /* 591 * Find or create a refcount object for the given interface 592 * 593 * The objects are released altogether in snd_usb_endpoint_free_all() 594 */ 595 static struct snd_usb_iface_ref * 596 iface_ref_find(struct snd_usb_audio *chip, int iface) 597 { 598 struct snd_usb_iface_ref *ip; 599 600 list_for_each_entry(ip, &chip->iface_ref_list, list) 601 if (ip->iface == iface) 602 return ip; 603 604 ip = kzalloc(sizeof(*ip), GFP_KERNEL); 605 if (!ip) 606 return NULL; 607 ip->iface = iface; 608 list_add_tail(&ip->list, &chip->iface_ref_list); 609 return ip; 610 } 611 612 /* Similarly, a refcount object for clock */ 613 static struct snd_usb_clock_ref * 614 clock_ref_find(struct snd_usb_audio *chip, int clock) 615 { 616 struct snd_usb_clock_ref *ref; 617 618 list_for_each_entry(ref, &chip->clock_ref_list, list) 619 if (ref->clock == clock) 620 return ref; 621 622 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 623 if (!ref) 624 return NULL; 625 ref->clock = clock; 626 atomic_set(&ref->locked, 0); 627 list_add_tail(&ref->list, &chip->clock_ref_list); 628 return ref; 629 } 630 631 /* 632 * Get the existing endpoint object corresponding EP 633 * Returns NULL if not present. 634 */ 635 struct snd_usb_endpoint * 636 snd_usb_get_endpoint(struct snd_usb_audio *chip, int ep_num) 637 { 638 struct snd_usb_endpoint *ep; 639 640 list_for_each_entry(ep, &chip->ep_list, list) { 641 if (ep->ep_num == ep_num) 642 return ep; 643 } 644 645 return NULL; 646 } 647 648 #define ep_type_name(type) \ 649 (type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync") 650 651 /** 652 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip 653 * 654 * @chip: The chip 655 * @ep_num: The number of the endpoint to use 656 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC 657 * 658 * If the requested endpoint has not been added to the given chip before, 659 * a new instance is created. 660 * 661 * Returns zero on success or a negative error code. 662 * 663 * New endpoints will be added to chip->ep_list and freed by 664 * calling snd_usb_endpoint_free_all(). 665 * 666 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that 667 * bNumEndpoints > 1 beforehand. 668 */ 669 int snd_usb_add_endpoint(struct snd_usb_audio *chip, int ep_num, int type) 670 { 671 struct snd_usb_endpoint *ep; 672 bool is_playback; 673 674 ep = snd_usb_get_endpoint(chip, ep_num); 675 if (ep) 676 return 0; 677 678 usb_audio_dbg(chip, "Creating new %s endpoint #%x\n", 679 ep_type_name(type), 680 ep_num); 681 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 682 if (!ep) 683 return -ENOMEM; 684 685 ep->chip = chip; 686 spin_lock_init(&ep->lock); 687 ep->type = type; 688 ep->ep_num = ep_num; 689 INIT_LIST_HEAD(&ep->ready_playback_urbs); 690 atomic_set(&ep->submitted_urbs, 0); 691 692 is_playback = ((ep_num & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 693 ep_num &= USB_ENDPOINT_NUMBER_MASK; 694 if (is_playback) 695 ep->pipe = usb_sndisocpipe(chip->dev, ep_num); 696 else 697 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num); 698 699 list_add_tail(&ep->list, &chip->ep_list); 700 return 0; 701 } 702 703 /* Set up syncinterval and maxsyncsize for a sync EP */ 704 static void endpoint_set_syncinterval(struct snd_usb_audio *chip, 705 struct snd_usb_endpoint *ep) 706 { 707 struct usb_host_interface *alts; 708 struct usb_endpoint_descriptor *desc; 709 710 alts = snd_usb_get_host_interface(chip, ep->iface, ep->altsetting); 711 if (!alts) 712 return; 713 714 desc = get_endpoint(alts, ep->ep_idx); 715 if (desc->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && 716 desc->bRefresh >= 1 && desc->bRefresh <= 9) 717 ep->syncinterval = desc->bRefresh; 718 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) 719 ep->syncinterval = 1; 720 else if (desc->bInterval >= 1 && desc->bInterval <= 16) 721 ep->syncinterval = desc->bInterval - 1; 722 else 723 ep->syncinterval = 3; 724 725 ep->syncmaxsize = le16_to_cpu(desc->wMaxPacketSize); 726 } 727 728 static bool endpoint_compatible(struct snd_usb_endpoint *ep, 729 const struct audioformat *fp, 730 const struct snd_pcm_hw_params *params) 731 { 732 if (!ep->opened) 733 return false; 734 if (ep->cur_audiofmt != fp) 735 return false; 736 if (ep->cur_rate != params_rate(params) || 737 ep->cur_format != params_format(params) || 738 ep->cur_period_frames != params_period_size(params) || 739 ep->cur_buffer_periods != params_periods(params)) 740 return false; 741 return true; 742 } 743 744 /* 745 * Check whether the given fp and hw params are compatible with the current 746 * setup of the target EP for implicit feedback sync 747 */ 748 bool snd_usb_endpoint_compatible(struct snd_usb_audio *chip, 749 struct snd_usb_endpoint *ep, 750 const struct audioformat *fp, 751 const struct snd_pcm_hw_params *params) 752 { 753 bool ret; 754 755 mutex_lock(&chip->mutex); 756 ret = endpoint_compatible(ep, fp, params); 757 mutex_unlock(&chip->mutex); 758 return ret; 759 } 760 761 /* 762 * snd_usb_endpoint_open: Open the endpoint 763 * 764 * Called from hw_params to assign the endpoint to the substream. 765 * It's reference-counted, and only the first opener is allowed to set up 766 * arbitrary parameters. The later opener must be compatible with the 767 * former opened parameters. 768 * The endpoint needs to be closed via snd_usb_endpoint_close() later. 769 * 770 * Note that this function doesn't configure the endpoint. The substream 771 * needs to set it up later via snd_usb_endpoint_set_params() and 772 * snd_usb_endpoint_prepare(). 773 */ 774 struct snd_usb_endpoint * 775 snd_usb_endpoint_open(struct snd_usb_audio *chip, 776 const struct audioformat *fp, 777 const struct snd_pcm_hw_params *params, 778 bool is_sync_ep, 779 bool fixed_rate) 780 { 781 struct snd_usb_endpoint *ep; 782 int ep_num = is_sync_ep ? fp->sync_ep : fp->endpoint; 783 784 mutex_lock(&chip->mutex); 785 ep = snd_usb_get_endpoint(chip, ep_num); 786 if (!ep) { 787 usb_audio_err(chip, "Cannot find EP 0x%x to open\n", ep_num); 788 goto unlock; 789 } 790 791 if (!ep->opened) { 792 if (is_sync_ep) { 793 ep->iface = fp->sync_iface; 794 ep->altsetting = fp->sync_altsetting; 795 ep->ep_idx = fp->sync_ep_idx; 796 } else { 797 ep->iface = fp->iface; 798 ep->altsetting = fp->altsetting; 799 ep->ep_idx = fp->ep_idx; 800 } 801 usb_audio_dbg(chip, "Open EP 0x%x, iface=%d:%d, idx=%d\n", 802 ep_num, ep->iface, ep->altsetting, ep->ep_idx); 803 804 ep->iface_ref = iface_ref_find(chip, ep->iface); 805 if (!ep->iface_ref) { 806 ep = NULL; 807 goto unlock; 808 } 809 810 if (fp->protocol != UAC_VERSION_1) { 811 ep->clock_ref = clock_ref_find(chip, fp->clock); 812 if (!ep->clock_ref) { 813 ep = NULL; 814 goto unlock; 815 } 816 ep->clock_ref->opened++; 817 } 818 819 ep->cur_audiofmt = fp; 820 ep->cur_channels = fp->channels; 821 ep->cur_rate = params_rate(params); 822 ep->cur_format = params_format(params); 823 ep->cur_frame_bytes = snd_pcm_format_physical_width(ep->cur_format) * 824 ep->cur_channels / 8; 825 ep->cur_period_frames = params_period_size(params); 826 ep->cur_period_bytes = ep->cur_period_frames * ep->cur_frame_bytes; 827 ep->cur_buffer_periods = params_periods(params); 828 829 if (ep->type == SND_USB_ENDPOINT_TYPE_SYNC) 830 endpoint_set_syncinterval(chip, ep); 831 832 ep->implicit_fb_sync = fp->implicit_fb; 833 ep->need_setup = true; 834 ep->need_prepare = true; 835 ep->fixed_rate = fixed_rate; 836 837 usb_audio_dbg(chip, " channels=%d, rate=%d, format=%s, period_bytes=%d, periods=%d, implicit_fb=%d\n", 838 ep->cur_channels, ep->cur_rate, 839 snd_pcm_format_name(ep->cur_format), 840 ep->cur_period_bytes, ep->cur_buffer_periods, 841 ep->implicit_fb_sync); 842 843 } else { 844 if (WARN_ON(!ep->iface_ref)) { 845 ep = NULL; 846 goto unlock; 847 } 848 849 if (!endpoint_compatible(ep, fp, params)) { 850 usb_audio_err(chip, "Incompatible EP setup for 0x%x\n", 851 ep_num); 852 ep = NULL; 853 goto unlock; 854 } 855 856 usb_audio_dbg(chip, "Reopened EP 0x%x (count %d)\n", 857 ep_num, ep->opened); 858 } 859 860 if (!ep->iface_ref->opened++) 861 ep->iface_ref->need_setup = true; 862 863 ep->opened++; 864 865 unlock: 866 mutex_unlock(&chip->mutex); 867 return ep; 868 } 869 870 /* 871 * snd_usb_endpoint_set_sync: Link data and sync endpoints 872 * 873 * Pass NULL to sync_ep to unlink again 874 */ 875 void snd_usb_endpoint_set_sync(struct snd_usb_audio *chip, 876 struct snd_usb_endpoint *data_ep, 877 struct snd_usb_endpoint *sync_ep) 878 { 879 data_ep->sync_source = sync_ep; 880 } 881 882 /* 883 * Set data endpoint callbacks and the assigned data stream 884 * 885 * Called at PCM trigger and cleanups. 886 * Pass NULL to deactivate each callback. 887 */ 888 void snd_usb_endpoint_set_callback(struct snd_usb_endpoint *ep, 889 int (*prepare)(struct snd_usb_substream *subs, 890 struct urb *urb, 891 bool in_stream_lock), 892 void (*retire)(struct snd_usb_substream *subs, 893 struct urb *urb), 894 struct snd_usb_substream *data_subs) 895 { 896 ep->prepare_data_urb = prepare; 897 ep->retire_data_urb = retire; 898 if (data_subs) 899 ep->lowlatency_playback = data_subs->lowlatency_playback; 900 else 901 ep->lowlatency_playback = false; 902 WRITE_ONCE(ep->data_subs, data_subs); 903 } 904 905 static int endpoint_set_interface(struct snd_usb_audio *chip, 906 struct snd_usb_endpoint *ep, 907 bool set) 908 { 909 int altset = set ? ep->altsetting : 0; 910 int err; 911 912 if (ep->iface_ref->altset == altset) 913 return 0; 914 915 usb_audio_dbg(chip, "Setting usb interface %d:%d for EP 0x%x\n", 916 ep->iface, altset, ep->ep_num); 917 err = usb_set_interface(chip->dev, ep->iface, altset); 918 if (err < 0) { 919 usb_audio_err(chip, "%d:%d: usb_set_interface failed (%d)\n", 920 ep->iface, altset, err); 921 return err; 922 } 923 924 if (chip->quirk_flags & QUIRK_FLAG_IFACE_DELAY) 925 msleep(50); 926 ep->iface_ref->altset = altset; 927 return 0; 928 } 929 930 /* 931 * snd_usb_endpoint_close: Close the endpoint 932 * 933 * Unreference the already opened endpoint via snd_usb_endpoint_open(). 934 */ 935 void snd_usb_endpoint_close(struct snd_usb_audio *chip, 936 struct snd_usb_endpoint *ep) 937 { 938 mutex_lock(&chip->mutex); 939 usb_audio_dbg(chip, "Closing EP 0x%x (count %d)\n", 940 ep->ep_num, ep->opened); 941 942 if (!--ep->iface_ref->opened && 943 !(chip->quirk_flags & QUIRK_FLAG_IFACE_SKIP_CLOSE)) 944 endpoint_set_interface(chip, ep, false); 945 946 if (!--ep->opened) { 947 if (ep->clock_ref) { 948 if (!--ep->clock_ref->opened) 949 ep->clock_ref->rate = 0; 950 } 951 ep->iface = 0; 952 ep->altsetting = 0; 953 ep->cur_audiofmt = NULL; 954 ep->cur_rate = 0; 955 ep->iface_ref = NULL; 956 ep->clock_ref = NULL; 957 usb_audio_dbg(chip, "EP 0x%x closed\n", ep->ep_num); 958 } 959 mutex_unlock(&chip->mutex); 960 } 961 962 /* Prepare for suspening EP, called from the main suspend handler */ 963 void snd_usb_endpoint_suspend(struct snd_usb_endpoint *ep) 964 { 965 ep->need_prepare = true; 966 if (ep->iface_ref) 967 ep->iface_ref->need_setup = true; 968 if (ep->clock_ref) 969 ep->clock_ref->rate = 0; 970 } 971 972 /* 973 * wait until all urbs are processed. 974 */ 975 static int wait_clear_urbs(struct snd_usb_endpoint *ep) 976 { 977 unsigned long end_time = jiffies + msecs_to_jiffies(1000); 978 int alive; 979 980 if (atomic_read(&ep->state) != EP_STATE_STOPPING) 981 return 0; 982 983 do { 984 alive = atomic_read(&ep->submitted_urbs); 985 if (!alive) 986 break; 987 988 schedule_timeout_uninterruptible(1); 989 } while (time_before(jiffies, end_time)); 990 991 if (alive) 992 usb_audio_err(ep->chip, 993 "timeout: still %d active urbs on EP #%x\n", 994 alive, ep->ep_num); 995 996 if (ep_state_update(ep, EP_STATE_STOPPING, EP_STATE_STOPPED)) { 997 ep->sync_sink = NULL; 998 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 999 } 1000 1001 return 0; 1002 } 1003 1004 /* sync the pending stop operation; 1005 * this function itself doesn't trigger the stop operation 1006 */ 1007 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep) 1008 { 1009 if (ep) 1010 wait_clear_urbs(ep); 1011 } 1012 1013 /* 1014 * Stop active urbs 1015 * 1016 * This function moves the EP to STOPPING state if it's being RUNNING. 1017 */ 1018 static int stop_urbs(struct snd_usb_endpoint *ep, bool force, bool keep_pending) 1019 { 1020 unsigned int i; 1021 unsigned long flags; 1022 1023 if (!force && atomic_read(&ep->running)) 1024 return -EBUSY; 1025 1026 if (!ep_state_update(ep, EP_STATE_RUNNING, EP_STATE_STOPPING)) 1027 return 0; 1028 1029 spin_lock_irqsave(&ep->lock, flags); 1030 INIT_LIST_HEAD(&ep->ready_playback_urbs); 1031 ep->next_packet_head = 0; 1032 ep->next_packet_queued = 0; 1033 spin_unlock_irqrestore(&ep->lock, flags); 1034 1035 if (keep_pending) 1036 return 0; 1037 1038 for (i = 0; i < ep->nurbs; i++) { 1039 if (test_bit(i, &ep->active_mask)) { 1040 if (!test_and_set_bit(i, &ep->unlink_mask)) { 1041 struct urb *u = ep->urb[i].urb; 1042 usb_unlink_urb(u); 1043 } 1044 } 1045 } 1046 1047 return 0; 1048 } 1049 1050 /* 1051 * release an endpoint's urbs 1052 */ 1053 static int release_urbs(struct snd_usb_endpoint *ep, bool force) 1054 { 1055 int i, err; 1056 1057 /* route incoming urbs to nirvana */ 1058 snd_usb_endpoint_set_callback(ep, NULL, NULL, NULL); 1059 1060 /* stop and unlink urbs */ 1061 err = stop_urbs(ep, force, false); 1062 if (err) 1063 return err; 1064 1065 wait_clear_urbs(ep); 1066 1067 for (i = 0; i < ep->nurbs; i++) 1068 release_urb_ctx(&ep->urb[i]); 1069 1070 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4, 1071 ep->syncbuf, ep->sync_dma); 1072 1073 ep->syncbuf = NULL; 1074 ep->nurbs = 0; 1075 return 0; 1076 } 1077 1078 /* 1079 * configure a data endpoint 1080 */ 1081 static int data_ep_set_params(struct snd_usb_endpoint *ep) 1082 { 1083 struct snd_usb_audio *chip = ep->chip; 1084 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb; 1085 unsigned int max_packs_per_period, urbs_per_period, urb_packs; 1086 unsigned int max_urbs, i; 1087 const struct audioformat *fmt = ep->cur_audiofmt; 1088 int frame_bits = ep->cur_frame_bytes * 8; 1089 int tx_length_quirk = (has_tx_length_quirk(chip) && 1090 usb_pipeout(ep->pipe)); 1091 1092 usb_audio_dbg(chip, "Setting params for data EP 0x%x, pipe 0x%x\n", 1093 ep->ep_num, ep->pipe); 1094 1095 if (ep->cur_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) { 1096 /* 1097 * When operating in DSD DOP mode, the size of a sample frame 1098 * in hardware differs from the actual physical format width 1099 * because we need to make room for the DOP markers. 1100 */ 1101 frame_bits += ep->cur_channels << 3; 1102 } 1103 1104 ep->datainterval = fmt->datainterval; 1105 ep->stride = frame_bits >> 3; 1106 1107 switch (ep->cur_format) { 1108 case SNDRV_PCM_FORMAT_U8: 1109 ep->silence_value = 0x80; 1110 break; 1111 case SNDRV_PCM_FORMAT_DSD_U8: 1112 case SNDRV_PCM_FORMAT_DSD_U16_LE: 1113 case SNDRV_PCM_FORMAT_DSD_U32_LE: 1114 case SNDRV_PCM_FORMAT_DSD_U16_BE: 1115 case SNDRV_PCM_FORMAT_DSD_U32_BE: 1116 ep->silence_value = 0x69; 1117 break; 1118 default: 1119 ep->silence_value = 0; 1120 } 1121 1122 /* assume max. frequency is 50% higher than nominal */ 1123 ep->freqmax = ep->freqn + (ep->freqn >> 1); 1124 /* Round up freqmax to nearest integer in order to calculate maximum 1125 * packet size, which must represent a whole number of frames. 1126 * This is accomplished by adding 0x0.ffff before converting the 1127 * Q16.16 format into integer. 1128 * In order to accurately calculate the maximum packet size when 1129 * the data interval is more than 1 (i.e. ep->datainterval > 0), 1130 * multiply by the data interval prior to rounding. For instance, 1131 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125) 1132 * frames with a data interval of 1, but 11 (10.25) frames with a 1133 * data interval of 2. 1134 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the 1135 * maximum datainterval value of 3, at USB full speed, higher for 1136 * USB high speed, noting that ep->freqmax is in units of 1137 * frames per packet in Q16.16 format.) 1138 */ 1139 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) * 1140 (frame_bits >> 3); 1141 if (tx_length_quirk) 1142 maxsize += sizeof(__le32); /* Space for length descriptor */ 1143 /* but wMaxPacketSize might reduce this */ 1144 if (ep->maxpacksize && ep->maxpacksize < maxsize) { 1145 /* whatever fits into a max. size packet */ 1146 unsigned int data_maxsize = maxsize = ep->maxpacksize; 1147 1148 if (tx_length_quirk) 1149 /* Need to remove the length descriptor to calc freq */ 1150 data_maxsize -= sizeof(__le32); 1151 ep->freqmax = (data_maxsize / (frame_bits >> 3)) 1152 << (16 - ep->datainterval); 1153 } 1154 1155 if (ep->fill_max) 1156 ep->curpacksize = ep->maxpacksize; 1157 else 1158 ep->curpacksize = maxsize; 1159 1160 if (snd_usb_get_speed(chip->dev) != USB_SPEED_FULL) { 1161 packs_per_ms = 8 >> ep->datainterval; 1162 max_packs_per_urb = MAX_PACKS_HS; 1163 } else { 1164 packs_per_ms = 1; 1165 max_packs_per_urb = MAX_PACKS; 1166 } 1167 if (ep->sync_source && !ep->implicit_fb_sync) 1168 max_packs_per_urb = min(max_packs_per_urb, 1169 1U << ep->sync_source->syncinterval); 1170 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval); 1171 1172 /* 1173 * Capture endpoints need to use small URBs because there's no way 1174 * to tell in advance where the next period will end, and we don't 1175 * want the next URB to complete much after the period ends. 1176 * 1177 * Playback endpoints with implicit sync much use the same parameters 1178 * as their corresponding capture endpoint. 1179 */ 1180 if (usb_pipein(ep->pipe) || ep->implicit_fb_sync) { 1181 1182 urb_packs = packs_per_ms; 1183 /* 1184 * Wireless devices can poll at a max rate of once per 4ms. 1185 * For dataintervals less than 5, increase the packet count to 1186 * allow the host controller to use bursting to fill in the 1187 * gaps. 1188 */ 1189 if (snd_usb_get_speed(chip->dev) == USB_SPEED_WIRELESS) { 1190 int interval = ep->datainterval; 1191 while (interval < 5) { 1192 urb_packs <<= 1; 1193 ++interval; 1194 } 1195 } 1196 /* make capture URBs <= 1 ms and smaller than a period */ 1197 urb_packs = min(max_packs_per_urb, urb_packs); 1198 while (urb_packs > 1 && urb_packs * maxsize >= ep->cur_period_bytes) 1199 urb_packs >>= 1; 1200 ep->nurbs = MAX_URBS; 1201 1202 /* 1203 * Playback endpoints without implicit sync are adjusted so that 1204 * a period fits as evenly as possible in the smallest number of 1205 * URBs. The total number of URBs is adjusted to the size of the 1206 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits. 1207 */ 1208 } else { 1209 /* determine how small a packet can be */ 1210 minsize = (ep->freqn >> (16 - ep->datainterval)) * 1211 (frame_bits >> 3); 1212 /* with sync from device, assume it can be 12% lower */ 1213 if (ep->sync_source) 1214 minsize -= minsize >> 3; 1215 minsize = max(minsize, 1u); 1216 1217 /* how many packets will contain an entire ALSA period? */ 1218 max_packs_per_period = DIV_ROUND_UP(ep->cur_period_bytes, minsize); 1219 1220 /* how many URBs will contain a period? */ 1221 urbs_per_period = DIV_ROUND_UP(max_packs_per_period, 1222 max_packs_per_urb); 1223 /* how many packets are needed in each URB? */ 1224 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period); 1225 1226 /* limit the number of frames in a single URB */ 1227 ep->max_urb_frames = DIV_ROUND_UP(ep->cur_period_frames, 1228 urbs_per_period); 1229 1230 /* try to use enough URBs to contain an entire ALSA buffer */ 1231 max_urbs = min((unsigned) MAX_URBS, 1232 MAX_QUEUE * packs_per_ms / urb_packs); 1233 ep->nurbs = min(max_urbs, urbs_per_period * ep->cur_buffer_periods); 1234 } 1235 1236 /* allocate and initialize data urbs */ 1237 for (i = 0; i < ep->nurbs; i++) { 1238 struct snd_urb_ctx *u = &ep->urb[i]; 1239 u->index = i; 1240 u->ep = ep; 1241 u->packets = urb_packs; 1242 u->buffer_size = maxsize * u->packets; 1243 1244 if (fmt->fmt_type == UAC_FORMAT_TYPE_II) 1245 u->packets++; /* for transfer delimiter */ 1246 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); 1247 if (!u->urb) 1248 goto out_of_memory; 1249 1250 u->urb->transfer_buffer = 1251 usb_alloc_coherent(chip->dev, u->buffer_size, 1252 GFP_KERNEL, &u->urb->transfer_dma); 1253 if (!u->urb->transfer_buffer) 1254 goto out_of_memory; 1255 u->urb->pipe = ep->pipe; 1256 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1257 u->urb->interval = 1 << ep->datainterval; 1258 u->urb->context = u; 1259 u->urb->complete = snd_complete_urb; 1260 INIT_LIST_HEAD(&u->ready_list); 1261 } 1262 1263 return 0; 1264 1265 out_of_memory: 1266 release_urbs(ep, false); 1267 return -ENOMEM; 1268 } 1269 1270 /* 1271 * configure a sync endpoint 1272 */ 1273 static int sync_ep_set_params(struct snd_usb_endpoint *ep) 1274 { 1275 struct snd_usb_audio *chip = ep->chip; 1276 int i; 1277 1278 usb_audio_dbg(chip, "Setting params for sync EP 0x%x, pipe 0x%x\n", 1279 ep->ep_num, ep->pipe); 1280 1281 ep->syncbuf = usb_alloc_coherent(chip->dev, SYNC_URBS * 4, 1282 GFP_KERNEL, &ep->sync_dma); 1283 if (!ep->syncbuf) 1284 return -ENOMEM; 1285 1286 ep->nurbs = SYNC_URBS; 1287 for (i = 0; i < SYNC_URBS; i++) { 1288 struct snd_urb_ctx *u = &ep->urb[i]; 1289 u->index = i; 1290 u->ep = ep; 1291 u->packets = 1; 1292 u->urb = usb_alloc_urb(1, GFP_KERNEL); 1293 if (!u->urb) 1294 goto out_of_memory; 1295 u->urb->transfer_buffer = ep->syncbuf + i * 4; 1296 u->urb->transfer_dma = ep->sync_dma + i * 4; 1297 u->urb->transfer_buffer_length = 4; 1298 u->urb->pipe = ep->pipe; 1299 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1300 u->urb->number_of_packets = 1; 1301 u->urb->interval = 1 << ep->syncinterval; 1302 u->urb->context = u; 1303 u->urb->complete = snd_complete_urb; 1304 } 1305 1306 return 0; 1307 1308 out_of_memory: 1309 release_urbs(ep, false); 1310 return -ENOMEM; 1311 } 1312 1313 /* update the rate of the referred clock; return the actual rate */ 1314 static int update_clock_ref_rate(struct snd_usb_audio *chip, 1315 struct snd_usb_endpoint *ep) 1316 { 1317 struct snd_usb_clock_ref *clock = ep->clock_ref; 1318 int rate = ep->cur_rate; 1319 1320 if (!clock || clock->rate == rate) 1321 return rate; 1322 if (clock->rate) { 1323 if (atomic_read(&clock->locked)) 1324 return clock->rate; 1325 if (clock->rate != rate) { 1326 usb_audio_err(chip, "Mismatched sample rate %d vs %d for EP 0x%x\n", 1327 clock->rate, rate, ep->ep_num); 1328 return clock->rate; 1329 } 1330 } 1331 clock->rate = rate; 1332 clock->need_setup = true; 1333 return rate; 1334 } 1335 1336 /* 1337 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint 1338 * 1339 * It's called either from hw_params callback. 1340 * Determine the number of URBs to be used on this endpoint. 1341 * An endpoint must be configured before it can be started. 1342 * An endpoint that is already running can not be reconfigured. 1343 */ 1344 int snd_usb_endpoint_set_params(struct snd_usb_audio *chip, 1345 struct snd_usb_endpoint *ep) 1346 { 1347 const struct audioformat *fmt = ep->cur_audiofmt; 1348 int err = 0; 1349 1350 mutex_lock(&chip->mutex); 1351 if (!ep->need_setup) 1352 goto unlock; 1353 1354 /* release old buffers, if any */ 1355 err = release_urbs(ep, false); 1356 if (err < 0) 1357 goto unlock; 1358 1359 ep->datainterval = fmt->datainterval; 1360 ep->maxpacksize = fmt->maxpacksize; 1361 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX); 1362 1363 if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL) { 1364 ep->freqn = get_usb_full_speed_rate(ep->cur_rate); 1365 ep->pps = 1000 >> ep->datainterval; 1366 } else { 1367 ep->freqn = get_usb_high_speed_rate(ep->cur_rate); 1368 ep->pps = 8000 >> ep->datainterval; 1369 } 1370 1371 ep->sample_rem = ep->cur_rate % ep->pps; 1372 ep->packsize[0] = ep->cur_rate / ep->pps; 1373 ep->packsize[1] = (ep->cur_rate + (ep->pps - 1)) / ep->pps; 1374 1375 /* calculate the frequency in 16.16 format */ 1376 ep->freqm = ep->freqn; 1377 ep->freqshift = INT_MIN; 1378 1379 ep->phase = 0; 1380 1381 switch (ep->type) { 1382 case SND_USB_ENDPOINT_TYPE_DATA: 1383 err = data_ep_set_params(ep); 1384 break; 1385 case SND_USB_ENDPOINT_TYPE_SYNC: 1386 err = sync_ep_set_params(ep); 1387 break; 1388 default: 1389 err = -EINVAL; 1390 } 1391 1392 usb_audio_dbg(chip, "Set up %d URBS, ret=%d\n", ep->nurbs, err); 1393 1394 if (err < 0) 1395 goto unlock; 1396 1397 /* some unit conversions in runtime */ 1398 ep->maxframesize = ep->maxpacksize / ep->cur_frame_bytes; 1399 ep->curframesize = ep->curpacksize / ep->cur_frame_bytes; 1400 1401 err = update_clock_ref_rate(chip, ep); 1402 if (err >= 0) { 1403 ep->need_setup = false; 1404 err = 0; 1405 } 1406 1407 unlock: 1408 mutex_unlock(&chip->mutex); 1409 return err; 1410 } 1411 1412 static int init_sample_rate(struct snd_usb_audio *chip, 1413 struct snd_usb_endpoint *ep) 1414 { 1415 struct snd_usb_clock_ref *clock = ep->clock_ref; 1416 int rate, err; 1417 1418 rate = update_clock_ref_rate(chip, ep); 1419 if (rate < 0) 1420 return rate; 1421 if (clock && !clock->need_setup) 1422 return 0; 1423 1424 if (!ep->fixed_rate) { 1425 err = snd_usb_init_sample_rate(chip, ep->cur_audiofmt, rate); 1426 if (err < 0) { 1427 if (clock) 1428 clock->rate = 0; /* reset rate */ 1429 return err; 1430 } 1431 } 1432 1433 if (clock) 1434 clock->need_setup = false; 1435 return 0; 1436 } 1437 1438 /* 1439 * snd_usb_endpoint_prepare: Prepare the endpoint 1440 * 1441 * This function sets up the EP to be fully usable state. 1442 * It's called either from prepare callback. 1443 * The function checks need_setup flag, and performs nothing unless needed, 1444 * so it's safe to call this multiple times. 1445 * 1446 * This returns zero if unchanged, 1 if the configuration has changed, 1447 * or a negative error code. 1448 */ 1449 int snd_usb_endpoint_prepare(struct snd_usb_audio *chip, 1450 struct snd_usb_endpoint *ep) 1451 { 1452 bool iface_first; 1453 int err = 0; 1454 1455 mutex_lock(&chip->mutex); 1456 if (WARN_ON(!ep->iface_ref)) 1457 goto unlock; 1458 if (!ep->need_prepare) 1459 goto unlock; 1460 1461 /* If the interface has been already set up, just set EP parameters */ 1462 if (!ep->iface_ref->need_setup) { 1463 /* sample rate setup of UAC1 is per endpoint, and we need 1464 * to update at each EP configuration 1465 */ 1466 if (ep->cur_audiofmt->protocol == UAC_VERSION_1) { 1467 err = init_sample_rate(chip, ep); 1468 if (err < 0) 1469 goto unlock; 1470 } 1471 goto done; 1472 } 1473 1474 /* Need to deselect altsetting at first */ 1475 endpoint_set_interface(chip, ep, false); 1476 1477 /* Some UAC1 devices (e.g. Yamaha THR10) need the host interface 1478 * to be set up before parameter setups 1479 */ 1480 iface_first = ep->cur_audiofmt->protocol == UAC_VERSION_1; 1481 /* Workaround for devices that require the interface setup at first like UAC1 */ 1482 if (chip->quirk_flags & QUIRK_FLAG_SET_IFACE_FIRST) 1483 iface_first = true; 1484 if (iface_first) { 1485 err = endpoint_set_interface(chip, ep, true); 1486 if (err < 0) 1487 goto unlock; 1488 } 1489 1490 err = snd_usb_init_pitch(chip, ep->cur_audiofmt); 1491 if (err < 0) 1492 goto unlock; 1493 1494 err = init_sample_rate(chip, ep); 1495 if (err < 0) 1496 goto unlock; 1497 1498 err = snd_usb_select_mode_quirk(chip, ep->cur_audiofmt); 1499 if (err < 0) 1500 goto unlock; 1501 1502 /* for UAC2/3, enable the interface altset here at last */ 1503 if (!iface_first) { 1504 err = endpoint_set_interface(chip, ep, true); 1505 if (err < 0) 1506 goto unlock; 1507 } 1508 1509 ep->iface_ref->need_setup = false; 1510 1511 done: 1512 ep->need_prepare = false; 1513 err = 1; 1514 1515 unlock: 1516 mutex_unlock(&chip->mutex); 1517 return err; 1518 } 1519 1520 /* get the current rate set to the given clock by any endpoint */ 1521 int snd_usb_endpoint_get_clock_rate(struct snd_usb_audio *chip, int clock) 1522 { 1523 struct snd_usb_clock_ref *ref; 1524 int rate = 0; 1525 1526 if (!clock) 1527 return 0; 1528 mutex_lock(&chip->mutex); 1529 list_for_each_entry(ref, &chip->clock_ref_list, list) { 1530 if (ref->clock == clock) { 1531 rate = ref->rate; 1532 break; 1533 } 1534 } 1535 mutex_unlock(&chip->mutex); 1536 return rate; 1537 } 1538 1539 /** 1540 * snd_usb_endpoint_start: start an snd_usb_endpoint 1541 * 1542 * @ep: the endpoint to start 1543 * 1544 * A call to this function will increment the running count of the endpoint. 1545 * In case it is not already running, the URBs for this endpoint will be 1546 * submitted. Otherwise, this function does nothing. 1547 * 1548 * Must be balanced to calls of snd_usb_endpoint_stop(). 1549 * 1550 * Returns an error if the URB submission failed, 0 in all other cases. 1551 */ 1552 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep) 1553 { 1554 bool is_playback = usb_pipeout(ep->pipe); 1555 int err; 1556 unsigned int i; 1557 1558 if (atomic_read(&ep->chip->shutdown)) 1559 return -EBADFD; 1560 1561 if (ep->sync_source) 1562 WRITE_ONCE(ep->sync_source->sync_sink, ep); 1563 1564 usb_audio_dbg(ep->chip, "Starting %s EP 0x%x (running %d)\n", 1565 ep_type_name(ep->type), ep->ep_num, 1566 atomic_read(&ep->running)); 1567 1568 /* already running? */ 1569 if (atomic_inc_return(&ep->running) != 1) 1570 return 0; 1571 1572 if (ep->clock_ref) 1573 atomic_inc(&ep->clock_ref->locked); 1574 1575 ep->active_mask = 0; 1576 ep->unlink_mask = 0; 1577 ep->phase = 0; 1578 ep->sample_accum = 0; 1579 1580 snd_usb_endpoint_start_quirk(ep); 1581 1582 /* 1583 * If this endpoint has a data endpoint as implicit feedback source, 1584 * don't start the urbs here. Instead, mark them all as available, 1585 * wait for the record urbs to return and queue the playback urbs 1586 * from that context. 1587 */ 1588 1589 if (!ep_state_update(ep, EP_STATE_STOPPED, EP_STATE_RUNNING)) 1590 goto __error; 1591 1592 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1593 !(ep->chip->quirk_flags & QUIRK_FLAG_PLAYBACK_FIRST)) { 1594 usb_audio_dbg(ep->chip, "No URB submission due to implicit fb sync\n"); 1595 i = 0; 1596 goto fill_rest; 1597 } 1598 1599 for (i = 0; i < ep->nurbs; i++) { 1600 struct urb *urb = ep->urb[i].urb; 1601 1602 if (snd_BUG_ON(!urb)) 1603 goto __error; 1604 1605 if (is_playback) 1606 err = prepare_outbound_urb(ep, urb->context, true); 1607 else 1608 err = prepare_inbound_urb(ep, urb->context); 1609 if (err < 0) { 1610 /* stop filling at applptr */ 1611 if (err == -EAGAIN) 1612 break; 1613 usb_audio_dbg(ep->chip, 1614 "EP 0x%x: failed to prepare urb: %d\n", 1615 ep->ep_num, err); 1616 goto __error; 1617 } 1618 1619 err = usb_submit_urb(urb, GFP_ATOMIC); 1620 if (err < 0) { 1621 usb_audio_err(ep->chip, 1622 "cannot submit urb %d, error %d: %s\n", 1623 i, err, usb_error_string(err)); 1624 goto __error; 1625 } 1626 set_bit(i, &ep->active_mask); 1627 atomic_inc(&ep->submitted_urbs); 1628 } 1629 1630 if (!i) { 1631 usb_audio_dbg(ep->chip, "XRUN at starting EP 0x%x\n", 1632 ep->ep_num); 1633 goto __error; 1634 } 1635 1636 usb_audio_dbg(ep->chip, "%d URBs submitted for EP 0x%x\n", 1637 i, ep->ep_num); 1638 1639 fill_rest: 1640 /* put the remaining URBs to ready list */ 1641 if (is_playback) { 1642 for (; i < ep->nurbs; i++) 1643 push_back_to_ready_list(ep, ep->urb + i); 1644 } 1645 1646 return 0; 1647 1648 __error: 1649 snd_usb_endpoint_stop(ep, false); 1650 return -EPIPE; 1651 } 1652 1653 /** 1654 * snd_usb_endpoint_stop: stop an snd_usb_endpoint 1655 * 1656 * @ep: the endpoint to stop (may be NULL) 1657 * @keep_pending: keep in-flight URBs 1658 * 1659 * A call to this function will decrement the running count of the endpoint. 1660 * In case the last user has requested the endpoint stop, the URBs will 1661 * actually be deactivated. 1662 * 1663 * Must be balanced to calls of snd_usb_endpoint_start(). 1664 * 1665 * The caller needs to synchronize the pending stop operation via 1666 * snd_usb_endpoint_sync_pending_stop(). 1667 */ 1668 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep, bool keep_pending) 1669 { 1670 if (!ep) 1671 return; 1672 1673 usb_audio_dbg(ep->chip, "Stopping %s EP 0x%x (running %d)\n", 1674 ep_type_name(ep->type), ep->ep_num, 1675 atomic_read(&ep->running)); 1676 1677 if (snd_BUG_ON(!atomic_read(&ep->running))) 1678 return; 1679 1680 if (!atomic_dec_return(&ep->running)) { 1681 if (ep->sync_source) 1682 WRITE_ONCE(ep->sync_source->sync_sink, NULL); 1683 stop_urbs(ep, false, keep_pending); 1684 if (ep->clock_ref) 1685 atomic_dec(&ep->clock_ref->locked); 1686 1687 if (ep->chip->quirk_flags & QUIRK_FLAG_FORCE_IFACE_RESET && 1688 usb_pipeout(ep->pipe)) { 1689 ep->need_prepare = true; 1690 if (ep->iface_ref) 1691 ep->iface_ref->need_setup = true; 1692 } 1693 } 1694 } 1695 1696 /** 1697 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint 1698 * 1699 * @ep: the endpoint to release 1700 * 1701 * This function does not care for the endpoint's running count but will tear 1702 * down all the streaming URBs immediately. 1703 */ 1704 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep) 1705 { 1706 release_urbs(ep, true); 1707 } 1708 1709 /** 1710 * snd_usb_endpoint_free_all: Free the resources of an snd_usb_endpoint 1711 * @chip: The chip 1712 * 1713 * This free all endpoints and those resources 1714 */ 1715 void snd_usb_endpoint_free_all(struct snd_usb_audio *chip) 1716 { 1717 struct snd_usb_endpoint *ep, *en; 1718 struct snd_usb_iface_ref *ip, *in; 1719 struct snd_usb_clock_ref *cp, *cn; 1720 1721 list_for_each_entry_safe(ep, en, &chip->ep_list, list) 1722 kfree(ep); 1723 1724 list_for_each_entry_safe(ip, in, &chip->iface_ref_list, list) 1725 kfree(ip); 1726 1727 list_for_each_entry_safe(cp, cn, &chip->clock_ref_list, list) 1728 kfree(cp); 1729 } 1730 1731 /* 1732 * snd_usb_handle_sync_urb: parse an USB sync packet 1733 * 1734 * @ep: the endpoint to handle the packet 1735 * @sender: the sending endpoint 1736 * @urb: the received packet 1737 * 1738 * This function is called from the context of an endpoint that received 1739 * the packet and is used to let another endpoint object handle the payload. 1740 */ 1741 static void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep, 1742 struct snd_usb_endpoint *sender, 1743 const struct urb *urb) 1744 { 1745 int shift; 1746 unsigned int f; 1747 unsigned long flags; 1748 1749 snd_BUG_ON(ep == sender); 1750 1751 /* 1752 * In case the endpoint is operating in implicit feedback mode, prepare 1753 * a new outbound URB that has the same layout as the received packet 1754 * and add it to the list of pending urbs. queue_pending_output_urbs() 1755 * will take care of them later. 1756 */ 1757 if (snd_usb_endpoint_implicit_feedback_sink(ep) && 1758 atomic_read(&ep->running)) { 1759 1760 /* implicit feedback case */ 1761 int i, bytes = 0; 1762 struct snd_urb_ctx *in_ctx; 1763 struct snd_usb_packet_info *out_packet; 1764 1765 in_ctx = urb->context; 1766 1767 /* Count overall packet size */ 1768 for (i = 0; i < in_ctx->packets; i++) 1769 if (urb->iso_frame_desc[i].status == 0) 1770 bytes += urb->iso_frame_desc[i].actual_length; 1771 1772 /* 1773 * skip empty packets. At least M-Audio's Fast Track Ultra stops 1774 * streaming once it received a 0-byte OUT URB 1775 */ 1776 if (bytes == 0) 1777 return; 1778 1779 spin_lock_irqsave(&ep->lock, flags); 1780 if (ep->next_packet_queued >= ARRAY_SIZE(ep->next_packet)) { 1781 spin_unlock_irqrestore(&ep->lock, flags); 1782 usb_audio_err(ep->chip, 1783 "next package FIFO overflow EP 0x%x\n", 1784 ep->ep_num); 1785 notify_xrun(ep); 1786 return; 1787 } 1788 1789 out_packet = next_packet_fifo_enqueue(ep); 1790 1791 /* 1792 * Iterate through the inbound packet and prepare the lengths 1793 * for the output packet. The OUT packet we are about to send 1794 * will have the same amount of payload bytes per stride as the 1795 * IN packet we just received. Since the actual size is scaled 1796 * by the stride, use the sender stride to calculate the length 1797 * in case the number of channels differ between the implicitly 1798 * fed-back endpoint and the synchronizing endpoint. 1799 */ 1800 1801 out_packet->packets = in_ctx->packets; 1802 for (i = 0; i < in_ctx->packets; i++) { 1803 if (urb->iso_frame_desc[i].status == 0) 1804 out_packet->packet_size[i] = 1805 urb->iso_frame_desc[i].actual_length / sender->stride; 1806 else 1807 out_packet->packet_size[i] = 0; 1808 } 1809 1810 spin_unlock_irqrestore(&ep->lock, flags); 1811 snd_usb_queue_pending_output_urbs(ep, false); 1812 1813 return; 1814 } 1815 1816 /* 1817 * process after playback sync complete 1818 * 1819 * Full speed devices report feedback values in 10.14 format as samples 1820 * per frame, high speed devices in 16.16 format as samples per 1821 * microframe. 1822 * 1823 * Because the Audio Class 1 spec was written before USB 2.0, many high 1824 * speed devices use a wrong interpretation, some others use an 1825 * entirely different format. 1826 * 1827 * Therefore, we cannot predict what format any particular device uses 1828 * and must detect it automatically. 1829 */ 1830 1831 if (urb->iso_frame_desc[0].status != 0 || 1832 urb->iso_frame_desc[0].actual_length < 3) 1833 return; 1834 1835 f = le32_to_cpup(urb->transfer_buffer); 1836 if (urb->iso_frame_desc[0].actual_length == 3) 1837 f &= 0x00ffffff; 1838 else 1839 f &= 0x0fffffff; 1840 1841 if (f == 0) 1842 return; 1843 1844 if (unlikely(sender->tenor_fb_quirk)) { 1845 /* 1846 * Devices based on Tenor 8802 chipsets (TEAC UD-H01 1847 * and others) sometimes change the feedback value 1848 * by +/- 0x1.0000. 1849 */ 1850 if (f < ep->freqn - 0x8000) 1851 f += 0xf000; 1852 else if (f > ep->freqn + 0x8000) 1853 f -= 0xf000; 1854 } else if (unlikely(ep->freqshift == INT_MIN)) { 1855 /* 1856 * The first time we see a feedback value, determine its format 1857 * by shifting it left or right until it matches the nominal 1858 * frequency value. This assumes that the feedback does not 1859 * differ from the nominal value more than +50% or -25%. 1860 */ 1861 shift = 0; 1862 while (f < ep->freqn - ep->freqn / 4) { 1863 f <<= 1; 1864 shift++; 1865 } 1866 while (f > ep->freqn + ep->freqn / 2) { 1867 f >>= 1; 1868 shift--; 1869 } 1870 ep->freqshift = shift; 1871 } else if (ep->freqshift >= 0) 1872 f <<= ep->freqshift; 1873 else 1874 f >>= -ep->freqshift; 1875 1876 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) { 1877 /* 1878 * If the frequency looks valid, set it. 1879 * This value is referred to in prepare_playback_urb(). 1880 */ 1881 spin_lock_irqsave(&ep->lock, flags); 1882 ep->freqm = f; 1883 spin_unlock_irqrestore(&ep->lock, flags); 1884 } else { 1885 /* 1886 * Out of range; maybe the shift value is wrong. 1887 * Reset it so that we autodetect again the next time. 1888 */ 1889 ep->freqshift = INT_MIN; 1890 } 1891 } 1892 1893