1 /* 2 * Freescale DMA ALSA SoC PCM driver 3 * 4 * Author: Timur Tabi <timur@freescale.com> 5 * 6 * Copyright 2007-2010 Freescale Semiconductor, Inc. 7 * 8 * This file is licensed under the terms of the GNU General Public License 9 * version 2. This program is licensed "as is" without any warranty of any 10 * kind, whether express or implied. 11 * 12 * This driver implements ASoC support for the Elo DMA controller, which is 13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms, 14 * the PCM driver is what handles the DMA buffer. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/init.h> 19 #include <linux/platform_device.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/interrupt.h> 22 #include <linux/delay.h> 23 #include <linux/gfp.h> 24 #include <linux/of_address.h> 25 #include <linux/of_irq.h> 26 #include <linux/of_platform.h> 27 #include <linux/list.h> 28 #include <linux/slab.h> 29 30 #include <sound/core.h> 31 #include <sound/pcm.h> 32 #include <sound/pcm_params.h> 33 #include <sound/soc.h> 34 35 #include <asm/io.h> 36 37 #include "fsl_dma.h" 38 #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */ 39 40 /* 41 * The formats that the DMA controller supports, which is anything 42 * that is 8, 16, or 32 bits. 43 */ 44 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \ 45 SNDRV_PCM_FMTBIT_U8 | \ 46 SNDRV_PCM_FMTBIT_S16_LE | \ 47 SNDRV_PCM_FMTBIT_S16_BE | \ 48 SNDRV_PCM_FMTBIT_U16_LE | \ 49 SNDRV_PCM_FMTBIT_U16_BE | \ 50 SNDRV_PCM_FMTBIT_S24_LE | \ 51 SNDRV_PCM_FMTBIT_S24_BE | \ 52 SNDRV_PCM_FMTBIT_U24_LE | \ 53 SNDRV_PCM_FMTBIT_U24_BE | \ 54 SNDRV_PCM_FMTBIT_S32_LE | \ 55 SNDRV_PCM_FMTBIT_S32_BE | \ 56 SNDRV_PCM_FMTBIT_U32_LE | \ 57 SNDRV_PCM_FMTBIT_U32_BE) 58 struct dma_object { 59 struct snd_soc_platform_driver dai; 60 dma_addr_t ssi_stx_phys; 61 dma_addr_t ssi_srx_phys; 62 unsigned int ssi_fifo_depth; 63 struct ccsr_dma_channel __iomem *channel; 64 unsigned int irq; 65 bool assigned; 66 char path[1]; 67 }; 68 69 /* 70 * The number of DMA links to use. Two is the bare minimum, but if you 71 * have really small links you might need more. 72 */ 73 #define NUM_DMA_LINKS 2 74 75 /** fsl_dma_private: p-substream DMA data 76 * 77 * Each substream has a 1-to-1 association with a DMA channel. 78 * 79 * The link[] array is first because it needs to be aligned on a 32-byte 80 * boundary, so putting it first will ensure alignment without padding the 81 * structure. 82 * 83 * @link[]: array of link descriptors 84 * @dma_channel: pointer to the DMA channel's registers 85 * @irq: IRQ for this DMA channel 86 * @substream: pointer to the substream object, needed by the ISR 87 * @ssi_sxx_phys: bus address of the STX or SRX register to use 88 * @ld_buf_phys: physical address of the LD buffer 89 * @current_link: index into link[] of the link currently being processed 90 * @dma_buf_phys: physical address of the DMA buffer 91 * @dma_buf_next: physical address of the next period to process 92 * @dma_buf_end: physical address of the byte after the end of the DMA 93 * @buffer period_size: the size of a single period 94 * @num_periods: the number of periods in the DMA buffer 95 */ 96 struct fsl_dma_private { 97 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS]; 98 struct ccsr_dma_channel __iomem *dma_channel; 99 unsigned int irq; 100 struct snd_pcm_substream *substream; 101 dma_addr_t ssi_sxx_phys; 102 unsigned int ssi_fifo_depth; 103 dma_addr_t ld_buf_phys; 104 unsigned int current_link; 105 dma_addr_t dma_buf_phys; 106 dma_addr_t dma_buf_next; 107 dma_addr_t dma_buf_end; 108 size_t period_size; 109 unsigned int num_periods; 110 }; 111 112 /** 113 * fsl_dma_hardare: define characteristics of the PCM hardware. 114 * 115 * The PCM hardware is the Freescale DMA controller. This structure defines 116 * the capabilities of that hardware. 117 * 118 * Since the sampling rate and data format are not controlled by the DMA 119 * controller, we specify no limits for those values. The only exception is 120 * period_bytes_min, which is set to a reasonably low value to prevent the 121 * DMA controller from generating too many interrupts per second. 122 * 123 * Since each link descriptor has a 32-bit byte count field, we set 124 * period_bytes_max to the largest 32-bit number. We also have no maximum 125 * number of periods. 126 * 127 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a 128 * limitation in the SSI driver requires the sample rates for playback and 129 * capture to be the same. 130 */ 131 static const struct snd_pcm_hardware fsl_dma_hardware = { 132 133 .info = SNDRV_PCM_INFO_INTERLEAVED | 134 SNDRV_PCM_INFO_MMAP | 135 SNDRV_PCM_INFO_MMAP_VALID | 136 SNDRV_PCM_INFO_JOINT_DUPLEX | 137 SNDRV_PCM_INFO_PAUSE, 138 .formats = FSLDMA_PCM_FORMATS, 139 .period_bytes_min = 512, /* A reasonable limit */ 140 .period_bytes_max = (u32) -1, 141 .periods_min = NUM_DMA_LINKS, 142 .periods_max = (unsigned int) -1, 143 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */ 144 }; 145 146 /** 147 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted 148 * 149 * This function should be called by the ISR whenever the DMA controller 150 * halts data transfer. 151 */ 152 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream) 153 { 154 snd_pcm_stop_xrun(substream); 155 } 156 157 /** 158 * fsl_dma_update_pointers - update LD pointers to point to the next period 159 * 160 * As each period is completed, this function changes the the link 161 * descriptor pointers for that period to point to the next period. 162 */ 163 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) 164 { 165 struct fsl_dma_link_descriptor *link = 166 &dma_private->link[dma_private->current_link]; 167 168 /* Update our link descriptors to point to the next period. On a 36-bit 169 * system, we also need to update the ESAD bits. We also set (keep) the 170 * snoop bits. See the comments in fsl_dma_hw_params() about snooping. 171 */ 172 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 173 link->source_addr = cpu_to_be32(dma_private->dma_buf_next); 174 #ifdef CONFIG_PHYS_64BIT 175 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 176 upper_32_bits(dma_private->dma_buf_next)); 177 #endif 178 } else { 179 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next); 180 #ifdef CONFIG_PHYS_64BIT 181 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 182 upper_32_bits(dma_private->dma_buf_next)); 183 #endif 184 } 185 186 /* Update our variables for next time */ 187 dma_private->dma_buf_next += dma_private->period_size; 188 189 if (dma_private->dma_buf_next >= dma_private->dma_buf_end) 190 dma_private->dma_buf_next = dma_private->dma_buf_phys; 191 192 if (++dma_private->current_link >= NUM_DMA_LINKS) 193 dma_private->current_link = 0; 194 } 195 196 /** 197 * fsl_dma_isr: interrupt handler for the DMA controller 198 * 199 * @irq: IRQ of the DMA channel 200 * @dev_id: pointer to the dma_private structure for this DMA channel 201 */ 202 static irqreturn_t fsl_dma_isr(int irq, void *dev_id) 203 { 204 struct fsl_dma_private *dma_private = dev_id; 205 struct snd_pcm_substream *substream = dma_private->substream; 206 struct snd_soc_pcm_runtime *rtd = substream->private_data; 207 struct device *dev = rtd->platform->dev; 208 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; 209 irqreturn_t ret = IRQ_NONE; 210 u32 sr, sr2 = 0; 211 212 /* We got an interrupt, so read the status register to see what we 213 were interrupted for. 214 */ 215 sr = in_be32(&dma_channel->sr); 216 217 if (sr & CCSR_DMA_SR_TE) { 218 dev_err(dev, "dma transmit error\n"); 219 fsl_dma_abort_stream(substream); 220 sr2 |= CCSR_DMA_SR_TE; 221 ret = IRQ_HANDLED; 222 } 223 224 if (sr & CCSR_DMA_SR_CH) 225 ret = IRQ_HANDLED; 226 227 if (sr & CCSR_DMA_SR_PE) { 228 dev_err(dev, "dma programming error\n"); 229 fsl_dma_abort_stream(substream); 230 sr2 |= CCSR_DMA_SR_PE; 231 ret = IRQ_HANDLED; 232 } 233 234 if (sr & CCSR_DMA_SR_EOLNI) { 235 sr2 |= CCSR_DMA_SR_EOLNI; 236 ret = IRQ_HANDLED; 237 } 238 239 if (sr & CCSR_DMA_SR_CB) 240 ret = IRQ_HANDLED; 241 242 if (sr & CCSR_DMA_SR_EOSI) { 243 /* Tell ALSA we completed a period. */ 244 snd_pcm_period_elapsed(substream); 245 246 /* 247 * Update our link descriptors to point to the next period. We 248 * only need to do this if the number of periods is not equal to 249 * the number of links. 250 */ 251 if (dma_private->num_periods != NUM_DMA_LINKS) 252 fsl_dma_update_pointers(dma_private); 253 254 sr2 |= CCSR_DMA_SR_EOSI; 255 ret = IRQ_HANDLED; 256 } 257 258 if (sr & CCSR_DMA_SR_EOLSI) { 259 sr2 |= CCSR_DMA_SR_EOLSI; 260 ret = IRQ_HANDLED; 261 } 262 263 /* Clear the bits that we set */ 264 if (sr2) 265 out_be32(&dma_channel->sr, sr2); 266 267 return ret; 268 } 269 270 /** 271 * fsl_dma_new: initialize this PCM driver. 272 * 273 * This function is called when the codec driver calls snd_soc_new_pcms(), 274 * once for each .dai_link in the machine driver's snd_soc_card 275 * structure. 276 * 277 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which 278 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM 279 * is specified. Therefore, any DMA buffers we allocate will always be in low 280 * memory, but we support for 36-bit physical addresses anyway. 281 * 282 * Regardless of where the memory is actually allocated, since the device can 283 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36. 284 */ 285 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd) 286 { 287 struct snd_card *card = rtd->card->snd_card; 288 struct snd_pcm *pcm = rtd->pcm; 289 int ret; 290 291 ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36)); 292 if (ret) 293 return ret; 294 295 /* Some codecs have separate DAIs for playback and capture, so we 296 * should allocate a DMA buffer only for the streams that are valid. 297 */ 298 299 if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) { 300 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, 301 fsl_dma_hardware.buffer_bytes_max, 302 &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); 303 if (ret) { 304 dev_err(card->dev, "can't alloc playback dma buffer\n"); 305 return ret; 306 } 307 } 308 309 if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) { 310 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, 311 fsl_dma_hardware.buffer_bytes_max, 312 &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer); 313 if (ret) { 314 dev_err(card->dev, "can't alloc capture dma buffer\n"); 315 snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); 316 return ret; 317 } 318 } 319 320 return 0; 321 } 322 323 /** 324 * fsl_dma_open: open a new substream. 325 * 326 * Each substream has its own DMA buffer. 327 * 328 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link 329 * descriptors that ping-pong from one period to the next. For example, if 330 * there are six periods and two link descriptors, this is how they look 331 * before playback starts: 332 * 333 * The last link descriptor 334 * ____________ points back to the first 335 * | | 336 * V | 337 * ___ ___ | 338 * | |->| |->| 339 * |___| |___| 340 * | | 341 * | | 342 * V V 343 * _________________________________________ 344 * | | | | | | | The DMA buffer is 345 * | | | | | | | divided into 6 parts 346 * |______|______|______|______|______|______| 347 * 348 * and here's how they look after the first period is finished playing: 349 * 350 * ____________ 351 * | | 352 * V | 353 * ___ ___ | 354 * | |->| |->| 355 * |___| |___| 356 * | | 357 * |______________ 358 * | | 359 * V V 360 * _________________________________________ 361 * | | | | | | | 362 * | | | | | | | 363 * |______|______|______|______|______|______| 364 * 365 * The first link descriptor now points to the third period. The DMA 366 * controller is currently playing the second period. When it finishes, it 367 * will jump back to the first descriptor and play the third period. 368 * 369 * There are four reasons we do this: 370 * 371 * 1. The only way to get the DMA controller to automatically restart the 372 * transfer when it gets to the end of the buffer is to use chaining 373 * mode. Basic direct mode doesn't offer that feature. 374 * 2. We need to receive an interrupt at the end of every period. The DMA 375 * controller can generate an interrupt at the end of every link transfer 376 * (aka segment). Making each period into a DMA segment will give us the 377 * interrupts we need. 378 * 3. By creating only two link descriptors, regardless of the number of 379 * periods, we do not need to reallocate the link descriptors if the 380 * number of periods changes. 381 * 4. All of the audio data is still stored in a single, contiguous DMA 382 * buffer, which is what ALSA expects. We're just dividing it into 383 * contiguous parts, and creating a link descriptor for each one. 384 */ 385 static int fsl_dma_open(struct snd_pcm_substream *substream) 386 { 387 struct snd_pcm_runtime *runtime = substream->runtime; 388 struct snd_soc_pcm_runtime *rtd = substream->private_data; 389 struct device *dev = rtd->platform->dev; 390 struct dma_object *dma = 391 container_of(rtd->platform->driver, struct dma_object, dai); 392 struct fsl_dma_private *dma_private; 393 struct ccsr_dma_channel __iomem *dma_channel; 394 dma_addr_t ld_buf_phys; 395 u64 temp_link; /* Pointer to next link descriptor */ 396 u32 mr; 397 unsigned int channel; 398 int ret = 0; 399 unsigned int i; 400 401 /* 402 * Reject any DMA buffer whose size is not a multiple of the period 403 * size. We need to make sure that the DMA buffer can be evenly divided 404 * into periods. 405 */ 406 ret = snd_pcm_hw_constraint_integer(runtime, 407 SNDRV_PCM_HW_PARAM_PERIODS); 408 if (ret < 0) { 409 dev_err(dev, "invalid buffer size\n"); 410 return ret; 411 } 412 413 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; 414 415 if (dma->assigned) { 416 dev_err(dev, "dma channel already assigned\n"); 417 return -EBUSY; 418 } 419 420 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private), 421 &ld_buf_phys, GFP_KERNEL); 422 if (!dma_private) { 423 dev_err(dev, "can't allocate dma private data\n"); 424 return -ENOMEM; 425 } 426 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 427 dma_private->ssi_sxx_phys = dma->ssi_stx_phys; 428 else 429 dma_private->ssi_sxx_phys = dma->ssi_srx_phys; 430 431 dma_private->ssi_fifo_depth = dma->ssi_fifo_depth; 432 dma_private->dma_channel = dma->channel; 433 dma_private->irq = dma->irq; 434 dma_private->substream = substream; 435 dma_private->ld_buf_phys = ld_buf_phys; 436 dma_private->dma_buf_phys = substream->dma_buffer.addr; 437 438 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio", 439 dma_private); 440 if (ret) { 441 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n", 442 dma_private->irq, ret); 443 dma_free_coherent(dev, sizeof(struct fsl_dma_private), 444 dma_private, dma_private->ld_buf_phys); 445 return ret; 446 } 447 448 dma->assigned = 1; 449 450 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); 451 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); 452 runtime->private_data = dma_private; 453 454 /* Program the fixed DMA controller parameters */ 455 456 dma_channel = dma_private->dma_channel; 457 458 temp_link = dma_private->ld_buf_phys + 459 sizeof(struct fsl_dma_link_descriptor); 460 461 for (i = 0; i < NUM_DMA_LINKS; i++) { 462 dma_private->link[i].next = cpu_to_be64(temp_link); 463 464 temp_link += sizeof(struct fsl_dma_link_descriptor); 465 } 466 /* The last link descriptor points to the first */ 467 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys); 468 469 /* Tell the DMA controller where the first link descriptor is */ 470 out_be32(&dma_channel->clndar, 471 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys)); 472 out_be32(&dma_channel->eclndar, 473 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys)); 474 475 /* The manual says the BCR must be clear before enabling EMP */ 476 out_be32(&dma_channel->bcr, 0); 477 478 /* 479 * Program the mode register for interrupts, external master control, 480 * and source/destination hold. Also clear the Channel Abort bit. 481 */ 482 mr = in_be32(&dma_channel->mr) & 483 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE); 484 485 /* 486 * We want External Master Start and External Master Pause enabled, 487 * because the SSI is controlling the DMA controller. We want the DMA 488 * controller to be set up in advance, and then we signal only the SSI 489 * to start transferring. 490 * 491 * We want End-Of-Segment Interrupts enabled, because this will generate 492 * an interrupt at the end of each segment (each link descriptor 493 * represents one segment). Each DMA segment is the same thing as an 494 * ALSA period, so this is how we get an interrupt at the end of every 495 * period. 496 * 497 * We want Error Interrupt enabled, so that we can get an error if 498 * the DMA controller is mis-programmed somehow. 499 */ 500 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN | 501 CCSR_DMA_MR_EMS_EN; 502 503 /* For playback, we want the destination address to be held. For 504 capture, set the source address to be held. */ 505 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 506 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE; 507 508 out_be32(&dma_channel->mr, mr); 509 510 return 0; 511 } 512 513 /** 514 * fsl_dma_hw_params: continue initializing the DMA links 515 * 516 * This function obtains hardware parameters about the opened stream and 517 * programs the DMA controller accordingly. 518 * 519 * One drawback of big-endian is that when copying integers of different 520 * sizes to a fixed-sized register, the address to which the integer must be 521 * copied is dependent on the size of the integer. 522 * 523 * For example, if P is the address of a 32-bit register, and X is a 32-bit 524 * integer, then X should be copied to address P. However, if X is a 16-bit 525 * integer, then it should be copied to P+2. If X is an 8-bit register, 526 * then it should be copied to P+3. 527 * 528 * So for playback of 8-bit samples, the DMA controller must transfer single 529 * bytes from the DMA buffer to the last byte of the STX0 register, i.e. 530 * offset by 3 bytes. For 16-bit samples, the offset is two bytes. 531 * 532 * For 24-bit samples, the offset is 1 byte. However, the DMA controller 533 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4, 534 * and 8 bytes at a time). So we do not support packed 24-bit samples. 535 * 24-bit data must be padded to 32 bits. 536 */ 537 static int fsl_dma_hw_params(struct snd_pcm_substream *substream, 538 struct snd_pcm_hw_params *hw_params) 539 { 540 struct snd_pcm_runtime *runtime = substream->runtime; 541 struct fsl_dma_private *dma_private = runtime->private_data; 542 struct snd_soc_pcm_runtime *rtd = substream->private_data; 543 struct device *dev = rtd->platform->dev; 544 545 /* Number of bits per sample */ 546 unsigned int sample_bits = 547 snd_pcm_format_physical_width(params_format(hw_params)); 548 549 /* Number of bytes per frame */ 550 unsigned int sample_bytes = sample_bits / 8; 551 552 /* Bus address of SSI STX register */ 553 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys; 554 555 /* Size of the DMA buffer, in bytes */ 556 size_t buffer_size = params_buffer_bytes(hw_params); 557 558 /* Number of bytes per period */ 559 size_t period_size = params_period_bytes(hw_params); 560 561 /* Pointer to next period */ 562 dma_addr_t temp_addr = substream->dma_buffer.addr; 563 564 /* Pointer to DMA controller */ 565 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; 566 567 u32 mr; /* DMA Mode Register */ 568 569 unsigned int i; 570 571 /* Initialize our DMA tracking variables */ 572 dma_private->period_size = period_size; 573 dma_private->num_periods = params_periods(hw_params); 574 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size; 575 dma_private->dma_buf_next = dma_private->dma_buf_phys + 576 (NUM_DMA_LINKS * period_size); 577 578 if (dma_private->dma_buf_next >= dma_private->dma_buf_end) 579 /* This happens if the number of periods == NUM_DMA_LINKS */ 580 dma_private->dma_buf_next = dma_private->dma_buf_phys; 581 582 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK | 583 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK); 584 585 /* Due to a quirk of the SSI's STX register, the target address 586 * for the DMA operations depends on the sample size. So we calculate 587 * that offset here. While we're at it, also tell the DMA controller 588 * how much data to transfer per sample. 589 */ 590 switch (sample_bits) { 591 case 8: 592 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; 593 ssi_sxx_phys += 3; 594 break; 595 case 16: 596 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2; 597 ssi_sxx_phys += 2; 598 break; 599 case 32: 600 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4; 601 break; 602 default: 603 /* We should never get here */ 604 dev_err(dev, "unsupported sample size %u\n", sample_bits); 605 return -EINVAL; 606 } 607 608 /* 609 * BWC determines how many bytes are sent/received before the DMA 610 * controller checks the SSI to see if it needs to stop. BWC should 611 * always be a multiple of the frame size, so that we always transmit 612 * whole frames. Each frame occupies two slots in the FIFO. The 613 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two 614 * (MR[BWC] can only represent even powers of two). 615 * 616 * To simplify the process, we set BWC to the largest value that is 617 * less than or equal to the FIFO watermark. For playback, this ensures 618 * that we transfer the maximum amount without overrunning the FIFO. 619 * For capture, this ensures that we transfer the maximum amount without 620 * underrunning the FIFO. 621 * 622 * f = SSI FIFO depth 623 * w = SSI watermark value (which equals f - 2) 624 * b = DMA bandwidth count (in bytes) 625 * s = sample size (in bytes, which equals frame_size * 2) 626 * 627 * For playback, we never transmit more than the transmit FIFO 628 * watermark, otherwise we might write more data than the FIFO can hold. 629 * The watermark is equal to the FIFO depth minus two. 630 * 631 * For capture, two equations must hold: 632 * w > f - (b / s) 633 * w >= b / s 634 * 635 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set 636 * b = s * w, which is equal to 637 * (dma_private->ssi_fifo_depth - 2) * sample_bytes. 638 */ 639 mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes); 640 641 out_be32(&dma_channel->mr, mr); 642 643 for (i = 0; i < NUM_DMA_LINKS; i++) { 644 struct fsl_dma_link_descriptor *link = &dma_private->link[i]; 645 646 link->count = cpu_to_be32(period_size); 647 648 /* The snoop bit tells the DMA controller whether it should tell 649 * the ECM to snoop during a read or write to an address. For 650 * audio, we use DMA to transfer data between memory and an I/O 651 * device (the SSI's STX0 or SRX0 register). Snooping is only 652 * needed if there is a cache, so we need to snoop memory 653 * addresses only. For playback, that means we snoop the source 654 * but not the destination. For capture, we snoop the 655 * destination but not the source. 656 * 657 * Note that failing to snoop properly is unlikely to cause 658 * cache incoherency if the period size is larger than the 659 * size of L1 cache. This is because filling in one period will 660 * flush out the data for the previous period. So if you 661 * increased period_bytes_min to a large enough size, you might 662 * get more performance by not snooping, and you'll still be 663 * okay. You'll need to update fsl_dma_update_pointers() also. 664 */ 665 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 666 link->source_addr = cpu_to_be32(temp_addr); 667 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 668 upper_32_bits(temp_addr)); 669 670 link->dest_addr = cpu_to_be32(ssi_sxx_phys); 671 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | 672 upper_32_bits(ssi_sxx_phys)); 673 } else { 674 link->source_addr = cpu_to_be32(ssi_sxx_phys); 675 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | 676 upper_32_bits(ssi_sxx_phys)); 677 678 link->dest_addr = cpu_to_be32(temp_addr); 679 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | 680 upper_32_bits(temp_addr)); 681 } 682 683 temp_addr += period_size; 684 } 685 686 return 0; 687 } 688 689 /** 690 * fsl_dma_pointer: determine the current position of the DMA transfer 691 * 692 * This function is called by ALSA when ALSA wants to know where in the 693 * stream buffer the hardware currently is. 694 * 695 * For playback, the SAR register contains the physical address of the most 696 * recent DMA transfer. For capture, the value is in the DAR register. 697 * 698 * The base address of the buffer is stored in the source_addr field of the 699 * first link descriptor. 700 */ 701 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) 702 { 703 struct snd_pcm_runtime *runtime = substream->runtime; 704 struct fsl_dma_private *dma_private = runtime->private_data; 705 struct snd_soc_pcm_runtime *rtd = substream->private_data; 706 struct device *dev = rtd->platform->dev; 707 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; 708 dma_addr_t position; 709 snd_pcm_uframes_t frames; 710 711 /* Obtain the current DMA pointer, but don't read the ESAD bits if we 712 * only have 32-bit DMA addresses. This function is typically called 713 * in interrupt context, so we need to optimize it. 714 */ 715 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 716 position = in_be32(&dma_channel->sar); 717 #ifdef CONFIG_PHYS_64BIT 718 position |= (u64)(in_be32(&dma_channel->satr) & 719 CCSR_DMA_ATR_ESAD_MASK) << 32; 720 #endif 721 } else { 722 position = in_be32(&dma_channel->dar); 723 #ifdef CONFIG_PHYS_64BIT 724 position |= (u64)(in_be32(&dma_channel->datr) & 725 CCSR_DMA_ATR_ESAD_MASK) << 32; 726 #endif 727 } 728 729 /* 730 * When capture is started, the SSI immediately starts to fill its FIFO. 731 * This means that the DMA controller is not started until the FIFO is 732 * full. However, ALSA calls this function before that happens, when 733 * MR.DAR is still zero. In this case, just return zero to indicate 734 * that nothing has been received yet. 735 */ 736 if (!position) 737 return 0; 738 739 if ((position < dma_private->dma_buf_phys) || 740 (position > dma_private->dma_buf_end)) { 741 dev_err(dev, "dma pointer is out of range, halting stream\n"); 742 return SNDRV_PCM_POS_XRUN; 743 } 744 745 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys); 746 747 /* 748 * If the current address is just past the end of the buffer, wrap it 749 * around. 750 */ 751 if (frames == runtime->buffer_size) 752 frames = 0; 753 754 return frames; 755 } 756 757 /** 758 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params() 759 * 760 * Release the resources allocated in fsl_dma_hw_params() and de-program the 761 * registers. 762 * 763 * This function can be called multiple times. 764 */ 765 static int fsl_dma_hw_free(struct snd_pcm_substream *substream) 766 { 767 struct snd_pcm_runtime *runtime = substream->runtime; 768 struct fsl_dma_private *dma_private = runtime->private_data; 769 770 if (dma_private) { 771 struct ccsr_dma_channel __iomem *dma_channel; 772 773 dma_channel = dma_private->dma_channel; 774 775 /* Stop the DMA */ 776 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA); 777 out_be32(&dma_channel->mr, 0); 778 779 /* Reset all the other registers */ 780 out_be32(&dma_channel->sr, -1); 781 out_be32(&dma_channel->clndar, 0); 782 out_be32(&dma_channel->eclndar, 0); 783 out_be32(&dma_channel->satr, 0); 784 out_be32(&dma_channel->sar, 0); 785 out_be32(&dma_channel->datr, 0); 786 out_be32(&dma_channel->dar, 0); 787 out_be32(&dma_channel->bcr, 0); 788 out_be32(&dma_channel->nlndar, 0); 789 out_be32(&dma_channel->enlndar, 0); 790 } 791 792 return 0; 793 } 794 795 /** 796 * fsl_dma_close: close the stream. 797 */ 798 static int fsl_dma_close(struct snd_pcm_substream *substream) 799 { 800 struct snd_pcm_runtime *runtime = substream->runtime; 801 struct fsl_dma_private *dma_private = runtime->private_data; 802 struct snd_soc_pcm_runtime *rtd = substream->private_data; 803 struct device *dev = rtd->platform->dev; 804 struct dma_object *dma = 805 container_of(rtd->platform->driver, struct dma_object, dai); 806 807 if (dma_private) { 808 if (dma_private->irq) 809 free_irq(dma_private->irq, dma_private); 810 811 /* Deallocate the fsl_dma_private structure */ 812 dma_free_coherent(dev, sizeof(struct fsl_dma_private), 813 dma_private, dma_private->ld_buf_phys); 814 substream->runtime->private_data = NULL; 815 } 816 817 dma->assigned = 0; 818 819 return 0; 820 } 821 822 /* 823 * Remove this PCM driver. 824 */ 825 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm) 826 { 827 struct snd_pcm_substream *substream; 828 unsigned int i; 829 830 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) { 831 substream = pcm->streams[i].substream; 832 if (substream) { 833 snd_dma_free_pages(&substream->dma_buffer); 834 substream->dma_buffer.area = NULL; 835 substream->dma_buffer.addr = 0; 836 } 837 } 838 } 839 840 /** 841 * find_ssi_node -- returns the SSI node that points to its DMA channel node 842 * 843 * Although this DMA driver attempts to operate independently of the other 844 * devices, it still needs to determine some information about the SSI device 845 * that it's working with. Unfortunately, the device tree does not contain 846 * a pointer from the DMA channel node to the SSI node -- the pointer goes the 847 * other way. So we need to scan the device tree for SSI nodes until we find 848 * the one that points to the given DMA channel node. It's ugly, but at least 849 * it's contained in this one function. 850 */ 851 static struct device_node *find_ssi_node(struct device_node *dma_channel_np) 852 { 853 struct device_node *ssi_np, *np; 854 855 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") { 856 /* Check each DMA phandle to see if it points to us. We 857 * assume that device_node pointers are a valid comparison. 858 */ 859 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0); 860 of_node_put(np); 861 if (np == dma_channel_np) 862 return ssi_np; 863 864 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0); 865 of_node_put(np); 866 if (np == dma_channel_np) 867 return ssi_np; 868 } 869 870 return NULL; 871 } 872 873 static struct snd_pcm_ops fsl_dma_ops = { 874 .open = fsl_dma_open, 875 .close = fsl_dma_close, 876 .ioctl = snd_pcm_lib_ioctl, 877 .hw_params = fsl_dma_hw_params, 878 .hw_free = fsl_dma_hw_free, 879 .pointer = fsl_dma_pointer, 880 }; 881 882 static int fsl_soc_dma_probe(struct platform_device *pdev) 883 { 884 struct dma_object *dma; 885 struct device_node *np = pdev->dev.of_node; 886 struct device_node *ssi_np; 887 struct resource res; 888 const uint32_t *iprop; 889 int ret; 890 891 /* Find the SSI node that points to us. */ 892 ssi_np = find_ssi_node(np); 893 if (!ssi_np) { 894 dev_err(&pdev->dev, "cannot find parent SSI node\n"); 895 return -ENODEV; 896 } 897 898 ret = of_address_to_resource(ssi_np, 0, &res); 899 if (ret) { 900 dev_err(&pdev->dev, "could not determine resources for %s\n", 901 ssi_np->full_name); 902 of_node_put(ssi_np); 903 return ret; 904 } 905 906 dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL); 907 if (!dma) { 908 dev_err(&pdev->dev, "could not allocate dma object\n"); 909 of_node_put(ssi_np); 910 return -ENOMEM; 911 } 912 913 strcpy(dma->path, np->full_name); 914 dma->dai.ops = &fsl_dma_ops; 915 dma->dai.pcm_new = fsl_dma_new; 916 dma->dai.pcm_free = fsl_dma_free_dma_buffers; 917 918 /* Store the SSI-specific information that we need */ 919 dma->ssi_stx_phys = res.start + CCSR_SSI_STX0; 920 dma->ssi_srx_phys = res.start + CCSR_SSI_SRX0; 921 922 iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL); 923 if (iprop) 924 dma->ssi_fifo_depth = be32_to_cpup(iprop); 925 else 926 /* Older 8610 DTs didn't have the fifo-depth property */ 927 dma->ssi_fifo_depth = 8; 928 929 of_node_put(ssi_np); 930 931 ret = snd_soc_register_platform(&pdev->dev, &dma->dai); 932 if (ret) { 933 dev_err(&pdev->dev, "could not register platform\n"); 934 kfree(dma); 935 return ret; 936 } 937 938 dma->channel = of_iomap(np, 0); 939 dma->irq = irq_of_parse_and_map(np, 0); 940 941 dev_set_drvdata(&pdev->dev, dma); 942 943 return 0; 944 } 945 946 static int fsl_soc_dma_remove(struct platform_device *pdev) 947 { 948 struct dma_object *dma = dev_get_drvdata(&pdev->dev); 949 950 snd_soc_unregister_platform(&pdev->dev); 951 iounmap(dma->channel); 952 irq_dispose_mapping(dma->irq); 953 kfree(dma); 954 955 return 0; 956 } 957 958 static const struct of_device_id fsl_soc_dma_ids[] = { 959 { .compatible = "fsl,ssi-dma-channel", }, 960 {} 961 }; 962 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids); 963 964 static struct platform_driver fsl_soc_dma_driver = { 965 .driver = { 966 .name = "fsl-pcm-audio", 967 .owner = THIS_MODULE, 968 .of_match_table = fsl_soc_dma_ids, 969 }, 970 .probe = fsl_soc_dma_probe, 971 .remove = fsl_soc_dma_remove, 972 }; 973 974 module_platform_driver(fsl_soc_dma_driver); 975 976 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 977 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver"); 978 MODULE_LICENSE("GPL v2"); 979