xref: /openbmc/linux/sound/ppc/pmac.c (revision 15afafc2565bc785eb7a440b8b4a53f77910cf04)
1 /*
2  * PMac DBDMA lowlevel functions
3  *
4  * Copyright (c) by Takashi Iwai <tiwai@suse.de>
5  * code based on dmasound.c.
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21 
22 
23 #include <asm/io.h>
24 #include <asm/irq.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <sound/core.h>
32 #include "pmac.h"
33 #include <sound/pcm_params.h>
34 #include <asm/pmac_feature.h>
35 #include <asm/pci-bridge.h>
36 
37 
38 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
39 static int awacs_freqs[8] = {
40 	44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
41 };
42 /* fixed frequency table for tumbler */
43 static int tumbler_freqs[1] = {
44 	44100
45 };
46 
47 
48 /*
49  * we will allocate a single 'emergency' dbdma cmd block to use if the
50  * tx status comes up "DEAD".  This happens on some PowerComputing Pmac
51  * clones, either owing to a bug in dbdma or some interaction between
52  * IDE and sound.  However, this measure would deal with DEAD status if
53  * it appeared elsewhere.
54  */
55 static struct pmac_dbdma emergency_dbdma;
56 static int emergency_in_use;
57 
58 
59 /*
60  * allocate DBDMA command arrays
61  */
62 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
63 {
64 	unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
65 
66 	rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
67 					&rec->dma_base, GFP_KERNEL);
68 	if (rec->space == NULL)
69 		return -ENOMEM;
70 	rec->size = size;
71 	memset(rec->space, 0, rsize);
72 	rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
73 	rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
74 
75 	return 0;
76 }
77 
78 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
79 {
80 	if (rec->space) {
81 		unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
82 
83 		dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
84 	}
85 }
86 
87 
88 /*
89  * pcm stuff
90  */
91 
92 /*
93  * look up frequency table
94  */
95 
96 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
97 {
98 	int i, ok, found;
99 
100 	ok = rec->cur_freqs;
101 	if (rate > chip->freq_table[0])
102 		return 0;
103 	found = 0;
104 	for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
105 		if (! (ok & 1)) continue;
106 		found = i;
107 		if (rate >= chip->freq_table[i])
108 			break;
109 	}
110 	return found;
111 }
112 
113 /*
114  * check whether another stream is active
115  */
116 static inline int another_stream(int stream)
117 {
118 	return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
119 		SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
120 }
121 
122 /*
123  * allocate buffers
124  */
125 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
126 				  struct snd_pcm_hw_params *hw_params)
127 {
128 	return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
129 }
130 
131 /*
132  * release buffers
133  */
134 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
135 {
136 	snd_pcm_lib_free_pages(subs);
137 	return 0;
138 }
139 
140 /*
141  * get a stream of the opposite direction
142  */
143 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
144 {
145 	switch (stream) {
146 	case SNDRV_PCM_STREAM_PLAYBACK:
147 		return &chip->playback;
148 	case SNDRV_PCM_STREAM_CAPTURE:
149 		return &chip->capture;
150 	default:
151 		snd_BUG();
152 		return NULL;
153 	}
154 }
155 
156 /*
157  * wait while run status is on
158  */
159 static inline void
160 snd_pmac_wait_ack(struct pmac_stream *rec)
161 {
162 	int timeout = 50000;
163 	while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
164 		udelay(1);
165 }
166 
167 /*
168  * set the format and rate to the chip.
169  * call the lowlevel function if defined (e.g. for AWACS).
170  */
171 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
172 {
173 	/* set up frequency and format */
174 	out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
175 	out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
176 	if (chip->set_format)
177 		chip->set_format(chip);
178 }
179 
180 /*
181  * stop the DMA transfer
182  */
183 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
184 {
185 	out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
186 	snd_pmac_wait_ack(rec);
187 }
188 
189 /*
190  * set the command pointer address
191  */
192 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
193 {
194 	out_le32(&rec->dma->cmdptr, cmd->addr);
195 }
196 
197 /*
198  * start the DMA
199  */
200 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
201 {
202 	out_le32(&rec->dma->control, status | (status << 16));
203 }
204 
205 
206 /*
207  * prepare playback/capture stream
208  */
209 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
210 {
211 	int i;
212 	volatile struct dbdma_cmd __iomem *cp;
213 	struct snd_pcm_runtime *runtime = subs->runtime;
214 	int rate_index;
215 	long offset;
216 	struct pmac_stream *astr;
217 
218 	rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
219 	rec->period_size = snd_pcm_lib_period_bytes(subs);
220 	rec->nperiods = rec->dma_size / rec->period_size;
221 	rec->cur_period = 0;
222 	rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
223 
224 	/* set up constraints */
225 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
226 	if (! astr)
227 		return -EINVAL;
228 	astr->cur_freqs = 1 << rate_index;
229 	astr->cur_formats = 1 << runtime->format;
230 	chip->rate_index = rate_index;
231 	chip->format = runtime->format;
232 
233 	/* We really want to execute a DMA stop command, after the AWACS
234 	 * is initialized.
235 	 * For reasons I don't understand, it stops the hissing noise
236 	 * common to many PowerBook G3 systems and random noise otherwise
237 	 * captured on iBook2's about every third time. -ReneR
238 	 */
239 	spin_lock_irq(&chip->reg_lock);
240 	snd_pmac_dma_stop(rec);
241 	st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
242 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
243 	snd_pmac_dma_run(rec, RUN);
244 	spin_unlock_irq(&chip->reg_lock);
245 	mdelay(5);
246 	spin_lock_irq(&chip->reg_lock);
247 	/* continuous DMA memory type doesn't provide the physical address,
248 	 * so we need to resolve the address here...
249 	 */
250 	offset = runtime->dma_addr;
251 	for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
252 		st_le32(&cp->phy_addr, offset);
253 		st_le16(&cp->req_count, rec->period_size);
254 		/*st_le16(&cp->res_count, 0);*/
255 		st_le16(&cp->xfer_status, 0);
256 		offset += rec->period_size;
257 	}
258 	/* make loop */
259 	st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
260 	st_le32(&cp->cmd_dep, rec->cmd.addr);
261 
262 	snd_pmac_dma_stop(rec);
263 	snd_pmac_dma_set_command(rec, &rec->cmd);
264 	spin_unlock_irq(&chip->reg_lock);
265 
266 	return 0;
267 }
268 
269 
270 /*
271  * PCM trigger/stop
272  */
273 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
274 				struct snd_pcm_substream *subs, int cmd)
275 {
276 	volatile struct dbdma_cmd __iomem *cp;
277 	int i, command;
278 
279 	switch (cmd) {
280 	case SNDRV_PCM_TRIGGER_START:
281 	case SNDRV_PCM_TRIGGER_RESUME:
282 		if (rec->running)
283 			return -EBUSY;
284 		command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
285 			   OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
286 		spin_lock(&chip->reg_lock);
287 		snd_pmac_beep_stop(chip);
288 		snd_pmac_pcm_set_format(chip);
289 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
290 			out_le16(&cp->command, command);
291 		snd_pmac_dma_set_command(rec, &rec->cmd);
292 		(void)in_le32(&rec->dma->status);
293 		snd_pmac_dma_run(rec, RUN|WAKE);
294 		rec->running = 1;
295 		spin_unlock(&chip->reg_lock);
296 		break;
297 
298 	case SNDRV_PCM_TRIGGER_STOP:
299 	case SNDRV_PCM_TRIGGER_SUSPEND:
300 		spin_lock(&chip->reg_lock);
301 		rec->running = 0;
302 		/*printk(KERN_DEBUG "stopped!!\n");*/
303 		snd_pmac_dma_stop(rec);
304 		for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
305 			out_le16(&cp->command, DBDMA_STOP);
306 		spin_unlock(&chip->reg_lock);
307 		break;
308 
309 	default:
310 		return -EINVAL;
311 	}
312 
313 	return 0;
314 }
315 
316 /*
317  * return the current pointer
318  */
319 inline
320 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
321 					      struct pmac_stream *rec,
322 					      struct snd_pcm_substream *subs)
323 {
324 	int count = 0;
325 
326 #if 1 /* hmm.. how can we get the current dma pointer?? */
327 	int stat;
328 	volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
329 	stat = ld_le16(&cp->xfer_status);
330 	if (stat & (ACTIVE|DEAD)) {
331 		count = in_le16(&cp->res_count);
332 		if (count)
333 			count = rec->period_size - count;
334 	}
335 #endif
336 	count += rec->cur_period * rec->period_size;
337 	/*printk(KERN_DEBUG "pointer=%d\n", count);*/
338 	return bytes_to_frames(subs->runtime, count);
339 }
340 
341 /*
342  * playback
343  */
344 
345 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
346 {
347 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
348 	return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
349 }
350 
351 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
352 				     int cmd)
353 {
354 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
355 	return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
356 }
357 
358 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
359 {
360 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
361 	return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
362 }
363 
364 
365 /*
366  * capture
367  */
368 
369 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
370 {
371 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
372 	return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
373 }
374 
375 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
376 				    int cmd)
377 {
378 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
379 	return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
380 }
381 
382 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
383 {
384 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
385 	return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
386 }
387 
388 
389 /*
390  * Handle DEAD DMA transfers:
391  * if the TX status comes up "DEAD" - reported on some Power Computing machines
392  * we need to re-start the dbdma - but from a different physical start address
393  * and with a different transfer length.  It would get very messy to do this
394  * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
395  * addresses each time.  So, we will keep a single dbdma_cmd block which can be
396  * fiddled with.
397  * When DEAD status is first reported the content of the faulted dbdma block is
398  * copied into the emergency buffer and we note that the buffer is in use.
399  * we then bump the start physical address by the amount that was successfully
400  * output before it died.
401  * On any subsequent DEAD result we just do the bump-ups (we know that we are
402  * already using the emergency dbdma_cmd).
403  * CHECK: this just tries to "do it".  It is possible that we should abandon
404  * xfers when the number of residual bytes gets below a certain value - I can
405  * see that this might cause a loop-forever if a too small transfer causes
406  * DEAD status.  However this is a TODO for now - we'll see what gets reported.
407  * When we get a successful transfer result with the emergency buffer we just
408  * pretend that it completed using the original dmdma_cmd and carry on.  The
409  * 'next_cmd' field will already point back to the original loop of blocks.
410  */
411 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
412 					  volatile struct dbdma_cmd __iomem *cp)
413 {
414 	unsigned short req, res ;
415 	unsigned int phy ;
416 
417 	/* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */
418 
419 	/* to clear DEAD status we must first clear RUN
420 	   set it to quiescent to be on the safe side */
421 	(void)in_le32(&rec->dma->status);
422 	out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
423 
424 	if (!emergency_in_use) { /* new problem */
425 		memcpy((void *)emergency_dbdma.cmds, (void *)cp,
426 		       sizeof(struct dbdma_cmd));
427 		emergency_in_use = 1;
428 		st_le16(&cp->xfer_status, 0);
429 		st_le16(&cp->req_count, rec->period_size);
430 		cp = emergency_dbdma.cmds;
431 	}
432 
433 	/* now bump the values to reflect the amount
434 	   we haven't yet shifted */
435 	req = ld_le16(&cp->req_count);
436 	res = ld_le16(&cp->res_count);
437 	phy = ld_le32(&cp->phy_addr);
438 	phy += (req - res);
439 	st_le16(&cp->req_count, res);
440 	st_le16(&cp->res_count, 0);
441 	st_le16(&cp->xfer_status, 0);
442 	st_le32(&cp->phy_addr, phy);
443 
444 	st_le32(&cp->cmd_dep, rec->cmd.addr
445 		+ sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
446 
447 	st_le16(&cp->command, OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
448 
449 	/* point at our patched up command block */
450 	out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
451 
452 	/* we must re-start the controller */
453 	(void)in_le32(&rec->dma->status);
454 	/* should complete clearing the DEAD status */
455 	out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
456 }
457 
458 /*
459  * update playback/capture pointer from interrupts
460  */
461 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
462 {
463 	volatile struct dbdma_cmd __iomem *cp;
464 	int c;
465 	int stat;
466 
467 	spin_lock(&chip->reg_lock);
468 	if (rec->running) {
469 		for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
470 
471 			if (emergency_in_use)   /* already using DEAD xfer? */
472 				cp = emergency_dbdma.cmds;
473 			else
474 				cp = &rec->cmd.cmds[rec->cur_period];
475 
476 			stat = ld_le16(&cp->xfer_status);
477 
478 			if (stat & DEAD) {
479 				snd_pmac_pcm_dead_xfer(rec, cp);
480 				break; /* this block is still going */
481 			}
482 
483 			if (emergency_in_use)
484 				emergency_in_use = 0 ; /* done that */
485 
486 			if (! (stat & ACTIVE))
487 				break;
488 
489 			/*printk(KERN_DEBUG "update frag %d\n", rec->cur_period);*/
490 			st_le16(&cp->xfer_status, 0);
491 			st_le16(&cp->req_count, rec->period_size);
492 			/*st_le16(&cp->res_count, 0);*/
493 			rec->cur_period++;
494 			if (rec->cur_period >= rec->nperiods) {
495 				rec->cur_period = 0;
496 			}
497 
498 			spin_unlock(&chip->reg_lock);
499 			snd_pcm_period_elapsed(rec->substream);
500 			spin_lock(&chip->reg_lock);
501 		}
502 	}
503 	spin_unlock(&chip->reg_lock);
504 }
505 
506 
507 /*
508  * hw info
509  */
510 
511 static struct snd_pcm_hardware snd_pmac_playback =
512 {
513 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
514 				 SNDRV_PCM_INFO_MMAP |
515 				 SNDRV_PCM_INFO_MMAP_VALID |
516 				 SNDRV_PCM_INFO_RESUME),
517 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
518 	.rates =		SNDRV_PCM_RATE_8000_44100,
519 	.rate_min =		7350,
520 	.rate_max =		44100,
521 	.channels_min =		2,
522 	.channels_max =		2,
523 	.buffer_bytes_max =	131072,
524 	.period_bytes_min =	256,
525 	.period_bytes_max =	16384,
526 	.periods_min =		3,
527 	.periods_max =		PMAC_MAX_FRAGS,
528 };
529 
530 static struct snd_pcm_hardware snd_pmac_capture =
531 {
532 	.info =			(SNDRV_PCM_INFO_INTERLEAVED |
533 				 SNDRV_PCM_INFO_MMAP |
534 				 SNDRV_PCM_INFO_MMAP_VALID |
535 				 SNDRV_PCM_INFO_RESUME),
536 	.formats =		SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
537 	.rates =		SNDRV_PCM_RATE_8000_44100,
538 	.rate_min =		7350,
539 	.rate_max =		44100,
540 	.channels_min =		2,
541 	.channels_max =		2,
542 	.buffer_bytes_max =	131072,
543 	.period_bytes_min =	256,
544 	.period_bytes_max =	16384,
545 	.periods_min =		3,
546 	.periods_max =		PMAC_MAX_FRAGS,
547 };
548 
549 
550 #if 0 // NYI
551 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
552 				 struct snd_pcm_hw_rule *rule)
553 {
554 	struct snd_pmac *chip = rule->private;
555 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
556 	int i, freq_table[8], num_freqs;
557 
558 	if (! rec)
559 		return -EINVAL;
560 	num_freqs = 0;
561 	for (i = chip->num_freqs - 1; i >= 0; i--) {
562 		if (rec->cur_freqs & (1 << i))
563 			freq_table[num_freqs++] = chip->freq_table[i];
564 	}
565 
566 	return snd_interval_list(hw_param_interval(params, rule->var),
567 				 num_freqs, freq_table, 0);
568 }
569 
570 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
571 				   struct snd_pcm_hw_rule *rule)
572 {
573 	struct snd_pmac *chip = rule->private;
574 	struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
575 
576 	if (! rec)
577 		return -EINVAL;
578 	return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
579 				   rec->cur_formats);
580 }
581 #endif // NYI
582 
583 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
584 			     struct snd_pcm_substream *subs)
585 {
586 	struct snd_pcm_runtime *runtime = subs->runtime;
587 	int i;
588 
589 	/* look up frequency table and fill bit mask */
590 	runtime->hw.rates = 0;
591 	for (i = 0; i < chip->num_freqs; i++)
592 		if (chip->freqs_ok & (1 << i))
593 			runtime->hw.rates |=
594 				snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
595 
596 	/* check for minimum and maximum rates */
597 	for (i = 0; i < chip->num_freqs; i++) {
598 		if (chip->freqs_ok & (1 << i)) {
599 			runtime->hw.rate_max = chip->freq_table[i];
600 			break;
601 		}
602 	}
603 	for (i = chip->num_freqs - 1; i >= 0; i--) {
604 		if (chip->freqs_ok & (1 << i)) {
605 			runtime->hw.rate_min = chip->freq_table[i];
606 			break;
607 		}
608 	}
609 	runtime->hw.formats = chip->formats_ok;
610 	if (chip->can_capture) {
611 		if (! chip->can_duplex)
612 			runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
613 		runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
614 	}
615 	runtime->private_data = rec;
616 	rec->substream = subs;
617 
618 #if 0 /* FIXME: still under development.. */
619 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
620 			    snd_pmac_hw_rule_rate, chip, rec->stream, -1);
621 	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
622 			    snd_pmac_hw_rule_format, chip, rec->stream, -1);
623 #endif
624 
625 	runtime->hw.periods_max = rec->cmd.size - 1;
626 
627 	/* constraints to fix choppy sound */
628 	snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
629 	return 0;
630 }
631 
632 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
633 			      struct snd_pcm_substream *subs)
634 {
635 	struct pmac_stream *astr;
636 
637 	snd_pmac_dma_stop(rec);
638 
639 	astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
640 	if (! astr)
641 		return -EINVAL;
642 
643 	/* reset constraints */
644 	astr->cur_freqs = chip->freqs_ok;
645 	astr->cur_formats = chip->formats_ok;
646 
647 	return 0;
648 }
649 
650 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
651 {
652 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
653 
654 	subs->runtime->hw = snd_pmac_playback;
655 	return snd_pmac_pcm_open(chip, &chip->playback, subs);
656 }
657 
658 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
659 {
660 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
661 
662 	subs->runtime->hw = snd_pmac_capture;
663 	return snd_pmac_pcm_open(chip, &chip->capture, subs);
664 }
665 
666 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
667 {
668 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
669 
670 	return snd_pmac_pcm_close(chip, &chip->playback, subs);
671 }
672 
673 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
674 {
675 	struct snd_pmac *chip = snd_pcm_substream_chip(subs);
676 
677 	return snd_pmac_pcm_close(chip, &chip->capture, subs);
678 }
679 
680 /*
681  */
682 
683 static struct snd_pcm_ops snd_pmac_playback_ops = {
684 	.open =		snd_pmac_playback_open,
685 	.close =	snd_pmac_playback_close,
686 	.ioctl =	snd_pcm_lib_ioctl,
687 	.hw_params =	snd_pmac_pcm_hw_params,
688 	.hw_free =	snd_pmac_pcm_hw_free,
689 	.prepare =	snd_pmac_playback_prepare,
690 	.trigger =	snd_pmac_playback_trigger,
691 	.pointer =	snd_pmac_playback_pointer,
692 };
693 
694 static struct snd_pcm_ops snd_pmac_capture_ops = {
695 	.open =		snd_pmac_capture_open,
696 	.close =	snd_pmac_capture_close,
697 	.ioctl =	snd_pcm_lib_ioctl,
698 	.hw_params =	snd_pmac_pcm_hw_params,
699 	.hw_free =	snd_pmac_pcm_hw_free,
700 	.prepare =	snd_pmac_capture_prepare,
701 	.trigger =	snd_pmac_capture_trigger,
702 	.pointer =	snd_pmac_capture_pointer,
703 };
704 
705 int snd_pmac_pcm_new(struct snd_pmac *chip)
706 {
707 	struct snd_pcm *pcm;
708 	int err;
709 	int num_captures = 1;
710 
711 	if (! chip->can_capture)
712 		num_captures = 0;
713 	err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
714 	if (err < 0)
715 		return err;
716 
717 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
718 	if (chip->can_capture)
719 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
720 
721 	pcm->private_data = chip;
722 	pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
723 	strcpy(pcm->name, chip->card->shortname);
724 	chip->pcm = pcm;
725 
726 	chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
727 	if (chip->can_byte_swap)
728 		chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
729 
730 	chip->playback.cur_formats = chip->formats_ok;
731 	chip->capture.cur_formats = chip->formats_ok;
732 	chip->playback.cur_freqs = chip->freqs_ok;
733 	chip->capture.cur_freqs = chip->freqs_ok;
734 
735 	/* preallocate 64k buffer */
736 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
737 					      &chip->pdev->dev,
738 					      64 * 1024, 64 * 1024);
739 
740 	return 0;
741 }
742 
743 
744 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
745 {
746 	out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
747 	snd_pmac_wait_ack(&chip->playback);
748 	out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
749 	snd_pmac_wait_ack(&chip->capture);
750 }
751 
752 
753 /*
754  * handling beep
755  */
756 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
757 {
758 	struct pmac_stream *rec = &chip->playback;
759 
760 	snd_pmac_dma_stop(rec);
761 	st_le16(&chip->extra_dma.cmds->req_count, bytes);
762 	st_le16(&chip->extra_dma.cmds->xfer_status, 0);
763 	st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
764 	st_le32(&chip->extra_dma.cmds->phy_addr, addr);
765 	st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
766 	out_le32(&chip->awacs->control,
767 		 (in_le32(&chip->awacs->control) & ~0x1f00)
768 		 | (speed << 8));
769 	out_le32(&chip->awacs->byteswap, 0);
770 	snd_pmac_dma_set_command(rec, &chip->extra_dma);
771 	snd_pmac_dma_run(rec, RUN);
772 }
773 
774 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
775 {
776 	snd_pmac_dma_stop(&chip->playback);
777 	st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
778 	snd_pmac_pcm_set_format(chip); /* reset format */
779 }
780 
781 
782 /*
783  * interrupt handlers
784  */
785 static irqreturn_t
786 snd_pmac_tx_intr(int irq, void *devid)
787 {
788 	struct snd_pmac *chip = devid;
789 	snd_pmac_pcm_update(chip, &chip->playback);
790 	return IRQ_HANDLED;
791 }
792 
793 
794 static irqreturn_t
795 snd_pmac_rx_intr(int irq, void *devid)
796 {
797 	struct snd_pmac *chip = devid;
798 	snd_pmac_pcm_update(chip, &chip->capture);
799 	return IRQ_HANDLED;
800 }
801 
802 
803 static irqreturn_t
804 snd_pmac_ctrl_intr(int irq, void *devid)
805 {
806 	struct snd_pmac *chip = devid;
807 	int ctrl = in_le32(&chip->awacs->control);
808 
809 	/*printk(KERN_DEBUG "pmac: control interrupt.. 0x%x\n", ctrl);*/
810 	if (ctrl & MASK_PORTCHG) {
811 		/* do something when headphone is plugged/unplugged? */
812 		if (chip->update_automute)
813 			chip->update_automute(chip, 1);
814 	}
815 	if (ctrl & MASK_CNTLERR) {
816 		int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
817 		if (err && chip->model <= PMAC_SCREAMER)
818 			snd_printk(KERN_DEBUG "error %x\n", err);
819 	}
820 	/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
821 	out_le32(&chip->awacs->control, ctrl);
822 	return IRQ_HANDLED;
823 }
824 
825 
826 /*
827  * a wrapper to feature call for compatibility
828  */
829 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
830 {
831 	if (ppc_md.feature_call)
832 		ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
833 }
834 
835 /*
836  * release resources
837  */
838 
839 static int snd_pmac_free(struct snd_pmac *chip)
840 {
841 	/* stop sounds */
842 	if (chip->initialized) {
843 		snd_pmac_dbdma_reset(chip);
844 		/* disable interrupts from awacs interface */
845 		out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
846 	}
847 
848 	if (chip->node)
849 		snd_pmac_sound_feature(chip, 0);
850 
851 	/* clean up mixer if any */
852 	if (chip->mixer_free)
853 		chip->mixer_free(chip);
854 
855 	snd_pmac_detach_beep(chip);
856 
857 	/* release resources */
858 	if (chip->irq >= 0)
859 		free_irq(chip->irq, (void*)chip);
860 	if (chip->tx_irq >= 0)
861 		free_irq(chip->tx_irq, (void*)chip);
862 	if (chip->rx_irq >= 0)
863 		free_irq(chip->rx_irq, (void*)chip);
864 	snd_pmac_dbdma_free(chip, &chip->playback.cmd);
865 	snd_pmac_dbdma_free(chip, &chip->capture.cmd);
866 	snd_pmac_dbdma_free(chip, &chip->extra_dma);
867 	snd_pmac_dbdma_free(chip, &emergency_dbdma);
868 	if (chip->macio_base)
869 		iounmap(chip->macio_base);
870 	if (chip->latch_base)
871 		iounmap(chip->latch_base);
872 	if (chip->awacs)
873 		iounmap(chip->awacs);
874 	if (chip->playback.dma)
875 		iounmap(chip->playback.dma);
876 	if (chip->capture.dma)
877 		iounmap(chip->capture.dma);
878 
879 	if (chip->node) {
880 		int i;
881 		for (i = 0; i < 3; i++) {
882 			if (chip->requested & (1 << i))
883 				release_mem_region(chip->rsrc[i].start,
884 						   resource_size(&chip->rsrc[i]));
885 		}
886 	}
887 
888 	if (chip->pdev)
889 		pci_dev_put(chip->pdev);
890 	of_node_put(chip->node);
891 	kfree(chip);
892 	return 0;
893 }
894 
895 
896 /*
897  * free the device
898  */
899 static int snd_pmac_dev_free(struct snd_device *device)
900 {
901 	struct snd_pmac *chip = device->device_data;
902 	return snd_pmac_free(chip);
903 }
904 
905 
906 /*
907  * check the machine support byteswap (little-endian)
908  */
909 
910 static void detect_byte_swap(struct snd_pmac *chip)
911 {
912 	struct device_node *mio;
913 
914 	/* if seems that Keylargo can't byte-swap  */
915 	for (mio = chip->node->parent; mio; mio = mio->parent) {
916 		if (strcmp(mio->name, "mac-io") == 0) {
917 			if (of_device_is_compatible(mio, "Keylargo"))
918 				chip->can_byte_swap = 0;
919 			break;
920 		}
921 	}
922 
923 	/* it seems the Pismo & iBook can't byte-swap in hardware. */
924 	if (of_machine_is_compatible("PowerBook3,1") ||
925 	    of_machine_is_compatible("PowerBook2,1"))
926 		chip->can_byte_swap = 0 ;
927 
928 	if (of_machine_is_compatible("PowerBook2,1"))
929 		chip->can_duplex = 0;
930 }
931 
932 
933 /*
934  * detect a sound chip
935  */
936 static int snd_pmac_detect(struct snd_pmac *chip)
937 {
938 	struct device_node *sound;
939 	struct device_node *dn;
940 	const unsigned int *prop;
941 	unsigned int l;
942 	struct macio_chip* macio;
943 
944 	if (!machine_is(powermac))
945 		return -ENODEV;
946 
947 	chip->subframe = 0;
948 	chip->revision = 0;
949 	chip->freqs_ok = 0xff; /* all ok */
950 	chip->model = PMAC_AWACS;
951 	chip->can_byte_swap = 1;
952 	chip->can_duplex = 1;
953 	chip->can_capture = 1;
954 	chip->num_freqs = ARRAY_SIZE(awacs_freqs);
955 	chip->freq_table = awacs_freqs;
956 	chip->pdev = NULL;
957 
958 	chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
959 
960 	/* check machine type */
961 	if (of_machine_is_compatible("AAPL,3400/2400")
962 	    || of_machine_is_compatible("AAPL,3500"))
963 		chip->is_pbook_3400 = 1;
964 	else if (of_machine_is_compatible("PowerBook1,1")
965 		 || of_machine_is_compatible("AAPL,PowerBook1998"))
966 		chip->is_pbook_G3 = 1;
967 	chip->node = of_find_node_by_name(NULL, "awacs");
968 	sound = of_node_get(chip->node);
969 
970 	/*
971 	 * powermac G3 models have a node called "davbus"
972 	 * with a child called "sound".
973 	 */
974 	if (!chip->node)
975 		chip->node = of_find_node_by_name(NULL, "davbus");
976 	/*
977 	 * if we didn't find a davbus device, try 'i2s-a' since
978 	 * this seems to be what iBooks have
979 	 */
980 	if (! chip->node) {
981 		chip->node = of_find_node_by_name(NULL, "i2s-a");
982 		if (chip->node && chip->node->parent &&
983 		    chip->node->parent->parent) {
984 			if (of_device_is_compatible(chip->node->parent->parent,
985 						 "K2-Keylargo"))
986 				chip->is_k2 = 1;
987 		}
988 	}
989 	if (! chip->node)
990 		return -ENODEV;
991 
992 	if (!sound) {
993 		sound = of_find_node_by_name(NULL, "sound");
994 		while (sound && sound->parent != chip->node)
995 			sound = of_find_node_by_name(sound, "sound");
996 	}
997 	if (! sound) {
998 		of_node_put(chip->node);
999 		chip->node = NULL;
1000 		return -ENODEV;
1001 	}
1002 	prop = of_get_property(sound, "sub-frame", NULL);
1003 	if (prop && *prop < 16)
1004 		chip->subframe = *prop;
1005 	prop = of_get_property(sound, "layout-id", NULL);
1006 	if (prop) {
1007 		/* partly deprecate snd-powermac, for those machines
1008 		 * that have a layout-id property for now */
1009 		printk(KERN_INFO "snd-powermac no longer handles any "
1010 				 "machines with a layout-id property "
1011 				 "in the device-tree, use snd-aoa.\n");
1012 		of_node_put(sound);
1013 		of_node_put(chip->node);
1014 		chip->node = NULL;
1015 		return -ENODEV;
1016 	}
1017 	/* This should be verified on older screamers */
1018 	if (of_device_is_compatible(sound, "screamer")) {
1019 		chip->model = PMAC_SCREAMER;
1020 		// chip->can_byte_swap = 0; /* FIXME: check this */
1021 	}
1022 	if (of_device_is_compatible(sound, "burgundy")) {
1023 		chip->model = PMAC_BURGUNDY;
1024 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1025 	}
1026 	if (of_device_is_compatible(sound, "daca")) {
1027 		chip->model = PMAC_DACA;
1028 		chip->can_capture = 0;  /* no capture */
1029 		chip->can_duplex = 0;
1030 		// chip->can_byte_swap = 0; /* FIXME: check this */
1031 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1032 	}
1033 	if (of_device_is_compatible(sound, "tumbler")) {
1034 		chip->model = PMAC_TUMBLER;
1035 		chip->can_capture = of_machine_is_compatible("PowerMac4,2")
1036 				|| of_machine_is_compatible("PowerBook3,2")
1037 				|| of_machine_is_compatible("PowerBook3,3")
1038 				|| of_machine_is_compatible("PowerBook4,1")
1039 				|| of_machine_is_compatible("PowerBook4,2")
1040 				|| of_machine_is_compatible("PowerBook4,3");
1041 		chip->can_duplex = 0;
1042 		// chip->can_byte_swap = 0; /* FIXME: check this */
1043 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1044 		chip->freq_table = tumbler_freqs;
1045 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1046 	}
1047 	if (of_device_is_compatible(sound, "snapper")) {
1048 		chip->model = PMAC_SNAPPER;
1049 		// chip->can_byte_swap = 0; /* FIXME: check this */
1050 		chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1051 		chip->freq_table = tumbler_freqs;
1052 		chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1053 	}
1054 	prop = of_get_property(sound, "device-id", NULL);
1055 	if (prop)
1056 		chip->device_id = *prop;
1057 	dn = of_find_node_by_name(NULL, "perch");
1058 	chip->has_iic = (dn != NULL);
1059 	of_node_put(dn);
1060 
1061 	/* We need the PCI device for DMA allocations, let's use a crude method
1062 	 * for now ...
1063 	 */
1064 	macio = macio_find(chip->node, macio_unknown);
1065 	if (macio == NULL)
1066 		printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1067 	else {
1068 		struct pci_dev *pdev = NULL;
1069 
1070 		for_each_pci_dev(pdev) {
1071 			struct device_node *np = pci_device_to_OF_node(pdev);
1072 			if (np && np == macio->of_node) {
1073 				chip->pdev = pdev;
1074 				break;
1075 			}
1076 		}
1077 	}
1078 	if (chip->pdev == NULL)
1079 		printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1080 		       " device !\n");
1081 
1082 	detect_byte_swap(chip);
1083 
1084 	/* look for a property saying what sample rates
1085 	   are available */
1086 	prop = of_get_property(sound, "sample-rates", &l);
1087 	if (! prop)
1088 		prop = of_get_property(sound, "output-frame-rates", &l);
1089 	if (prop) {
1090 		int i;
1091 		chip->freqs_ok = 0;
1092 		for (l /= sizeof(int); l > 0; --l) {
1093 			unsigned int r = *prop++;
1094 			/* Apple 'Fixed' format */
1095 			if (r >= 0x10000)
1096 				r >>= 16;
1097 			for (i = 0; i < chip->num_freqs; ++i) {
1098 				if (r == chip->freq_table[i]) {
1099 					chip->freqs_ok |= (1 << i);
1100 					break;
1101 				}
1102 			}
1103 		}
1104 	} else {
1105 		/* assume only 44.1khz */
1106 		chip->freqs_ok = 1;
1107 	}
1108 
1109 	of_node_put(sound);
1110 	return 0;
1111 }
1112 
1113 #ifdef PMAC_SUPPORT_AUTOMUTE
1114 /*
1115  * auto-mute
1116  */
1117 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1118 			      struct snd_ctl_elem_value *ucontrol)
1119 {
1120 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1121 	ucontrol->value.integer.value[0] = chip->auto_mute;
1122 	return 0;
1123 }
1124 
1125 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1126 			      struct snd_ctl_elem_value *ucontrol)
1127 {
1128 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1129 	if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1130 		chip->auto_mute = !!ucontrol->value.integer.value[0];
1131 		if (chip->update_automute)
1132 			chip->update_automute(chip, 1);
1133 		return 1;
1134 	}
1135 	return 0;
1136 }
1137 
1138 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1139 			      struct snd_ctl_elem_value *ucontrol)
1140 {
1141 	struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1142 	if (chip->detect_headphone)
1143 		ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1144 	else
1145 		ucontrol->value.integer.value[0] = 0;
1146 	return 0;
1147 }
1148 
1149 static struct snd_kcontrol_new auto_mute_controls[] = {
1150 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1151 	  .name = "Auto Mute Switch",
1152 	  .info = snd_pmac_boolean_mono_info,
1153 	  .get = pmac_auto_mute_get,
1154 	  .put = pmac_auto_mute_put,
1155 	},
1156 	{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1157 	  .name = "Headphone Detection",
1158 	  .access = SNDRV_CTL_ELEM_ACCESS_READ,
1159 	  .info = snd_pmac_boolean_mono_info,
1160 	  .get = pmac_hp_detect_get,
1161 	},
1162 };
1163 
1164 int snd_pmac_add_automute(struct snd_pmac *chip)
1165 {
1166 	int err;
1167 	chip->auto_mute = 1;
1168 	err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1169 	if (err < 0) {
1170 		printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1171 		return err;
1172 	}
1173 	chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1174 	return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1175 }
1176 #endif /* PMAC_SUPPORT_AUTOMUTE */
1177 
1178 /*
1179  * create and detect a pmac chip record
1180  */
1181 int snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1182 {
1183 	struct snd_pmac *chip;
1184 	struct device_node *np;
1185 	int i, err;
1186 	unsigned int irq;
1187 	unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1188 	static struct snd_device_ops ops = {
1189 		.dev_free =	snd_pmac_dev_free,
1190 	};
1191 
1192 	*chip_return = NULL;
1193 
1194 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1195 	if (chip == NULL)
1196 		return -ENOMEM;
1197 	chip->card = card;
1198 
1199 	spin_lock_init(&chip->reg_lock);
1200 	chip->irq = chip->tx_irq = chip->rx_irq = -1;
1201 
1202 	chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1203 	chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1204 
1205 	if ((err = snd_pmac_detect(chip)) < 0)
1206 		goto __error;
1207 
1208 	if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1209 	    snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1210 	    snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1211 	    snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1212 		err = -ENOMEM;
1213 		goto __error;
1214 	}
1215 
1216 	np = chip->node;
1217 	chip->requested = 0;
1218 	if (chip->is_k2) {
1219 		static char *rnames[] = {
1220 			"Sound Control", "Sound DMA" };
1221 		for (i = 0; i < 2; i ++) {
1222 			if (of_address_to_resource(np->parent, i,
1223 						   &chip->rsrc[i])) {
1224 				printk(KERN_ERR "snd: can't translate rsrc "
1225 				       " %d (%s)\n", i, rnames[i]);
1226 				err = -ENODEV;
1227 				goto __error;
1228 			}
1229 			if (request_mem_region(chip->rsrc[i].start,
1230 					       resource_size(&chip->rsrc[i]),
1231 					       rnames[i]) == NULL) {
1232 				printk(KERN_ERR "snd: can't request rsrc "
1233 				       " %d (%s: %pR)\n",
1234 				       i, rnames[i], &chip->rsrc[i]);
1235 				err = -ENODEV;
1236 				goto __error;
1237 			}
1238 			chip->requested |= (1 << i);
1239 		}
1240 		ctrl_addr = chip->rsrc[0].start;
1241 		txdma_addr = chip->rsrc[1].start;
1242 		rxdma_addr = txdma_addr + 0x100;
1243 	} else {
1244 		static char *rnames[] = {
1245 			"Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1246 		for (i = 0; i < 3; i ++) {
1247 			if (of_address_to_resource(np, i,
1248 						   &chip->rsrc[i])) {
1249 				printk(KERN_ERR "snd: can't translate rsrc "
1250 				       " %d (%s)\n", i, rnames[i]);
1251 				err = -ENODEV;
1252 				goto __error;
1253 			}
1254 			if (request_mem_region(chip->rsrc[i].start,
1255 					       resource_size(&chip->rsrc[i]),
1256 					       rnames[i]) == NULL) {
1257 				printk(KERN_ERR "snd: can't request rsrc "
1258 				       " %d (%s: %pR)\n",
1259 				       i, rnames[i], &chip->rsrc[i]);
1260 				err = -ENODEV;
1261 				goto __error;
1262 			}
1263 			chip->requested |= (1 << i);
1264 		}
1265 		ctrl_addr = chip->rsrc[0].start;
1266 		txdma_addr = chip->rsrc[1].start;
1267 		rxdma_addr = chip->rsrc[2].start;
1268 	}
1269 
1270 	chip->awacs = ioremap(ctrl_addr, 0x1000);
1271 	chip->playback.dma = ioremap(txdma_addr, 0x100);
1272 	chip->capture.dma = ioremap(rxdma_addr, 0x100);
1273 	if (chip->model <= PMAC_BURGUNDY) {
1274 		irq = irq_of_parse_and_map(np, 0);
1275 		if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1276 				"PMac", (void*)chip)) {
1277 			snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1278 				   irq);
1279 			err = -EBUSY;
1280 			goto __error;
1281 		}
1282 		chip->irq = irq;
1283 	}
1284 	irq = irq_of_parse_and_map(np, 1);
1285 	if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1286 		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1287 		err = -EBUSY;
1288 		goto __error;
1289 	}
1290 	chip->tx_irq = irq;
1291 	irq = irq_of_parse_and_map(np, 2);
1292 	if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1293 		snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1294 		err = -EBUSY;
1295 		goto __error;
1296 	}
1297 	chip->rx_irq = irq;
1298 
1299 	snd_pmac_sound_feature(chip, 1);
1300 
1301 	/* reset & enable interrupts */
1302 	if (chip->model <= PMAC_BURGUNDY)
1303 		out_le32(&chip->awacs->control, chip->control_mask);
1304 
1305 	/* Powerbooks have odd ways of enabling inputs such as
1306 	   an expansion-bay CD or sound from an internal modem
1307 	   or a PC-card modem. */
1308 	if (chip->is_pbook_3400) {
1309 		/* Enable CD and PC-card sound inputs. */
1310 		/* This is done by reading from address
1311 		 * f301a000, + 0x10 to enable the expansion-bay
1312 		 * CD sound input, + 0x80 to enable the PC-card
1313 		 * sound input.  The 0x100 enables the SCSI bus
1314 		 * terminator power.
1315 		 */
1316 		chip->latch_base = ioremap (0xf301a000, 0x1000);
1317 		in_8(chip->latch_base + 0x190);
1318 	} else if (chip->is_pbook_G3) {
1319 		struct device_node* mio;
1320 		for (mio = chip->node->parent; mio; mio = mio->parent) {
1321 			if (strcmp(mio->name, "mac-io") == 0) {
1322 				struct resource r;
1323 				if (of_address_to_resource(mio, 0, &r) == 0)
1324 					chip->macio_base =
1325 						ioremap(r.start, 0x40);
1326 				break;
1327 			}
1328 		}
1329 		/* Enable CD sound input. */
1330 		/* The relevant bits for writing to this byte are 0x8f.
1331 		 * I haven't found out what the 0x80 bit does.
1332 		 * For the 0xf bits, writing 3 or 7 enables the CD
1333 		 * input, any other value disables it.  Values
1334 		 * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1335 		 * 4, 6, 8 - f enable the input from the modem.
1336 		 */
1337 		if (chip->macio_base)
1338 			out_8(chip->macio_base + 0x37, 3);
1339 	}
1340 
1341 	/* Reset dbdma channels */
1342 	snd_pmac_dbdma_reset(chip);
1343 
1344 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1345 		goto __error;
1346 
1347 	*chip_return = chip;
1348 	return 0;
1349 
1350  __error:
1351 	snd_pmac_free(chip);
1352 	return err;
1353 }
1354 
1355 
1356 /*
1357  * sleep notify for powerbook
1358  */
1359 
1360 #ifdef CONFIG_PM
1361 
1362 /*
1363  * Save state when going to sleep, restore it afterwards.
1364  */
1365 
1366 void snd_pmac_suspend(struct snd_pmac *chip)
1367 {
1368 	unsigned long flags;
1369 
1370 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1371 	if (chip->suspend)
1372 		chip->suspend(chip);
1373 	snd_pcm_suspend_all(chip->pcm);
1374 	spin_lock_irqsave(&chip->reg_lock, flags);
1375 	snd_pmac_beep_stop(chip);
1376 	spin_unlock_irqrestore(&chip->reg_lock, flags);
1377 	if (chip->irq >= 0)
1378 		disable_irq(chip->irq);
1379 	if (chip->tx_irq >= 0)
1380 		disable_irq(chip->tx_irq);
1381 	if (chip->rx_irq >= 0)
1382 		disable_irq(chip->rx_irq);
1383 	snd_pmac_sound_feature(chip, 0);
1384 }
1385 
1386 void snd_pmac_resume(struct snd_pmac *chip)
1387 {
1388 	snd_pmac_sound_feature(chip, 1);
1389 	if (chip->resume)
1390 		chip->resume(chip);
1391 	/* enable CD sound input */
1392 	if (chip->macio_base && chip->is_pbook_G3)
1393 		out_8(chip->macio_base + 0x37, 3);
1394 	else if (chip->is_pbook_3400)
1395 		in_8(chip->latch_base + 0x190);
1396 
1397 	snd_pmac_pcm_set_format(chip);
1398 
1399 	if (chip->irq >= 0)
1400 		enable_irq(chip->irq);
1401 	if (chip->tx_irq >= 0)
1402 		enable_irq(chip->tx_irq);
1403 	if (chip->rx_irq >= 0)
1404 		enable_irq(chip->rx_irq);
1405 
1406 	snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1407 }
1408 
1409 #endif /* CONFIG_PM */
1410 
1411