xref: /openbmc/linux/sound/pci/vx222/vx222_ops.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Driver for Digigram VX222 V2/Mic soundcards
3  *
4  * VX222-specific low-level routines
5  *
6  * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #include <sound/driver.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/firmware.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <asm/io.h>
30 #include "vx222.h"
31 
32 
33 static int vx2_reg_offset[VX_REG_MAX] = {
34 	[VX_ICR]    = 0x00,
35 	[VX_CVR]    = 0x04,
36 	[VX_ISR]    = 0x08,
37 	[VX_IVR]    = 0x0c,
38 	[VX_RXH]    = 0x14,
39 	[VX_RXM]    = 0x18,
40 	[VX_RXL]    = 0x1c,
41 	[VX_DMA]    = 0x10,
42 	[VX_CDSP]   = 0x20,
43 	[VX_CFG]    = 0x24,
44 	[VX_RUER]   = 0x28,
45 	[VX_DATA]   = 0x2c,
46 	[VX_STATUS] = 0x30,
47 	[VX_LOFREQ] = 0x34,
48 	[VX_HIFREQ] = 0x38,
49 	[VX_CSUER]  = 0x3c,
50 	[VX_SELMIC] = 0x40,
51 	[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
52 	[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
53 	[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
54 	[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
55 	[VX_CNTRL]  = 0x50,		// VX_CNTRL_REGISTER_OFFSET
56 	[VX_GPIOC]  = 0x54,		// VX_GPIOC (new with PLX9030)
57 };
58 
59 static int vx2_reg_index[VX_REG_MAX] = {
60 	[VX_ICR]	= 1,
61 	[VX_CVR]	= 1,
62 	[VX_ISR]	= 1,
63 	[VX_IVR]	= 1,
64 	[VX_RXH]	= 1,
65 	[VX_RXM]	= 1,
66 	[VX_RXL]	= 1,
67 	[VX_DMA]	= 1,
68 	[VX_CDSP]	= 1,
69 	[VX_CFG]	= 1,
70 	[VX_RUER]	= 1,
71 	[VX_DATA]	= 1,
72 	[VX_STATUS]	= 1,
73 	[VX_LOFREQ]	= 1,
74 	[VX_HIFREQ]	= 1,
75 	[VX_CSUER]	= 1,
76 	[VX_SELMIC]	= 1,
77 	[VX_COMPOT]	= 1,
78 	[VX_SCOMPR]	= 1,
79 	[VX_GLIMIT]	= 1,
80 	[VX_INTCSR]	= 0,	/* on the PLX */
81 	[VX_CNTRL]	= 0,	/* on the PLX */
82 	[VX_GPIOC]	= 0,	/* on the PLX */
83 };
84 
85 inline static unsigned long vx2_reg_addr(vx_core_t *_chip, int reg)
86 {
87 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
88 	return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
89 }
90 
91 /**
92  * snd_vx_inb - read a byte from the register
93  * @offset: register enum
94  */
95 static unsigned char vx2_inb(vx_core_t *chip, int offset)
96 {
97 	return inb(vx2_reg_addr(chip, offset));
98 }
99 
100 /**
101  * snd_vx_outb - write a byte on the register
102  * @offset: the register offset
103  * @val: the value to write
104  */
105 static void vx2_outb(vx_core_t *chip, int offset, unsigned char val)
106 {
107 	outb(val, vx2_reg_addr(chip, offset));
108 	//printk("outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
109 }
110 
111 /**
112  * snd_vx_inl - read a 32bit word from the register
113  * @offset: register enum
114  */
115 static unsigned int vx2_inl(vx_core_t *chip, int offset)
116 {
117 	return inl(vx2_reg_addr(chip, offset));
118 }
119 
120 /**
121  * snd_vx_outl - write a 32bit word on the register
122  * @offset: the register enum
123  * @val: the value to write
124  */
125 static void vx2_outl(vx_core_t *chip, int offset, unsigned int val)
126 {
127 	// printk("outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
128 	outl(val, vx2_reg_addr(chip, offset));
129 }
130 
131 /*
132  * redefine macros to call directly
133  */
134 #undef vx_inb
135 #define vx_inb(chip,reg)	vx2_inb((vx_core_t*)(chip), VX_##reg)
136 #undef vx_outb
137 #define vx_outb(chip,reg,val)	vx2_outb((vx_core_t*)(chip), VX_##reg, val)
138 #undef vx_inl
139 #define vx_inl(chip,reg)	vx2_inl((vx_core_t*)(chip), VX_##reg)
140 #undef vx_outl
141 #define vx_outl(chip,reg,val)	vx2_outl((vx_core_t*)(chip), VX_##reg, val)
142 
143 
144 /*
145  * vx_reset_dsp - reset the DSP
146  */
147 
148 #define XX_DSP_RESET_WAIT_TIME		2	/* ms */
149 
150 static void vx2_reset_dsp(vx_core_t *_chip)
151 {
152 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
153 
154 	/* set the reset dsp bit to 0 */
155 	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
156 
157 	snd_vx_delay(_chip, XX_DSP_RESET_WAIT_TIME);
158 
159 	chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
160 	/* set the reset dsp bit to 1 */
161 	vx_outl(chip, CDSP, chip->regCDSP);
162 }
163 
164 
165 static int vx2_test_xilinx(vx_core_t *_chip)
166 {
167 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
168 	unsigned int data;
169 
170 	snd_printdd("testing xilinx...\n");
171 	/* This test uses several write/read sequences on TEST0 and TEST1 bits
172 	 * to figure out whever or not the xilinx was correctly loaded
173 	 */
174 
175 	/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
176 	vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
177 	vx_inl(chip, ISR);
178 	data = vx_inl(chip, STATUS);
179 	if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
180 		snd_printdd("bad!\n");
181 		return -ENODEV;
182 	}
183 
184 	/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
185 	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
186 	vx_inl(chip, ISR);
187 	data = vx_inl(chip, STATUS);
188 	if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
189 		snd_printdd("bad! #2\n");
190 		return -ENODEV;
191 	}
192 
193 	if (_chip->type == VX_TYPE_BOARD) {
194 		/* not implemented on VX_2_BOARDS */
195 		/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
196 		vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
197 		vx_inl(chip, ISR);
198 		data = vx_inl(chip, STATUS);
199 		if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
200 			snd_printdd("bad! #3\n");
201 			return -ENODEV;
202 		}
203 
204 		/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
205 		vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
206 		vx_inl(chip, ISR);
207 		data = vx_inl(chip, STATUS);
208 		if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
209 			snd_printdd("bad! #4\n");
210 			return -ENODEV;
211 		}
212 	}
213 	snd_printdd("ok, xilinx fine.\n");
214 	return 0;
215 }
216 
217 
218 /**
219  * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
220  * @do_write: 0 = read, 1 = set up for DMA write
221  */
222 static void vx2_setup_pseudo_dma(vx_core_t *chip, int do_write)
223 {
224 	/* Interrupt mode and HREQ pin enabled for host transmit data transfers
225 	 * (in case of the use of the pseudo-dma facility).
226 	 */
227 	vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
228 
229 	/* Reset the pseudo-dma register (in case of the use of the
230 	 * pseudo-dma facility).
231 	 */
232 	vx_outl(chip, RESET_DMA, 0);
233 }
234 
235 /*
236  * vx_release_pseudo_dma - disable the pseudo-DMA mode
237  */
238 inline static void vx2_release_pseudo_dma(vx_core_t *chip)
239 {
240 	/* HREQ pin disabled. */
241 	vx_outl(chip, ICR, 0);
242 }
243 
244 
245 
246 /* pseudo-dma write */
247 static void vx2_dma_write(vx_core_t *chip, snd_pcm_runtime_t *runtime,
248 			  vx_pipe_t *pipe, int count)
249 {
250 	unsigned long port = vx2_reg_addr(chip, VX_DMA);
251 	int offset = pipe->hw_ptr;
252 	u32 *addr = (u32 *)(runtime->dma_area + offset);
253 
254 	snd_assert(count % 4 == 0, return);
255 
256 	vx2_setup_pseudo_dma(chip, 1);
257 
258 	/* Transfer using pseudo-dma.
259 	 */
260 	if (offset + count > pipe->buffer_bytes) {
261 		int length = pipe->buffer_bytes - offset;
262 		count -= length;
263 		length >>= 2; /* in 32bit words */
264 		/* Transfer using pseudo-dma. */
265 		while (length-- > 0) {
266 			outl(cpu_to_le32(*addr), port);
267 			addr++;
268 		}
269 		addr = (u32 *)runtime->dma_area;
270 		pipe->hw_ptr = 0;
271 	}
272 	pipe->hw_ptr += count;
273 	count >>= 2; /* in 32bit words */
274 	/* Transfer using pseudo-dma. */
275 	while (count-- > 0) {
276 		outl(cpu_to_le32(*addr), port);
277 		addr++;
278 	}
279 
280 	vx2_release_pseudo_dma(chip);
281 }
282 
283 
284 /* pseudo dma read */
285 static void vx2_dma_read(vx_core_t *chip, snd_pcm_runtime_t *runtime,
286 			 vx_pipe_t *pipe, int count)
287 {
288 	int offset = pipe->hw_ptr;
289 	u32 *addr = (u32 *)(runtime->dma_area + offset);
290 	unsigned long port = vx2_reg_addr(chip, VX_DMA);
291 
292 	snd_assert(count % 4 == 0, return);
293 
294 	vx2_setup_pseudo_dma(chip, 0);
295 	/* Transfer using pseudo-dma.
296 	 */
297 	if (offset + count > pipe->buffer_bytes) {
298 		int length = pipe->buffer_bytes - offset;
299 		count -= length;
300 		length >>= 2; /* in 32bit words */
301 		/* Transfer using pseudo-dma. */
302 		while (length-- > 0)
303 			*addr++ = le32_to_cpu(inl(port));
304 		addr = (u32 *)runtime->dma_area;
305 		pipe->hw_ptr = 0;
306 	}
307 	pipe->hw_ptr += count;
308 	count >>= 2; /* in 32bit words */
309 	/* Transfer using pseudo-dma. */
310 	while (count-- > 0)
311 		*addr++ = le32_to_cpu(inl(port));
312 
313 	vx2_release_pseudo_dma(chip);
314 }
315 
316 #define VX_XILINX_RESET_MASK        0x40000000
317 #define VX_USERBIT0_MASK            0x00000004
318 #define VX_USERBIT1_MASK            0x00000020
319 #define VX_CNTRL_REGISTER_VALUE     0x00172012
320 
321 /*
322  * transfer counts bits to PLX
323  */
324 static int put_xilinx_data(vx_core_t *chip, unsigned int port, unsigned int counts, unsigned char data)
325 {
326 	unsigned int i;
327 
328 	for (i = 0; i < counts; i++) {
329 		unsigned int val;
330 
331 		/* set the clock bit to 0. */
332 		val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
333 		vx2_outl(chip, port, val);
334 		vx2_inl(chip, port);
335 		udelay(1);
336 
337 		if (data & (1 << i))
338 			val |= VX_USERBIT1_MASK;
339 		else
340 			val &= ~VX_USERBIT1_MASK;
341 		vx2_outl(chip, port, val);
342 		vx2_inl(chip, port);
343 
344 		/* set the clock bit to 1. */
345 		val |= VX_USERBIT0_MASK;
346 		vx2_outl(chip, port, val);
347 		vx2_inl(chip, port);
348 		udelay(1);
349 	}
350 	return 0;
351 }
352 
353 /*
354  * load the xilinx image
355  */
356 static int vx2_load_xilinx_binary(vx_core_t *chip, const struct firmware *xilinx)
357 {
358 	unsigned int i;
359 	unsigned int port;
360 	unsigned char *image;
361 
362 	/* XILINX reset (wait at least 1 milisecond between reset on and off). */
363 	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
364 	vx_inl(chip, CNTRL);
365 	snd_vx_delay(chip, 10);
366 	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
367 	vx_inl(chip, CNTRL);
368 	snd_vx_delay(chip, 10);
369 
370 	if (chip->type == VX_TYPE_BOARD)
371 		port = VX_CNTRL;
372 	else
373 		port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
374 
375 	image = xilinx->data;
376 	for (i = 0; i < xilinx->size; i++, image++) {
377 		if (put_xilinx_data(chip, port, 8, *image) < 0)
378 			return -EINVAL;
379 		/* don't take too much time in this loop... */
380 		cond_resched();
381 	}
382 	put_xilinx_data(chip, port, 4, 0xff); /* end signature */
383 
384 	snd_vx_delay(chip, 200);
385 
386 	/* test after loading (is buggy with VX222) */
387 	if (chip->type != VX_TYPE_BOARD) {
388 		/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
389 		i = vx_inl(chip, GPIOC);
390 		if (i & 0x0100)
391 			return 0;
392 		snd_printk(KERN_ERR "vx222: xilinx test failed after load, GPIOC=0x%x\n", i);
393 		return -EINVAL;
394 	}
395 
396 	return 0;
397 }
398 
399 
400 /*
401  * load the boot/dsp images
402  */
403 static int vx2_load_dsp(vx_core_t *vx, int index, const struct firmware *dsp)
404 {
405 	int err;
406 
407 	switch (index) {
408 	case 1:
409 		/* xilinx image */
410 		if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
411 			return err;
412 		if ((err = vx2_test_xilinx(vx)) < 0)
413 			return err;
414 		return 0;
415 	case 2:
416 		/* DSP boot */
417 		return snd_vx_dsp_boot(vx, dsp);
418 	case 3:
419 		/* DSP image */
420 		return snd_vx_dsp_load(vx, dsp);
421 	default:
422 		snd_BUG();
423 		return -EINVAL;
424 	}
425 }
426 
427 
428 /*
429  * vx_test_and_ack - test and acknowledge interrupt
430  *
431  * called from irq hander, too
432  *
433  * spinlock held!
434  */
435 static int vx2_test_and_ack(vx_core_t *chip)
436 {
437 	/* not booted yet? */
438 	if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
439 		return -ENXIO;
440 
441 	if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
442 		return -EIO;
443 
444 	/* ok, interrupts generated, now ack it */
445 	/* set ACQUIT bit up and down */
446 	vx_outl(chip, STATUS, 0);
447 	/* useless read just to spend some time and maintain
448 	 * the ACQUIT signal up for a while ( a bus cycle )
449 	 */
450 	vx_inl(chip, STATUS);
451 	/* ack */
452 	vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
453 	/* useless read just to spend some time and maintain
454 	 * the ACQUIT signal up for a while ( a bus cycle ) */
455 	vx_inl(chip, STATUS);
456 	/* clear */
457 	vx_outl(chip, STATUS, 0);
458 
459 	return 0;
460 }
461 
462 
463 /*
464  * vx_validate_irq - enable/disable IRQ
465  */
466 static void vx2_validate_irq(vx_core_t *_chip, int enable)
467 {
468 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
469 
470 	/* Set the interrupt enable bit to 1 in CDSP register */
471 	if (enable) {
472 		/* Set the PCI interrupt enable bit to 1.*/
473 		vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
474 		chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
475 	} else {
476 		/* Set the PCI interrupt enable bit to 0. */
477 		vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
478 		chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
479 	}
480 	vx_outl(chip, CDSP, chip->regCDSP);
481 }
482 
483 
484 /*
485  * write an AKM codec data (24bit)
486  */
487 static void vx2_write_codec_reg(vx_core_t *chip, unsigned int data)
488 {
489 	unsigned int i;
490 
491 	vx_inl(chip, HIFREQ);
492 
493 	/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
494 	for (i = 0; i < 24; i++, data <<= 1)
495 		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
496 	/* Terminate access to codec registers */
497 	vx_inl(chip, RUER);
498 }
499 
500 
501 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
502 #define AKM_CODEC_RESET_ON_CMD      0xA100
503 #define AKM_CODEC_RESET_OFF_CMD     0xA103
504 #define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
505 #define AKM_CODEC_MUTE_CMD          0xA38D
506 #define AKM_CODEC_UNMUTE_CMD        0xA30D
507 #define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
508 #define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
509 
510 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
511     0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
512     0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
513     0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
514     0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
515     0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
516     0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
517     0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
518     0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
519     0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
520     0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
521     0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
522     0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
523     0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
524     0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
525     0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
526     0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
527     0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
528     0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
529     0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
530     0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
531     0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
532     0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
533     0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
534     0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
535     0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
536     0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
537     0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
538     0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
539     0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
540     0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
541     0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
542     0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
543     0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
544     0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
545     0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
546     0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
547     0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
548     0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
549     0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
550     0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
551     0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
552     0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
553     0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
554     0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
555     0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
556     0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
557     0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
558     0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
559     0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
560     0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
561     0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
562     0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
563     0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
564     0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
565     0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
566     0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
567     0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
568     0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
569     0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
570     0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
571     0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
572     0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
573     0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
574     0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
575     0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
576     0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
577     0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
578     0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
579     0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
580     0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
581     0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
582     0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
583     0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
584     0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
585     0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
586     0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
587     0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
588     0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
589     0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
590     0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
591     0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
592     0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
593     0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
594     0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
595     0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
596     0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
597     0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
598     0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
599     0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
600     0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
601     0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
602     0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
603     0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
604     0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
605     0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
606     0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
607     0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
608     0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
609     0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
610     0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
611     0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
612     0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
613     0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
614     0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
615     0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
616     0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
617     0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
618     0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
619     0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
620     0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
621     0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
622     0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
623     0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
624     0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
625     0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
626     0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
627     0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
628     0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
629     0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
630     0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
631     0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
632     0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
633     0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
634     0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
635     0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
636     0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
637     0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
638     0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
639     0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
640     0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
641     0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
642     0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
643     0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
644     0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
645     0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
646     0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
647     0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
648     0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
649     0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
650     0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
651     0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
652     0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
653     0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
654     0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
655     0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
656     0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
657     0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
658     0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
659 
660 /*
661  * pseudo-codec write entry
662  */
663 static void vx2_write_akm(vx_core_t *chip, int reg, unsigned int data)
664 {
665 	unsigned int val;
666 
667 	if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
668 		vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
669 		return;
670 	}
671 
672 	/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
673 	   a look up table, as there is no linear matching between the driver codec values
674 	   and the real dBu value
675 	*/
676 	snd_assert(data < sizeof(vx2_akm_gains_lut), return);
677 
678 	switch (reg) {
679 	case XX_CODEC_LEVEL_LEFT_REGISTER:
680 		val = AKM_CODEC_LEFT_LEVEL_CMD;
681 		break;
682 	case XX_CODEC_LEVEL_RIGHT_REGISTER:
683 		val = AKM_CODEC_RIGHT_LEVEL_CMD;
684 		break;
685 	default:
686 		snd_BUG();
687 		return;
688 	}
689 	val |= vx2_akm_gains_lut[data];
690 
691 	vx2_write_codec_reg(chip, val);
692 }
693 
694 
695 /*
696  * write codec bit for old VX222 board
697  */
698 static void vx2_old_write_codec_bit(vx_core_t *chip, int codec, unsigned int data)
699 {
700 	int i;
701 
702 	/* activate access to codec registers */
703 	vx_inl(chip, HIFREQ);
704 
705 	for (i = 0; i < 24; i++, data <<= 1)
706 		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
707 
708 	/* Terminate access to codec registers */
709 	vx_inl(chip, RUER);
710 }
711 
712 
713 /*
714  * reset codec bit
715  */
716 static void vx2_reset_codec(vx_core_t *_chip)
717 {
718 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
719 
720 	/* Set the reset CODEC bit to 0. */
721 	vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
722 	vx_inl(chip, CDSP);
723 	snd_vx_delay(_chip, 10);
724 	/* Set the reset CODEC bit to 1. */
725 	chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
726 	vx_outl(chip, CDSP, chip->regCDSP);
727 	vx_inl(chip, CDSP);
728 	if (_chip->type == VX_TYPE_BOARD) {
729 		snd_vx_delay(_chip, 1);
730 		return;
731 	}
732 
733 	snd_vx_delay(_chip, 5);  /* additionnel wait time for AKM's */
734 
735 	vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
736 
737 	vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
738 	vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
739 	vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
740 
741 	if (_chip->type == VX_TYPE_MIC) {
742 		/* set up the micro input selector */
743 		chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
744 			MICRO_SELECT_PREAMPLI_G_0 |
745 			MICRO_SELECT_NOISE_T_52DB;
746 
747 		/* reset phantom power supply */
748 		chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
749 
750 		vx_outl(_chip, SELMIC, chip->regSELMIC);
751 	}
752 }
753 
754 
755 /*
756  * change the audio source
757  */
758 static void vx2_change_audio_source(vx_core_t *_chip, int src)
759 {
760 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
761 
762 	switch (src) {
763 	case VX_AUDIO_SRC_DIGITAL:
764 		chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
765 		break;
766 	default:
767 		chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
768 		break;
769 	}
770 	vx_outl(chip, CFG, chip->regCFG);
771 }
772 
773 
774 /*
775  * set the clock source
776  */
777 static void vx2_set_clock_source(vx_core_t *_chip, int source)
778 {
779 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
780 
781 	if (source == INTERNAL_QUARTZ)
782 		chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
783 	else
784 		chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
785 	vx_outl(chip, CFG, chip->regCFG);
786 }
787 
788 /*
789  * reset the board
790  */
791 static void vx2_reset_board(vx_core_t *_chip, int cold_reset)
792 {
793 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
794 
795 	/* initialize the register values */
796 	chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
797 	chip->regCFG = 0;
798 }
799 
800 
801 
802 /*
803  * input level controls for VX222 Mic
804  */
805 
806 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
807  * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
808  * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
809  */
810 #define V2_MICRO_LEVEL_RANGE        (318 - 255)
811 
812 static void vx2_set_input_level(struct snd_vx222 *chip)
813 {
814 	int i, miclevel, preamp;
815 	unsigned int data;
816 
817 	miclevel = chip->mic_level;
818 	miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
819 	preamp = 0;
820         while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
821 		preamp++;	/* raise pre ampli + 18dB */
822 		miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
823         }
824 	snd_assert(preamp < 4, return);
825 
826 	/* set pre-amp level */
827 	chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
828 	chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
829 	vx_outl(chip, SELMIC, chip->regSELMIC);
830 
831 	data = (unsigned int)miclevel << 16 |
832 		(unsigned int)chip->input_level[1] << 8 |
833 		(unsigned int)chip->input_level[0];
834 	vx_inl(chip, DATA); /* Activate input level programming */
835 
836 	/* We have to send 32 bits (4 x 8 bits) */
837 	for (i = 0; i < 32; i++, data <<= 1)
838 		vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
839 
840 	vx_inl(chip, RUER); /* Terminate input level programming */
841 }
842 
843 
844 #define MIC_LEVEL_MAX	0xff
845 
846 /*
847  * controls API for input levels
848  */
849 
850 /* input levels */
851 static int vx_input_level_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
852 {
853 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
854 	uinfo->count = 2;
855 	uinfo->value.integer.min = 0;
856 	uinfo->value.integer.max = MIC_LEVEL_MAX;
857 	return 0;
858 }
859 
860 static int vx_input_level_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
861 {
862 	vx_core_t *_chip = snd_kcontrol_chip(kcontrol);
863 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
864 	down(&_chip->mixer_mutex);
865 	ucontrol->value.integer.value[0] = chip->input_level[0];
866 	ucontrol->value.integer.value[1] = chip->input_level[1];
867 	up(&_chip->mixer_mutex);
868 	return 0;
869 }
870 
871 static int vx_input_level_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
872 {
873 	vx_core_t *_chip = snd_kcontrol_chip(kcontrol);
874 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
875 	down(&_chip->mixer_mutex);
876 	if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
877 	    chip->input_level[1] != ucontrol->value.integer.value[1]) {
878 		chip->input_level[0] = ucontrol->value.integer.value[0];
879 		chip->input_level[1] = ucontrol->value.integer.value[1];
880 		vx2_set_input_level(chip);
881 		up(&_chip->mixer_mutex);
882 		return 1;
883 	}
884 	up(&_chip->mixer_mutex);
885 	return 0;
886 }
887 
888 /* mic level */
889 static int vx_mic_level_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
890 {
891 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
892 	uinfo->count = 1;
893 	uinfo->value.integer.min = 0;
894 	uinfo->value.integer.max = MIC_LEVEL_MAX;
895 	return 0;
896 }
897 
898 static int vx_mic_level_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
899 {
900 	vx_core_t *_chip = snd_kcontrol_chip(kcontrol);
901 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
902 	ucontrol->value.integer.value[0] = chip->mic_level;
903 	return 0;
904 }
905 
906 static int vx_mic_level_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
907 {
908 	vx_core_t *_chip = snd_kcontrol_chip(kcontrol);
909 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
910 	down(&_chip->mixer_mutex);
911 	if (chip->mic_level != ucontrol->value.integer.value[0]) {
912 		chip->mic_level = ucontrol->value.integer.value[0];
913 		vx2_set_input_level(chip);
914 		up(&_chip->mixer_mutex);
915 		return 1;
916 	}
917 	up(&_chip->mixer_mutex);
918 	return 0;
919 }
920 
921 static snd_kcontrol_new_t vx_control_input_level = {
922 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
923 	.name =		"Capture Volume",
924 	.info =		vx_input_level_info,
925 	.get =		vx_input_level_get,
926 	.put =		vx_input_level_put,
927 };
928 
929 static snd_kcontrol_new_t vx_control_mic_level = {
930 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
931 	.name =		"Mic Capture Volume",
932 	.info =		vx_mic_level_info,
933 	.get =		vx_mic_level_get,
934 	.put =		vx_mic_level_put,
935 };
936 
937 /*
938  * FIXME: compressor/limiter implementation is missing yet...
939  */
940 
941 static int vx2_add_mic_controls(vx_core_t *_chip)
942 {
943 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
944 	int err;
945 
946 	if (_chip->type != VX_TYPE_MIC)
947 		return 0;
948 
949 	/* mute input levels */
950 	chip->input_level[0] = chip->input_level[1] = 0;
951 	chip->mic_level = 0;
952 	vx2_set_input_level(chip);
953 
954 	/* controls */
955 	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
956 		return err;
957 	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
958 		return err;
959 
960 	return 0;
961 }
962 
963 
964 /*
965  * callbacks
966  */
967 struct snd_vx_ops vx222_ops = {
968 	.in8 = vx2_inb,
969 	.in32 = vx2_inl,
970 	.out8 = vx2_outb,
971 	.out32 = vx2_outl,
972 	.test_and_ack = vx2_test_and_ack,
973 	.validate_irq = vx2_validate_irq,
974 	.akm_write = vx2_write_akm,
975 	.reset_codec = vx2_reset_codec,
976 	.change_audio_source = vx2_change_audio_source,
977 	.set_clock_source = vx2_set_clock_source,
978 	.load_dsp = vx2_load_dsp,
979 	.reset_dsp = vx2_reset_dsp,
980 	.reset_board = vx2_reset_board,
981 	.dma_write = vx2_dma_write,
982 	.dma_read = vx2_dma_read,
983 	.add_controls = vx2_add_mic_controls,
984 };
985 
986 /* for old VX222 board */
987 struct snd_vx_ops vx222_old_ops = {
988 	.in8 = vx2_inb,
989 	.in32 = vx2_inl,
990 	.out8 = vx2_outb,
991 	.out32 = vx2_outl,
992 	.test_and_ack = vx2_test_and_ack,
993 	.validate_irq = vx2_validate_irq,
994 	.write_codec = vx2_old_write_codec_bit,
995 	.reset_codec = vx2_reset_codec,
996 	.change_audio_source = vx2_change_audio_source,
997 	.set_clock_source = vx2_set_clock_source,
998 	.load_dsp = vx2_load_dsp,
999 	.reset_dsp = vx2_reset_dsp,
1000 	.reset_board = vx2_reset_board,
1001 	.dma_write = vx2_dma_write,
1002 	.dma_read = vx2_dma_read,
1003 };
1004 
1005