1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Implementation of primary alsa driver code base for Intel HD Audio. 5 * 6 * Copyright(c) 2004 Intel Corporation. All rights reserved. 7 * 8 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de> 9 * PeiSen Hou <pshou@realtek.com.tw> 10 */ 11 12 #include <linux/clocksource.h> 13 #include <linux/delay.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/slab.h> 19 20 #ifdef CONFIG_X86 21 /* for art-tsc conversion */ 22 #include <asm/tsc.h> 23 #endif 24 25 #include <sound/core.h> 26 #include <sound/initval.h> 27 #include "hda_controller.h" 28 29 #define CREATE_TRACE_POINTS 30 #include "hda_controller_trace.h" 31 32 /* DSP lock helpers */ 33 #define dsp_lock(dev) snd_hdac_dsp_lock(azx_stream(dev)) 34 #define dsp_unlock(dev) snd_hdac_dsp_unlock(azx_stream(dev)) 35 #define dsp_is_locked(dev) snd_hdac_stream_is_locked(azx_stream(dev)) 36 37 /* assign a stream for the PCM */ 38 static inline struct azx_dev * 39 azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream) 40 { 41 struct hdac_stream *s; 42 43 s = snd_hdac_stream_assign(azx_bus(chip), substream); 44 if (!s) 45 return NULL; 46 return stream_to_azx_dev(s); 47 } 48 49 /* release the assigned stream */ 50 static inline void azx_release_device(struct azx_dev *azx_dev) 51 { 52 snd_hdac_stream_release(azx_stream(azx_dev)); 53 } 54 55 static inline struct hda_pcm_stream * 56 to_hda_pcm_stream(struct snd_pcm_substream *substream) 57 { 58 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 59 return &apcm->info->stream[substream->stream]; 60 } 61 62 static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream, 63 u64 nsec) 64 { 65 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 66 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 67 u64 codec_frames, codec_nsecs; 68 69 if (!hinfo->ops.get_delay) 70 return nsec; 71 72 codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream); 73 codec_nsecs = div_u64(codec_frames * 1000000000LL, 74 substream->runtime->rate); 75 76 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 77 return nsec + codec_nsecs; 78 79 return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0; 80 } 81 82 /* 83 * PCM ops 84 */ 85 86 static int azx_pcm_close(struct snd_pcm_substream *substream) 87 { 88 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 89 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 90 struct azx *chip = apcm->chip; 91 struct azx_dev *azx_dev = get_azx_dev(substream); 92 93 trace_azx_pcm_close(chip, azx_dev); 94 mutex_lock(&chip->open_mutex); 95 azx_release_device(azx_dev); 96 if (hinfo->ops.close) 97 hinfo->ops.close(hinfo, apcm->codec, substream); 98 snd_hda_power_down(apcm->codec); 99 mutex_unlock(&chip->open_mutex); 100 snd_hda_codec_pcm_put(apcm->info); 101 return 0; 102 } 103 104 static int azx_pcm_hw_params(struct snd_pcm_substream *substream, 105 struct snd_pcm_hw_params *hw_params) 106 { 107 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 108 struct azx *chip = apcm->chip; 109 struct azx_dev *azx_dev = get_azx_dev(substream); 110 int ret = 0; 111 112 trace_azx_pcm_hw_params(chip, azx_dev); 113 dsp_lock(azx_dev); 114 if (dsp_is_locked(azx_dev)) { 115 ret = -EBUSY; 116 goto unlock; 117 } 118 119 azx_dev->core.bufsize = 0; 120 azx_dev->core.period_bytes = 0; 121 azx_dev->core.format_val = 0; 122 123 unlock: 124 dsp_unlock(azx_dev); 125 return ret; 126 } 127 128 static int azx_pcm_hw_free(struct snd_pcm_substream *substream) 129 { 130 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 131 struct azx_dev *azx_dev = get_azx_dev(substream); 132 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 133 134 /* reset BDL address */ 135 dsp_lock(azx_dev); 136 if (!dsp_is_locked(azx_dev)) 137 snd_hdac_stream_cleanup(azx_stream(azx_dev)); 138 139 snd_hda_codec_cleanup(apcm->codec, hinfo, substream); 140 141 azx_stream(azx_dev)->prepared = 0; 142 dsp_unlock(azx_dev); 143 return 0; 144 } 145 146 static int azx_pcm_prepare(struct snd_pcm_substream *substream) 147 { 148 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 149 struct azx *chip = apcm->chip; 150 struct azx_dev *azx_dev = get_azx_dev(substream); 151 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 152 struct snd_pcm_runtime *runtime = substream->runtime; 153 unsigned int format_val, stream_tag; 154 int err; 155 struct hda_spdif_out *spdif = 156 snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid); 157 unsigned short ctls = spdif ? spdif->ctls : 0; 158 159 trace_azx_pcm_prepare(chip, azx_dev); 160 dsp_lock(azx_dev); 161 if (dsp_is_locked(azx_dev)) { 162 err = -EBUSY; 163 goto unlock; 164 } 165 166 snd_hdac_stream_reset(azx_stream(azx_dev)); 167 format_val = snd_hdac_calc_stream_format(runtime->rate, 168 runtime->channels, 169 runtime->format, 170 hinfo->maxbps, 171 ctls); 172 if (!format_val) { 173 dev_err(chip->card->dev, 174 "invalid format_val, rate=%d, ch=%d, format=%d\n", 175 runtime->rate, runtime->channels, runtime->format); 176 err = -EINVAL; 177 goto unlock; 178 } 179 180 err = snd_hdac_stream_set_params(azx_stream(azx_dev), format_val); 181 if (err < 0) 182 goto unlock; 183 184 snd_hdac_stream_setup(azx_stream(azx_dev)); 185 186 stream_tag = azx_dev->core.stream_tag; 187 /* CA-IBG chips need the playback stream starting from 1 */ 188 if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) && 189 stream_tag > chip->capture_streams) 190 stream_tag -= chip->capture_streams; 191 err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag, 192 azx_dev->core.format_val, substream); 193 194 unlock: 195 if (!err) 196 azx_stream(azx_dev)->prepared = 1; 197 dsp_unlock(azx_dev); 198 return err; 199 } 200 201 static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 202 { 203 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 204 struct azx *chip = apcm->chip; 205 struct hdac_bus *bus = azx_bus(chip); 206 struct azx_dev *azx_dev; 207 struct snd_pcm_substream *s; 208 struct hdac_stream *hstr; 209 bool start; 210 int sbits = 0; 211 int sync_reg; 212 213 azx_dev = get_azx_dev(substream); 214 trace_azx_pcm_trigger(chip, azx_dev, cmd); 215 216 hstr = azx_stream(azx_dev); 217 if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC) 218 sync_reg = AZX_REG_OLD_SSYNC; 219 else 220 sync_reg = AZX_REG_SSYNC; 221 222 if (dsp_is_locked(azx_dev) || !hstr->prepared) 223 return -EPIPE; 224 225 switch (cmd) { 226 case SNDRV_PCM_TRIGGER_START: 227 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 228 case SNDRV_PCM_TRIGGER_RESUME: 229 start = true; 230 break; 231 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 232 case SNDRV_PCM_TRIGGER_SUSPEND: 233 case SNDRV_PCM_TRIGGER_STOP: 234 start = false; 235 break; 236 default: 237 return -EINVAL; 238 } 239 240 snd_pcm_group_for_each_entry(s, substream) { 241 if (s->pcm->card != substream->pcm->card) 242 continue; 243 azx_dev = get_azx_dev(s); 244 sbits |= 1 << azx_dev->core.index; 245 snd_pcm_trigger_done(s, substream); 246 } 247 248 spin_lock(&bus->reg_lock); 249 250 /* first, set SYNC bits of corresponding streams */ 251 snd_hdac_stream_sync_trigger(hstr, true, sbits, sync_reg); 252 253 snd_pcm_group_for_each_entry(s, substream) { 254 if (s->pcm->card != substream->pcm->card) 255 continue; 256 azx_dev = get_azx_dev(s); 257 if (start) { 258 azx_dev->insufficient = 1; 259 snd_hdac_stream_start(azx_stream(azx_dev), true); 260 } else { 261 snd_hdac_stream_stop(azx_stream(azx_dev)); 262 } 263 } 264 spin_unlock(&bus->reg_lock); 265 266 snd_hdac_stream_sync(hstr, start, sbits); 267 268 spin_lock(&bus->reg_lock); 269 /* reset SYNC bits */ 270 snd_hdac_stream_sync_trigger(hstr, false, sbits, sync_reg); 271 if (start) 272 snd_hdac_stream_timecounter_init(hstr, sbits); 273 spin_unlock(&bus->reg_lock); 274 return 0; 275 } 276 277 unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev) 278 { 279 return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev)); 280 } 281 EXPORT_SYMBOL_GPL(azx_get_pos_lpib); 282 283 unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev) 284 { 285 return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev)); 286 } 287 EXPORT_SYMBOL_GPL(azx_get_pos_posbuf); 288 289 unsigned int azx_get_position(struct azx *chip, 290 struct azx_dev *azx_dev) 291 { 292 struct snd_pcm_substream *substream = azx_dev->core.substream; 293 unsigned int pos; 294 int stream = substream->stream; 295 int delay = 0; 296 297 if (chip->get_position[stream]) 298 pos = chip->get_position[stream](chip, azx_dev); 299 else /* use the position buffer as default */ 300 pos = azx_get_pos_posbuf(chip, azx_dev); 301 302 if (pos >= azx_dev->core.bufsize) 303 pos = 0; 304 305 if (substream->runtime) { 306 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 307 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 308 309 if (chip->get_delay[stream]) 310 delay += chip->get_delay[stream](chip, azx_dev, pos); 311 if (hinfo->ops.get_delay) 312 delay += hinfo->ops.get_delay(hinfo, apcm->codec, 313 substream); 314 substream->runtime->delay = delay; 315 } 316 317 trace_azx_get_position(chip, azx_dev, pos, delay); 318 return pos; 319 } 320 EXPORT_SYMBOL_GPL(azx_get_position); 321 322 static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream) 323 { 324 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 325 struct azx *chip = apcm->chip; 326 struct azx_dev *azx_dev = get_azx_dev(substream); 327 return bytes_to_frames(substream->runtime, 328 azx_get_position(chip, azx_dev)); 329 } 330 331 /* 332 * azx_scale64: Scale base by mult/div while not overflowing sanely 333 * 334 * Derived from scale64_check_overflow in kernel/time/timekeeping.c 335 * 336 * The tmestamps for a 48Khz stream can overflow after (2^64/10^9)/48K which 337 * is about 384307 ie ~4.5 days. 338 * 339 * This scales the calculation so that overflow will happen but after 2^64 / 340 * 48000 secs, which is pretty large! 341 * 342 * In caln below: 343 * base may overflow, but since there isn’t any additional division 344 * performed on base it’s OK 345 * rem can’t overflow because both are 32-bit values 346 */ 347 348 #ifdef CONFIG_X86 349 static u64 azx_scale64(u64 base, u32 num, u32 den) 350 { 351 u64 rem; 352 353 rem = do_div(base, den); 354 355 base *= num; 356 rem *= num; 357 358 do_div(rem, den); 359 360 return base + rem; 361 } 362 363 static int azx_get_sync_time(ktime_t *device, 364 struct system_counterval_t *system, void *ctx) 365 { 366 struct snd_pcm_substream *substream = ctx; 367 struct azx_dev *azx_dev = get_azx_dev(substream); 368 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 369 struct azx *chip = apcm->chip; 370 struct snd_pcm_runtime *runtime; 371 u64 ll_counter, ll_counter_l, ll_counter_h; 372 u64 tsc_counter, tsc_counter_l, tsc_counter_h; 373 u32 wallclk_ctr, wallclk_cycles; 374 bool direction; 375 u32 dma_select; 376 u32 timeout = 200; 377 u32 retry_count = 0; 378 379 runtime = substream->runtime; 380 381 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 382 direction = 1; 383 else 384 direction = 0; 385 386 /* 0th stream tag is not used, so DMA ch 0 is for 1st stream tag */ 387 do { 388 timeout = 100; 389 dma_select = (direction << GTSCC_CDMAS_DMA_DIR_SHIFT) | 390 (azx_dev->core.stream_tag - 1); 391 snd_hdac_chip_writel(azx_bus(chip), GTSCC, dma_select); 392 393 /* Enable the capture */ 394 snd_hdac_chip_updatel(azx_bus(chip), GTSCC, 0, GTSCC_TSCCI_MASK); 395 396 while (timeout) { 397 if (snd_hdac_chip_readl(azx_bus(chip), GTSCC) & 398 GTSCC_TSCCD_MASK) 399 break; 400 401 timeout--; 402 } 403 404 if (!timeout) { 405 dev_err(chip->card->dev, "GTSCC capture Timedout!\n"); 406 return -EIO; 407 } 408 409 /* Read wall clock counter */ 410 wallclk_ctr = snd_hdac_chip_readl(azx_bus(chip), WALFCC); 411 412 /* Read TSC counter */ 413 tsc_counter_l = snd_hdac_chip_readl(azx_bus(chip), TSCCL); 414 tsc_counter_h = snd_hdac_chip_readl(azx_bus(chip), TSCCU); 415 416 /* Read Link counter */ 417 ll_counter_l = snd_hdac_chip_readl(azx_bus(chip), LLPCL); 418 ll_counter_h = snd_hdac_chip_readl(azx_bus(chip), LLPCU); 419 420 /* Ack: registers read done */ 421 snd_hdac_chip_writel(azx_bus(chip), GTSCC, GTSCC_TSCCD_SHIFT); 422 423 tsc_counter = (tsc_counter_h << TSCCU_CCU_SHIFT) | 424 tsc_counter_l; 425 426 ll_counter = (ll_counter_h << LLPC_CCU_SHIFT) | ll_counter_l; 427 wallclk_cycles = wallclk_ctr & WALFCC_CIF_MASK; 428 429 /* 430 * An error occurs near frame "rollover". The clocks in 431 * frame value indicates whether this error may have 432 * occurred. Here we use the value of 10 i.e., 433 * HDA_MAX_CYCLE_OFFSET 434 */ 435 if (wallclk_cycles < HDA_MAX_CYCLE_VALUE - HDA_MAX_CYCLE_OFFSET 436 && wallclk_cycles > HDA_MAX_CYCLE_OFFSET) 437 break; 438 439 /* 440 * Sleep before we read again, else we may again get 441 * value near to MAX_CYCLE. Try to sleep for different 442 * amount of time so we dont hit the same number again 443 */ 444 udelay(retry_count++); 445 446 } while (retry_count != HDA_MAX_CYCLE_READ_RETRY); 447 448 if (retry_count == HDA_MAX_CYCLE_READ_RETRY) { 449 dev_err_ratelimited(chip->card->dev, 450 "Error in WALFCC cycle count\n"); 451 return -EIO; 452 } 453 454 *device = ns_to_ktime(azx_scale64(ll_counter, 455 NSEC_PER_SEC, runtime->rate)); 456 *device = ktime_add_ns(*device, (wallclk_cycles * NSEC_PER_SEC) / 457 ((HDA_MAX_CYCLE_VALUE + 1) * runtime->rate)); 458 459 *system = convert_art_to_tsc(tsc_counter); 460 461 return 0; 462 } 463 464 #else 465 static int azx_get_sync_time(ktime_t *device, 466 struct system_counterval_t *system, void *ctx) 467 { 468 return -ENXIO; 469 } 470 #endif 471 472 static int azx_get_crosststamp(struct snd_pcm_substream *substream, 473 struct system_device_crosststamp *xtstamp) 474 { 475 return get_device_system_crosststamp(azx_get_sync_time, 476 substream, NULL, xtstamp); 477 } 478 479 static inline bool is_link_time_supported(struct snd_pcm_runtime *runtime, 480 struct snd_pcm_audio_tstamp_config *ts) 481 { 482 if (runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME) 483 if (ts->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED) 484 return true; 485 486 return false; 487 } 488 489 static int azx_get_time_info(struct snd_pcm_substream *substream, 490 struct timespec *system_ts, struct timespec *audio_ts, 491 struct snd_pcm_audio_tstamp_config *audio_tstamp_config, 492 struct snd_pcm_audio_tstamp_report *audio_tstamp_report) 493 { 494 struct azx_dev *azx_dev = get_azx_dev(substream); 495 struct snd_pcm_runtime *runtime = substream->runtime; 496 struct system_device_crosststamp xtstamp; 497 int ret; 498 u64 nsec; 499 500 if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) && 501 (audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) { 502 503 snd_pcm_gettime(substream->runtime, system_ts); 504 505 nsec = timecounter_read(&azx_dev->core.tc); 506 nsec = div_u64(nsec, 3); /* can be optimized */ 507 if (audio_tstamp_config->report_delay) 508 nsec = azx_adjust_codec_delay(substream, nsec); 509 510 *audio_ts = ns_to_timespec(nsec); 511 512 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK; 513 audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */ 514 audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */ 515 516 } else if (is_link_time_supported(runtime, audio_tstamp_config)) { 517 518 ret = azx_get_crosststamp(substream, &xtstamp); 519 if (ret) 520 return ret; 521 522 switch (runtime->tstamp_type) { 523 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC: 524 return -EINVAL; 525 526 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW: 527 *system_ts = ktime_to_timespec(xtstamp.sys_monoraw); 528 break; 529 530 default: 531 *system_ts = ktime_to_timespec(xtstamp.sys_realtime); 532 break; 533 534 } 535 536 *audio_ts = ktime_to_timespec(xtstamp.device); 537 538 audio_tstamp_report->actual_type = 539 SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED; 540 audio_tstamp_report->accuracy_report = 1; 541 /* 24 MHz WallClock == 42ns resolution */ 542 audio_tstamp_report->accuracy = 42; 543 544 } else { 545 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT; 546 } 547 548 return 0; 549 } 550 551 static struct snd_pcm_hardware azx_pcm_hw = { 552 .info = (SNDRV_PCM_INFO_MMAP | 553 SNDRV_PCM_INFO_INTERLEAVED | 554 SNDRV_PCM_INFO_BLOCK_TRANSFER | 555 SNDRV_PCM_INFO_MMAP_VALID | 556 /* No full-resume yet implemented */ 557 /* SNDRV_PCM_INFO_RESUME |*/ 558 SNDRV_PCM_INFO_PAUSE | 559 SNDRV_PCM_INFO_SYNC_START | 560 SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */ 561 SNDRV_PCM_INFO_HAS_LINK_ATIME | 562 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP), 563 .formats = SNDRV_PCM_FMTBIT_S16_LE, 564 .rates = SNDRV_PCM_RATE_48000, 565 .rate_min = 48000, 566 .rate_max = 48000, 567 .channels_min = 2, 568 .channels_max = 2, 569 .buffer_bytes_max = AZX_MAX_BUF_SIZE, 570 .period_bytes_min = 128, 571 .period_bytes_max = AZX_MAX_BUF_SIZE / 2, 572 .periods_min = 2, 573 .periods_max = AZX_MAX_FRAG, 574 .fifo_size = 0, 575 }; 576 577 static int azx_pcm_open(struct snd_pcm_substream *substream) 578 { 579 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 580 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream); 581 struct azx *chip = apcm->chip; 582 struct azx_dev *azx_dev; 583 struct snd_pcm_runtime *runtime = substream->runtime; 584 int err; 585 int buff_step; 586 587 snd_hda_codec_pcm_get(apcm->info); 588 mutex_lock(&chip->open_mutex); 589 azx_dev = azx_assign_device(chip, substream); 590 trace_azx_pcm_open(chip, azx_dev); 591 if (azx_dev == NULL) { 592 err = -EBUSY; 593 goto unlock; 594 } 595 runtime->private_data = azx_dev; 596 597 runtime->hw = azx_pcm_hw; 598 if (chip->gts_present) 599 runtime->hw.info |= SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME; 600 runtime->hw.channels_min = hinfo->channels_min; 601 runtime->hw.channels_max = hinfo->channels_max; 602 runtime->hw.formats = hinfo->formats; 603 runtime->hw.rates = hinfo->rates; 604 snd_pcm_limit_hw_rates(runtime); 605 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 606 607 /* avoid wrap-around with wall-clock */ 608 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME, 609 20, 610 178000000); 611 612 /* by some reason, the playback stream stalls on PulseAudio with 613 * tsched=1 when a capture stream triggers. Until we figure out the 614 * real cause, disable tsched mode by telling the PCM info flag. 615 */ 616 if (chip->driver_caps & AZX_DCAPS_AMD_WORKAROUND) 617 runtime->hw.info |= SNDRV_PCM_INFO_BATCH; 618 619 if (chip->align_buffer_size) 620 /* constrain buffer sizes to be multiple of 128 621 bytes. This is more efficient in terms of memory 622 access but isn't required by the HDA spec and 623 prevents users from specifying exact period/buffer 624 sizes. For example for 44.1kHz, a period size set 625 to 20ms will be rounded to 19.59ms. */ 626 buff_step = 128; 627 else 628 /* Don't enforce steps on buffer sizes, still need to 629 be multiple of 4 bytes (HDA spec). Tested on Intel 630 HDA controllers, may not work on all devices where 631 option needs to be disabled */ 632 buff_step = 4; 633 634 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 635 buff_step); 636 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 637 buff_step); 638 snd_hda_power_up(apcm->codec); 639 if (hinfo->ops.open) 640 err = hinfo->ops.open(hinfo, apcm->codec, substream); 641 else 642 err = -ENODEV; 643 if (err < 0) { 644 azx_release_device(azx_dev); 645 goto powerdown; 646 } 647 snd_pcm_limit_hw_rates(runtime); 648 /* sanity check */ 649 if (snd_BUG_ON(!runtime->hw.channels_min) || 650 snd_BUG_ON(!runtime->hw.channels_max) || 651 snd_BUG_ON(!runtime->hw.formats) || 652 snd_BUG_ON(!runtime->hw.rates)) { 653 azx_release_device(azx_dev); 654 if (hinfo->ops.close) 655 hinfo->ops.close(hinfo, apcm->codec, substream); 656 err = -EINVAL; 657 goto powerdown; 658 } 659 660 /* disable LINK_ATIME timestamps for capture streams 661 until we figure out how to handle digital inputs */ 662 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { 663 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */ 664 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME; 665 } 666 667 snd_pcm_set_sync(substream); 668 mutex_unlock(&chip->open_mutex); 669 return 0; 670 671 powerdown: 672 snd_hda_power_down(apcm->codec); 673 unlock: 674 mutex_unlock(&chip->open_mutex); 675 snd_hda_codec_pcm_put(apcm->info); 676 return err; 677 } 678 679 static int azx_pcm_mmap(struct snd_pcm_substream *substream, 680 struct vm_area_struct *area) 681 { 682 struct azx_pcm *apcm = snd_pcm_substream_chip(substream); 683 struct azx *chip = apcm->chip; 684 if (chip->ops->pcm_mmap_prepare) 685 chip->ops->pcm_mmap_prepare(substream, area); 686 return snd_pcm_lib_default_mmap(substream, area); 687 } 688 689 static const struct snd_pcm_ops azx_pcm_ops = { 690 .open = azx_pcm_open, 691 .close = azx_pcm_close, 692 .hw_params = azx_pcm_hw_params, 693 .hw_free = azx_pcm_hw_free, 694 .prepare = azx_pcm_prepare, 695 .trigger = azx_pcm_trigger, 696 .pointer = azx_pcm_pointer, 697 .get_time_info = azx_get_time_info, 698 .mmap = azx_pcm_mmap, 699 }; 700 701 static void azx_pcm_free(struct snd_pcm *pcm) 702 { 703 struct azx_pcm *apcm = pcm->private_data; 704 if (apcm) { 705 list_del(&apcm->list); 706 apcm->info->pcm = NULL; 707 kfree(apcm); 708 } 709 } 710 711 #define MAX_PREALLOC_SIZE (32 * 1024 * 1024) 712 713 int snd_hda_attach_pcm_stream(struct hda_bus *_bus, struct hda_codec *codec, 714 struct hda_pcm *cpcm) 715 { 716 struct hdac_bus *bus = &_bus->core; 717 struct azx *chip = bus_to_azx(bus); 718 struct snd_pcm *pcm; 719 struct azx_pcm *apcm; 720 int pcm_dev = cpcm->device; 721 unsigned int size; 722 int s, err; 723 int type = SNDRV_DMA_TYPE_DEV_SG; 724 725 list_for_each_entry(apcm, &chip->pcm_list, list) { 726 if (apcm->pcm->device == pcm_dev) { 727 dev_err(chip->card->dev, "PCM %d already exists\n", 728 pcm_dev); 729 return -EBUSY; 730 } 731 } 732 err = snd_pcm_new(chip->card, cpcm->name, pcm_dev, 733 cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams, 734 cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams, 735 &pcm); 736 if (err < 0) 737 return err; 738 strlcpy(pcm->name, cpcm->name, sizeof(pcm->name)); 739 apcm = kzalloc(sizeof(*apcm), GFP_KERNEL); 740 if (apcm == NULL) { 741 snd_device_free(chip->card, pcm); 742 return -ENOMEM; 743 } 744 apcm->chip = chip; 745 apcm->pcm = pcm; 746 apcm->codec = codec; 747 apcm->info = cpcm; 748 pcm->private_data = apcm; 749 pcm->private_free = azx_pcm_free; 750 if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM) 751 pcm->dev_class = SNDRV_PCM_CLASS_MODEM; 752 list_add_tail(&apcm->list, &chip->pcm_list); 753 cpcm->pcm = pcm; 754 for (s = 0; s < 2; s++) { 755 if (cpcm->stream[s].substreams) 756 snd_pcm_set_ops(pcm, s, &azx_pcm_ops); 757 } 758 /* buffer pre-allocation */ 759 size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024; 760 if (size > MAX_PREALLOC_SIZE) 761 size = MAX_PREALLOC_SIZE; 762 if (chip->uc_buffer) 763 type = SNDRV_DMA_TYPE_DEV_UC_SG; 764 snd_pcm_set_managed_buffer_all(pcm, type, chip->card->dev, 765 size, MAX_PREALLOC_SIZE); 766 return 0; 767 } 768 769 static unsigned int azx_command_addr(u32 cmd) 770 { 771 unsigned int addr = cmd >> 28; 772 773 if (addr >= AZX_MAX_CODECS) { 774 snd_BUG(); 775 addr = 0; 776 } 777 778 return addr; 779 } 780 781 /* receive a response */ 782 static int azx_rirb_get_response(struct hdac_bus *bus, unsigned int addr, 783 unsigned int *res) 784 { 785 struct azx *chip = bus_to_azx(bus); 786 struct hda_bus *hbus = &chip->bus; 787 unsigned long timeout; 788 unsigned long loopcounter; 789 wait_queue_entry_t wait; 790 bool warned = false; 791 792 init_wait_entry(&wait, 0); 793 again: 794 timeout = jiffies + msecs_to_jiffies(1000); 795 796 for (loopcounter = 0;; loopcounter++) { 797 spin_lock_irq(&bus->reg_lock); 798 if (!bus->polling_mode) 799 prepare_to_wait(&bus->rirb_wq, &wait, 800 TASK_UNINTERRUPTIBLE); 801 if (bus->polling_mode) 802 snd_hdac_bus_update_rirb(bus); 803 if (!bus->rirb.cmds[addr]) { 804 if (res) 805 *res = bus->rirb.res[addr]; /* the last value */ 806 if (!bus->polling_mode) 807 finish_wait(&bus->rirb_wq, &wait); 808 spin_unlock_irq(&bus->reg_lock); 809 return 0; 810 } 811 spin_unlock_irq(&bus->reg_lock); 812 if (time_after(jiffies, timeout)) 813 break; 814 #define LOOP_COUNT_MAX 3000 815 if (!bus->polling_mode) { 816 schedule_timeout(msecs_to_jiffies(2)); 817 } else if (hbus->needs_damn_long_delay || 818 loopcounter > LOOP_COUNT_MAX) { 819 if (loopcounter > LOOP_COUNT_MAX && !warned) { 820 dev_dbg_ratelimited(chip->card->dev, 821 "too slow response, last cmd=%#08x\n", 822 bus->last_cmd[addr]); 823 warned = true; 824 } 825 msleep(2); /* temporary workaround */ 826 } else { 827 udelay(10); 828 cond_resched(); 829 } 830 } 831 832 if (!bus->polling_mode) 833 finish_wait(&bus->rirb_wq, &wait); 834 835 if (hbus->no_response_fallback) 836 return -EIO; 837 838 if (!bus->polling_mode) { 839 dev_warn(chip->card->dev, 840 "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n", 841 bus->last_cmd[addr]); 842 bus->polling_mode = 1; 843 goto again; 844 } 845 846 if (chip->msi) { 847 dev_warn(chip->card->dev, 848 "No response from codec, disabling MSI: last cmd=0x%08x\n", 849 bus->last_cmd[addr]); 850 if (chip->ops->disable_msi_reset_irq && 851 chip->ops->disable_msi_reset_irq(chip) < 0) 852 return -EIO; 853 goto again; 854 } 855 856 if (chip->probing) { 857 /* If this critical timeout happens during the codec probing 858 * phase, this is likely an access to a non-existing codec 859 * slot. Better to return an error and reset the system. 860 */ 861 return -EIO; 862 } 863 864 /* no fallback mechanism? */ 865 if (!chip->fallback_to_single_cmd) 866 return -EIO; 867 868 /* a fatal communication error; need either to reset or to fallback 869 * to the single_cmd mode 870 */ 871 if (hbus->allow_bus_reset && !hbus->response_reset && !hbus->in_reset) { 872 hbus->response_reset = 1; 873 dev_err(chip->card->dev, 874 "No response from codec, resetting bus: last cmd=0x%08x\n", 875 bus->last_cmd[addr]); 876 return -EAGAIN; /* give a chance to retry */ 877 } 878 879 dev_WARN(chip->card->dev, 880 "azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n", 881 bus->last_cmd[addr]); 882 chip->single_cmd = 1; 883 hbus->response_reset = 0; 884 snd_hdac_bus_stop_cmd_io(bus); 885 return -EIO; 886 } 887 888 /* 889 * Use the single immediate command instead of CORB/RIRB for simplicity 890 * 891 * Note: according to Intel, this is not preferred use. The command was 892 * intended for the BIOS only, and may get confused with unsolicited 893 * responses. So, we shouldn't use it for normal operation from the 894 * driver. 895 * I left the codes, however, for debugging/testing purposes. 896 */ 897 898 /* receive a response */ 899 static int azx_single_wait_for_response(struct azx *chip, unsigned int addr) 900 { 901 int timeout = 50; 902 903 while (timeout--) { 904 /* check IRV busy bit */ 905 if (azx_readw(chip, IRS) & AZX_IRS_VALID) { 906 /* reuse rirb.res as the response return value */ 907 azx_bus(chip)->rirb.res[addr] = azx_readl(chip, IR); 908 return 0; 909 } 910 udelay(1); 911 } 912 if (printk_ratelimit()) 913 dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n", 914 azx_readw(chip, IRS)); 915 azx_bus(chip)->rirb.res[addr] = -1; 916 return -EIO; 917 } 918 919 /* send a command */ 920 static int azx_single_send_cmd(struct hdac_bus *bus, u32 val) 921 { 922 struct azx *chip = bus_to_azx(bus); 923 unsigned int addr = azx_command_addr(val); 924 int timeout = 50; 925 926 bus->last_cmd[azx_command_addr(val)] = val; 927 while (timeout--) { 928 /* check ICB busy bit */ 929 if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) { 930 /* Clear IRV valid bit */ 931 azx_writew(chip, IRS, azx_readw(chip, IRS) | 932 AZX_IRS_VALID); 933 azx_writel(chip, IC, val); 934 azx_writew(chip, IRS, azx_readw(chip, IRS) | 935 AZX_IRS_BUSY); 936 return azx_single_wait_for_response(chip, addr); 937 } 938 udelay(1); 939 } 940 if (printk_ratelimit()) 941 dev_dbg(chip->card->dev, 942 "send_cmd timeout: IRS=0x%x, val=0x%x\n", 943 azx_readw(chip, IRS), val); 944 return -EIO; 945 } 946 947 /* receive a response */ 948 static int azx_single_get_response(struct hdac_bus *bus, unsigned int addr, 949 unsigned int *res) 950 { 951 if (res) 952 *res = bus->rirb.res[addr]; 953 return 0; 954 } 955 956 /* 957 * The below are the main callbacks from hda_codec. 958 * 959 * They are just the skeleton to call sub-callbacks according to the 960 * current setting of chip->single_cmd. 961 */ 962 963 /* send a command */ 964 static int azx_send_cmd(struct hdac_bus *bus, unsigned int val) 965 { 966 struct azx *chip = bus_to_azx(bus); 967 968 if (chip->disabled) 969 return 0; 970 if (chip->single_cmd) 971 return azx_single_send_cmd(bus, val); 972 else 973 return snd_hdac_bus_send_cmd(bus, val); 974 } 975 976 /* get a response */ 977 static int azx_get_response(struct hdac_bus *bus, unsigned int addr, 978 unsigned int *res) 979 { 980 struct azx *chip = bus_to_azx(bus); 981 982 if (chip->disabled) 983 return 0; 984 if (chip->single_cmd) 985 return azx_single_get_response(bus, addr, res); 986 else 987 return azx_rirb_get_response(bus, addr, res); 988 } 989 990 static const struct hdac_bus_ops bus_core_ops = { 991 .command = azx_send_cmd, 992 .get_response = azx_get_response, 993 }; 994 995 #ifdef CONFIG_SND_HDA_DSP_LOADER 996 /* 997 * DSP loading code (e.g. for CA0132) 998 */ 999 1000 /* use the first stream for loading DSP */ 1001 static struct azx_dev * 1002 azx_get_dsp_loader_dev(struct azx *chip) 1003 { 1004 struct hdac_bus *bus = azx_bus(chip); 1005 struct hdac_stream *s; 1006 1007 list_for_each_entry(s, &bus->stream_list, list) 1008 if (s->index == chip->playback_index_offset) 1009 return stream_to_azx_dev(s); 1010 1011 return NULL; 1012 } 1013 1014 int snd_hda_codec_load_dsp_prepare(struct hda_codec *codec, unsigned int format, 1015 unsigned int byte_size, 1016 struct snd_dma_buffer *bufp) 1017 { 1018 struct hdac_bus *bus = &codec->bus->core; 1019 struct azx *chip = bus_to_azx(bus); 1020 struct azx_dev *azx_dev; 1021 struct hdac_stream *hstr; 1022 bool saved = false; 1023 int err; 1024 1025 azx_dev = azx_get_dsp_loader_dev(chip); 1026 hstr = azx_stream(azx_dev); 1027 spin_lock_irq(&bus->reg_lock); 1028 if (hstr->opened) { 1029 chip->saved_azx_dev = *azx_dev; 1030 saved = true; 1031 } 1032 spin_unlock_irq(&bus->reg_lock); 1033 1034 err = snd_hdac_dsp_prepare(hstr, format, byte_size, bufp); 1035 if (err < 0) { 1036 spin_lock_irq(&bus->reg_lock); 1037 if (saved) 1038 *azx_dev = chip->saved_azx_dev; 1039 spin_unlock_irq(&bus->reg_lock); 1040 return err; 1041 } 1042 1043 hstr->prepared = 0; 1044 return err; 1045 } 1046 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_prepare); 1047 1048 void snd_hda_codec_load_dsp_trigger(struct hda_codec *codec, bool start) 1049 { 1050 struct hdac_bus *bus = &codec->bus->core; 1051 struct azx *chip = bus_to_azx(bus); 1052 struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip); 1053 1054 snd_hdac_dsp_trigger(azx_stream(azx_dev), start); 1055 } 1056 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_trigger); 1057 1058 void snd_hda_codec_load_dsp_cleanup(struct hda_codec *codec, 1059 struct snd_dma_buffer *dmab) 1060 { 1061 struct hdac_bus *bus = &codec->bus->core; 1062 struct azx *chip = bus_to_azx(bus); 1063 struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip); 1064 struct hdac_stream *hstr = azx_stream(azx_dev); 1065 1066 if (!dmab->area || !hstr->locked) 1067 return; 1068 1069 snd_hdac_dsp_cleanup(hstr, dmab); 1070 spin_lock_irq(&bus->reg_lock); 1071 if (hstr->opened) 1072 *azx_dev = chip->saved_azx_dev; 1073 hstr->locked = false; 1074 spin_unlock_irq(&bus->reg_lock); 1075 } 1076 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_cleanup); 1077 #endif /* CONFIG_SND_HDA_DSP_LOADER */ 1078 1079 /* 1080 * reset and start the controller registers 1081 */ 1082 void azx_init_chip(struct azx *chip, bool full_reset) 1083 { 1084 if (snd_hdac_bus_init_chip(azx_bus(chip), full_reset)) { 1085 /* correct RINTCNT for CXT */ 1086 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) 1087 azx_writew(chip, RINTCNT, 0xc0); 1088 } 1089 } 1090 EXPORT_SYMBOL_GPL(azx_init_chip); 1091 1092 void azx_stop_all_streams(struct azx *chip) 1093 { 1094 struct hdac_bus *bus = azx_bus(chip); 1095 struct hdac_stream *s; 1096 1097 list_for_each_entry(s, &bus->stream_list, list) 1098 snd_hdac_stream_stop(s); 1099 } 1100 EXPORT_SYMBOL_GPL(azx_stop_all_streams); 1101 1102 void azx_stop_chip(struct azx *chip) 1103 { 1104 snd_hdac_bus_stop_chip(azx_bus(chip)); 1105 } 1106 EXPORT_SYMBOL_GPL(azx_stop_chip); 1107 1108 /* 1109 * interrupt handler 1110 */ 1111 static void stream_update(struct hdac_bus *bus, struct hdac_stream *s) 1112 { 1113 struct azx *chip = bus_to_azx(bus); 1114 struct azx_dev *azx_dev = stream_to_azx_dev(s); 1115 1116 /* check whether this IRQ is really acceptable */ 1117 if (!chip->ops->position_check || 1118 chip->ops->position_check(chip, azx_dev)) { 1119 spin_unlock(&bus->reg_lock); 1120 snd_pcm_period_elapsed(azx_stream(azx_dev)->substream); 1121 spin_lock(&bus->reg_lock); 1122 } 1123 } 1124 1125 irqreturn_t azx_interrupt(int irq, void *dev_id) 1126 { 1127 struct azx *chip = dev_id; 1128 struct hdac_bus *bus = azx_bus(chip); 1129 u32 status; 1130 bool active, handled = false; 1131 int repeat = 0; /* count for avoiding endless loop */ 1132 1133 #ifdef CONFIG_PM 1134 if (azx_has_pm_runtime(chip)) 1135 if (!pm_runtime_active(chip->card->dev)) 1136 return IRQ_NONE; 1137 #endif 1138 1139 spin_lock(&bus->reg_lock); 1140 1141 if (chip->disabled) 1142 goto unlock; 1143 1144 do { 1145 status = azx_readl(chip, INTSTS); 1146 if (status == 0 || status == 0xffffffff) 1147 break; 1148 1149 handled = true; 1150 active = false; 1151 if (snd_hdac_bus_handle_stream_irq(bus, status, stream_update)) 1152 active = true; 1153 1154 /* clear rirb int */ 1155 status = azx_readb(chip, RIRBSTS); 1156 if (status & RIRB_INT_MASK) { 1157 active = true; 1158 if (status & RIRB_INT_RESPONSE) { 1159 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) 1160 udelay(80); 1161 snd_hdac_bus_update_rirb(bus); 1162 } 1163 azx_writeb(chip, RIRBSTS, RIRB_INT_MASK); 1164 } 1165 } while (active && ++repeat < 10); 1166 1167 unlock: 1168 spin_unlock(&bus->reg_lock); 1169 1170 return IRQ_RETVAL(handled); 1171 } 1172 EXPORT_SYMBOL_GPL(azx_interrupt); 1173 1174 /* 1175 * Codec initerface 1176 */ 1177 1178 /* 1179 * Probe the given codec address 1180 */ 1181 static int probe_codec(struct azx *chip, int addr) 1182 { 1183 unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) | 1184 (AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID; 1185 struct hdac_bus *bus = azx_bus(chip); 1186 int err; 1187 unsigned int res = -1; 1188 1189 mutex_lock(&bus->cmd_mutex); 1190 chip->probing = 1; 1191 azx_send_cmd(bus, cmd); 1192 err = azx_get_response(bus, addr, &res); 1193 chip->probing = 0; 1194 mutex_unlock(&bus->cmd_mutex); 1195 if (err < 0 || res == -1) 1196 return -EIO; 1197 dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr); 1198 return 0; 1199 } 1200 1201 void snd_hda_bus_reset(struct hda_bus *bus) 1202 { 1203 struct azx *chip = bus_to_azx(&bus->core); 1204 1205 bus->in_reset = 1; 1206 azx_stop_chip(chip); 1207 azx_init_chip(chip, true); 1208 if (bus->core.chip_init) 1209 snd_hda_bus_reset_codecs(bus); 1210 bus->in_reset = 0; 1211 } 1212 1213 /* HD-audio bus initialization */ 1214 int azx_bus_init(struct azx *chip, const char *model) 1215 { 1216 struct hda_bus *bus = &chip->bus; 1217 int err; 1218 1219 err = snd_hdac_bus_init(&bus->core, chip->card->dev, &bus_core_ops); 1220 if (err < 0) 1221 return err; 1222 1223 bus->card = chip->card; 1224 mutex_init(&bus->prepare_mutex); 1225 bus->pci = chip->pci; 1226 bus->modelname = model; 1227 bus->mixer_assigned = -1; 1228 bus->core.snoop = azx_snoop(chip); 1229 if (chip->get_position[0] != azx_get_pos_lpib || 1230 chip->get_position[1] != azx_get_pos_lpib) 1231 bus->core.use_posbuf = true; 1232 bus->core.bdl_pos_adj = chip->bdl_pos_adj; 1233 if (chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR) 1234 bus->core.corbrp_self_clear = true; 1235 1236 if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY) 1237 bus->core.align_bdle_4k = true; 1238 1239 /* AMD chipsets often cause the communication stalls upon certain 1240 * sequence like the pin-detection. It seems that forcing the synced 1241 * access works around the stall. Grrr... 1242 */ 1243 if (chip->driver_caps & AZX_DCAPS_SYNC_WRITE) { 1244 dev_dbg(chip->card->dev, "Enable sync_write for stable communication\n"); 1245 bus->core.sync_write = 1; 1246 bus->allow_bus_reset = 1; 1247 } 1248 1249 return 0; 1250 } 1251 EXPORT_SYMBOL_GPL(azx_bus_init); 1252 1253 /* Probe codecs */ 1254 int azx_probe_codecs(struct azx *chip, unsigned int max_slots) 1255 { 1256 struct hdac_bus *bus = azx_bus(chip); 1257 int c, codecs, err; 1258 1259 codecs = 0; 1260 if (!max_slots) 1261 max_slots = AZX_DEFAULT_CODECS; 1262 1263 /* First try to probe all given codec slots */ 1264 for (c = 0; c < max_slots; c++) { 1265 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) { 1266 if (probe_codec(chip, c) < 0) { 1267 /* Some BIOSen give you wrong codec addresses 1268 * that don't exist 1269 */ 1270 dev_warn(chip->card->dev, 1271 "Codec #%d probe error; disabling it...\n", c); 1272 bus->codec_mask &= ~(1 << c); 1273 /* More badly, accessing to a non-existing 1274 * codec often screws up the controller chip, 1275 * and disturbs the further communications. 1276 * Thus if an error occurs during probing, 1277 * better to reset the controller chip to 1278 * get back to the sanity state. 1279 */ 1280 azx_stop_chip(chip); 1281 azx_init_chip(chip, true); 1282 } 1283 } 1284 } 1285 1286 /* Then create codec instances */ 1287 for (c = 0; c < max_slots; c++) { 1288 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) { 1289 struct hda_codec *codec; 1290 err = snd_hda_codec_new(&chip->bus, chip->card, c, &codec); 1291 if (err < 0) 1292 continue; 1293 codec->jackpoll_interval = chip->jackpoll_interval; 1294 codec->beep_mode = chip->beep_mode; 1295 codecs++; 1296 } 1297 } 1298 if (!codecs) { 1299 dev_err(chip->card->dev, "no codecs initialized\n"); 1300 return -ENXIO; 1301 } 1302 return 0; 1303 } 1304 EXPORT_SYMBOL_GPL(azx_probe_codecs); 1305 1306 /* configure each codec instance */ 1307 int azx_codec_configure(struct azx *chip) 1308 { 1309 struct hda_codec *codec, *next; 1310 1311 /* use _safe version here since snd_hda_codec_configure() deregisters 1312 * the device upon error and deletes itself from the bus list. 1313 */ 1314 list_for_each_codec_safe(codec, next, &chip->bus) { 1315 snd_hda_codec_configure(codec); 1316 } 1317 1318 if (!azx_bus(chip)->num_codecs) 1319 return -ENODEV; 1320 return 0; 1321 } 1322 EXPORT_SYMBOL_GPL(azx_codec_configure); 1323 1324 static int stream_direction(struct azx *chip, unsigned char index) 1325 { 1326 if (index >= chip->capture_index_offset && 1327 index < chip->capture_index_offset + chip->capture_streams) 1328 return SNDRV_PCM_STREAM_CAPTURE; 1329 return SNDRV_PCM_STREAM_PLAYBACK; 1330 } 1331 1332 /* initialize SD streams */ 1333 int azx_init_streams(struct azx *chip) 1334 { 1335 int i; 1336 int stream_tags[2] = { 0, 0 }; 1337 1338 /* initialize each stream (aka device) 1339 * assign the starting bdl address to each stream (device) 1340 * and initialize 1341 */ 1342 for (i = 0; i < chip->num_streams; i++) { 1343 struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL); 1344 int dir, tag; 1345 1346 if (!azx_dev) 1347 return -ENOMEM; 1348 1349 dir = stream_direction(chip, i); 1350 /* stream tag must be unique throughout 1351 * the stream direction group, 1352 * valid values 1...15 1353 * use separate stream tag if the flag 1354 * AZX_DCAPS_SEPARATE_STREAM_TAG is used 1355 */ 1356 if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG) 1357 tag = ++stream_tags[dir]; 1358 else 1359 tag = i + 1; 1360 snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev), 1361 i, dir, tag); 1362 } 1363 1364 return 0; 1365 } 1366 EXPORT_SYMBOL_GPL(azx_init_streams); 1367 1368 void azx_free_streams(struct azx *chip) 1369 { 1370 struct hdac_bus *bus = azx_bus(chip); 1371 struct hdac_stream *s; 1372 1373 while (!list_empty(&bus->stream_list)) { 1374 s = list_first_entry(&bus->stream_list, struct hdac_stream, list); 1375 list_del(&s->list); 1376 kfree(stream_to_azx_dev(s)); 1377 } 1378 } 1379 EXPORT_SYMBOL_GPL(azx_free_streams); 1380