xref: /openbmc/linux/sound/pci/hda/hda_codec.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Universal Interface for Intel High Definition Audio Codec
3  *
4  * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5  *
6  *
7  *  This driver is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This driver is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21 
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/mutex.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/tlv.h>
32 #include <sound/initval.h>
33 #include "hda_local.h"
34 #include <sound/hda_hwdep.h>
35 
36 #ifdef CONFIG_SND_HDA_POWER_SAVE
37 /* define this option here to hide as static */
38 static int power_save = CONFIG_SND_HDA_POWER_SAVE_DEFAULT;
39 module_param(power_save, int, 0644);
40 MODULE_PARM_DESC(power_save, "Automatic power-saving timeout "
41 		 "(in second, 0 = disable).");
42 #endif
43 
44 /*
45  * vendor / preset table
46  */
47 
48 struct hda_vendor_id {
49 	unsigned int id;
50 	const char *name;
51 };
52 
53 /* codec vendor labels */
54 static struct hda_vendor_id hda_vendor_ids[] = {
55 	{ 0x10ec, "Realtek" },
56 	{ 0x1057, "Motorola" },
57 	{ 0x1106, "VIA" },
58 	{ 0x11d4, "Analog Devices" },
59 	{ 0x13f6, "C-Media" },
60 	{ 0x14f1, "Conexant" },
61 	{ 0x434d, "C-Media" },
62 	{ 0x8384, "SigmaTel" },
63 	{} /* terminator */
64 };
65 
66 /* codec presets */
67 #include "hda_patch.h"
68 
69 
70 #ifdef CONFIG_SND_HDA_POWER_SAVE
71 static void hda_power_work(struct work_struct *work);
72 static void hda_keep_power_on(struct hda_codec *codec);
73 #else
74 static inline void hda_keep_power_on(struct hda_codec *codec) {}
75 #endif
76 
77 /**
78  * snd_hda_codec_read - send a command and get the response
79  * @codec: the HDA codec
80  * @nid: NID to send the command
81  * @direct: direct flag
82  * @verb: the verb to send
83  * @parm: the parameter for the verb
84  *
85  * Send a single command and read the corresponding response.
86  *
87  * Returns the obtained response value, or -1 for an error.
88  */
89 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
90 				int direct,
91 				unsigned int verb, unsigned int parm)
92 {
93 	unsigned int res;
94 	snd_hda_power_up(codec);
95 	mutex_lock(&codec->bus->cmd_mutex);
96 	if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
97 		res = codec->bus->ops.get_response(codec);
98 	else
99 		res = (unsigned int)-1;
100 	mutex_unlock(&codec->bus->cmd_mutex);
101 	snd_hda_power_down(codec);
102 	return res;
103 }
104 
105 /**
106  * snd_hda_codec_write - send a single command without waiting for response
107  * @codec: the HDA codec
108  * @nid: NID to send the command
109  * @direct: direct flag
110  * @verb: the verb to send
111  * @parm: the parameter for the verb
112  *
113  * Send a single command without waiting for response.
114  *
115  * Returns 0 if successful, or a negative error code.
116  */
117 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
118 			 unsigned int verb, unsigned int parm)
119 {
120 	int err;
121 	snd_hda_power_up(codec);
122 	mutex_lock(&codec->bus->cmd_mutex);
123 	err = codec->bus->ops.command(codec, nid, direct, verb, parm);
124 	mutex_unlock(&codec->bus->cmd_mutex);
125 	snd_hda_power_down(codec);
126 	return err;
127 }
128 
129 /**
130  * snd_hda_sequence_write - sequence writes
131  * @codec: the HDA codec
132  * @seq: VERB array to send
133  *
134  * Send the commands sequentially from the given array.
135  * The array must be terminated with NID=0.
136  */
137 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
138 {
139 	for (; seq->nid; seq++)
140 		snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
141 }
142 
143 /**
144  * snd_hda_get_sub_nodes - get the range of sub nodes
145  * @codec: the HDA codec
146  * @nid: NID to parse
147  * @start_id: the pointer to store the start NID
148  *
149  * Parse the NID and store the start NID of its sub-nodes.
150  * Returns the number of sub-nodes.
151  */
152 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
153 			  hda_nid_t *start_id)
154 {
155 	unsigned int parm;
156 
157 	parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
158 	if (parm == -1)
159 		return 0;
160 	*start_id = (parm >> 16) & 0x7fff;
161 	return (int)(parm & 0x7fff);
162 }
163 
164 /**
165  * snd_hda_get_connections - get connection list
166  * @codec: the HDA codec
167  * @nid: NID to parse
168  * @conn_list: connection list array
169  * @max_conns: max. number of connections to store
170  *
171  * Parses the connection list of the given widget and stores the list
172  * of NIDs.
173  *
174  * Returns the number of connections, or a negative error code.
175  */
176 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
177 			    hda_nid_t *conn_list, int max_conns)
178 {
179 	unsigned int parm;
180 	int i, conn_len, conns;
181 	unsigned int shift, num_elems, mask;
182 	hda_nid_t prev_nid;
183 
184 	snd_assert(conn_list && max_conns > 0, return -EINVAL);
185 
186 	parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
187 	if (parm & AC_CLIST_LONG) {
188 		/* long form */
189 		shift = 16;
190 		num_elems = 2;
191 	} else {
192 		/* short form */
193 		shift = 8;
194 		num_elems = 4;
195 	}
196 	conn_len = parm & AC_CLIST_LENGTH;
197 	mask = (1 << (shift-1)) - 1;
198 
199 	if (!conn_len)
200 		return 0; /* no connection */
201 
202 	if (conn_len == 1) {
203 		/* single connection */
204 		parm = snd_hda_codec_read(codec, nid, 0,
205 					  AC_VERB_GET_CONNECT_LIST, 0);
206 		conn_list[0] = parm & mask;
207 		return 1;
208 	}
209 
210 	/* multi connection */
211 	conns = 0;
212 	prev_nid = 0;
213 	for (i = 0; i < conn_len; i++) {
214 		int range_val;
215 		hda_nid_t val, n;
216 
217 		if (i % num_elems == 0)
218 			parm = snd_hda_codec_read(codec, nid, 0,
219 						  AC_VERB_GET_CONNECT_LIST, i);
220 		range_val = !!(parm & (1 << (shift-1))); /* ranges */
221 		val = parm & mask;
222 		parm >>= shift;
223 		if (range_val) {
224 			/* ranges between the previous and this one */
225 			if (!prev_nid || prev_nid >= val) {
226 				snd_printk(KERN_WARNING "hda_codec: "
227 					   "invalid dep_range_val %x:%x\n",
228 					   prev_nid, val);
229 				continue;
230 			}
231 			for (n = prev_nid + 1; n <= val; n++) {
232 				if (conns >= max_conns) {
233 					snd_printk(KERN_ERR
234 						   "Too many connections\n");
235 					return -EINVAL;
236 				}
237 				conn_list[conns++] = n;
238 			}
239 		} else {
240 			if (conns >= max_conns) {
241 				snd_printk(KERN_ERR "Too many connections\n");
242 				return -EINVAL;
243 			}
244 			conn_list[conns++] = val;
245 		}
246 		prev_nid = val;
247 	}
248 	return conns;
249 }
250 
251 
252 /**
253  * snd_hda_queue_unsol_event - add an unsolicited event to queue
254  * @bus: the BUS
255  * @res: unsolicited event (lower 32bit of RIRB entry)
256  * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
257  *
258  * Adds the given event to the queue.  The events are processed in
259  * the workqueue asynchronously.  Call this function in the interrupt
260  * hanlder when RIRB receives an unsolicited event.
261  *
262  * Returns 0 if successful, or a negative error code.
263  */
264 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
265 {
266 	struct hda_bus_unsolicited *unsol;
267 	unsigned int wp;
268 
269 	unsol = bus->unsol;
270 	if (!unsol)
271 		return 0;
272 
273 	wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
274 	unsol->wp = wp;
275 
276 	wp <<= 1;
277 	unsol->queue[wp] = res;
278 	unsol->queue[wp + 1] = res_ex;
279 
280 	schedule_work(&unsol->work);
281 
282 	return 0;
283 }
284 
285 /*
286  * process queueud unsolicited events
287  */
288 static void process_unsol_events(struct work_struct *work)
289 {
290 	struct hda_bus_unsolicited *unsol =
291 		container_of(work, struct hda_bus_unsolicited, work);
292 	struct hda_bus *bus = unsol->bus;
293 	struct hda_codec *codec;
294 	unsigned int rp, caddr, res;
295 
296 	while (unsol->rp != unsol->wp) {
297 		rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
298 		unsol->rp = rp;
299 		rp <<= 1;
300 		res = unsol->queue[rp];
301 		caddr = unsol->queue[rp + 1];
302 		if (!(caddr & (1 << 4))) /* no unsolicited event? */
303 			continue;
304 		codec = bus->caddr_tbl[caddr & 0x0f];
305 		if (codec && codec->patch_ops.unsol_event)
306 			codec->patch_ops.unsol_event(codec, res);
307 	}
308 }
309 
310 /*
311  * initialize unsolicited queue
312  */
313 static int __devinit init_unsol_queue(struct hda_bus *bus)
314 {
315 	struct hda_bus_unsolicited *unsol;
316 
317 	if (bus->unsol) /* already initialized */
318 		return 0;
319 
320 	unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
321 	if (!unsol) {
322 		snd_printk(KERN_ERR "hda_codec: "
323 			   "can't allocate unsolicited queue\n");
324 		return -ENOMEM;
325 	}
326 	INIT_WORK(&unsol->work, process_unsol_events);
327 	unsol->bus = bus;
328 	bus->unsol = unsol;
329 	return 0;
330 }
331 
332 /*
333  * destructor
334  */
335 static void snd_hda_codec_free(struct hda_codec *codec);
336 
337 static int snd_hda_bus_free(struct hda_bus *bus)
338 {
339 	struct hda_codec *codec, *n;
340 
341 	if (!bus)
342 		return 0;
343 	if (bus->unsol) {
344 		flush_scheduled_work();
345 		kfree(bus->unsol);
346 	}
347 	list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
348 		snd_hda_codec_free(codec);
349 	}
350 	if (bus->ops.private_free)
351 		bus->ops.private_free(bus);
352 	kfree(bus);
353 	return 0;
354 }
355 
356 static int snd_hda_bus_dev_free(struct snd_device *device)
357 {
358 	struct hda_bus *bus = device->device_data;
359 	return snd_hda_bus_free(bus);
360 }
361 
362 /**
363  * snd_hda_bus_new - create a HDA bus
364  * @card: the card entry
365  * @temp: the template for hda_bus information
366  * @busp: the pointer to store the created bus instance
367  *
368  * Returns 0 if successful, or a negative error code.
369  */
370 int __devinit snd_hda_bus_new(struct snd_card *card,
371 			      const struct hda_bus_template *temp,
372 			      struct hda_bus **busp)
373 {
374 	struct hda_bus *bus;
375 	int err;
376 	static struct snd_device_ops dev_ops = {
377 		.dev_free = snd_hda_bus_dev_free,
378 	};
379 
380 	snd_assert(temp, return -EINVAL);
381 	snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
382 
383 	if (busp)
384 		*busp = NULL;
385 
386 	bus = kzalloc(sizeof(*bus), GFP_KERNEL);
387 	if (bus == NULL) {
388 		snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
389 		return -ENOMEM;
390 	}
391 
392 	bus->card = card;
393 	bus->private_data = temp->private_data;
394 	bus->pci = temp->pci;
395 	bus->modelname = temp->modelname;
396 	bus->ops = temp->ops;
397 
398 	mutex_init(&bus->cmd_mutex);
399 	INIT_LIST_HEAD(&bus->codec_list);
400 
401 	err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
402 	if (err < 0) {
403 		snd_hda_bus_free(bus);
404 		return err;
405 	}
406 	if (busp)
407 		*busp = bus;
408 	return 0;
409 }
410 
411 #ifdef CONFIG_SND_HDA_GENERIC
412 #define is_generic_config(codec) \
413 	(codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
414 #else
415 #define is_generic_config(codec)	0
416 #endif
417 
418 /*
419  * find a matching codec preset
420  */
421 static const struct hda_codec_preset __devinit *
422 find_codec_preset(struct hda_codec *codec)
423 {
424 	const struct hda_codec_preset **tbl, *preset;
425 
426 	if (is_generic_config(codec))
427 		return NULL; /* use the generic parser */
428 
429 	for (tbl = hda_preset_tables; *tbl; tbl++) {
430 		for (preset = *tbl; preset->id; preset++) {
431 			u32 mask = preset->mask;
432 			if (!mask)
433 				mask = ~0;
434 			if (preset->id == (codec->vendor_id & mask) &&
435 			    (!preset->rev ||
436 			     preset->rev == codec->revision_id))
437 				return preset;
438 		}
439 	}
440 	return NULL;
441 }
442 
443 /*
444  * snd_hda_get_codec_name - store the codec name
445  */
446 void snd_hda_get_codec_name(struct hda_codec *codec,
447 			    char *name, int namelen)
448 {
449 	const struct hda_vendor_id *c;
450 	const char *vendor = NULL;
451 	u16 vendor_id = codec->vendor_id >> 16;
452 	char tmp[16];
453 
454 	for (c = hda_vendor_ids; c->id; c++) {
455 		if (c->id == vendor_id) {
456 			vendor = c->name;
457 			break;
458 		}
459 	}
460 	if (!vendor) {
461 		sprintf(tmp, "Generic %04x", vendor_id);
462 		vendor = tmp;
463 	}
464 	if (codec->preset && codec->preset->name)
465 		snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
466 	else
467 		snprintf(name, namelen, "%s ID %x", vendor,
468 			 codec->vendor_id & 0xffff);
469 }
470 
471 /*
472  * look for an AFG and MFG nodes
473  */
474 static void __devinit setup_fg_nodes(struct hda_codec *codec)
475 {
476 	int i, total_nodes;
477 	hda_nid_t nid;
478 
479 	total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
480 	for (i = 0; i < total_nodes; i++, nid++) {
481 		unsigned int func;
482 		func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
483 		switch (func & 0xff) {
484 		case AC_GRP_AUDIO_FUNCTION:
485 			codec->afg = nid;
486 			break;
487 		case AC_GRP_MODEM_FUNCTION:
488 			codec->mfg = nid;
489 			break;
490 		default:
491 			break;
492 		}
493 	}
494 }
495 
496 /*
497  * read widget caps for each widget and store in cache
498  */
499 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
500 {
501 	int i;
502 	hda_nid_t nid;
503 
504 	codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
505 						 &codec->start_nid);
506 	codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
507 	if (!codec->wcaps)
508 		return -ENOMEM;
509 	nid = codec->start_nid;
510 	for (i = 0; i < codec->num_nodes; i++, nid++)
511 		codec->wcaps[i] = snd_hda_param_read(codec, nid,
512 						     AC_PAR_AUDIO_WIDGET_CAP);
513 	return 0;
514 }
515 
516 
517 static void init_hda_cache(struct hda_cache_rec *cache,
518 			   unsigned int record_size);
519 static void free_hda_cache(struct hda_cache_rec *cache);
520 
521 /*
522  * codec destructor
523  */
524 static void snd_hda_codec_free(struct hda_codec *codec)
525 {
526 	if (!codec)
527 		return;
528 #ifdef CONFIG_SND_HDA_POWER_SAVE
529 	cancel_delayed_work(&codec->power_work);
530 	flush_scheduled_work();
531 #endif
532 	list_del(&codec->list);
533 	codec->bus->caddr_tbl[codec->addr] = NULL;
534 	if (codec->patch_ops.free)
535 		codec->patch_ops.free(codec);
536 	free_hda_cache(&codec->amp_cache);
537 	free_hda_cache(&codec->cmd_cache);
538 	kfree(codec->wcaps);
539 	kfree(codec);
540 }
541 
542 /**
543  * snd_hda_codec_new - create a HDA codec
544  * @bus: the bus to assign
545  * @codec_addr: the codec address
546  * @codecp: the pointer to store the generated codec
547  *
548  * Returns 0 if successful, or a negative error code.
549  */
550 int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
551 				struct hda_codec **codecp)
552 {
553 	struct hda_codec *codec;
554 	char component[13];
555 	int err;
556 
557 	snd_assert(bus, return -EINVAL);
558 	snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
559 
560 	if (bus->caddr_tbl[codec_addr]) {
561 		snd_printk(KERN_ERR "hda_codec: "
562 			   "address 0x%x is already occupied\n", codec_addr);
563 		return -EBUSY;
564 	}
565 
566 	codec = kzalloc(sizeof(*codec), GFP_KERNEL);
567 	if (codec == NULL) {
568 		snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
569 		return -ENOMEM;
570 	}
571 
572 	codec->bus = bus;
573 	codec->addr = codec_addr;
574 	mutex_init(&codec->spdif_mutex);
575 	init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info));
576 	init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head));
577 
578 #ifdef CONFIG_SND_HDA_POWER_SAVE
579 	INIT_DELAYED_WORK(&codec->power_work, hda_power_work);
580 	/* snd_hda_codec_new() marks the codec as power-up, and leave it as is.
581 	 * the caller has to power down appropriatley after initialization
582 	 * phase.
583 	 */
584 	hda_keep_power_on(codec);
585 #endif
586 
587 	list_add_tail(&codec->list, &bus->codec_list);
588 	bus->caddr_tbl[codec_addr] = codec;
589 
590 	codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
591 					      AC_PAR_VENDOR_ID);
592 	if (codec->vendor_id == -1)
593 		/* read again, hopefully the access method was corrected
594 		 * in the last read...
595 		 */
596 		codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
597 						      AC_PAR_VENDOR_ID);
598 	codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
599 						 AC_PAR_SUBSYSTEM_ID);
600 	codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
601 						AC_PAR_REV_ID);
602 
603 	setup_fg_nodes(codec);
604 	if (!codec->afg && !codec->mfg) {
605 		snd_printdd("hda_codec: no AFG or MFG node found\n");
606 		snd_hda_codec_free(codec);
607 		return -ENODEV;
608 	}
609 
610 	if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
611 		snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
612 		snd_hda_codec_free(codec);
613 		return -ENOMEM;
614 	}
615 
616 	if (!codec->subsystem_id) {
617 		hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
618 		codec->subsystem_id =
619 			snd_hda_codec_read(codec, nid, 0,
620 					   AC_VERB_GET_SUBSYSTEM_ID, 0);
621 	}
622 
623 	codec->preset = find_codec_preset(codec);
624 	/* audio codec should override the mixer name */
625 	if (codec->afg || !*bus->card->mixername)
626 		snd_hda_get_codec_name(codec, bus->card->mixername,
627 				       sizeof(bus->card->mixername));
628 
629 #ifdef CONFIG_SND_HDA_GENERIC
630 	if (is_generic_config(codec)) {
631 		err = snd_hda_parse_generic_codec(codec);
632 		goto patched;
633 	}
634 #endif
635 	if (codec->preset && codec->preset->patch) {
636 		err = codec->preset->patch(codec);
637 		goto patched;
638 	}
639 
640 	/* call the default parser */
641 #ifdef CONFIG_SND_HDA_GENERIC
642 	err = snd_hda_parse_generic_codec(codec);
643 #else
644 	printk(KERN_ERR "hda-codec: No codec parser is available\n");
645 	err = -ENODEV;
646 #endif
647 
648  patched:
649 	if (err < 0) {
650 		snd_hda_codec_free(codec);
651 		return err;
652 	}
653 
654 	if (codec->patch_ops.unsol_event)
655 		init_unsol_queue(bus);
656 
657 	snd_hda_codec_proc_new(codec);
658 #ifdef CONFIG_SND_HDA_HWDEP
659 	snd_hda_create_hwdep(codec);
660 #endif
661 
662 	sprintf(component, "HDA:%08x", codec->vendor_id);
663 	snd_component_add(codec->bus->card, component);
664 
665 	if (codecp)
666 		*codecp = codec;
667 	return 0;
668 }
669 
670 /**
671  * snd_hda_codec_setup_stream - set up the codec for streaming
672  * @codec: the CODEC to set up
673  * @nid: the NID to set up
674  * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
675  * @channel_id: channel id to pass, zero based.
676  * @format: stream format.
677  */
678 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
679 				u32 stream_tag,
680 				int channel_id, int format)
681 {
682 	if (!nid)
683 		return;
684 
685 	snd_printdd("hda_codec_setup_stream: "
686 		    "NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
687 		    nid, stream_tag, channel_id, format);
688 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
689 			    (stream_tag << 4) | channel_id);
690 	msleep(1);
691 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
692 }
693 
694 /*
695  * amp access functions
696  */
697 
698 /* FIXME: more better hash key? */
699 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
700 #define INFO_AMP_CAPS	(1<<0)
701 #define INFO_AMP_VOL(ch)	(1 << (1 + (ch)))
702 
703 /* initialize the hash table */
704 static void __devinit init_hda_cache(struct hda_cache_rec *cache,
705 				     unsigned int record_size)
706 {
707 	memset(cache, 0, sizeof(*cache));
708 	memset(cache->hash, 0xff, sizeof(cache->hash));
709 	cache->record_size = record_size;
710 }
711 
712 static void free_hda_cache(struct hda_cache_rec *cache)
713 {
714 	kfree(cache->buffer);
715 }
716 
717 /* query the hash.  allocate an entry if not found. */
718 static struct hda_cache_head  *get_alloc_hash(struct hda_cache_rec *cache,
719 					      u32 key)
720 {
721 	u16 idx = key % (u16)ARRAY_SIZE(cache->hash);
722 	u16 cur = cache->hash[idx];
723 	struct hda_cache_head *info;
724 
725 	while (cur != 0xffff) {
726 		info = (struct hda_cache_head *)(cache->buffer +
727 						 cur * cache->record_size);
728 		if (info->key == key)
729 			return info;
730 		cur = info->next;
731 	}
732 
733 	/* add a new hash entry */
734 	if (cache->num_entries >= cache->size) {
735 		/* reallocate the array */
736 		unsigned int new_size = cache->size + 64;
737 		void *new_buffer;
738 		new_buffer = kcalloc(new_size, cache->record_size, GFP_KERNEL);
739 		if (!new_buffer) {
740 			snd_printk(KERN_ERR "hda_codec: "
741 				   "can't malloc amp_info\n");
742 			return NULL;
743 		}
744 		if (cache->buffer) {
745 			memcpy(new_buffer, cache->buffer,
746 			       cache->size * cache->record_size);
747 			kfree(cache->buffer);
748 		}
749 		cache->size = new_size;
750 		cache->buffer = new_buffer;
751 	}
752 	cur = cache->num_entries++;
753 	info = (struct hda_cache_head *)(cache->buffer +
754 					 cur * cache->record_size);
755 	info->key = key;
756 	info->val = 0;
757 	info->next = cache->hash[idx];
758 	cache->hash[idx] = cur;
759 
760 	return info;
761 }
762 
763 /* query and allocate an amp hash entry */
764 static inline struct hda_amp_info *
765 get_alloc_amp_hash(struct hda_codec *codec, u32 key)
766 {
767 	return (struct hda_amp_info *)get_alloc_hash(&codec->amp_cache, key);
768 }
769 
770 /*
771  * query AMP capabilities for the given widget and direction
772  */
773 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
774 {
775 	struct hda_amp_info *info;
776 
777 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
778 	if (!info)
779 		return 0;
780 	if (!(info->head.val & INFO_AMP_CAPS)) {
781 		if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
782 			nid = codec->afg;
783 		info->amp_caps = snd_hda_param_read(codec, nid,
784 						    direction == HDA_OUTPUT ?
785 						    AC_PAR_AMP_OUT_CAP :
786 						    AC_PAR_AMP_IN_CAP);
787 		if (info->amp_caps)
788 			info->head.val |= INFO_AMP_CAPS;
789 	}
790 	return info->amp_caps;
791 }
792 
793 int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir,
794 			      unsigned int caps)
795 {
796 	struct hda_amp_info *info;
797 
798 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, dir, 0));
799 	if (!info)
800 		return -EINVAL;
801 	info->amp_caps = caps;
802 	info->head.val |= INFO_AMP_CAPS;
803 	return 0;
804 }
805 
806 /*
807  * read the current volume to info
808  * if the cache exists, read the cache value.
809  */
810 static unsigned int get_vol_mute(struct hda_codec *codec,
811 				 struct hda_amp_info *info, hda_nid_t nid,
812 				 int ch, int direction, int index)
813 {
814 	u32 val, parm;
815 
816 	if (info->head.val & INFO_AMP_VOL(ch))
817 		return info->vol[ch];
818 
819 	parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
820 	parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
821 	parm |= index;
822 	val = snd_hda_codec_read(codec, nid, 0,
823 				 AC_VERB_GET_AMP_GAIN_MUTE, parm);
824 	info->vol[ch] = val & 0xff;
825 	info->head.val |= INFO_AMP_VOL(ch);
826 	return info->vol[ch];
827 }
828 
829 /*
830  * write the current volume in info to the h/w and update the cache
831  */
832 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
833 			 hda_nid_t nid, int ch, int direction, int index,
834 			 int val)
835 {
836 	u32 parm;
837 
838 	parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
839 	parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
840 	parm |= index << AC_AMP_SET_INDEX_SHIFT;
841 	parm |= val;
842 	snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
843 	info->vol[ch] = val;
844 }
845 
846 /*
847  * read AMP value.  The volume is between 0 to 0x7f, 0x80 = mute bit.
848  */
849 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
850 			   int direction, int index)
851 {
852 	struct hda_amp_info *info;
853 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
854 	if (!info)
855 		return 0;
856 	return get_vol_mute(codec, info, nid, ch, direction, index);
857 }
858 
859 /*
860  * update the AMP value, mask = bit mask to set, val = the value
861  */
862 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
863 			     int direction, int idx, int mask, int val)
864 {
865 	struct hda_amp_info *info;
866 
867 	info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
868 	if (!info)
869 		return 0;
870 	val &= mask;
871 	val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
872 	if (info->vol[ch] == val)
873 		return 0;
874 	put_vol_mute(codec, info, nid, ch, direction, idx, val);
875 	return 1;
876 }
877 
878 /*
879  * update the AMP stereo with the same mask and value
880  */
881 int snd_hda_codec_amp_stereo(struct hda_codec *codec, hda_nid_t nid,
882 			     int direction, int idx, int mask, int val)
883 {
884 	int ch, ret = 0;
885 	for (ch = 0; ch < 2; ch++)
886 		ret |= snd_hda_codec_amp_update(codec, nid, ch, direction,
887 						idx, mask, val);
888 	return ret;
889 }
890 
891 #ifdef SND_HDA_NEEDS_RESUME
892 /* resume the all amp commands from the cache */
893 void snd_hda_codec_resume_amp(struct hda_codec *codec)
894 {
895 	struct hda_amp_info *buffer = codec->amp_cache.buffer;
896 	int i;
897 
898 	for (i = 0; i < codec->amp_cache.size; i++, buffer++) {
899 		u32 key = buffer->head.key;
900 		hda_nid_t nid;
901 		unsigned int idx, dir, ch;
902 		if (!key)
903 			continue;
904 		nid = key & 0xff;
905 		idx = (key >> 16) & 0xff;
906 		dir = (key >> 24) & 0xff;
907 		for (ch = 0; ch < 2; ch++) {
908 			if (!(buffer->head.val & INFO_AMP_VOL(ch)))
909 				continue;
910 			put_vol_mute(codec, buffer, nid, ch, dir, idx,
911 				     buffer->vol[ch]);
912 		}
913 	}
914 }
915 #endif /* SND_HDA_NEEDS_RESUME */
916 
917 /*
918  * AMP control callbacks
919  */
920 /* retrieve parameters from private_value */
921 #define get_amp_nid(kc)		((kc)->private_value & 0xffff)
922 #define get_amp_channels(kc)	(((kc)->private_value >> 16) & 0x3)
923 #define get_amp_direction(kc)	(((kc)->private_value >> 18) & 0x1)
924 #define get_amp_index(kc)	(((kc)->private_value >> 19) & 0xf)
925 
926 /* volume */
927 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
928 				  struct snd_ctl_elem_info *uinfo)
929 {
930 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
931 	u16 nid = get_amp_nid(kcontrol);
932 	u8 chs = get_amp_channels(kcontrol);
933 	int dir = get_amp_direction(kcontrol);
934 	u32 caps;
935 
936 	caps = query_amp_caps(codec, nid, dir);
937 	/* num steps */
938 	caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
939 	if (!caps) {
940 		printk(KERN_WARNING "hda_codec: "
941 		       "num_steps = 0 for NID=0x%x\n", nid);
942 		return -EINVAL;
943 	}
944 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
945 	uinfo->count = chs == 3 ? 2 : 1;
946 	uinfo->value.integer.min = 0;
947 	uinfo->value.integer.max = caps;
948 	return 0;
949 }
950 
951 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
952 				 struct snd_ctl_elem_value *ucontrol)
953 {
954 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
955 	hda_nid_t nid = get_amp_nid(kcontrol);
956 	int chs = get_amp_channels(kcontrol);
957 	int dir = get_amp_direction(kcontrol);
958 	int idx = get_amp_index(kcontrol);
959 	long *valp = ucontrol->value.integer.value;
960 
961 	if (chs & 1)
962 		*valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx)
963 			& HDA_AMP_VOLMASK;
964 	if (chs & 2)
965 		*valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx)
966 			& HDA_AMP_VOLMASK;
967 	return 0;
968 }
969 
970 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
971 				 struct snd_ctl_elem_value *ucontrol)
972 {
973 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
974 	hda_nid_t nid = get_amp_nid(kcontrol);
975 	int chs = get_amp_channels(kcontrol);
976 	int dir = get_amp_direction(kcontrol);
977 	int idx = get_amp_index(kcontrol);
978 	long *valp = ucontrol->value.integer.value;
979 	int change = 0;
980 
981 	snd_hda_power_up(codec);
982 	if (chs & 1) {
983 		change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
984 						  0x7f, *valp);
985 		valp++;
986 	}
987 	if (chs & 2)
988 		change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
989 						   0x7f, *valp);
990 	snd_hda_power_down(codec);
991 	return change;
992 }
993 
994 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
995 			  unsigned int size, unsigned int __user *_tlv)
996 {
997 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
998 	hda_nid_t nid = get_amp_nid(kcontrol);
999 	int dir = get_amp_direction(kcontrol);
1000 	u32 caps, val1, val2;
1001 
1002 	if (size < 4 * sizeof(unsigned int))
1003 		return -ENOMEM;
1004 	caps = query_amp_caps(codec, nid, dir);
1005 	val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
1006 	val2 = (val2 + 1) * 25;
1007 	val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
1008 	val1 = ((int)val1) * ((int)val2);
1009 	if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
1010 		return -EFAULT;
1011 	if (put_user(2 * sizeof(unsigned int), _tlv + 1))
1012 		return -EFAULT;
1013 	if (put_user(val1, _tlv + 2))
1014 		return -EFAULT;
1015 	if (put_user(val2, _tlv + 3))
1016 		return -EFAULT;
1017 	return 0;
1018 }
1019 
1020 /* switch */
1021 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
1022 				  struct snd_ctl_elem_info *uinfo)
1023 {
1024 	int chs = get_amp_channels(kcontrol);
1025 
1026 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1027 	uinfo->count = chs == 3 ? 2 : 1;
1028 	uinfo->value.integer.min = 0;
1029 	uinfo->value.integer.max = 1;
1030 	return 0;
1031 }
1032 
1033 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
1034 				 struct snd_ctl_elem_value *ucontrol)
1035 {
1036 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1037 	hda_nid_t nid = get_amp_nid(kcontrol);
1038 	int chs = get_amp_channels(kcontrol);
1039 	int dir = get_amp_direction(kcontrol);
1040 	int idx = get_amp_index(kcontrol);
1041 	long *valp = ucontrol->value.integer.value;
1042 
1043 	if (chs & 1)
1044 		*valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
1045 			   HDA_AMP_MUTE) ? 0 : 1;
1046 	if (chs & 2)
1047 		*valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
1048 			 HDA_AMP_MUTE) ? 0 : 1;
1049 	return 0;
1050 }
1051 
1052 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
1053 				 struct snd_ctl_elem_value *ucontrol)
1054 {
1055 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1056 	hda_nid_t nid = get_amp_nid(kcontrol);
1057 	int chs = get_amp_channels(kcontrol);
1058 	int dir = get_amp_direction(kcontrol);
1059 	int idx = get_amp_index(kcontrol);
1060 	long *valp = ucontrol->value.integer.value;
1061 	int change = 0;
1062 
1063 	snd_hda_power_up(codec);
1064 	if (chs & 1) {
1065 		change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
1066 						  HDA_AMP_MUTE,
1067 						  *valp ? 0 : HDA_AMP_MUTE);
1068 		valp++;
1069 	}
1070 	if (chs & 2)
1071 		change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
1072 						   HDA_AMP_MUTE,
1073 						   *valp ? 0 : HDA_AMP_MUTE);
1074 #ifdef CONFIG_SND_HDA_POWER_SAVE
1075 	if (codec->patch_ops.check_power_status)
1076 		codec->patch_ops.check_power_status(codec, nid);
1077 #endif
1078 	snd_hda_power_down(codec);
1079 	return change;
1080 }
1081 
1082 /*
1083  * bound volume controls
1084  *
1085  * bind multiple volumes (# indices, from 0)
1086  */
1087 
1088 #define AMP_VAL_IDX_SHIFT	19
1089 #define AMP_VAL_IDX_MASK	(0x0f<<19)
1090 
1091 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
1092 				  struct snd_ctl_elem_value *ucontrol)
1093 {
1094 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1095 	unsigned long pval;
1096 	int err;
1097 
1098 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1099 	pval = kcontrol->private_value;
1100 	kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
1101 	err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
1102 	kcontrol->private_value = pval;
1103 	mutex_unlock(&codec->spdif_mutex);
1104 	return err;
1105 }
1106 
1107 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
1108 				  struct snd_ctl_elem_value *ucontrol)
1109 {
1110 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1111 	unsigned long pval;
1112 	int i, indices, err = 0, change = 0;
1113 
1114 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1115 	pval = kcontrol->private_value;
1116 	indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
1117 	for (i = 0; i < indices; i++) {
1118 		kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
1119 			(i << AMP_VAL_IDX_SHIFT);
1120 		err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
1121 		if (err < 0)
1122 			break;
1123 		change |= err;
1124 	}
1125 	kcontrol->private_value = pval;
1126 	mutex_unlock(&codec->spdif_mutex);
1127 	return err < 0 ? err : change;
1128 }
1129 
1130 /*
1131  * generic bound volume/swtich controls
1132  */
1133 int snd_hda_mixer_bind_ctls_info(struct snd_kcontrol *kcontrol,
1134 				 struct snd_ctl_elem_info *uinfo)
1135 {
1136 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1137 	struct hda_bind_ctls *c;
1138 	int err;
1139 
1140 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1141 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1142 	kcontrol->private_value = *c->values;
1143 	err = c->ops->info(kcontrol, uinfo);
1144 	kcontrol->private_value = (long)c;
1145 	mutex_unlock(&codec->spdif_mutex);
1146 	return err;
1147 }
1148 
1149 int snd_hda_mixer_bind_ctls_get(struct snd_kcontrol *kcontrol,
1150 				struct snd_ctl_elem_value *ucontrol)
1151 {
1152 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1153 	struct hda_bind_ctls *c;
1154 	int err;
1155 
1156 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1157 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1158 	kcontrol->private_value = *c->values;
1159 	err = c->ops->get(kcontrol, ucontrol);
1160 	kcontrol->private_value = (long)c;
1161 	mutex_unlock(&codec->spdif_mutex);
1162 	return err;
1163 }
1164 
1165 int snd_hda_mixer_bind_ctls_put(struct snd_kcontrol *kcontrol,
1166 				struct snd_ctl_elem_value *ucontrol)
1167 {
1168 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1169 	struct hda_bind_ctls *c;
1170 	unsigned long *vals;
1171 	int err = 0, change = 0;
1172 
1173 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1174 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1175 	for (vals = c->values; *vals; vals++) {
1176 		kcontrol->private_value = *vals;
1177 		err = c->ops->put(kcontrol, ucontrol);
1178 		if (err < 0)
1179 			break;
1180 		change |= err;
1181 	}
1182 	kcontrol->private_value = (long)c;
1183 	mutex_unlock(&codec->spdif_mutex);
1184 	return err < 0 ? err : change;
1185 }
1186 
1187 int snd_hda_mixer_bind_tlv(struct snd_kcontrol *kcontrol, int op_flag,
1188 			   unsigned int size, unsigned int __user *tlv)
1189 {
1190 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1191 	struct hda_bind_ctls *c;
1192 	int err;
1193 
1194 	c = (struct hda_bind_ctls *)kcontrol->private_value;
1195 	mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1196 	kcontrol->private_value = *c->values;
1197 	err = c->ops->tlv(kcontrol, op_flag, size, tlv);
1198 	kcontrol->private_value = (long)c;
1199 	mutex_unlock(&codec->spdif_mutex);
1200 	return err;
1201 }
1202 
1203 struct hda_ctl_ops snd_hda_bind_vol = {
1204 	.info = snd_hda_mixer_amp_volume_info,
1205 	.get = snd_hda_mixer_amp_volume_get,
1206 	.put = snd_hda_mixer_amp_volume_put,
1207 	.tlv = snd_hda_mixer_amp_tlv
1208 };
1209 
1210 struct hda_ctl_ops snd_hda_bind_sw = {
1211 	.info = snd_hda_mixer_amp_switch_info,
1212 	.get = snd_hda_mixer_amp_switch_get,
1213 	.put = snd_hda_mixer_amp_switch_put,
1214 	.tlv = snd_hda_mixer_amp_tlv
1215 };
1216 
1217 /*
1218  * SPDIF out controls
1219  */
1220 
1221 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
1222 				   struct snd_ctl_elem_info *uinfo)
1223 {
1224 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1225 	uinfo->count = 1;
1226 	return 0;
1227 }
1228 
1229 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
1230 				   struct snd_ctl_elem_value *ucontrol)
1231 {
1232 	ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1233 					   IEC958_AES0_NONAUDIO |
1234 					   IEC958_AES0_CON_EMPHASIS_5015 |
1235 					   IEC958_AES0_CON_NOT_COPYRIGHT;
1236 	ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
1237 					   IEC958_AES1_CON_ORIGINAL;
1238 	return 0;
1239 }
1240 
1241 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
1242 				   struct snd_ctl_elem_value *ucontrol)
1243 {
1244 	ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1245 					   IEC958_AES0_NONAUDIO |
1246 					   IEC958_AES0_PRO_EMPHASIS_5015;
1247 	return 0;
1248 }
1249 
1250 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
1251 				     struct snd_ctl_elem_value *ucontrol)
1252 {
1253 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1254 
1255 	ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1256 	ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1257 	ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1258 	ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1259 
1260 	return 0;
1261 }
1262 
1263 /* convert from SPDIF status bits to HDA SPDIF bits
1264  * bit 0 (DigEn) is always set zero (to be filled later)
1265  */
1266 static unsigned short convert_from_spdif_status(unsigned int sbits)
1267 {
1268 	unsigned short val = 0;
1269 
1270 	if (sbits & IEC958_AES0_PROFESSIONAL)
1271 		val |= AC_DIG1_PROFESSIONAL;
1272 	if (sbits & IEC958_AES0_NONAUDIO)
1273 		val |= AC_DIG1_NONAUDIO;
1274 	if (sbits & IEC958_AES0_PROFESSIONAL) {
1275 		if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
1276 		    IEC958_AES0_PRO_EMPHASIS_5015)
1277 			val |= AC_DIG1_EMPHASIS;
1278 	} else {
1279 		if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
1280 		    IEC958_AES0_CON_EMPHASIS_5015)
1281 			val |= AC_DIG1_EMPHASIS;
1282 		if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1283 			val |= AC_DIG1_COPYRIGHT;
1284 		if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1285 			val |= AC_DIG1_LEVEL;
1286 		val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1287 	}
1288 	return val;
1289 }
1290 
1291 /* convert to SPDIF status bits from HDA SPDIF bits
1292  */
1293 static unsigned int convert_to_spdif_status(unsigned short val)
1294 {
1295 	unsigned int sbits = 0;
1296 
1297 	if (val & AC_DIG1_NONAUDIO)
1298 		sbits |= IEC958_AES0_NONAUDIO;
1299 	if (val & AC_DIG1_PROFESSIONAL)
1300 		sbits |= IEC958_AES0_PROFESSIONAL;
1301 	if (sbits & IEC958_AES0_PROFESSIONAL) {
1302 		if (sbits & AC_DIG1_EMPHASIS)
1303 			sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1304 	} else {
1305 		if (val & AC_DIG1_EMPHASIS)
1306 			sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1307 		if (!(val & AC_DIG1_COPYRIGHT))
1308 			sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1309 		if (val & AC_DIG1_LEVEL)
1310 			sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1311 		sbits |= val & (0x7f << 8);
1312 	}
1313 	return sbits;
1314 }
1315 
1316 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
1317 				     struct snd_ctl_elem_value *ucontrol)
1318 {
1319 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1320 	hda_nid_t nid = kcontrol->private_value;
1321 	unsigned short val;
1322 	int change;
1323 
1324 	mutex_lock(&codec->spdif_mutex);
1325 	codec->spdif_status = ucontrol->value.iec958.status[0] |
1326 		((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1327 		((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1328 		((unsigned int)ucontrol->value.iec958.status[3] << 24);
1329 	val = convert_from_spdif_status(codec->spdif_status);
1330 	val |= codec->spdif_ctls & 1;
1331 	change = codec->spdif_ctls != val;
1332 	codec->spdif_ctls = val;
1333 
1334 	if (change) {
1335 		snd_hda_codec_write_cache(codec, nid, 0,
1336 					  AC_VERB_SET_DIGI_CONVERT_1,
1337 					  val & 0xff);
1338 		snd_hda_codec_write_cache(codec, nid, 0,
1339 					  AC_VERB_SET_DIGI_CONVERT_2,
1340 					  val >> 8);
1341 	}
1342 
1343 	mutex_unlock(&codec->spdif_mutex);
1344 	return change;
1345 }
1346 
1347 #define snd_hda_spdif_out_switch_info	snd_ctl_boolean_mono_info
1348 
1349 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
1350 					struct snd_ctl_elem_value *ucontrol)
1351 {
1352 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1353 
1354 	ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
1355 	return 0;
1356 }
1357 
1358 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
1359 					struct snd_ctl_elem_value *ucontrol)
1360 {
1361 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1362 	hda_nid_t nid = kcontrol->private_value;
1363 	unsigned short val;
1364 	int change;
1365 
1366 	mutex_lock(&codec->spdif_mutex);
1367 	val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
1368 	if (ucontrol->value.integer.value[0])
1369 		val |= AC_DIG1_ENABLE;
1370 	change = codec->spdif_ctls != val;
1371 	if (change) {
1372 		codec->spdif_ctls = val;
1373 		snd_hda_codec_write_cache(codec, nid, 0,
1374 					  AC_VERB_SET_DIGI_CONVERT_1,
1375 					  val & 0xff);
1376 		/* unmute amp switch (if any) */
1377 		if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
1378 		    (val & AC_DIG1_ENABLE))
1379 			snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
1380 						 HDA_AMP_MUTE, 0);
1381 	}
1382 	mutex_unlock(&codec->spdif_mutex);
1383 	return change;
1384 }
1385 
1386 static struct snd_kcontrol_new dig_mixes[] = {
1387 	{
1388 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1389 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1390 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1391 		.info = snd_hda_spdif_mask_info,
1392 		.get = snd_hda_spdif_cmask_get,
1393 	},
1394 	{
1395 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1396 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1397 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1398 		.info = snd_hda_spdif_mask_info,
1399 		.get = snd_hda_spdif_pmask_get,
1400 	},
1401 	{
1402 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1403 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1404 		.info = snd_hda_spdif_mask_info,
1405 		.get = snd_hda_spdif_default_get,
1406 		.put = snd_hda_spdif_default_put,
1407 	},
1408 	{
1409 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1410 		.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1411 		.info = snd_hda_spdif_out_switch_info,
1412 		.get = snd_hda_spdif_out_switch_get,
1413 		.put = snd_hda_spdif_out_switch_put,
1414 	},
1415 	{ } /* end */
1416 };
1417 
1418 /**
1419  * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1420  * @codec: the HDA codec
1421  * @nid: audio out widget NID
1422  *
1423  * Creates controls related with the SPDIF output.
1424  * Called from each patch supporting the SPDIF out.
1425  *
1426  * Returns 0 if successful, or a negative error code.
1427  */
1428 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1429 {
1430 	int err;
1431 	struct snd_kcontrol *kctl;
1432 	struct snd_kcontrol_new *dig_mix;
1433 
1434 	for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1435 		kctl = snd_ctl_new1(dig_mix, codec);
1436 		kctl->private_value = nid;
1437 		err = snd_ctl_add(codec->bus->card, kctl);
1438 		if (err < 0)
1439 			return err;
1440 	}
1441 	codec->spdif_ctls =
1442 		snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1443 	codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1444 	return 0;
1445 }
1446 
1447 /*
1448  * SPDIF input
1449  */
1450 
1451 #define snd_hda_spdif_in_switch_info	snd_hda_spdif_out_switch_info
1452 
1453 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
1454 				       struct snd_ctl_elem_value *ucontrol)
1455 {
1456 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1457 
1458 	ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1459 	return 0;
1460 }
1461 
1462 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
1463 				       struct snd_ctl_elem_value *ucontrol)
1464 {
1465 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1466 	hda_nid_t nid = kcontrol->private_value;
1467 	unsigned int val = !!ucontrol->value.integer.value[0];
1468 	int change;
1469 
1470 	mutex_lock(&codec->spdif_mutex);
1471 	change = codec->spdif_in_enable != val;
1472 	if (change) {
1473 		codec->spdif_in_enable = val;
1474 		snd_hda_codec_write_cache(codec, nid, 0,
1475 					  AC_VERB_SET_DIGI_CONVERT_1, val);
1476 	}
1477 	mutex_unlock(&codec->spdif_mutex);
1478 	return change;
1479 }
1480 
1481 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
1482 				       struct snd_ctl_elem_value *ucontrol)
1483 {
1484 	struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1485 	hda_nid_t nid = kcontrol->private_value;
1486 	unsigned short val;
1487 	unsigned int sbits;
1488 
1489 	val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1490 	sbits = convert_to_spdif_status(val);
1491 	ucontrol->value.iec958.status[0] = sbits;
1492 	ucontrol->value.iec958.status[1] = sbits >> 8;
1493 	ucontrol->value.iec958.status[2] = sbits >> 16;
1494 	ucontrol->value.iec958.status[3] = sbits >> 24;
1495 	return 0;
1496 }
1497 
1498 static struct snd_kcontrol_new dig_in_ctls[] = {
1499 	{
1500 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1501 		.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1502 		.info = snd_hda_spdif_in_switch_info,
1503 		.get = snd_hda_spdif_in_switch_get,
1504 		.put = snd_hda_spdif_in_switch_put,
1505 	},
1506 	{
1507 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1508 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1509 		.name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1510 		.info = snd_hda_spdif_mask_info,
1511 		.get = snd_hda_spdif_in_status_get,
1512 	},
1513 	{ } /* end */
1514 };
1515 
1516 /**
1517  * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1518  * @codec: the HDA codec
1519  * @nid: audio in widget NID
1520  *
1521  * Creates controls related with the SPDIF input.
1522  * Called from each patch supporting the SPDIF in.
1523  *
1524  * Returns 0 if successful, or a negative error code.
1525  */
1526 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1527 {
1528 	int err;
1529 	struct snd_kcontrol *kctl;
1530 	struct snd_kcontrol_new *dig_mix;
1531 
1532 	for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1533 		kctl = snd_ctl_new1(dig_mix, codec);
1534 		kctl->private_value = nid;
1535 		err = snd_ctl_add(codec->bus->card, kctl);
1536 		if (err < 0)
1537 			return err;
1538 	}
1539 	codec->spdif_in_enable =
1540 		snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) &
1541 		AC_DIG1_ENABLE;
1542 	return 0;
1543 }
1544 
1545 #ifdef SND_HDA_NEEDS_RESUME
1546 /*
1547  * command cache
1548  */
1549 
1550 /* build a 32bit cache key with the widget id and the command parameter */
1551 #define build_cmd_cache_key(nid, verb)	((verb << 8) | nid)
1552 #define get_cmd_cache_nid(key)		((key) & 0xff)
1553 #define get_cmd_cache_cmd(key)		(((key) >> 8) & 0xffff)
1554 
1555 /**
1556  * snd_hda_codec_write_cache - send a single command with caching
1557  * @codec: the HDA codec
1558  * @nid: NID to send the command
1559  * @direct: direct flag
1560  * @verb: the verb to send
1561  * @parm: the parameter for the verb
1562  *
1563  * Send a single command without waiting for response.
1564  *
1565  * Returns 0 if successful, or a negative error code.
1566  */
1567 int snd_hda_codec_write_cache(struct hda_codec *codec, hda_nid_t nid,
1568 			      int direct, unsigned int verb, unsigned int parm)
1569 {
1570 	int err;
1571 	snd_hda_power_up(codec);
1572 	mutex_lock(&codec->bus->cmd_mutex);
1573 	err = codec->bus->ops.command(codec, nid, direct, verb, parm);
1574 	if (!err) {
1575 		struct hda_cache_head *c;
1576 		u32 key = build_cmd_cache_key(nid, verb);
1577 		c = get_alloc_hash(&codec->cmd_cache, key);
1578 		if (c)
1579 			c->val = parm;
1580 	}
1581 	mutex_unlock(&codec->bus->cmd_mutex);
1582 	snd_hda_power_down(codec);
1583 	return err;
1584 }
1585 
1586 /* resume the all commands from the cache */
1587 void snd_hda_codec_resume_cache(struct hda_codec *codec)
1588 {
1589 	struct hda_cache_head *buffer = codec->cmd_cache.buffer;
1590 	int i;
1591 
1592 	for (i = 0; i < codec->cmd_cache.size; i++, buffer++) {
1593 		u32 key = buffer->key;
1594 		if (!key)
1595 			continue;
1596 		snd_hda_codec_write(codec, get_cmd_cache_nid(key), 0,
1597 				    get_cmd_cache_cmd(key), buffer->val);
1598 	}
1599 }
1600 
1601 /**
1602  * snd_hda_sequence_write_cache - sequence writes with caching
1603  * @codec: the HDA codec
1604  * @seq: VERB array to send
1605  *
1606  * Send the commands sequentially from the given array.
1607  * Thte commands are recorded on cache for power-save and resume.
1608  * The array must be terminated with NID=0.
1609  */
1610 void snd_hda_sequence_write_cache(struct hda_codec *codec,
1611 				  const struct hda_verb *seq)
1612 {
1613 	for (; seq->nid; seq++)
1614 		snd_hda_codec_write_cache(codec, seq->nid, 0, seq->verb,
1615 					  seq->param);
1616 }
1617 #endif /* SND_HDA_NEEDS_RESUME */
1618 
1619 /*
1620  * set power state of the codec
1621  */
1622 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1623 				unsigned int power_state)
1624 {
1625 	hda_nid_t nid;
1626 	int i;
1627 
1628 	snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1629 			    power_state);
1630 
1631 	nid = codec->start_nid;
1632 	for (i = 0; i < codec->num_nodes; i++, nid++) {
1633 		if (get_wcaps(codec, nid) & AC_WCAP_POWER) {
1634 			unsigned int pincap;
1635 			/*
1636 			 * don't power down the widget if it controls eapd
1637 			 * and EAPD_BTLENABLE is set.
1638 			 */
1639 			pincap = snd_hda_param_read(codec, nid, AC_PAR_PIN_CAP);
1640 			if (pincap & AC_PINCAP_EAPD) {
1641 				int eapd = snd_hda_codec_read(codec, nid,
1642 					0, AC_VERB_GET_EAPD_BTLENABLE, 0);
1643 				eapd &= 0x02;
1644 				if (power_state == AC_PWRST_D3 && eapd)
1645 					continue;
1646 			}
1647 			snd_hda_codec_write(codec, nid, 0,
1648 					    AC_VERB_SET_POWER_STATE,
1649 					    power_state);
1650 		}
1651 	}
1652 
1653 	if (power_state == AC_PWRST_D0) {
1654 		unsigned long end_time;
1655 		int state;
1656 		msleep(10);
1657 		/* wait until the codec reachs to D0 */
1658 		end_time = jiffies + msecs_to_jiffies(500);
1659 		do {
1660 			state = snd_hda_codec_read(codec, fg, 0,
1661 						   AC_VERB_GET_POWER_STATE, 0);
1662 			if (state == power_state)
1663 				break;
1664 			msleep(1);
1665 		} while (time_after_eq(end_time, jiffies));
1666 	}
1667 }
1668 
1669 #ifdef SND_HDA_NEEDS_RESUME
1670 /*
1671  * call suspend and power-down; used both from PM and power-save
1672  */
1673 static void hda_call_codec_suspend(struct hda_codec *codec)
1674 {
1675 	if (codec->patch_ops.suspend)
1676 		codec->patch_ops.suspend(codec, PMSG_SUSPEND);
1677 	hda_set_power_state(codec,
1678 			    codec->afg ? codec->afg : codec->mfg,
1679 			    AC_PWRST_D3);
1680 #ifdef CONFIG_SND_HDA_POWER_SAVE
1681 	cancel_delayed_work(&codec->power_work);
1682 	codec->power_on = 0;
1683 	codec->power_transition = 0;
1684 #endif
1685 }
1686 
1687 /*
1688  * kick up codec; used both from PM and power-save
1689  */
1690 static void hda_call_codec_resume(struct hda_codec *codec)
1691 {
1692 	hda_set_power_state(codec,
1693 			    codec->afg ? codec->afg : codec->mfg,
1694 			    AC_PWRST_D0);
1695 	if (codec->patch_ops.resume)
1696 		codec->patch_ops.resume(codec);
1697 	else {
1698 		if (codec->patch_ops.init)
1699 			codec->patch_ops.init(codec);
1700 		snd_hda_codec_resume_amp(codec);
1701 		snd_hda_codec_resume_cache(codec);
1702 	}
1703 }
1704 #endif /* SND_HDA_NEEDS_RESUME */
1705 
1706 
1707 /**
1708  * snd_hda_build_controls - build mixer controls
1709  * @bus: the BUS
1710  *
1711  * Creates mixer controls for each codec included in the bus.
1712  *
1713  * Returns 0 if successful, otherwise a negative error code.
1714  */
1715 int __devinit snd_hda_build_controls(struct hda_bus *bus)
1716 {
1717 	struct hda_codec *codec;
1718 
1719 	list_for_each_entry(codec, &bus->codec_list, list) {
1720 		int err = 0;
1721 		/* fake as if already powered-on */
1722 		hda_keep_power_on(codec);
1723 		/* then fire up */
1724 		hda_set_power_state(codec,
1725 				    codec->afg ? codec->afg : codec->mfg,
1726 				    AC_PWRST_D0);
1727 		/* continue to initialize... */
1728 		if (codec->patch_ops.init)
1729 			err = codec->patch_ops.init(codec);
1730 		if (!err && codec->patch_ops.build_controls)
1731 			err = codec->patch_ops.build_controls(codec);
1732 		snd_hda_power_down(codec);
1733 		if (err < 0)
1734 			return err;
1735 	}
1736 
1737 	return 0;
1738 }
1739 
1740 /*
1741  * stream formats
1742  */
1743 struct hda_rate_tbl {
1744 	unsigned int hz;
1745 	unsigned int alsa_bits;
1746 	unsigned int hda_fmt;
1747 };
1748 
1749 static struct hda_rate_tbl rate_bits[] = {
1750 	/* rate in Hz, ALSA rate bitmask, HDA format value */
1751 
1752 	/* autodetected value used in snd_hda_query_supported_pcm */
1753 	{ 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1754 	{ 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1755 	{ 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1756 	{ 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1757 	{ 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1758 	{ 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1759 	{ 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1760 	{ 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1761 	{ 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1762 	{ 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1763 	{ 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1764 #define AC_PAR_PCM_RATE_BITS	11
1765 	/* up to bits 10, 384kHZ isn't supported properly */
1766 
1767 	/* not autodetected value */
1768 	{ 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1769 
1770 	{ 0 } /* terminator */
1771 };
1772 
1773 /**
1774  * snd_hda_calc_stream_format - calculate format bitset
1775  * @rate: the sample rate
1776  * @channels: the number of channels
1777  * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1778  * @maxbps: the max. bps
1779  *
1780  * Calculate the format bitset from the given rate, channels and th PCM format.
1781  *
1782  * Return zero if invalid.
1783  */
1784 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1785 					unsigned int channels,
1786 					unsigned int format,
1787 					unsigned int maxbps)
1788 {
1789 	int i;
1790 	unsigned int val = 0;
1791 
1792 	for (i = 0; rate_bits[i].hz; i++)
1793 		if (rate_bits[i].hz == rate) {
1794 			val = rate_bits[i].hda_fmt;
1795 			break;
1796 		}
1797 	if (!rate_bits[i].hz) {
1798 		snd_printdd("invalid rate %d\n", rate);
1799 		return 0;
1800 	}
1801 
1802 	if (channels == 0 || channels > 8) {
1803 		snd_printdd("invalid channels %d\n", channels);
1804 		return 0;
1805 	}
1806 	val |= channels - 1;
1807 
1808 	switch (snd_pcm_format_width(format)) {
1809 	case 8:  val |= 0x00; break;
1810 	case 16: val |= 0x10; break;
1811 	case 20:
1812 	case 24:
1813 	case 32:
1814 		if (maxbps >= 32)
1815 			val |= 0x40;
1816 		else if (maxbps >= 24)
1817 			val |= 0x30;
1818 		else
1819 			val |= 0x20;
1820 		break;
1821 	default:
1822 		snd_printdd("invalid format width %d\n",
1823 			    snd_pcm_format_width(format));
1824 		return 0;
1825 	}
1826 
1827 	return val;
1828 }
1829 
1830 /**
1831  * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1832  * @codec: the HDA codec
1833  * @nid: NID to query
1834  * @ratesp: the pointer to store the detected rate bitflags
1835  * @formatsp: the pointer to store the detected formats
1836  * @bpsp: the pointer to store the detected format widths
1837  *
1838  * Queries the supported PCM rates and formats.  The NULL @ratesp, @formatsp
1839  * or @bsps argument is ignored.
1840  *
1841  * Returns 0 if successful, otherwise a negative error code.
1842  */
1843 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1844 				u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1845 {
1846 	int i;
1847 	unsigned int val, streams;
1848 
1849 	val = 0;
1850 	if (nid != codec->afg &&
1851 	    (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1852 		val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1853 		if (val == -1)
1854 			return -EIO;
1855 	}
1856 	if (!val)
1857 		val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1858 
1859 	if (ratesp) {
1860 		u32 rates = 0;
1861 		for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
1862 			if (val & (1 << i))
1863 				rates |= rate_bits[i].alsa_bits;
1864 		}
1865 		*ratesp = rates;
1866 	}
1867 
1868 	if (formatsp || bpsp) {
1869 		u64 formats = 0;
1870 		unsigned int bps;
1871 		unsigned int wcaps;
1872 
1873 		wcaps = get_wcaps(codec, nid);
1874 		streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1875 		if (streams == -1)
1876 			return -EIO;
1877 		if (!streams) {
1878 			streams = snd_hda_param_read(codec, codec->afg,
1879 						     AC_PAR_STREAM);
1880 			if (streams == -1)
1881 				return -EIO;
1882 		}
1883 
1884 		bps = 0;
1885 		if (streams & AC_SUPFMT_PCM) {
1886 			if (val & AC_SUPPCM_BITS_8) {
1887 				formats |= SNDRV_PCM_FMTBIT_U8;
1888 				bps = 8;
1889 			}
1890 			if (val & AC_SUPPCM_BITS_16) {
1891 				formats |= SNDRV_PCM_FMTBIT_S16_LE;
1892 				bps = 16;
1893 			}
1894 			if (wcaps & AC_WCAP_DIGITAL) {
1895 				if (val & AC_SUPPCM_BITS_32)
1896 					formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1897 				if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1898 					formats |= SNDRV_PCM_FMTBIT_S32_LE;
1899 				if (val & AC_SUPPCM_BITS_24)
1900 					bps = 24;
1901 				else if (val & AC_SUPPCM_BITS_20)
1902 					bps = 20;
1903 			} else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
1904 					  AC_SUPPCM_BITS_32)) {
1905 				formats |= SNDRV_PCM_FMTBIT_S32_LE;
1906 				if (val & AC_SUPPCM_BITS_32)
1907 					bps = 32;
1908 				else if (val & AC_SUPPCM_BITS_24)
1909 					bps = 24;
1910 				else if (val & AC_SUPPCM_BITS_20)
1911 					bps = 20;
1912 			}
1913 		}
1914 		else if (streams == AC_SUPFMT_FLOAT32) {
1915 			/* should be exclusive */
1916 			formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1917 			bps = 32;
1918 		} else if (streams == AC_SUPFMT_AC3) {
1919 			/* should be exclusive */
1920 			/* temporary hack: we have still no proper support
1921 			 * for the direct AC3 stream...
1922 			 */
1923 			formats |= SNDRV_PCM_FMTBIT_U8;
1924 			bps = 8;
1925 		}
1926 		if (formatsp)
1927 			*formatsp = formats;
1928 		if (bpsp)
1929 			*bpsp = bps;
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 /**
1936  * snd_hda_is_supported_format - check whether the given node supports
1937  * the format val
1938  *
1939  * Returns 1 if supported, 0 if not.
1940  */
1941 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1942 				unsigned int format)
1943 {
1944 	int i;
1945 	unsigned int val = 0, rate, stream;
1946 
1947 	if (nid != codec->afg &&
1948 	    (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1949 		val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1950 		if (val == -1)
1951 			return 0;
1952 	}
1953 	if (!val) {
1954 		val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1955 		if (val == -1)
1956 			return 0;
1957 	}
1958 
1959 	rate = format & 0xff00;
1960 	for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
1961 		if (rate_bits[i].hda_fmt == rate) {
1962 			if (val & (1 << i))
1963 				break;
1964 			return 0;
1965 		}
1966 	if (i >= AC_PAR_PCM_RATE_BITS)
1967 		return 0;
1968 
1969 	stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1970 	if (stream == -1)
1971 		return 0;
1972 	if (!stream && nid != codec->afg)
1973 		stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1974 	if (!stream || stream == -1)
1975 		return 0;
1976 
1977 	if (stream & AC_SUPFMT_PCM) {
1978 		switch (format & 0xf0) {
1979 		case 0x00:
1980 			if (!(val & AC_SUPPCM_BITS_8))
1981 				return 0;
1982 			break;
1983 		case 0x10:
1984 			if (!(val & AC_SUPPCM_BITS_16))
1985 				return 0;
1986 			break;
1987 		case 0x20:
1988 			if (!(val & AC_SUPPCM_BITS_20))
1989 				return 0;
1990 			break;
1991 		case 0x30:
1992 			if (!(val & AC_SUPPCM_BITS_24))
1993 				return 0;
1994 			break;
1995 		case 0x40:
1996 			if (!(val & AC_SUPPCM_BITS_32))
1997 				return 0;
1998 			break;
1999 		default:
2000 			return 0;
2001 		}
2002 	} else {
2003 		/* FIXME: check for float32 and AC3? */
2004 	}
2005 
2006 	return 1;
2007 }
2008 
2009 /*
2010  * PCM stuff
2011  */
2012 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
2013 				      struct hda_codec *codec,
2014 				      struct snd_pcm_substream *substream)
2015 {
2016 	return 0;
2017 }
2018 
2019 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
2020 				   struct hda_codec *codec,
2021 				   unsigned int stream_tag,
2022 				   unsigned int format,
2023 				   struct snd_pcm_substream *substream)
2024 {
2025 	snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
2026 	return 0;
2027 }
2028 
2029 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
2030 				   struct hda_codec *codec,
2031 				   struct snd_pcm_substream *substream)
2032 {
2033 	snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
2034 	return 0;
2035 }
2036 
2037 static int __devinit set_pcm_default_values(struct hda_codec *codec,
2038 					    struct hda_pcm_stream *info)
2039 {
2040 	/* query support PCM information from the given NID */
2041 	if (info->nid && (!info->rates || !info->formats)) {
2042 		snd_hda_query_supported_pcm(codec, info->nid,
2043 				info->rates ? NULL : &info->rates,
2044 				info->formats ? NULL : &info->formats,
2045 				info->maxbps ? NULL : &info->maxbps);
2046 	}
2047 	if (info->ops.open == NULL)
2048 		info->ops.open = hda_pcm_default_open_close;
2049 	if (info->ops.close == NULL)
2050 		info->ops.close = hda_pcm_default_open_close;
2051 	if (info->ops.prepare == NULL) {
2052 		snd_assert(info->nid, return -EINVAL);
2053 		info->ops.prepare = hda_pcm_default_prepare;
2054 	}
2055 	if (info->ops.cleanup == NULL) {
2056 		snd_assert(info->nid, return -EINVAL);
2057 		info->ops.cleanup = hda_pcm_default_cleanup;
2058 	}
2059 	return 0;
2060 }
2061 
2062 /**
2063  * snd_hda_build_pcms - build PCM information
2064  * @bus: the BUS
2065  *
2066  * Create PCM information for each codec included in the bus.
2067  *
2068  * The build_pcms codec patch is requested to set up codec->num_pcms and
2069  * codec->pcm_info properly.  The array is referred by the top-level driver
2070  * to create its PCM instances.
2071  * The allocated codec->pcm_info should be released in codec->patch_ops.free
2072  * callback.
2073  *
2074  * At least, substreams, channels_min and channels_max must be filled for
2075  * each stream.  substreams = 0 indicates that the stream doesn't exist.
2076  * When rates and/or formats are zero, the supported values are queried
2077  * from the given nid.  The nid is used also by the default ops.prepare
2078  * and ops.cleanup callbacks.
2079  *
2080  * The driver needs to call ops.open in its open callback.  Similarly,
2081  * ops.close is supposed to be called in the close callback.
2082  * ops.prepare should be called in the prepare or hw_params callback
2083  * with the proper parameters for set up.
2084  * ops.cleanup should be called in hw_free for clean up of streams.
2085  *
2086  * This function returns 0 if successfull, or a negative error code.
2087  */
2088 int __devinit snd_hda_build_pcms(struct hda_bus *bus)
2089 {
2090 	struct hda_codec *codec;
2091 
2092 	list_for_each_entry(codec, &bus->codec_list, list) {
2093 		unsigned int pcm, s;
2094 		int err;
2095 		if (!codec->patch_ops.build_pcms)
2096 			continue;
2097 		err = codec->patch_ops.build_pcms(codec);
2098 		if (err < 0)
2099 			return err;
2100 		for (pcm = 0; pcm < codec->num_pcms; pcm++) {
2101 			for (s = 0; s < 2; s++) {
2102 				struct hda_pcm_stream *info;
2103 				info = &codec->pcm_info[pcm].stream[s];
2104 				if (!info->substreams)
2105 					continue;
2106 				err = set_pcm_default_values(codec, info);
2107 				if (err < 0)
2108 					return err;
2109 			}
2110 		}
2111 	}
2112 	return 0;
2113 }
2114 
2115 /**
2116  * snd_hda_check_board_config - compare the current codec with the config table
2117  * @codec: the HDA codec
2118  * @num_configs: number of config enums
2119  * @models: array of model name strings
2120  * @tbl: configuration table, terminated by null entries
2121  *
2122  * Compares the modelname or PCI subsystem id of the current codec with the
2123  * given configuration table.  If a matching entry is found, returns its
2124  * config value (supposed to be 0 or positive).
2125  *
2126  * If no entries are matching, the function returns a negative value.
2127  */
2128 int snd_hda_check_board_config(struct hda_codec *codec,
2129 			       int num_configs, const char **models,
2130 			       const struct snd_pci_quirk *tbl)
2131 {
2132 	if (codec->bus->modelname && models) {
2133 		int i;
2134 		for (i = 0; i < num_configs; i++) {
2135 			if (models[i] &&
2136 			    !strcmp(codec->bus->modelname, models[i])) {
2137 				snd_printd(KERN_INFO "hda_codec: model '%s' is "
2138 					   "selected\n", models[i]);
2139 				return i;
2140 			}
2141 		}
2142 	}
2143 
2144 	if (!codec->bus->pci || !tbl)
2145 		return -1;
2146 
2147 	tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
2148 	if (!tbl)
2149 		return -1;
2150 	if (tbl->value >= 0 && tbl->value < num_configs) {
2151 #ifdef CONFIG_SND_DEBUG_DETECT
2152 		char tmp[10];
2153 		const char *model = NULL;
2154 		if (models)
2155 			model = models[tbl->value];
2156 		if (!model) {
2157 			sprintf(tmp, "#%d", tbl->value);
2158 			model = tmp;
2159 		}
2160 		snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
2161 			    "for config %x:%x (%s)\n",
2162 			    model, tbl->subvendor, tbl->subdevice,
2163 			    (tbl->name ? tbl->name : "Unknown device"));
2164 #endif
2165 		return tbl->value;
2166 	}
2167 	return -1;
2168 }
2169 
2170 /**
2171  * snd_hda_add_new_ctls - create controls from the array
2172  * @codec: the HDA codec
2173  * @knew: the array of struct snd_kcontrol_new
2174  *
2175  * This helper function creates and add new controls in the given array.
2176  * The array must be terminated with an empty entry as terminator.
2177  *
2178  * Returns 0 if successful, or a negative error code.
2179  */
2180 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2181 {
2182  	int err;
2183 
2184 	for (; knew->name; knew++) {
2185 		struct snd_kcontrol *kctl;
2186 		kctl = snd_ctl_new1(knew, codec);
2187 		if (!kctl)
2188 			return -ENOMEM;
2189 		err = snd_ctl_add(codec->bus->card, kctl);
2190 		if (err < 0) {
2191 			if (!codec->addr)
2192 				return err;
2193 			kctl = snd_ctl_new1(knew, codec);
2194 			if (!kctl)
2195 				return -ENOMEM;
2196 			kctl->id.device = codec->addr;
2197 			err = snd_ctl_add(codec->bus->card, kctl);
2198 			if (err < 0)
2199 				return err;
2200 		}
2201 	}
2202 	return 0;
2203 }
2204 
2205 #ifdef CONFIG_SND_HDA_POWER_SAVE
2206 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
2207 				unsigned int power_state);
2208 
2209 static void hda_power_work(struct work_struct *work)
2210 {
2211 	struct hda_codec *codec =
2212 		container_of(work, struct hda_codec, power_work.work);
2213 
2214 	if (!codec->power_on || codec->power_count) {
2215 		codec->power_transition = 0;
2216 		return;
2217 	}
2218 
2219 	hda_call_codec_suspend(codec);
2220 	if (codec->bus->ops.pm_notify)
2221 		codec->bus->ops.pm_notify(codec);
2222 }
2223 
2224 static void hda_keep_power_on(struct hda_codec *codec)
2225 {
2226 	codec->power_count++;
2227 	codec->power_on = 1;
2228 }
2229 
2230 void snd_hda_power_up(struct hda_codec *codec)
2231 {
2232 	codec->power_count++;
2233 	if (codec->power_on || codec->power_transition)
2234 		return;
2235 
2236 	codec->power_on = 1;
2237 	if (codec->bus->ops.pm_notify)
2238 		codec->bus->ops.pm_notify(codec);
2239 	hda_call_codec_resume(codec);
2240 	cancel_delayed_work(&codec->power_work);
2241 	codec->power_transition = 0;
2242 }
2243 
2244 void snd_hda_power_down(struct hda_codec *codec)
2245 {
2246 	--codec->power_count;
2247 	if (!codec->power_on || codec->power_count || codec->power_transition)
2248 		return;
2249 	if (power_save) {
2250 		codec->power_transition = 1; /* avoid reentrance */
2251 		schedule_delayed_work(&codec->power_work,
2252 				      msecs_to_jiffies(power_save * 1000));
2253 	}
2254 }
2255 
2256 int snd_hda_check_amp_list_power(struct hda_codec *codec,
2257 				 struct hda_loopback_check *check,
2258 				 hda_nid_t nid)
2259 {
2260 	struct hda_amp_list *p;
2261 	int ch, v;
2262 
2263 	if (!check->amplist)
2264 		return 0;
2265 	for (p = check->amplist; p->nid; p++) {
2266 		if (p->nid == nid)
2267 			break;
2268 	}
2269 	if (!p->nid)
2270 		return 0; /* nothing changed */
2271 
2272 	for (p = check->amplist; p->nid; p++) {
2273 		for (ch = 0; ch < 2; ch++) {
2274 			v = snd_hda_codec_amp_read(codec, p->nid, ch, p->dir,
2275 						   p->idx);
2276 			if (!(v & HDA_AMP_MUTE) && v > 0) {
2277 				if (!check->power_on) {
2278 					check->power_on = 1;
2279 					snd_hda_power_up(codec);
2280 				}
2281 				return 1;
2282 			}
2283 		}
2284 	}
2285 	if (check->power_on) {
2286 		check->power_on = 0;
2287 		snd_hda_power_down(codec);
2288 	}
2289 	return 0;
2290 }
2291 #endif
2292 
2293 /*
2294  * Channel mode helper
2295  */
2296 int snd_hda_ch_mode_info(struct hda_codec *codec,
2297 			 struct snd_ctl_elem_info *uinfo,
2298 			 const struct hda_channel_mode *chmode,
2299 			 int num_chmodes)
2300 {
2301 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2302 	uinfo->count = 1;
2303 	uinfo->value.enumerated.items = num_chmodes;
2304 	if (uinfo->value.enumerated.item >= num_chmodes)
2305 		uinfo->value.enumerated.item = num_chmodes - 1;
2306 	sprintf(uinfo->value.enumerated.name, "%dch",
2307 		chmode[uinfo->value.enumerated.item].channels);
2308 	return 0;
2309 }
2310 
2311 int snd_hda_ch_mode_get(struct hda_codec *codec,
2312 			struct snd_ctl_elem_value *ucontrol,
2313 			const struct hda_channel_mode *chmode,
2314 			int num_chmodes,
2315 			int max_channels)
2316 {
2317 	int i;
2318 
2319 	for (i = 0; i < num_chmodes; i++) {
2320 		if (max_channels == chmode[i].channels) {
2321 			ucontrol->value.enumerated.item[0] = i;
2322 			break;
2323 		}
2324 	}
2325 	return 0;
2326 }
2327 
2328 int snd_hda_ch_mode_put(struct hda_codec *codec,
2329 			struct snd_ctl_elem_value *ucontrol,
2330 			const struct hda_channel_mode *chmode,
2331 			int num_chmodes,
2332 			int *max_channelsp)
2333 {
2334 	unsigned int mode;
2335 
2336 	mode = ucontrol->value.enumerated.item[0];
2337 	snd_assert(mode < num_chmodes, return -EINVAL);
2338 	if (*max_channelsp == chmode[mode].channels)
2339 		return 0;
2340 	/* change the current channel setting */
2341 	*max_channelsp = chmode[mode].channels;
2342 	if (chmode[mode].sequence)
2343 		snd_hda_sequence_write_cache(codec, chmode[mode].sequence);
2344 	return 1;
2345 }
2346 
2347 /*
2348  * input MUX helper
2349  */
2350 int snd_hda_input_mux_info(const struct hda_input_mux *imux,
2351 			   struct snd_ctl_elem_info *uinfo)
2352 {
2353 	unsigned int index;
2354 
2355 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2356 	uinfo->count = 1;
2357 	uinfo->value.enumerated.items = imux->num_items;
2358 	if (!imux->num_items)
2359 		return 0;
2360 	index = uinfo->value.enumerated.item;
2361 	if (index >= imux->num_items)
2362 		index = imux->num_items - 1;
2363 	strcpy(uinfo->value.enumerated.name, imux->items[index].label);
2364 	return 0;
2365 }
2366 
2367 int snd_hda_input_mux_put(struct hda_codec *codec,
2368 			  const struct hda_input_mux *imux,
2369 			  struct snd_ctl_elem_value *ucontrol,
2370 			  hda_nid_t nid,
2371 			  unsigned int *cur_val)
2372 {
2373 	unsigned int idx;
2374 
2375 	if (!imux->num_items)
2376 		return 0;
2377 	idx = ucontrol->value.enumerated.item[0];
2378 	if (idx >= imux->num_items)
2379 		idx = imux->num_items - 1;
2380 	if (*cur_val == idx)
2381 		return 0;
2382 	snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
2383 				  imux->items[idx].index);
2384 	*cur_val = idx;
2385 	return 1;
2386 }
2387 
2388 
2389 /*
2390  * Multi-channel / digital-out PCM helper functions
2391  */
2392 
2393 /* setup SPDIF output stream */
2394 static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
2395 				 unsigned int stream_tag, unsigned int format)
2396 {
2397 	/* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
2398 	if (codec->spdif_ctls & AC_DIG1_ENABLE)
2399 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
2400 				    codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff);
2401 	snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
2402 	/* turn on again (if needed) */
2403 	if (codec->spdif_ctls & AC_DIG1_ENABLE)
2404 		snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
2405 				    codec->spdif_ctls & 0xff);
2406 }
2407 
2408 /*
2409  * open the digital out in the exclusive mode
2410  */
2411 int snd_hda_multi_out_dig_open(struct hda_codec *codec,
2412 			       struct hda_multi_out *mout)
2413 {
2414 	mutex_lock(&codec->spdif_mutex);
2415 	if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
2416 		/* already opened as analog dup; reset it once */
2417 		snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2418 	mout->dig_out_used = HDA_DIG_EXCLUSIVE;
2419 	mutex_unlock(&codec->spdif_mutex);
2420 	return 0;
2421 }
2422 
2423 int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
2424 				  struct hda_multi_out *mout,
2425 				  unsigned int stream_tag,
2426 				  unsigned int format,
2427 				  struct snd_pcm_substream *substream)
2428 {
2429 	mutex_lock(&codec->spdif_mutex);
2430 	setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
2431 	mutex_unlock(&codec->spdif_mutex);
2432 	return 0;
2433 }
2434 
2435 /*
2436  * release the digital out
2437  */
2438 int snd_hda_multi_out_dig_close(struct hda_codec *codec,
2439 				struct hda_multi_out *mout)
2440 {
2441 	mutex_lock(&codec->spdif_mutex);
2442 	mout->dig_out_used = 0;
2443 	mutex_unlock(&codec->spdif_mutex);
2444 	return 0;
2445 }
2446 
2447 /*
2448  * set up more restrictions for analog out
2449  */
2450 int snd_hda_multi_out_analog_open(struct hda_codec *codec,
2451 				  struct hda_multi_out *mout,
2452 				  struct snd_pcm_substream *substream)
2453 {
2454 	substream->runtime->hw.channels_max = mout->max_channels;
2455 	return snd_pcm_hw_constraint_step(substream->runtime, 0,
2456 					  SNDRV_PCM_HW_PARAM_CHANNELS, 2);
2457 }
2458 
2459 /*
2460  * set up the i/o for analog out
2461  * when the digital out is available, copy the front out to digital out, too.
2462  */
2463 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
2464 				     struct hda_multi_out *mout,
2465 				     unsigned int stream_tag,
2466 				     unsigned int format,
2467 				     struct snd_pcm_substream *substream)
2468 {
2469 	hda_nid_t *nids = mout->dac_nids;
2470 	int chs = substream->runtime->channels;
2471 	int i;
2472 
2473 	mutex_lock(&codec->spdif_mutex);
2474 	if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
2475 		if (chs == 2 &&
2476 		    snd_hda_is_supported_format(codec, mout->dig_out_nid,
2477 						format) &&
2478 		    !(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
2479 			mout->dig_out_used = HDA_DIG_ANALOG_DUP;
2480 			setup_dig_out_stream(codec, mout->dig_out_nid,
2481 					     stream_tag, format);
2482 		} else {
2483 			mout->dig_out_used = 0;
2484 			snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
2485 						   0, 0, 0);
2486 		}
2487 	}
2488 	mutex_unlock(&codec->spdif_mutex);
2489 
2490 	/* front */
2491 	snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
2492 				   0, format);
2493 	if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
2494 		/* headphone out will just decode front left/right (stereo) */
2495 		snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
2496 					   0, format);
2497 	/* extra outputs copied from front */
2498 	for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2499 		if (mout->extra_out_nid[i])
2500 			snd_hda_codec_setup_stream(codec,
2501 						   mout->extra_out_nid[i],
2502 						   stream_tag, 0, format);
2503 
2504 	/* surrounds */
2505 	for (i = 1; i < mout->num_dacs; i++) {
2506 		if (chs >= (i + 1) * 2) /* independent out */
2507 			snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2508 						   i * 2, format);
2509 		else /* copy front */
2510 			snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2511 						   0, format);
2512 	}
2513 	return 0;
2514 }
2515 
2516 /*
2517  * clean up the setting for analog out
2518  */
2519 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
2520 				     struct hda_multi_out *mout)
2521 {
2522 	hda_nid_t *nids = mout->dac_nids;
2523 	int i;
2524 
2525 	for (i = 0; i < mout->num_dacs; i++)
2526 		snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
2527 	if (mout->hp_nid)
2528 		snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
2529 	for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2530 		if (mout->extra_out_nid[i])
2531 			snd_hda_codec_setup_stream(codec,
2532 						   mout->extra_out_nid[i],
2533 						   0, 0, 0);
2534 	mutex_lock(&codec->spdif_mutex);
2535 	if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
2536 		snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2537 		mout->dig_out_used = 0;
2538 	}
2539 	mutex_unlock(&codec->spdif_mutex);
2540 	return 0;
2541 }
2542 
2543 /*
2544  * Helper for automatic ping configuration
2545  */
2546 
2547 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2548 {
2549 	for (; *list; list++)
2550 		if (*list == nid)
2551 			return 1;
2552 	return 0;
2553 }
2554 
2555 
2556 /*
2557  * Sort an associated group of pins according to their sequence numbers.
2558  */
2559 static void sort_pins_by_sequence(hda_nid_t * pins, short * sequences,
2560 				  int num_pins)
2561 {
2562 	int i, j;
2563 	short seq;
2564 	hda_nid_t nid;
2565 
2566 	for (i = 0; i < num_pins; i++) {
2567 		for (j = i + 1; j < num_pins; j++) {
2568 			if (sequences[i] > sequences[j]) {
2569 				seq = sequences[i];
2570 				sequences[i] = sequences[j];
2571 				sequences[j] = seq;
2572 				nid = pins[i];
2573 				pins[i] = pins[j];
2574 				pins[j] = nid;
2575 			}
2576 		}
2577 	}
2578 }
2579 
2580 
2581 /*
2582  * Parse all pin widgets and store the useful pin nids to cfg
2583  *
2584  * The number of line-outs or any primary output is stored in line_outs,
2585  * and the corresponding output pins are assigned to line_out_pins[],
2586  * in the order of front, rear, CLFE, side, ...
2587  *
2588  * If more extra outputs (speaker and headphone) are found, the pins are
2589  * assisnged to hp_pins[] and speaker_pins[], respectively.  If no line-out jack
2590  * is detected, one of speaker of HP pins is assigned as the primary
2591  * output, i.e. to line_out_pins[0].  So, line_outs is always positive
2592  * if any analog output exists.
2593  *
2594  * The analog input pins are assigned to input_pins array.
2595  * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2596  * respectively.
2597  */
2598 int snd_hda_parse_pin_def_config(struct hda_codec *codec,
2599 				 struct auto_pin_cfg *cfg,
2600 				 hda_nid_t *ignore_nids)
2601 {
2602 	hda_nid_t nid, nid_start;
2603 	int nodes;
2604 	short seq, assoc_line_out, assoc_speaker;
2605 	short sequences_line_out[ARRAY_SIZE(cfg->line_out_pins)];
2606 	short sequences_speaker[ARRAY_SIZE(cfg->speaker_pins)];
2607 
2608 	memset(cfg, 0, sizeof(*cfg));
2609 
2610 	memset(sequences_line_out, 0, sizeof(sequences_line_out));
2611 	memset(sequences_speaker, 0, sizeof(sequences_speaker));
2612 	assoc_line_out = assoc_speaker = 0;
2613 
2614 	nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
2615 	for (nid = nid_start; nid < nodes + nid_start; nid++) {
2616 		unsigned int wid_caps = get_wcaps(codec, nid);
2617 		unsigned int wid_type =
2618 			(wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2619 		unsigned int def_conf;
2620 		short assoc, loc;
2621 
2622 		/* read all default configuration for pin complex */
2623 		if (wid_type != AC_WID_PIN)
2624 			continue;
2625 		/* ignore the given nids (e.g. pc-beep returns error) */
2626 		if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2627 			continue;
2628 
2629 		def_conf = snd_hda_codec_read(codec, nid, 0,
2630 					      AC_VERB_GET_CONFIG_DEFAULT, 0);
2631 		if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2632 			continue;
2633 		loc = get_defcfg_location(def_conf);
2634 		switch (get_defcfg_device(def_conf)) {
2635 		case AC_JACK_LINE_OUT:
2636 			seq = get_defcfg_sequence(def_conf);
2637 			assoc = get_defcfg_association(def_conf);
2638 			if (!assoc)
2639 				continue;
2640 			if (!assoc_line_out)
2641 				assoc_line_out = assoc;
2642 			else if (assoc_line_out != assoc)
2643 				continue;
2644 			if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2645 				continue;
2646 			cfg->line_out_pins[cfg->line_outs] = nid;
2647 			sequences_line_out[cfg->line_outs] = seq;
2648 			cfg->line_outs++;
2649 			break;
2650 		case AC_JACK_SPEAKER:
2651 			seq = get_defcfg_sequence(def_conf);
2652 			assoc = get_defcfg_association(def_conf);
2653 			if (! assoc)
2654 				continue;
2655 			if (! assoc_speaker)
2656 				assoc_speaker = assoc;
2657 			else if (assoc_speaker != assoc)
2658 				continue;
2659 			if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2660 				continue;
2661 			cfg->speaker_pins[cfg->speaker_outs] = nid;
2662 			sequences_speaker[cfg->speaker_outs] = seq;
2663 			cfg->speaker_outs++;
2664 			break;
2665 		case AC_JACK_HP_OUT:
2666 			if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2667 				continue;
2668 			cfg->hp_pins[cfg->hp_outs] = nid;
2669 			cfg->hp_outs++;
2670 			break;
2671 		case AC_JACK_MIC_IN: {
2672 			int preferred, alt;
2673 			if (loc == AC_JACK_LOC_FRONT) {
2674 				preferred = AUTO_PIN_FRONT_MIC;
2675 				alt = AUTO_PIN_MIC;
2676 			} else {
2677 				preferred = AUTO_PIN_MIC;
2678 				alt = AUTO_PIN_FRONT_MIC;
2679 			}
2680 			if (!cfg->input_pins[preferred])
2681 				cfg->input_pins[preferred] = nid;
2682 			else if (!cfg->input_pins[alt])
2683 				cfg->input_pins[alt] = nid;
2684 			break;
2685 		}
2686 		case AC_JACK_LINE_IN:
2687 			if (loc == AC_JACK_LOC_FRONT)
2688 				cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2689 			else
2690 				cfg->input_pins[AUTO_PIN_LINE] = nid;
2691 			break;
2692 		case AC_JACK_CD:
2693 			cfg->input_pins[AUTO_PIN_CD] = nid;
2694 			break;
2695 		case AC_JACK_AUX:
2696 			cfg->input_pins[AUTO_PIN_AUX] = nid;
2697 			break;
2698 		case AC_JACK_SPDIF_OUT:
2699 			cfg->dig_out_pin = nid;
2700 			break;
2701 		case AC_JACK_SPDIF_IN:
2702 			cfg->dig_in_pin = nid;
2703 			break;
2704 		}
2705 	}
2706 
2707 	/* sort by sequence */
2708 	sort_pins_by_sequence(cfg->line_out_pins, sequences_line_out,
2709 			      cfg->line_outs);
2710 	sort_pins_by_sequence(cfg->speaker_pins, sequences_speaker,
2711 			      cfg->speaker_outs);
2712 
2713 	/*
2714 	 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2715 	 * as a primary output
2716 	 */
2717 	if (!cfg->line_outs) {
2718 		if (cfg->speaker_outs) {
2719 			cfg->line_outs = cfg->speaker_outs;
2720 			memcpy(cfg->line_out_pins, cfg->speaker_pins,
2721 			       sizeof(cfg->speaker_pins));
2722 			cfg->speaker_outs = 0;
2723 			memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2724 			cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
2725 		} else if (cfg->hp_outs) {
2726 			cfg->line_outs = cfg->hp_outs;
2727 			memcpy(cfg->line_out_pins, cfg->hp_pins,
2728 			       sizeof(cfg->hp_pins));
2729 			cfg->hp_outs = 0;
2730 			memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
2731 			cfg->line_out_type = AUTO_PIN_HP_OUT;
2732 		}
2733 	}
2734 
2735 	/* Reorder the surround channels
2736 	 * ALSA sequence is front/surr/clfe/side
2737 	 * HDA sequence is:
2738 	 *    4-ch: front/surr  =>  OK as it is
2739 	 *    6-ch: front/clfe/surr
2740 	 *    8-ch: front/clfe/rear/side|fc
2741 	 */
2742 	switch (cfg->line_outs) {
2743 	case 3:
2744 	case 4:
2745 		nid = cfg->line_out_pins[1];
2746 		cfg->line_out_pins[1] = cfg->line_out_pins[2];
2747 		cfg->line_out_pins[2] = nid;
2748 		break;
2749 	}
2750 
2751 	/*
2752 	 * debug prints of the parsed results
2753 	 */
2754 	snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2755 		   cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2756 		   cfg->line_out_pins[2], cfg->line_out_pins[3],
2757 		   cfg->line_out_pins[4]);
2758 	snd_printd("   speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2759 		   cfg->speaker_outs, cfg->speaker_pins[0],
2760 		   cfg->speaker_pins[1], cfg->speaker_pins[2],
2761 		   cfg->speaker_pins[3], cfg->speaker_pins[4]);
2762 	snd_printd("   hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2763 		   cfg->hp_outs, cfg->hp_pins[0],
2764 		   cfg->hp_pins[1], cfg->hp_pins[2],
2765 		   cfg->hp_pins[3], cfg->hp_pins[4]);
2766 	snd_printd("   inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2767 		   " cd=0x%x, aux=0x%x\n",
2768 		   cfg->input_pins[AUTO_PIN_MIC],
2769 		   cfg->input_pins[AUTO_PIN_FRONT_MIC],
2770 		   cfg->input_pins[AUTO_PIN_LINE],
2771 		   cfg->input_pins[AUTO_PIN_FRONT_LINE],
2772 		   cfg->input_pins[AUTO_PIN_CD],
2773 		   cfg->input_pins[AUTO_PIN_AUX]);
2774 
2775 	return 0;
2776 }
2777 
2778 /* labels for input pins */
2779 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2780 	"Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2781 };
2782 
2783 
2784 #ifdef CONFIG_PM
2785 /*
2786  * power management
2787  */
2788 
2789 /**
2790  * snd_hda_suspend - suspend the codecs
2791  * @bus: the HDA bus
2792  * @state: suspsend state
2793  *
2794  * Returns 0 if successful.
2795  */
2796 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2797 {
2798 	struct hda_codec *codec;
2799 
2800 	list_for_each_entry(codec, &bus->codec_list, list) {
2801 #ifdef CONFIG_SND_HDA_POWER_SAVE
2802 		if (!codec->power_on)
2803 			continue;
2804 #endif
2805 		hda_call_codec_suspend(codec);
2806 	}
2807 	return 0;
2808 }
2809 
2810 /**
2811  * snd_hda_resume - resume the codecs
2812  * @bus: the HDA bus
2813  * @state: resume state
2814  *
2815  * Returns 0 if successful.
2816  *
2817  * This fucntion is defined only when POWER_SAVE isn't set.
2818  * In the power-save mode, the codec is resumed dynamically.
2819  */
2820 int snd_hda_resume(struct hda_bus *bus)
2821 {
2822 	struct hda_codec *codec;
2823 
2824 	list_for_each_entry(codec, &bus->codec_list, list) {
2825 		if (snd_hda_codec_needs_resume(codec))
2826 			hda_call_codec_resume(codec);
2827 	}
2828 	return 0;
2829 }
2830 #ifdef CONFIG_SND_HDA_POWER_SAVE
2831 int snd_hda_codecs_inuse(struct hda_bus *bus)
2832 {
2833 	struct hda_codec *codec;
2834 
2835 	list_for_each_entry(codec, &bus->codec_list, list) {
2836 		if (snd_hda_codec_needs_resume(codec))
2837 			return 1;
2838 	}
2839 	return 0;
2840 }
2841 #endif
2842 #endif
2843