1 /* 2 * Driver for C-Media CMI8338 and 8738 PCI soundcards. 3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 /* Does not work. Warning may block system in capture mode */ 21 /* #define USE_VAR48KRATE */ 22 23 #include <sound/driver.h> 24 #include <asm/io.h> 25 #include <linux/delay.h> 26 #include <linux/interrupt.h> 27 #include <linux/init.h> 28 #include <linux/pci.h> 29 #include <linux/slab.h> 30 #include <linux/gameport.h> 31 #include <linux/moduleparam.h> 32 #include <linux/mutex.h> 33 #include <sound/core.h> 34 #include <sound/info.h> 35 #include <sound/control.h> 36 #include <sound/pcm.h> 37 #include <sound/rawmidi.h> 38 #include <sound/mpu401.h> 39 #include <sound/opl3.h> 40 #include <sound/sb.h> 41 #include <sound/asoundef.h> 42 #include <sound/initval.h> 43 44 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); 45 MODULE_DESCRIPTION("C-Media CMI8x38 PCI"); 46 MODULE_LICENSE("GPL"); 47 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738}," 48 "{C-Media,CMI8738B}," 49 "{C-Media,CMI8338A}," 50 "{C-Media,CMI8338B}}"); 51 52 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE)) 53 #define SUPPORT_JOYSTICK 1 54 #endif 55 56 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 57 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 58 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ 59 static long mpu_port[SNDRV_CARDS]; 60 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 61 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 62 #ifdef SUPPORT_JOYSTICK 63 static int joystick_port[SNDRV_CARDS]; 64 #endif 65 66 module_param_array(index, int, NULL, 0444); 67 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard."); 68 module_param_array(id, charp, NULL, 0444); 69 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard."); 70 module_param_array(enable, bool, NULL, 0444); 71 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard."); 72 module_param_array(mpu_port, long, NULL, 0444); 73 MODULE_PARM_DESC(mpu_port, "MPU-401 port."); 74 module_param_array(fm_port, long, NULL, 0444); 75 MODULE_PARM_DESC(fm_port, "FM port."); 76 module_param_array(soft_ac3, bool, NULL, 0444); 77 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only)."); 78 #ifdef SUPPORT_JOYSTICK 79 module_param_array(joystick_port, int, NULL, 0444); 80 MODULE_PARM_DESC(joystick_port, "Joystick port address."); 81 #endif 82 83 /* 84 * CM8x38 registers definition 85 */ 86 87 #define CM_REG_FUNCTRL0 0x00 88 #define CM_RST_CH1 0x00080000 89 #define CM_RST_CH0 0x00040000 90 #define CM_CHEN1 0x00020000 /* ch1: enable */ 91 #define CM_CHEN0 0x00010000 /* ch0: enable */ 92 #define CM_PAUSE1 0x00000008 /* ch1: pause */ 93 #define CM_PAUSE0 0x00000004 /* ch0: pause */ 94 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */ 95 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */ 96 97 #define CM_REG_FUNCTRL1 0x04 98 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */ 99 #define CM_DSFC_SHIFT 13 100 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */ 101 #define CM_ASFC_SHIFT 10 102 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */ 103 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */ 104 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */ 105 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */ 106 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */ 107 #define CM_BREQ 0x00000010 /* bus master enabled */ 108 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */ 109 #define CM_UART_EN 0x00000004 /* legacy UART */ 110 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */ 111 #define CM_ZVPORT 0x00000001 /* ZVPORT */ 112 113 #define CM_REG_CHFORMAT 0x08 114 115 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */ 116 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */ 117 #define CM_CHB3D 0x20000000 /* 4 channels */ 118 119 #define CM_CHIP_MASK1 0x1f000000 120 #define CM_CHIP_037 0x01000000 121 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */ 122 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */ 123 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */ 124 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */ 125 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */ 126 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */ 127 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */ 128 129 #define CM_ADCBITLEN_MASK 0x0000C000 130 #define CM_ADCBITLEN_16 0x00000000 131 #define CM_ADCBITLEN_15 0x00004000 132 #define CM_ADCBITLEN_14 0x00008000 133 #define CM_ADCBITLEN_13 0x0000C000 134 135 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */ 136 #define CM_ADCDACLEN_060 0x00000000 137 #define CM_ADCDACLEN_066 0x00001000 138 #define CM_ADCDACLEN_130 0x00002000 139 #define CM_ADCDACLEN_280 0x00003000 140 141 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */ 142 #define CM_ADCDLEN_ORIGINAL 0x00000000 143 #define CM_ADCDLEN_EXTRA 0x00001000 144 #define CM_ADCDLEN_24K 0x00002000 145 #define CM_ADCDLEN_WEIGHT 0x00003000 146 147 #define CM_CH1_SRATE_176K 0x00000800 148 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */ 149 #define CM_CH1_SRATE_88K 0x00000400 150 #define CM_CH0_SRATE_176K 0x00000200 151 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */ 152 #define CM_CH0_SRATE_88K 0x00000100 153 154 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */ 155 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */ 156 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */ 157 #define CM_SPDLOCKED 0x00000010 158 159 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */ 160 #define CM_CH1FMT_SHIFT 2 161 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */ 162 #define CM_CH0FMT_SHIFT 0 163 164 #define CM_REG_INT_HLDCLR 0x0C 165 #define CM_CHIP_MASK2 0xff000000 166 #define CM_CHIP_8768 0x20000000 167 #define CM_CHIP_055 0x08000000 168 #define CM_CHIP_039 0x04000000 169 #define CM_CHIP_039_6CH 0x01000000 170 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */ 171 #define CM_TDMA_INT_EN 0x00040000 172 #define CM_CH1_INT_EN 0x00020000 173 #define CM_CH0_INT_EN 0x00010000 174 175 #define CM_REG_INT_STATUS 0x10 176 #define CM_INTR 0x80000000 177 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */ 178 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */ 179 #define CM_UARTINT 0x00010000 180 #define CM_LTDMAINT 0x00008000 181 #define CM_HTDMAINT 0x00004000 182 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */ 183 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */ 184 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */ 185 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */ 186 #define CM_CH1BUSY 0x00000008 187 #define CM_CH0BUSY 0x00000004 188 #define CM_CHINT1 0x00000002 189 #define CM_CHINT0 0x00000001 190 191 #define CM_REG_LEGACY_CTRL 0x14 192 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */ 193 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */ 194 #define CM_VMPU_330 0x00000000 195 #define CM_VMPU_320 0x20000000 196 #define CM_VMPU_310 0x40000000 197 #define CM_VMPU_300 0x60000000 198 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */ 199 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */ 200 #define CM_VSBSEL_220 0x00000000 201 #define CM_VSBSEL_240 0x04000000 202 #define CM_VSBSEL_260 0x08000000 203 #define CM_VSBSEL_280 0x0C000000 204 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */ 205 #define CM_FMSEL_388 0x00000000 206 #define CM_FMSEL_3C8 0x01000000 207 #define CM_FMSEL_3E0 0x02000000 208 #define CM_FMSEL_3E8 0x03000000 209 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */ 210 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */ 211 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */ 212 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */ 213 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */ 214 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */ 215 #define CM_C_EECS 0x00040000 216 #define CM_C_EEDI46 0x00020000 217 #define CM_C_EECK46 0x00010000 218 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */ 219 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */ 220 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */ 221 #define CM_EXBASEN 0x00001000 /* external bass input enable */ 222 223 #define CM_REG_MISC_CTRL 0x18 224 #define CM_PWD 0x80000000 /* power down */ 225 #define CM_RESET 0x40000000 226 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */ 227 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */ 228 #define CM_TXVX 0x08000000 /* model 037? */ 229 #define CM_N4SPK3D 0x04000000 /* copy front to rear */ 230 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */ 231 #define CM_SPDIF48K 0x01000000 /* write */ 232 #define CM_SPATUS48K 0x01000000 /* read */ 233 #define CM_ENDBDAC 0x00800000 /* enable double dac */ 234 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */ 235 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */ 236 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */ 237 #define CM_FM_EN 0x00080000 /* enable legacy FM */ 238 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */ 239 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */ 240 #define CM_VIDWPDSB 0x00010000 /* model 037? */ 241 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */ 242 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */ 243 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */ 244 #define CM_VIDWPPRT 0x00002000 /* model 037? */ 245 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */ 246 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */ 247 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */ 248 #define CM_ENCENTER 0x00000080 249 #define CM_FLINKON 0x00000080 /* force modem link detection on, model 037 */ 250 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */ 251 #define CM_FLINKOFF 0x00000040 /* force modem link detection off, model 037 */ 252 #define CM_UNKNOWN_18_5 0x00000020 /* ? */ 253 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */ 254 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */ 255 #define CM_UPDDMA_2048 0x00000000 256 #define CM_UPDDMA_1024 0x00000004 257 #define CM_UPDDMA_512 0x00000008 258 #define CM_UPDDMA_256 0x0000000C 259 #define CM_TWAIT_MASK 0x00000003 /* model 037 */ 260 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */ 261 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */ 262 263 #define CM_REG_TDMA_POSITION 0x1C 264 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */ 265 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */ 266 267 /* byte */ 268 #define CM_REG_MIXER0 0x20 269 #define CM_REG_SBVR 0x20 /* write: sb16 version */ 270 #define CM_REG_DEV 0x20 /* read: hardware device version */ 271 272 #define CM_REG_MIXER21 0x21 273 #define CM_UNKNOWN_21_MASK 0x78 /* ? */ 274 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */ 275 #define CM_PROINV 0x02 /* SBPro left/right channel switching */ 276 #define CM_X_SB16 0x01 /* SB16 compatible */ 277 278 #define CM_REG_SB16_DATA 0x22 279 #define CM_REG_SB16_ADDR 0x23 280 281 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */ 282 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */ 283 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */ 284 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */ 285 286 #define CM_REG_MIXER1 0x24 287 #define CM_FMMUTE 0x80 /* mute FM */ 288 #define CM_FMMUTE_SHIFT 7 289 #define CM_WSMUTE 0x40 /* mute PCM */ 290 #define CM_WSMUTE_SHIFT 6 291 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */ 292 #define CM_REAR2LIN_SHIFT 5 293 #define CM_REAR2FRONT 0x10 /* exchange rear/front */ 294 #define CM_REAR2FRONT_SHIFT 4 295 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */ 296 #define CM_WAVEINL_SHIFT 3 297 #define CM_WAVEINR 0x04 /* digical wave rec. right */ 298 #define CM_WAVEINR_SHIFT 2 299 #define CM_X3DEN 0x02 /* 3D surround enable */ 300 #define CM_X3DEN_SHIFT 1 301 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */ 302 #define CM_CDPLAY_SHIFT 0 303 304 #define CM_REG_MIXER2 0x25 305 #define CM_RAUXREN 0x80 /* AUX right capture */ 306 #define CM_RAUXREN_SHIFT 7 307 #define CM_RAUXLEN 0x40 /* AUX left capture */ 308 #define CM_RAUXLEN_SHIFT 6 309 #define CM_VAUXRM 0x20 /* AUX right mute */ 310 #define CM_VAUXRM_SHIFT 5 311 #define CM_VAUXLM 0x10 /* AUX left mute */ 312 #define CM_VAUXLM_SHIFT 4 313 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */ 314 #define CM_VADMIC_SHIFT 1 315 #define CM_MICGAINZ 0x01 /* mic boost */ 316 #define CM_MICGAINZ_SHIFT 0 317 318 #define CM_REG_MIXER3 0x24 319 #define CM_REG_AUX_VOL 0x26 320 #define CM_VAUXL_MASK 0xf0 321 #define CM_VAUXR_MASK 0x0f 322 323 #define CM_REG_MISC 0x27 324 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */ 325 #define CM_XGPO1 0x20 326 // #define CM_XGPBIO 0x04 327 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */ 328 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */ 329 #define CM_SPDVALID 0x02 /* spdif input valid check */ 330 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */ 331 332 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */ 333 /* 334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738 335 * or identical with AC97 codec? 336 */ 337 #define CM_REG_EXTERN_CODEC CM_REG_AC97 338 339 /* 340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6) 341 */ 342 #define CM_REG_MPU_PCI 0x40 343 344 /* 345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6) 346 */ 347 #define CM_REG_FM_PCI 0x50 348 349 /* 350 * access from SB-mixer port 351 */ 352 #define CM_REG_EXTENT_IND 0xf0 353 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */ 354 #define CM_VPHONE_SHIFT 5 355 #define CM_VPHOM 0x10 /* Phone mute control */ 356 #define CM_VSPKM 0x08 /* Speaker mute control, default high */ 357 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */ 358 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */ 359 #define CM_VADMIC3 0x01 /* Mic record boost */ 360 361 /* 362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738): 363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL 364 * unit (readonly?). 365 */ 366 #define CM_REG_PLL 0xf8 367 368 /* 369 * extended registers 370 */ 371 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */ 372 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */ 373 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */ 374 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */ 375 376 #define CM_REG_EXT_MISC 0x90 377 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */ 378 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */ 379 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */ 380 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */ 381 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */ 382 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */ 383 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */ 384 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */ 385 386 /* 387 * size of i/o region 388 */ 389 #define CM_EXTENT_CODEC 0x100 390 #define CM_EXTENT_MIDI 0x2 391 #define CM_EXTENT_SYNTH 0x4 392 393 394 /* 395 * channels for playback / capture 396 */ 397 #define CM_CH_PLAY 0 398 #define CM_CH_CAPT 1 399 400 /* 401 * flags to check device open/close 402 */ 403 #define CM_OPEN_NONE 0 404 #define CM_OPEN_CH_MASK 0x01 405 #define CM_OPEN_DAC 0x10 406 #define CM_OPEN_ADC 0x20 407 #define CM_OPEN_SPDIF 0x40 408 #define CM_OPEN_MCHAN 0x80 409 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC) 410 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC) 411 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN) 412 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC) 413 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF) 414 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF) 415 416 417 #if CM_CH_PLAY == 1 418 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K 419 #define CM_PLAYBACK_SPDF CM_SPDF_1 420 #define CM_CAPTURE_SPDF CM_SPDF_0 421 #else 422 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K 423 #define CM_PLAYBACK_SPDF CM_SPDF_0 424 #define CM_CAPTURE_SPDF CM_SPDF_1 425 #endif 426 427 428 /* 429 * driver data 430 */ 431 432 struct cmipci_pcm { 433 struct snd_pcm_substream *substream; 434 u8 running; /* dac/adc running? */ 435 u8 fmt; /* format bits */ 436 u8 is_dac; 437 u8 needs_silencing; 438 unsigned int dma_size; /* in frames */ 439 unsigned int shift; 440 unsigned int ch; /* channel (0/1) */ 441 unsigned int offset; /* physical address of the buffer */ 442 }; 443 444 /* mixer elements toggled/resumed during ac3 playback */ 445 struct cmipci_mixer_auto_switches { 446 const char *name; /* switch to toggle */ 447 int toggle_on; /* value to change when ac3 mode */ 448 }; 449 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = { 450 {"PCM Playback Switch", 0}, 451 {"IEC958 Output Switch", 1}, 452 {"IEC958 Mix Analog", 0}, 453 // {"IEC958 Out To DAC", 1}, // no longer used 454 {"IEC958 Loop", 0}, 455 }; 456 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer) 457 458 struct cmipci { 459 struct snd_card *card; 460 461 struct pci_dev *pci; 462 unsigned int device; /* device ID */ 463 int irq; 464 465 unsigned long iobase; 466 unsigned int ctrl; /* FUNCTRL0 current value */ 467 468 struct snd_pcm *pcm; /* DAC/ADC PCM */ 469 struct snd_pcm *pcm2; /* 2nd DAC */ 470 struct snd_pcm *pcm_spdif; /* SPDIF */ 471 472 int chip_version; 473 int max_channels; 474 unsigned int can_ac3_sw: 1; 475 unsigned int can_ac3_hw: 1; 476 unsigned int can_multi_ch: 1; 477 unsigned int do_soft_ac3: 1; 478 479 unsigned int spdif_playback_avail: 1; /* spdif ready? */ 480 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */ 481 int spdif_counter; /* for software AC3 */ 482 483 unsigned int dig_status; 484 unsigned int dig_pcm_status; 485 486 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */ 487 488 int opened[2]; /* open mode */ 489 struct mutex open_mutex; 490 491 unsigned int mixer_insensitive: 1; 492 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS]; 493 int mixer_res_status[CM_SAVED_MIXERS]; 494 495 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */ 496 497 /* external MIDI */ 498 struct snd_rawmidi *rmidi; 499 500 #ifdef SUPPORT_JOYSTICK 501 struct gameport *gameport; 502 #endif 503 504 spinlock_t reg_lock; 505 506 #ifdef CONFIG_PM 507 unsigned int saved_regs[0x20]; 508 unsigned char saved_mixers[0x20]; 509 #endif 510 }; 511 512 513 /* read/write operations for dword register */ 514 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data) 515 { 516 outl(data, cm->iobase + cmd); 517 } 518 519 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd) 520 { 521 return inl(cm->iobase + cmd); 522 } 523 524 /* read/write operations for word register */ 525 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data) 526 { 527 outw(data, cm->iobase + cmd); 528 } 529 530 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd) 531 { 532 return inw(cm->iobase + cmd); 533 } 534 535 /* read/write operations for byte register */ 536 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data) 537 { 538 outb(data, cm->iobase + cmd); 539 } 540 541 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd) 542 { 543 return inb(cm->iobase + cmd); 544 } 545 546 /* bit operations for dword register */ 547 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 548 { 549 unsigned int val, oval; 550 val = oval = inl(cm->iobase + cmd); 551 val |= flag; 552 if (val == oval) 553 return 0; 554 outl(val, cm->iobase + cmd); 555 return 1; 556 } 557 558 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 559 { 560 unsigned int val, oval; 561 val = oval = inl(cm->iobase + cmd); 562 val &= ~flag; 563 if (val == oval) 564 return 0; 565 outl(val, cm->iobase + cmd); 566 return 1; 567 } 568 569 /* bit operations for byte register */ 570 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 571 { 572 unsigned char val, oval; 573 val = oval = inb(cm->iobase + cmd); 574 val |= flag; 575 if (val == oval) 576 return 0; 577 outb(val, cm->iobase + cmd); 578 return 1; 579 } 580 581 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 582 { 583 unsigned char val, oval; 584 val = oval = inb(cm->iobase + cmd); 585 val &= ~flag; 586 if (val == oval) 587 return 0; 588 outb(val, cm->iobase + cmd); 589 return 1; 590 } 591 592 593 /* 594 * PCM interface 595 */ 596 597 /* 598 * calculate frequency 599 */ 600 601 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 }; 602 603 static unsigned int snd_cmipci_rate_freq(unsigned int rate) 604 { 605 unsigned int i; 606 607 if (rate > 48000) 608 rate /= 2; 609 for (i = 0; i < ARRAY_SIZE(rates); i++) { 610 if (rates[i] == rate) 611 return i; 612 } 613 snd_BUG(); 614 return 0; 615 } 616 617 #ifdef USE_VAR48KRATE 618 /* 619 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???) 620 * does it this way .. maybe not. Never get any information from C-Media about 621 * that <werner@suse.de>. 622 */ 623 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n) 624 { 625 unsigned int delta, tolerance; 626 int xm, xn, xr; 627 628 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5)) 629 rate <<= 1; 630 *n = -1; 631 if (*r > 0xff) 632 goto out; 633 tolerance = rate*CM_TOLERANCE_RATE; 634 635 for (xn = (1+2); xn < (0x1f+2); xn++) { 636 for (xm = (1+2); xm < (0xff+2); xm++) { 637 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn; 638 639 if (xr < rate) 640 delta = rate - xr; 641 else 642 delta = xr - rate; 643 644 /* 645 * If we found one, remember this, 646 * and try to find a closer one 647 */ 648 if (delta < tolerance) { 649 tolerance = delta; 650 *m = xm - 2; 651 *n = xn - 2; 652 } 653 } 654 } 655 out: 656 return (*n > -1); 657 } 658 659 /* 660 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff 661 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen 662 * at the register CM_REG_FUNCTRL1 (0x04). 663 * Problem: other ways are also possible (any information about that?) 664 */ 665 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot) 666 { 667 unsigned int reg = CM_REG_PLL + slot; 668 /* 669 * Guess that this programs at reg. 0x04 the pos 15:13/12:10 670 * for DSFC/ASFC (000 upto 111). 671 */ 672 673 /* FIXME: Init (Do we've to set an other register first before programming?) */ 674 675 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */ 676 snd_cmipci_write_b(cm, reg, rate>>8); 677 snd_cmipci_write_b(cm, reg, rate&0xff); 678 679 /* FIXME: Setup (Do we've to set an other register first to enable this?) */ 680 } 681 #endif /* USE_VAR48KRATE */ 682 683 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream, 684 struct snd_pcm_hw_params *hw_params) 685 { 686 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 687 } 688 689 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream, 690 struct snd_pcm_hw_params *hw_params) 691 { 692 struct cmipci *cm = snd_pcm_substream_chip(substream); 693 if (params_channels(hw_params) > 2) { 694 mutex_lock(&cm->open_mutex); 695 if (cm->opened[CM_CH_PLAY]) { 696 mutex_unlock(&cm->open_mutex); 697 return -EBUSY; 698 } 699 /* reserve the channel A */ 700 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI; 701 mutex_unlock(&cm->open_mutex); 702 } 703 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 704 } 705 706 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch) 707 { 708 int reset = CM_RST_CH0 << (cm->channel[ch].ch); 709 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 710 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 711 udelay(10); 712 } 713 714 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream) 715 { 716 return snd_pcm_lib_free_pages(substream); 717 } 718 719 720 /* 721 */ 722 723 static unsigned int hw_channels[] = {1, 2, 4, 6, 8}; 724 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = { 725 .count = 3, 726 .list = hw_channels, 727 .mask = 0, 728 }; 729 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = { 730 .count = 4, 731 .list = hw_channels, 732 .mask = 0, 733 }; 734 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = { 735 .count = 5, 736 .list = hw_channels, 737 .mask = 0, 738 }; 739 740 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels) 741 { 742 if (channels > 2) { 743 if (!cm->can_multi_ch || !rec->ch) 744 return -EINVAL; 745 if (rec->fmt != 0x03) /* stereo 16bit only */ 746 return -EINVAL; 747 } 748 749 if (cm->can_multi_ch) { 750 spin_lock_irq(&cm->reg_lock); 751 if (channels > 2) { 752 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 753 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 754 } else { 755 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 756 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 757 } 758 if (channels == 8) 759 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 760 else 761 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 762 if (channels == 6) { 763 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 764 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 765 } else { 766 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 767 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 768 } 769 if (channels == 4) 770 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 771 else 772 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 773 spin_unlock_irq(&cm->reg_lock); 774 } 775 return 0; 776 } 777 778 779 /* 780 * prepare playback/capture channel 781 * channel to be used must have been set in rec->ch. 782 */ 783 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec, 784 struct snd_pcm_substream *substream) 785 { 786 unsigned int reg, freq, val; 787 unsigned int period_size; 788 struct snd_pcm_runtime *runtime = substream->runtime; 789 790 rec->fmt = 0; 791 rec->shift = 0; 792 if (snd_pcm_format_width(runtime->format) >= 16) { 793 rec->fmt |= 0x02; 794 if (snd_pcm_format_width(runtime->format) > 16) 795 rec->shift++; /* 24/32bit */ 796 } 797 if (runtime->channels > 1) 798 rec->fmt |= 0x01; 799 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) { 800 snd_printd("cannot set dac channels\n"); 801 return -EINVAL; 802 } 803 804 rec->offset = runtime->dma_addr; 805 /* buffer and period sizes in frame */ 806 rec->dma_size = runtime->buffer_size << rec->shift; 807 period_size = runtime->period_size << rec->shift; 808 if (runtime->channels > 2) { 809 /* multi-channels */ 810 rec->dma_size = (rec->dma_size * runtime->channels) / 2; 811 period_size = (period_size * runtime->channels) / 2; 812 } 813 814 spin_lock_irq(&cm->reg_lock); 815 816 /* set buffer address */ 817 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 818 snd_cmipci_write(cm, reg, rec->offset); 819 /* program sample counts */ 820 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 821 snd_cmipci_write_w(cm, reg, rec->dma_size - 1); 822 snd_cmipci_write_w(cm, reg + 2, period_size - 1); 823 824 /* set adc/dac flag */ 825 val = rec->ch ? CM_CHADC1 : CM_CHADC0; 826 if (rec->is_dac) 827 cm->ctrl &= ~val; 828 else 829 cm->ctrl |= val; 830 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 831 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl); 832 833 /* set sample rate */ 834 freq = snd_cmipci_rate_freq(runtime->rate); 835 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 836 if (rec->ch) { 837 val &= ~CM_DSFC_MASK; 838 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK; 839 } else { 840 val &= ~CM_ASFC_MASK; 841 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK; 842 } 843 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 844 //snd_printd("cmipci: functrl1 = %08x\n", val); 845 846 /* set format */ 847 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 848 if (rec->ch) { 849 val &= ~CM_CH1FMT_MASK; 850 val |= rec->fmt << CM_CH1FMT_SHIFT; 851 } else { 852 val &= ~CM_CH0FMT_MASK; 853 val |= rec->fmt << CM_CH0FMT_SHIFT; 854 } 855 if (cm->chip_version == 68) { 856 if (runtime->rate == 88200) 857 val |= CM_CH0_SRATE_88K << (rec->ch * 2); 858 else 859 val &= ~(CM_CH0_SRATE_88K << (rec->ch * 2)); 860 if (runtime->rate == 96000) 861 val |= CM_CH0_SRATE_96K << (rec->ch * 2); 862 else 863 val &= ~(CM_CH0_SRATE_96K << (rec->ch * 2)); 864 } 865 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 866 //snd_printd("cmipci: chformat = %08x\n", val); 867 868 rec->running = 0; 869 spin_unlock_irq(&cm->reg_lock); 870 871 return 0; 872 } 873 874 /* 875 * PCM trigger/stop 876 */ 877 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec, 878 int cmd) 879 { 880 unsigned int inthld, chen, reset, pause; 881 int result = 0; 882 883 inthld = CM_CH0_INT_EN << rec->ch; 884 chen = CM_CHEN0 << rec->ch; 885 reset = CM_RST_CH0 << rec->ch; 886 pause = CM_PAUSE0 << rec->ch; 887 888 spin_lock(&cm->reg_lock); 889 switch (cmd) { 890 case SNDRV_PCM_TRIGGER_START: 891 rec->running = 1; 892 /* set interrupt */ 893 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld); 894 cm->ctrl |= chen; 895 /* enable channel */ 896 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 897 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl); 898 break; 899 case SNDRV_PCM_TRIGGER_STOP: 900 rec->running = 0; 901 /* disable interrupt */ 902 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld); 903 /* reset */ 904 cm->ctrl &= ~chen; 905 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 906 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 907 rec->needs_silencing = rec->is_dac; 908 break; 909 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 910 case SNDRV_PCM_TRIGGER_SUSPEND: 911 cm->ctrl |= pause; 912 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 913 break; 914 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 915 case SNDRV_PCM_TRIGGER_RESUME: 916 cm->ctrl &= ~pause; 917 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 918 break; 919 default: 920 result = -EINVAL; 921 break; 922 } 923 spin_unlock(&cm->reg_lock); 924 return result; 925 } 926 927 /* 928 * return the current pointer 929 */ 930 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec, 931 struct snd_pcm_substream *substream) 932 { 933 size_t ptr; 934 unsigned int reg; 935 if (!rec->running) 936 return 0; 937 #if 1 // this seems better.. 938 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 939 ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1); 940 ptr >>= rec->shift; 941 #else 942 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 943 ptr = snd_cmipci_read(cm, reg) - rec->offset; 944 ptr = bytes_to_frames(substream->runtime, ptr); 945 #endif 946 if (substream->runtime->channels > 2) 947 ptr = (ptr * 2) / substream->runtime->channels; 948 return ptr; 949 } 950 951 /* 952 * playback 953 */ 954 955 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream, 956 int cmd) 957 { 958 struct cmipci *cm = snd_pcm_substream_chip(substream); 959 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd); 960 } 961 962 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream) 963 { 964 struct cmipci *cm = snd_pcm_substream_chip(substream); 965 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream); 966 } 967 968 969 970 /* 971 * capture 972 */ 973 974 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream, 975 int cmd) 976 { 977 struct cmipci *cm = snd_pcm_substream_chip(substream); 978 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd); 979 } 980 981 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream) 982 { 983 struct cmipci *cm = snd_pcm_substream_chip(substream); 984 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream); 985 } 986 987 988 /* 989 * hw preparation for spdif 990 */ 991 992 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol, 993 struct snd_ctl_elem_info *uinfo) 994 { 995 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 996 uinfo->count = 1; 997 return 0; 998 } 999 1000 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol, 1001 struct snd_ctl_elem_value *ucontrol) 1002 { 1003 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1004 int i; 1005 1006 spin_lock_irq(&chip->reg_lock); 1007 for (i = 0; i < 4; i++) 1008 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff; 1009 spin_unlock_irq(&chip->reg_lock); 1010 return 0; 1011 } 1012 1013 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol, 1014 struct snd_ctl_elem_value *ucontrol) 1015 { 1016 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1017 int i, change; 1018 unsigned int val; 1019 1020 val = 0; 1021 spin_lock_irq(&chip->reg_lock); 1022 for (i = 0; i < 4; i++) 1023 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1024 change = val != chip->dig_status; 1025 chip->dig_status = val; 1026 spin_unlock_irq(&chip->reg_lock); 1027 return change; 1028 } 1029 1030 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata = 1031 { 1032 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1033 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1034 .info = snd_cmipci_spdif_default_info, 1035 .get = snd_cmipci_spdif_default_get, 1036 .put = snd_cmipci_spdif_default_put 1037 }; 1038 1039 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol, 1040 struct snd_ctl_elem_info *uinfo) 1041 { 1042 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1043 uinfo->count = 1; 1044 return 0; 1045 } 1046 1047 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1048 struct snd_ctl_elem_value *ucontrol) 1049 { 1050 ucontrol->value.iec958.status[0] = 0xff; 1051 ucontrol->value.iec958.status[1] = 0xff; 1052 ucontrol->value.iec958.status[2] = 0xff; 1053 ucontrol->value.iec958.status[3] = 0xff; 1054 return 0; 1055 } 1056 1057 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata = 1058 { 1059 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1060 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1061 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1062 .info = snd_cmipci_spdif_mask_info, 1063 .get = snd_cmipci_spdif_mask_get, 1064 }; 1065 1066 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol, 1067 struct snd_ctl_elem_info *uinfo) 1068 { 1069 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1070 uinfo->count = 1; 1071 return 0; 1072 } 1073 1074 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1075 struct snd_ctl_elem_value *ucontrol) 1076 { 1077 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1078 int i; 1079 1080 spin_lock_irq(&chip->reg_lock); 1081 for (i = 0; i < 4; i++) 1082 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff; 1083 spin_unlock_irq(&chip->reg_lock); 1084 return 0; 1085 } 1086 1087 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1088 struct snd_ctl_elem_value *ucontrol) 1089 { 1090 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1091 int i, change; 1092 unsigned int val; 1093 1094 val = 0; 1095 spin_lock_irq(&chip->reg_lock); 1096 for (i = 0; i < 4; i++) 1097 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1098 change = val != chip->dig_pcm_status; 1099 chip->dig_pcm_status = val; 1100 spin_unlock_irq(&chip->reg_lock); 1101 return change; 1102 } 1103 1104 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata = 1105 { 1106 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1107 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1108 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1109 .info = snd_cmipci_spdif_stream_info, 1110 .get = snd_cmipci_spdif_stream_get, 1111 .put = snd_cmipci_spdif_stream_put 1112 }; 1113 1114 /* 1115 */ 1116 1117 /* save mixer setting and mute for AC3 playback */ 1118 static int save_mixer_state(struct cmipci *cm) 1119 { 1120 if (! cm->mixer_insensitive) { 1121 struct snd_ctl_elem_value *val; 1122 unsigned int i; 1123 1124 val = kmalloc(sizeof(*val), GFP_ATOMIC); 1125 if (!val) 1126 return -ENOMEM; 1127 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1128 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1129 if (ctl) { 1130 int event; 1131 memset(val, 0, sizeof(*val)); 1132 ctl->get(ctl, val); 1133 cm->mixer_res_status[i] = val->value.integer.value[0]; 1134 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on; 1135 event = SNDRV_CTL_EVENT_MASK_INFO; 1136 if (cm->mixer_res_status[i] != val->value.integer.value[0]) { 1137 ctl->put(ctl, val); /* toggle */ 1138 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1139 } 1140 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1141 snd_ctl_notify(cm->card, event, &ctl->id); 1142 } 1143 } 1144 kfree(val); 1145 cm->mixer_insensitive = 1; 1146 } 1147 return 0; 1148 } 1149 1150 1151 /* restore the previously saved mixer status */ 1152 static void restore_mixer_state(struct cmipci *cm) 1153 { 1154 if (cm->mixer_insensitive) { 1155 struct snd_ctl_elem_value *val; 1156 unsigned int i; 1157 1158 val = kmalloc(sizeof(*val), GFP_KERNEL); 1159 if (!val) 1160 return; 1161 cm->mixer_insensitive = 0; /* at first clear this; 1162 otherwise the changes will be ignored */ 1163 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1164 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1165 if (ctl) { 1166 int event; 1167 1168 memset(val, 0, sizeof(*val)); 1169 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1170 ctl->get(ctl, val); 1171 event = SNDRV_CTL_EVENT_MASK_INFO; 1172 if (val->value.integer.value[0] != cm->mixer_res_status[i]) { 1173 val->value.integer.value[0] = cm->mixer_res_status[i]; 1174 ctl->put(ctl, val); 1175 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1176 } 1177 snd_ctl_notify(cm->card, event, &ctl->id); 1178 } 1179 } 1180 kfree(val); 1181 } 1182 } 1183 1184 /* spinlock held! */ 1185 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate) 1186 { 1187 if (do_ac3) { 1188 /* AC3EN for 037 */ 1189 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1190 /* AC3EN for 039 */ 1191 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1192 1193 if (cm->can_ac3_hw) { 1194 /* SPD24SEL for 037, 0x02 */ 1195 /* SPD24SEL for 039, 0x20, but cannot be set */ 1196 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1197 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1198 } else { /* can_ac3_sw */ 1199 /* SPD32SEL for 037 & 039, 0x20 */ 1200 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1201 /* set 176K sample rate to fix 033 HW bug */ 1202 if (cm->chip_version == 33) { 1203 if (rate >= 48000) { 1204 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1205 } else { 1206 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1207 } 1208 } 1209 } 1210 1211 } else { 1212 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1213 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1214 1215 if (cm->can_ac3_hw) { 1216 /* chip model >= 37 */ 1217 if (snd_pcm_format_width(subs->runtime->format) > 16) { 1218 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1219 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1220 } else { 1221 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1222 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1223 } 1224 } else { 1225 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1226 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1227 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1228 } 1229 } 1230 } 1231 1232 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3) 1233 { 1234 int rate, err; 1235 1236 rate = subs->runtime->rate; 1237 1238 if (up && do_ac3) 1239 if ((err = save_mixer_state(cm)) < 0) 1240 return err; 1241 1242 spin_lock_irq(&cm->reg_lock); 1243 cm->spdif_playback_avail = up; 1244 if (up) { 1245 /* they are controlled via "IEC958 Output Switch" */ 1246 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1247 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1248 if (cm->spdif_playback_enabled) 1249 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1250 setup_ac3(cm, subs, do_ac3, rate); 1251 1252 if (rate == 48000 || rate == 96000) 1253 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1254 else 1255 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1256 if (rate > 48000) 1257 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1258 else 1259 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1260 } else { 1261 /* they are controlled via "IEC958 Output Switch" */ 1262 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1263 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1264 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1265 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1266 setup_ac3(cm, subs, 0, 0); 1267 } 1268 spin_unlock_irq(&cm->reg_lock); 1269 return 0; 1270 } 1271 1272 1273 /* 1274 * preparation 1275 */ 1276 1277 /* playback - enable spdif only on the certain condition */ 1278 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream) 1279 { 1280 struct cmipci *cm = snd_pcm_substream_chip(substream); 1281 int rate = substream->runtime->rate; 1282 int err, do_spdif, do_ac3 = 0; 1283 1284 do_spdif = (rate >= 44100 && 1285 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE && 1286 substream->runtime->channels == 2); 1287 if (do_spdif && cm->can_ac3_hw) 1288 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1289 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0) 1290 return err; 1291 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1292 } 1293 1294 /* playback (via device #2) - enable spdif always */ 1295 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream) 1296 { 1297 struct cmipci *cm = snd_pcm_substream_chip(substream); 1298 int err, do_ac3; 1299 1300 if (cm->can_ac3_hw) 1301 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1302 else 1303 do_ac3 = 1; /* doesn't matter */ 1304 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0) 1305 return err; 1306 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1307 } 1308 1309 /* 1310 * Apparently, the samples last played on channel A stay in some buffer, even 1311 * after the channel is reset, and get added to the data for the rear DACs when 1312 * playing a multichannel stream on channel B. This is likely to generate 1313 * wraparounds and thus distortions. 1314 * To avoid this, we play at least one zero sample after the actual stream has 1315 * stopped. 1316 */ 1317 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec) 1318 { 1319 struct snd_pcm_runtime *runtime = rec->substream->runtime; 1320 unsigned int reg, val; 1321 1322 if (rec->needs_silencing && runtime && runtime->dma_area) { 1323 /* set up a small silence buffer */ 1324 memset(runtime->dma_area, 0, PAGE_SIZE); 1325 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 1326 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16); 1327 snd_cmipci_write(cm, reg, val); 1328 1329 /* configure for 16 bits, 2 channels, 8 kHz */ 1330 if (runtime->channels > 2) 1331 set_dac_channels(cm, rec, 2); 1332 spin_lock_irq(&cm->reg_lock); 1333 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 1334 val &= ~(CM_ASFC_MASK << (rec->ch * 3)); 1335 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3); 1336 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 1337 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 1338 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2)); 1339 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2); 1340 if (cm->chip_version == 68) { 1341 val &= ~(CM_CH0_SRATE_88K << (rec->ch * 2)); 1342 val &= ~(CM_CH0_SRATE_96K << (rec->ch * 2)); 1343 } 1344 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 1345 1346 /* start stream (we don't need interrupts) */ 1347 cm->ctrl |= CM_CHEN0 << rec->ch; 1348 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 1349 spin_unlock_irq(&cm->reg_lock); 1350 1351 msleep(1); 1352 1353 /* stop and reset stream */ 1354 spin_lock_irq(&cm->reg_lock); 1355 cm->ctrl &= ~(CM_CHEN0 << rec->ch); 1356 val = CM_RST_CH0 << rec->ch; 1357 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val); 1358 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val); 1359 spin_unlock_irq(&cm->reg_lock); 1360 1361 rec->needs_silencing = 0; 1362 } 1363 } 1364 1365 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream) 1366 { 1367 struct cmipci *cm = snd_pcm_substream_chip(substream); 1368 setup_spdif_playback(cm, substream, 0, 0); 1369 restore_mixer_state(cm); 1370 snd_cmipci_silence_hack(cm, &cm->channel[0]); 1371 return snd_cmipci_hw_free(substream); 1372 } 1373 1374 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream) 1375 { 1376 struct cmipci *cm = snd_pcm_substream_chip(substream); 1377 snd_cmipci_silence_hack(cm, &cm->channel[1]); 1378 return snd_cmipci_hw_free(substream); 1379 } 1380 1381 /* capture */ 1382 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream) 1383 { 1384 struct cmipci *cm = snd_pcm_substream_chip(substream); 1385 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1386 } 1387 1388 /* capture with spdif (via device #2) */ 1389 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream) 1390 { 1391 struct cmipci *cm = snd_pcm_substream_chip(substream); 1392 1393 spin_lock_irq(&cm->reg_lock); 1394 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1395 spin_unlock_irq(&cm->reg_lock); 1396 1397 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1398 } 1399 1400 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs) 1401 { 1402 struct cmipci *cm = snd_pcm_substream_chip(subs); 1403 1404 spin_lock_irq(&cm->reg_lock); 1405 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1406 spin_unlock_irq(&cm->reg_lock); 1407 1408 return snd_cmipci_hw_free(subs); 1409 } 1410 1411 1412 /* 1413 * interrupt handler 1414 */ 1415 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id) 1416 { 1417 struct cmipci *cm = dev_id; 1418 unsigned int status, mask = 0; 1419 1420 /* fastpath out, to ease interrupt sharing */ 1421 status = snd_cmipci_read(cm, CM_REG_INT_STATUS); 1422 if (!(status & CM_INTR)) 1423 return IRQ_NONE; 1424 1425 /* acknowledge interrupt */ 1426 spin_lock(&cm->reg_lock); 1427 if (status & CM_CHINT0) 1428 mask |= CM_CH0_INT_EN; 1429 if (status & CM_CHINT1) 1430 mask |= CM_CH1_INT_EN; 1431 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask); 1432 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask); 1433 spin_unlock(&cm->reg_lock); 1434 1435 if (cm->rmidi && (status & CM_UARTINT)) 1436 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data); 1437 1438 if (cm->pcm) { 1439 if ((status & CM_CHINT0) && cm->channel[0].running) 1440 snd_pcm_period_elapsed(cm->channel[0].substream); 1441 if ((status & CM_CHINT1) && cm->channel[1].running) 1442 snd_pcm_period_elapsed(cm->channel[1].substream); 1443 } 1444 return IRQ_HANDLED; 1445 } 1446 1447 /* 1448 * h/w infos 1449 */ 1450 1451 /* playback on channel A */ 1452 static struct snd_pcm_hardware snd_cmipci_playback = 1453 { 1454 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1455 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1456 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1457 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1458 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1459 .rate_min = 5512, 1460 .rate_max = 48000, 1461 .channels_min = 1, 1462 .channels_max = 2, 1463 .buffer_bytes_max = (128*1024), 1464 .period_bytes_min = 64, 1465 .period_bytes_max = (128*1024), 1466 .periods_min = 2, 1467 .periods_max = 1024, 1468 .fifo_size = 0, 1469 }; 1470 1471 /* capture on channel B */ 1472 static struct snd_pcm_hardware snd_cmipci_capture = 1473 { 1474 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1475 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1476 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1477 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1478 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1479 .rate_min = 5512, 1480 .rate_max = 48000, 1481 .channels_min = 1, 1482 .channels_max = 2, 1483 .buffer_bytes_max = (128*1024), 1484 .period_bytes_min = 64, 1485 .period_bytes_max = (128*1024), 1486 .periods_min = 2, 1487 .periods_max = 1024, 1488 .fifo_size = 0, 1489 }; 1490 1491 /* playback on channel B - stereo 16bit only? */ 1492 static struct snd_pcm_hardware snd_cmipci_playback2 = 1493 { 1494 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1495 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1496 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1497 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1498 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1499 .rate_min = 5512, 1500 .rate_max = 48000, 1501 .channels_min = 2, 1502 .channels_max = 2, 1503 .buffer_bytes_max = (128*1024), 1504 .period_bytes_min = 64, 1505 .period_bytes_max = (128*1024), 1506 .periods_min = 2, 1507 .periods_max = 1024, 1508 .fifo_size = 0, 1509 }; 1510 1511 /* spdif playback on channel A */ 1512 static struct snd_pcm_hardware snd_cmipci_playback_spdif = 1513 { 1514 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1515 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1516 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1517 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1518 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1519 .rate_min = 44100, 1520 .rate_max = 48000, 1521 .channels_min = 2, 1522 .channels_max = 2, 1523 .buffer_bytes_max = (128*1024), 1524 .period_bytes_min = 64, 1525 .period_bytes_max = (128*1024), 1526 .periods_min = 2, 1527 .periods_max = 1024, 1528 .fifo_size = 0, 1529 }; 1530 1531 /* spdif playback on channel A (32bit, IEC958 subframes) */ 1532 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe = 1533 { 1534 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1535 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1536 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1537 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1538 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1539 .rate_min = 44100, 1540 .rate_max = 48000, 1541 .channels_min = 2, 1542 .channels_max = 2, 1543 .buffer_bytes_max = (128*1024), 1544 .period_bytes_min = 64, 1545 .period_bytes_max = (128*1024), 1546 .periods_min = 2, 1547 .periods_max = 1024, 1548 .fifo_size = 0, 1549 }; 1550 1551 /* spdif capture on channel B */ 1552 static struct snd_pcm_hardware snd_cmipci_capture_spdif = 1553 { 1554 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1555 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1556 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1557 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1558 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1559 .rate_min = 44100, 1560 .rate_max = 48000, 1561 .channels_min = 2, 1562 .channels_max = 2, 1563 .buffer_bytes_max = (128*1024), 1564 .period_bytes_min = 64, 1565 .period_bytes_max = (128*1024), 1566 .periods_min = 2, 1567 .periods_max = 1024, 1568 .fifo_size = 0, 1569 }; 1570 1571 /* 1572 * check device open/close 1573 */ 1574 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs) 1575 { 1576 int ch = mode & CM_OPEN_CH_MASK; 1577 1578 /* FIXME: a file should wait until the device becomes free 1579 * when it's opened on blocking mode. however, since the current 1580 * pcm framework doesn't pass file pointer before actually opened, 1581 * we can't know whether blocking mode or not in open callback.. 1582 */ 1583 mutex_lock(&cm->open_mutex); 1584 if (cm->opened[ch]) { 1585 mutex_unlock(&cm->open_mutex); 1586 return -EBUSY; 1587 } 1588 cm->opened[ch] = mode; 1589 cm->channel[ch].substream = subs; 1590 if (! (mode & CM_OPEN_DAC)) { 1591 /* disable dual DAC mode */ 1592 cm->channel[ch].is_dac = 0; 1593 spin_lock_irq(&cm->reg_lock); 1594 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1595 spin_unlock_irq(&cm->reg_lock); 1596 } 1597 mutex_unlock(&cm->open_mutex); 1598 return 0; 1599 } 1600 1601 static void close_device_check(struct cmipci *cm, int mode) 1602 { 1603 int ch = mode & CM_OPEN_CH_MASK; 1604 1605 mutex_lock(&cm->open_mutex); 1606 if (cm->opened[ch] == mode) { 1607 if (cm->channel[ch].substream) { 1608 snd_cmipci_ch_reset(cm, ch); 1609 cm->channel[ch].running = 0; 1610 cm->channel[ch].substream = NULL; 1611 } 1612 cm->opened[ch] = 0; 1613 if (! cm->channel[ch].is_dac) { 1614 /* enable dual DAC mode again */ 1615 cm->channel[ch].is_dac = 1; 1616 spin_lock_irq(&cm->reg_lock); 1617 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1618 spin_unlock_irq(&cm->reg_lock); 1619 } 1620 } 1621 mutex_unlock(&cm->open_mutex); 1622 } 1623 1624 /* 1625 */ 1626 1627 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream) 1628 { 1629 struct cmipci *cm = snd_pcm_substream_chip(substream); 1630 struct snd_pcm_runtime *runtime = substream->runtime; 1631 int err; 1632 1633 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0) 1634 return err; 1635 runtime->hw = snd_cmipci_playback; 1636 if (cm->chip_version == 68) { 1637 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1638 SNDRV_PCM_RATE_96000; 1639 runtime->hw.rate_max = 96000; 1640 } 1641 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1642 cm->dig_pcm_status = cm->dig_status; 1643 return 0; 1644 } 1645 1646 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream) 1647 { 1648 struct cmipci *cm = snd_pcm_substream_chip(substream); 1649 struct snd_pcm_runtime *runtime = substream->runtime; 1650 int err; 1651 1652 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0) 1653 return err; 1654 runtime->hw = snd_cmipci_capture; 1655 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording 1656 runtime->hw.rate_min = 41000; 1657 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000; 1658 } 1659 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1660 return 0; 1661 } 1662 1663 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream) 1664 { 1665 struct cmipci *cm = snd_pcm_substream_chip(substream); 1666 struct snd_pcm_runtime *runtime = substream->runtime; 1667 int err; 1668 1669 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */ 1670 return err; 1671 runtime->hw = snd_cmipci_playback2; 1672 mutex_lock(&cm->open_mutex); 1673 if (! cm->opened[CM_CH_PLAY]) { 1674 if (cm->can_multi_ch) { 1675 runtime->hw.channels_max = cm->max_channels; 1676 if (cm->max_channels == 4) 1677 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4); 1678 else if (cm->max_channels == 6) 1679 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6); 1680 else if (cm->max_channels == 8) 1681 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8); 1682 } 1683 } 1684 mutex_unlock(&cm->open_mutex); 1685 if (cm->chip_version == 68) { 1686 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1687 SNDRV_PCM_RATE_96000; 1688 runtime->hw.rate_max = 96000; 1689 } 1690 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1691 return 0; 1692 } 1693 1694 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream) 1695 { 1696 struct cmipci *cm = snd_pcm_substream_chip(substream); 1697 struct snd_pcm_runtime *runtime = substream->runtime; 1698 int err; 1699 1700 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */ 1701 return err; 1702 if (cm->can_ac3_hw) { 1703 runtime->hw = snd_cmipci_playback_spdif; 1704 if (cm->chip_version >= 37) { 1705 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; 1706 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1707 } 1708 if (cm->chip_version == 68) { 1709 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1710 SNDRV_PCM_RATE_96000; 1711 runtime->hw.rate_max = 96000; 1712 } 1713 } else { 1714 runtime->hw = snd_cmipci_playback_iec958_subframe; 1715 } 1716 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1717 cm->dig_pcm_status = cm->dig_status; 1718 return 0; 1719 } 1720 1721 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream) 1722 { 1723 struct cmipci *cm = snd_pcm_substream_chip(substream); 1724 struct snd_pcm_runtime *runtime = substream->runtime; 1725 int err; 1726 1727 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */ 1728 return err; 1729 runtime->hw = snd_cmipci_capture_spdif; 1730 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1731 return 0; 1732 } 1733 1734 1735 /* 1736 */ 1737 1738 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream) 1739 { 1740 struct cmipci *cm = snd_pcm_substream_chip(substream); 1741 close_device_check(cm, CM_OPEN_PLAYBACK); 1742 return 0; 1743 } 1744 1745 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream) 1746 { 1747 struct cmipci *cm = snd_pcm_substream_chip(substream); 1748 close_device_check(cm, CM_OPEN_CAPTURE); 1749 return 0; 1750 } 1751 1752 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream) 1753 { 1754 struct cmipci *cm = snd_pcm_substream_chip(substream); 1755 close_device_check(cm, CM_OPEN_PLAYBACK2); 1756 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI); 1757 return 0; 1758 } 1759 1760 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream) 1761 { 1762 struct cmipci *cm = snd_pcm_substream_chip(substream); 1763 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK); 1764 return 0; 1765 } 1766 1767 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream) 1768 { 1769 struct cmipci *cm = snd_pcm_substream_chip(substream); 1770 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE); 1771 return 0; 1772 } 1773 1774 1775 /* 1776 */ 1777 1778 static struct snd_pcm_ops snd_cmipci_playback_ops = { 1779 .open = snd_cmipci_playback_open, 1780 .close = snd_cmipci_playback_close, 1781 .ioctl = snd_pcm_lib_ioctl, 1782 .hw_params = snd_cmipci_hw_params, 1783 .hw_free = snd_cmipci_playback_hw_free, 1784 .prepare = snd_cmipci_playback_prepare, 1785 .trigger = snd_cmipci_playback_trigger, 1786 .pointer = snd_cmipci_playback_pointer, 1787 }; 1788 1789 static struct snd_pcm_ops snd_cmipci_capture_ops = { 1790 .open = snd_cmipci_capture_open, 1791 .close = snd_cmipci_capture_close, 1792 .ioctl = snd_pcm_lib_ioctl, 1793 .hw_params = snd_cmipci_hw_params, 1794 .hw_free = snd_cmipci_hw_free, 1795 .prepare = snd_cmipci_capture_prepare, 1796 .trigger = snd_cmipci_capture_trigger, 1797 .pointer = snd_cmipci_capture_pointer, 1798 }; 1799 1800 static struct snd_pcm_ops snd_cmipci_playback2_ops = { 1801 .open = snd_cmipci_playback2_open, 1802 .close = snd_cmipci_playback2_close, 1803 .ioctl = snd_pcm_lib_ioctl, 1804 .hw_params = snd_cmipci_playback2_hw_params, 1805 .hw_free = snd_cmipci_playback2_hw_free, 1806 .prepare = snd_cmipci_capture_prepare, /* channel B */ 1807 .trigger = snd_cmipci_capture_trigger, /* channel B */ 1808 .pointer = snd_cmipci_capture_pointer, /* channel B */ 1809 }; 1810 1811 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = { 1812 .open = snd_cmipci_playback_spdif_open, 1813 .close = snd_cmipci_playback_spdif_close, 1814 .ioctl = snd_pcm_lib_ioctl, 1815 .hw_params = snd_cmipci_hw_params, 1816 .hw_free = snd_cmipci_playback_hw_free, 1817 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */ 1818 .trigger = snd_cmipci_playback_trigger, 1819 .pointer = snd_cmipci_playback_pointer, 1820 }; 1821 1822 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = { 1823 .open = snd_cmipci_capture_spdif_open, 1824 .close = snd_cmipci_capture_spdif_close, 1825 .ioctl = snd_pcm_lib_ioctl, 1826 .hw_params = snd_cmipci_hw_params, 1827 .hw_free = snd_cmipci_capture_spdif_hw_free, 1828 .prepare = snd_cmipci_capture_spdif_prepare, 1829 .trigger = snd_cmipci_capture_trigger, 1830 .pointer = snd_cmipci_capture_pointer, 1831 }; 1832 1833 1834 /* 1835 */ 1836 1837 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device) 1838 { 1839 struct snd_pcm *pcm; 1840 int err; 1841 1842 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1843 if (err < 0) 1844 return err; 1845 1846 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops); 1847 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops); 1848 1849 pcm->private_data = cm; 1850 pcm->info_flags = 0; 1851 strcpy(pcm->name, "C-Media PCI DAC/ADC"); 1852 cm->pcm = pcm; 1853 1854 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1855 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1856 1857 return 0; 1858 } 1859 1860 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device) 1861 { 1862 struct snd_pcm *pcm; 1863 int err; 1864 1865 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm); 1866 if (err < 0) 1867 return err; 1868 1869 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops); 1870 1871 pcm->private_data = cm; 1872 pcm->info_flags = 0; 1873 strcpy(pcm->name, "C-Media PCI 2nd DAC"); 1874 cm->pcm2 = pcm; 1875 1876 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1877 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1878 1879 return 0; 1880 } 1881 1882 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device) 1883 { 1884 struct snd_pcm *pcm; 1885 int err; 1886 1887 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1888 if (err < 0) 1889 return err; 1890 1891 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops); 1892 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops); 1893 1894 pcm->private_data = cm; 1895 pcm->info_flags = 0; 1896 strcpy(pcm->name, "C-Media PCI IEC958"); 1897 cm->pcm_spdif = pcm; 1898 1899 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1900 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1901 1902 return 0; 1903 } 1904 1905 /* 1906 * mixer interface: 1907 * - CM8338/8738 has a compatible mixer interface with SB16, but 1908 * lack of some elements like tone control, i/o gain and AGC. 1909 * - Access to native registers: 1910 * - A 3D switch 1911 * - Output mute switches 1912 */ 1913 1914 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data) 1915 { 1916 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1917 outb(data, s->iobase + CM_REG_SB16_DATA); 1918 } 1919 1920 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx) 1921 { 1922 unsigned char v; 1923 1924 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1925 v = inb(s->iobase + CM_REG_SB16_DATA); 1926 return v; 1927 } 1928 1929 /* 1930 * general mixer element 1931 */ 1932 struct cmipci_sb_reg { 1933 unsigned int left_reg, right_reg; 1934 unsigned int left_shift, right_shift; 1935 unsigned int mask; 1936 unsigned int invert: 1; 1937 unsigned int stereo: 1; 1938 }; 1939 1940 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \ 1941 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23)) 1942 1943 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \ 1944 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 1945 .info = snd_cmipci_info_volume, \ 1946 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \ 1947 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \ 1948 } 1949 1950 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1) 1951 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0) 1952 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1) 1953 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0) 1954 1955 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val) 1956 { 1957 r->left_reg = val & 0xff; 1958 r->right_reg = (val >> 8) & 0xff; 1959 r->left_shift = (val >> 16) & 0x07; 1960 r->right_shift = (val >> 19) & 0x07; 1961 r->invert = (val >> 22) & 1; 1962 r->stereo = (val >> 23) & 1; 1963 r->mask = (val >> 24) & 0xff; 1964 } 1965 1966 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol, 1967 struct snd_ctl_elem_info *uinfo) 1968 { 1969 struct cmipci_sb_reg reg; 1970 1971 cmipci_sb_reg_decode(®, kcontrol->private_value); 1972 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 1973 uinfo->count = reg.stereo + 1; 1974 uinfo->value.integer.min = 0; 1975 uinfo->value.integer.max = reg.mask; 1976 return 0; 1977 } 1978 1979 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol, 1980 struct snd_ctl_elem_value *ucontrol) 1981 { 1982 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 1983 struct cmipci_sb_reg reg; 1984 int val; 1985 1986 cmipci_sb_reg_decode(®, kcontrol->private_value); 1987 spin_lock_irq(&cm->reg_lock); 1988 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask; 1989 if (reg.invert) 1990 val = reg.mask - val; 1991 ucontrol->value.integer.value[0] = val; 1992 if (reg.stereo) { 1993 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask; 1994 if (reg.invert) 1995 val = reg.mask - val; 1996 ucontrol->value.integer.value[1] = val; 1997 } 1998 spin_unlock_irq(&cm->reg_lock); 1999 return 0; 2000 } 2001 2002 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol, 2003 struct snd_ctl_elem_value *ucontrol) 2004 { 2005 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2006 struct cmipci_sb_reg reg; 2007 int change; 2008 int left, right, oleft, oright; 2009 2010 cmipci_sb_reg_decode(®, kcontrol->private_value); 2011 left = ucontrol->value.integer.value[0] & reg.mask; 2012 if (reg.invert) 2013 left = reg.mask - left; 2014 left <<= reg.left_shift; 2015 if (reg.stereo) { 2016 right = ucontrol->value.integer.value[1] & reg.mask; 2017 if (reg.invert) 2018 right = reg.mask - right; 2019 right <<= reg.right_shift; 2020 } else 2021 right = 0; 2022 spin_lock_irq(&cm->reg_lock); 2023 oleft = snd_cmipci_mixer_read(cm, reg.left_reg); 2024 left |= oleft & ~(reg.mask << reg.left_shift); 2025 change = left != oleft; 2026 if (reg.stereo) { 2027 if (reg.left_reg != reg.right_reg) { 2028 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2029 oright = snd_cmipci_mixer_read(cm, reg.right_reg); 2030 } else 2031 oright = left; 2032 right |= oright & ~(reg.mask << reg.right_shift); 2033 change |= right != oright; 2034 snd_cmipci_mixer_write(cm, reg.right_reg, right); 2035 } else 2036 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2037 spin_unlock_irq(&cm->reg_lock); 2038 return change; 2039 } 2040 2041 /* 2042 * input route (left,right) -> (left,right) 2043 */ 2044 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \ 2045 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2046 .info = snd_cmipci_info_input_sw, \ 2047 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \ 2048 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \ 2049 } 2050 2051 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol, 2052 struct snd_ctl_elem_info *uinfo) 2053 { 2054 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2055 uinfo->count = 4; 2056 uinfo->value.integer.min = 0; 2057 uinfo->value.integer.max = 1; 2058 return 0; 2059 } 2060 2061 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol, 2062 struct snd_ctl_elem_value *ucontrol) 2063 { 2064 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2065 struct cmipci_sb_reg reg; 2066 int val1, val2; 2067 2068 cmipci_sb_reg_decode(®, kcontrol->private_value); 2069 spin_lock_irq(&cm->reg_lock); 2070 val1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2071 val2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2072 spin_unlock_irq(&cm->reg_lock); 2073 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1; 2074 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1; 2075 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1; 2076 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1; 2077 return 0; 2078 } 2079 2080 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol, 2081 struct snd_ctl_elem_value *ucontrol) 2082 { 2083 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2084 struct cmipci_sb_reg reg; 2085 int change; 2086 int val1, val2, oval1, oval2; 2087 2088 cmipci_sb_reg_decode(®, kcontrol->private_value); 2089 spin_lock_irq(&cm->reg_lock); 2090 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2091 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2092 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2093 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2094 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift; 2095 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift; 2096 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift; 2097 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift; 2098 change = val1 != oval1 || val2 != oval2; 2099 snd_cmipci_mixer_write(cm, reg.left_reg, val1); 2100 snd_cmipci_mixer_write(cm, reg.right_reg, val2); 2101 spin_unlock_irq(&cm->reg_lock); 2102 return change; 2103 } 2104 2105 /* 2106 * native mixer switches/volumes 2107 */ 2108 2109 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \ 2110 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2111 .info = snd_cmipci_info_native_mixer, \ 2112 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2113 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \ 2114 } 2115 2116 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \ 2117 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2118 .info = snd_cmipci_info_native_mixer, \ 2119 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2120 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \ 2121 } 2122 2123 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \ 2124 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2125 .info = snd_cmipci_info_native_mixer, \ 2126 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2127 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \ 2128 } 2129 2130 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \ 2131 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2132 .info = snd_cmipci_info_native_mixer, \ 2133 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2134 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \ 2135 } 2136 2137 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol, 2138 struct snd_ctl_elem_info *uinfo) 2139 { 2140 struct cmipci_sb_reg reg; 2141 2142 cmipci_sb_reg_decode(®, kcontrol->private_value); 2143 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2144 uinfo->count = reg.stereo + 1; 2145 uinfo->value.integer.min = 0; 2146 uinfo->value.integer.max = reg.mask; 2147 return 0; 2148 2149 } 2150 2151 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol, 2152 struct snd_ctl_elem_value *ucontrol) 2153 { 2154 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2155 struct cmipci_sb_reg reg; 2156 unsigned char oreg, val; 2157 2158 cmipci_sb_reg_decode(®, kcontrol->private_value); 2159 spin_lock_irq(&cm->reg_lock); 2160 oreg = inb(cm->iobase + reg.left_reg); 2161 val = (oreg >> reg.left_shift) & reg.mask; 2162 if (reg.invert) 2163 val = reg.mask - val; 2164 ucontrol->value.integer.value[0] = val; 2165 if (reg.stereo) { 2166 val = (oreg >> reg.right_shift) & reg.mask; 2167 if (reg.invert) 2168 val = reg.mask - val; 2169 ucontrol->value.integer.value[1] = val; 2170 } 2171 spin_unlock_irq(&cm->reg_lock); 2172 return 0; 2173 } 2174 2175 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol, 2176 struct snd_ctl_elem_value *ucontrol) 2177 { 2178 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2179 struct cmipci_sb_reg reg; 2180 unsigned char oreg, nreg, val; 2181 2182 cmipci_sb_reg_decode(®, kcontrol->private_value); 2183 spin_lock_irq(&cm->reg_lock); 2184 oreg = inb(cm->iobase + reg.left_reg); 2185 val = ucontrol->value.integer.value[0] & reg.mask; 2186 if (reg.invert) 2187 val = reg.mask - val; 2188 nreg = oreg & ~(reg.mask << reg.left_shift); 2189 nreg |= (val << reg.left_shift); 2190 if (reg.stereo) { 2191 val = ucontrol->value.integer.value[1] & reg.mask; 2192 if (reg.invert) 2193 val = reg.mask - val; 2194 nreg &= ~(reg.mask << reg.right_shift); 2195 nreg |= (val << reg.right_shift); 2196 } 2197 outb(nreg, cm->iobase + reg.left_reg); 2198 spin_unlock_irq(&cm->reg_lock); 2199 return (nreg != oreg); 2200 } 2201 2202 /* 2203 * special case - check mixer sensitivity 2204 */ 2205 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2206 struct snd_ctl_elem_value *ucontrol) 2207 { 2208 //struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2209 return snd_cmipci_get_native_mixer(kcontrol, ucontrol); 2210 } 2211 2212 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2213 struct snd_ctl_elem_value *ucontrol) 2214 { 2215 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2216 if (cm->mixer_insensitive) { 2217 /* ignored */ 2218 return 0; 2219 } 2220 return snd_cmipci_put_native_mixer(kcontrol, ucontrol); 2221 } 2222 2223 2224 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = { 2225 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31), 2226 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0), 2227 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31), 2228 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1), 2229 { /* switch with sensitivity */ 2230 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2231 .name = "PCM Playback Switch", 2232 .info = snd_cmipci_info_native_mixer, 2233 .get = snd_cmipci_get_native_mixer_sensitive, 2234 .put = snd_cmipci_put_native_mixer_sensitive, 2235 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0), 2236 }, 2237 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0), 2238 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31), 2239 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1), 2240 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5), 2241 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31), 2242 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1), 2243 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1), 2244 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31), 2245 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3), 2246 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3), 2247 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31), 2248 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0), 2249 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0), 2250 CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3), 2251 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15), 2252 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0), 2253 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0), 2254 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1), 2255 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7), 2256 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7), 2257 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0), 2258 CMIPCI_DOUBLE("PC Speaker Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0), 2259 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0), 2260 }; 2261 2262 /* 2263 * other switches 2264 */ 2265 2266 struct cmipci_switch_args { 2267 int reg; /* register index */ 2268 unsigned int mask; /* mask bits */ 2269 unsigned int mask_on; /* mask bits to turn on */ 2270 unsigned int is_byte: 1; /* byte access? */ 2271 unsigned int ac3_sensitive: 1; /* access forbidden during 2272 * non-audio operation? 2273 */ 2274 }; 2275 2276 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info 2277 2278 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2279 struct snd_ctl_elem_value *ucontrol, 2280 struct cmipci_switch_args *args) 2281 { 2282 unsigned int val; 2283 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2284 2285 spin_lock_irq(&cm->reg_lock); 2286 if (args->ac3_sensitive && cm->mixer_insensitive) { 2287 ucontrol->value.integer.value[0] = 0; 2288 spin_unlock_irq(&cm->reg_lock); 2289 return 0; 2290 } 2291 if (args->is_byte) 2292 val = inb(cm->iobase + args->reg); 2293 else 2294 val = snd_cmipci_read(cm, args->reg); 2295 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0; 2296 spin_unlock_irq(&cm->reg_lock); 2297 return 0; 2298 } 2299 2300 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2301 struct snd_ctl_elem_value *ucontrol) 2302 { 2303 struct cmipci_switch_args *args; 2304 args = (struct cmipci_switch_args *)kcontrol->private_value; 2305 snd_assert(args != NULL, return -EINVAL); 2306 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args); 2307 } 2308 2309 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2310 struct snd_ctl_elem_value *ucontrol, 2311 struct cmipci_switch_args *args) 2312 { 2313 unsigned int val; 2314 int change; 2315 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2316 2317 spin_lock_irq(&cm->reg_lock); 2318 if (args->ac3_sensitive && cm->mixer_insensitive) { 2319 /* ignored */ 2320 spin_unlock_irq(&cm->reg_lock); 2321 return 0; 2322 } 2323 if (args->is_byte) 2324 val = inb(cm->iobase + args->reg); 2325 else 2326 val = snd_cmipci_read(cm, args->reg); 2327 change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 2328 args->mask_on : (args->mask & ~args->mask_on)); 2329 if (change) { 2330 val &= ~args->mask; 2331 if (ucontrol->value.integer.value[0]) 2332 val |= args->mask_on; 2333 else 2334 val |= (args->mask & ~args->mask_on); 2335 if (args->is_byte) 2336 outb((unsigned char)val, cm->iobase + args->reg); 2337 else 2338 snd_cmipci_write(cm, args->reg, val); 2339 } 2340 spin_unlock_irq(&cm->reg_lock); 2341 return change; 2342 } 2343 2344 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2345 struct snd_ctl_elem_value *ucontrol) 2346 { 2347 struct cmipci_switch_args *args; 2348 args = (struct cmipci_switch_args *)kcontrol->private_value; 2349 snd_assert(args != NULL, return -EINVAL); 2350 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args); 2351 } 2352 2353 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \ 2354 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \ 2355 .reg = xreg, \ 2356 .mask = xmask, \ 2357 .mask_on = xmask_on, \ 2358 .is_byte = xis_byte, \ 2359 .ac3_sensitive = xac3, \ 2360 } 2361 2362 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \ 2363 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3) 2364 2365 #if 0 /* these will be controlled in pcm device */ 2366 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0); 2367 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0); 2368 #endif 2369 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0); 2370 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0); 2371 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0); 2372 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1); 2373 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0); 2374 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0); 2375 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1); 2376 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */ 2377 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1); 2378 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1); 2379 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0); 2380 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */ 2381 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0); 2382 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0); 2383 #if CM_CH_PLAY == 1 2384 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */ 2385 #else 2386 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0); 2387 #endif 2388 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0); 2389 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0); 2390 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0); 2391 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */ 2392 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0); 2393 2394 #define DEFINE_SWITCH(sname, stype, sarg) \ 2395 { .name = sname, \ 2396 .iface = stype, \ 2397 .info = snd_cmipci_uswitch_info, \ 2398 .get = snd_cmipci_uswitch_get, \ 2399 .put = snd_cmipci_uswitch_put, \ 2400 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\ 2401 } 2402 2403 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg) 2404 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg) 2405 2406 2407 /* 2408 * callbacks for spdif output switch 2409 * needs toggle two registers.. 2410 */ 2411 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol, 2412 struct snd_ctl_elem_value *ucontrol) 2413 { 2414 int changed; 2415 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2416 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2417 return changed; 2418 } 2419 2420 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol, 2421 struct snd_ctl_elem_value *ucontrol) 2422 { 2423 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 2424 int changed; 2425 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2426 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2427 if (changed) { 2428 if (ucontrol->value.integer.value[0]) { 2429 if (chip->spdif_playback_avail) 2430 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2431 } else { 2432 if (chip->spdif_playback_avail) 2433 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2434 } 2435 } 2436 chip->spdif_playback_enabled = ucontrol->value.integer.value[0]; 2437 return changed; 2438 } 2439 2440 2441 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol, 2442 struct snd_ctl_elem_info *uinfo) 2443 { 2444 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2445 static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" }; 2446 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2447 uinfo->count = 1; 2448 uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2; 2449 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2450 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1; 2451 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); 2452 return 0; 2453 } 2454 2455 static inline unsigned int get_line_in_mode(struct cmipci *cm) 2456 { 2457 unsigned int val; 2458 if (cm->chip_version >= 39) { 2459 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL); 2460 if (val & (CM_CENTR2LIN | CM_BASE2LIN)) 2461 return 2; 2462 } 2463 val = snd_cmipci_read_b(cm, CM_REG_MIXER1); 2464 if (val & CM_REAR2LIN) 2465 return 1; 2466 return 0; 2467 } 2468 2469 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol, 2470 struct snd_ctl_elem_value *ucontrol) 2471 { 2472 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2473 2474 spin_lock_irq(&cm->reg_lock); 2475 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm); 2476 spin_unlock_irq(&cm->reg_lock); 2477 return 0; 2478 } 2479 2480 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol, 2481 struct snd_ctl_elem_value *ucontrol) 2482 { 2483 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2484 int change; 2485 2486 spin_lock_irq(&cm->reg_lock); 2487 if (ucontrol->value.enumerated.item[0] == 2) 2488 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2489 else 2490 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2491 if (ucontrol->value.enumerated.item[0] == 1) 2492 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2493 else 2494 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2495 spin_unlock_irq(&cm->reg_lock); 2496 return change; 2497 } 2498 2499 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol, 2500 struct snd_ctl_elem_info *uinfo) 2501 { 2502 static char *texts[2] = { "Mic-In", "Center/LFE Output" }; 2503 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2504 uinfo->count = 1; 2505 uinfo->value.enumerated.items = 2; 2506 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2507 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1; 2508 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); 2509 return 0; 2510 } 2511 2512 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol, 2513 struct snd_ctl_elem_value *ucontrol) 2514 { 2515 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2516 /* same bit as spdi_phase */ 2517 spin_lock_irq(&cm->reg_lock); 2518 ucontrol->value.enumerated.item[0] = 2519 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0; 2520 spin_unlock_irq(&cm->reg_lock); 2521 return 0; 2522 } 2523 2524 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol, 2525 struct snd_ctl_elem_value *ucontrol) 2526 { 2527 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2528 int change; 2529 2530 spin_lock_irq(&cm->reg_lock); 2531 if (ucontrol->value.enumerated.item[0]) 2532 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2533 else 2534 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2535 spin_unlock_irq(&cm->reg_lock); 2536 return change; 2537 } 2538 2539 /* both for CM8338/8738 */ 2540 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = { 2541 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch), 2542 { 2543 .name = "Line-In Mode", 2544 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2545 .info = snd_cmipci_line_in_mode_info, 2546 .get = snd_cmipci_line_in_mode_get, 2547 .put = snd_cmipci_line_in_mode_put, 2548 }, 2549 }; 2550 2551 /* for non-multichannel chips */ 2552 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata = 2553 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac); 2554 2555 /* only for CM8738 */ 2556 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = { 2557 #if 0 /* controlled in pcm device */ 2558 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in), 2559 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out), 2560 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac), 2561 #endif 2562 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable), 2563 { .name = "IEC958 Output Switch", 2564 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2565 .info = snd_cmipci_uswitch_info, 2566 .get = snd_cmipci_spdout_enable_get, 2567 .put = snd_cmipci_spdout_enable_put, 2568 }, 2569 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid), 2570 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright), 2571 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v), 2572 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k), 2573 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop), 2574 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor), 2575 }; 2576 2577 /* only for model 033/037 */ 2578 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = { 2579 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out), 2580 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase), 2581 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1), 2582 }; 2583 2584 /* only for model 039 or later */ 2585 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = { 2586 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2), 2587 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2), 2588 { 2589 .name = "Mic-In Mode", 2590 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2591 .info = snd_cmipci_mic_in_mode_info, 2592 .get = snd_cmipci_mic_in_mode_get, 2593 .put = snd_cmipci_mic_in_mode_put, 2594 } 2595 }; 2596 2597 /* card control switches */ 2598 static struct snd_kcontrol_new snd_cmipci_control_switches[] __devinitdata = { 2599 // DEFINE_CARD_SWITCH("Joystick", joystick), /* now module option */ 2600 DEFINE_CARD_SWITCH("Modem", modem), 2601 }; 2602 2603 2604 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device) 2605 { 2606 struct snd_card *card; 2607 struct snd_kcontrol_new *sw; 2608 struct snd_kcontrol *kctl; 2609 unsigned int idx; 2610 int err; 2611 2612 snd_assert(cm != NULL && cm->card != NULL, return -EINVAL); 2613 2614 card = cm->card; 2615 2616 strcpy(card->mixername, "CMedia PCI"); 2617 2618 spin_lock_irq(&cm->reg_lock); 2619 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */ 2620 spin_unlock_irq(&cm->reg_lock); 2621 2622 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) { 2623 if (cm->chip_version == 68) { // 8768 has no PCM volume 2624 if (!strcmp(snd_cmipci_mixers[idx].name, 2625 "PCM Playback Volume")) 2626 continue; 2627 } 2628 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0) 2629 return err; 2630 } 2631 2632 /* mixer switches */ 2633 sw = snd_cmipci_mixer_switches; 2634 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) { 2635 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2636 if (err < 0) 2637 return err; 2638 } 2639 if (! cm->can_multi_ch) { 2640 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm)); 2641 if (err < 0) 2642 return err; 2643 } 2644 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 || 2645 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { 2646 sw = snd_cmipci_8738_mixer_switches; 2647 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) { 2648 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2649 if (err < 0) 2650 return err; 2651 } 2652 if (cm->can_ac3_hw) { 2653 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0) 2654 return err; 2655 kctl->id.device = pcm_spdif_device; 2656 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0) 2657 return err; 2658 kctl->id.device = pcm_spdif_device; 2659 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0) 2660 return err; 2661 kctl->id.device = pcm_spdif_device; 2662 } 2663 if (cm->chip_version <= 37) { 2664 sw = snd_cmipci_old_mixer_switches; 2665 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) { 2666 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2667 if (err < 0) 2668 return err; 2669 } 2670 } 2671 } 2672 if (cm->chip_version >= 39) { 2673 sw = snd_cmipci_extra_mixer_switches; 2674 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) { 2675 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2676 if (err < 0) 2677 return err; 2678 } 2679 } 2680 2681 /* card switches */ 2682 sw = snd_cmipci_control_switches; 2683 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_control_switches); idx++, sw++) { 2684 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2685 if (err < 0) 2686 return err; 2687 } 2688 2689 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) { 2690 struct snd_ctl_elem_id id; 2691 struct snd_kcontrol *ctl; 2692 memset(&id, 0, sizeof(id)); 2693 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 2694 strcpy(id.name, cm_saved_mixer[idx].name); 2695 if ((ctl = snd_ctl_find_id(cm->card, &id)) != NULL) 2696 cm->mixer_res_ctl[idx] = ctl; 2697 } 2698 2699 return 0; 2700 } 2701 2702 2703 /* 2704 * proc interface 2705 */ 2706 2707 #ifdef CONFIG_PROC_FS 2708 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 2709 struct snd_info_buffer *buffer) 2710 { 2711 struct cmipci *cm = entry->private_data; 2712 int i, v; 2713 2714 snd_iprintf(buffer, "%s\n", cm->card->longname); 2715 for (i = 0; i < 0x94; i++) { 2716 if (i == 0x28) 2717 i = 0x90; 2718 v = inb(cm->iobase + i); 2719 if (i % 4 == 0) 2720 snd_iprintf(buffer, "\n%02x:", i); 2721 snd_iprintf(buffer, " %02x", v); 2722 } 2723 snd_iprintf(buffer, "\n"); 2724 } 2725 2726 static void __devinit snd_cmipci_proc_init(struct cmipci *cm) 2727 { 2728 struct snd_info_entry *entry; 2729 2730 if (! snd_card_proc_new(cm->card, "cmipci", &entry)) 2731 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read); 2732 } 2733 #else /* !CONFIG_PROC_FS */ 2734 static inline void snd_cmipci_proc_init(struct cmipci *cm) {} 2735 #endif 2736 2737 2738 static struct pci_device_id snd_cmipci_ids[] = { 2739 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2740 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2741 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2742 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2743 {PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2744 {0,}, 2745 }; 2746 2747 2748 /* 2749 * check chip version and capabilities 2750 * driver name is modified according to the chip model 2751 */ 2752 static void __devinit query_chip(struct cmipci *cm) 2753 { 2754 unsigned int detect; 2755 2756 /* check reg 0Ch, bit 24-31 */ 2757 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2; 2758 if (! detect) { 2759 /* check reg 08h, bit 24-28 */ 2760 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1; 2761 switch (detect) { 2762 case 0: 2763 cm->chip_version = 33; 2764 if (cm->do_soft_ac3) 2765 cm->can_ac3_sw = 1; 2766 else 2767 cm->can_ac3_hw = 1; 2768 break; 2769 case CM_CHIP_037: 2770 cm->chip_version = 37; 2771 cm->can_ac3_hw = 1; 2772 break; 2773 default: 2774 cm->chip_version = 39; 2775 cm->can_ac3_hw = 1; 2776 break; 2777 } 2778 cm->max_channels = 2; 2779 } else { 2780 if (detect & CM_CHIP_039) { 2781 cm->chip_version = 39; 2782 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */ 2783 cm->max_channels = 6; 2784 else 2785 cm->max_channels = 4; 2786 } else if (detect & CM_CHIP_8768) { 2787 cm->chip_version = 68; 2788 cm->max_channels = 8; 2789 } else { 2790 cm->chip_version = 55; 2791 cm->max_channels = 6; 2792 } 2793 cm->can_ac3_hw = 1; 2794 cm->can_multi_ch = 1; 2795 } 2796 } 2797 2798 #ifdef SUPPORT_JOYSTICK 2799 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev) 2800 { 2801 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */ 2802 struct gameport *gp; 2803 struct resource *r = NULL; 2804 int i, io_port = 0; 2805 2806 if (joystick_port[dev] == 0) 2807 return -ENODEV; 2808 2809 if (joystick_port[dev] == 1) { /* auto-detect */ 2810 for (i = 0; ports[i]; i++) { 2811 io_port = ports[i]; 2812 r = request_region(io_port, 1, "CMIPCI gameport"); 2813 if (r) 2814 break; 2815 } 2816 } else { 2817 io_port = joystick_port[dev]; 2818 r = request_region(io_port, 1, "CMIPCI gameport"); 2819 } 2820 2821 if (!r) { 2822 printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n"); 2823 return -EBUSY; 2824 } 2825 2826 cm->gameport = gp = gameport_allocate_port(); 2827 if (!gp) { 2828 printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n"); 2829 release_and_free_resource(r); 2830 return -ENOMEM; 2831 } 2832 gameport_set_name(gp, "C-Media Gameport"); 2833 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci)); 2834 gameport_set_dev_parent(gp, &cm->pci->dev); 2835 gp->io = io_port; 2836 gameport_set_port_data(gp, r); 2837 2838 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2839 2840 gameport_register_port(cm->gameport); 2841 2842 return 0; 2843 } 2844 2845 static void snd_cmipci_free_gameport(struct cmipci *cm) 2846 { 2847 if (cm->gameport) { 2848 struct resource *r = gameport_get_port_data(cm->gameport); 2849 2850 gameport_unregister_port(cm->gameport); 2851 cm->gameport = NULL; 2852 2853 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2854 release_and_free_resource(r); 2855 } 2856 } 2857 #else 2858 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; } 2859 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { } 2860 #endif 2861 2862 static int snd_cmipci_free(struct cmipci *cm) 2863 { 2864 if (cm->irq >= 0) { 2865 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2866 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); 2867 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 2868 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 2869 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 2870 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 2871 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 2872 2873 /* reset mixer */ 2874 snd_cmipci_mixer_write(cm, 0, 0); 2875 2876 synchronize_irq(cm->irq); 2877 2878 free_irq(cm->irq, cm); 2879 } 2880 2881 snd_cmipci_free_gameport(cm); 2882 pci_release_regions(cm->pci); 2883 pci_disable_device(cm->pci); 2884 kfree(cm); 2885 return 0; 2886 } 2887 2888 static int snd_cmipci_dev_free(struct snd_device *device) 2889 { 2890 struct cmipci *cm = device->device_data; 2891 return snd_cmipci_free(cm); 2892 } 2893 2894 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port) 2895 { 2896 long iosynth; 2897 unsigned int val; 2898 struct snd_opl3 *opl3; 2899 int err; 2900 2901 if (!fm_port) 2902 goto disable_fm; 2903 2904 if (cm->chip_version >= 39) { 2905 /* first try FM regs in PCI port range */ 2906 iosynth = cm->iobase + CM_REG_FM_PCI; 2907 err = snd_opl3_create(cm->card, iosynth, iosynth + 2, 2908 OPL3_HW_OPL3, 1, &opl3); 2909 } else { 2910 err = -EIO; 2911 } 2912 if (err < 0) { 2913 /* then try legacy ports */ 2914 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK; 2915 iosynth = fm_port; 2916 switch (iosynth) { 2917 case 0x3E8: val |= CM_FMSEL_3E8; break; 2918 case 0x3E0: val |= CM_FMSEL_3E0; break; 2919 case 0x3C8: val |= CM_FMSEL_3C8; break; 2920 case 0x388: val |= CM_FMSEL_388; break; 2921 default: 2922 goto disable_fm; 2923 } 2924 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 2925 /* enable FM */ 2926 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2927 2928 if (snd_opl3_create(cm->card, iosynth, iosynth + 2, 2929 OPL3_HW_OPL3, 0, &opl3) < 0) { 2930 printk(KERN_ERR "cmipci: no OPL device at %#lx, " 2931 "skipping...\n", iosynth); 2932 goto disable_fm; 2933 } 2934 } 2935 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { 2936 printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n"); 2937 return err; 2938 } 2939 return 0; 2940 2941 disable_fm: 2942 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK); 2943 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2944 return 0; 2945 } 2946 2947 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci, 2948 int dev, struct cmipci **rcmipci) 2949 { 2950 struct cmipci *cm; 2951 int err; 2952 static struct snd_device_ops ops = { 2953 .dev_free = snd_cmipci_dev_free, 2954 }; 2955 unsigned int val; 2956 long iomidi; 2957 int integrated_midi = 0; 2958 char modelstr[16]; 2959 int pcm_index, pcm_spdif_index; 2960 static struct pci_device_id intel_82437vx[] = { 2961 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) }, 2962 { }, 2963 }; 2964 2965 *rcmipci = NULL; 2966 2967 if ((err = pci_enable_device(pci)) < 0) 2968 return err; 2969 2970 cm = kzalloc(sizeof(*cm), GFP_KERNEL); 2971 if (cm == NULL) { 2972 pci_disable_device(pci); 2973 return -ENOMEM; 2974 } 2975 2976 spin_lock_init(&cm->reg_lock); 2977 mutex_init(&cm->open_mutex); 2978 cm->device = pci->device; 2979 cm->card = card; 2980 cm->pci = pci; 2981 cm->irq = -1; 2982 cm->channel[0].ch = 0; 2983 cm->channel[1].ch = 1; 2984 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */ 2985 2986 if ((err = pci_request_regions(pci, card->driver)) < 0) { 2987 kfree(cm); 2988 pci_disable_device(pci); 2989 return err; 2990 } 2991 cm->iobase = pci_resource_start(pci, 0); 2992 2993 if (request_irq(pci->irq, snd_cmipci_interrupt, 2994 IRQF_SHARED, card->driver, cm)) { 2995 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 2996 snd_cmipci_free(cm); 2997 return -EBUSY; 2998 } 2999 cm->irq = pci->irq; 3000 3001 pci_set_master(cm->pci); 3002 3003 /* 3004 * check chip version, max channels and capabilities 3005 */ 3006 3007 cm->chip_version = 0; 3008 cm->max_channels = 2; 3009 cm->do_soft_ac3 = soft_ac3[dev]; 3010 3011 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A && 3012 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B) 3013 query_chip(cm); 3014 /* added -MCx suffix for chip supporting multi-channels */ 3015 if (cm->can_multi_ch) 3016 sprintf(cm->card->driver + strlen(cm->card->driver), 3017 "-MC%d", cm->max_channels); 3018 else if (cm->can_ac3_sw) 3019 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC"); 3020 3021 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3022 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3023 3024 #if CM_CH_PLAY == 1 3025 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */ 3026 #else 3027 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */ 3028 #endif 3029 3030 /* initialize codec registers */ 3031 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3032 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3033 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 3034 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3035 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3036 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 3037 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 3038 3039 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0); 3040 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D); 3041 #if CM_CH_PLAY == 1 3042 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3043 #else 3044 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3045 #endif 3046 if (cm->chip_version) { 3047 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */ 3048 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */ 3049 } 3050 /* Set Bus Master Request */ 3051 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ); 3052 3053 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */ 3054 switch (pci->device) { 3055 case PCI_DEVICE_ID_CMEDIA_CM8738: 3056 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3057 if (!pci_dev_present(intel_82437vx)) 3058 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX); 3059 break; 3060 default: 3061 break; 3062 } 3063 3064 if (cm->chip_version < 68) { 3065 val = pci->device < 0x110 ? 8338 : 8738; 3066 } else { 3067 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) { 3068 case 0: 3069 val = 8769; 3070 break; 3071 case 2: 3072 val = 8762; 3073 break; 3074 default: 3075 switch ((pci->subsystem_vendor << 16) | 3076 pci->subsystem_device) { 3077 case 0x13f69761: 3078 case 0x584d3741: 3079 case 0x584d3751: 3080 case 0x584d3761: 3081 case 0x584d3771: 3082 case 0x72848384: 3083 val = 8770; 3084 break; 3085 default: 3086 val = 8768; 3087 break; 3088 } 3089 } 3090 } 3091 sprintf(card->shortname, "C-Media CMI%d", val); 3092 if (cm->chip_version < 68) 3093 sprintf(modelstr, " (model %d)", cm->chip_version); 3094 else 3095 modelstr[0] = '\0'; 3096 sprintf(card->longname, "%s%s at %#lx, irq %i", 3097 card->shortname, modelstr, cm->iobase, cm->irq); 3098 3099 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) { 3100 snd_cmipci_free(cm); 3101 return err; 3102 } 3103 3104 if (cm->chip_version >= 39) { 3105 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1); 3106 if (val != 0x00 && val != 0xff) { 3107 iomidi = cm->iobase + CM_REG_MPU_PCI; 3108 integrated_midi = 1; 3109 } 3110 } 3111 if (!integrated_midi) { 3112 val = 0; 3113 iomidi = mpu_port[dev]; 3114 switch (iomidi) { 3115 case 0x320: val = CM_VMPU_320; break; 3116 case 0x310: val = CM_VMPU_310; break; 3117 case 0x300: val = CM_VMPU_300; break; 3118 case 0x330: val = CM_VMPU_330; break; 3119 default: 3120 iomidi = 0; break; 3121 } 3122 if (iomidi > 0) { 3123 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 3124 /* enable UART */ 3125 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); 3126 if (inb(iomidi + 1) == 0xff) { 3127 snd_printk(KERN_ERR "cannot enable MPU-401 port" 3128 " at %#lx\n", iomidi); 3129 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, 3130 CM_UART_EN); 3131 iomidi = 0; 3132 } 3133 } 3134 } 3135 3136 if (cm->chip_version < 68) { 3137 err = snd_cmipci_create_fm(cm, fm_port[dev]); 3138 if (err < 0) 3139 return err; 3140 } 3141 3142 /* reset mixer */ 3143 snd_cmipci_mixer_write(cm, 0, 0); 3144 3145 snd_cmipci_proc_init(cm); 3146 3147 /* create pcm devices */ 3148 pcm_index = pcm_spdif_index = 0; 3149 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0) 3150 return err; 3151 pcm_index++; 3152 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0) 3153 return err; 3154 pcm_index++; 3155 if (cm->can_ac3_hw || cm->can_ac3_sw) { 3156 pcm_spdif_index = pcm_index; 3157 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0) 3158 return err; 3159 } 3160 3161 /* create mixer interface & switches */ 3162 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0) 3163 return err; 3164 3165 if (iomidi > 0) { 3166 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, 3167 iomidi, 3168 (integrated_midi ? 3169 MPU401_INFO_INTEGRATED : 0), 3170 cm->irq, 0, &cm->rmidi)) < 0) { 3171 printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi); 3172 } 3173 } 3174 3175 #ifdef USE_VAR48KRATE 3176 for (val = 0; val < ARRAY_SIZE(rates); val++) 3177 snd_cmipci_set_pll(cm, rates[val], val); 3178 3179 /* 3180 * (Re-)Enable external switch spdo_48k 3181 */ 3182 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97); 3183 #endif /* USE_VAR48KRATE */ 3184 3185 if (snd_cmipci_create_gameport(cm, dev) < 0) 3186 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 3187 3188 snd_card_set_dev(card, &pci->dev); 3189 3190 *rcmipci = cm; 3191 return 0; 3192 } 3193 3194 /* 3195 */ 3196 3197 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids); 3198 3199 static int __devinit snd_cmipci_probe(struct pci_dev *pci, 3200 const struct pci_device_id *pci_id) 3201 { 3202 static int dev; 3203 struct snd_card *card; 3204 struct cmipci *cm; 3205 int err; 3206 3207 if (dev >= SNDRV_CARDS) 3208 return -ENODEV; 3209 if (! enable[dev]) { 3210 dev++; 3211 return -ENOENT; 3212 } 3213 3214 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0); 3215 if (card == NULL) 3216 return -ENOMEM; 3217 3218 switch (pci->device) { 3219 case PCI_DEVICE_ID_CMEDIA_CM8738: 3220 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3221 strcpy(card->driver, "CMI8738"); 3222 break; 3223 case PCI_DEVICE_ID_CMEDIA_CM8338A: 3224 case PCI_DEVICE_ID_CMEDIA_CM8338B: 3225 strcpy(card->driver, "CMI8338"); 3226 break; 3227 default: 3228 strcpy(card->driver, "CMIPCI"); 3229 break; 3230 } 3231 3232 if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) { 3233 snd_card_free(card); 3234 return err; 3235 } 3236 card->private_data = cm; 3237 3238 if ((err = snd_card_register(card)) < 0) { 3239 snd_card_free(card); 3240 return err; 3241 } 3242 pci_set_drvdata(pci, card); 3243 dev++; 3244 return 0; 3245 3246 } 3247 3248 static void __devexit snd_cmipci_remove(struct pci_dev *pci) 3249 { 3250 snd_card_free(pci_get_drvdata(pci)); 3251 pci_set_drvdata(pci, NULL); 3252 } 3253 3254 3255 #ifdef CONFIG_PM 3256 /* 3257 * power management 3258 */ 3259 static unsigned char saved_regs[] = { 3260 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL, 3261 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL, 3262 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2, 3263 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC, 3264 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0, 3265 }; 3266 3267 static unsigned char saved_mixers[] = { 3268 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1, 3269 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1, 3270 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1, 3271 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1, 3272 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1, 3273 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV, 3274 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW, 3275 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 3276 }; 3277 3278 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state) 3279 { 3280 struct snd_card *card = pci_get_drvdata(pci); 3281 struct cmipci *cm = card->private_data; 3282 int i; 3283 3284 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 3285 3286 snd_pcm_suspend_all(cm->pcm); 3287 snd_pcm_suspend_all(cm->pcm2); 3288 snd_pcm_suspend_all(cm->pcm_spdif); 3289 3290 /* save registers */ 3291 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3292 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]); 3293 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3294 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]); 3295 3296 /* disable ints */ 3297 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3298 3299 pci_disable_device(pci); 3300 pci_save_state(pci); 3301 pci_set_power_state(pci, pci_choose_state(pci, state)); 3302 return 0; 3303 } 3304 3305 static int snd_cmipci_resume(struct pci_dev *pci) 3306 { 3307 struct snd_card *card = pci_get_drvdata(pci); 3308 struct cmipci *cm = card->private_data; 3309 int i; 3310 3311 pci_set_power_state(pci, PCI_D0); 3312 pci_restore_state(pci); 3313 if (pci_enable_device(pci) < 0) { 3314 printk(KERN_ERR "cmipci: pci_enable_device failed, " 3315 "disabling device\n"); 3316 snd_card_disconnect(card); 3317 return -EIO; 3318 } 3319 pci_set_master(pci); 3320 3321 /* reset / initialize to a sane state */ 3322 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3323 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3324 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3325 snd_cmipci_mixer_write(cm, 0, 0); 3326 3327 /* restore registers */ 3328 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3329 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]); 3330 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3331 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]); 3332 3333 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 3334 return 0; 3335 } 3336 #endif /* CONFIG_PM */ 3337 3338 static struct pci_driver driver = { 3339 .name = "C-Media PCI", 3340 .id_table = snd_cmipci_ids, 3341 .probe = snd_cmipci_probe, 3342 .remove = __devexit_p(snd_cmipci_remove), 3343 #ifdef CONFIG_PM 3344 .suspend = snd_cmipci_suspend, 3345 .resume = snd_cmipci_resume, 3346 #endif 3347 }; 3348 3349 static int __init alsa_card_cmipci_init(void) 3350 { 3351 return pci_register_driver(&driver); 3352 } 3353 3354 static void __exit alsa_card_cmipci_exit(void) 3355 { 3356 pci_unregister_driver(&driver); 3357 } 3358 3359 module_init(alsa_card_cmipci_init) 3360 module_exit(alsa_card_cmipci_exit) 3361