xref: /openbmc/linux/sound/pci/cmipci.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
22 
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/gameport.h>
31 #include <linux/moduleparam.h>
32 #include <linux/mutex.h>
33 #include <sound/core.h>
34 #include <sound/info.h>
35 #include <sound/control.h>
36 #include <sound/pcm.h>
37 #include <sound/rawmidi.h>
38 #include <sound/mpu401.h>
39 #include <sound/opl3.h>
40 #include <sound/sb.h>
41 #include <sound/asoundef.h>
42 #include <sound/initval.h>
43 
44 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
45 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
46 MODULE_LICENSE("GPL");
47 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
48 		"{C-Media,CMI8738B},"
49 		"{C-Media,CMI8338A},"
50 		"{C-Media,CMI8338B}}");
51 
52 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
53 #define SUPPORT_JOYSTICK 1
54 #endif
55 
56 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
57 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
58 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
59 static long mpu_port[SNDRV_CARDS];
60 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
62 #ifdef SUPPORT_JOYSTICK
63 static int joystick_port[SNDRV_CARDS];
64 #endif
65 
66 module_param_array(index, int, NULL, 0444);
67 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
68 module_param_array(id, charp, NULL, 0444);
69 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
70 module_param_array(enable, bool, NULL, 0444);
71 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
72 module_param_array(mpu_port, long, NULL, 0444);
73 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
74 module_param_array(fm_port, long, NULL, 0444);
75 MODULE_PARM_DESC(fm_port, "FM port.");
76 module_param_array(soft_ac3, bool, NULL, 0444);
77 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
78 #ifdef SUPPORT_JOYSTICK
79 module_param_array(joystick_port, int, NULL, 0444);
80 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
81 #endif
82 
83 /*
84  * CM8x38 registers definition
85  */
86 
87 #define CM_REG_FUNCTRL0		0x00
88 #define CM_RST_CH1		0x00080000
89 #define CM_RST_CH0		0x00040000
90 #define CM_CHEN1		0x00020000	/* ch1: enable */
91 #define CM_CHEN0		0x00010000	/* ch0: enable */
92 #define CM_PAUSE1		0x00000008	/* ch1: pause */
93 #define CM_PAUSE0		0x00000004	/* ch0: pause */
94 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
95 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
96 
97 #define CM_REG_FUNCTRL1		0x04
98 #define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
99 #define CM_DSFC_SHIFT		13
100 #define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
101 #define CM_ASFC_SHIFT		10
102 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
103 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
104 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
105 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
106 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
107 #define CM_BREQ			0x00000010	/* bus master enabled */
108 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
109 #define CM_UART_EN		0x00000004	/* legacy UART */
110 #define CM_JYSTK_EN		0x00000002	/* legacy joystick */
111 #define CM_ZVPORT		0x00000001	/* ZVPORT */
112 
113 #define CM_REG_CHFORMAT		0x08
114 
115 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
116 #define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
117 #define CM_CHB3D		0x20000000	/* 4 channels */
118 
119 #define CM_CHIP_MASK1		0x1f000000
120 #define CM_CHIP_037		0x01000000
121 #define CM_SETLAT48		0x00800000	/* set latency timer 48h */
122 #define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
123 #define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
124 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
125 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
126 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
127 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
128 
129 #define CM_ADCBITLEN_MASK	0x0000C000
130 #define CM_ADCBITLEN_16		0x00000000
131 #define CM_ADCBITLEN_15		0x00004000
132 #define CM_ADCBITLEN_14		0x00008000
133 #define CM_ADCBITLEN_13		0x0000C000
134 
135 #define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
136 #define CM_ADCDACLEN_060	0x00000000
137 #define CM_ADCDACLEN_066	0x00001000
138 #define CM_ADCDACLEN_130	0x00002000
139 #define CM_ADCDACLEN_280	0x00003000
140 
141 #define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
142 #define CM_ADCDLEN_ORIGINAL	0x00000000
143 #define CM_ADCDLEN_EXTRA	0x00001000
144 #define CM_ADCDLEN_24K		0x00002000
145 #define CM_ADCDLEN_WEIGHT	0x00003000
146 
147 #define CM_CH1_SRATE_176K	0x00000800
148 #define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
149 #define CM_CH1_SRATE_88K	0x00000400
150 #define CM_CH0_SRATE_176K	0x00000200
151 #define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
152 #define CM_CH0_SRATE_88K	0x00000100
153 
154 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
155 #define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
156 #define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
157 #define CM_SPDLOCKED		0x00000010
158 
159 #define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
160 #define CM_CH1FMT_SHIFT		2
161 #define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
162 #define CM_CH0FMT_SHIFT		0
163 
164 #define CM_REG_INT_HLDCLR	0x0C
165 #define CM_CHIP_MASK2		0xff000000
166 #define CM_CHIP_8768		0x20000000
167 #define CM_CHIP_055		0x08000000
168 #define CM_CHIP_039		0x04000000
169 #define CM_CHIP_039_6CH		0x01000000
170 #define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
171 #define CM_TDMA_INT_EN		0x00040000
172 #define CM_CH1_INT_EN		0x00020000
173 #define CM_CH0_INT_EN		0x00010000
174 
175 #define CM_REG_INT_STATUS	0x10
176 #define CM_INTR			0x80000000
177 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
178 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
179 #define CM_UARTINT		0x00010000
180 #define CM_LTDMAINT		0x00008000
181 #define CM_HTDMAINT		0x00004000
182 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
183 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
184 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
185 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
186 #define CM_CH1BUSY		0x00000008
187 #define CM_CH0BUSY		0x00000004
188 #define CM_CHINT1		0x00000002
189 #define CM_CHINT0		0x00000001
190 
191 #define CM_REG_LEGACY_CTRL	0x14
192 #define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
193 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
194 #define CM_VMPU_330		0x00000000
195 #define CM_VMPU_320		0x20000000
196 #define CM_VMPU_310		0x40000000
197 #define CM_VMPU_300		0x60000000
198 #define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
199 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
200 #define CM_VSBSEL_220		0x00000000
201 #define CM_VSBSEL_240		0x04000000
202 #define CM_VSBSEL_260		0x08000000
203 #define CM_VSBSEL_280		0x0C000000
204 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
205 #define CM_FMSEL_388		0x00000000
206 #define CM_FMSEL_3C8		0x01000000
207 #define CM_FMSEL_3E0		0x02000000
208 #define CM_FMSEL_3E8		0x03000000
209 #define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
210 #define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
211 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
212 #define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
213 #define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
214 #define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
215 #define CM_C_EECS		0x00040000
216 #define CM_C_EEDI46		0x00020000
217 #define CM_C_EECK46		0x00010000
218 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
219 #define CM_CENTR2LIN		0x00004000	/* line-in as center out */
220 #define CM_BASE2LIN		0x00002000	/* line-in as bass out */
221 #define CM_EXBASEN		0x00001000	/* external bass input enable */
222 
223 #define CM_REG_MISC_CTRL	0x18
224 #define CM_PWD			0x80000000	/* power down */
225 #define CM_RESET		0x40000000
226 #define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
227 #define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
228 #define CM_TXVX			0x08000000	/* model 037? */
229 #define CM_N4SPK3D		0x04000000	/* copy front to rear */
230 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
231 #define CM_SPDIF48K		0x01000000	/* write */
232 #define CM_SPATUS48K		0x01000000	/* read */
233 #define CM_ENDBDAC		0x00800000	/* enable double dac */
234 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
235 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
236 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
237 #define CM_FM_EN		0x00080000	/* enable legacy FM */
238 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
239 #define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
240 #define CM_VIDWPDSB		0x00010000	/* model 037? */
241 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
242 #define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
243 #define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
244 #define CM_VIDWPPRT		0x00002000	/* model 037? */
245 #define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
246 #define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
247 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
248 #define CM_ENCENTER		0x00000080
249 #define CM_FLINKON		0x00000080	/* force modem link detection on, model 037 */
250 #define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
251 #define CM_FLINKOFF		0x00000040	/* force modem link detection off, model 037 */
252 #define CM_UNKNOWN_18_5		0x00000020	/* ? */
253 #define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
254 #define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
255 #define CM_UPDDMA_2048		0x00000000
256 #define CM_UPDDMA_1024		0x00000004
257 #define CM_UPDDMA_512		0x00000008
258 #define CM_UPDDMA_256		0x0000000C
259 #define CM_TWAIT_MASK		0x00000003	/* model 037 */
260 #define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261 #define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
262 
263 #define CM_REG_TDMA_POSITION	0x1C
264 #define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
265 #define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
266 
267 	/* byte */
268 #define CM_REG_MIXER0		0x20
269 #define CM_REG_SBVR		0x20		/* write: sb16 version */
270 #define CM_REG_DEV		0x20		/* read: hardware device version */
271 
272 #define CM_REG_MIXER21		0x21
273 #define CM_UNKNOWN_21_MASK	0x78		/* ? */
274 #define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
275 #define CM_PROINV		0x02		/* SBPro left/right channel switching */
276 #define CM_X_SB16		0x01		/* SB16 compatible */
277 
278 #define CM_REG_SB16_DATA	0x22
279 #define CM_REG_SB16_ADDR	0x23
280 
281 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
282 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
284 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
285 
286 #define CM_REG_MIXER1		0x24
287 #define CM_FMMUTE		0x80	/* mute FM */
288 #define CM_FMMUTE_SHIFT		7
289 #define CM_WSMUTE		0x40	/* mute PCM */
290 #define CM_WSMUTE_SHIFT		6
291 #define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
292 #define CM_REAR2LIN_SHIFT	5
293 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
294 #define CM_REAR2FRONT_SHIFT	4
295 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
296 #define CM_WAVEINL_SHIFT	3
297 #define CM_WAVEINR		0x04	/* digical wave rec. right */
298 #define CM_WAVEINR_SHIFT	2
299 #define CM_X3DEN		0x02	/* 3D surround enable */
300 #define CM_X3DEN_SHIFT		1
301 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
302 #define CM_CDPLAY_SHIFT		0
303 
304 #define CM_REG_MIXER2		0x25
305 #define CM_RAUXREN		0x80	/* AUX right capture */
306 #define CM_RAUXREN_SHIFT	7
307 #define CM_RAUXLEN		0x40	/* AUX left capture */
308 #define CM_RAUXLEN_SHIFT	6
309 #define CM_VAUXRM		0x20	/* AUX right mute */
310 #define CM_VAUXRM_SHIFT		5
311 #define CM_VAUXLM		0x10	/* AUX left mute */
312 #define CM_VAUXLM_SHIFT		4
313 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
314 #define CM_VADMIC_SHIFT		1
315 #define CM_MICGAINZ		0x01	/* mic boost */
316 #define CM_MICGAINZ_SHIFT	0
317 
318 #define CM_REG_MIXER3		0x24
319 #define CM_REG_AUX_VOL		0x26
320 #define CM_VAUXL_MASK		0xf0
321 #define CM_VAUXR_MASK		0x0f
322 
323 #define CM_REG_MISC		0x27
324 #define CM_UNKNOWN_27_MASK	0xd8	/* ? */
325 #define CM_XGPO1		0x20
326 // #define CM_XGPBIO		0x04
327 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
328 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
329 #define CM_SPDVALID		0x02	/* spdif input valid check */
330 #define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
331 
332 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
333 /*
334  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335  * or identical with AC97 codec?
336  */
337 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
338 
339 /*
340  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
341  */
342 #define CM_REG_MPU_PCI		0x40
343 
344 /*
345  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
346  */
347 #define CM_REG_FM_PCI		0x50
348 
349 /*
350  * access from SB-mixer port
351  */
352 #define CM_REG_EXTENT_IND	0xf0
353 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
354 #define CM_VPHONE_SHIFT		5
355 #define CM_VPHOM		0x10	/* Phone mute control */
356 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
357 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
358 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
359 #define CM_VADMIC3		0x01	/* Mic record boost */
360 
361 /*
362  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364  * unit (readonly?).
365  */
366 #define CM_REG_PLL		0xf8
367 
368 /*
369  * extended registers
370  */
371 #define CM_REG_CH0_FRAME1	0x80	/* write: base address */
372 #define CM_REG_CH0_FRAME2	0x84	/* read: current address */
373 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
374 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
375 
376 #define CM_REG_EXT_MISC		0x90
377 #define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
378 #define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
379 #define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
380 #define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
381 #define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
382 #define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
383 #define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
384 #define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
385 
386 /*
387  * size of i/o region
388  */
389 #define CM_EXTENT_CODEC	  0x100
390 #define CM_EXTENT_MIDI	  0x2
391 #define CM_EXTENT_SYNTH	  0x4
392 
393 
394 /*
395  * channels for playback / capture
396  */
397 #define CM_CH_PLAY	0
398 #define CM_CH_CAPT	1
399 
400 /*
401  * flags to check device open/close
402  */
403 #define CM_OPEN_NONE	0
404 #define CM_OPEN_CH_MASK	0x01
405 #define CM_OPEN_DAC	0x10
406 #define CM_OPEN_ADC	0x20
407 #define CM_OPEN_SPDIF	0x40
408 #define CM_OPEN_MCHAN	0x80
409 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
410 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
411 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
413 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
415 
416 
417 #if CM_CH_PLAY == 1
418 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
419 #define CM_PLAYBACK_SPDF	CM_SPDF_1
420 #define CM_CAPTURE_SPDF		CM_SPDF_0
421 #else
422 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423 #define CM_PLAYBACK_SPDF	CM_SPDF_0
424 #define CM_CAPTURE_SPDF		CM_SPDF_1
425 #endif
426 
427 
428 /*
429  * driver data
430  */
431 
432 struct cmipci_pcm {
433 	struct snd_pcm_substream *substream;
434 	u8 running;		/* dac/adc running? */
435 	u8 fmt;			/* format bits */
436 	u8 is_dac;
437 	u8 needs_silencing;
438 	unsigned int dma_size;	/* in frames */
439 	unsigned int shift;
440 	unsigned int ch;	/* channel (0/1) */
441 	unsigned int offset;	/* physical address of the buffer */
442 };
443 
444 /* mixer elements toggled/resumed during ac3 playback */
445 struct cmipci_mixer_auto_switches {
446 	const char *name;	/* switch to toggle */
447 	int toggle_on;		/* value to change when ac3 mode */
448 };
449 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450 	{"PCM Playback Switch", 0},
451 	{"IEC958 Output Switch", 1},
452 	{"IEC958 Mix Analog", 0},
453 	// {"IEC958 Out To DAC", 1}, // no longer used
454 	{"IEC958 Loop", 0},
455 };
456 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
457 
458 struct cmipci {
459 	struct snd_card *card;
460 
461 	struct pci_dev *pci;
462 	unsigned int device;	/* device ID */
463 	int irq;
464 
465 	unsigned long iobase;
466 	unsigned int ctrl;	/* FUNCTRL0 current value */
467 
468 	struct snd_pcm *pcm;		/* DAC/ADC PCM */
469 	struct snd_pcm *pcm2;	/* 2nd DAC */
470 	struct snd_pcm *pcm_spdif;	/* SPDIF */
471 
472 	int chip_version;
473 	int max_channels;
474 	unsigned int can_ac3_sw: 1;
475 	unsigned int can_ac3_hw: 1;
476 	unsigned int can_multi_ch: 1;
477 	unsigned int do_soft_ac3: 1;
478 
479 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
480 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
481 	int spdif_counter;	/* for software AC3 */
482 
483 	unsigned int dig_status;
484 	unsigned int dig_pcm_status;
485 
486 	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
487 
488 	int opened[2];	/* open mode */
489 	struct mutex open_mutex;
490 
491 	unsigned int mixer_insensitive: 1;
492 	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
493 	int mixer_res_status[CM_SAVED_MIXERS];
494 
495 	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
496 
497 	/* external MIDI */
498 	struct snd_rawmidi *rmidi;
499 
500 #ifdef SUPPORT_JOYSTICK
501 	struct gameport *gameport;
502 #endif
503 
504 	spinlock_t reg_lock;
505 
506 #ifdef CONFIG_PM
507 	unsigned int saved_regs[0x20];
508 	unsigned char saved_mixers[0x20];
509 #endif
510 };
511 
512 
513 /* read/write operations for dword register */
514 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
515 {
516 	outl(data, cm->iobase + cmd);
517 }
518 
519 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
520 {
521 	return inl(cm->iobase + cmd);
522 }
523 
524 /* read/write operations for word register */
525 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
526 {
527 	outw(data, cm->iobase + cmd);
528 }
529 
530 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
531 {
532 	return inw(cm->iobase + cmd);
533 }
534 
535 /* read/write operations for byte register */
536 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
537 {
538 	outb(data, cm->iobase + cmd);
539 }
540 
541 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
542 {
543 	return inb(cm->iobase + cmd);
544 }
545 
546 /* bit operations for dword register */
547 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
548 {
549 	unsigned int val, oval;
550 	val = oval = inl(cm->iobase + cmd);
551 	val |= flag;
552 	if (val == oval)
553 		return 0;
554 	outl(val, cm->iobase + cmd);
555 	return 1;
556 }
557 
558 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
559 {
560 	unsigned int val, oval;
561 	val = oval = inl(cm->iobase + cmd);
562 	val &= ~flag;
563 	if (val == oval)
564 		return 0;
565 	outl(val, cm->iobase + cmd);
566 	return 1;
567 }
568 
569 /* bit operations for byte register */
570 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
571 {
572 	unsigned char val, oval;
573 	val = oval = inb(cm->iobase + cmd);
574 	val |= flag;
575 	if (val == oval)
576 		return 0;
577 	outb(val, cm->iobase + cmd);
578 	return 1;
579 }
580 
581 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
582 {
583 	unsigned char val, oval;
584 	val = oval = inb(cm->iobase + cmd);
585 	val &= ~flag;
586 	if (val == oval)
587 		return 0;
588 	outb(val, cm->iobase + cmd);
589 	return 1;
590 }
591 
592 
593 /*
594  * PCM interface
595  */
596 
597 /*
598  * calculate frequency
599  */
600 
601 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
602 
603 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
604 {
605 	unsigned int i;
606 
607 	if (rate > 48000)
608 		rate /= 2;
609 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
610 		if (rates[i] == rate)
611 			return i;
612 	}
613 	snd_BUG();
614 	return 0;
615 }
616 
617 #ifdef USE_VAR48KRATE
618 /*
619  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
620  * does it this way .. maybe not.  Never get any information from C-Media about
621  * that <werner@suse.de>.
622  */
623 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
624 {
625 	unsigned int delta, tolerance;
626 	int xm, xn, xr;
627 
628 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
629 		rate <<= 1;
630 	*n = -1;
631 	if (*r > 0xff)
632 		goto out;
633 	tolerance = rate*CM_TOLERANCE_RATE;
634 
635 	for (xn = (1+2); xn < (0x1f+2); xn++) {
636 		for (xm = (1+2); xm < (0xff+2); xm++) {
637 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
638 
639 			if (xr < rate)
640 				delta = rate - xr;
641 			else
642 				delta = xr - rate;
643 
644 			/*
645 			 * If we found one, remember this,
646 			 * and try to find a closer one
647 			 */
648 			if (delta < tolerance) {
649 				tolerance = delta;
650 				*m = xm - 2;
651 				*n = xn - 2;
652 			}
653 		}
654 	}
655 out:
656 	return (*n > -1);
657 }
658 
659 /*
660  * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
661  * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
662  * at the register CM_REG_FUNCTRL1 (0x04).
663  * Problem: other ways are also possible (any information about that?)
664  */
665 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
666 {
667 	unsigned int reg = CM_REG_PLL + slot;
668 	/*
669 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
670 	 * for DSFC/ASFC (000 upto 111).
671 	 */
672 
673 	/* FIXME: Init (Do we've to set an other register first before programming?) */
674 
675 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
676 	snd_cmipci_write_b(cm, reg, rate>>8);
677 	snd_cmipci_write_b(cm, reg, rate&0xff);
678 
679 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
680 }
681 #endif /* USE_VAR48KRATE */
682 
683 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
684 				struct snd_pcm_hw_params *hw_params)
685 {
686 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
687 }
688 
689 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
690 					  struct snd_pcm_hw_params *hw_params)
691 {
692 	struct cmipci *cm = snd_pcm_substream_chip(substream);
693 	if (params_channels(hw_params) > 2) {
694 		mutex_lock(&cm->open_mutex);
695 		if (cm->opened[CM_CH_PLAY]) {
696 			mutex_unlock(&cm->open_mutex);
697 			return -EBUSY;
698 		}
699 		/* reserve the channel A */
700 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
701 		mutex_unlock(&cm->open_mutex);
702 	}
703 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
704 }
705 
706 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
707 {
708 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
709 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
710 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
711 	udelay(10);
712 }
713 
714 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
715 {
716 	return snd_pcm_lib_free_pages(substream);
717 }
718 
719 
720 /*
721  */
722 
723 static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
724 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
725 	.count = 3,
726 	.list = hw_channels,
727 	.mask = 0,
728 };
729 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
730 	.count = 4,
731 	.list = hw_channels,
732 	.mask = 0,
733 };
734 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
735 	.count = 5,
736 	.list = hw_channels,
737 	.mask = 0,
738 };
739 
740 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
741 {
742 	if (channels > 2) {
743 		if (!cm->can_multi_ch || !rec->ch)
744 			return -EINVAL;
745 		if (rec->fmt != 0x03) /* stereo 16bit only */
746 			return -EINVAL;
747 	}
748 
749 	if (cm->can_multi_ch) {
750 		spin_lock_irq(&cm->reg_lock);
751 		if (channels > 2) {
752 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
753 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
754 		} else {
755 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
756 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
757 		}
758 		if (channels == 8)
759 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
760 		else
761 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
762 		if (channels == 6) {
763 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
764 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
765 		} else {
766 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
767 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
768 		}
769 		if (channels == 4)
770 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
771 		else
772 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
773 		spin_unlock_irq(&cm->reg_lock);
774 	}
775 	return 0;
776 }
777 
778 
779 /*
780  * prepare playback/capture channel
781  * channel to be used must have been set in rec->ch.
782  */
783 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
784 				 struct snd_pcm_substream *substream)
785 {
786 	unsigned int reg, freq, val;
787 	unsigned int period_size;
788 	struct snd_pcm_runtime *runtime = substream->runtime;
789 
790 	rec->fmt = 0;
791 	rec->shift = 0;
792 	if (snd_pcm_format_width(runtime->format) >= 16) {
793 		rec->fmt |= 0x02;
794 		if (snd_pcm_format_width(runtime->format) > 16)
795 			rec->shift++; /* 24/32bit */
796 	}
797 	if (runtime->channels > 1)
798 		rec->fmt |= 0x01;
799 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
800 		snd_printd("cannot set dac channels\n");
801 		return -EINVAL;
802 	}
803 
804 	rec->offset = runtime->dma_addr;
805 	/* buffer and period sizes in frame */
806 	rec->dma_size = runtime->buffer_size << rec->shift;
807 	period_size = runtime->period_size << rec->shift;
808 	if (runtime->channels > 2) {
809 		/* multi-channels */
810 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
811 		period_size = (period_size * runtime->channels) / 2;
812 	}
813 
814 	spin_lock_irq(&cm->reg_lock);
815 
816 	/* set buffer address */
817 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
818 	snd_cmipci_write(cm, reg, rec->offset);
819 	/* program sample counts */
820 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
821 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
822 	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
823 
824 	/* set adc/dac flag */
825 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
826 	if (rec->is_dac)
827 		cm->ctrl &= ~val;
828 	else
829 		cm->ctrl |= val;
830 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
831 	//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
832 
833 	/* set sample rate */
834 	freq = snd_cmipci_rate_freq(runtime->rate);
835 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
836 	if (rec->ch) {
837 		val &= ~CM_DSFC_MASK;
838 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
839 	} else {
840 		val &= ~CM_ASFC_MASK;
841 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
842 	}
843 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
844 	//snd_printd("cmipci: functrl1 = %08x\n", val);
845 
846 	/* set format */
847 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
848 	if (rec->ch) {
849 		val &= ~CM_CH1FMT_MASK;
850 		val |= rec->fmt << CM_CH1FMT_SHIFT;
851 	} else {
852 		val &= ~CM_CH0FMT_MASK;
853 		val |= rec->fmt << CM_CH0FMT_SHIFT;
854 	}
855 	if (cm->chip_version == 68) {
856 		if (runtime->rate == 88200)
857 			val |= CM_CH0_SRATE_88K << (rec->ch * 2);
858 		else
859 			val &= ~(CM_CH0_SRATE_88K << (rec->ch * 2));
860 		if (runtime->rate == 96000)
861 			val |= CM_CH0_SRATE_96K << (rec->ch * 2);
862 		else
863 			val &= ~(CM_CH0_SRATE_96K << (rec->ch * 2));
864 	}
865 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
866 	//snd_printd("cmipci: chformat = %08x\n", val);
867 
868 	rec->running = 0;
869 	spin_unlock_irq(&cm->reg_lock);
870 
871 	return 0;
872 }
873 
874 /*
875  * PCM trigger/stop
876  */
877 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
878 				  int cmd)
879 {
880 	unsigned int inthld, chen, reset, pause;
881 	int result = 0;
882 
883 	inthld = CM_CH0_INT_EN << rec->ch;
884 	chen = CM_CHEN0 << rec->ch;
885 	reset = CM_RST_CH0 << rec->ch;
886 	pause = CM_PAUSE0 << rec->ch;
887 
888 	spin_lock(&cm->reg_lock);
889 	switch (cmd) {
890 	case SNDRV_PCM_TRIGGER_START:
891 		rec->running = 1;
892 		/* set interrupt */
893 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
894 		cm->ctrl |= chen;
895 		/* enable channel */
896 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
897 		//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
898 		break;
899 	case SNDRV_PCM_TRIGGER_STOP:
900 		rec->running = 0;
901 		/* disable interrupt */
902 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
903 		/* reset */
904 		cm->ctrl &= ~chen;
905 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
906 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
907 		rec->needs_silencing = rec->is_dac;
908 		break;
909 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
910 	case SNDRV_PCM_TRIGGER_SUSPEND:
911 		cm->ctrl |= pause;
912 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
913 		break;
914 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
915 	case SNDRV_PCM_TRIGGER_RESUME:
916 		cm->ctrl &= ~pause;
917 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
918 		break;
919 	default:
920 		result = -EINVAL;
921 		break;
922 	}
923 	spin_unlock(&cm->reg_lock);
924 	return result;
925 }
926 
927 /*
928  * return the current pointer
929  */
930 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
931 						struct snd_pcm_substream *substream)
932 {
933 	size_t ptr;
934 	unsigned int reg;
935 	if (!rec->running)
936 		return 0;
937 #if 1 // this seems better..
938 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
939 	ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
940 	ptr >>= rec->shift;
941 #else
942 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
943 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
944 	ptr = bytes_to_frames(substream->runtime, ptr);
945 #endif
946 	if (substream->runtime->channels > 2)
947 		ptr = (ptr * 2) / substream->runtime->channels;
948 	return ptr;
949 }
950 
951 /*
952  * playback
953  */
954 
955 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
956 				       int cmd)
957 {
958 	struct cmipci *cm = snd_pcm_substream_chip(substream);
959 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
960 }
961 
962 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
963 {
964 	struct cmipci *cm = snd_pcm_substream_chip(substream);
965 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
966 }
967 
968 
969 
970 /*
971  * capture
972  */
973 
974 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
975 				     int cmd)
976 {
977 	struct cmipci *cm = snd_pcm_substream_chip(substream);
978 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
979 }
980 
981 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
982 {
983 	struct cmipci *cm = snd_pcm_substream_chip(substream);
984 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
985 }
986 
987 
988 /*
989  * hw preparation for spdif
990  */
991 
992 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
993 					 struct snd_ctl_elem_info *uinfo)
994 {
995 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
996 	uinfo->count = 1;
997 	return 0;
998 }
999 
1000 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1001 					struct snd_ctl_elem_value *ucontrol)
1002 {
1003 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1004 	int i;
1005 
1006 	spin_lock_irq(&chip->reg_lock);
1007 	for (i = 0; i < 4; i++)
1008 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1009 	spin_unlock_irq(&chip->reg_lock);
1010 	return 0;
1011 }
1012 
1013 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1014 					 struct snd_ctl_elem_value *ucontrol)
1015 {
1016 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1017 	int i, change;
1018 	unsigned int val;
1019 
1020 	val = 0;
1021 	spin_lock_irq(&chip->reg_lock);
1022 	for (i = 0; i < 4; i++)
1023 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1024 	change = val != chip->dig_status;
1025 	chip->dig_status = val;
1026 	spin_unlock_irq(&chip->reg_lock);
1027 	return change;
1028 }
1029 
1030 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
1031 {
1032 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1033 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1034 	.info =		snd_cmipci_spdif_default_info,
1035 	.get =		snd_cmipci_spdif_default_get,
1036 	.put =		snd_cmipci_spdif_default_put
1037 };
1038 
1039 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1040 				      struct snd_ctl_elem_info *uinfo)
1041 {
1042 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1043 	uinfo->count = 1;
1044 	return 0;
1045 }
1046 
1047 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1048 				     struct snd_ctl_elem_value *ucontrol)
1049 {
1050 	ucontrol->value.iec958.status[0] = 0xff;
1051 	ucontrol->value.iec958.status[1] = 0xff;
1052 	ucontrol->value.iec958.status[2] = 0xff;
1053 	ucontrol->value.iec958.status[3] = 0xff;
1054 	return 0;
1055 }
1056 
1057 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1058 {
1059 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1060 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1061 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1062 	.info =		snd_cmipci_spdif_mask_info,
1063 	.get =		snd_cmipci_spdif_mask_get,
1064 };
1065 
1066 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1067 					struct snd_ctl_elem_info *uinfo)
1068 {
1069 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1070 	uinfo->count = 1;
1071 	return 0;
1072 }
1073 
1074 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1075 				       struct snd_ctl_elem_value *ucontrol)
1076 {
1077 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1078 	int i;
1079 
1080 	spin_lock_irq(&chip->reg_lock);
1081 	for (i = 0; i < 4; i++)
1082 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1083 	spin_unlock_irq(&chip->reg_lock);
1084 	return 0;
1085 }
1086 
1087 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1088 				       struct snd_ctl_elem_value *ucontrol)
1089 {
1090 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1091 	int i, change;
1092 	unsigned int val;
1093 
1094 	val = 0;
1095 	spin_lock_irq(&chip->reg_lock);
1096 	for (i = 0; i < 4; i++)
1097 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1098 	change = val != chip->dig_pcm_status;
1099 	chip->dig_pcm_status = val;
1100 	spin_unlock_irq(&chip->reg_lock);
1101 	return change;
1102 }
1103 
1104 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1105 {
1106 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1107 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1108 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1109 	.info =		snd_cmipci_spdif_stream_info,
1110 	.get =		snd_cmipci_spdif_stream_get,
1111 	.put =		snd_cmipci_spdif_stream_put
1112 };
1113 
1114 /*
1115  */
1116 
1117 /* save mixer setting and mute for AC3 playback */
1118 static int save_mixer_state(struct cmipci *cm)
1119 {
1120 	if (! cm->mixer_insensitive) {
1121 		struct snd_ctl_elem_value *val;
1122 		unsigned int i;
1123 
1124 		val = kmalloc(sizeof(*val), GFP_ATOMIC);
1125 		if (!val)
1126 			return -ENOMEM;
1127 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1128 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1129 			if (ctl) {
1130 				int event;
1131 				memset(val, 0, sizeof(*val));
1132 				ctl->get(ctl, val);
1133 				cm->mixer_res_status[i] = val->value.integer.value[0];
1134 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1135 				event = SNDRV_CTL_EVENT_MASK_INFO;
1136 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1137 					ctl->put(ctl, val); /* toggle */
1138 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1139 				}
1140 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1141 				snd_ctl_notify(cm->card, event, &ctl->id);
1142 			}
1143 		}
1144 		kfree(val);
1145 		cm->mixer_insensitive = 1;
1146 	}
1147 	return 0;
1148 }
1149 
1150 
1151 /* restore the previously saved mixer status */
1152 static void restore_mixer_state(struct cmipci *cm)
1153 {
1154 	if (cm->mixer_insensitive) {
1155 		struct snd_ctl_elem_value *val;
1156 		unsigned int i;
1157 
1158 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1159 		if (!val)
1160 			return;
1161 		cm->mixer_insensitive = 0; /* at first clear this;
1162 					      otherwise the changes will be ignored */
1163 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1164 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1165 			if (ctl) {
1166 				int event;
1167 
1168 				memset(val, 0, sizeof(*val));
1169 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1170 				ctl->get(ctl, val);
1171 				event = SNDRV_CTL_EVENT_MASK_INFO;
1172 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1173 					val->value.integer.value[0] = cm->mixer_res_status[i];
1174 					ctl->put(ctl, val);
1175 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1176 				}
1177 				snd_ctl_notify(cm->card, event, &ctl->id);
1178 			}
1179 		}
1180 		kfree(val);
1181 	}
1182 }
1183 
1184 /* spinlock held! */
1185 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1186 {
1187 	if (do_ac3) {
1188 		/* AC3EN for 037 */
1189 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1190 		/* AC3EN for 039 */
1191 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1192 
1193 		if (cm->can_ac3_hw) {
1194 			/* SPD24SEL for 037, 0x02 */
1195 			/* SPD24SEL for 039, 0x20, but cannot be set */
1196 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1197 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1198 		} else { /* can_ac3_sw */
1199 			/* SPD32SEL for 037 & 039, 0x20 */
1200 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1201 			/* set 176K sample rate to fix 033 HW bug */
1202 			if (cm->chip_version == 33) {
1203 				if (rate >= 48000) {
1204 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1205 				} else {
1206 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1207 				}
1208 			}
1209 		}
1210 
1211 	} else {
1212 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1213 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1214 
1215 		if (cm->can_ac3_hw) {
1216 			/* chip model >= 37 */
1217 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1218 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1220 			} else {
1221 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1222 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1223 			}
1224 		} else {
1225 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1226 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1227 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1228 		}
1229 	}
1230 }
1231 
1232 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1233 {
1234 	int rate, err;
1235 
1236 	rate = subs->runtime->rate;
1237 
1238 	if (up && do_ac3)
1239 		if ((err = save_mixer_state(cm)) < 0)
1240 			return err;
1241 
1242 	spin_lock_irq(&cm->reg_lock);
1243 	cm->spdif_playback_avail = up;
1244 	if (up) {
1245 		/* they are controlled via "IEC958 Output Switch" */
1246 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1247 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1248 		if (cm->spdif_playback_enabled)
1249 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1250 		setup_ac3(cm, subs, do_ac3, rate);
1251 
1252 		if (rate == 48000 || rate == 96000)
1253 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1254 		else
1255 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1256 		if (rate > 48000)
1257 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1258 		else
1259 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1260 	} else {
1261 		/* they are controlled via "IEC958 Output Switch" */
1262 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1263 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1264 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1265 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1266 		setup_ac3(cm, subs, 0, 0);
1267 	}
1268 	spin_unlock_irq(&cm->reg_lock);
1269 	return 0;
1270 }
1271 
1272 
1273 /*
1274  * preparation
1275  */
1276 
1277 /* playback - enable spdif only on the certain condition */
1278 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1279 {
1280 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1281 	int rate = substream->runtime->rate;
1282 	int err, do_spdif, do_ac3 = 0;
1283 
1284 	do_spdif = (rate >= 44100 &&
1285 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1286 		    substream->runtime->channels == 2);
1287 	if (do_spdif && cm->can_ac3_hw)
1288 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1289 	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1290 		return err;
1291 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1292 }
1293 
1294 /* playback  (via device #2) - enable spdif always */
1295 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1296 {
1297 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1298 	int err, do_ac3;
1299 
1300 	if (cm->can_ac3_hw)
1301 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1302 	else
1303 		do_ac3 = 1; /* doesn't matter */
1304 	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1305 		return err;
1306 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1307 }
1308 
1309 /*
1310  * Apparently, the samples last played on channel A stay in some buffer, even
1311  * after the channel is reset, and get added to the data for the rear DACs when
1312  * playing a multichannel stream on channel B.  This is likely to generate
1313  * wraparounds and thus distortions.
1314  * To avoid this, we play at least one zero sample after the actual stream has
1315  * stopped.
1316  */
1317 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1318 {
1319 	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1320 	unsigned int reg, val;
1321 
1322 	if (rec->needs_silencing && runtime && runtime->dma_area) {
1323 		/* set up a small silence buffer */
1324 		memset(runtime->dma_area, 0, PAGE_SIZE);
1325 		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1326 		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1327 		snd_cmipci_write(cm, reg, val);
1328 
1329 		/* configure for 16 bits, 2 channels, 8 kHz */
1330 		if (runtime->channels > 2)
1331 			set_dac_channels(cm, rec, 2);
1332 		spin_lock_irq(&cm->reg_lock);
1333 		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1334 		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1335 		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1336 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1337 		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1338 		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1339 		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1340 		if (cm->chip_version == 68) {
1341 			val &= ~(CM_CH0_SRATE_88K << (rec->ch * 2));
1342 			val &= ~(CM_CH0_SRATE_96K << (rec->ch * 2));
1343 		}
1344 		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1345 
1346 		/* start stream (we don't need interrupts) */
1347 		cm->ctrl |= CM_CHEN0 << rec->ch;
1348 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1349 		spin_unlock_irq(&cm->reg_lock);
1350 
1351 		msleep(1);
1352 
1353 		/* stop and reset stream */
1354 		spin_lock_irq(&cm->reg_lock);
1355 		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1356 		val = CM_RST_CH0 << rec->ch;
1357 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1358 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1359 		spin_unlock_irq(&cm->reg_lock);
1360 
1361 		rec->needs_silencing = 0;
1362 	}
1363 }
1364 
1365 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1366 {
1367 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1368 	setup_spdif_playback(cm, substream, 0, 0);
1369 	restore_mixer_state(cm);
1370 	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1371 	return snd_cmipci_hw_free(substream);
1372 }
1373 
1374 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1375 {
1376 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1377 	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1378 	return snd_cmipci_hw_free(substream);
1379 }
1380 
1381 /* capture */
1382 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1383 {
1384 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1385 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1386 }
1387 
1388 /* capture with spdif (via device #2) */
1389 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1390 {
1391 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1392 
1393 	spin_lock_irq(&cm->reg_lock);
1394 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1395 	spin_unlock_irq(&cm->reg_lock);
1396 
1397 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1398 }
1399 
1400 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1401 {
1402 	struct cmipci *cm = snd_pcm_substream_chip(subs);
1403 
1404 	spin_lock_irq(&cm->reg_lock);
1405 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1406 	spin_unlock_irq(&cm->reg_lock);
1407 
1408 	return snd_cmipci_hw_free(subs);
1409 }
1410 
1411 
1412 /*
1413  * interrupt handler
1414  */
1415 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1416 {
1417 	struct cmipci *cm = dev_id;
1418 	unsigned int status, mask = 0;
1419 
1420 	/* fastpath out, to ease interrupt sharing */
1421 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1422 	if (!(status & CM_INTR))
1423 		return IRQ_NONE;
1424 
1425 	/* acknowledge interrupt */
1426 	spin_lock(&cm->reg_lock);
1427 	if (status & CM_CHINT0)
1428 		mask |= CM_CH0_INT_EN;
1429 	if (status & CM_CHINT1)
1430 		mask |= CM_CH1_INT_EN;
1431 	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1432 	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1433 	spin_unlock(&cm->reg_lock);
1434 
1435 	if (cm->rmidi && (status & CM_UARTINT))
1436 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1437 
1438 	if (cm->pcm) {
1439 		if ((status & CM_CHINT0) && cm->channel[0].running)
1440 			snd_pcm_period_elapsed(cm->channel[0].substream);
1441 		if ((status & CM_CHINT1) && cm->channel[1].running)
1442 			snd_pcm_period_elapsed(cm->channel[1].substream);
1443 	}
1444 	return IRQ_HANDLED;
1445 }
1446 
1447 /*
1448  * h/w infos
1449  */
1450 
1451 /* playback on channel A */
1452 static struct snd_pcm_hardware snd_cmipci_playback =
1453 {
1454 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1455 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1456 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1457 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1458 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1459 	.rate_min =		5512,
1460 	.rate_max =		48000,
1461 	.channels_min =		1,
1462 	.channels_max =		2,
1463 	.buffer_bytes_max =	(128*1024),
1464 	.period_bytes_min =	64,
1465 	.period_bytes_max =	(128*1024),
1466 	.periods_min =		2,
1467 	.periods_max =		1024,
1468 	.fifo_size =		0,
1469 };
1470 
1471 /* capture on channel B */
1472 static struct snd_pcm_hardware snd_cmipci_capture =
1473 {
1474 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1475 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1476 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1477 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1478 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1479 	.rate_min =		5512,
1480 	.rate_max =		48000,
1481 	.channels_min =		1,
1482 	.channels_max =		2,
1483 	.buffer_bytes_max =	(128*1024),
1484 	.period_bytes_min =	64,
1485 	.period_bytes_max =	(128*1024),
1486 	.periods_min =		2,
1487 	.periods_max =		1024,
1488 	.fifo_size =		0,
1489 };
1490 
1491 /* playback on channel B - stereo 16bit only? */
1492 static struct snd_pcm_hardware snd_cmipci_playback2 =
1493 {
1494 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1495 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1496 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1497 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1498 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1499 	.rate_min =		5512,
1500 	.rate_max =		48000,
1501 	.channels_min =		2,
1502 	.channels_max =		2,
1503 	.buffer_bytes_max =	(128*1024),
1504 	.period_bytes_min =	64,
1505 	.period_bytes_max =	(128*1024),
1506 	.periods_min =		2,
1507 	.periods_max =		1024,
1508 	.fifo_size =		0,
1509 };
1510 
1511 /* spdif playback on channel A */
1512 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1513 {
1514 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1515 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1516 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1517 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1518 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1519 	.rate_min =		44100,
1520 	.rate_max =		48000,
1521 	.channels_min =		2,
1522 	.channels_max =		2,
1523 	.buffer_bytes_max =	(128*1024),
1524 	.period_bytes_min =	64,
1525 	.period_bytes_max =	(128*1024),
1526 	.periods_min =		2,
1527 	.periods_max =		1024,
1528 	.fifo_size =		0,
1529 };
1530 
1531 /* spdif playback on channel A (32bit, IEC958 subframes) */
1532 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1533 {
1534 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1535 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1536 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1537 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1538 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1539 	.rate_min =		44100,
1540 	.rate_max =		48000,
1541 	.channels_min =		2,
1542 	.channels_max =		2,
1543 	.buffer_bytes_max =	(128*1024),
1544 	.period_bytes_min =	64,
1545 	.period_bytes_max =	(128*1024),
1546 	.periods_min =		2,
1547 	.periods_max =		1024,
1548 	.fifo_size =		0,
1549 };
1550 
1551 /* spdif capture on channel B */
1552 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1553 {
1554 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1555 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1556 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1557 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE,
1558 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1559 	.rate_min =		44100,
1560 	.rate_max =		48000,
1561 	.channels_min =		2,
1562 	.channels_max =		2,
1563 	.buffer_bytes_max =	(128*1024),
1564 	.period_bytes_min =	64,
1565 	.period_bytes_max =	(128*1024),
1566 	.periods_min =		2,
1567 	.periods_max =		1024,
1568 	.fifo_size =		0,
1569 };
1570 
1571 /*
1572  * check device open/close
1573  */
1574 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1575 {
1576 	int ch = mode & CM_OPEN_CH_MASK;
1577 
1578 	/* FIXME: a file should wait until the device becomes free
1579 	 * when it's opened on blocking mode.  however, since the current
1580 	 * pcm framework doesn't pass file pointer before actually opened,
1581 	 * we can't know whether blocking mode or not in open callback..
1582 	 */
1583 	mutex_lock(&cm->open_mutex);
1584 	if (cm->opened[ch]) {
1585 		mutex_unlock(&cm->open_mutex);
1586 		return -EBUSY;
1587 	}
1588 	cm->opened[ch] = mode;
1589 	cm->channel[ch].substream = subs;
1590 	if (! (mode & CM_OPEN_DAC)) {
1591 		/* disable dual DAC mode */
1592 		cm->channel[ch].is_dac = 0;
1593 		spin_lock_irq(&cm->reg_lock);
1594 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1595 		spin_unlock_irq(&cm->reg_lock);
1596 	}
1597 	mutex_unlock(&cm->open_mutex);
1598 	return 0;
1599 }
1600 
1601 static void close_device_check(struct cmipci *cm, int mode)
1602 {
1603 	int ch = mode & CM_OPEN_CH_MASK;
1604 
1605 	mutex_lock(&cm->open_mutex);
1606 	if (cm->opened[ch] == mode) {
1607 		if (cm->channel[ch].substream) {
1608 			snd_cmipci_ch_reset(cm, ch);
1609 			cm->channel[ch].running = 0;
1610 			cm->channel[ch].substream = NULL;
1611 		}
1612 		cm->opened[ch] = 0;
1613 		if (! cm->channel[ch].is_dac) {
1614 			/* enable dual DAC mode again */
1615 			cm->channel[ch].is_dac = 1;
1616 			spin_lock_irq(&cm->reg_lock);
1617 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1618 			spin_unlock_irq(&cm->reg_lock);
1619 		}
1620 	}
1621 	mutex_unlock(&cm->open_mutex);
1622 }
1623 
1624 /*
1625  */
1626 
1627 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1628 {
1629 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1630 	struct snd_pcm_runtime *runtime = substream->runtime;
1631 	int err;
1632 
1633 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1634 		return err;
1635 	runtime->hw = snd_cmipci_playback;
1636 	if (cm->chip_version == 68) {
1637 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1638 				     SNDRV_PCM_RATE_96000;
1639 		runtime->hw.rate_max = 96000;
1640 	}
1641 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1642 	cm->dig_pcm_status = cm->dig_status;
1643 	return 0;
1644 }
1645 
1646 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1647 {
1648 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1649 	struct snd_pcm_runtime *runtime = substream->runtime;
1650 	int err;
1651 
1652 	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1653 		return err;
1654 	runtime->hw = snd_cmipci_capture;
1655 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1656 		runtime->hw.rate_min = 41000;
1657 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1658 	}
1659 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1660 	return 0;
1661 }
1662 
1663 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1664 {
1665 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1666 	struct snd_pcm_runtime *runtime = substream->runtime;
1667 	int err;
1668 
1669 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1670 		return err;
1671 	runtime->hw = snd_cmipci_playback2;
1672 	mutex_lock(&cm->open_mutex);
1673 	if (! cm->opened[CM_CH_PLAY]) {
1674 		if (cm->can_multi_ch) {
1675 			runtime->hw.channels_max = cm->max_channels;
1676 			if (cm->max_channels == 4)
1677 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1678 			else if (cm->max_channels == 6)
1679 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1680 			else if (cm->max_channels == 8)
1681 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1682 		}
1683 	}
1684 	mutex_unlock(&cm->open_mutex);
1685 	if (cm->chip_version == 68) {
1686 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1687 				     SNDRV_PCM_RATE_96000;
1688 		runtime->hw.rate_max = 96000;
1689 	}
1690 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1691 	return 0;
1692 }
1693 
1694 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1695 {
1696 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1697 	struct snd_pcm_runtime *runtime = substream->runtime;
1698 	int err;
1699 
1700 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1701 		return err;
1702 	if (cm->can_ac3_hw) {
1703 		runtime->hw = snd_cmipci_playback_spdif;
1704 		if (cm->chip_version >= 37) {
1705 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1706 			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1707 		}
1708 		if (cm->chip_version == 68) {
1709 			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1710 					     SNDRV_PCM_RATE_96000;
1711 			runtime->hw.rate_max = 96000;
1712 		}
1713 	} else {
1714 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1715 	}
1716 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1717 	cm->dig_pcm_status = cm->dig_status;
1718 	return 0;
1719 }
1720 
1721 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1722 {
1723 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1724 	struct snd_pcm_runtime *runtime = substream->runtime;
1725 	int err;
1726 
1727 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1728 		return err;
1729 	runtime->hw = snd_cmipci_capture_spdif;
1730 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1731 	return 0;
1732 }
1733 
1734 
1735 /*
1736  */
1737 
1738 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1739 {
1740 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1741 	close_device_check(cm, CM_OPEN_PLAYBACK);
1742 	return 0;
1743 }
1744 
1745 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1746 {
1747 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1748 	close_device_check(cm, CM_OPEN_CAPTURE);
1749 	return 0;
1750 }
1751 
1752 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1753 {
1754 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1755 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1756 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1757 	return 0;
1758 }
1759 
1760 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1761 {
1762 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1763 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1764 	return 0;
1765 }
1766 
1767 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1768 {
1769 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1770 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1771 	return 0;
1772 }
1773 
1774 
1775 /*
1776  */
1777 
1778 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1779 	.open =		snd_cmipci_playback_open,
1780 	.close =	snd_cmipci_playback_close,
1781 	.ioctl =	snd_pcm_lib_ioctl,
1782 	.hw_params =	snd_cmipci_hw_params,
1783 	.hw_free =	snd_cmipci_playback_hw_free,
1784 	.prepare =	snd_cmipci_playback_prepare,
1785 	.trigger =	snd_cmipci_playback_trigger,
1786 	.pointer =	snd_cmipci_playback_pointer,
1787 };
1788 
1789 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1790 	.open =		snd_cmipci_capture_open,
1791 	.close =	snd_cmipci_capture_close,
1792 	.ioctl =	snd_pcm_lib_ioctl,
1793 	.hw_params =	snd_cmipci_hw_params,
1794 	.hw_free =	snd_cmipci_hw_free,
1795 	.prepare =	snd_cmipci_capture_prepare,
1796 	.trigger =	snd_cmipci_capture_trigger,
1797 	.pointer =	snd_cmipci_capture_pointer,
1798 };
1799 
1800 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1801 	.open =		snd_cmipci_playback2_open,
1802 	.close =	snd_cmipci_playback2_close,
1803 	.ioctl =	snd_pcm_lib_ioctl,
1804 	.hw_params =	snd_cmipci_playback2_hw_params,
1805 	.hw_free =	snd_cmipci_playback2_hw_free,
1806 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1807 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1808 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1809 };
1810 
1811 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1812 	.open =		snd_cmipci_playback_spdif_open,
1813 	.close =	snd_cmipci_playback_spdif_close,
1814 	.ioctl =	snd_pcm_lib_ioctl,
1815 	.hw_params =	snd_cmipci_hw_params,
1816 	.hw_free =	snd_cmipci_playback_hw_free,
1817 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1818 	.trigger =	snd_cmipci_playback_trigger,
1819 	.pointer =	snd_cmipci_playback_pointer,
1820 };
1821 
1822 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1823 	.open =		snd_cmipci_capture_spdif_open,
1824 	.close =	snd_cmipci_capture_spdif_close,
1825 	.ioctl =	snd_pcm_lib_ioctl,
1826 	.hw_params =	snd_cmipci_hw_params,
1827 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1828 	.prepare =	snd_cmipci_capture_spdif_prepare,
1829 	.trigger =	snd_cmipci_capture_trigger,
1830 	.pointer =	snd_cmipci_capture_pointer,
1831 };
1832 
1833 
1834 /*
1835  */
1836 
1837 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1838 {
1839 	struct snd_pcm *pcm;
1840 	int err;
1841 
1842 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1843 	if (err < 0)
1844 		return err;
1845 
1846 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1847 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1848 
1849 	pcm->private_data = cm;
1850 	pcm->info_flags = 0;
1851 	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1852 	cm->pcm = pcm;
1853 
1854 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1855 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1856 
1857 	return 0;
1858 }
1859 
1860 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1861 {
1862 	struct snd_pcm *pcm;
1863 	int err;
1864 
1865 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1866 	if (err < 0)
1867 		return err;
1868 
1869 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1870 
1871 	pcm->private_data = cm;
1872 	pcm->info_flags = 0;
1873 	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1874 	cm->pcm2 = pcm;
1875 
1876 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1877 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1878 
1879 	return 0;
1880 }
1881 
1882 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1883 {
1884 	struct snd_pcm *pcm;
1885 	int err;
1886 
1887 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1888 	if (err < 0)
1889 		return err;
1890 
1891 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1892 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1893 
1894 	pcm->private_data = cm;
1895 	pcm->info_flags = 0;
1896 	strcpy(pcm->name, "C-Media PCI IEC958");
1897 	cm->pcm_spdif = pcm;
1898 
1899 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1900 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1901 
1902 	return 0;
1903 }
1904 
1905 /*
1906  * mixer interface:
1907  * - CM8338/8738 has a compatible mixer interface with SB16, but
1908  *   lack of some elements like tone control, i/o gain and AGC.
1909  * - Access to native registers:
1910  *   - A 3D switch
1911  *   - Output mute switches
1912  */
1913 
1914 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1915 {
1916 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1917 	outb(data, s->iobase + CM_REG_SB16_DATA);
1918 }
1919 
1920 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1921 {
1922 	unsigned char v;
1923 
1924 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1925 	v = inb(s->iobase + CM_REG_SB16_DATA);
1926 	return v;
1927 }
1928 
1929 /*
1930  * general mixer element
1931  */
1932 struct cmipci_sb_reg {
1933 	unsigned int left_reg, right_reg;
1934 	unsigned int left_shift, right_shift;
1935 	unsigned int mask;
1936 	unsigned int invert: 1;
1937 	unsigned int stereo: 1;
1938 };
1939 
1940 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1941  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1942 
1943 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1944 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1945   .info = snd_cmipci_info_volume, \
1946   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1947   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1948 }
1949 
1950 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1951 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1952 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1953 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1954 
1955 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1956 {
1957 	r->left_reg = val & 0xff;
1958 	r->right_reg = (val >> 8) & 0xff;
1959 	r->left_shift = (val >> 16) & 0x07;
1960 	r->right_shift = (val >> 19) & 0x07;
1961 	r->invert = (val >> 22) & 1;
1962 	r->stereo = (val >> 23) & 1;
1963 	r->mask = (val >> 24) & 0xff;
1964 }
1965 
1966 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1967 				  struct snd_ctl_elem_info *uinfo)
1968 {
1969 	struct cmipci_sb_reg reg;
1970 
1971 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1972 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1973 	uinfo->count = reg.stereo + 1;
1974 	uinfo->value.integer.min = 0;
1975 	uinfo->value.integer.max = reg.mask;
1976 	return 0;
1977 }
1978 
1979 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
1980 				 struct snd_ctl_elem_value *ucontrol)
1981 {
1982 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1983 	struct cmipci_sb_reg reg;
1984 	int val;
1985 
1986 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1987 	spin_lock_irq(&cm->reg_lock);
1988 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
1989 	if (reg.invert)
1990 		val = reg.mask - val;
1991 	ucontrol->value.integer.value[0] = val;
1992 	if (reg.stereo) {
1993 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
1994 		if (reg.invert)
1995 			val = reg.mask - val;
1996 		 ucontrol->value.integer.value[1] = val;
1997 	}
1998 	spin_unlock_irq(&cm->reg_lock);
1999 	return 0;
2000 }
2001 
2002 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2003 				 struct snd_ctl_elem_value *ucontrol)
2004 {
2005 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2006 	struct cmipci_sb_reg reg;
2007 	int change;
2008 	int left, right, oleft, oright;
2009 
2010 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2011 	left = ucontrol->value.integer.value[0] & reg.mask;
2012 	if (reg.invert)
2013 		left = reg.mask - left;
2014 	left <<= reg.left_shift;
2015 	if (reg.stereo) {
2016 		right = ucontrol->value.integer.value[1] & reg.mask;
2017 		if (reg.invert)
2018 			right = reg.mask - right;
2019 		right <<= reg.right_shift;
2020 	} else
2021 		right = 0;
2022 	spin_lock_irq(&cm->reg_lock);
2023 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2024 	left |= oleft & ~(reg.mask << reg.left_shift);
2025 	change = left != oleft;
2026 	if (reg.stereo) {
2027 		if (reg.left_reg != reg.right_reg) {
2028 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2029 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2030 		} else
2031 			oright = left;
2032 		right |= oright & ~(reg.mask << reg.right_shift);
2033 		change |= right != oright;
2034 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2035 	} else
2036 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2037 	spin_unlock_irq(&cm->reg_lock);
2038 	return change;
2039 }
2040 
2041 /*
2042  * input route (left,right) -> (left,right)
2043  */
2044 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2045 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2046   .info = snd_cmipci_info_input_sw, \
2047   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2048   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2049 }
2050 
2051 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2052 				    struct snd_ctl_elem_info *uinfo)
2053 {
2054 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2055 	uinfo->count = 4;
2056 	uinfo->value.integer.min = 0;
2057 	uinfo->value.integer.max = 1;
2058 	return 0;
2059 }
2060 
2061 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2062 				   struct snd_ctl_elem_value *ucontrol)
2063 {
2064 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2065 	struct cmipci_sb_reg reg;
2066 	int val1, val2;
2067 
2068 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2069 	spin_lock_irq(&cm->reg_lock);
2070 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2071 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2072 	spin_unlock_irq(&cm->reg_lock);
2073 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2074 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2075 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2076 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2077 	return 0;
2078 }
2079 
2080 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2081 				   struct snd_ctl_elem_value *ucontrol)
2082 {
2083 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2084 	struct cmipci_sb_reg reg;
2085 	int change;
2086 	int val1, val2, oval1, oval2;
2087 
2088 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2089 	spin_lock_irq(&cm->reg_lock);
2090 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2091 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2092 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2093 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2094 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2095 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2096 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2097 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2098 	change = val1 != oval1 || val2 != oval2;
2099 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2100 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2101 	spin_unlock_irq(&cm->reg_lock);
2102 	return change;
2103 }
2104 
2105 /*
2106  * native mixer switches/volumes
2107  */
2108 
2109 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2110 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2111   .info = snd_cmipci_info_native_mixer, \
2112   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2113   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2114 }
2115 
2116 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2117 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2118   .info = snd_cmipci_info_native_mixer, \
2119   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2120   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2121 }
2122 
2123 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2124 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2125   .info = snd_cmipci_info_native_mixer, \
2126   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2127   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2128 }
2129 
2130 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2131 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2132   .info = snd_cmipci_info_native_mixer, \
2133   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2134   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2135 }
2136 
2137 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2138 					struct snd_ctl_elem_info *uinfo)
2139 {
2140 	struct cmipci_sb_reg reg;
2141 
2142 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2143 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2144 	uinfo->count = reg.stereo + 1;
2145 	uinfo->value.integer.min = 0;
2146 	uinfo->value.integer.max = reg.mask;
2147 	return 0;
2148 
2149 }
2150 
2151 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2152 				       struct snd_ctl_elem_value *ucontrol)
2153 {
2154 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2155 	struct cmipci_sb_reg reg;
2156 	unsigned char oreg, val;
2157 
2158 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2159 	spin_lock_irq(&cm->reg_lock);
2160 	oreg = inb(cm->iobase + reg.left_reg);
2161 	val = (oreg >> reg.left_shift) & reg.mask;
2162 	if (reg.invert)
2163 		val = reg.mask - val;
2164 	ucontrol->value.integer.value[0] = val;
2165 	if (reg.stereo) {
2166 		val = (oreg >> reg.right_shift) & reg.mask;
2167 		if (reg.invert)
2168 			val = reg.mask - val;
2169 		ucontrol->value.integer.value[1] = val;
2170 	}
2171 	spin_unlock_irq(&cm->reg_lock);
2172 	return 0;
2173 }
2174 
2175 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2176 				       struct snd_ctl_elem_value *ucontrol)
2177 {
2178 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2179 	struct cmipci_sb_reg reg;
2180 	unsigned char oreg, nreg, val;
2181 
2182 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2183 	spin_lock_irq(&cm->reg_lock);
2184 	oreg = inb(cm->iobase + reg.left_reg);
2185 	val = ucontrol->value.integer.value[0] & reg.mask;
2186 	if (reg.invert)
2187 		val = reg.mask - val;
2188 	nreg = oreg & ~(reg.mask << reg.left_shift);
2189 	nreg |= (val << reg.left_shift);
2190 	if (reg.stereo) {
2191 		val = ucontrol->value.integer.value[1] & reg.mask;
2192 		if (reg.invert)
2193 			val = reg.mask - val;
2194 		nreg &= ~(reg.mask << reg.right_shift);
2195 		nreg |= (val << reg.right_shift);
2196 	}
2197 	outb(nreg, cm->iobase + reg.left_reg);
2198 	spin_unlock_irq(&cm->reg_lock);
2199 	return (nreg != oreg);
2200 }
2201 
2202 /*
2203  * special case - check mixer sensitivity
2204  */
2205 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2206 						 struct snd_ctl_elem_value *ucontrol)
2207 {
2208 	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2209 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2210 }
2211 
2212 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2213 						 struct snd_ctl_elem_value *ucontrol)
2214 {
2215 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2216 	if (cm->mixer_insensitive) {
2217 		/* ignored */
2218 		return 0;
2219 	}
2220 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2221 }
2222 
2223 
2224 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2225 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2226 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2227 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2228 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2229 	{ /* switch with sensitivity */
2230 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2231 		.name = "PCM Playback Switch",
2232 		.info = snd_cmipci_info_native_mixer,
2233 		.get = snd_cmipci_get_native_mixer_sensitive,
2234 		.put = snd_cmipci_put_native_mixer_sensitive,
2235 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2236 	},
2237 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2238 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2239 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2240 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2241 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2242 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2243 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2244 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2245 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2246 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2247 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2248 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2249 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2250 	CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2251 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2252 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2253 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2254 	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2255 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2256 	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2257 	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2258 	CMIPCI_DOUBLE("PC Speaker Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2259 	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2260 };
2261 
2262 /*
2263  * other switches
2264  */
2265 
2266 struct cmipci_switch_args {
2267 	int reg;		/* register index */
2268 	unsigned int mask;	/* mask bits */
2269 	unsigned int mask_on;	/* mask bits to turn on */
2270 	unsigned int is_byte: 1;		/* byte access? */
2271 	unsigned int ac3_sensitive: 1;	/* access forbidden during
2272 					 * non-audio operation?
2273 					 */
2274 };
2275 
2276 #define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2277 
2278 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2279 				   struct snd_ctl_elem_value *ucontrol,
2280 				   struct cmipci_switch_args *args)
2281 {
2282 	unsigned int val;
2283 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2284 
2285 	spin_lock_irq(&cm->reg_lock);
2286 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2287 		ucontrol->value.integer.value[0] = 0;
2288 		spin_unlock_irq(&cm->reg_lock);
2289 		return 0;
2290 	}
2291 	if (args->is_byte)
2292 		val = inb(cm->iobase + args->reg);
2293 	else
2294 		val = snd_cmipci_read(cm, args->reg);
2295 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2296 	spin_unlock_irq(&cm->reg_lock);
2297 	return 0;
2298 }
2299 
2300 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2301 				  struct snd_ctl_elem_value *ucontrol)
2302 {
2303 	struct cmipci_switch_args *args;
2304 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2305 	snd_assert(args != NULL, return -EINVAL);
2306 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2307 }
2308 
2309 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2310 				   struct snd_ctl_elem_value *ucontrol,
2311 				   struct cmipci_switch_args *args)
2312 {
2313 	unsigned int val;
2314 	int change;
2315 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2316 
2317 	spin_lock_irq(&cm->reg_lock);
2318 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2319 		/* ignored */
2320 		spin_unlock_irq(&cm->reg_lock);
2321 		return 0;
2322 	}
2323 	if (args->is_byte)
2324 		val = inb(cm->iobase + args->reg);
2325 	else
2326 		val = snd_cmipci_read(cm, args->reg);
2327 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2328 			args->mask_on : (args->mask & ~args->mask_on));
2329 	if (change) {
2330 		val &= ~args->mask;
2331 		if (ucontrol->value.integer.value[0])
2332 			val |= args->mask_on;
2333 		else
2334 			val |= (args->mask & ~args->mask_on);
2335 		if (args->is_byte)
2336 			outb((unsigned char)val, cm->iobase + args->reg);
2337 		else
2338 			snd_cmipci_write(cm, args->reg, val);
2339 	}
2340 	spin_unlock_irq(&cm->reg_lock);
2341 	return change;
2342 }
2343 
2344 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2345 				  struct snd_ctl_elem_value *ucontrol)
2346 {
2347 	struct cmipci_switch_args *args;
2348 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2349 	snd_assert(args != NULL, return -EINVAL);
2350 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2351 }
2352 
2353 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2354 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2355   .reg = xreg, \
2356   .mask = xmask, \
2357   .mask_on = xmask_on, \
2358   .is_byte = xis_byte, \
2359   .ac3_sensitive = xac3, \
2360 }
2361 
2362 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2363 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2364 
2365 #if 0 /* these will be controlled in pcm device */
2366 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2367 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2368 #endif
2369 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2370 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2371 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2372 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2373 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2374 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2375 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2376 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2377 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2378 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2379 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2380 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2381 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2382 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2383 #if CM_CH_PLAY == 1
2384 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2385 #else
2386 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2387 #endif
2388 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2389 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2390 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2391 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2392 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2393 
2394 #define DEFINE_SWITCH(sname, stype, sarg) \
2395 { .name = sname, \
2396   .iface = stype, \
2397   .info = snd_cmipci_uswitch_info, \
2398   .get = snd_cmipci_uswitch_get, \
2399   .put = snd_cmipci_uswitch_put, \
2400   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2401 }
2402 
2403 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2404 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2405 
2406 
2407 /*
2408  * callbacks for spdif output switch
2409  * needs toggle two registers..
2410  */
2411 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2412 					struct snd_ctl_elem_value *ucontrol)
2413 {
2414 	int changed;
2415 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2416 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2417 	return changed;
2418 }
2419 
2420 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2421 					struct snd_ctl_elem_value *ucontrol)
2422 {
2423 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2424 	int changed;
2425 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2426 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2427 	if (changed) {
2428 		if (ucontrol->value.integer.value[0]) {
2429 			if (chip->spdif_playback_avail)
2430 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2431 		} else {
2432 			if (chip->spdif_playback_avail)
2433 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2434 		}
2435 	}
2436 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2437 	return changed;
2438 }
2439 
2440 
2441 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2442 					struct snd_ctl_elem_info *uinfo)
2443 {
2444 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2445 	static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2446 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2447 	uinfo->count = 1;
2448 	uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2449 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2450 		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2451 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2452 	return 0;
2453 }
2454 
2455 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2456 {
2457 	unsigned int val;
2458 	if (cm->chip_version >= 39) {
2459 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2460 		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2461 			return 2;
2462 	}
2463 	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2464 	if (val & CM_REAR2LIN)
2465 		return 1;
2466 	return 0;
2467 }
2468 
2469 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2470 				       struct snd_ctl_elem_value *ucontrol)
2471 {
2472 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2473 
2474 	spin_lock_irq(&cm->reg_lock);
2475 	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2476 	spin_unlock_irq(&cm->reg_lock);
2477 	return 0;
2478 }
2479 
2480 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2481 				       struct snd_ctl_elem_value *ucontrol)
2482 {
2483 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2484 	int change;
2485 
2486 	spin_lock_irq(&cm->reg_lock);
2487 	if (ucontrol->value.enumerated.item[0] == 2)
2488 		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2489 	else
2490 		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2491 	if (ucontrol->value.enumerated.item[0] == 1)
2492 		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2493 	else
2494 		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2495 	spin_unlock_irq(&cm->reg_lock);
2496 	return change;
2497 }
2498 
2499 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2500 				       struct snd_ctl_elem_info *uinfo)
2501 {
2502 	static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2503 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2504 	uinfo->count = 1;
2505 	uinfo->value.enumerated.items = 2;
2506 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2507 		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2508 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2509 	return 0;
2510 }
2511 
2512 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2513 				      struct snd_ctl_elem_value *ucontrol)
2514 {
2515 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516 	/* same bit as spdi_phase */
2517 	spin_lock_irq(&cm->reg_lock);
2518 	ucontrol->value.enumerated.item[0] =
2519 		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2520 	spin_unlock_irq(&cm->reg_lock);
2521 	return 0;
2522 }
2523 
2524 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2525 				      struct snd_ctl_elem_value *ucontrol)
2526 {
2527 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2528 	int change;
2529 
2530 	spin_lock_irq(&cm->reg_lock);
2531 	if (ucontrol->value.enumerated.item[0])
2532 		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2533 	else
2534 		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2535 	spin_unlock_irq(&cm->reg_lock);
2536 	return change;
2537 }
2538 
2539 /* both for CM8338/8738 */
2540 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2541 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2542 	{
2543 		.name = "Line-In Mode",
2544 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2545 		.info = snd_cmipci_line_in_mode_info,
2546 		.get = snd_cmipci_line_in_mode_get,
2547 		.put = snd_cmipci_line_in_mode_put,
2548 	},
2549 };
2550 
2551 /* for non-multichannel chips */
2552 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2553 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2554 
2555 /* only for CM8738 */
2556 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2557 #if 0 /* controlled in pcm device */
2558 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2559 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2560 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2561 #endif
2562 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2563 	{ .name = "IEC958 Output Switch",
2564 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2565 	  .info = snd_cmipci_uswitch_info,
2566 	  .get = snd_cmipci_spdout_enable_get,
2567 	  .put = snd_cmipci_spdout_enable_put,
2568 	},
2569 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2570 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2571 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2572 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2573 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2574 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2575 };
2576 
2577 /* only for model 033/037 */
2578 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2579 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2580 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2581 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2582 };
2583 
2584 /* only for model 039 or later */
2585 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2586 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2587 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2588 	{
2589 		.name = "Mic-In Mode",
2590 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2591 		.info = snd_cmipci_mic_in_mode_info,
2592 		.get = snd_cmipci_mic_in_mode_get,
2593 		.put = snd_cmipci_mic_in_mode_put,
2594 	}
2595 };
2596 
2597 /* card control switches */
2598 static struct snd_kcontrol_new snd_cmipci_control_switches[] __devinitdata = {
2599 	// DEFINE_CARD_SWITCH("Joystick", joystick), /* now module option */
2600 	DEFINE_CARD_SWITCH("Modem", modem),
2601 };
2602 
2603 
2604 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2605 {
2606 	struct snd_card *card;
2607 	struct snd_kcontrol_new *sw;
2608 	struct snd_kcontrol *kctl;
2609 	unsigned int idx;
2610 	int err;
2611 
2612 	snd_assert(cm != NULL && cm->card != NULL, return -EINVAL);
2613 
2614 	card = cm->card;
2615 
2616 	strcpy(card->mixername, "CMedia PCI");
2617 
2618 	spin_lock_irq(&cm->reg_lock);
2619 	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2620 	spin_unlock_irq(&cm->reg_lock);
2621 
2622 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2623 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2624 			if (!strcmp(snd_cmipci_mixers[idx].name,
2625 				"PCM Playback Volume"))
2626 				continue;
2627 		}
2628 		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2629 			return err;
2630 	}
2631 
2632 	/* mixer switches */
2633 	sw = snd_cmipci_mixer_switches;
2634 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2635 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2636 		if (err < 0)
2637 			return err;
2638 	}
2639 	if (! cm->can_multi_ch) {
2640 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2641 		if (err < 0)
2642 			return err;
2643 	}
2644 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2645 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2646 		sw = snd_cmipci_8738_mixer_switches;
2647 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2648 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2649 			if (err < 0)
2650 				return err;
2651 		}
2652 		if (cm->can_ac3_hw) {
2653 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2654 				return err;
2655 			kctl->id.device = pcm_spdif_device;
2656 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2657 				return err;
2658 			kctl->id.device = pcm_spdif_device;
2659 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2660 				return err;
2661 			kctl->id.device = pcm_spdif_device;
2662 		}
2663 		if (cm->chip_version <= 37) {
2664 			sw = snd_cmipci_old_mixer_switches;
2665 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2666 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2667 				if (err < 0)
2668 					return err;
2669 			}
2670 		}
2671 	}
2672 	if (cm->chip_version >= 39) {
2673 		sw = snd_cmipci_extra_mixer_switches;
2674 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2675 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2676 			if (err < 0)
2677 				return err;
2678 		}
2679 	}
2680 
2681 	/* card switches */
2682 	sw = snd_cmipci_control_switches;
2683 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_control_switches); idx++, sw++) {
2684 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2685 		if (err < 0)
2686 			return err;
2687 	}
2688 
2689 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2690 		struct snd_ctl_elem_id id;
2691 		struct snd_kcontrol *ctl;
2692 		memset(&id, 0, sizeof(id));
2693 		id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2694 		strcpy(id.name, cm_saved_mixer[idx].name);
2695 		if ((ctl = snd_ctl_find_id(cm->card, &id)) != NULL)
2696 			cm->mixer_res_ctl[idx] = ctl;
2697 	}
2698 
2699 	return 0;
2700 }
2701 
2702 
2703 /*
2704  * proc interface
2705  */
2706 
2707 #ifdef CONFIG_PROC_FS
2708 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2709 				 struct snd_info_buffer *buffer)
2710 {
2711 	struct cmipci *cm = entry->private_data;
2712 	int i, v;
2713 
2714 	snd_iprintf(buffer, "%s\n", cm->card->longname);
2715 	for (i = 0; i < 0x94; i++) {
2716 		if (i == 0x28)
2717 			i = 0x90;
2718 		v = inb(cm->iobase + i);
2719 		if (i % 4 == 0)
2720 			snd_iprintf(buffer, "\n%02x:", i);
2721 		snd_iprintf(buffer, " %02x", v);
2722 	}
2723 	snd_iprintf(buffer, "\n");
2724 }
2725 
2726 static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2727 {
2728 	struct snd_info_entry *entry;
2729 
2730 	if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2731 		snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2732 }
2733 #else /* !CONFIG_PROC_FS */
2734 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2735 #endif
2736 
2737 
2738 static struct pci_device_id snd_cmipci_ids[] = {
2739 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2740 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2741 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2742 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2743 	{PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2744 	{0,},
2745 };
2746 
2747 
2748 /*
2749  * check chip version and capabilities
2750  * driver name is modified according to the chip model
2751  */
2752 static void __devinit query_chip(struct cmipci *cm)
2753 {
2754 	unsigned int detect;
2755 
2756 	/* check reg 0Ch, bit 24-31 */
2757 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2758 	if (! detect) {
2759 		/* check reg 08h, bit 24-28 */
2760 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2761 		switch (detect) {
2762 		case 0:
2763 			cm->chip_version = 33;
2764 			if (cm->do_soft_ac3)
2765 				cm->can_ac3_sw = 1;
2766 			else
2767 				cm->can_ac3_hw = 1;
2768 			break;
2769 		case CM_CHIP_037:
2770 			cm->chip_version = 37;
2771 			cm->can_ac3_hw = 1;
2772 			break;
2773 		default:
2774 			cm->chip_version = 39;
2775 			cm->can_ac3_hw = 1;
2776 			break;
2777 		}
2778 		cm->max_channels = 2;
2779 	} else {
2780 		if (detect & CM_CHIP_039) {
2781 			cm->chip_version = 39;
2782 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2783 				cm->max_channels = 6;
2784 			else
2785 				cm->max_channels = 4;
2786 		} else if (detect & CM_CHIP_8768) {
2787 			cm->chip_version = 68;
2788 			cm->max_channels = 8;
2789 		} else {
2790 			cm->chip_version = 55;
2791 			cm->max_channels = 6;
2792 		}
2793 		cm->can_ac3_hw = 1;
2794 		cm->can_multi_ch = 1;
2795 	}
2796 }
2797 
2798 #ifdef SUPPORT_JOYSTICK
2799 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2800 {
2801 	static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2802 	struct gameport *gp;
2803 	struct resource *r = NULL;
2804 	int i, io_port = 0;
2805 
2806 	if (joystick_port[dev] == 0)
2807 		return -ENODEV;
2808 
2809 	if (joystick_port[dev] == 1) { /* auto-detect */
2810 		for (i = 0; ports[i]; i++) {
2811 			io_port = ports[i];
2812 			r = request_region(io_port, 1, "CMIPCI gameport");
2813 			if (r)
2814 				break;
2815 		}
2816 	} else {
2817 		io_port = joystick_port[dev];
2818 		r = request_region(io_port, 1, "CMIPCI gameport");
2819 	}
2820 
2821 	if (!r) {
2822 		printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2823 		return -EBUSY;
2824 	}
2825 
2826 	cm->gameport = gp = gameport_allocate_port();
2827 	if (!gp) {
2828 		printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2829 		release_and_free_resource(r);
2830 		return -ENOMEM;
2831 	}
2832 	gameport_set_name(gp, "C-Media Gameport");
2833 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2834 	gameport_set_dev_parent(gp, &cm->pci->dev);
2835 	gp->io = io_port;
2836 	gameport_set_port_data(gp, r);
2837 
2838 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2839 
2840 	gameport_register_port(cm->gameport);
2841 
2842 	return 0;
2843 }
2844 
2845 static void snd_cmipci_free_gameport(struct cmipci *cm)
2846 {
2847 	if (cm->gameport) {
2848 		struct resource *r = gameport_get_port_data(cm->gameport);
2849 
2850 		gameport_unregister_port(cm->gameport);
2851 		cm->gameport = NULL;
2852 
2853 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2854 		release_and_free_resource(r);
2855 	}
2856 }
2857 #else
2858 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2859 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2860 #endif
2861 
2862 static int snd_cmipci_free(struct cmipci *cm)
2863 {
2864 	if (cm->irq >= 0) {
2865 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2866 		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2867 		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2868 		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2869 		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2870 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2871 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2872 
2873 		/* reset mixer */
2874 		snd_cmipci_mixer_write(cm, 0, 0);
2875 
2876 		synchronize_irq(cm->irq);
2877 
2878 		free_irq(cm->irq, cm);
2879 	}
2880 
2881 	snd_cmipci_free_gameport(cm);
2882 	pci_release_regions(cm->pci);
2883 	pci_disable_device(cm->pci);
2884 	kfree(cm);
2885 	return 0;
2886 }
2887 
2888 static int snd_cmipci_dev_free(struct snd_device *device)
2889 {
2890 	struct cmipci *cm = device->device_data;
2891 	return snd_cmipci_free(cm);
2892 }
2893 
2894 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2895 {
2896 	long iosynth;
2897 	unsigned int val;
2898 	struct snd_opl3 *opl3;
2899 	int err;
2900 
2901 	if (!fm_port)
2902 		goto disable_fm;
2903 
2904 	if (cm->chip_version >= 39) {
2905 		/* first try FM regs in PCI port range */
2906 		iosynth = cm->iobase + CM_REG_FM_PCI;
2907 		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2908 				      OPL3_HW_OPL3, 1, &opl3);
2909 	} else {
2910 		err = -EIO;
2911 	}
2912 	if (err < 0) {
2913 		/* then try legacy ports */
2914 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2915 		iosynth = fm_port;
2916 		switch (iosynth) {
2917 		case 0x3E8: val |= CM_FMSEL_3E8; break;
2918 		case 0x3E0: val |= CM_FMSEL_3E0; break;
2919 		case 0x3C8: val |= CM_FMSEL_3C8; break;
2920 		case 0x388: val |= CM_FMSEL_388; break;
2921 		default:
2922 			goto disable_fm;
2923 		}
2924 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2925 		/* enable FM */
2926 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2927 
2928 		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2929 				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2930 			printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2931 			       "skipping...\n", iosynth);
2932 			goto disable_fm;
2933 		}
2934 	}
2935 	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2936 		printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2937 		return err;
2938 	}
2939 	return 0;
2940 
2941  disable_fm:
2942 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2943 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2944 	return 0;
2945 }
2946 
2947 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2948 				       int dev, struct cmipci **rcmipci)
2949 {
2950 	struct cmipci *cm;
2951 	int err;
2952 	static struct snd_device_ops ops = {
2953 		.dev_free =	snd_cmipci_dev_free,
2954 	};
2955 	unsigned int val;
2956 	long iomidi;
2957 	int integrated_midi = 0;
2958 	char modelstr[16];
2959 	int pcm_index, pcm_spdif_index;
2960 	static struct pci_device_id intel_82437vx[] = {
2961 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2962 		{ },
2963 	};
2964 
2965 	*rcmipci = NULL;
2966 
2967 	if ((err = pci_enable_device(pci)) < 0)
2968 		return err;
2969 
2970 	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2971 	if (cm == NULL) {
2972 		pci_disable_device(pci);
2973 		return -ENOMEM;
2974 	}
2975 
2976 	spin_lock_init(&cm->reg_lock);
2977 	mutex_init(&cm->open_mutex);
2978 	cm->device = pci->device;
2979 	cm->card = card;
2980 	cm->pci = pci;
2981 	cm->irq = -1;
2982 	cm->channel[0].ch = 0;
2983 	cm->channel[1].ch = 1;
2984 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2985 
2986 	if ((err = pci_request_regions(pci, card->driver)) < 0) {
2987 		kfree(cm);
2988 		pci_disable_device(pci);
2989 		return err;
2990 	}
2991 	cm->iobase = pci_resource_start(pci, 0);
2992 
2993 	if (request_irq(pci->irq, snd_cmipci_interrupt,
2994 			IRQF_SHARED, card->driver, cm)) {
2995 		snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2996 		snd_cmipci_free(cm);
2997 		return -EBUSY;
2998 	}
2999 	cm->irq = pci->irq;
3000 
3001 	pci_set_master(cm->pci);
3002 
3003 	/*
3004 	 * check chip version, max channels and capabilities
3005 	 */
3006 
3007 	cm->chip_version = 0;
3008 	cm->max_channels = 2;
3009 	cm->do_soft_ac3 = soft_ac3[dev];
3010 
3011 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3012 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3013 		query_chip(cm);
3014 	/* added -MCx suffix for chip supporting multi-channels */
3015 	if (cm->can_multi_ch)
3016 		sprintf(cm->card->driver + strlen(cm->card->driver),
3017 			"-MC%d", cm->max_channels);
3018 	else if (cm->can_ac3_sw)
3019 		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3020 
3021 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3022 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3023 
3024 #if CM_CH_PLAY == 1
3025 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3026 #else
3027 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3028 #endif
3029 
3030 	/* initialize codec registers */
3031 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3032 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3033 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3034 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3035 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3036 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3037 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3038 
3039 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3040 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3041 #if CM_CH_PLAY == 1
3042 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3043 #else
3044 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3045 #endif
3046 	if (cm->chip_version) {
3047 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3048 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3049 	}
3050 	/* Set Bus Master Request */
3051 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3052 
3053 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3054 	switch (pci->device) {
3055 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3056 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3057 		if (!pci_dev_present(intel_82437vx))
3058 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3059 		break;
3060 	default:
3061 		break;
3062 	}
3063 
3064 	if (cm->chip_version < 68) {
3065 		val = pci->device < 0x110 ? 8338 : 8738;
3066 	} else {
3067 		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3068 		case 0:
3069 			val = 8769;
3070 			break;
3071 		case 2:
3072 			val = 8762;
3073 			break;
3074 		default:
3075 			switch ((pci->subsystem_vendor << 16) |
3076 				pci->subsystem_device) {
3077 			case 0x13f69761:
3078 			case 0x584d3741:
3079 			case 0x584d3751:
3080 			case 0x584d3761:
3081 			case 0x584d3771:
3082 			case 0x72848384:
3083 				val = 8770;
3084 				break;
3085 			default:
3086 				val = 8768;
3087 				break;
3088 			}
3089 		}
3090 	}
3091 	sprintf(card->shortname, "C-Media CMI%d", val);
3092 	if (cm->chip_version < 68)
3093 		sprintf(modelstr, " (model %d)", cm->chip_version);
3094 	else
3095 		modelstr[0] = '\0';
3096 	sprintf(card->longname, "%s%s at %#lx, irq %i",
3097 		card->shortname, modelstr, cm->iobase, cm->irq);
3098 
3099 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3100 		snd_cmipci_free(cm);
3101 		return err;
3102 	}
3103 
3104 	if (cm->chip_version >= 39) {
3105 		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3106 		if (val != 0x00 && val != 0xff) {
3107 			iomidi = cm->iobase + CM_REG_MPU_PCI;
3108 			integrated_midi = 1;
3109 		}
3110 	}
3111 	if (!integrated_midi) {
3112 		val = 0;
3113 		iomidi = mpu_port[dev];
3114 		switch (iomidi) {
3115 		case 0x320: val = CM_VMPU_320; break;
3116 		case 0x310: val = CM_VMPU_310; break;
3117 		case 0x300: val = CM_VMPU_300; break;
3118 		case 0x330: val = CM_VMPU_330; break;
3119 		default:
3120 			    iomidi = 0; break;
3121 		}
3122 		if (iomidi > 0) {
3123 			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3124 			/* enable UART */
3125 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3126 			if (inb(iomidi + 1) == 0xff) {
3127 				snd_printk(KERN_ERR "cannot enable MPU-401 port"
3128 					   " at %#lx\n", iomidi);
3129 				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3130 						     CM_UART_EN);
3131 				iomidi = 0;
3132 			}
3133 		}
3134 	}
3135 
3136 	if (cm->chip_version < 68) {
3137 		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3138 		if (err < 0)
3139 			return err;
3140 	}
3141 
3142 	/* reset mixer */
3143 	snd_cmipci_mixer_write(cm, 0, 0);
3144 
3145 	snd_cmipci_proc_init(cm);
3146 
3147 	/* create pcm devices */
3148 	pcm_index = pcm_spdif_index = 0;
3149 	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3150 		return err;
3151 	pcm_index++;
3152 	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3153 		return err;
3154 	pcm_index++;
3155 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3156 		pcm_spdif_index = pcm_index;
3157 		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3158 			return err;
3159 	}
3160 
3161 	/* create mixer interface & switches */
3162 	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3163 		return err;
3164 
3165 	if (iomidi > 0) {
3166 		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3167 					       iomidi,
3168 					       (integrated_midi ?
3169 						MPU401_INFO_INTEGRATED : 0),
3170 					       cm->irq, 0, &cm->rmidi)) < 0) {
3171 			printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3172 		}
3173 	}
3174 
3175 #ifdef USE_VAR48KRATE
3176 	for (val = 0; val < ARRAY_SIZE(rates); val++)
3177 		snd_cmipci_set_pll(cm, rates[val], val);
3178 
3179 	/*
3180 	 * (Re-)Enable external switch spdo_48k
3181 	 */
3182 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3183 #endif /* USE_VAR48KRATE */
3184 
3185 	if (snd_cmipci_create_gameport(cm, dev) < 0)
3186 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3187 
3188 	snd_card_set_dev(card, &pci->dev);
3189 
3190 	*rcmipci = cm;
3191 	return 0;
3192 }
3193 
3194 /*
3195  */
3196 
3197 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3198 
3199 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3200 				      const struct pci_device_id *pci_id)
3201 {
3202 	static int dev;
3203 	struct snd_card *card;
3204 	struct cmipci *cm;
3205 	int err;
3206 
3207 	if (dev >= SNDRV_CARDS)
3208 		return -ENODEV;
3209 	if (! enable[dev]) {
3210 		dev++;
3211 		return -ENOENT;
3212 	}
3213 
3214 	card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
3215 	if (card == NULL)
3216 		return -ENOMEM;
3217 
3218 	switch (pci->device) {
3219 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3220 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3221 		strcpy(card->driver, "CMI8738");
3222 		break;
3223 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3224 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3225 		strcpy(card->driver, "CMI8338");
3226 		break;
3227 	default:
3228 		strcpy(card->driver, "CMIPCI");
3229 		break;
3230 	}
3231 
3232 	if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3233 		snd_card_free(card);
3234 		return err;
3235 	}
3236 	card->private_data = cm;
3237 
3238 	if ((err = snd_card_register(card)) < 0) {
3239 		snd_card_free(card);
3240 		return err;
3241 	}
3242 	pci_set_drvdata(pci, card);
3243 	dev++;
3244 	return 0;
3245 
3246 }
3247 
3248 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3249 {
3250 	snd_card_free(pci_get_drvdata(pci));
3251 	pci_set_drvdata(pci, NULL);
3252 }
3253 
3254 
3255 #ifdef CONFIG_PM
3256 /*
3257  * power management
3258  */
3259 static unsigned char saved_regs[] = {
3260 	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3261 	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3262 	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3263 	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3264 	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3265 };
3266 
3267 static unsigned char saved_mixers[] = {
3268 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3269 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3270 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3271 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3272 	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3273 	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3274 	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3275 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3276 };
3277 
3278 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3279 {
3280 	struct snd_card *card = pci_get_drvdata(pci);
3281 	struct cmipci *cm = card->private_data;
3282 	int i;
3283 
3284 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3285 
3286 	snd_pcm_suspend_all(cm->pcm);
3287 	snd_pcm_suspend_all(cm->pcm2);
3288 	snd_pcm_suspend_all(cm->pcm_spdif);
3289 
3290 	/* save registers */
3291 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3292 		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3293 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3294 		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3295 
3296 	/* disable ints */
3297 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3298 
3299 	pci_disable_device(pci);
3300 	pci_save_state(pci);
3301 	pci_set_power_state(pci, pci_choose_state(pci, state));
3302 	return 0;
3303 }
3304 
3305 static int snd_cmipci_resume(struct pci_dev *pci)
3306 {
3307 	struct snd_card *card = pci_get_drvdata(pci);
3308 	struct cmipci *cm = card->private_data;
3309 	int i;
3310 
3311 	pci_set_power_state(pci, PCI_D0);
3312 	pci_restore_state(pci);
3313 	if (pci_enable_device(pci) < 0) {
3314 		printk(KERN_ERR "cmipci: pci_enable_device failed, "
3315 		       "disabling device\n");
3316 		snd_card_disconnect(card);
3317 		return -EIO;
3318 	}
3319 	pci_set_master(pci);
3320 
3321 	/* reset / initialize to a sane state */
3322 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3323 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3324 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3325 	snd_cmipci_mixer_write(cm, 0, 0);
3326 
3327 	/* restore registers */
3328 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3329 		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3330 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3331 		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3332 
3333 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3334 	return 0;
3335 }
3336 #endif /* CONFIG_PM */
3337 
3338 static struct pci_driver driver = {
3339 	.name = "C-Media PCI",
3340 	.id_table = snd_cmipci_ids,
3341 	.probe = snd_cmipci_probe,
3342 	.remove = __devexit_p(snd_cmipci_remove),
3343 #ifdef CONFIG_PM
3344 	.suspend = snd_cmipci_suspend,
3345 	.resume = snd_cmipci_resume,
3346 #endif
3347 };
3348 
3349 static int __init alsa_card_cmipci_init(void)
3350 {
3351 	return pci_register_driver(&driver);
3352 }
3353 
3354 static void __exit alsa_card_cmipci_exit(void)
3355 {
3356 	pci_unregister_driver(&driver);
3357 }
3358 
3359 module_init(alsa_card_cmipci_init)
3360 module_exit(alsa_card_cmipci_exit)
3361